Merge branches 'acpi-mm', 'acpi-tables', 'acpi-apei' and 'acpi-misc'
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62         struct task_struct      *p;
63         remote_function_f       func;
64         void                    *info;
65         int                     ret;
66 };
67
68 static void remote_function(void *data)
69 {
70         struct remote_function_call *tfc = data;
71         struct task_struct *p = tfc->p;
72
73         if (p) {
74                 /* -EAGAIN */
75                 if (task_cpu(p) != smp_processor_id())
76                         return;
77
78                 /*
79                  * Now that we're on right CPU with IRQs disabled, we can test
80                  * if we hit the right task without races.
81                  */
82
83                 tfc->ret = -ESRCH; /* No such (running) process */
84                 if (p != current)
85                         return;
86         }
87
88         tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:          the task to evaluate
94  * @func:       the function to be called
95  * @info:       the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly.  This will
99  * retry due to any failures in smp_call_function_single(), such as if the
100  * task_cpu() goes offline concurrently.
101  *
102  * returns @func return value or -ESRCH when the process isn't running
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107         struct remote_function_call data = {
108                 .p      = p,
109                 .func   = func,
110                 .info   = info,
111                 .ret    = -EAGAIN,
112         };
113         int ret;
114
115         for (;;) {
116                 ret = smp_call_function_single(task_cpu(p), remote_function,
117                                                &data, 1);
118                 ret = !ret ? data.ret : -EAGAIN;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394 static atomic_t nr_ksymbol_events __read_mostly;
395 static atomic_t nr_bpf_events __read_mostly;
396 static atomic_t nr_cgroup_events __read_mostly;
397
398 static LIST_HEAD(pmus);
399 static DEFINE_MUTEX(pmus_lock);
400 static struct srcu_struct pmus_srcu;
401 static cpumask_var_t perf_online_mask;
402
403 /*
404  * perf event paranoia level:
405  *  -1 - not paranoid at all
406  *   0 - disallow raw tracepoint access for unpriv
407  *   1 - disallow cpu events for unpriv
408  *   2 - disallow kernel profiling for unpriv
409  */
410 int sysctl_perf_event_paranoid __read_mostly = 2;
411
412 /* Minimum for 512 kiB + 1 user control page */
413 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
414
415 /*
416  * max perf event sample rate
417  */
418 #define DEFAULT_MAX_SAMPLE_RATE         100000
419 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
420 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
421
422 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
423
424 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
425 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
426
427 static int perf_sample_allowed_ns __read_mostly =
428         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
429
430 static void update_perf_cpu_limits(void)
431 {
432         u64 tmp = perf_sample_period_ns;
433
434         tmp *= sysctl_perf_cpu_time_max_percent;
435         tmp = div_u64(tmp, 100);
436         if (!tmp)
437                 tmp = 1;
438
439         WRITE_ONCE(perf_sample_allowed_ns, tmp);
440 }
441
442 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
443
444 int perf_proc_update_handler(struct ctl_table *table, int write,
445                 void *buffer, size_t *lenp, loff_t *ppos)
446 {
447         int ret;
448         int perf_cpu = sysctl_perf_cpu_time_max_percent;
449         /*
450          * If throttling is disabled don't allow the write:
451          */
452         if (write && (perf_cpu == 100 || perf_cpu == 0))
453                 return -EINVAL;
454
455         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
456         if (ret || !write)
457                 return ret;
458
459         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
460         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
461         update_perf_cpu_limits();
462
463         return 0;
464 }
465
466 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
467
468 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
469                 void *buffer, size_t *lenp, loff_t *ppos)
470 {
471         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
472
473         if (ret || !write)
474                 return ret;
475
476         if (sysctl_perf_cpu_time_max_percent == 100 ||
477             sysctl_perf_cpu_time_max_percent == 0) {
478                 printk(KERN_WARNING
479                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
480                 WRITE_ONCE(perf_sample_allowed_ns, 0);
481         } else {
482                 update_perf_cpu_limits();
483         }
484
485         return 0;
486 }
487
488 /*
489  * perf samples are done in some very critical code paths (NMIs).
490  * If they take too much CPU time, the system can lock up and not
491  * get any real work done.  This will drop the sample rate when
492  * we detect that events are taking too long.
493  */
494 #define NR_ACCUMULATED_SAMPLES 128
495 static DEFINE_PER_CPU(u64, running_sample_length);
496
497 static u64 __report_avg;
498 static u64 __report_allowed;
499
500 static void perf_duration_warn(struct irq_work *w)
501 {
502         printk_ratelimited(KERN_INFO
503                 "perf: interrupt took too long (%lld > %lld), lowering "
504                 "kernel.perf_event_max_sample_rate to %d\n",
505                 __report_avg, __report_allowed,
506                 sysctl_perf_event_sample_rate);
507 }
508
509 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
510
511 void perf_sample_event_took(u64 sample_len_ns)
512 {
513         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
514         u64 running_len;
515         u64 avg_len;
516         u32 max;
517
518         if (max_len == 0)
519                 return;
520
521         /* Decay the counter by 1 average sample. */
522         running_len = __this_cpu_read(running_sample_length);
523         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
524         running_len += sample_len_ns;
525         __this_cpu_write(running_sample_length, running_len);
526
527         /*
528          * Note: this will be biased artifically low until we have
529          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
530          * from having to maintain a count.
531          */
532         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
533         if (avg_len <= max_len)
534                 return;
535
536         __report_avg = avg_len;
537         __report_allowed = max_len;
538
539         /*
540          * Compute a throttle threshold 25% below the current duration.
541          */
542         avg_len += avg_len / 4;
543         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
544         if (avg_len < max)
545                 max /= (u32)avg_len;
546         else
547                 max = 1;
548
549         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
550         WRITE_ONCE(max_samples_per_tick, max);
551
552         sysctl_perf_event_sample_rate = max * HZ;
553         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
554
555         if (!irq_work_queue(&perf_duration_work)) {
556                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
557                              "kernel.perf_event_max_sample_rate to %d\n",
558                              __report_avg, __report_allowed,
559                              sysctl_perf_event_sample_rate);
560         }
561 }
562
563 static atomic64_t perf_event_id;
564
565 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
566                               enum event_type_t event_type);
567
568 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
569                              enum event_type_t event_type,
570                              struct task_struct *task);
571
572 static void update_context_time(struct perf_event_context *ctx);
573 static u64 perf_event_time(struct perf_event *event);
574
575 void __weak perf_event_print_debug(void)        { }
576
577 extern __weak const char *perf_pmu_name(void)
578 {
579         return "pmu";
580 }
581
582 static inline u64 perf_clock(void)
583 {
584         return local_clock();
585 }
586
587 static inline u64 perf_event_clock(struct perf_event *event)
588 {
589         return event->clock();
590 }
591
592 /*
593  * State based event timekeeping...
594  *
595  * The basic idea is to use event->state to determine which (if any) time
596  * fields to increment with the current delta. This means we only need to
597  * update timestamps when we change state or when they are explicitly requested
598  * (read).
599  *
600  * Event groups make things a little more complicated, but not terribly so. The
601  * rules for a group are that if the group leader is OFF the entire group is
602  * OFF, irrespecive of what the group member states are. This results in
603  * __perf_effective_state().
604  *
605  * A futher ramification is that when a group leader flips between OFF and
606  * !OFF, we need to update all group member times.
607  *
608  *
609  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
610  * need to make sure the relevant context time is updated before we try and
611  * update our timestamps.
612  */
613
614 static __always_inline enum perf_event_state
615 __perf_effective_state(struct perf_event *event)
616 {
617         struct perf_event *leader = event->group_leader;
618
619         if (leader->state <= PERF_EVENT_STATE_OFF)
620                 return leader->state;
621
622         return event->state;
623 }
624
625 static __always_inline void
626 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
627 {
628         enum perf_event_state state = __perf_effective_state(event);
629         u64 delta = now - event->tstamp;
630
631         *enabled = event->total_time_enabled;
632         if (state >= PERF_EVENT_STATE_INACTIVE)
633                 *enabled += delta;
634
635         *running = event->total_time_running;
636         if (state >= PERF_EVENT_STATE_ACTIVE)
637                 *running += delta;
638 }
639
640 static void perf_event_update_time(struct perf_event *event)
641 {
642         u64 now = perf_event_time(event);
643
644         __perf_update_times(event, now, &event->total_time_enabled,
645                                         &event->total_time_running);
646         event->tstamp = now;
647 }
648
649 static void perf_event_update_sibling_time(struct perf_event *leader)
650 {
651         struct perf_event *sibling;
652
653         for_each_sibling_event(sibling, leader)
654                 perf_event_update_time(sibling);
655 }
656
657 static void
658 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
659 {
660         if (event->state == state)
661                 return;
662
663         perf_event_update_time(event);
664         /*
665          * If a group leader gets enabled/disabled all its siblings
666          * are affected too.
667          */
668         if ((event->state < 0) ^ (state < 0))
669                 perf_event_update_sibling_time(event);
670
671         WRITE_ONCE(event->state, state);
672 }
673
674 #ifdef CONFIG_CGROUP_PERF
675
676 static inline bool
677 perf_cgroup_match(struct perf_event *event)
678 {
679         struct perf_event_context *ctx = event->ctx;
680         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
681
682         /* @event doesn't care about cgroup */
683         if (!event->cgrp)
684                 return true;
685
686         /* wants specific cgroup scope but @cpuctx isn't associated with any */
687         if (!cpuctx->cgrp)
688                 return false;
689
690         /*
691          * Cgroup scoping is recursive.  An event enabled for a cgroup is
692          * also enabled for all its descendant cgroups.  If @cpuctx's
693          * cgroup is a descendant of @event's (the test covers identity
694          * case), it's a match.
695          */
696         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
697                                     event->cgrp->css.cgroup);
698 }
699
700 static inline void perf_detach_cgroup(struct perf_event *event)
701 {
702         css_put(&event->cgrp->css);
703         event->cgrp = NULL;
704 }
705
706 static inline int is_cgroup_event(struct perf_event *event)
707 {
708         return event->cgrp != NULL;
709 }
710
711 static inline u64 perf_cgroup_event_time(struct perf_event *event)
712 {
713         struct perf_cgroup_info *t;
714
715         t = per_cpu_ptr(event->cgrp->info, event->cpu);
716         return t->time;
717 }
718
719 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
720 {
721         struct perf_cgroup_info *info;
722         u64 now;
723
724         now = perf_clock();
725
726         info = this_cpu_ptr(cgrp->info);
727
728         info->time += now - info->timestamp;
729         info->timestamp = now;
730 }
731
732 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
733 {
734         struct perf_cgroup *cgrp = cpuctx->cgrp;
735         struct cgroup_subsys_state *css;
736
737         if (cgrp) {
738                 for (css = &cgrp->css; css; css = css->parent) {
739                         cgrp = container_of(css, struct perf_cgroup, css);
740                         __update_cgrp_time(cgrp);
741                 }
742         }
743 }
744
745 static inline void update_cgrp_time_from_event(struct perf_event *event)
746 {
747         struct perf_cgroup *cgrp;
748
749         /*
750          * ensure we access cgroup data only when needed and
751          * when we know the cgroup is pinned (css_get)
752          */
753         if (!is_cgroup_event(event))
754                 return;
755
756         cgrp = perf_cgroup_from_task(current, event->ctx);
757         /*
758          * Do not update time when cgroup is not active
759          */
760         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
761                 __update_cgrp_time(event->cgrp);
762 }
763
764 static inline void
765 perf_cgroup_set_timestamp(struct task_struct *task,
766                           struct perf_event_context *ctx)
767 {
768         struct perf_cgroup *cgrp;
769         struct perf_cgroup_info *info;
770         struct cgroup_subsys_state *css;
771
772         /*
773          * ctx->lock held by caller
774          * ensure we do not access cgroup data
775          * unless we have the cgroup pinned (css_get)
776          */
777         if (!task || !ctx->nr_cgroups)
778                 return;
779
780         cgrp = perf_cgroup_from_task(task, ctx);
781
782         for (css = &cgrp->css; css; css = css->parent) {
783                 cgrp = container_of(css, struct perf_cgroup, css);
784                 info = this_cpu_ptr(cgrp->info);
785                 info->timestamp = ctx->timestamp;
786         }
787 }
788
789 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
790
791 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
792 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
793
794 /*
795  * reschedule events based on the cgroup constraint of task.
796  *
797  * mode SWOUT : schedule out everything
798  * mode SWIN : schedule in based on cgroup for next
799  */
800 static void perf_cgroup_switch(struct task_struct *task, int mode)
801 {
802         struct perf_cpu_context *cpuctx;
803         struct list_head *list;
804         unsigned long flags;
805
806         /*
807          * Disable interrupts and preemption to avoid this CPU's
808          * cgrp_cpuctx_entry to change under us.
809          */
810         local_irq_save(flags);
811
812         list = this_cpu_ptr(&cgrp_cpuctx_list);
813         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
814                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
815
816                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
817                 perf_pmu_disable(cpuctx->ctx.pmu);
818
819                 if (mode & PERF_CGROUP_SWOUT) {
820                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
821                         /*
822                          * must not be done before ctxswout due
823                          * to event_filter_match() in event_sched_out()
824                          */
825                         cpuctx->cgrp = NULL;
826                 }
827
828                 if (mode & PERF_CGROUP_SWIN) {
829                         WARN_ON_ONCE(cpuctx->cgrp);
830                         /*
831                          * set cgrp before ctxsw in to allow
832                          * event_filter_match() to not have to pass
833                          * task around
834                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
835                          * because cgorup events are only per-cpu
836                          */
837                         cpuctx->cgrp = perf_cgroup_from_task(task,
838                                                              &cpuctx->ctx);
839                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
840                 }
841                 perf_pmu_enable(cpuctx->ctx.pmu);
842                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
843         }
844
845         local_irq_restore(flags);
846 }
847
848 static inline void perf_cgroup_sched_out(struct task_struct *task,
849                                          struct task_struct *next)
850 {
851         struct perf_cgroup *cgrp1;
852         struct perf_cgroup *cgrp2 = NULL;
853
854         rcu_read_lock();
855         /*
856          * we come here when we know perf_cgroup_events > 0
857          * we do not need to pass the ctx here because we know
858          * we are holding the rcu lock
859          */
860         cgrp1 = perf_cgroup_from_task(task, NULL);
861         cgrp2 = perf_cgroup_from_task(next, NULL);
862
863         /*
864          * only schedule out current cgroup events if we know
865          * that we are switching to a different cgroup. Otherwise,
866          * do no touch the cgroup events.
867          */
868         if (cgrp1 != cgrp2)
869                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
870
871         rcu_read_unlock();
872 }
873
874 static inline void perf_cgroup_sched_in(struct task_struct *prev,
875                                         struct task_struct *task)
876 {
877         struct perf_cgroup *cgrp1;
878         struct perf_cgroup *cgrp2 = NULL;
879
880         rcu_read_lock();
881         /*
882          * we come here when we know perf_cgroup_events > 0
883          * we do not need to pass the ctx here because we know
884          * we are holding the rcu lock
885          */
886         cgrp1 = perf_cgroup_from_task(task, NULL);
887         cgrp2 = perf_cgroup_from_task(prev, NULL);
888
889         /*
890          * only need to schedule in cgroup events if we are changing
891          * cgroup during ctxsw. Cgroup events were not scheduled
892          * out of ctxsw out if that was not the case.
893          */
894         if (cgrp1 != cgrp2)
895                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
896
897         rcu_read_unlock();
898 }
899
900 static int perf_cgroup_ensure_storage(struct perf_event *event,
901                                 struct cgroup_subsys_state *css)
902 {
903         struct perf_cpu_context *cpuctx;
904         struct perf_event **storage;
905         int cpu, heap_size, ret = 0;
906
907         /*
908          * Allow storage to have sufficent space for an iterator for each
909          * possibly nested cgroup plus an iterator for events with no cgroup.
910          */
911         for (heap_size = 1; css; css = css->parent)
912                 heap_size++;
913
914         for_each_possible_cpu(cpu) {
915                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
916                 if (heap_size <= cpuctx->heap_size)
917                         continue;
918
919                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
920                                        GFP_KERNEL, cpu_to_node(cpu));
921                 if (!storage) {
922                         ret = -ENOMEM;
923                         break;
924                 }
925
926                 raw_spin_lock_irq(&cpuctx->ctx.lock);
927                 if (cpuctx->heap_size < heap_size) {
928                         swap(cpuctx->heap, storage);
929                         if (storage == cpuctx->heap_default)
930                                 storage = NULL;
931                         cpuctx->heap_size = heap_size;
932                 }
933                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
934
935                 kfree(storage);
936         }
937
938         return ret;
939 }
940
941 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
942                                       struct perf_event_attr *attr,
943                                       struct perf_event *group_leader)
944 {
945         struct perf_cgroup *cgrp;
946         struct cgroup_subsys_state *css;
947         struct fd f = fdget(fd);
948         int ret = 0;
949
950         if (!f.file)
951                 return -EBADF;
952
953         css = css_tryget_online_from_dir(f.file->f_path.dentry,
954                                          &perf_event_cgrp_subsys);
955         if (IS_ERR(css)) {
956                 ret = PTR_ERR(css);
957                 goto out;
958         }
959
960         ret = perf_cgroup_ensure_storage(event, css);
961         if (ret)
962                 goto out;
963
964         cgrp = container_of(css, struct perf_cgroup, css);
965         event->cgrp = cgrp;
966
967         /*
968          * all events in a group must monitor
969          * the same cgroup because a task belongs
970          * to only one perf cgroup at a time
971          */
972         if (group_leader && group_leader->cgrp != cgrp) {
973                 perf_detach_cgroup(event);
974                 ret = -EINVAL;
975         }
976 out:
977         fdput(f);
978         return ret;
979 }
980
981 static inline void
982 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
983 {
984         struct perf_cgroup_info *t;
985         t = per_cpu_ptr(event->cgrp->info, event->cpu);
986         event->shadow_ctx_time = now - t->timestamp;
987 }
988
989 static inline void
990 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992         struct perf_cpu_context *cpuctx;
993
994         if (!is_cgroup_event(event))
995                 return;
996
997         /*
998          * Because cgroup events are always per-cpu events,
999          * @ctx == &cpuctx->ctx.
1000          */
1001         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1002
1003         /*
1004          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1005          * matching the event's cgroup, we must do this for every new event,
1006          * because if the first would mismatch, the second would not try again
1007          * and we would leave cpuctx->cgrp unset.
1008          */
1009         if (ctx->is_active && !cpuctx->cgrp) {
1010                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1011
1012                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1013                         cpuctx->cgrp = cgrp;
1014         }
1015
1016         if (ctx->nr_cgroups++)
1017                 return;
1018
1019         list_add(&cpuctx->cgrp_cpuctx_entry,
1020                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1021 }
1022
1023 static inline void
1024 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1025 {
1026         struct perf_cpu_context *cpuctx;
1027
1028         if (!is_cgroup_event(event))
1029                 return;
1030
1031         /*
1032          * Because cgroup events are always per-cpu events,
1033          * @ctx == &cpuctx->ctx.
1034          */
1035         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1036
1037         if (--ctx->nr_cgroups)
1038                 return;
1039
1040         if (ctx->is_active && cpuctx->cgrp)
1041                 cpuctx->cgrp = NULL;
1042
1043         list_del(&cpuctx->cgrp_cpuctx_entry);
1044 }
1045
1046 #else /* !CONFIG_CGROUP_PERF */
1047
1048 static inline bool
1049 perf_cgroup_match(struct perf_event *event)
1050 {
1051         return true;
1052 }
1053
1054 static inline void perf_detach_cgroup(struct perf_event *event)
1055 {}
1056
1057 static inline int is_cgroup_event(struct perf_event *event)
1058 {
1059         return 0;
1060 }
1061
1062 static inline void update_cgrp_time_from_event(struct perf_event *event)
1063 {
1064 }
1065
1066 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1067 {
1068 }
1069
1070 static inline void perf_cgroup_sched_out(struct task_struct *task,
1071                                          struct task_struct *next)
1072 {
1073 }
1074
1075 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1076                                         struct task_struct *task)
1077 {
1078 }
1079
1080 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1081                                       struct perf_event_attr *attr,
1082                                       struct perf_event *group_leader)
1083 {
1084         return -EINVAL;
1085 }
1086
1087 static inline void
1088 perf_cgroup_set_timestamp(struct task_struct *task,
1089                           struct perf_event_context *ctx)
1090 {
1091 }
1092
1093 static inline void
1094 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1095 {
1096 }
1097
1098 static inline void
1099 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1100 {
1101 }
1102
1103 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1104 {
1105         return 0;
1106 }
1107
1108 static inline void
1109 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1110 {
1111 }
1112
1113 static inline void
1114 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1115 {
1116 }
1117 #endif
1118
1119 /*
1120  * set default to be dependent on timer tick just
1121  * like original code
1122  */
1123 #define PERF_CPU_HRTIMER (1000 / HZ)
1124 /*
1125  * function must be called with interrupts disabled
1126  */
1127 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1128 {
1129         struct perf_cpu_context *cpuctx;
1130         bool rotations;
1131
1132         lockdep_assert_irqs_disabled();
1133
1134         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1135         rotations = perf_rotate_context(cpuctx);
1136
1137         raw_spin_lock(&cpuctx->hrtimer_lock);
1138         if (rotations)
1139                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1140         else
1141                 cpuctx->hrtimer_active = 0;
1142         raw_spin_unlock(&cpuctx->hrtimer_lock);
1143
1144         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1145 }
1146
1147 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1148 {
1149         struct hrtimer *timer = &cpuctx->hrtimer;
1150         struct pmu *pmu = cpuctx->ctx.pmu;
1151         u64 interval;
1152
1153         /* no multiplexing needed for SW PMU */
1154         if (pmu->task_ctx_nr == perf_sw_context)
1155                 return;
1156
1157         /*
1158          * check default is sane, if not set then force to
1159          * default interval (1/tick)
1160          */
1161         interval = pmu->hrtimer_interval_ms;
1162         if (interval < 1)
1163                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1164
1165         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1166
1167         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1168         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1169         timer->function = perf_mux_hrtimer_handler;
1170 }
1171
1172 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1173 {
1174         struct hrtimer *timer = &cpuctx->hrtimer;
1175         struct pmu *pmu = cpuctx->ctx.pmu;
1176         unsigned long flags;
1177
1178         /* not for SW PMU */
1179         if (pmu->task_ctx_nr == perf_sw_context)
1180                 return 0;
1181
1182         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1183         if (!cpuctx->hrtimer_active) {
1184                 cpuctx->hrtimer_active = 1;
1185                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1186                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1187         }
1188         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1189
1190         return 0;
1191 }
1192
1193 void perf_pmu_disable(struct pmu *pmu)
1194 {
1195         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1196         if (!(*count)++)
1197                 pmu->pmu_disable(pmu);
1198 }
1199
1200 void perf_pmu_enable(struct pmu *pmu)
1201 {
1202         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1203         if (!--(*count))
1204                 pmu->pmu_enable(pmu);
1205 }
1206
1207 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1208
1209 /*
1210  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1211  * perf_event_task_tick() are fully serialized because they're strictly cpu
1212  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1213  * disabled, while perf_event_task_tick is called from IRQ context.
1214  */
1215 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1216 {
1217         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1218
1219         lockdep_assert_irqs_disabled();
1220
1221         WARN_ON(!list_empty(&ctx->active_ctx_list));
1222
1223         list_add(&ctx->active_ctx_list, head);
1224 }
1225
1226 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1227 {
1228         lockdep_assert_irqs_disabled();
1229
1230         WARN_ON(list_empty(&ctx->active_ctx_list));
1231
1232         list_del_init(&ctx->active_ctx_list);
1233 }
1234
1235 static void get_ctx(struct perf_event_context *ctx)
1236 {
1237         refcount_inc(&ctx->refcount);
1238 }
1239
1240 static void free_ctx(struct rcu_head *head)
1241 {
1242         struct perf_event_context *ctx;
1243
1244         ctx = container_of(head, struct perf_event_context, rcu_head);
1245         kfree(ctx->task_ctx_data);
1246         kfree(ctx);
1247 }
1248
1249 static void put_ctx(struct perf_event_context *ctx)
1250 {
1251         if (refcount_dec_and_test(&ctx->refcount)) {
1252                 if (ctx->parent_ctx)
1253                         put_ctx(ctx->parent_ctx);
1254                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1255                         put_task_struct(ctx->task);
1256                 call_rcu(&ctx->rcu_head, free_ctx);
1257         }
1258 }
1259
1260 /*
1261  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1262  * perf_pmu_migrate_context() we need some magic.
1263  *
1264  * Those places that change perf_event::ctx will hold both
1265  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1266  *
1267  * Lock ordering is by mutex address. There are two other sites where
1268  * perf_event_context::mutex nests and those are:
1269  *
1270  *  - perf_event_exit_task_context()    [ child , 0 ]
1271  *      perf_event_exit_event()
1272  *        put_event()                   [ parent, 1 ]
1273  *
1274  *  - perf_event_init_context()         [ parent, 0 ]
1275  *      inherit_task_group()
1276  *        inherit_group()
1277  *          inherit_event()
1278  *            perf_event_alloc()
1279  *              perf_init_event()
1280  *                perf_try_init_event() [ child , 1 ]
1281  *
1282  * While it appears there is an obvious deadlock here -- the parent and child
1283  * nesting levels are inverted between the two. This is in fact safe because
1284  * life-time rules separate them. That is an exiting task cannot fork, and a
1285  * spawning task cannot (yet) exit.
1286  *
1287  * But remember that that these are parent<->child context relations, and
1288  * migration does not affect children, therefore these two orderings should not
1289  * interact.
1290  *
1291  * The change in perf_event::ctx does not affect children (as claimed above)
1292  * because the sys_perf_event_open() case will install a new event and break
1293  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1294  * concerned with cpuctx and that doesn't have children.
1295  *
1296  * The places that change perf_event::ctx will issue:
1297  *
1298  *   perf_remove_from_context();
1299  *   synchronize_rcu();
1300  *   perf_install_in_context();
1301  *
1302  * to affect the change. The remove_from_context() + synchronize_rcu() should
1303  * quiesce the event, after which we can install it in the new location. This
1304  * means that only external vectors (perf_fops, prctl) can perturb the event
1305  * while in transit. Therefore all such accessors should also acquire
1306  * perf_event_context::mutex to serialize against this.
1307  *
1308  * However; because event->ctx can change while we're waiting to acquire
1309  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1310  * function.
1311  *
1312  * Lock order:
1313  *    exec_update_mutex
1314  *      task_struct::perf_event_mutex
1315  *        perf_event_context::mutex
1316  *          perf_event::child_mutex;
1317  *            perf_event_context::lock
1318  *          perf_event::mmap_mutex
1319  *          mmap_lock
1320  *            perf_addr_filters_head::lock
1321  *
1322  *    cpu_hotplug_lock
1323  *      pmus_lock
1324  *        cpuctx->mutex / perf_event_context::mutex
1325  */
1326 static struct perf_event_context *
1327 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1328 {
1329         struct perf_event_context *ctx;
1330
1331 again:
1332         rcu_read_lock();
1333         ctx = READ_ONCE(event->ctx);
1334         if (!refcount_inc_not_zero(&ctx->refcount)) {
1335                 rcu_read_unlock();
1336                 goto again;
1337         }
1338         rcu_read_unlock();
1339
1340         mutex_lock_nested(&ctx->mutex, nesting);
1341         if (event->ctx != ctx) {
1342                 mutex_unlock(&ctx->mutex);
1343                 put_ctx(ctx);
1344                 goto again;
1345         }
1346
1347         return ctx;
1348 }
1349
1350 static inline struct perf_event_context *
1351 perf_event_ctx_lock(struct perf_event *event)
1352 {
1353         return perf_event_ctx_lock_nested(event, 0);
1354 }
1355
1356 static void perf_event_ctx_unlock(struct perf_event *event,
1357                                   struct perf_event_context *ctx)
1358 {
1359         mutex_unlock(&ctx->mutex);
1360         put_ctx(ctx);
1361 }
1362
1363 /*
1364  * This must be done under the ctx->lock, such as to serialize against
1365  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1366  * calling scheduler related locks and ctx->lock nests inside those.
1367  */
1368 static __must_check struct perf_event_context *
1369 unclone_ctx(struct perf_event_context *ctx)
1370 {
1371         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1372
1373         lockdep_assert_held(&ctx->lock);
1374
1375         if (parent_ctx)
1376                 ctx->parent_ctx = NULL;
1377         ctx->generation++;
1378
1379         return parent_ctx;
1380 }
1381
1382 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1383                                 enum pid_type type)
1384 {
1385         u32 nr;
1386         /*
1387          * only top level events have the pid namespace they were created in
1388          */
1389         if (event->parent)
1390                 event = event->parent;
1391
1392         nr = __task_pid_nr_ns(p, type, event->ns);
1393         /* avoid -1 if it is idle thread or runs in another ns */
1394         if (!nr && !pid_alive(p))
1395                 nr = -1;
1396         return nr;
1397 }
1398
1399 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1400 {
1401         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1402 }
1403
1404 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1405 {
1406         return perf_event_pid_type(event, p, PIDTYPE_PID);
1407 }
1408
1409 /*
1410  * If we inherit events we want to return the parent event id
1411  * to userspace.
1412  */
1413 static u64 primary_event_id(struct perf_event *event)
1414 {
1415         u64 id = event->id;
1416
1417         if (event->parent)
1418                 id = event->parent->id;
1419
1420         return id;
1421 }
1422
1423 /*
1424  * Get the perf_event_context for a task and lock it.
1425  *
1426  * This has to cope with with the fact that until it is locked,
1427  * the context could get moved to another task.
1428  */
1429 static struct perf_event_context *
1430 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1431 {
1432         struct perf_event_context *ctx;
1433
1434 retry:
1435         /*
1436          * One of the few rules of preemptible RCU is that one cannot do
1437          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1438          * part of the read side critical section was irqs-enabled -- see
1439          * rcu_read_unlock_special().
1440          *
1441          * Since ctx->lock nests under rq->lock we must ensure the entire read
1442          * side critical section has interrupts disabled.
1443          */
1444         local_irq_save(*flags);
1445         rcu_read_lock();
1446         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1447         if (ctx) {
1448                 /*
1449                  * If this context is a clone of another, it might
1450                  * get swapped for another underneath us by
1451                  * perf_event_task_sched_out, though the
1452                  * rcu_read_lock() protects us from any context
1453                  * getting freed.  Lock the context and check if it
1454                  * got swapped before we could get the lock, and retry
1455                  * if so.  If we locked the right context, then it
1456                  * can't get swapped on us any more.
1457                  */
1458                 raw_spin_lock(&ctx->lock);
1459                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1460                         raw_spin_unlock(&ctx->lock);
1461                         rcu_read_unlock();
1462                         local_irq_restore(*flags);
1463                         goto retry;
1464                 }
1465
1466                 if (ctx->task == TASK_TOMBSTONE ||
1467                     !refcount_inc_not_zero(&ctx->refcount)) {
1468                         raw_spin_unlock(&ctx->lock);
1469                         ctx = NULL;
1470                 } else {
1471                         WARN_ON_ONCE(ctx->task != task);
1472                 }
1473         }
1474         rcu_read_unlock();
1475         if (!ctx)
1476                 local_irq_restore(*flags);
1477         return ctx;
1478 }
1479
1480 /*
1481  * Get the context for a task and increment its pin_count so it
1482  * can't get swapped to another task.  This also increments its
1483  * reference count so that the context can't get freed.
1484  */
1485 static struct perf_event_context *
1486 perf_pin_task_context(struct task_struct *task, int ctxn)
1487 {
1488         struct perf_event_context *ctx;
1489         unsigned long flags;
1490
1491         ctx = perf_lock_task_context(task, ctxn, &flags);
1492         if (ctx) {
1493                 ++ctx->pin_count;
1494                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1495         }
1496         return ctx;
1497 }
1498
1499 static void perf_unpin_context(struct perf_event_context *ctx)
1500 {
1501         unsigned long flags;
1502
1503         raw_spin_lock_irqsave(&ctx->lock, flags);
1504         --ctx->pin_count;
1505         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1506 }
1507
1508 /*
1509  * Update the record of the current time in a context.
1510  */
1511 static void update_context_time(struct perf_event_context *ctx)
1512 {
1513         u64 now = perf_clock();
1514
1515         ctx->time += now - ctx->timestamp;
1516         ctx->timestamp = now;
1517 }
1518
1519 static u64 perf_event_time(struct perf_event *event)
1520 {
1521         struct perf_event_context *ctx = event->ctx;
1522
1523         if (is_cgroup_event(event))
1524                 return perf_cgroup_event_time(event);
1525
1526         return ctx ? ctx->time : 0;
1527 }
1528
1529 static enum event_type_t get_event_type(struct perf_event *event)
1530 {
1531         struct perf_event_context *ctx = event->ctx;
1532         enum event_type_t event_type;
1533
1534         lockdep_assert_held(&ctx->lock);
1535
1536         /*
1537          * It's 'group type', really, because if our group leader is
1538          * pinned, so are we.
1539          */
1540         if (event->group_leader != event)
1541                 event = event->group_leader;
1542
1543         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1544         if (!ctx->task)
1545                 event_type |= EVENT_CPU;
1546
1547         return event_type;
1548 }
1549
1550 /*
1551  * Helper function to initialize event group nodes.
1552  */
1553 static void init_event_group(struct perf_event *event)
1554 {
1555         RB_CLEAR_NODE(&event->group_node);
1556         event->group_index = 0;
1557 }
1558
1559 /*
1560  * Extract pinned or flexible groups from the context
1561  * based on event attrs bits.
1562  */
1563 static struct perf_event_groups *
1564 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1565 {
1566         if (event->attr.pinned)
1567                 return &ctx->pinned_groups;
1568         else
1569                 return &ctx->flexible_groups;
1570 }
1571
1572 /*
1573  * Helper function to initializes perf_event_group trees.
1574  */
1575 static void perf_event_groups_init(struct perf_event_groups *groups)
1576 {
1577         groups->tree = RB_ROOT;
1578         groups->index = 0;
1579 }
1580
1581 /*
1582  * Compare function for event groups;
1583  *
1584  * Implements complex key that first sorts by CPU and then by virtual index
1585  * which provides ordering when rotating groups for the same CPU.
1586  */
1587 static bool
1588 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1589 {
1590         if (left->cpu < right->cpu)
1591                 return true;
1592         if (left->cpu > right->cpu)
1593                 return false;
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596         if (left->cgrp != right->cgrp) {
1597                 if (!left->cgrp || !left->cgrp->css.cgroup) {
1598                         /*
1599                          * Left has no cgroup but right does, no cgroups come
1600                          * first.
1601                          */
1602                         return true;
1603                 }
1604                 if (!right->cgrp || !right->cgrp->css.cgroup) {
1605                         /*
1606                          * Right has no cgroup but left does, no cgroups come
1607                          * first.
1608                          */
1609                         return false;
1610                 }
1611                 /* Two dissimilar cgroups, order by id. */
1612                 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1613                         return true;
1614
1615                 return false;
1616         }
1617 #endif
1618
1619         if (left->group_index < right->group_index)
1620                 return true;
1621         if (left->group_index > right->group_index)
1622                 return false;
1623
1624         return false;
1625 }
1626
1627 /*
1628  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1629  * key (see perf_event_groups_less). This places it last inside the CPU
1630  * subtree.
1631  */
1632 static void
1633 perf_event_groups_insert(struct perf_event_groups *groups,
1634                          struct perf_event *event)
1635 {
1636         struct perf_event *node_event;
1637         struct rb_node *parent;
1638         struct rb_node **node;
1639
1640         event->group_index = ++groups->index;
1641
1642         node = &groups->tree.rb_node;
1643         parent = *node;
1644
1645         while (*node) {
1646                 parent = *node;
1647                 node_event = container_of(*node, struct perf_event, group_node);
1648
1649                 if (perf_event_groups_less(event, node_event))
1650                         node = &parent->rb_left;
1651                 else
1652                         node = &parent->rb_right;
1653         }
1654
1655         rb_link_node(&event->group_node, parent, node);
1656         rb_insert_color(&event->group_node, &groups->tree);
1657 }
1658
1659 /*
1660  * Helper function to insert event into the pinned or flexible groups.
1661  */
1662 static void
1663 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         struct perf_event_groups *groups;
1666
1667         groups = get_event_groups(event, ctx);
1668         perf_event_groups_insert(groups, event);
1669 }
1670
1671 /*
1672  * Delete a group from a tree.
1673  */
1674 static void
1675 perf_event_groups_delete(struct perf_event_groups *groups,
1676                          struct perf_event *event)
1677 {
1678         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1679                      RB_EMPTY_ROOT(&groups->tree));
1680
1681         rb_erase(&event->group_node, &groups->tree);
1682         init_event_group(event);
1683 }
1684
1685 /*
1686  * Helper function to delete event from its groups.
1687  */
1688 static void
1689 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1690 {
1691         struct perf_event_groups *groups;
1692
1693         groups = get_event_groups(event, ctx);
1694         perf_event_groups_delete(groups, event);
1695 }
1696
1697 /*
1698  * Get the leftmost event in the cpu/cgroup subtree.
1699  */
1700 static struct perf_event *
1701 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1702                         struct cgroup *cgrp)
1703 {
1704         struct perf_event *node_event = NULL, *match = NULL;
1705         struct rb_node *node = groups->tree.rb_node;
1706 #ifdef CONFIG_CGROUP_PERF
1707         u64 node_cgrp_id, cgrp_id = 0;
1708
1709         if (cgrp)
1710                 cgrp_id = cgrp->kn->id;
1711 #endif
1712
1713         while (node) {
1714                 node_event = container_of(node, struct perf_event, group_node);
1715
1716                 if (cpu < node_event->cpu) {
1717                         node = node->rb_left;
1718                         continue;
1719                 }
1720                 if (cpu > node_event->cpu) {
1721                         node = node->rb_right;
1722                         continue;
1723                 }
1724 #ifdef CONFIG_CGROUP_PERF
1725                 node_cgrp_id = 0;
1726                 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1727                         node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1728
1729                 if (cgrp_id < node_cgrp_id) {
1730                         node = node->rb_left;
1731                         continue;
1732                 }
1733                 if (cgrp_id > node_cgrp_id) {
1734                         node = node->rb_right;
1735                         continue;
1736                 }
1737 #endif
1738                 match = node_event;
1739                 node = node->rb_left;
1740         }
1741
1742         return match;
1743 }
1744
1745 /*
1746  * Like rb_entry_next_safe() for the @cpu subtree.
1747  */
1748 static struct perf_event *
1749 perf_event_groups_next(struct perf_event *event)
1750 {
1751         struct perf_event *next;
1752 #ifdef CONFIG_CGROUP_PERF
1753         u64 curr_cgrp_id = 0;
1754         u64 next_cgrp_id = 0;
1755 #endif
1756
1757         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1758         if (next == NULL || next->cpu != event->cpu)
1759                 return NULL;
1760
1761 #ifdef CONFIG_CGROUP_PERF
1762         if (event->cgrp && event->cgrp->css.cgroup)
1763                 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1764
1765         if (next->cgrp && next->cgrp->css.cgroup)
1766                 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1767
1768         if (curr_cgrp_id != next_cgrp_id)
1769                 return NULL;
1770 #endif
1771         return next;
1772 }
1773
1774 /*
1775  * Iterate through the whole groups tree.
1776  */
1777 #define perf_event_groups_for_each(event, groups)                       \
1778         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1779                                 typeof(*event), group_node); event;     \
1780                 event = rb_entry_safe(rb_next(&event->group_node),      \
1781                                 typeof(*event), group_node))
1782
1783 /*
1784  * Add an event from the lists for its context.
1785  * Must be called with ctx->mutex and ctx->lock held.
1786  */
1787 static void
1788 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1789 {
1790         lockdep_assert_held(&ctx->lock);
1791
1792         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1793         event->attach_state |= PERF_ATTACH_CONTEXT;
1794
1795         event->tstamp = perf_event_time(event);
1796
1797         /*
1798          * If we're a stand alone event or group leader, we go to the context
1799          * list, group events are kept attached to the group so that
1800          * perf_group_detach can, at all times, locate all siblings.
1801          */
1802         if (event->group_leader == event) {
1803                 event->group_caps = event->event_caps;
1804                 add_event_to_groups(event, ctx);
1805         }
1806
1807         list_add_rcu(&event->event_entry, &ctx->event_list);
1808         ctx->nr_events++;
1809         if (event->attr.inherit_stat)
1810                 ctx->nr_stat++;
1811
1812         if (event->state > PERF_EVENT_STATE_OFF)
1813                 perf_cgroup_event_enable(event, ctx);
1814
1815         ctx->generation++;
1816 }
1817
1818 /*
1819  * Initialize event state based on the perf_event_attr::disabled.
1820  */
1821 static inline void perf_event__state_init(struct perf_event *event)
1822 {
1823         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1824                                               PERF_EVENT_STATE_INACTIVE;
1825 }
1826
1827 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1828 {
1829         int entry = sizeof(u64); /* value */
1830         int size = 0;
1831         int nr = 1;
1832
1833         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1834                 size += sizeof(u64);
1835
1836         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1837                 size += sizeof(u64);
1838
1839         if (event->attr.read_format & PERF_FORMAT_ID)
1840                 entry += sizeof(u64);
1841
1842         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1843                 nr += nr_siblings;
1844                 size += sizeof(u64);
1845         }
1846
1847         size += entry * nr;
1848         event->read_size = size;
1849 }
1850
1851 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1852 {
1853         struct perf_sample_data *data;
1854         u16 size = 0;
1855
1856         if (sample_type & PERF_SAMPLE_IP)
1857                 size += sizeof(data->ip);
1858
1859         if (sample_type & PERF_SAMPLE_ADDR)
1860                 size += sizeof(data->addr);
1861
1862         if (sample_type & PERF_SAMPLE_PERIOD)
1863                 size += sizeof(data->period);
1864
1865         if (sample_type & PERF_SAMPLE_WEIGHT)
1866                 size += sizeof(data->weight);
1867
1868         if (sample_type & PERF_SAMPLE_READ)
1869                 size += event->read_size;
1870
1871         if (sample_type & PERF_SAMPLE_DATA_SRC)
1872                 size += sizeof(data->data_src.val);
1873
1874         if (sample_type & PERF_SAMPLE_TRANSACTION)
1875                 size += sizeof(data->txn);
1876
1877         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1878                 size += sizeof(data->phys_addr);
1879
1880         if (sample_type & PERF_SAMPLE_CGROUP)
1881                 size += sizeof(data->cgroup);
1882
1883         event->header_size = size;
1884 }
1885
1886 /*
1887  * Called at perf_event creation and when events are attached/detached from a
1888  * group.
1889  */
1890 static void perf_event__header_size(struct perf_event *event)
1891 {
1892         __perf_event_read_size(event,
1893                                event->group_leader->nr_siblings);
1894         __perf_event_header_size(event, event->attr.sample_type);
1895 }
1896
1897 static void perf_event__id_header_size(struct perf_event *event)
1898 {
1899         struct perf_sample_data *data;
1900         u64 sample_type = event->attr.sample_type;
1901         u16 size = 0;
1902
1903         if (sample_type & PERF_SAMPLE_TID)
1904                 size += sizeof(data->tid_entry);
1905
1906         if (sample_type & PERF_SAMPLE_TIME)
1907                 size += sizeof(data->time);
1908
1909         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1910                 size += sizeof(data->id);
1911
1912         if (sample_type & PERF_SAMPLE_ID)
1913                 size += sizeof(data->id);
1914
1915         if (sample_type & PERF_SAMPLE_STREAM_ID)
1916                 size += sizeof(data->stream_id);
1917
1918         if (sample_type & PERF_SAMPLE_CPU)
1919                 size += sizeof(data->cpu_entry);
1920
1921         event->id_header_size = size;
1922 }
1923
1924 static bool perf_event_validate_size(struct perf_event *event)
1925 {
1926         /*
1927          * The values computed here will be over-written when we actually
1928          * attach the event.
1929          */
1930         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1931         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1932         perf_event__id_header_size(event);
1933
1934         /*
1935          * Sum the lot; should not exceed the 64k limit we have on records.
1936          * Conservative limit to allow for callchains and other variable fields.
1937          */
1938         if (event->read_size + event->header_size +
1939             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1940                 return false;
1941
1942         return true;
1943 }
1944
1945 static void perf_group_attach(struct perf_event *event)
1946 {
1947         struct perf_event *group_leader = event->group_leader, *pos;
1948
1949         lockdep_assert_held(&event->ctx->lock);
1950
1951         /*
1952          * We can have double attach due to group movement in perf_event_open.
1953          */
1954         if (event->attach_state & PERF_ATTACH_GROUP)
1955                 return;
1956
1957         event->attach_state |= PERF_ATTACH_GROUP;
1958
1959         if (group_leader == event)
1960                 return;
1961
1962         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1963
1964         group_leader->group_caps &= event->event_caps;
1965
1966         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1967         group_leader->nr_siblings++;
1968
1969         perf_event__header_size(group_leader);
1970
1971         for_each_sibling_event(pos, group_leader)
1972                 perf_event__header_size(pos);
1973 }
1974
1975 /*
1976  * Remove an event from the lists for its context.
1977  * Must be called with ctx->mutex and ctx->lock held.
1978  */
1979 static void
1980 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1981 {
1982         WARN_ON_ONCE(event->ctx != ctx);
1983         lockdep_assert_held(&ctx->lock);
1984
1985         /*
1986          * We can have double detach due to exit/hot-unplug + close.
1987          */
1988         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1989                 return;
1990
1991         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1992
1993         ctx->nr_events--;
1994         if (event->attr.inherit_stat)
1995                 ctx->nr_stat--;
1996
1997         list_del_rcu(&event->event_entry);
1998
1999         if (event->group_leader == event)
2000                 del_event_from_groups(event, ctx);
2001
2002         /*
2003          * If event was in error state, then keep it
2004          * that way, otherwise bogus counts will be
2005          * returned on read(). The only way to get out
2006          * of error state is by explicit re-enabling
2007          * of the event
2008          */
2009         if (event->state > PERF_EVENT_STATE_OFF) {
2010                 perf_cgroup_event_disable(event, ctx);
2011                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2012         }
2013
2014         ctx->generation++;
2015 }
2016
2017 static int
2018 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2019 {
2020         if (!has_aux(aux_event))
2021                 return 0;
2022
2023         if (!event->pmu->aux_output_match)
2024                 return 0;
2025
2026         return event->pmu->aux_output_match(aux_event);
2027 }
2028
2029 static void put_event(struct perf_event *event);
2030 static void event_sched_out(struct perf_event *event,
2031                             struct perf_cpu_context *cpuctx,
2032                             struct perf_event_context *ctx);
2033
2034 static void perf_put_aux_event(struct perf_event *event)
2035 {
2036         struct perf_event_context *ctx = event->ctx;
2037         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2038         struct perf_event *iter;
2039
2040         /*
2041          * If event uses aux_event tear down the link
2042          */
2043         if (event->aux_event) {
2044                 iter = event->aux_event;
2045                 event->aux_event = NULL;
2046                 put_event(iter);
2047                 return;
2048         }
2049
2050         /*
2051          * If the event is an aux_event, tear down all links to
2052          * it from other events.
2053          */
2054         for_each_sibling_event(iter, event->group_leader) {
2055                 if (iter->aux_event != event)
2056                         continue;
2057
2058                 iter->aux_event = NULL;
2059                 put_event(event);
2060
2061                 /*
2062                  * If it's ACTIVE, schedule it out and put it into ERROR
2063                  * state so that we don't try to schedule it again. Note
2064                  * that perf_event_enable() will clear the ERROR status.
2065                  */
2066                 event_sched_out(iter, cpuctx, ctx);
2067                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2068         }
2069 }
2070
2071 static bool perf_need_aux_event(struct perf_event *event)
2072 {
2073         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2074 }
2075
2076 static int perf_get_aux_event(struct perf_event *event,
2077                               struct perf_event *group_leader)
2078 {
2079         /*
2080          * Our group leader must be an aux event if we want to be
2081          * an aux_output. This way, the aux event will precede its
2082          * aux_output events in the group, and therefore will always
2083          * schedule first.
2084          */
2085         if (!group_leader)
2086                 return 0;
2087
2088         /*
2089          * aux_output and aux_sample_size are mutually exclusive.
2090          */
2091         if (event->attr.aux_output && event->attr.aux_sample_size)
2092                 return 0;
2093
2094         if (event->attr.aux_output &&
2095             !perf_aux_output_match(event, group_leader))
2096                 return 0;
2097
2098         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2099                 return 0;
2100
2101         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2102                 return 0;
2103
2104         /*
2105          * Link aux_outputs to their aux event; this is undone in
2106          * perf_group_detach() by perf_put_aux_event(). When the
2107          * group in torn down, the aux_output events loose their
2108          * link to the aux_event and can't schedule any more.
2109          */
2110         event->aux_event = group_leader;
2111
2112         return 1;
2113 }
2114
2115 static inline struct list_head *get_event_list(struct perf_event *event)
2116 {
2117         struct perf_event_context *ctx = event->ctx;
2118         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2119 }
2120
2121 static void perf_group_detach(struct perf_event *event)
2122 {
2123         struct perf_event *sibling, *tmp;
2124         struct perf_event_context *ctx = event->ctx;
2125
2126         lockdep_assert_held(&ctx->lock);
2127
2128         /*
2129          * We can have double detach due to exit/hot-unplug + close.
2130          */
2131         if (!(event->attach_state & PERF_ATTACH_GROUP))
2132                 return;
2133
2134         event->attach_state &= ~PERF_ATTACH_GROUP;
2135
2136         perf_put_aux_event(event);
2137
2138         /*
2139          * If this is a sibling, remove it from its group.
2140          */
2141         if (event->group_leader != event) {
2142                 list_del_init(&event->sibling_list);
2143                 event->group_leader->nr_siblings--;
2144                 goto out;
2145         }
2146
2147         /*
2148          * If this was a group event with sibling events then
2149          * upgrade the siblings to singleton events by adding them
2150          * to whatever list we are on.
2151          */
2152         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2153
2154                 sibling->group_leader = sibling;
2155                 list_del_init(&sibling->sibling_list);
2156
2157                 /* Inherit group flags from the previous leader */
2158                 sibling->group_caps = event->group_caps;
2159
2160                 if (!RB_EMPTY_NODE(&event->group_node)) {
2161                         add_event_to_groups(sibling, event->ctx);
2162
2163                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2164                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2165                 }
2166
2167                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2168         }
2169
2170 out:
2171         perf_event__header_size(event->group_leader);
2172
2173         for_each_sibling_event(tmp, event->group_leader)
2174                 perf_event__header_size(tmp);
2175 }
2176
2177 static bool is_orphaned_event(struct perf_event *event)
2178 {
2179         return event->state == PERF_EVENT_STATE_DEAD;
2180 }
2181
2182 static inline int __pmu_filter_match(struct perf_event *event)
2183 {
2184         struct pmu *pmu = event->pmu;
2185         return pmu->filter_match ? pmu->filter_match(event) : 1;
2186 }
2187
2188 /*
2189  * Check whether we should attempt to schedule an event group based on
2190  * PMU-specific filtering. An event group can consist of HW and SW events,
2191  * potentially with a SW leader, so we must check all the filters, to
2192  * determine whether a group is schedulable:
2193  */
2194 static inline int pmu_filter_match(struct perf_event *event)
2195 {
2196         struct perf_event *sibling;
2197
2198         if (!__pmu_filter_match(event))
2199                 return 0;
2200
2201         for_each_sibling_event(sibling, event) {
2202                 if (!__pmu_filter_match(sibling))
2203                         return 0;
2204         }
2205
2206         return 1;
2207 }
2208
2209 static inline int
2210 event_filter_match(struct perf_event *event)
2211 {
2212         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2213                perf_cgroup_match(event) && pmu_filter_match(event);
2214 }
2215
2216 static void
2217 event_sched_out(struct perf_event *event,
2218                   struct perf_cpu_context *cpuctx,
2219                   struct perf_event_context *ctx)
2220 {
2221         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2222
2223         WARN_ON_ONCE(event->ctx != ctx);
2224         lockdep_assert_held(&ctx->lock);
2225
2226         if (event->state != PERF_EVENT_STATE_ACTIVE)
2227                 return;
2228
2229         /*
2230          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2231          * we can schedule events _OUT_ individually through things like
2232          * __perf_remove_from_context().
2233          */
2234         list_del_init(&event->active_list);
2235
2236         perf_pmu_disable(event->pmu);
2237
2238         event->pmu->del(event, 0);
2239         event->oncpu = -1;
2240
2241         if (READ_ONCE(event->pending_disable) >= 0) {
2242                 WRITE_ONCE(event->pending_disable, -1);
2243                 perf_cgroup_event_disable(event, ctx);
2244                 state = PERF_EVENT_STATE_OFF;
2245         }
2246         perf_event_set_state(event, state);
2247
2248         if (!is_software_event(event))
2249                 cpuctx->active_oncpu--;
2250         if (!--ctx->nr_active)
2251                 perf_event_ctx_deactivate(ctx);
2252         if (event->attr.freq && event->attr.sample_freq)
2253                 ctx->nr_freq--;
2254         if (event->attr.exclusive || !cpuctx->active_oncpu)
2255                 cpuctx->exclusive = 0;
2256
2257         perf_pmu_enable(event->pmu);
2258 }
2259
2260 static void
2261 group_sched_out(struct perf_event *group_event,
2262                 struct perf_cpu_context *cpuctx,
2263                 struct perf_event_context *ctx)
2264 {
2265         struct perf_event *event;
2266
2267         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2268                 return;
2269
2270         perf_pmu_disable(ctx->pmu);
2271
2272         event_sched_out(group_event, cpuctx, ctx);
2273
2274         /*
2275          * Schedule out siblings (if any):
2276          */
2277         for_each_sibling_event(event, group_event)
2278                 event_sched_out(event, cpuctx, ctx);
2279
2280         perf_pmu_enable(ctx->pmu);
2281
2282         if (group_event->attr.exclusive)
2283                 cpuctx->exclusive = 0;
2284 }
2285
2286 #define DETACH_GROUP    0x01UL
2287
2288 /*
2289  * Cross CPU call to remove a performance event
2290  *
2291  * We disable the event on the hardware level first. After that we
2292  * remove it from the context list.
2293  */
2294 static void
2295 __perf_remove_from_context(struct perf_event *event,
2296                            struct perf_cpu_context *cpuctx,
2297                            struct perf_event_context *ctx,
2298                            void *info)
2299 {
2300         unsigned long flags = (unsigned long)info;
2301
2302         if (ctx->is_active & EVENT_TIME) {
2303                 update_context_time(ctx);
2304                 update_cgrp_time_from_cpuctx(cpuctx);
2305         }
2306
2307         event_sched_out(event, cpuctx, ctx);
2308         if (flags & DETACH_GROUP)
2309                 perf_group_detach(event);
2310         list_del_event(event, ctx);
2311
2312         if (!ctx->nr_events && ctx->is_active) {
2313                 ctx->is_active = 0;
2314                 ctx->rotate_necessary = 0;
2315                 if (ctx->task) {
2316                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2317                         cpuctx->task_ctx = NULL;
2318                 }
2319         }
2320 }
2321
2322 /*
2323  * Remove the event from a task's (or a CPU's) list of events.
2324  *
2325  * If event->ctx is a cloned context, callers must make sure that
2326  * every task struct that event->ctx->task could possibly point to
2327  * remains valid.  This is OK when called from perf_release since
2328  * that only calls us on the top-level context, which can't be a clone.
2329  * When called from perf_event_exit_task, it's OK because the
2330  * context has been detached from its task.
2331  */
2332 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2333 {
2334         struct perf_event_context *ctx = event->ctx;
2335
2336         lockdep_assert_held(&ctx->mutex);
2337
2338         event_function_call(event, __perf_remove_from_context, (void *)flags);
2339
2340         /*
2341          * The above event_function_call() can NO-OP when it hits
2342          * TASK_TOMBSTONE. In that case we must already have been detached
2343          * from the context (by perf_event_exit_event()) but the grouping
2344          * might still be in-tact.
2345          */
2346         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2347         if ((flags & DETACH_GROUP) &&
2348             (event->attach_state & PERF_ATTACH_GROUP)) {
2349                 /*
2350                  * Since in that case we cannot possibly be scheduled, simply
2351                  * detach now.
2352                  */
2353                 raw_spin_lock_irq(&ctx->lock);
2354                 perf_group_detach(event);
2355                 raw_spin_unlock_irq(&ctx->lock);
2356         }
2357 }
2358
2359 /*
2360  * Cross CPU call to disable a performance event
2361  */
2362 static void __perf_event_disable(struct perf_event *event,
2363                                  struct perf_cpu_context *cpuctx,
2364                                  struct perf_event_context *ctx,
2365                                  void *info)
2366 {
2367         if (event->state < PERF_EVENT_STATE_INACTIVE)
2368                 return;
2369
2370         if (ctx->is_active & EVENT_TIME) {
2371                 update_context_time(ctx);
2372                 update_cgrp_time_from_event(event);
2373         }
2374
2375         if (event == event->group_leader)
2376                 group_sched_out(event, cpuctx, ctx);
2377         else
2378                 event_sched_out(event, cpuctx, ctx);
2379
2380         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2381         perf_cgroup_event_disable(event, ctx);
2382 }
2383
2384 /*
2385  * Disable an event.
2386  *
2387  * If event->ctx is a cloned context, callers must make sure that
2388  * every task struct that event->ctx->task could possibly point to
2389  * remains valid.  This condition is satisfied when called through
2390  * perf_event_for_each_child or perf_event_for_each because they
2391  * hold the top-level event's child_mutex, so any descendant that
2392  * goes to exit will block in perf_event_exit_event().
2393  *
2394  * When called from perf_pending_event it's OK because event->ctx
2395  * is the current context on this CPU and preemption is disabled,
2396  * hence we can't get into perf_event_task_sched_out for this context.
2397  */
2398 static void _perf_event_disable(struct perf_event *event)
2399 {
2400         struct perf_event_context *ctx = event->ctx;
2401
2402         raw_spin_lock_irq(&ctx->lock);
2403         if (event->state <= PERF_EVENT_STATE_OFF) {
2404                 raw_spin_unlock_irq(&ctx->lock);
2405                 return;
2406         }
2407         raw_spin_unlock_irq(&ctx->lock);
2408
2409         event_function_call(event, __perf_event_disable, NULL);
2410 }
2411
2412 void perf_event_disable_local(struct perf_event *event)
2413 {
2414         event_function_local(event, __perf_event_disable, NULL);
2415 }
2416
2417 /*
2418  * Strictly speaking kernel users cannot create groups and therefore this
2419  * interface does not need the perf_event_ctx_lock() magic.
2420  */
2421 void perf_event_disable(struct perf_event *event)
2422 {
2423         struct perf_event_context *ctx;
2424
2425         ctx = perf_event_ctx_lock(event);
2426         _perf_event_disable(event);
2427         perf_event_ctx_unlock(event, ctx);
2428 }
2429 EXPORT_SYMBOL_GPL(perf_event_disable);
2430
2431 void perf_event_disable_inatomic(struct perf_event *event)
2432 {
2433         WRITE_ONCE(event->pending_disable, smp_processor_id());
2434         /* can fail, see perf_pending_event_disable() */
2435         irq_work_queue(&event->pending);
2436 }
2437
2438 static void perf_set_shadow_time(struct perf_event *event,
2439                                  struct perf_event_context *ctx)
2440 {
2441         /*
2442          * use the correct time source for the time snapshot
2443          *
2444          * We could get by without this by leveraging the
2445          * fact that to get to this function, the caller
2446          * has most likely already called update_context_time()
2447          * and update_cgrp_time_xx() and thus both timestamp
2448          * are identical (or very close). Given that tstamp is,
2449          * already adjusted for cgroup, we could say that:
2450          *    tstamp - ctx->timestamp
2451          * is equivalent to
2452          *    tstamp - cgrp->timestamp.
2453          *
2454          * Then, in perf_output_read(), the calculation would
2455          * work with no changes because:
2456          * - event is guaranteed scheduled in
2457          * - no scheduled out in between
2458          * - thus the timestamp would be the same
2459          *
2460          * But this is a bit hairy.
2461          *
2462          * So instead, we have an explicit cgroup call to remain
2463          * within the time time source all along. We believe it
2464          * is cleaner and simpler to understand.
2465          */
2466         if (is_cgroup_event(event))
2467                 perf_cgroup_set_shadow_time(event, event->tstamp);
2468         else
2469                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2470 }
2471
2472 #define MAX_INTERRUPTS (~0ULL)
2473
2474 static void perf_log_throttle(struct perf_event *event, int enable);
2475 static void perf_log_itrace_start(struct perf_event *event);
2476
2477 static int
2478 event_sched_in(struct perf_event *event,
2479                  struct perf_cpu_context *cpuctx,
2480                  struct perf_event_context *ctx)
2481 {
2482         int ret = 0;
2483
2484         WARN_ON_ONCE(event->ctx != ctx);
2485
2486         lockdep_assert_held(&ctx->lock);
2487
2488         if (event->state <= PERF_EVENT_STATE_OFF)
2489                 return 0;
2490
2491         WRITE_ONCE(event->oncpu, smp_processor_id());
2492         /*
2493          * Order event::oncpu write to happen before the ACTIVE state is
2494          * visible. This allows perf_event_{stop,read}() to observe the correct
2495          * ->oncpu if it sees ACTIVE.
2496          */
2497         smp_wmb();
2498         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2499
2500         /*
2501          * Unthrottle events, since we scheduled we might have missed several
2502          * ticks already, also for a heavily scheduling task there is little
2503          * guarantee it'll get a tick in a timely manner.
2504          */
2505         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2506                 perf_log_throttle(event, 1);
2507                 event->hw.interrupts = 0;
2508         }
2509
2510         perf_pmu_disable(event->pmu);
2511
2512         perf_set_shadow_time(event, ctx);
2513
2514         perf_log_itrace_start(event);
2515
2516         if (event->pmu->add(event, PERF_EF_START)) {
2517                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2518                 event->oncpu = -1;
2519                 ret = -EAGAIN;
2520                 goto out;
2521         }
2522
2523         if (!is_software_event(event))
2524                 cpuctx->active_oncpu++;
2525         if (!ctx->nr_active++)
2526                 perf_event_ctx_activate(ctx);
2527         if (event->attr.freq && event->attr.sample_freq)
2528                 ctx->nr_freq++;
2529
2530         if (event->attr.exclusive)
2531                 cpuctx->exclusive = 1;
2532
2533 out:
2534         perf_pmu_enable(event->pmu);
2535
2536         return ret;
2537 }
2538
2539 static int
2540 group_sched_in(struct perf_event *group_event,
2541                struct perf_cpu_context *cpuctx,
2542                struct perf_event_context *ctx)
2543 {
2544         struct perf_event *event, *partial_group = NULL;
2545         struct pmu *pmu = ctx->pmu;
2546
2547         if (group_event->state == PERF_EVENT_STATE_OFF)
2548                 return 0;
2549
2550         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2551
2552         if (event_sched_in(group_event, cpuctx, ctx)) {
2553                 pmu->cancel_txn(pmu);
2554                 perf_mux_hrtimer_restart(cpuctx);
2555                 return -EAGAIN;
2556         }
2557
2558         /*
2559          * Schedule in siblings as one group (if any):
2560          */
2561         for_each_sibling_event(event, group_event) {
2562                 if (event_sched_in(event, cpuctx, ctx)) {
2563                         partial_group = event;
2564                         goto group_error;
2565                 }
2566         }
2567
2568         if (!pmu->commit_txn(pmu))
2569                 return 0;
2570
2571 group_error:
2572         /*
2573          * Groups can be scheduled in as one unit only, so undo any
2574          * partial group before returning:
2575          * The events up to the failed event are scheduled out normally.
2576          */
2577         for_each_sibling_event(event, group_event) {
2578                 if (event == partial_group)
2579                         break;
2580
2581                 event_sched_out(event, cpuctx, ctx);
2582         }
2583         event_sched_out(group_event, cpuctx, ctx);
2584
2585         pmu->cancel_txn(pmu);
2586
2587         perf_mux_hrtimer_restart(cpuctx);
2588
2589         return -EAGAIN;
2590 }
2591
2592 /*
2593  * Work out whether we can put this event group on the CPU now.
2594  */
2595 static int group_can_go_on(struct perf_event *event,
2596                            struct perf_cpu_context *cpuctx,
2597                            int can_add_hw)
2598 {
2599         /*
2600          * Groups consisting entirely of software events can always go on.
2601          */
2602         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2603                 return 1;
2604         /*
2605          * If an exclusive group is already on, no other hardware
2606          * events can go on.
2607          */
2608         if (cpuctx->exclusive)
2609                 return 0;
2610         /*
2611          * If this group is exclusive and there are already
2612          * events on the CPU, it can't go on.
2613          */
2614         if (event->attr.exclusive && cpuctx->active_oncpu)
2615                 return 0;
2616         /*
2617          * Otherwise, try to add it if all previous groups were able
2618          * to go on.
2619          */
2620         return can_add_hw;
2621 }
2622
2623 static void add_event_to_ctx(struct perf_event *event,
2624                                struct perf_event_context *ctx)
2625 {
2626         list_add_event(event, ctx);
2627         perf_group_attach(event);
2628 }
2629
2630 static void ctx_sched_out(struct perf_event_context *ctx,
2631                           struct perf_cpu_context *cpuctx,
2632                           enum event_type_t event_type);
2633 static void
2634 ctx_sched_in(struct perf_event_context *ctx,
2635              struct perf_cpu_context *cpuctx,
2636              enum event_type_t event_type,
2637              struct task_struct *task);
2638
2639 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2640                                struct perf_event_context *ctx,
2641                                enum event_type_t event_type)
2642 {
2643         if (!cpuctx->task_ctx)
2644                 return;
2645
2646         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2647                 return;
2648
2649         ctx_sched_out(ctx, cpuctx, event_type);
2650 }
2651
2652 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2653                                 struct perf_event_context *ctx,
2654                                 struct task_struct *task)
2655 {
2656         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2657         if (ctx)
2658                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2659         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2660         if (ctx)
2661                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2662 }
2663
2664 /*
2665  * We want to maintain the following priority of scheduling:
2666  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2667  *  - task pinned (EVENT_PINNED)
2668  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2669  *  - task flexible (EVENT_FLEXIBLE).
2670  *
2671  * In order to avoid unscheduling and scheduling back in everything every
2672  * time an event is added, only do it for the groups of equal priority and
2673  * below.
2674  *
2675  * This can be called after a batch operation on task events, in which case
2676  * event_type is a bit mask of the types of events involved. For CPU events,
2677  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2678  */
2679 static void ctx_resched(struct perf_cpu_context *cpuctx,
2680                         struct perf_event_context *task_ctx,
2681                         enum event_type_t event_type)
2682 {
2683         enum event_type_t ctx_event_type;
2684         bool cpu_event = !!(event_type & EVENT_CPU);
2685
2686         /*
2687          * If pinned groups are involved, flexible groups also need to be
2688          * scheduled out.
2689          */
2690         if (event_type & EVENT_PINNED)
2691                 event_type |= EVENT_FLEXIBLE;
2692
2693         ctx_event_type = event_type & EVENT_ALL;
2694
2695         perf_pmu_disable(cpuctx->ctx.pmu);
2696         if (task_ctx)
2697                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2698
2699         /*
2700          * Decide which cpu ctx groups to schedule out based on the types
2701          * of events that caused rescheduling:
2702          *  - EVENT_CPU: schedule out corresponding groups;
2703          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2704          *  - otherwise, do nothing more.
2705          */
2706         if (cpu_event)
2707                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2708         else if (ctx_event_type & EVENT_PINNED)
2709                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2710
2711         perf_event_sched_in(cpuctx, task_ctx, current);
2712         perf_pmu_enable(cpuctx->ctx.pmu);
2713 }
2714
2715 void perf_pmu_resched(struct pmu *pmu)
2716 {
2717         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2718         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2719
2720         perf_ctx_lock(cpuctx, task_ctx);
2721         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2722         perf_ctx_unlock(cpuctx, task_ctx);
2723 }
2724
2725 /*
2726  * Cross CPU call to install and enable a performance event
2727  *
2728  * Very similar to remote_function() + event_function() but cannot assume that
2729  * things like ctx->is_active and cpuctx->task_ctx are set.
2730  */
2731 static int  __perf_install_in_context(void *info)
2732 {
2733         struct perf_event *event = info;
2734         struct perf_event_context *ctx = event->ctx;
2735         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2736         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2737         bool reprogram = true;
2738         int ret = 0;
2739
2740         raw_spin_lock(&cpuctx->ctx.lock);
2741         if (ctx->task) {
2742                 raw_spin_lock(&ctx->lock);
2743                 task_ctx = ctx;
2744
2745                 reprogram = (ctx->task == current);
2746
2747                 /*
2748                  * If the task is running, it must be running on this CPU,
2749                  * otherwise we cannot reprogram things.
2750                  *
2751                  * If its not running, we don't care, ctx->lock will
2752                  * serialize against it becoming runnable.
2753                  */
2754                 if (task_curr(ctx->task) && !reprogram) {
2755                         ret = -ESRCH;
2756                         goto unlock;
2757                 }
2758
2759                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2760         } else if (task_ctx) {
2761                 raw_spin_lock(&task_ctx->lock);
2762         }
2763
2764 #ifdef CONFIG_CGROUP_PERF
2765         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2766                 /*
2767                  * If the current cgroup doesn't match the event's
2768                  * cgroup, we should not try to schedule it.
2769                  */
2770                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2771                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2772                                         event->cgrp->css.cgroup);
2773         }
2774 #endif
2775
2776         if (reprogram) {
2777                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2778                 add_event_to_ctx(event, ctx);
2779                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780         } else {
2781                 add_event_to_ctx(event, ctx);
2782         }
2783
2784 unlock:
2785         perf_ctx_unlock(cpuctx, task_ctx);
2786
2787         return ret;
2788 }
2789
2790 static bool exclusive_event_installable(struct perf_event *event,
2791                                         struct perf_event_context *ctx);
2792
2793 /*
2794  * Attach a performance event to a context.
2795  *
2796  * Very similar to event_function_call, see comment there.
2797  */
2798 static void
2799 perf_install_in_context(struct perf_event_context *ctx,
2800                         struct perf_event *event,
2801                         int cpu)
2802 {
2803         struct task_struct *task = READ_ONCE(ctx->task);
2804
2805         lockdep_assert_held(&ctx->mutex);
2806
2807         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2808
2809         if (event->cpu != -1)
2810                 event->cpu = cpu;
2811
2812         /*
2813          * Ensures that if we can observe event->ctx, both the event and ctx
2814          * will be 'complete'. See perf_iterate_sb_cpu().
2815          */
2816         smp_store_release(&event->ctx, ctx);
2817
2818         /*
2819          * perf_event_attr::disabled events will not run and can be initialized
2820          * without IPI. Except when this is the first event for the context, in
2821          * that case we need the magic of the IPI to set ctx->is_active.
2822          *
2823          * The IOC_ENABLE that is sure to follow the creation of a disabled
2824          * event will issue the IPI and reprogram the hardware.
2825          */
2826         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2827                 raw_spin_lock_irq(&ctx->lock);
2828                 if (ctx->task == TASK_TOMBSTONE) {
2829                         raw_spin_unlock_irq(&ctx->lock);
2830                         return;
2831                 }
2832                 add_event_to_ctx(event, ctx);
2833                 raw_spin_unlock_irq(&ctx->lock);
2834                 return;
2835         }
2836
2837         if (!task) {
2838                 cpu_function_call(cpu, __perf_install_in_context, event);
2839                 return;
2840         }
2841
2842         /*
2843          * Should not happen, we validate the ctx is still alive before calling.
2844          */
2845         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2846                 return;
2847
2848         /*
2849          * Installing events is tricky because we cannot rely on ctx->is_active
2850          * to be set in case this is the nr_events 0 -> 1 transition.
2851          *
2852          * Instead we use task_curr(), which tells us if the task is running.
2853          * However, since we use task_curr() outside of rq::lock, we can race
2854          * against the actual state. This means the result can be wrong.
2855          *
2856          * If we get a false positive, we retry, this is harmless.
2857          *
2858          * If we get a false negative, things are complicated. If we are after
2859          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2860          * value must be correct. If we're before, it doesn't matter since
2861          * perf_event_context_sched_in() will program the counter.
2862          *
2863          * However, this hinges on the remote context switch having observed
2864          * our task->perf_event_ctxp[] store, such that it will in fact take
2865          * ctx::lock in perf_event_context_sched_in().
2866          *
2867          * We do this by task_function_call(), if the IPI fails to hit the task
2868          * we know any future context switch of task must see the
2869          * perf_event_ctpx[] store.
2870          */
2871
2872         /*
2873          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2874          * task_cpu() load, such that if the IPI then does not find the task
2875          * running, a future context switch of that task must observe the
2876          * store.
2877          */
2878         smp_mb();
2879 again:
2880         if (!task_function_call(task, __perf_install_in_context, event))
2881                 return;
2882
2883         raw_spin_lock_irq(&ctx->lock);
2884         task = ctx->task;
2885         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2886                 /*
2887                  * Cannot happen because we already checked above (which also
2888                  * cannot happen), and we hold ctx->mutex, which serializes us
2889                  * against perf_event_exit_task_context().
2890                  */
2891                 raw_spin_unlock_irq(&ctx->lock);
2892                 return;
2893         }
2894         /*
2895          * If the task is not running, ctx->lock will avoid it becoming so,
2896          * thus we can safely install the event.
2897          */
2898         if (task_curr(task)) {
2899                 raw_spin_unlock_irq(&ctx->lock);
2900                 goto again;
2901         }
2902         add_event_to_ctx(event, ctx);
2903         raw_spin_unlock_irq(&ctx->lock);
2904 }
2905
2906 /*
2907  * Cross CPU call to enable a performance event
2908  */
2909 static void __perf_event_enable(struct perf_event *event,
2910                                 struct perf_cpu_context *cpuctx,
2911                                 struct perf_event_context *ctx,
2912                                 void *info)
2913 {
2914         struct perf_event *leader = event->group_leader;
2915         struct perf_event_context *task_ctx;
2916
2917         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2918             event->state <= PERF_EVENT_STATE_ERROR)
2919                 return;
2920
2921         if (ctx->is_active)
2922                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2923
2924         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2925         perf_cgroup_event_enable(event, ctx);
2926
2927         if (!ctx->is_active)
2928                 return;
2929
2930         if (!event_filter_match(event)) {
2931                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2932                 return;
2933         }
2934
2935         /*
2936          * If the event is in a group and isn't the group leader,
2937          * then don't put it on unless the group is on.
2938          */
2939         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2940                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2941                 return;
2942         }
2943
2944         task_ctx = cpuctx->task_ctx;
2945         if (ctx->task)
2946                 WARN_ON_ONCE(task_ctx != ctx);
2947
2948         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2949 }
2950
2951 /*
2952  * Enable an event.
2953  *
2954  * If event->ctx is a cloned context, callers must make sure that
2955  * every task struct that event->ctx->task could possibly point to
2956  * remains valid.  This condition is satisfied when called through
2957  * perf_event_for_each_child or perf_event_for_each as described
2958  * for perf_event_disable.
2959  */
2960 static void _perf_event_enable(struct perf_event *event)
2961 {
2962         struct perf_event_context *ctx = event->ctx;
2963
2964         raw_spin_lock_irq(&ctx->lock);
2965         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2966             event->state <  PERF_EVENT_STATE_ERROR) {
2967                 raw_spin_unlock_irq(&ctx->lock);
2968                 return;
2969         }
2970
2971         /*
2972          * If the event is in error state, clear that first.
2973          *
2974          * That way, if we see the event in error state below, we know that it
2975          * has gone back into error state, as distinct from the task having
2976          * been scheduled away before the cross-call arrived.
2977          */
2978         if (event->state == PERF_EVENT_STATE_ERROR)
2979                 event->state = PERF_EVENT_STATE_OFF;
2980         raw_spin_unlock_irq(&ctx->lock);
2981
2982         event_function_call(event, __perf_event_enable, NULL);
2983 }
2984
2985 /*
2986  * See perf_event_disable();
2987  */
2988 void perf_event_enable(struct perf_event *event)
2989 {
2990         struct perf_event_context *ctx;
2991
2992         ctx = perf_event_ctx_lock(event);
2993         _perf_event_enable(event);
2994         perf_event_ctx_unlock(event, ctx);
2995 }
2996 EXPORT_SYMBOL_GPL(perf_event_enable);
2997
2998 struct stop_event_data {
2999         struct perf_event       *event;
3000         unsigned int            restart;
3001 };
3002
3003 static int __perf_event_stop(void *info)
3004 {
3005         struct stop_event_data *sd = info;
3006         struct perf_event *event = sd->event;
3007
3008         /* if it's already INACTIVE, do nothing */
3009         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3010                 return 0;
3011
3012         /* matches smp_wmb() in event_sched_in() */
3013         smp_rmb();
3014
3015         /*
3016          * There is a window with interrupts enabled before we get here,
3017          * so we need to check again lest we try to stop another CPU's event.
3018          */
3019         if (READ_ONCE(event->oncpu) != smp_processor_id())
3020                 return -EAGAIN;
3021
3022         event->pmu->stop(event, PERF_EF_UPDATE);
3023
3024         /*
3025          * May race with the actual stop (through perf_pmu_output_stop()),
3026          * but it is only used for events with AUX ring buffer, and such
3027          * events will refuse to restart because of rb::aux_mmap_count==0,
3028          * see comments in perf_aux_output_begin().
3029          *
3030          * Since this is happening on an event-local CPU, no trace is lost
3031          * while restarting.
3032          */
3033         if (sd->restart)
3034                 event->pmu->start(event, 0);
3035
3036         return 0;
3037 }
3038
3039 static int perf_event_stop(struct perf_event *event, int restart)
3040 {
3041         struct stop_event_data sd = {
3042                 .event          = event,
3043                 .restart        = restart,
3044         };
3045         int ret = 0;
3046
3047         do {
3048                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3049                         return 0;
3050
3051                 /* matches smp_wmb() in event_sched_in() */
3052                 smp_rmb();
3053
3054                 /*
3055                  * We only want to restart ACTIVE events, so if the event goes
3056                  * inactive here (event->oncpu==-1), there's nothing more to do;
3057                  * fall through with ret==-ENXIO.
3058                  */
3059                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3060                                         __perf_event_stop, &sd);
3061         } while (ret == -EAGAIN);
3062
3063         return ret;
3064 }
3065
3066 /*
3067  * In order to contain the amount of racy and tricky in the address filter
3068  * configuration management, it is a two part process:
3069  *
3070  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3071  *      we update the addresses of corresponding vmas in
3072  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3073  * (p2) when an event is scheduled in (pmu::add), it calls
3074  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3075  *      if the generation has changed since the previous call.
3076  *
3077  * If (p1) happens while the event is active, we restart it to force (p2).
3078  *
3079  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3080  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3081  *     ioctl;
3082  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3083  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3084  *     for reading;
3085  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3086  *     of exec.
3087  */
3088 void perf_event_addr_filters_sync(struct perf_event *event)
3089 {
3090         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3091
3092         if (!has_addr_filter(event))
3093                 return;
3094
3095         raw_spin_lock(&ifh->lock);
3096         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3097                 event->pmu->addr_filters_sync(event);
3098                 event->hw.addr_filters_gen = event->addr_filters_gen;
3099         }
3100         raw_spin_unlock(&ifh->lock);
3101 }
3102 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3103
3104 static int _perf_event_refresh(struct perf_event *event, int refresh)
3105 {
3106         /*
3107          * not supported on inherited events
3108          */
3109         if (event->attr.inherit || !is_sampling_event(event))
3110                 return -EINVAL;
3111
3112         atomic_add(refresh, &event->event_limit);
3113         _perf_event_enable(event);
3114
3115         return 0;
3116 }
3117
3118 /*
3119  * See perf_event_disable()
3120  */
3121 int perf_event_refresh(struct perf_event *event, int refresh)
3122 {
3123         struct perf_event_context *ctx;
3124         int ret;
3125
3126         ctx = perf_event_ctx_lock(event);
3127         ret = _perf_event_refresh(event, refresh);
3128         perf_event_ctx_unlock(event, ctx);
3129
3130         return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(perf_event_refresh);
3133
3134 static int perf_event_modify_breakpoint(struct perf_event *bp,
3135                                          struct perf_event_attr *attr)
3136 {
3137         int err;
3138
3139         _perf_event_disable(bp);
3140
3141         err = modify_user_hw_breakpoint_check(bp, attr, true);
3142
3143         if (!bp->attr.disabled)
3144                 _perf_event_enable(bp);
3145
3146         return err;
3147 }
3148
3149 static int perf_event_modify_attr(struct perf_event *event,
3150                                   struct perf_event_attr *attr)
3151 {
3152         if (event->attr.type != attr->type)
3153                 return -EINVAL;
3154
3155         switch (event->attr.type) {
3156         case PERF_TYPE_BREAKPOINT:
3157                 return perf_event_modify_breakpoint(event, attr);
3158         default:
3159                 /* Place holder for future additions. */
3160                 return -EOPNOTSUPP;
3161         }
3162 }
3163
3164 static void ctx_sched_out(struct perf_event_context *ctx,
3165                           struct perf_cpu_context *cpuctx,
3166                           enum event_type_t event_type)
3167 {
3168         struct perf_event *event, *tmp;
3169         int is_active = ctx->is_active;
3170
3171         lockdep_assert_held(&ctx->lock);
3172
3173         if (likely(!ctx->nr_events)) {
3174                 /*
3175                  * See __perf_remove_from_context().
3176                  */
3177                 WARN_ON_ONCE(ctx->is_active);
3178                 if (ctx->task)
3179                         WARN_ON_ONCE(cpuctx->task_ctx);
3180                 return;
3181         }
3182
3183         ctx->is_active &= ~event_type;
3184         if (!(ctx->is_active & EVENT_ALL))
3185                 ctx->is_active = 0;
3186
3187         if (ctx->task) {
3188                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3189                 if (!ctx->is_active)
3190                         cpuctx->task_ctx = NULL;
3191         }
3192
3193         /*
3194          * Always update time if it was set; not only when it changes.
3195          * Otherwise we can 'forget' to update time for any but the last
3196          * context we sched out. For example:
3197          *
3198          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3199          *   ctx_sched_out(.event_type = EVENT_PINNED)
3200          *
3201          * would only update time for the pinned events.
3202          */
3203         if (is_active & EVENT_TIME) {
3204                 /* update (and stop) ctx time */
3205                 update_context_time(ctx);
3206                 update_cgrp_time_from_cpuctx(cpuctx);
3207         }
3208
3209         is_active ^= ctx->is_active; /* changed bits */
3210
3211         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3212                 return;
3213
3214         perf_pmu_disable(ctx->pmu);
3215         if (is_active & EVENT_PINNED) {
3216                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3217                         group_sched_out(event, cpuctx, ctx);
3218         }
3219
3220         if (is_active & EVENT_FLEXIBLE) {
3221                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3222                         group_sched_out(event, cpuctx, ctx);
3223
3224                 /*
3225                  * Since we cleared EVENT_FLEXIBLE, also clear
3226                  * rotate_necessary, is will be reset by
3227                  * ctx_flexible_sched_in() when needed.
3228                  */
3229                 ctx->rotate_necessary = 0;
3230         }
3231         perf_pmu_enable(ctx->pmu);
3232 }
3233
3234 /*
3235  * Test whether two contexts are equivalent, i.e. whether they have both been
3236  * cloned from the same version of the same context.
3237  *
3238  * Equivalence is measured using a generation number in the context that is
3239  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3240  * and list_del_event().
3241  */
3242 static int context_equiv(struct perf_event_context *ctx1,
3243                          struct perf_event_context *ctx2)
3244 {
3245         lockdep_assert_held(&ctx1->lock);
3246         lockdep_assert_held(&ctx2->lock);
3247
3248         /* Pinning disables the swap optimization */
3249         if (ctx1->pin_count || ctx2->pin_count)
3250                 return 0;
3251
3252         /* If ctx1 is the parent of ctx2 */
3253         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3254                 return 1;
3255
3256         /* If ctx2 is the parent of ctx1 */
3257         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3258                 return 1;
3259
3260         /*
3261          * If ctx1 and ctx2 have the same parent; we flatten the parent
3262          * hierarchy, see perf_event_init_context().
3263          */
3264         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3265                         ctx1->parent_gen == ctx2->parent_gen)
3266                 return 1;
3267
3268         /* Unmatched */
3269         return 0;
3270 }
3271
3272 static void __perf_event_sync_stat(struct perf_event *event,
3273                                      struct perf_event *next_event)
3274 {
3275         u64 value;
3276
3277         if (!event->attr.inherit_stat)
3278                 return;
3279
3280         /*
3281          * Update the event value, we cannot use perf_event_read()
3282          * because we're in the middle of a context switch and have IRQs
3283          * disabled, which upsets smp_call_function_single(), however
3284          * we know the event must be on the current CPU, therefore we
3285          * don't need to use it.
3286          */
3287         if (event->state == PERF_EVENT_STATE_ACTIVE)
3288                 event->pmu->read(event);
3289
3290         perf_event_update_time(event);
3291
3292         /*
3293          * In order to keep per-task stats reliable we need to flip the event
3294          * values when we flip the contexts.
3295          */
3296         value = local64_read(&next_event->count);
3297         value = local64_xchg(&event->count, value);
3298         local64_set(&next_event->count, value);
3299
3300         swap(event->total_time_enabled, next_event->total_time_enabled);
3301         swap(event->total_time_running, next_event->total_time_running);
3302
3303         /*
3304          * Since we swizzled the values, update the user visible data too.
3305          */
3306         perf_event_update_userpage(event);
3307         perf_event_update_userpage(next_event);
3308 }
3309
3310 static void perf_event_sync_stat(struct perf_event_context *ctx,
3311                                    struct perf_event_context *next_ctx)
3312 {
3313         struct perf_event *event, *next_event;
3314
3315         if (!ctx->nr_stat)
3316                 return;
3317
3318         update_context_time(ctx);
3319
3320         event = list_first_entry(&ctx->event_list,
3321                                    struct perf_event, event_entry);
3322
3323         next_event = list_first_entry(&next_ctx->event_list,
3324                                         struct perf_event, event_entry);
3325
3326         while (&event->event_entry != &ctx->event_list &&
3327                &next_event->event_entry != &next_ctx->event_list) {
3328
3329                 __perf_event_sync_stat(event, next_event);
3330
3331                 event = list_next_entry(event, event_entry);
3332                 next_event = list_next_entry(next_event, event_entry);
3333         }
3334 }
3335
3336 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3337                                          struct task_struct *next)
3338 {
3339         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3340         struct perf_event_context *next_ctx;
3341         struct perf_event_context *parent, *next_parent;
3342         struct perf_cpu_context *cpuctx;
3343         int do_switch = 1;
3344
3345         if (likely(!ctx))
3346                 return;
3347
3348         cpuctx = __get_cpu_context(ctx);
3349         if (!cpuctx->task_ctx)
3350                 return;
3351
3352         rcu_read_lock();
3353         next_ctx = next->perf_event_ctxp[ctxn];
3354         if (!next_ctx)
3355                 goto unlock;
3356
3357         parent = rcu_dereference(ctx->parent_ctx);
3358         next_parent = rcu_dereference(next_ctx->parent_ctx);
3359
3360         /* If neither context have a parent context; they cannot be clones. */
3361         if (!parent && !next_parent)
3362                 goto unlock;
3363
3364         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3365                 /*
3366                  * Looks like the two contexts are clones, so we might be
3367                  * able to optimize the context switch.  We lock both
3368                  * contexts and check that they are clones under the
3369                  * lock (including re-checking that neither has been
3370                  * uncloned in the meantime).  It doesn't matter which
3371                  * order we take the locks because no other cpu could
3372                  * be trying to lock both of these tasks.
3373                  */
3374                 raw_spin_lock(&ctx->lock);
3375                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3376                 if (context_equiv(ctx, next_ctx)) {
3377                         struct pmu *pmu = ctx->pmu;
3378
3379                         WRITE_ONCE(ctx->task, next);
3380                         WRITE_ONCE(next_ctx->task, task);
3381
3382                         /*
3383                          * PMU specific parts of task perf context can require
3384                          * additional synchronization. As an example of such
3385                          * synchronization see implementation details of Intel
3386                          * LBR call stack data profiling;
3387                          */
3388                         if (pmu->swap_task_ctx)
3389                                 pmu->swap_task_ctx(ctx, next_ctx);
3390                         else
3391                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3392
3393                         /*
3394                          * RCU_INIT_POINTER here is safe because we've not
3395                          * modified the ctx and the above modification of
3396                          * ctx->task and ctx->task_ctx_data are immaterial
3397                          * since those values are always verified under
3398                          * ctx->lock which we're now holding.
3399                          */
3400                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3401                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3402
3403                         do_switch = 0;
3404
3405                         perf_event_sync_stat(ctx, next_ctx);
3406                 }
3407                 raw_spin_unlock(&next_ctx->lock);
3408                 raw_spin_unlock(&ctx->lock);
3409         }
3410 unlock:
3411         rcu_read_unlock();
3412
3413         if (do_switch) {
3414                 raw_spin_lock(&ctx->lock);
3415                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3416                 raw_spin_unlock(&ctx->lock);
3417         }
3418 }
3419
3420 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3421
3422 void perf_sched_cb_dec(struct pmu *pmu)
3423 {
3424         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3425
3426         this_cpu_dec(perf_sched_cb_usages);
3427
3428         if (!--cpuctx->sched_cb_usage)
3429                 list_del(&cpuctx->sched_cb_entry);
3430 }
3431
3432
3433 void perf_sched_cb_inc(struct pmu *pmu)
3434 {
3435         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3436
3437         if (!cpuctx->sched_cb_usage++)
3438                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3439
3440         this_cpu_inc(perf_sched_cb_usages);
3441 }
3442
3443 /*
3444  * This function provides the context switch callback to the lower code
3445  * layer. It is invoked ONLY when the context switch callback is enabled.
3446  *
3447  * This callback is relevant even to per-cpu events; for example multi event
3448  * PEBS requires this to provide PID/TID information. This requires we flush
3449  * all queued PEBS records before we context switch to a new task.
3450  */
3451 static void perf_pmu_sched_task(struct task_struct *prev,
3452                                 struct task_struct *next,
3453                                 bool sched_in)
3454 {
3455         struct perf_cpu_context *cpuctx;
3456         struct pmu *pmu;
3457
3458         if (prev == next)
3459                 return;
3460
3461         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3462                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3463
3464                 if (WARN_ON_ONCE(!pmu->sched_task))
3465                         continue;
3466
3467                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3468                 perf_pmu_disable(pmu);
3469
3470                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3471
3472                 perf_pmu_enable(pmu);
3473                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3474         }
3475 }
3476
3477 static void perf_event_switch(struct task_struct *task,
3478                               struct task_struct *next_prev, bool sched_in);
3479
3480 #define for_each_task_context_nr(ctxn)                                  \
3481         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3482
3483 /*
3484  * Called from scheduler to remove the events of the current task,
3485  * with interrupts disabled.
3486  *
3487  * We stop each event and update the event value in event->count.
3488  *
3489  * This does not protect us against NMI, but disable()
3490  * sets the disabled bit in the control field of event _before_
3491  * accessing the event control register. If a NMI hits, then it will
3492  * not restart the event.
3493  */
3494 void __perf_event_task_sched_out(struct task_struct *task,
3495                                  struct task_struct *next)
3496 {
3497         int ctxn;
3498
3499         if (__this_cpu_read(perf_sched_cb_usages))
3500                 perf_pmu_sched_task(task, next, false);
3501
3502         if (atomic_read(&nr_switch_events))
3503                 perf_event_switch(task, next, false);
3504
3505         for_each_task_context_nr(ctxn)
3506                 perf_event_context_sched_out(task, ctxn, next);
3507
3508         /*
3509          * if cgroup events exist on this CPU, then we need
3510          * to check if we have to switch out PMU state.
3511          * cgroup event are system-wide mode only
3512          */
3513         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3514                 perf_cgroup_sched_out(task, next);
3515 }
3516
3517 /*
3518  * Called with IRQs disabled
3519  */
3520 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3521                               enum event_type_t event_type)
3522 {
3523         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3524 }
3525
3526 static bool perf_less_group_idx(const void *l, const void *r)
3527 {
3528         const struct perf_event *le = *(const struct perf_event **)l;
3529         const struct perf_event *re = *(const struct perf_event **)r;
3530
3531         return le->group_index < re->group_index;
3532 }
3533
3534 static void swap_ptr(void *l, void *r)
3535 {
3536         void **lp = l, **rp = r;
3537
3538         swap(*lp, *rp);
3539 }
3540
3541 static const struct min_heap_callbacks perf_min_heap = {
3542         .elem_size = sizeof(struct perf_event *),
3543         .less = perf_less_group_idx,
3544         .swp = swap_ptr,
3545 };
3546
3547 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3548 {
3549         struct perf_event **itrs = heap->data;
3550
3551         if (event) {
3552                 itrs[heap->nr] = event;
3553                 heap->nr++;
3554         }
3555 }
3556
3557 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3558                                 struct perf_event_groups *groups, int cpu,
3559                                 int (*func)(struct perf_event *, void *),
3560                                 void *data)
3561 {
3562 #ifdef CONFIG_CGROUP_PERF
3563         struct cgroup_subsys_state *css = NULL;
3564 #endif
3565         /* Space for per CPU and/or any CPU event iterators. */
3566         struct perf_event *itrs[2];
3567         struct min_heap event_heap;
3568         struct perf_event **evt;
3569         int ret;
3570
3571         if (cpuctx) {
3572                 event_heap = (struct min_heap){
3573                         .data = cpuctx->heap,
3574                         .nr = 0,
3575                         .size = cpuctx->heap_size,
3576                 };
3577
3578                 lockdep_assert_held(&cpuctx->ctx.lock);
3579
3580 #ifdef CONFIG_CGROUP_PERF
3581                 if (cpuctx->cgrp)
3582                         css = &cpuctx->cgrp->css;
3583 #endif
3584         } else {
3585                 event_heap = (struct min_heap){
3586                         .data = itrs,
3587                         .nr = 0,
3588                         .size = ARRAY_SIZE(itrs),
3589                 };
3590                 /* Events not within a CPU context may be on any CPU. */
3591                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3592         }
3593         evt = event_heap.data;
3594
3595         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3596
3597 #ifdef CONFIG_CGROUP_PERF
3598         for (; css; css = css->parent)
3599                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3600 #endif
3601
3602         min_heapify_all(&event_heap, &perf_min_heap);
3603
3604         while (event_heap.nr) {
3605                 ret = func(*evt, data);
3606                 if (ret)
3607                         return ret;
3608
3609                 *evt = perf_event_groups_next(*evt);
3610                 if (*evt)
3611                         min_heapify(&event_heap, 0, &perf_min_heap);
3612                 else
3613                         min_heap_pop(&event_heap, &perf_min_heap);
3614         }
3615
3616         return 0;
3617 }
3618
3619 static int merge_sched_in(struct perf_event *event, void *data)
3620 {
3621         struct perf_event_context *ctx = event->ctx;
3622         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3623         int *can_add_hw = data;
3624
3625         if (event->state <= PERF_EVENT_STATE_OFF)
3626                 return 0;
3627
3628         if (!event_filter_match(event))
3629                 return 0;
3630
3631         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3632                 if (!group_sched_in(event, cpuctx, ctx))
3633                         list_add_tail(&event->active_list, get_event_list(event));
3634         }
3635
3636         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3637                 if (event->attr.pinned) {
3638                         perf_cgroup_event_disable(event, ctx);
3639                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3640                 }
3641
3642                 *can_add_hw = 0;
3643                 ctx->rotate_necessary = 1;
3644         }
3645
3646         return 0;
3647 }
3648
3649 static void
3650 ctx_pinned_sched_in(struct perf_event_context *ctx,
3651                     struct perf_cpu_context *cpuctx)
3652 {
3653         int can_add_hw = 1;
3654
3655         if (ctx != &cpuctx->ctx)
3656                 cpuctx = NULL;
3657
3658         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3659                            smp_processor_id(),
3660                            merge_sched_in, &can_add_hw);
3661 }
3662
3663 static void
3664 ctx_flexible_sched_in(struct perf_event_context *ctx,
3665                       struct perf_cpu_context *cpuctx)
3666 {
3667         int can_add_hw = 1;
3668
3669         if (ctx != &cpuctx->ctx)
3670                 cpuctx = NULL;
3671
3672         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3673                            smp_processor_id(),
3674                            merge_sched_in, &can_add_hw);
3675 }
3676
3677 static void
3678 ctx_sched_in(struct perf_event_context *ctx,
3679              struct perf_cpu_context *cpuctx,
3680              enum event_type_t event_type,
3681              struct task_struct *task)
3682 {
3683         int is_active = ctx->is_active;
3684         u64 now;
3685
3686         lockdep_assert_held(&ctx->lock);
3687
3688         if (likely(!ctx->nr_events))
3689                 return;
3690
3691         ctx->is_active |= (event_type | EVENT_TIME);
3692         if (ctx->task) {
3693                 if (!is_active)
3694                         cpuctx->task_ctx = ctx;
3695                 else
3696                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3697         }
3698
3699         is_active ^= ctx->is_active; /* changed bits */
3700
3701         if (is_active & EVENT_TIME) {
3702                 /* start ctx time */
3703                 now = perf_clock();
3704                 ctx->timestamp = now;
3705                 perf_cgroup_set_timestamp(task, ctx);
3706         }
3707
3708         /*
3709          * First go through the list and put on any pinned groups
3710          * in order to give them the best chance of going on.
3711          */
3712         if (is_active & EVENT_PINNED)
3713                 ctx_pinned_sched_in(ctx, cpuctx);
3714
3715         /* Then walk through the lower prio flexible groups */
3716         if (is_active & EVENT_FLEXIBLE)
3717                 ctx_flexible_sched_in(ctx, cpuctx);
3718 }
3719
3720 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3721                              enum event_type_t event_type,
3722                              struct task_struct *task)
3723 {
3724         struct perf_event_context *ctx = &cpuctx->ctx;
3725
3726         ctx_sched_in(ctx, cpuctx, event_type, task);
3727 }
3728
3729 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3730                                         struct task_struct *task)
3731 {
3732         struct perf_cpu_context *cpuctx;
3733
3734         cpuctx = __get_cpu_context(ctx);
3735         if (cpuctx->task_ctx == ctx)
3736                 return;
3737
3738         perf_ctx_lock(cpuctx, ctx);
3739         /*
3740          * We must check ctx->nr_events while holding ctx->lock, such
3741          * that we serialize against perf_install_in_context().
3742          */
3743         if (!ctx->nr_events)
3744                 goto unlock;
3745
3746         perf_pmu_disable(ctx->pmu);
3747         /*
3748          * We want to keep the following priority order:
3749          * cpu pinned (that don't need to move), task pinned,
3750          * cpu flexible, task flexible.
3751          *
3752          * However, if task's ctx is not carrying any pinned
3753          * events, no need to flip the cpuctx's events around.
3754          */
3755         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3756                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3757         perf_event_sched_in(cpuctx, ctx, task);
3758         perf_pmu_enable(ctx->pmu);
3759
3760 unlock:
3761         perf_ctx_unlock(cpuctx, ctx);
3762 }
3763
3764 /*
3765  * Called from scheduler to add the events of the current task
3766  * with interrupts disabled.
3767  *
3768  * We restore the event value and then enable it.
3769  *
3770  * This does not protect us against NMI, but enable()
3771  * sets the enabled bit in the control field of event _before_
3772  * accessing the event control register. If a NMI hits, then it will
3773  * keep the event running.
3774  */
3775 void __perf_event_task_sched_in(struct task_struct *prev,
3776                                 struct task_struct *task)
3777 {
3778         struct perf_event_context *ctx;
3779         int ctxn;
3780
3781         /*
3782          * If cgroup events exist on this CPU, then we need to check if we have
3783          * to switch in PMU state; cgroup event are system-wide mode only.
3784          *
3785          * Since cgroup events are CPU events, we must schedule these in before
3786          * we schedule in the task events.
3787          */
3788         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3789                 perf_cgroup_sched_in(prev, task);
3790
3791         for_each_task_context_nr(ctxn) {
3792                 ctx = task->perf_event_ctxp[ctxn];
3793                 if (likely(!ctx))
3794                         continue;
3795
3796                 perf_event_context_sched_in(ctx, task);
3797         }
3798
3799         if (atomic_read(&nr_switch_events))
3800                 perf_event_switch(task, prev, true);
3801
3802         if (__this_cpu_read(perf_sched_cb_usages))
3803                 perf_pmu_sched_task(prev, task, true);
3804 }
3805
3806 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3807 {
3808         u64 frequency = event->attr.sample_freq;
3809         u64 sec = NSEC_PER_SEC;
3810         u64 divisor, dividend;
3811
3812         int count_fls, nsec_fls, frequency_fls, sec_fls;
3813
3814         count_fls = fls64(count);
3815         nsec_fls = fls64(nsec);
3816         frequency_fls = fls64(frequency);
3817         sec_fls = 30;
3818
3819         /*
3820          * We got @count in @nsec, with a target of sample_freq HZ
3821          * the target period becomes:
3822          *
3823          *             @count * 10^9
3824          * period = -------------------
3825          *          @nsec * sample_freq
3826          *
3827          */
3828
3829         /*
3830          * Reduce accuracy by one bit such that @a and @b converge
3831          * to a similar magnitude.
3832          */
3833 #define REDUCE_FLS(a, b)                \
3834 do {                                    \
3835         if (a##_fls > b##_fls) {        \
3836                 a >>= 1;                \
3837                 a##_fls--;              \
3838         } else {                        \
3839                 b >>= 1;                \
3840                 b##_fls--;              \
3841         }                               \
3842 } while (0)
3843
3844         /*
3845          * Reduce accuracy until either term fits in a u64, then proceed with
3846          * the other, so that finally we can do a u64/u64 division.
3847          */
3848         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3849                 REDUCE_FLS(nsec, frequency);
3850                 REDUCE_FLS(sec, count);
3851         }
3852
3853         if (count_fls + sec_fls > 64) {
3854                 divisor = nsec * frequency;
3855
3856                 while (count_fls + sec_fls > 64) {
3857                         REDUCE_FLS(count, sec);
3858                         divisor >>= 1;
3859                 }
3860
3861                 dividend = count * sec;
3862         } else {
3863                 dividend = count * sec;
3864
3865                 while (nsec_fls + frequency_fls > 64) {
3866                         REDUCE_FLS(nsec, frequency);
3867                         dividend >>= 1;
3868                 }
3869
3870                 divisor = nsec * frequency;
3871         }
3872
3873         if (!divisor)
3874                 return dividend;
3875
3876         return div64_u64(dividend, divisor);
3877 }
3878
3879 static DEFINE_PER_CPU(int, perf_throttled_count);
3880 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3881
3882 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3883 {
3884         struct hw_perf_event *hwc = &event->hw;
3885         s64 period, sample_period;
3886         s64 delta;
3887
3888         period = perf_calculate_period(event, nsec, count);
3889
3890         delta = (s64)(period - hwc->sample_period);
3891         delta = (delta + 7) / 8; /* low pass filter */
3892
3893         sample_period = hwc->sample_period + delta;
3894
3895         if (!sample_period)
3896                 sample_period = 1;
3897
3898         hwc->sample_period = sample_period;
3899
3900         if (local64_read(&hwc->period_left) > 8*sample_period) {
3901                 if (disable)
3902                         event->pmu->stop(event, PERF_EF_UPDATE);
3903
3904                 local64_set(&hwc->period_left, 0);
3905
3906                 if (disable)
3907                         event->pmu->start(event, PERF_EF_RELOAD);
3908         }
3909 }
3910
3911 /*
3912  * combine freq adjustment with unthrottling to avoid two passes over the
3913  * events. At the same time, make sure, having freq events does not change
3914  * the rate of unthrottling as that would introduce bias.
3915  */
3916 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3917                                            int needs_unthr)
3918 {
3919         struct perf_event *event;
3920         struct hw_perf_event *hwc;
3921         u64 now, period = TICK_NSEC;
3922         s64 delta;
3923
3924         /*
3925          * only need to iterate over all events iff:
3926          * - context have events in frequency mode (needs freq adjust)
3927          * - there are events to unthrottle on this cpu
3928          */
3929         if (!(ctx->nr_freq || needs_unthr))
3930                 return;
3931
3932         raw_spin_lock(&ctx->lock);
3933         perf_pmu_disable(ctx->pmu);
3934
3935         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3936                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3937                         continue;
3938
3939                 if (!event_filter_match(event))
3940                         continue;
3941
3942                 perf_pmu_disable(event->pmu);
3943
3944                 hwc = &event->hw;
3945
3946                 if (hwc->interrupts == MAX_INTERRUPTS) {
3947                         hwc->interrupts = 0;
3948                         perf_log_throttle(event, 1);
3949                         event->pmu->start(event, 0);
3950                 }
3951
3952                 if (!event->attr.freq || !event->attr.sample_freq)
3953                         goto next;
3954
3955                 /*
3956                  * stop the event and update event->count
3957                  */
3958                 event->pmu->stop(event, PERF_EF_UPDATE);
3959
3960                 now = local64_read(&event->count);
3961                 delta = now - hwc->freq_count_stamp;
3962                 hwc->freq_count_stamp = now;
3963
3964                 /*
3965                  * restart the event
3966                  * reload only if value has changed
3967                  * we have stopped the event so tell that
3968                  * to perf_adjust_period() to avoid stopping it
3969                  * twice.
3970                  */
3971                 if (delta > 0)
3972                         perf_adjust_period(event, period, delta, false);
3973
3974                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3975         next:
3976                 perf_pmu_enable(event->pmu);
3977         }
3978
3979         perf_pmu_enable(ctx->pmu);
3980         raw_spin_unlock(&ctx->lock);
3981 }
3982
3983 /*
3984  * Move @event to the tail of the @ctx's elegible events.
3985  */
3986 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3987 {
3988         /*
3989          * Rotate the first entry last of non-pinned groups. Rotation might be
3990          * disabled by the inheritance code.
3991          */
3992         if (ctx->rotate_disable)
3993                 return;
3994
3995         perf_event_groups_delete(&ctx->flexible_groups, event);
3996         perf_event_groups_insert(&ctx->flexible_groups, event);
3997 }
3998
3999 /* pick an event from the flexible_groups to rotate */
4000 static inline struct perf_event *
4001 ctx_event_to_rotate(struct perf_event_context *ctx)
4002 {
4003         struct perf_event *event;
4004
4005         /* pick the first active flexible event */
4006         event = list_first_entry_or_null(&ctx->flexible_active,
4007                                          struct perf_event, active_list);
4008
4009         /* if no active flexible event, pick the first event */
4010         if (!event) {
4011                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4012                                       typeof(*event), group_node);
4013         }
4014
4015         /*
4016          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4017          * finds there are unschedulable events, it will set it again.
4018          */
4019         ctx->rotate_necessary = 0;
4020
4021         return event;
4022 }
4023
4024 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4025 {
4026         struct perf_event *cpu_event = NULL, *task_event = NULL;
4027         struct perf_event_context *task_ctx = NULL;
4028         int cpu_rotate, task_rotate;
4029
4030         /*
4031          * Since we run this from IRQ context, nobody can install new
4032          * events, thus the event count values are stable.
4033          */
4034
4035         cpu_rotate = cpuctx->ctx.rotate_necessary;
4036         task_ctx = cpuctx->task_ctx;
4037         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4038
4039         if (!(cpu_rotate || task_rotate))
4040                 return false;
4041
4042         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4043         perf_pmu_disable(cpuctx->ctx.pmu);
4044
4045         if (task_rotate)
4046                 task_event = ctx_event_to_rotate(task_ctx);
4047         if (cpu_rotate)
4048                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4049
4050         /*
4051          * As per the order given at ctx_resched() first 'pop' task flexible
4052          * and then, if needed CPU flexible.
4053          */
4054         if (task_event || (task_ctx && cpu_event))
4055                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4056         if (cpu_event)
4057                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4058
4059         if (task_event)
4060                 rotate_ctx(task_ctx, task_event);
4061         if (cpu_event)
4062                 rotate_ctx(&cpuctx->ctx, cpu_event);
4063
4064         perf_event_sched_in(cpuctx, task_ctx, current);
4065
4066         perf_pmu_enable(cpuctx->ctx.pmu);
4067         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4068
4069         return true;
4070 }
4071
4072 void perf_event_task_tick(void)
4073 {
4074         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4075         struct perf_event_context *ctx, *tmp;
4076         int throttled;
4077
4078         lockdep_assert_irqs_disabled();
4079
4080         __this_cpu_inc(perf_throttled_seq);
4081         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4082         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4083
4084         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4085                 perf_adjust_freq_unthr_context(ctx, throttled);
4086 }
4087
4088 static int event_enable_on_exec(struct perf_event *event,
4089                                 struct perf_event_context *ctx)
4090 {
4091         if (!event->attr.enable_on_exec)
4092                 return 0;
4093
4094         event->attr.enable_on_exec = 0;
4095         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4096                 return 0;
4097
4098         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4099
4100         return 1;
4101 }
4102
4103 /*
4104  * Enable all of a task's events that have been marked enable-on-exec.
4105  * This expects task == current.
4106  */
4107 static void perf_event_enable_on_exec(int ctxn)
4108 {
4109         struct perf_event_context *ctx, *clone_ctx = NULL;
4110         enum event_type_t event_type = 0;
4111         struct perf_cpu_context *cpuctx;
4112         struct perf_event *event;
4113         unsigned long flags;
4114         int enabled = 0;
4115
4116         local_irq_save(flags);
4117         ctx = current->perf_event_ctxp[ctxn];
4118         if (!ctx || !ctx->nr_events)
4119                 goto out;
4120
4121         cpuctx = __get_cpu_context(ctx);
4122         perf_ctx_lock(cpuctx, ctx);
4123         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4124         list_for_each_entry(event, &ctx->event_list, event_entry) {
4125                 enabled |= event_enable_on_exec(event, ctx);
4126                 event_type |= get_event_type(event);
4127         }
4128
4129         /*
4130          * Unclone and reschedule this context if we enabled any event.
4131          */
4132         if (enabled) {
4133                 clone_ctx = unclone_ctx(ctx);
4134                 ctx_resched(cpuctx, ctx, event_type);
4135         } else {
4136                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4137         }
4138         perf_ctx_unlock(cpuctx, ctx);
4139
4140 out:
4141         local_irq_restore(flags);
4142
4143         if (clone_ctx)
4144                 put_ctx(clone_ctx);
4145 }
4146
4147 struct perf_read_data {
4148         struct perf_event *event;
4149         bool group;
4150         int ret;
4151 };
4152
4153 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4154 {
4155         u16 local_pkg, event_pkg;
4156
4157         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4158                 int local_cpu = smp_processor_id();
4159
4160                 event_pkg = topology_physical_package_id(event_cpu);
4161                 local_pkg = topology_physical_package_id(local_cpu);
4162
4163                 if (event_pkg == local_pkg)
4164                         return local_cpu;
4165         }
4166
4167         return event_cpu;
4168 }
4169
4170 /*
4171  * Cross CPU call to read the hardware event
4172  */
4173 static void __perf_event_read(void *info)
4174 {
4175         struct perf_read_data *data = info;
4176         struct perf_event *sub, *event = data->event;
4177         struct perf_event_context *ctx = event->ctx;
4178         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4179         struct pmu *pmu = event->pmu;
4180
4181         /*
4182          * If this is a task context, we need to check whether it is
4183          * the current task context of this cpu.  If not it has been
4184          * scheduled out before the smp call arrived.  In that case
4185          * event->count would have been updated to a recent sample
4186          * when the event was scheduled out.
4187          */
4188         if (ctx->task && cpuctx->task_ctx != ctx)
4189                 return;
4190
4191         raw_spin_lock(&ctx->lock);
4192         if (ctx->is_active & EVENT_TIME) {
4193                 update_context_time(ctx);
4194                 update_cgrp_time_from_event(event);
4195         }
4196
4197         perf_event_update_time(event);
4198         if (data->group)
4199                 perf_event_update_sibling_time(event);
4200
4201         if (event->state != PERF_EVENT_STATE_ACTIVE)
4202                 goto unlock;
4203
4204         if (!data->group) {
4205                 pmu->read(event);
4206                 data->ret = 0;
4207                 goto unlock;
4208         }
4209
4210         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4211
4212         pmu->read(event);
4213
4214         for_each_sibling_event(sub, event) {
4215                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4216                         /*
4217                          * Use sibling's PMU rather than @event's since
4218                          * sibling could be on different (eg: software) PMU.
4219                          */
4220                         sub->pmu->read(sub);
4221                 }
4222         }
4223
4224         data->ret = pmu->commit_txn(pmu);
4225
4226 unlock:
4227         raw_spin_unlock(&ctx->lock);
4228 }
4229
4230 static inline u64 perf_event_count(struct perf_event *event)
4231 {
4232         return local64_read(&event->count) + atomic64_read(&event->child_count);
4233 }
4234
4235 /*
4236  * NMI-safe method to read a local event, that is an event that
4237  * is:
4238  *   - either for the current task, or for this CPU
4239  *   - does not have inherit set, for inherited task events
4240  *     will not be local and we cannot read them atomically
4241  *   - must not have a pmu::count method
4242  */
4243 int perf_event_read_local(struct perf_event *event, u64 *value,
4244                           u64 *enabled, u64 *running)
4245 {
4246         unsigned long flags;
4247         int ret = 0;
4248
4249         /*
4250          * Disabling interrupts avoids all counter scheduling (context
4251          * switches, timer based rotation and IPIs).
4252          */
4253         local_irq_save(flags);
4254
4255         /*
4256          * It must not be an event with inherit set, we cannot read
4257          * all child counters from atomic context.
4258          */
4259         if (event->attr.inherit) {
4260                 ret = -EOPNOTSUPP;
4261                 goto out;
4262         }
4263
4264         /* If this is a per-task event, it must be for current */
4265         if ((event->attach_state & PERF_ATTACH_TASK) &&
4266             event->hw.target != current) {
4267                 ret = -EINVAL;
4268                 goto out;
4269         }
4270
4271         /* If this is a per-CPU event, it must be for this CPU */
4272         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4273             event->cpu != smp_processor_id()) {
4274                 ret = -EINVAL;
4275                 goto out;
4276         }
4277
4278         /* If this is a pinned event it must be running on this CPU */
4279         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4280                 ret = -EBUSY;
4281                 goto out;
4282         }
4283
4284         /*
4285          * If the event is currently on this CPU, its either a per-task event,
4286          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4287          * oncpu == -1).
4288          */
4289         if (event->oncpu == smp_processor_id())
4290                 event->pmu->read(event);
4291
4292         *value = local64_read(&event->count);
4293         if (enabled || running) {
4294                 u64 now = event->shadow_ctx_time + perf_clock();
4295                 u64 __enabled, __running;
4296
4297                 __perf_update_times(event, now, &__enabled, &__running);
4298                 if (enabled)
4299                         *enabled = __enabled;
4300                 if (running)
4301                         *running = __running;
4302         }
4303 out:
4304         local_irq_restore(flags);
4305
4306         return ret;
4307 }
4308
4309 static int perf_event_read(struct perf_event *event, bool group)
4310 {
4311         enum perf_event_state state = READ_ONCE(event->state);
4312         int event_cpu, ret = 0;
4313
4314         /*
4315          * If event is enabled and currently active on a CPU, update the
4316          * value in the event structure:
4317          */
4318 again:
4319         if (state == PERF_EVENT_STATE_ACTIVE) {
4320                 struct perf_read_data data;
4321
4322                 /*
4323                  * Orders the ->state and ->oncpu loads such that if we see
4324                  * ACTIVE we must also see the right ->oncpu.
4325                  *
4326                  * Matches the smp_wmb() from event_sched_in().
4327                  */
4328                 smp_rmb();
4329
4330                 event_cpu = READ_ONCE(event->oncpu);
4331                 if ((unsigned)event_cpu >= nr_cpu_ids)
4332                         return 0;
4333
4334                 data = (struct perf_read_data){
4335                         .event = event,
4336                         .group = group,
4337                         .ret = 0,
4338                 };
4339
4340                 preempt_disable();
4341                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4342
4343                 /*
4344                  * Purposely ignore the smp_call_function_single() return
4345                  * value.
4346                  *
4347                  * If event_cpu isn't a valid CPU it means the event got
4348                  * scheduled out and that will have updated the event count.
4349                  *
4350                  * Therefore, either way, we'll have an up-to-date event count
4351                  * after this.
4352                  */
4353                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4354                 preempt_enable();
4355                 ret = data.ret;
4356
4357         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4358                 struct perf_event_context *ctx = event->ctx;
4359                 unsigned long flags;
4360
4361                 raw_spin_lock_irqsave(&ctx->lock, flags);
4362                 state = event->state;
4363                 if (state != PERF_EVENT_STATE_INACTIVE) {
4364                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4365                         goto again;
4366                 }
4367
4368                 /*
4369                  * May read while context is not active (e.g., thread is
4370                  * blocked), in that case we cannot update context time
4371                  */
4372                 if (ctx->is_active & EVENT_TIME) {
4373                         update_context_time(ctx);
4374                         update_cgrp_time_from_event(event);
4375                 }
4376
4377                 perf_event_update_time(event);
4378                 if (group)
4379                         perf_event_update_sibling_time(event);
4380                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4381         }
4382
4383         return ret;
4384 }
4385
4386 /*
4387  * Initialize the perf_event context in a task_struct:
4388  */
4389 static void __perf_event_init_context(struct perf_event_context *ctx)
4390 {
4391         raw_spin_lock_init(&ctx->lock);
4392         mutex_init(&ctx->mutex);
4393         INIT_LIST_HEAD(&ctx->active_ctx_list);
4394         perf_event_groups_init(&ctx->pinned_groups);
4395         perf_event_groups_init(&ctx->flexible_groups);
4396         INIT_LIST_HEAD(&ctx->event_list);
4397         INIT_LIST_HEAD(&ctx->pinned_active);
4398         INIT_LIST_HEAD(&ctx->flexible_active);
4399         refcount_set(&ctx->refcount, 1);
4400 }
4401
4402 static struct perf_event_context *
4403 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4404 {
4405         struct perf_event_context *ctx;
4406
4407         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4408         if (!ctx)
4409                 return NULL;
4410
4411         __perf_event_init_context(ctx);
4412         if (task)
4413                 ctx->task = get_task_struct(task);
4414         ctx->pmu = pmu;
4415
4416         return ctx;
4417 }
4418
4419 static struct task_struct *
4420 find_lively_task_by_vpid(pid_t vpid)
4421 {
4422         struct task_struct *task;
4423
4424         rcu_read_lock();
4425         if (!vpid)
4426                 task = current;
4427         else
4428                 task = find_task_by_vpid(vpid);
4429         if (task)
4430                 get_task_struct(task);
4431         rcu_read_unlock();
4432
4433         if (!task)
4434                 return ERR_PTR(-ESRCH);
4435
4436         return task;
4437 }
4438
4439 /*
4440  * Returns a matching context with refcount and pincount.
4441  */
4442 static struct perf_event_context *
4443 find_get_context(struct pmu *pmu, struct task_struct *task,
4444                 struct perf_event *event)
4445 {
4446         struct perf_event_context *ctx, *clone_ctx = NULL;
4447         struct perf_cpu_context *cpuctx;
4448         void *task_ctx_data = NULL;
4449         unsigned long flags;
4450         int ctxn, err;
4451         int cpu = event->cpu;
4452
4453         if (!task) {
4454                 /* Must be root to operate on a CPU event: */
4455                 err = perf_allow_cpu(&event->attr);
4456                 if (err)
4457                         return ERR_PTR(err);
4458
4459                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4460                 ctx = &cpuctx->ctx;
4461                 get_ctx(ctx);
4462                 ++ctx->pin_count;
4463
4464                 return ctx;
4465         }
4466
4467         err = -EINVAL;
4468         ctxn = pmu->task_ctx_nr;
4469         if (ctxn < 0)
4470                 goto errout;
4471
4472         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4473                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4474                 if (!task_ctx_data) {
4475                         err = -ENOMEM;
4476                         goto errout;
4477                 }
4478         }
4479
4480 retry:
4481         ctx = perf_lock_task_context(task, ctxn, &flags);
4482         if (ctx) {
4483                 clone_ctx = unclone_ctx(ctx);
4484                 ++ctx->pin_count;
4485
4486                 if (task_ctx_data && !ctx->task_ctx_data) {
4487                         ctx->task_ctx_data = task_ctx_data;
4488                         task_ctx_data = NULL;
4489                 }
4490                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4491
4492                 if (clone_ctx)
4493                         put_ctx(clone_ctx);
4494         } else {
4495                 ctx = alloc_perf_context(pmu, task);
4496                 err = -ENOMEM;
4497                 if (!ctx)
4498                         goto errout;
4499
4500                 if (task_ctx_data) {
4501                         ctx->task_ctx_data = task_ctx_data;
4502                         task_ctx_data = NULL;
4503                 }
4504
4505                 err = 0;
4506                 mutex_lock(&task->perf_event_mutex);
4507                 /*
4508                  * If it has already passed perf_event_exit_task().
4509                  * we must see PF_EXITING, it takes this mutex too.
4510                  */
4511                 if (task->flags & PF_EXITING)
4512                         err = -ESRCH;
4513                 else if (task->perf_event_ctxp[ctxn])
4514                         err = -EAGAIN;
4515                 else {
4516                         get_ctx(ctx);
4517                         ++ctx->pin_count;
4518                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4519                 }
4520                 mutex_unlock(&task->perf_event_mutex);
4521
4522                 if (unlikely(err)) {
4523                         put_ctx(ctx);
4524
4525                         if (err == -EAGAIN)
4526                                 goto retry;
4527                         goto errout;
4528                 }
4529         }
4530
4531         kfree(task_ctx_data);
4532         return ctx;
4533
4534 errout:
4535         kfree(task_ctx_data);
4536         return ERR_PTR(err);
4537 }
4538
4539 static void perf_event_free_filter(struct perf_event *event);
4540 static void perf_event_free_bpf_prog(struct perf_event *event);
4541
4542 static void free_event_rcu(struct rcu_head *head)
4543 {
4544         struct perf_event *event;
4545
4546         event = container_of(head, struct perf_event, rcu_head);
4547         if (event->ns)
4548                 put_pid_ns(event->ns);
4549         perf_event_free_filter(event);
4550         kfree(event);
4551 }
4552
4553 static void ring_buffer_attach(struct perf_event *event,
4554                                struct perf_buffer *rb);
4555
4556 static void detach_sb_event(struct perf_event *event)
4557 {
4558         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4559
4560         raw_spin_lock(&pel->lock);
4561         list_del_rcu(&event->sb_list);
4562         raw_spin_unlock(&pel->lock);
4563 }
4564
4565 static bool is_sb_event(struct perf_event *event)
4566 {
4567         struct perf_event_attr *attr = &event->attr;
4568
4569         if (event->parent)
4570                 return false;
4571
4572         if (event->attach_state & PERF_ATTACH_TASK)
4573                 return false;
4574
4575         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4576             attr->comm || attr->comm_exec ||
4577             attr->task || attr->ksymbol ||
4578             attr->context_switch ||
4579             attr->bpf_event)
4580                 return true;
4581         return false;
4582 }
4583
4584 static void unaccount_pmu_sb_event(struct perf_event *event)
4585 {
4586         if (is_sb_event(event))
4587                 detach_sb_event(event);
4588 }
4589
4590 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4591 {
4592         if (event->parent)
4593                 return;
4594
4595         if (is_cgroup_event(event))
4596                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4597 }
4598
4599 #ifdef CONFIG_NO_HZ_FULL
4600 static DEFINE_SPINLOCK(nr_freq_lock);
4601 #endif
4602
4603 static void unaccount_freq_event_nohz(void)
4604 {
4605 #ifdef CONFIG_NO_HZ_FULL
4606         spin_lock(&nr_freq_lock);
4607         if (atomic_dec_and_test(&nr_freq_events))
4608                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4609         spin_unlock(&nr_freq_lock);
4610 #endif
4611 }
4612
4613 static void unaccount_freq_event(void)
4614 {
4615         if (tick_nohz_full_enabled())
4616                 unaccount_freq_event_nohz();
4617         else
4618                 atomic_dec(&nr_freq_events);
4619 }
4620
4621 static void unaccount_event(struct perf_event *event)
4622 {
4623         bool dec = false;
4624
4625         if (event->parent)
4626                 return;
4627
4628         if (event->attach_state & PERF_ATTACH_TASK)
4629                 dec = true;
4630         if (event->attr.mmap || event->attr.mmap_data)
4631                 atomic_dec(&nr_mmap_events);
4632         if (event->attr.comm)
4633                 atomic_dec(&nr_comm_events);
4634         if (event->attr.namespaces)
4635                 atomic_dec(&nr_namespaces_events);
4636         if (event->attr.cgroup)
4637                 atomic_dec(&nr_cgroup_events);
4638         if (event->attr.task)
4639                 atomic_dec(&nr_task_events);
4640         if (event->attr.freq)
4641                 unaccount_freq_event();
4642         if (event->attr.context_switch) {
4643                 dec = true;
4644                 atomic_dec(&nr_switch_events);
4645         }
4646         if (is_cgroup_event(event))
4647                 dec = true;
4648         if (has_branch_stack(event))
4649                 dec = true;
4650         if (event->attr.ksymbol)
4651                 atomic_dec(&nr_ksymbol_events);
4652         if (event->attr.bpf_event)
4653                 atomic_dec(&nr_bpf_events);
4654
4655         if (dec) {
4656                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4657                         schedule_delayed_work(&perf_sched_work, HZ);
4658         }
4659
4660         unaccount_event_cpu(event, event->cpu);
4661
4662         unaccount_pmu_sb_event(event);
4663 }
4664
4665 static void perf_sched_delayed(struct work_struct *work)
4666 {
4667         mutex_lock(&perf_sched_mutex);
4668         if (atomic_dec_and_test(&perf_sched_count))
4669                 static_branch_disable(&perf_sched_events);
4670         mutex_unlock(&perf_sched_mutex);
4671 }
4672
4673 /*
4674  * The following implement mutual exclusion of events on "exclusive" pmus
4675  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4676  * at a time, so we disallow creating events that might conflict, namely:
4677  *
4678  *  1) cpu-wide events in the presence of per-task events,
4679  *  2) per-task events in the presence of cpu-wide events,
4680  *  3) two matching events on the same context.
4681  *
4682  * The former two cases are handled in the allocation path (perf_event_alloc(),
4683  * _free_event()), the latter -- before the first perf_install_in_context().
4684  */
4685 static int exclusive_event_init(struct perf_event *event)
4686 {
4687         struct pmu *pmu = event->pmu;
4688
4689         if (!is_exclusive_pmu(pmu))
4690                 return 0;
4691
4692         /*
4693          * Prevent co-existence of per-task and cpu-wide events on the
4694          * same exclusive pmu.
4695          *
4696          * Negative pmu::exclusive_cnt means there are cpu-wide
4697          * events on this "exclusive" pmu, positive means there are
4698          * per-task events.
4699          *
4700          * Since this is called in perf_event_alloc() path, event::ctx
4701          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4702          * to mean "per-task event", because unlike other attach states it
4703          * never gets cleared.
4704          */
4705         if (event->attach_state & PERF_ATTACH_TASK) {
4706                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4707                         return -EBUSY;
4708         } else {
4709                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4710                         return -EBUSY;
4711         }
4712
4713         return 0;
4714 }
4715
4716 static void exclusive_event_destroy(struct perf_event *event)
4717 {
4718         struct pmu *pmu = event->pmu;
4719
4720         if (!is_exclusive_pmu(pmu))
4721                 return;
4722
4723         /* see comment in exclusive_event_init() */
4724         if (event->attach_state & PERF_ATTACH_TASK)
4725                 atomic_dec(&pmu->exclusive_cnt);
4726         else
4727                 atomic_inc(&pmu->exclusive_cnt);
4728 }
4729
4730 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4731 {
4732         if ((e1->pmu == e2->pmu) &&
4733             (e1->cpu == e2->cpu ||
4734              e1->cpu == -1 ||
4735              e2->cpu == -1))
4736                 return true;
4737         return false;
4738 }
4739
4740 static bool exclusive_event_installable(struct perf_event *event,
4741                                         struct perf_event_context *ctx)
4742 {
4743         struct perf_event *iter_event;
4744         struct pmu *pmu = event->pmu;
4745
4746         lockdep_assert_held(&ctx->mutex);
4747
4748         if (!is_exclusive_pmu(pmu))
4749                 return true;
4750
4751         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4752                 if (exclusive_event_match(iter_event, event))
4753                         return false;
4754         }
4755
4756         return true;
4757 }
4758
4759 static void perf_addr_filters_splice(struct perf_event *event,
4760                                        struct list_head *head);
4761
4762 static void _free_event(struct perf_event *event)
4763 {
4764         irq_work_sync(&event->pending);
4765
4766         unaccount_event(event);
4767
4768         security_perf_event_free(event);
4769
4770         if (event->rb) {
4771                 /*
4772                  * Can happen when we close an event with re-directed output.
4773                  *
4774                  * Since we have a 0 refcount, perf_mmap_close() will skip
4775                  * over us; possibly making our ring_buffer_put() the last.
4776                  */
4777                 mutex_lock(&event->mmap_mutex);
4778                 ring_buffer_attach(event, NULL);
4779                 mutex_unlock(&event->mmap_mutex);
4780         }
4781
4782         if (is_cgroup_event(event))
4783                 perf_detach_cgroup(event);
4784
4785         if (!event->parent) {
4786                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4787                         put_callchain_buffers();
4788         }
4789
4790         perf_event_free_bpf_prog(event);
4791         perf_addr_filters_splice(event, NULL);
4792         kfree(event->addr_filter_ranges);
4793
4794         if (event->destroy)
4795                 event->destroy(event);
4796
4797         /*
4798          * Must be after ->destroy(), due to uprobe_perf_close() using
4799          * hw.target.
4800          */
4801         if (event->hw.target)
4802                 put_task_struct(event->hw.target);
4803
4804         /*
4805          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4806          * all task references must be cleaned up.
4807          */
4808         if (event->ctx)
4809                 put_ctx(event->ctx);
4810
4811         exclusive_event_destroy(event);
4812         module_put(event->pmu->module);
4813
4814         call_rcu(&event->rcu_head, free_event_rcu);
4815 }
4816
4817 /*
4818  * Used to free events which have a known refcount of 1, such as in error paths
4819  * where the event isn't exposed yet and inherited events.
4820  */
4821 static void free_event(struct perf_event *event)
4822 {
4823         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4824                                 "unexpected event refcount: %ld; ptr=%p\n",
4825                                 atomic_long_read(&event->refcount), event)) {
4826                 /* leak to avoid use-after-free */
4827                 return;
4828         }
4829
4830         _free_event(event);
4831 }
4832
4833 /*
4834  * Remove user event from the owner task.
4835  */
4836 static void perf_remove_from_owner(struct perf_event *event)
4837 {
4838         struct task_struct *owner;
4839
4840         rcu_read_lock();
4841         /*
4842          * Matches the smp_store_release() in perf_event_exit_task(). If we
4843          * observe !owner it means the list deletion is complete and we can
4844          * indeed free this event, otherwise we need to serialize on
4845          * owner->perf_event_mutex.
4846          */
4847         owner = READ_ONCE(event->owner);
4848         if (owner) {
4849                 /*
4850                  * Since delayed_put_task_struct() also drops the last
4851                  * task reference we can safely take a new reference
4852                  * while holding the rcu_read_lock().
4853                  */
4854                 get_task_struct(owner);
4855         }
4856         rcu_read_unlock();
4857
4858         if (owner) {
4859                 /*
4860                  * If we're here through perf_event_exit_task() we're already
4861                  * holding ctx->mutex which would be an inversion wrt. the
4862                  * normal lock order.
4863                  *
4864                  * However we can safely take this lock because its the child
4865                  * ctx->mutex.
4866                  */
4867                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4868
4869                 /*
4870                  * We have to re-check the event->owner field, if it is cleared
4871                  * we raced with perf_event_exit_task(), acquiring the mutex
4872                  * ensured they're done, and we can proceed with freeing the
4873                  * event.
4874                  */
4875                 if (event->owner) {
4876                         list_del_init(&event->owner_entry);
4877                         smp_store_release(&event->owner, NULL);
4878                 }
4879                 mutex_unlock(&owner->perf_event_mutex);
4880                 put_task_struct(owner);
4881         }
4882 }
4883
4884 static void put_event(struct perf_event *event)
4885 {
4886         if (!atomic_long_dec_and_test(&event->refcount))
4887                 return;
4888
4889         _free_event(event);
4890 }
4891
4892 /*
4893  * Kill an event dead; while event:refcount will preserve the event
4894  * object, it will not preserve its functionality. Once the last 'user'
4895  * gives up the object, we'll destroy the thing.
4896  */
4897 int perf_event_release_kernel(struct perf_event *event)
4898 {
4899         struct perf_event_context *ctx = event->ctx;
4900         struct perf_event *child, *tmp;
4901         LIST_HEAD(free_list);
4902
4903         /*
4904          * If we got here through err_file: fput(event_file); we will not have
4905          * attached to a context yet.
4906          */
4907         if (!ctx) {
4908                 WARN_ON_ONCE(event->attach_state &
4909                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4910                 goto no_ctx;
4911         }
4912
4913         if (!is_kernel_event(event))
4914                 perf_remove_from_owner(event);
4915
4916         ctx = perf_event_ctx_lock(event);
4917         WARN_ON_ONCE(ctx->parent_ctx);
4918         perf_remove_from_context(event, DETACH_GROUP);
4919
4920         raw_spin_lock_irq(&ctx->lock);
4921         /*
4922          * Mark this event as STATE_DEAD, there is no external reference to it
4923          * anymore.
4924          *
4925          * Anybody acquiring event->child_mutex after the below loop _must_
4926          * also see this, most importantly inherit_event() which will avoid
4927          * placing more children on the list.
4928          *
4929          * Thus this guarantees that we will in fact observe and kill _ALL_
4930          * child events.
4931          */
4932         event->state = PERF_EVENT_STATE_DEAD;
4933         raw_spin_unlock_irq(&ctx->lock);
4934
4935         perf_event_ctx_unlock(event, ctx);
4936
4937 again:
4938         mutex_lock(&event->child_mutex);
4939         list_for_each_entry(child, &event->child_list, child_list) {
4940
4941                 /*
4942                  * Cannot change, child events are not migrated, see the
4943                  * comment with perf_event_ctx_lock_nested().
4944                  */
4945                 ctx = READ_ONCE(child->ctx);
4946                 /*
4947                  * Since child_mutex nests inside ctx::mutex, we must jump
4948                  * through hoops. We start by grabbing a reference on the ctx.
4949                  *
4950                  * Since the event cannot get freed while we hold the
4951                  * child_mutex, the context must also exist and have a !0
4952                  * reference count.
4953                  */
4954                 get_ctx(ctx);
4955
4956                 /*
4957                  * Now that we have a ctx ref, we can drop child_mutex, and
4958                  * acquire ctx::mutex without fear of it going away. Then we
4959                  * can re-acquire child_mutex.
4960                  */
4961                 mutex_unlock(&event->child_mutex);
4962                 mutex_lock(&ctx->mutex);
4963                 mutex_lock(&event->child_mutex);
4964
4965                 /*
4966                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4967                  * state, if child is still the first entry, it didn't get freed
4968                  * and we can continue doing so.
4969                  */
4970                 tmp = list_first_entry_or_null(&event->child_list,
4971                                                struct perf_event, child_list);
4972                 if (tmp == child) {
4973                         perf_remove_from_context(child, DETACH_GROUP);
4974                         list_move(&child->child_list, &free_list);
4975                         /*
4976                          * This matches the refcount bump in inherit_event();
4977                          * this can't be the last reference.
4978                          */
4979                         put_event(event);
4980                 }
4981
4982                 mutex_unlock(&event->child_mutex);
4983                 mutex_unlock(&ctx->mutex);
4984                 put_ctx(ctx);
4985                 goto again;
4986         }
4987         mutex_unlock(&event->child_mutex);
4988
4989         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4990                 void *var = &child->ctx->refcount;
4991
4992                 list_del(&child->child_list);
4993                 free_event(child);
4994
4995                 /*
4996                  * Wake any perf_event_free_task() waiting for this event to be
4997                  * freed.
4998                  */
4999                 smp_mb(); /* pairs with wait_var_event() */
5000                 wake_up_var(var);
5001         }
5002
5003 no_ctx:
5004         put_event(event); /* Must be the 'last' reference */
5005         return 0;
5006 }
5007 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5008
5009 /*
5010  * Called when the last reference to the file is gone.
5011  */
5012 static int perf_release(struct inode *inode, struct file *file)
5013 {
5014         perf_event_release_kernel(file->private_data);
5015         return 0;
5016 }
5017
5018 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5019 {
5020         struct perf_event *child;
5021         u64 total = 0;
5022
5023         *enabled = 0;
5024         *running = 0;
5025
5026         mutex_lock(&event->child_mutex);
5027
5028         (void)perf_event_read(event, false);
5029         total += perf_event_count(event);
5030
5031         *enabled += event->total_time_enabled +
5032                         atomic64_read(&event->child_total_time_enabled);
5033         *running += event->total_time_running +
5034                         atomic64_read(&event->child_total_time_running);
5035
5036         list_for_each_entry(child, &event->child_list, child_list) {
5037                 (void)perf_event_read(child, false);
5038                 total += perf_event_count(child);
5039                 *enabled += child->total_time_enabled;
5040                 *running += child->total_time_running;
5041         }
5042         mutex_unlock(&event->child_mutex);
5043
5044         return total;
5045 }
5046
5047 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5048 {
5049         struct perf_event_context *ctx;
5050         u64 count;
5051
5052         ctx = perf_event_ctx_lock(event);
5053         count = __perf_event_read_value(event, enabled, running);
5054         perf_event_ctx_unlock(event, ctx);
5055
5056         return count;
5057 }
5058 EXPORT_SYMBOL_GPL(perf_event_read_value);
5059
5060 static int __perf_read_group_add(struct perf_event *leader,
5061                                         u64 read_format, u64 *values)
5062 {
5063         struct perf_event_context *ctx = leader->ctx;
5064         struct perf_event *sub;
5065         unsigned long flags;
5066         int n = 1; /* skip @nr */
5067         int ret;
5068
5069         ret = perf_event_read(leader, true);
5070         if (ret)
5071                 return ret;
5072
5073         raw_spin_lock_irqsave(&ctx->lock, flags);
5074
5075         /*
5076          * Since we co-schedule groups, {enabled,running} times of siblings
5077          * will be identical to those of the leader, so we only publish one
5078          * set.
5079          */
5080         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5081                 values[n++] += leader->total_time_enabled +
5082                         atomic64_read(&leader->child_total_time_enabled);
5083         }
5084
5085         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5086                 values[n++] += leader->total_time_running +
5087                         atomic64_read(&leader->child_total_time_running);
5088         }
5089
5090         /*
5091          * Write {count,id} tuples for every sibling.
5092          */
5093         values[n++] += perf_event_count(leader);
5094         if (read_format & PERF_FORMAT_ID)
5095                 values[n++] = primary_event_id(leader);
5096
5097         for_each_sibling_event(sub, leader) {
5098                 values[n++] += perf_event_count(sub);
5099                 if (read_format & PERF_FORMAT_ID)
5100                         values[n++] = primary_event_id(sub);
5101         }
5102
5103         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5104         return 0;
5105 }
5106
5107 static int perf_read_group(struct perf_event *event,
5108                                    u64 read_format, char __user *buf)
5109 {
5110         struct perf_event *leader = event->group_leader, *child;
5111         struct perf_event_context *ctx = leader->ctx;
5112         int ret;
5113         u64 *values;
5114
5115         lockdep_assert_held(&ctx->mutex);
5116
5117         values = kzalloc(event->read_size, GFP_KERNEL);
5118         if (!values)
5119                 return -ENOMEM;
5120
5121         values[0] = 1 + leader->nr_siblings;
5122
5123         /*
5124          * By locking the child_mutex of the leader we effectively
5125          * lock the child list of all siblings.. XXX explain how.
5126          */
5127         mutex_lock(&leader->child_mutex);
5128
5129         ret = __perf_read_group_add(leader, read_format, values);
5130         if (ret)
5131                 goto unlock;
5132
5133         list_for_each_entry(child, &leader->child_list, child_list) {
5134                 ret = __perf_read_group_add(child, read_format, values);
5135                 if (ret)
5136                         goto unlock;
5137         }
5138
5139         mutex_unlock(&leader->child_mutex);
5140
5141         ret = event->read_size;
5142         if (copy_to_user(buf, values, event->read_size))
5143                 ret = -EFAULT;
5144         goto out;
5145
5146 unlock:
5147         mutex_unlock(&leader->child_mutex);
5148 out:
5149         kfree(values);
5150         return ret;
5151 }
5152
5153 static int perf_read_one(struct perf_event *event,
5154                                  u64 read_format, char __user *buf)
5155 {
5156         u64 enabled, running;
5157         u64 values[4];
5158         int n = 0;
5159
5160         values[n++] = __perf_event_read_value(event, &enabled, &running);
5161         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5162                 values[n++] = enabled;
5163         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5164                 values[n++] = running;
5165         if (read_format & PERF_FORMAT_ID)
5166                 values[n++] = primary_event_id(event);
5167
5168         if (copy_to_user(buf, values, n * sizeof(u64)))
5169                 return -EFAULT;
5170
5171         return n * sizeof(u64);
5172 }
5173
5174 static bool is_event_hup(struct perf_event *event)
5175 {
5176         bool no_children;
5177
5178         if (event->state > PERF_EVENT_STATE_EXIT)
5179                 return false;
5180
5181         mutex_lock(&event->child_mutex);
5182         no_children = list_empty(&event->child_list);
5183         mutex_unlock(&event->child_mutex);
5184         return no_children;
5185 }
5186
5187 /*
5188  * Read the performance event - simple non blocking version for now
5189  */
5190 static ssize_t
5191 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5192 {
5193         u64 read_format = event->attr.read_format;
5194         int ret;
5195
5196         /*
5197          * Return end-of-file for a read on an event that is in
5198          * error state (i.e. because it was pinned but it couldn't be
5199          * scheduled on to the CPU at some point).
5200          */
5201         if (event->state == PERF_EVENT_STATE_ERROR)
5202                 return 0;
5203
5204         if (count < event->read_size)
5205                 return -ENOSPC;
5206
5207         WARN_ON_ONCE(event->ctx->parent_ctx);
5208         if (read_format & PERF_FORMAT_GROUP)
5209                 ret = perf_read_group(event, read_format, buf);
5210         else
5211                 ret = perf_read_one(event, read_format, buf);
5212
5213         return ret;
5214 }
5215
5216 static ssize_t
5217 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5218 {
5219         struct perf_event *event = file->private_data;
5220         struct perf_event_context *ctx;
5221         int ret;
5222
5223         ret = security_perf_event_read(event);
5224         if (ret)
5225                 return ret;
5226
5227         ctx = perf_event_ctx_lock(event);
5228         ret = __perf_read(event, buf, count);
5229         perf_event_ctx_unlock(event, ctx);
5230
5231         return ret;
5232 }
5233
5234 static __poll_t perf_poll(struct file *file, poll_table *wait)
5235 {
5236         struct perf_event *event = file->private_data;
5237         struct perf_buffer *rb;
5238         __poll_t events = EPOLLHUP;
5239
5240         poll_wait(file, &event->waitq, wait);
5241
5242         if (is_event_hup(event))
5243                 return events;
5244
5245         /*
5246          * Pin the event->rb by taking event->mmap_mutex; otherwise
5247          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5248          */
5249         mutex_lock(&event->mmap_mutex);
5250         rb = event->rb;
5251         if (rb)
5252                 events = atomic_xchg(&rb->poll, 0);
5253         mutex_unlock(&event->mmap_mutex);
5254         return events;
5255 }
5256
5257 static void _perf_event_reset(struct perf_event *event)
5258 {
5259         (void)perf_event_read(event, false);
5260         local64_set(&event->count, 0);
5261         perf_event_update_userpage(event);
5262 }
5263
5264 /* Assume it's not an event with inherit set. */
5265 u64 perf_event_pause(struct perf_event *event, bool reset)
5266 {
5267         struct perf_event_context *ctx;
5268         u64 count;
5269
5270         ctx = perf_event_ctx_lock(event);
5271         WARN_ON_ONCE(event->attr.inherit);
5272         _perf_event_disable(event);
5273         count = local64_read(&event->count);
5274         if (reset)
5275                 local64_set(&event->count, 0);
5276         perf_event_ctx_unlock(event, ctx);
5277
5278         return count;
5279 }
5280 EXPORT_SYMBOL_GPL(perf_event_pause);
5281
5282 /*
5283  * Holding the top-level event's child_mutex means that any
5284  * descendant process that has inherited this event will block
5285  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5286  * task existence requirements of perf_event_enable/disable.
5287  */
5288 static void perf_event_for_each_child(struct perf_event *event,
5289                                         void (*func)(struct perf_event *))
5290 {
5291         struct perf_event *child;
5292
5293         WARN_ON_ONCE(event->ctx->parent_ctx);
5294
5295         mutex_lock(&event->child_mutex);
5296         func(event);
5297         list_for_each_entry(child, &event->child_list, child_list)
5298                 func(child);
5299         mutex_unlock(&event->child_mutex);
5300 }
5301
5302 static void perf_event_for_each(struct perf_event *event,
5303                                   void (*func)(struct perf_event *))
5304 {
5305         struct perf_event_context *ctx = event->ctx;
5306         struct perf_event *sibling;
5307
5308         lockdep_assert_held(&ctx->mutex);
5309
5310         event = event->group_leader;
5311
5312         perf_event_for_each_child(event, func);
5313         for_each_sibling_event(sibling, event)
5314                 perf_event_for_each_child(sibling, func);
5315 }
5316
5317 static void __perf_event_period(struct perf_event *event,
5318                                 struct perf_cpu_context *cpuctx,
5319                                 struct perf_event_context *ctx,
5320                                 void *info)
5321 {
5322         u64 value = *((u64 *)info);
5323         bool active;
5324
5325         if (event->attr.freq) {
5326                 event->attr.sample_freq = value;
5327         } else {
5328                 event->attr.sample_period = value;
5329                 event->hw.sample_period = value;
5330         }
5331
5332         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5333         if (active) {
5334                 perf_pmu_disable(ctx->pmu);
5335                 /*
5336                  * We could be throttled; unthrottle now to avoid the tick
5337                  * trying to unthrottle while we already re-started the event.
5338                  */
5339                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5340                         event->hw.interrupts = 0;
5341                         perf_log_throttle(event, 1);
5342                 }
5343                 event->pmu->stop(event, PERF_EF_UPDATE);
5344         }
5345
5346         local64_set(&event->hw.period_left, 0);
5347
5348         if (active) {
5349                 event->pmu->start(event, PERF_EF_RELOAD);
5350                 perf_pmu_enable(ctx->pmu);
5351         }
5352 }
5353
5354 static int perf_event_check_period(struct perf_event *event, u64 value)
5355 {
5356         return event->pmu->check_period(event, value);
5357 }
5358
5359 static int _perf_event_period(struct perf_event *event, u64 value)
5360 {
5361         if (!is_sampling_event(event))
5362                 return -EINVAL;
5363
5364         if (!value)
5365                 return -EINVAL;
5366
5367         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5368                 return -EINVAL;
5369
5370         if (perf_event_check_period(event, value))
5371                 return -EINVAL;
5372
5373         if (!event->attr.freq && (value & (1ULL << 63)))
5374                 return -EINVAL;
5375
5376         event_function_call(event, __perf_event_period, &value);
5377
5378         return 0;
5379 }
5380
5381 int perf_event_period(struct perf_event *event, u64 value)
5382 {
5383         struct perf_event_context *ctx;
5384         int ret;
5385
5386         ctx = perf_event_ctx_lock(event);
5387         ret = _perf_event_period(event, value);
5388         perf_event_ctx_unlock(event, ctx);
5389
5390         return ret;
5391 }
5392 EXPORT_SYMBOL_GPL(perf_event_period);
5393
5394 static const struct file_operations perf_fops;
5395
5396 static inline int perf_fget_light(int fd, struct fd *p)
5397 {
5398         struct fd f = fdget(fd);
5399         if (!f.file)
5400                 return -EBADF;
5401
5402         if (f.file->f_op != &perf_fops) {
5403                 fdput(f);
5404                 return -EBADF;
5405         }
5406         *p = f;
5407         return 0;
5408 }
5409
5410 static int perf_event_set_output(struct perf_event *event,
5411                                  struct perf_event *output_event);
5412 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5413 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5414 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5415                           struct perf_event_attr *attr);
5416
5417 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5418 {
5419         void (*func)(struct perf_event *);
5420         u32 flags = arg;
5421
5422         switch (cmd) {
5423         case PERF_EVENT_IOC_ENABLE:
5424                 func = _perf_event_enable;
5425                 break;
5426         case PERF_EVENT_IOC_DISABLE:
5427                 func = _perf_event_disable;
5428                 break;
5429         case PERF_EVENT_IOC_RESET:
5430                 func = _perf_event_reset;
5431                 break;
5432
5433         case PERF_EVENT_IOC_REFRESH:
5434                 return _perf_event_refresh(event, arg);
5435
5436         case PERF_EVENT_IOC_PERIOD:
5437         {
5438                 u64 value;
5439
5440                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5441                         return -EFAULT;
5442
5443                 return _perf_event_period(event, value);
5444         }
5445         case PERF_EVENT_IOC_ID:
5446         {
5447                 u64 id = primary_event_id(event);
5448
5449                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5450                         return -EFAULT;
5451                 return 0;
5452         }
5453
5454         case PERF_EVENT_IOC_SET_OUTPUT:
5455         {
5456                 int ret;
5457                 if (arg != -1) {
5458                         struct perf_event *output_event;
5459                         struct fd output;
5460                         ret = perf_fget_light(arg, &output);
5461                         if (ret)
5462                                 return ret;
5463                         output_event = output.file->private_data;
5464                         ret = perf_event_set_output(event, output_event);
5465                         fdput(output);
5466                 } else {
5467                         ret = perf_event_set_output(event, NULL);
5468                 }
5469                 return ret;
5470         }
5471
5472         case PERF_EVENT_IOC_SET_FILTER:
5473                 return perf_event_set_filter(event, (void __user *)arg);
5474
5475         case PERF_EVENT_IOC_SET_BPF:
5476                 return perf_event_set_bpf_prog(event, arg);
5477
5478         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5479                 struct perf_buffer *rb;
5480
5481                 rcu_read_lock();
5482                 rb = rcu_dereference(event->rb);
5483                 if (!rb || !rb->nr_pages) {
5484                         rcu_read_unlock();
5485                         return -EINVAL;
5486                 }
5487                 rb_toggle_paused(rb, !!arg);
5488                 rcu_read_unlock();
5489                 return 0;
5490         }
5491
5492         case PERF_EVENT_IOC_QUERY_BPF:
5493                 return perf_event_query_prog_array(event, (void __user *)arg);
5494
5495         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5496                 struct perf_event_attr new_attr;
5497                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5498                                          &new_attr);
5499
5500                 if (err)
5501                         return err;
5502
5503                 return perf_event_modify_attr(event,  &new_attr);
5504         }
5505         default:
5506                 return -ENOTTY;
5507         }
5508
5509         if (flags & PERF_IOC_FLAG_GROUP)
5510                 perf_event_for_each(event, func);
5511         else
5512                 perf_event_for_each_child(event, func);
5513
5514         return 0;
5515 }
5516
5517 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5518 {
5519         struct perf_event *event = file->private_data;
5520         struct perf_event_context *ctx;
5521         long ret;
5522
5523         /* Treat ioctl like writes as it is likely a mutating operation. */
5524         ret = security_perf_event_write(event);
5525         if (ret)
5526                 return ret;
5527
5528         ctx = perf_event_ctx_lock(event);
5529         ret = _perf_ioctl(event, cmd, arg);
5530         perf_event_ctx_unlock(event, ctx);
5531
5532         return ret;
5533 }
5534
5535 #ifdef CONFIG_COMPAT
5536 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5537                                 unsigned long arg)
5538 {
5539         switch (_IOC_NR(cmd)) {
5540         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5541         case _IOC_NR(PERF_EVENT_IOC_ID):
5542         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5543         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5544                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5545                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5546                         cmd &= ~IOCSIZE_MASK;
5547                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5548                 }
5549                 break;
5550         }
5551         return perf_ioctl(file, cmd, arg);
5552 }
5553 #else
5554 # define perf_compat_ioctl NULL
5555 #endif
5556
5557 int perf_event_task_enable(void)
5558 {
5559         struct perf_event_context *ctx;
5560         struct perf_event *event;
5561
5562         mutex_lock(&current->perf_event_mutex);
5563         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5564                 ctx = perf_event_ctx_lock(event);
5565                 perf_event_for_each_child(event, _perf_event_enable);
5566                 perf_event_ctx_unlock(event, ctx);
5567         }
5568         mutex_unlock(&current->perf_event_mutex);
5569
5570         return 0;
5571 }
5572
5573 int perf_event_task_disable(void)
5574 {
5575         struct perf_event_context *ctx;
5576         struct perf_event *event;
5577
5578         mutex_lock(&current->perf_event_mutex);
5579         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5580                 ctx = perf_event_ctx_lock(event);
5581                 perf_event_for_each_child(event, _perf_event_disable);
5582                 perf_event_ctx_unlock(event, ctx);
5583         }
5584         mutex_unlock(&current->perf_event_mutex);
5585
5586         return 0;
5587 }
5588
5589 static int perf_event_index(struct perf_event *event)
5590 {
5591         if (event->hw.state & PERF_HES_STOPPED)
5592                 return 0;
5593
5594         if (event->state != PERF_EVENT_STATE_ACTIVE)
5595                 return 0;
5596
5597         return event->pmu->event_idx(event);
5598 }
5599
5600 static void calc_timer_values(struct perf_event *event,
5601                                 u64 *now,
5602                                 u64 *enabled,
5603                                 u64 *running)
5604 {
5605         u64 ctx_time;
5606
5607         *now = perf_clock();
5608         ctx_time = event->shadow_ctx_time + *now;
5609         __perf_update_times(event, ctx_time, enabled, running);
5610 }
5611
5612 static void perf_event_init_userpage(struct perf_event *event)
5613 {
5614         struct perf_event_mmap_page *userpg;
5615         struct perf_buffer *rb;
5616
5617         rcu_read_lock();
5618         rb = rcu_dereference(event->rb);
5619         if (!rb)
5620                 goto unlock;
5621
5622         userpg = rb->user_page;
5623
5624         /* Allow new userspace to detect that bit 0 is deprecated */
5625         userpg->cap_bit0_is_deprecated = 1;
5626         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5627         userpg->data_offset = PAGE_SIZE;
5628         userpg->data_size = perf_data_size(rb);
5629
5630 unlock:
5631         rcu_read_unlock();
5632 }
5633
5634 void __weak arch_perf_update_userpage(
5635         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5636 {
5637 }
5638
5639 /*
5640  * Callers need to ensure there can be no nesting of this function, otherwise
5641  * the seqlock logic goes bad. We can not serialize this because the arch
5642  * code calls this from NMI context.
5643  */
5644 void perf_event_update_userpage(struct perf_event *event)
5645 {
5646         struct perf_event_mmap_page *userpg;
5647         struct perf_buffer *rb;
5648         u64 enabled, running, now;
5649
5650         rcu_read_lock();
5651         rb = rcu_dereference(event->rb);
5652         if (!rb)
5653                 goto unlock;
5654
5655         /*
5656          * compute total_time_enabled, total_time_running
5657          * based on snapshot values taken when the event
5658          * was last scheduled in.
5659          *
5660          * we cannot simply called update_context_time()
5661          * because of locking issue as we can be called in
5662          * NMI context
5663          */
5664         calc_timer_values(event, &now, &enabled, &running);
5665
5666         userpg = rb->user_page;
5667         /*
5668          * Disable preemption to guarantee consistent time stamps are stored to
5669          * the user page.
5670          */
5671         preempt_disable();
5672         ++userpg->lock;
5673         barrier();
5674         userpg->index = perf_event_index(event);
5675         userpg->offset = perf_event_count(event);
5676         if (userpg->index)
5677                 userpg->offset -= local64_read(&event->hw.prev_count);
5678
5679         userpg->time_enabled = enabled +
5680                         atomic64_read(&event->child_total_time_enabled);
5681
5682         userpg->time_running = running +
5683                         atomic64_read(&event->child_total_time_running);
5684
5685         arch_perf_update_userpage(event, userpg, now);
5686
5687         barrier();
5688         ++userpg->lock;
5689         preempt_enable();
5690 unlock:
5691         rcu_read_unlock();
5692 }
5693 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5694
5695 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5696 {
5697         struct perf_event *event = vmf->vma->vm_file->private_data;
5698         struct perf_buffer *rb;
5699         vm_fault_t ret = VM_FAULT_SIGBUS;
5700
5701         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5702                 if (vmf->pgoff == 0)
5703                         ret = 0;
5704                 return ret;
5705         }
5706
5707         rcu_read_lock();
5708         rb = rcu_dereference(event->rb);
5709         if (!rb)
5710                 goto unlock;
5711
5712         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5713                 goto unlock;
5714
5715         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5716         if (!vmf->page)
5717                 goto unlock;
5718
5719         get_page(vmf->page);
5720         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5721         vmf->page->index   = vmf->pgoff;
5722
5723         ret = 0;
5724 unlock:
5725         rcu_read_unlock();
5726
5727         return ret;
5728 }
5729
5730 static void ring_buffer_attach(struct perf_event *event,
5731                                struct perf_buffer *rb)
5732 {
5733         struct perf_buffer *old_rb = NULL;
5734         unsigned long flags;
5735
5736         if (event->rb) {
5737                 /*
5738                  * Should be impossible, we set this when removing
5739                  * event->rb_entry and wait/clear when adding event->rb_entry.
5740                  */
5741                 WARN_ON_ONCE(event->rcu_pending);
5742
5743                 old_rb = event->rb;
5744                 spin_lock_irqsave(&old_rb->event_lock, flags);
5745                 list_del_rcu(&event->rb_entry);
5746                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5747
5748                 event->rcu_batches = get_state_synchronize_rcu();
5749                 event->rcu_pending = 1;
5750         }
5751
5752         if (rb) {
5753                 if (event->rcu_pending) {
5754                         cond_synchronize_rcu(event->rcu_batches);
5755                         event->rcu_pending = 0;
5756                 }
5757
5758                 spin_lock_irqsave(&rb->event_lock, flags);
5759                 list_add_rcu(&event->rb_entry, &rb->event_list);
5760                 spin_unlock_irqrestore(&rb->event_lock, flags);
5761         }
5762
5763         /*
5764          * Avoid racing with perf_mmap_close(AUX): stop the event
5765          * before swizzling the event::rb pointer; if it's getting
5766          * unmapped, its aux_mmap_count will be 0 and it won't
5767          * restart. See the comment in __perf_pmu_output_stop().
5768          *
5769          * Data will inevitably be lost when set_output is done in
5770          * mid-air, but then again, whoever does it like this is
5771          * not in for the data anyway.
5772          */
5773         if (has_aux(event))
5774                 perf_event_stop(event, 0);
5775
5776         rcu_assign_pointer(event->rb, rb);
5777
5778         if (old_rb) {
5779                 ring_buffer_put(old_rb);
5780                 /*
5781                  * Since we detached before setting the new rb, so that we
5782                  * could attach the new rb, we could have missed a wakeup.
5783                  * Provide it now.
5784                  */
5785                 wake_up_all(&event->waitq);
5786         }
5787 }
5788
5789 static void ring_buffer_wakeup(struct perf_event *event)
5790 {
5791         struct perf_buffer *rb;
5792
5793         rcu_read_lock();
5794         rb = rcu_dereference(event->rb);
5795         if (rb) {
5796                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5797                         wake_up_all(&event->waitq);
5798         }
5799         rcu_read_unlock();
5800 }
5801
5802 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5803 {
5804         struct perf_buffer *rb;
5805
5806         rcu_read_lock();
5807         rb = rcu_dereference(event->rb);
5808         if (rb) {
5809                 if (!refcount_inc_not_zero(&rb->refcount))
5810                         rb = NULL;
5811         }
5812         rcu_read_unlock();
5813
5814         return rb;
5815 }
5816
5817 void ring_buffer_put(struct perf_buffer *rb)
5818 {
5819         if (!refcount_dec_and_test(&rb->refcount))
5820                 return;
5821
5822         WARN_ON_ONCE(!list_empty(&rb->event_list));
5823
5824         call_rcu(&rb->rcu_head, rb_free_rcu);
5825 }
5826
5827 static void perf_mmap_open(struct vm_area_struct *vma)
5828 {
5829         struct perf_event *event = vma->vm_file->private_data;
5830
5831         atomic_inc(&event->mmap_count);
5832         atomic_inc(&event->rb->mmap_count);
5833
5834         if (vma->vm_pgoff)
5835                 atomic_inc(&event->rb->aux_mmap_count);
5836
5837         if (event->pmu->event_mapped)
5838                 event->pmu->event_mapped(event, vma->vm_mm);
5839 }
5840
5841 static void perf_pmu_output_stop(struct perf_event *event);
5842
5843 /*
5844  * A buffer can be mmap()ed multiple times; either directly through the same
5845  * event, or through other events by use of perf_event_set_output().
5846  *
5847  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5848  * the buffer here, where we still have a VM context. This means we need
5849  * to detach all events redirecting to us.
5850  */
5851 static void perf_mmap_close(struct vm_area_struct *vma)
5852 {
5853         struct perf_event *event = vma->vm_file->private_data;
5854
5855         struct perf_buffer *rb = ring_buffer_get(event);
5856         struct user_struct *mmap_user = rb->mmap_user;
5857         int mmap_locked = rb->mmap_locked;
5858         unsigned long size = perf_data_size(rb);
5859
5860         if (event->pmu->event_unmapped)
5861                 event->pmu->event_unmapped(event, vma->vm_mm);
5862
5863         /*
5864          * rb->aux_mmap_count will always drop before rb->mmap_count and
5865          * event->mmap_count, so it is ok to use event->mmap_mutex to
5866          * serialize with perf_mmap here.
5867          */
5868         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5869             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5870                 /*
5871                  * Stop all AUX events that are writing to this buffer,
5872                  * so that we can free its AUX pages and corresponding PMU
5873                  * data. Note that after rb::aux_mmap_count dropped to zero,
5874                  * they won't start any more (see perf_aux_output_begin()).
5875                  */
5876                 perf_pmu_output_stop(event);
5877
5878                 /* now it's safe to free the pages */
5879                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5880                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5881
5882                 /* this has to be the last one */
5883                 rb_free_aux(rb);
5884                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5885
5886                 mutex_unlock(&event->mmap_mutex);
5887         }
5888
5889         atomic_dec(&rb->mmap_count);
5890
5891         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5892                 goto out_put;
5893
5894         ring_buffer_attach(event, NULL);
5895         mutex_unlock(&event->mmap_mutex);
5896
5897         /* If there's still other mmap()s of this buffer, we're done. */
5898         if (atomic_read(&rb->mmap_count))
5899                 goto out_put;
5900
5901         /*
5902          * No other mmap()s, detach from all other events that might redirect
5903          * into the now unreachable buffer. Somewhat complicated by the
5904          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5905          */
5906 again:
5907         rcu_read_lock();
5908         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5909                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5910                         /*
5911                          * This event is en-route to free_event() which will
5912                          * detach it and remove it from the list.
5913                          */
5914                         continue;
5915                 }
5916                 rcu_read_unlock();
5917
5918                 mutex_lock(&event->mmap_mutex);
5919                 /*
5920                  * Check we didn't race with perf_event_set_output() which can
5921                  * swizzle the rb from under us while we were waiting to
5922                  * acquire mmap_mutex.
5923                  *
5924                  * If we find a different rb; ignore this event, a next
5925                  * iteration will no longer find it on the list. We have to
5926                  * still restart the iteration to make sure we're not now
5927                  * iterating the wrong list.
5928                  */
5929                 if (event->rb == rb)
5930                         ring_buffer_attach(event, NULL);
5931
5932                 mutex_unlock(&event->mmap_mutex);
5933                 put_event(event);
5934
5935                 /*
5936                  * Restart the iteration; either we're on the wrong list or
5937                  * destroyed its integrity by doing a deletion.
5938                  */
5939                 goto again;
5940         }
5941         rcu_read_unlock();
5942
5943         /*
5944          * It could be there's still a few 0-ref events on the list; they'll
5945          * get cleaned up by free_event() -- they'll also still have their
5946          * ref on the rb and will free it whenever they are done with it.
5947          *
5948          * Aside from that, this buffer is 'fully' detached and unmapped,
5949          * undo the VM accounting.
5950          */
5951
5952         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5953                         &mmap_user->locked_vm);
5954         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5955         free_uid(mmap_user);
5956
5957 out_put:
5958         ring_buffer_put(rb); /* could be last */
5959 }
5960
5961 static const struct vm_operations_struct perf_mmap_vmops = {
5962         .open           = perf_mmap_open,
5963         .close          = perf_mmap_close, /* non mergeable */
5964         .fault          = perf_mmap_fault,
5965         .page_mkwrite   = perf_mmap_fault,
5966 };
5967
5968 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5969 {
5970         struct perf_event *event = file->private_data;
5971         unsigned long user_locked, user_lock_limit;
5972         struct user_struct *user = current_user();
5973         struct perf_buffer *rb = NULL;
5974         unsigned long locked, lock_limit;
5975         unsigned long vma_size;
5976         unsigned long nr_pages;
5977         long user_extra = 0, extra = 0;
5978         int ret = 0, flags = 0;
5979
5980         /*
5981          * Don't allow mmap() of inherited per-task counters. This would
5982          * create a performance issue due to all children writing to the
5983          * same rb.
5984          */
5985         if (event->cpu == -1 && event->attr.inherit)
5986                 return -EINVAL;
5987
5988         if (!(vma->vm_flags & VM_SHARED))
5989                 return -EINVAL;
5990
5991         ret = security_perf_event_read(event);
5992         if (ret)
5993                 return ret;
5994
5995         vma_size = vma->vm_end - vma->vm_start;
5996
5997         if (vma->vm_pgoff == 0) {
5998                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5999         } else {
6000                 /*
6001                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6002                  * mapped, all subsequent mappings should have the same size
6003                  * and offset. Must be above the normal perf buffer.
6004                  */
6005                 u64 aux_offset, aux_size;
6006
6007                 if (!event->rb)
6008                         return -EINVAL;
6009
6010                 nr_pages = vma_size / PAGE_SIZE;
6011
6012                 mutex_lock(&event->mmap_mutex);
6013                 ret = -EINVAL;
6014
6015                 rb = event->rb;
6016                 if (!rb)
6017                         goto aux_unlock;
6018
6019                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6020                 aux_size = READ_ONCE(rb->user_page->aux_size);
6021
6022                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6023                         goto aux_unlock;
6024
6025                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6026                         goto aux_unlock;
6027
6028                 /* already mapped with a different offset */
6029                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6030                         goto aux_unlock;
6031
6032                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6033                         goto aux_unlock;
6034
6035                 /* already mapped with a different size */
6036                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6037                         goto aux_unlock;
6038
6039                 if (!is_power_of_2(nr_pages))
6040                         goto aux_unlock;
6041
6042                 if (!atomic_inc_not_zero(&rb->mmap_count))
6043                         goto aux_unlock;
6044
6045                 if (rb_has_aux(rb)) {
6046                         atomic_inc(&rb->aux_mmap_count);
6047                         ret = 0;
6048                         goto unlock;
6049                 }
6050
6051                 atomic_set(&rb->aux_mmap_count, 1);
6052                 user_extra = nr_pages;
6053
6054                 goto accounting;
6055         }
6056
6057         /*
6058          * If we have rb pages ensure they're a power-of-two number, so we
6059          * can do bitmasks instead of modulo.
6060          */
6061         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6062                 return -EINVAL;
6063
6064         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6065                 return -EINVAL;
6066
6067         WARN_ON_ONCE(event->ctx->parent_ctx);
6068 again:
6069         mutex_lock(&event->mmap_mutex);
6070         if (event->rb) {
6071                 if (event->rb->nr_pages != nr_pages) {
6072                         ret = -EINVAL;
6073                         goto unlock;
6074                 }
6075
6076                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6077                         /*
6078                          * Raced against perf_mmap_close() through
6079                          * perf_event_set_output(). Try again, hope for better
6080                          * luck.
6081                          */
6082                         mutex_unlock(&event->mmap_mutex);
6083                         goto again;
6084                 }
6085
6086                 goto unlock;
6087         }
6088
6089         user_extra = nr_pages + 1;
6090
6091 accounting:
6092         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6093
6094         /*
6095          * Increase the limit linearly with more CPUs:
6096          */
6097         user_lock_limit *= num_online_cpus();
6098
6099         user_locked = atomic_long_read(&user->locked_vm);
6100
6101         /*
6102          * sysctl_perf_event_mlock may have changed, so that
6103          *     user->locked_vm > user_lock_limit
6104          */
6105         if (user_locked > user_lock_limit)
6106                 user_locked = user_lock_limit;
6107         user_locked += user_extra;
6108
6109         if (user_locked > user_lock_limit) {
6110                 /*
6111                  * charge locked_vm until it hits user_lock_limit;
6112                  * charge the rest from pinned_vm
6113                  */
6114                 extra = user_locked - user_lock_limit;
6115                 user_extra -= extra;
6116         }
6117
6118         lock_limit = rlimit(RLIMIT_MEMLOCK);
6119         lock_limit >>= PAGE_SHIFT;
6120         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6121
6122         if ((locked > lock_limit) && perf_is_paranoid() &&
6123                 !capable(CAP_IPC_LOCK)) {
6124                 ret = -EPERM;
6125                 goto unlock;
6126         }
6127
6128         WARN_ON(!rb && event->rb);
6129
6130         if (vma->vm_flags & VM_WRITE)
6131                 flags |= RING_BUFFER_WRITABLE;
6132
6133         if (!rb) {
6134                 rb = rb_alloc(nr_pages,
6135                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6136                               event->cpu, flags);
6137
6138                 if (!rb) {
6139                         ret = -ENOMEM;
6140                         goto unlock;
6141                 }
6142
6143                 atomic_set(&rb->mmap_count, 1);
6144                 rb->mmap_user = get_current_user();
6145                 rb->mmap_locked = extra;
6146
6147                 ring_buffer_attach(event, rb);
6148
6149                 perf_event_init_userpage(event);
6150                 perf_event_update_userpage(event);
6151         } else {
6152                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6153                                    event->attr.aux_watermark, flags);
6154                 if (!ret)
6155                         rb->aux_mmap_locked = extra;
6156         }
6157
6158 unlock:
6159         if (!ret) {
6160                 atomic_long_add(user_extra, &user->locked_vm);
6161                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6162
6163                 atomic_inc(&event->mmap_count);
6164         } else if (rb) {
6165                 atomic_dec(&rb->mmap_count);
6166         }
6167 aux_unlock:
6168         mutex_unlock(&event->mmap_mutex);
6169
6170         /*
6171          * Since pinned accounting is per vm we cannot allow fork() to copy our
6172          * vma.
6173          */
6174         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6175         vma->vm_ops = &perf_mmap_vmops;
6176
6177         if (event->pmu->event_mapped)
6178                 event->pmu->event_mapped(event, vma->vm_mm);
6179
6180         return ret;
6181 }
6182
6183 static int perf_fasync(int fd, struct file *filp, int on)
6184 {
6185         struct inode *inode = file_inode(filp);
6186         struct perf_event *event = filp->private_data;
6187         int retval;
6188
6189         inode_lock(inode);
6190         retval = fasync_helper(fd, filp, on, &event->fasync);
6191         inode_unlock(inode);
6192
6193         if (retval < 0)
6194                 return retval;
6195
6196         return 0;
6197 }
6198
6199 static const struct file_operations perf_fops = {
6200         .llseek                 = no_llseek,
6201         .release                = perf_release,
6202         .read                   = perf_read,
6203         .poll                   = perf_poll,
6204         .unlocked_ioctl         = perf_ioctl,
6205         .compat_ioctl           = perf_compat_ioctl,
6206         .mmap                   = perf_mmap,
6207         .fasync                 = perf_fasync,
6208 };
6209
6210 /*
6211  * Perf event wakeup
6212  *
6213  * If there's data, ensure we set the poll() state and publish everything
6214  * to user-space before waking everybody up.
6215  */
6216
6217 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6218 {
6219         /* only the parent has fasync state */
6220         if (event->parent)
6221                 event = event->parent;
6222         return &event->fasync;
6223 }
6224
6225 void perf_event_wakeup(struct perf_event *event)
6226 {
6227         ring_buffer_wakeup(event);
6228
6229         if (event->pending_kill) {
6230                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6231                 event->pending_kill = 0;
6232         }
6233 }
6234
6235 static void perf_pending_event_disable(struct perf_event *event)
6236 {
6237         int cpu = READ_ONCE(event->pending_disable);
6238
6239         if (cpu < 0)
6240                 return;
6241
6242         if (cpu == smp_processor_id()) {
6243                 WRITE_ONCE(event->pending_disable, -1);
6244                 perf_event_disable_local(event);
6245                 return;
6246         }
6247
6248         /*
6249          *  CPU-A                       CPU-B
6250          *
6251          *  perf_event_disable_inatomic()
6252          *    @pending_disable = CPU-A;
6253          *    irq_work_queue();
6254          *
6255          *  sched-out
6256          *    @pending_disable = -1;
6257          *
6258          *                              sched-in
6259          *                              perf_event_disable_inatomic()
6260          *                                @pending_disable = CPU-B;
6261          *                                irq_work_queue(); // FAILS
6262          *
6263          *  irq_work_run()
6264          *    perf_pending_event()
6265          *
6266          * But the event runs on CPU-B and wants disabling there.
6267          */
6268         irq_work_queue_on(&event->pending, cpu);
6269 }
6270
6271 static void perf_pending_event(struct irq_work *entry)
6272 {
6273         struct perf_event *event = container_of(entry, struct perf_event, pending);
6274         int rctx;
6275
6276         rctx = perf_swevent_get_recursion_context();
6277         /*
6278          * If we 'fail' here, that's OK, it means recursion is already disabled
6279          * and we won't recurse 'further'.
6280          */
6281
6282         perf_pending_event_disable(event);
6283
6284         if (event->pending_wakeup) {
6285                 event->pending_wakeup = 0;
6286                 perf_event_wakeup(event);
6287         }
6288
6289         if (rctx >= 0)
6290                 perf_swevent_put_recursion_context(rctx);
6291 }
6292
6293 /*
6294  * We assume there is only KVM supporting the callbacks.
6295  * Later on, we might change it to a list if there is
6296  * another virtualization implementation supporting the callbacks.
6297  */
6298 struct perf_guest_info_callbacks *perf_guest_cbs;
6299
6300 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6301 {
6302         perf_guest_cbs = cbs;
6303         return 0;
6304 }
6305 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6306
6307 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6308 {
6309         perf_guest_cbs = NULL;
6310         return 0;
6311 }
6312 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6313
6314 static void
6315 perf_output_sample_regs(struct perf_output_handle *handle,
6316                         struct pt_regs *regs, u64 mask)
6317 {
6318         int bit;
6319         DECLARE_BITMAP(_mask, 64);
6320
6321         bitmap_from_u64(_mask, mask);
6322         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6323                 u64 val;
6324
6325                 val = perf_reg_value(regs, bit);
6326                 perf_output_put(handle, val);
6327         }
6328 }
6329
6330 static void perf_sample_regs_user(struct perf_regs *regs_user,
6331                                   struct pt_regs *regs,
6332                                   struct pt_regs *regs_user_copy)
6333 {
6334         if (user_mode(regs)) {
6335                 regs_user->abi = perf_reg_abi(current);
6336                 regs_user->regs = regs;
6337         } else if (!(current->flags & PF_KTHREAD)) {
6338                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6339         } else {
6340                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6341                 regs_user->regs = NULL;
6342         }
6343 }
6344
6345 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6346                                   struct pt_regs *regs)
6347 {
6348         regs_intr->regs = regs;
6349         regs_intr->abi  = perf_reg_abi(current);
6350 }
6351
6352
6353 /*
6354  * Get remaining task size from user stack pointer.
6355  *
6356  * It'd be better to take stack vma map and limit this more
6357  * precisely, but there's no way to get it safely under interrupt,
6358  * so using TASK_SIZE as limit.
6359  */
6360 static u64 perf_ustack_task_size(struct pt_regs *regs)
6361 {
6362         unsigned long addr = perf_user_stack_pointer(regs);
6363
6364         if (!addr || addr >= TASK_SIZE)
6365                 return 0;
6366
6367         return TASK_SIZE - addr;
6368 }
6369
6370 static u16
6371 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6372                         struct pt_regs *regs)
6373 {
6374         u64 task_size;
6375
6376         /* No regs, no stack pointer, no dump. */
6377         if (!regs)
6378                 return 0;
6379
6380         /*
6381          * Check if we fit in with the requested stack size into the:
6382          * - TASK_SIZE
6383          *   If we don't, we limit the size to the TASK_SIZE.
6384          *
6385          * - remaining sample size
6386          *   If we don't, we customize the stack size to
6387          *   fit in to the remaining sample size.
6388          */
6389
6390         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6391         stack_size = min(stack_size, (u16) task_size);
6392
6393         /* Current header size plus static size and dynamic size. */
6394         header_size += 2 * sizeof(u64);
6395
6396         /* Do we fit in with the current stack dump size? */
6397         if ((u16) (header_size + stack_size) < header_size) {
6398                 /*
6399                  * If we overflow the maximum size for the sample,
6400                  * we customize the stack dump size to fit in.
6401                  */
6402                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6403                 stack_size = round_up(stack_size, sizeof(u64));
6404         }
6405
6406         return stack_size;
6407 }
6408
6409 static void
6410 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6411                           struct pt_regs *regs)
6412 {
6413         /* Case of a kernel thread, nothing to dump */
6414         if (!regs) {
6415                 u64 size = 0;
6416                 perf_output_put(handle, size);
6417         } else {
6418                 unsigned long sp;
6419                 unsigned int rem;
6420                 u64 dyn_size;
6421                 mm_segment_t fs;
6422
6423                 /*
6424                  * We dump:
6425                  * static size
6426                  *   - the size requested by user or the best one we can fit
6427                  *     in to the sample max size
6428                  * data
6429                  *   - user stack dump data
6430                  * dynamic size
6431                  *   - the actual dumped size
6432                  */
6433
6434                 /* Static size. */
6435                 perf_output_put(handle, dump_size);
6436
6437                 /* Data. */
6438                 sp = perf_user_stack_pointer(regs);
6439                 fs = get_fs();
6440                 set_fs(USER_DS);
6441                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6442                 set_fs(fs);
6443                 dyn_size = dump_size - rem;
6444
6445                 perf_output_skip(handle, rem);
6446
6447                 /* Dynamic size. */
6448                 perf_output_put(handle, dyn_size);
6449         }
6450 }
6451
6452 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6453                                           struct perf_sample_data *data,
6454                                           size_t size)
6455 {
6456         struct perf_event *sampler = event->aux_event;
6457         struct perf_buffer *rb;
6458
6459         data->aux_size = 0;
6460
6461         if (!sampler)
6462                 goto out;
6463
6464         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6465                 goto out;
6466
6467         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6468                 goto out;
6469
6470         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6471         if (!rb)
6472                 goto out;
6473
6474         /*
6475          * If this is an NMI hit inside sampling code, don't take
6476          * the sample. See also perf_aux_sample_output().
6477          */
6478         if (READ_ONCE(rb->aux_in_sampling)) {
6479                 data->aux_size = 0;
6480         } else {
6481                 size = min_t(size_t, size, perf_aux_size(rb));
6482                 data->aux_size = ALIGN(size, sizeof(u64));
6483         }
6484         ring_buffer_put(rb);
6485
6486 out:
6487         return data->aux_size;
6488 }
6489
6490 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6491                            struct perf_event *event,
6492                            struct perf_output_handle *handle,
6493                            unsigned long size)
6494 {
6495         unsigned long flags;
6496         long ret;
6497
6498         /*
6499          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6500          * paths. If we start calling them in NMI context, they may race with
6501          * the IRQ ones, that is, for example, re-starting an event that's just
6502          * been stopped, which is why we're using a separate callback that
6503          * doesn't change the event state.
6504          *
6505          * IRQs need to be disabled to prevent IPIs from racing with us.
6506          */
6507         local_irq_save(flags);
6508         /*
6509          * Guard against NMI hits inside the critical section;
6510          * see also perf_prepare_sample_aux().
6511          */
6512         WRITE_ONCE(rb->aux_in_sampling, 1);
6513         barrier();
6514
6515         ret = event->pmu->snapshot_aux(event, handle, size);
6516
6517         barrier();
6518         WRITE_ONCE(rb->aux_in_sampling, 0);
6519         local_irq_restore(flags);
6520
6521         return ret;
6522 }
6523
6524 static void perf_aux_sample_output(struct perf_event *event,
6525                                    struct perf_output_handle *handle,
6526                                    struct perf_sample_data *data)
6527 {
6528         struct perf_event *sampler = event->aux_event;
6529         struct perf_buffer *rb;
6530         unsigned long pad;
6531         long size;
6532
6533         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6534                 return;
6535
6536         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6537         if (!rb)
6538                 return;
6539
6540         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6541
6542         /*
6543          * An error here means that perf_output_copy() failed (returned a
6544          * non-zero surplus that it didn't copy), which in its current
6545          * enlightened implementation is not possible. If that changes, we'd
6546          * like to know.
6547          */
6548         if (WARN_ON_ONCE(size < 0))
6549                 goto out_put;
6550
6551         /*
6552          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6553          * perf_prepare_sample_aux(), so should not be more than that.
6554          */
6555         pad = data->aux_size - size;
6556         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6557                 pad = 8;
6558
6559         if (pad) {
6560                 u64 zero = 0;
6561                 perf_output_copy(handle, &zero, pad);
6562         }
6563
6564 out_put:
6565         ring_buffer_put(rb);
6566 }
6567
6568 static void __perf_event_header__init_id(struct perf_event_header *header,
6569                                          struct perf_sample_data *data,
6570                                          struct perf_event *event)
6571 {
6572         u64 sample_type = event->attr.sample_type;
6573
6574         data->type = sample_type;
6575         header->size += event->id_header_size;
6576
6577         if (sample_type & PERF_SAMPLE_TID) {
6578                 /* namespace issues */
6579                 data->tid_entry.pid = perf_event_pid(event, current);
6580                 data->tid_entry.tid = perf_event_tid(event, current);
6581         }
6582
6583         if (sample_type & PERF_SAMPLE_TIME)
6584                 data->time = perf_event_clock(event);
6585
6586         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6587                 data->id = primary_event_id(event);
6588
6589         if (sample_type & PERF_SAMPLE_STREAM_ID)
6590                 data->stream_id = event->id;
6591
6592         if (sample_type & PERF_SAMPLE_CPU) {
6593                 data->cpu_entry.cpu      = raw_smp_processor_id();
6594                 data->cpu_entry.reserved = 0;
6595         }
6596 }
6597
6598 void perf_event_header__init_id(struct perf_event_header *header,
6599                                 struct perf_sample_data *data,
6600                                 struct perf_event *event)
6601 {
6602         if (event->attr.sample_id_all)
6603                 __perf_event_header__init_id(header, data, event);
6604 }
6605
6606 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6607                                            struct perf_sample_data *data)
6608 {
6609         u64 sample_type = data->type;
6610
6611         if (sample_type & PERF_SAMPLE_TID)
6612                 perf_output_put(handle, data->tid_entry);
6613
6614         if (sample_type & PERF_SAMPLE_TIME)
6615                 perf_output_put(handle, data->time);
6616
6617         if (sample_type & PERF_SAMPLE_ID)
6618                 perf_output_put(handle, data->id);
6619
6620         if (sample_type & PERF_SAMPLE_STREAM_ID)
6621                 perf_output_put(handle, data->stream_id);
6622
6623         if (sample_type & PERF_SAMPLE_CPU)
6624                 perf_output_put(handle, data->cpu_entry);
6625
6626         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6627                 perf_output_put(handle, data->id);
6628 }
6629
6630 void perf_event__output_id_sample(struct perf_event *event,
6631                                   struct perf_output_handle *handle,
6632                                   struct perf_sample_data *sample)
6633 {
6634         if (event->attr.sample_id_all)
6635                 __perf_event__output_id_sample(handle, sample);
6636 }
6637
6638 static void perf_output_read_one(struct perf_output_handle *handle,
6639                                  struct perf_event *event,
6640                                  u64 enabled, u64 running)
6641 {
6642         u64 read_format = event->attr.read_format;
6643         u64 values[4];
6644         int n = 0;
6645
6646         values[n++] = perf_event_count(event);
6647         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6648                 values[n++] = enabled +
6649                         atomic64_read(&event->child_total_time_enabled);
6650         }
6651         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6652                 values[n++] = running +
6653                         atomic64_read(&event->child_total_time_running);
6654         }
6655         if (read_format & PERF_FORMAT_ID)
6656                 values[n++] = primary_event_id(event);
6657
6658         __output_copy(handle, values, n * sizeof(u64));
6659 }
6660
6661 static void perf_output_read_group(struct perf_output_handle *handle,
6662                             struct perf_event *event,
6663                             u64 enabled, u64 running)
6664 {
6665         struct perf_event *leader = event->group_leader, *sub;
6666         u64 read_format = event->attr.read_format;
6667         u64 values[5];
6668         int n = 0;
6669
6670         values[n++] = 1 + leader->nr_siblings;
6671
6672         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6673                 values[n++] = enabled;
6674
6675         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6676                 values[n++] = running;
6677
6678         if ((leader != event) &&
6679             (leader->state == PERF_EVENT_STATE_ACTIVE))
6680                 leader->pmu->read(leader);
6681
6682         values[n++] = perf_event_count(leader);
6683         if (read_format & PERF_FORMAT_ID)
6684                 values[n++] = primary_event_id(leader);
6685
6686         __output_copy(handle, values, n * sizeof(u64));
6687
6688         for_each_sibling_event(sub, leader) {
6689                 n = 0;
6690
6691                 if ((sub != event) &&
6692                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6693                         sub->pmu->read(sub);
6694
6695                 values[n++] = perf_event_count(sub);
6696                 if (read_format & PERF_FORMAT_ID)
6697                         values[n++] = primary_event_id(sub);
6698
6699                 __output_copy(handle, values, n * sizeof(u64));
6700         }
6701 }
6702
6703 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6704                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6705
6706 /*
6707  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6708  *
6709  * The problem is that its both hard and excessively expensive to iterate the
6710  * child list, not to mention that its impossible to IPI the children running
6711  * on another CPU, from interrupt/NMI context.
6712  */
6713 static void perf_output_read(struct perf_output_handle *handle,
6714                              struct perf_event *event)
6715 {
6716         u64 enabled = 0, running = 0, now;
6717         u64 read_format = event->attr.read_format;
6718
6719         /*
6720          * compute total_time_enabled, total_time_running
6721          * based on snapshot values taken when the event
6722          * was last scheduled in.
6723          *
6724          * we cannot simply called update_context_time()
6725          * because of locking issue as we are called in
6726          * NMI context
6727          */
6728         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6729                 calc_timer_values(event, &now, &enabled, &running);
6730
6731         if (event->attr.read_format & PERF_FORMAT_GROUP)
6732                 perf_output_read_group(handle, event, enabled, running);
6733         else
6734                 perf_output_read_one(handle, event, enabled, running);
6735 }
6736
6737 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6738 {
6739         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6740 }
6741
6742 void perf_output_sample(struct perf_output_handle *handle,
6743                         struct perf_event_header *header,
6744                         struct perf_sample_data *data,
6745                         struct perf_event *event)
6746 {
6747         u64 sample_type = data->type;
6748
6749         perf_output_put(handle, *header);
6750
6751         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6752                 perf_output_put(handle, data->id);
6753
6754         if (sample_type & PERF_SAMPLE_IP)
6755                 perf_output_put(handle, data->ip);
6756
6757         if (sample_type & PERF_SAMPLE_TID)
6758                 perf_output_put(handle, data->tid_entry);
6759
6760         if (sample_type & PERF_SAMPLE_TIME)
6761                 perf_output_put(handle, data->time);
6762
6763         if (sample_type & PERF_SAMPLE_ADDR)
6764                 perf_output_put(handle, data->addr);
6765
6766         if (sample_type & PERF_SAMPLE_ID)
6767                 perf_output_put(handle, data->id);
6768
6769         if (sample_type & PERF_SAMPLE_STREAM_ID)
6770                 perf_output_put(handle, data->stream_id);
6771
6772         if (sample_type & PERF_SAMPLE_CPU)
6773                 perf_output_put(handle, data->cpu_entry);
6774
6775         if (sample_type & PERF_SAMPLE_PERIOD)
6776                 perf_output_put(handle, data->period);
6777
6778         if (sample_type & PERF_SAMPLE_READ)
6779                 perf_output_read(handle, event);
6780
6781         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6782                 int size = 1;
6783
6784                 size += data->callchain->nr;
6785                 size *= sizeof(u64);
6786                 __output_copy(handle, data->callchain, size);
6787         }
6788
6789         if (sample_type & PERF_SAMPLE_RAW) {
6790                 struct perf_raw_record *raw = data->raw;
6791
6792                 if (raw) {
6793                         struct perf_raw_frag *frag = &raw->frag;
6794
6795                         perf_output_put(handle, raw->size);
6796                         do {
6797                                 if (frag->copy) {
6798                                         __output_custom(handle, frag->copy,
6799                                                         frag->data, frag->size);
6800                                 } else {
6801                                         __output_copy(handle, frag->data,
6802                                                       frag->size);
6803                                 }
6804                                 if (perf_raw_frag_last(frag))
6805                                         break;
6806                                 frag = frag->next;
6807                         } while (1);
6808                         if (frag->pad)
6809                                 __output_skip(handle, NULL, frag->pad);
6810                 } else {
6811                         struct {
6812                                 u32     size;
6813                                 u32     data;
6814                         } raw = {
6815                                 .size = sizeof(u32),
6816                                 .data = 0,
6817                         };
6818                         perf_output_put(handle, raw);
6819                 }
6820         }
6821
6822         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6823                 if (data->br_stack) {
6824                         size_t size;
6825
6826                         size = data->br_stack->nr
6827                              * sizeof(struct perf_branch_entry);
6828
6829                         perf_output_put(handle, data->br_stack->nr);
6830                         if (perf_sample_save_hw_index(event))
6831                                 perf_output_put(handle, data->br_stack->hw_idx);
6832                         perf_output_copy(handle, data->br_stack->entries, size);
6833                 } else {
6834                         /*
6835                          * we always store at least the value of nr
6836                          */
6837                         u64 nr = 0;
6838                         perf_output_put(handle, nr);
6839                 }
6840         }
6841
6842         if (sample_type & PERF_SAMPLE_REGS_USER) {
6843                 u64 abi = data->regs_user.abi;
6844
6845                 /*
6846                  * If there are no regs to dump, notice it through
6847                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6848                  */
6849                 perf_output_put(handle, abi);
6850
6851                 if (abi) {
6852                         u64 mask = event->attr.sample_regs_user;
6853                         perf_output_sample_regs(handle,
6854                                                 data->regs_user.regs,
6855                                                 mask);
6856                 }
6857         }
6858
6859         if (sample_type & PERF_SAMPLE_STACK_USER) {
6860                 perf_output_sample_ustack(handle,
6861                                           data->stack_user_size,
6862                                           data->regs_user.regs);
6863         }
6864
6865         if (sample_type & PERF_SAMPLE_WEIGHT)
6866                 perf_output_put(handle, data->weight);
6867
6868         if (sample_type & PERF_SAMPLE_DATA_SRC)
6869                 perf_output_put(handle, data->data_src.val);
6870
6871         if (sample_type & PERF_SAMPLE_TRANSACTION)
6872                 perf_output_put(handle, data->txn);
6873
6874         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6875                 u64 abi = data->regs_intr.abi;
6876                 /*
6877                  * If there are no regs to dump, notice it through
6878                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6879                  */
6880                 perf_output_put(handle, abi);
6881
6882                 if (abi) {
6883                         u64 mask = event->attr.sample_regs_intr;
6884
6885                         perf_output_sample_regs(handle,
6886                                                 data->regs_intr.regs,
6887                                                 mask);
6888                 }
6889         }
6890
6891         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6892                 perf_output_put(handle, data->phys_addr);
6893
6894         if (sample_type & PERF_SAMPLE_CGROUP)
6895                 perf_output_put(handle, data->cgroup);
6896
6897         if (sample_type & PERF_SAMPLE_AUX) {
6898                 perf_output_put(handle, data->aux_size);
6899
6900                 if (data->aux_size)
6901                         perf_aux_sample_output(event, handle, data);
6902         }
6903
6904         if (!event->attr.watermark) {
6905                 int wakeup_events = event->attr.wakeup_events;
6906
6907                 if (wakeup_events) {
6908                         struct perf_buffer *rb = handle->rb;
6909                         int events = local_inc_return(&rb->events);
6910
6911                         if (events >= wakeup_events) {
6912                                 local_sub(wakeup_events, &rb->events);
6913                                 local_inc(&rb->wakeup);
6914                         }
6915                 }
6916         }
6917 }
6918
6919 static u64 perf_virt_to_phys(u64 virt)
6920 {
6921         u64 phys_addr = 0;
6922         struct page *p = NULL;
6923
6924         if (!virt)
6925                 return 0;
6926
6927         if (virt >= TASK_SIZE) {
6928                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6929                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6930                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6931                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6932         } else {
6933                 /*
6934                  * Walking the pages tables for user address.
6935                  * Interrupts are disabled, so it prevents any tear down
6936                  * of the page tables.
6937                  * Try IRQ-safe get_user_page_fast_only first.
6938                  * If failed, leave phys_addr as 0.
6939                  */
6940                 if (current->mm != NULL) {
6941                         pagefault_disable();
6942                         if (get_user_page_fast_only(virt, 0, &p))
6943                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6944                         pagefault_enable();
6945                 }
6946
6947                 if (p)
6948                         put_page(p);
6949         }
6950
6951         return phys_addr;
6952 }
6953
6954 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6955
6956 struct perf_callchain_entry *
6957 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6958 {
6959         bool kernel = !event->attr.exclude_callchain_kernel;
6960         bool user   = !event->attr.exclude_callchain_user;
6961         /* Disallow cross-task user callchains. */
6962         bool crosstask = event->ctx->task && event->ctx->task != current;
6963         const u32 max_stack = event->attr.sample_max_stack;
6964         struct perf_callchain_entry *callchain;
6965
6966         if (!kernel && !user)
6967                 return &__empty_callchain;
6968
6969         callchain = get_perf_callchain(regs, 0, kernel, user,
6970                                        max_stack, crosstask, true);
6971         return callchain ?: &__empty_callchain;
6972 }
6973
6974 void perf_prepare_sample(struct perf_event_header *header,
6975                          struct perf_sample_data *data,
6976                          struct perf_event *event,
6977                          struct pt_regs *regs)
6978 {
6979         u64 sample_type = event->attr.sample_type;
6980
6981         header->type = PERF_RECORD_SAMPLE;
6982         header->size = sizeof(*header) + event->header_size;
6983
6984         header->misc = 0;
6985         header->misc |= perf_misc_flags(regs);
6986
6987         __perf_event_header__init_id(header, data, event);
6988
6989         if (sample_type & PERF_SAMPLE_IP)
6990                 data->ip = perf_instruction_pointer(regs);
6991
6992         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6993                 int size = 1;
6994
6995                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6996                         data->callchain = perf_callchain(event, regs);
6997
6998                 size += data->callchain->nr;
6999
7000                 header->size += size * sizeof(u64);
7001         }
7002
7003         if (sample_type & PERF_SAMPLE_RAW) {
7004                 struct perf_raw_record *raw = data->raw;
7005                 int size;
7006
7007                 if (raw) {
7008                         struct perf_raw_frag *frag = &raw->frag;
7009                         u32 sum = 0;
7010
7011                         do {
7012                                 sum += frag->size;
7013                                 if (perf_raw_frag_last(frag))
7014                                         break;
7015                                 frag = frag->next;
7016                         } while (1);
7017
7018                         size = round_up(sum + sizeof(u32), sizeof(u64));
7019                         raw->size = size - sizeof(u32);
7020                         frag->pad = raw->size - sum;
7021                 } else {
7022                         size = sizeof(u64);
7023                 }
7024
7025                 header->size += size;
7026         }
7027
7028         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7029                 int size = sizeof(u64); /* nr */
7030                 if (data->br_stack) {
7031                         if (perf_sample_save_hw_index(event))
7032                                 size += sizeof(u64);
7033
7034                         size += data->br_stack->nr
7035                               * sizeof(struct perf_branch_entry);
7036                 }
7037                 header->size += size;
7038         }
7039
7040         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7041                 perf_sample_regs_user(&data->regs_user, regs,
7042                                       &data->regs_user_copy);
7043
7044         if (sample_type & PERF_SAMPLE_REGS_USER) {
7045                 /* regs dump ABI info */
7046                 int size = sizeof(u64);
7047
7048                 if (data->regs_user.regs) {
7049                         u64 mask = event->attr.sample_regs_user;
7050                         size += hweight64(mask) * sizeof(u64);
7051                 }
7052
7053                 header->size += size;
7054         }
7055
7056         if (sample_type & PERF_SAMPLE_STACK_USER) {
7057                 /*
7058                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7059                  * processed as the last one or have additional check added
7060                  * in case new sample type is added, because we could eat
7061                  * up the rest of the sample size.
7062                  */
7063                 u16 stack_size = event->attr.sample_stack_user;
7064                 u16 size = sizeof(u64);
7065
7066                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7067                                                      data->regs_user.regs);
7068
7069                 /*
7070                  * If there is something to dump, add space for the dump
7071                  * itself and for the field that tells the dynamic size,
7072                  * which is how many have been actually dumped.
7073                  */
7074                 if (stack_size)
7075                         size += sizeof(u64) + stack_size;
7076
7077                 data->stack_user_size = stack_size;
7078                 header->size += size;
7079         }
7080
7081         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7082                 /* regs dump ABI info */
7083                 int size = sizeof(u64);
7084
7085                 perf_sample_regs_intr(&data->regs_intr, regs);
7086
7087                 if (data->regs_intr.regs) {
7088                         u64 mask = event->attr.sample_regs_intr;
7089
7090                         size += hweight64(mask) * sizeof(u64);
7091                 }
7092
7093                 header->size += size;
7094         }
7095
7096         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7097                 data->phys_addr = perf_virt_to_phys(data->addr);
7098
7099 #ifdef CONFIG_CGROUP_PERF
7100         if (sample_type & PERF_SAMPLE_CGROUP) {
7101                 struct cgroup *cgrp;
7102
7103                 /* protected by RCU */
7104                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7105                 data->cgroup = cgroup_id(cgrp);
7106         }
7107 #endif
7108
7109         if (sample_type & PERF_SAMPLE_AUX) {
7110                 u64 size;
7111
7112                 header->size += sizeof(u64); /* size */
7113
7114                 /*
7115                  * Given the 16bit nature of header::size, an AUX sample can
7116                  * easily overflow it, what with all the preceding sample bits.
7117                  * Make sure this doesn't happen by using up to U16_MAX bytes
7118                  * per sample in total (rounded down to 8 byte boundary).
7119                  */
7120                 size = min_t(size_t, U16_MAX - header->size,
7121                              event->attr.aux_sample_size);
7122                 size = rounddown(size, 8);
7123                 size = perf_prepare_sample_aux(event, data, size);
7124
7125                 WARN_ON_ONCE(size + header->size > U16_MAX);
7126                 header->size += size;
7127         }
7128         /*
7129          * If you're adding more sample types here, you likely need to do
7130          * something about the overflowing header::size, like repurpose the
7131          * lowest 3 bits of size, which should be always zero at the moment.
7132          * This raises a more important question, do we really need 512k sized
7133          * samples and why, so good argumentation is in order for whatever you
7134          * do here next.
7135          */
7136         WARN_ON_ONCE(header->size & 7);
7137 }
7138
7139 static __always_inline int
7140 __perf_event_output(struct perf_event *event,
7141                     struct perf_sample_data *data,
7142                     struct pt_regs *regs,
7143                     int (*output_begin)(struct perf_output_handle *,
7144                                         struct perf_event *,
7145                                         unsigned int))
7146 {
7147         struct perf_output_handle handle;
7148         struct perf_event_header header;
7149         int err;
7150
7151         /* protect the callchain buffers */
7152         rcu_read_lock();
7153
7154         perf_prepare_sample(&header, data, event, regs);
7155
7156         err = output_begin(&handle, event, header.size);
7157         if (err)
7158                 goto exit;
7159
7160         perf_output_sample(&handle, &header, data, event);
7161
7162         perf_output_end(&handle);
7163
7164 exit:
7165         rcu_read_unlock();
7166         return err;
7167 }
7168
7169 void
7170 perf_event_output_forward(struct perf_event *event,
7171                          struct perf_sample_data *data,
7172                          struct pt_regs *regs)
7173 {
7174         __perf_event_output(event, data, regs, perf_output_begin_forward);
7175 }
7176
7177 void
7178 perf_event_output_backward(struct perf_event *event,
7179                            struct perf_sample_data *data,
7180                            struct pt_regs *regs)
7181 {
7182         __perf_event_output(event, data, regs, perf_output_begin_backward);
7183 }
7184
7185 int
7186 perf_event_output(struct perf_event *event,
7187                   struct perf_sample_data *data,
7188                   struct pt_regs *regs)
7189 {
7190         return __perf_event_output(event, data, regs, perf_output_begin);
7191 }
7192
7193 /*
7194  * read event_id
7195  */
7196
7197 struct perf_read_event {
7198         struct perf_event_header        header;
7199
7200         u32                             pid;
7201         u32                             tid;
7202 };
7203
7204 static void
7205 perf_event_read_event(struct perf_event *event,
7206                         struct task_struct *task)
7207 {
7208         struct perf_output_handle handle;
7209         struct perf_sample_data sample;
7210         struct perf_read_event read_event = {
7211                 .header = {
7212                         .type = PERF_RECORD_READ,
7213                         .misc = 0,
7214                         .size = sizeof(read_event) + event->read_size,
7215                 },
7216                 .pid = perf_event_pid(event, task),
7217                 .tid = perf_event_tid(event, task),
7218         };
7219         int ret;
7220
7221         perf_event_header__init_id(&read_event.header, &sample, event);
7222         ret = perf_output_begin(&handle, event, read_event.header.size);
7223         if (ret)
7224                 return;
7225
7226         perf_output_put(&handle, read_event);
7227         perf_output_read(&handle, event);
7228         perf_event__output_id_sample(event, &handle, &sample);
7229
7230         perf_output_end(&handle);
7231 }
7232
7233 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7234
7235 static void
7236 perf_iterate_ctx(struct perf_event_context *ctx,
7237                    perf_iterate_f output,
7238                    void *data, bool all)
7239 {
7240         struct perf_event *event;
7241
7242         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7243                 if (!all) {
7244                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7245                                 continue;
7246                         if (!event_filter_match(event))
7247                                 continue;
7248                 }
7249
7250                 output(event, data);
7251         }
7252 }
7253
7254 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7255 {
7256         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7257         struct perf_event *event;
7258
7259         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7260                 /*
7261                  * Skip events that are not fully formed yet; ensure that
7262                  * if we observe event->ctx, both event and ctx will be
7263                  * complete enough. See perf_install_in_context().
7264                  */
7265                 if (!smp_load_acquire(&event->ctx))
7266                         continue;
7267
7268                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7269                         continue;
7270                 if (!event_filter_match(event))
7271                         continue;
7272                 output(event, data);
7273         }
7274 }
7275
7276 /*
7277  * Iterate all events that need to receive side-band events.
7278  *
7279  * For new callers; ensure that account_pmu_sb_event() includes
7280  * your event, otherwise it might not get delivered.
7281  */
7282 static void
7283 perf_iterate_sb(perf_iterate_f output, void *data,
7284                struct perf_event_context *task_ctx)
7285 {
7286         struct perf_event_context *ctx;
7287         int ctxn;
7288
7289         rcu_read_lock();
7290         preempt_disable();
7291
7292         /*
7293          * If we have task_ctx != NULL we only notify the task context itself.
7294          * The task_ctx is set only for EXIT events before releasing task
7295          * context.
7296          */
7297         if (task_ctx) {
7298                 perf_iterate_ctx(task_ctx, output, data, false);
7299                 goto done;
7300         }
7301
7302         perf_iterate_sb_cpu(output, data);
7303
7304         for_each_task_context_nr(ctxn) {
7305                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7306                 if (ctx)
7307                         perf_iterate_ctx(ctx, output, data, false);
7308         }
7309 done:
7310         preempt_enable();
7311         rcu_read_unlock();
7312 }
7313
7314 /*
7315  * Clear all file-based filters at exec, they'll have to be
7316  * re-instated when/if these objects are mmapped again.
7317  */
7318 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7319 {
7320         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7321         struct perf_addr_filter *filter;
7322         unsigned int restart = 0, count = 0;
7323         unsigned long flags;
7324
7325         if (!has_addr_filter(event))
7326                 return;
7327
7328         raw_spin_lock_irqsave(&ifh->lock, flags);
7329         list_for_each_entry(filter, &ifh->list, entry) {
7330                 if (filter->path.dentry) {
7331                         event->addr_filter_ranges[count].start = 0;
7332                         event->addr_filter_ranges[count].size = 0;
7333                         restart++;
7334                 }
7335
7336                 count++;
7337         }
7338
7339         if (restart)
7340                 event->addr_filters_gen++;
7341         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7342
7343         if (restart)
7344                 perf_event_stop(event, 1);
7345 }
7346
7347 void perf_event_exec(void)
7348 {
7349         struct perf_event_context *ctx;
7350         int ctxn;
7351
7352         rcu_read_lock();
7353         for_each_task_context_nr(ctxn) {
7354                 ctx = current->perf_event_ctxp[ctxn];
7355                 if (!ctx)
7356                         continue;
7357
7358                 perf_event_enable_on_exec(ctxn);
7359
7360                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7361                                    true);
7362         }
7363         rcu_read_unlock();
7364 }
7365
7366 struct remote_output {
7367         struct perf_buffer      *rb;
7368         int                     err;
7369 };
7370
7371 static void __perf_event_output_stop(struct perf_event *event, void *data)
7372 {
7373         struct perf_event *parent = event->parent;
7374         struct remote_output *ro = data;
7375         struct perf_buffer *rb = ro->rb;
7376         struct stop_event_data sd = {
7377                 .event  = event,
7378         };
7379
7380         if (!has_aux(event))
7381                 return;
7382
7383         if (!parent)
7384                 parent = event;
7385
7386         /*
7387          * In case of inheritance, it will be the parent that links to the
7388          * ring-buffer, but it will be the child that's actually using it.
7389          *
7390          * We are using event::rb to determine if the event should be stopped,
7391          * however this may race with ring_buffer_attach() (through set_output),
7392          * which will make us skip the event that actually needs to be stopped.
7393          * So ring_buffer_attach() has to stop an aux event before re-assigning
7394          * its rb pointer.
7395          */
7396         if (rcu_dereference(parent->rb) == rb)
7397                 ro->err = __perf_event_stop(&sd);
7398 }
7399
7400 static int __perf_pmu_output_stop(void *info)
7401 {
7402         struct perf_event *event = info;
7403         struct pmu *pmu = event->ctx->pmu;
7404         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7405         struct remote_output ro = {
7406                 .rb     = event->rb,
7407         };
7408
7409         rcu_read_lock();
7410         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7411         if (cpuctx->task_ctx)
7412                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7413                                    &ro, false);
7414         rcu_read_unlock();
7415
7416         return ro.err;
7417 }
7418
7419 static void perf_pmu_output_stop(struct perf_event *event)
7420 {
7421         struct perf_event *iter;
7422         int err, cpu;
7423
7424 restart:
7425         rcu_read_lock();
7426         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7427                 /*
7428                  * For per-CPU events, we need to make sure that neither they
7429                  * nor their children are running; for cpu==-1 events it's
7430                  * sufficient to stop the event itself if it's active, since
7431                  * it can't have children.
7432                  */
7433                 cpu = iter->cpu;
7434                 if (cpu == -1)
7435                         cpu = READ_ONCE(iter->oncpu);
7436
7437                 if (cpu == -1)
7438                         continue;
7439
7440                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7441                 if (err == -EAGAIN) {
7442                         rcu_read_unlock();
7443                         goto restart;
7444                 }
7445         }
7446         rcu_read_unlock();
7447 }
7448
7449 /*
7450  * task tracking -- fork/exit
7451  *
7452  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7453  */
7454
7455 struct perf_task_event {
7456         struct task_struct              *task;
7457         struct perf_event_context       *task_ctx;
7458
7459         struct {
7460                 struct perf_event_header        header;
7461
7462                 u32                             pid;
7463                 u32                             ppid;
7464                 u32                             tid;
7465                 u32                             ptid;
7466                 u64                             time;
7467         } event_id;
7468 };
7469
7470 static int perf_event_task_match(struct perf_event *event)
7471 {
7472         return event->attr.comm  || event->attr.mmap ||
7473                event->attr.mmap2 || event->attr.mmap_data ||
7474                event->attr.task;
7475 }
7476
7477 static void perf_event_task_output(struct perf_event *event,
7478                                    void *data)
7479 {
7480         struct perf_task_event *task_event = data;
7481         struct perf_output_handle handle;
7482         struct perf_sample_data sample;
7483         struct task_struct *task = task_event->task;
7484         int ret, size = task_event->event_id.header.size;
7485
7486         if (!perf_event_task_match(event))
7487                 return;
7488
7489         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7490
7491         ret = perf_output_begin(&handle, event,
7492                                 task_event->event_id.header.size);
7493         if (ret)
7494                 goto out;
7495
7496         task_event->event_id.pid = perf_event_pid(event, task);
7497         task_event->event_id.tid = perf_event_tid(event, task);
7498
7499         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7500                 task_event->event_id.ppid = perf_event_pid(event,
7501                                                         task->real_parent);
7502                 task_event->event_id.ptid = perf_event_pid(event,
7503                                                         task->real_parent);
7504         } else {  /* PERF_RECORD_FORK */
7505                 task_event->event_id.ppid = perf_event_pid(event, current);
7506                 task_event->event_id.ptid = perf_event_tid(event, current);
7507         }
7508
7509         task_event->event_id.time = perf_event_clock(event);
7510
7511         perf_output_put(&handle, task_event->event_id);
7512
7513         perf_event__output_id_sample(event, &handle, &sample);
7514
7515         perf_output_end(&handle);
7516 out:
7517         task_event->event_id.header.size = size;
7518 }
7519
7520 static void perf_event_task(struct task_struct *task,
7521                               struct perf_event_context *task_ctx,
7522                               int new)
7523 {
7524         struct perf_task_event task_event;
7525
7526         if (!atomic_read(&nr_comm_events) &&
7527             !atomic_read(&nr_mmap_events) &&
7528             !atomic_read(&nr_task_events))
7529                 return;
7530
7531         task_event = (struct perf_task_event){
7532                 .task     = task,
7533                 .task_ctx = task_ctx,
7534                 .event_id    = {
7535                         .header = {
7536                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7537                                 .misc = 0,
7538                                 .size = sizeof(task_event.event_id),
7539                         },
7540                         /* .pid  */
7541                         /* .ppid */
7542                         /* .tid  */
7543                         /* .ptid */
7544                         /* .time */
7545                 },
7546         };
7547
7548         perf_iterate_sb(perf_event_task_output,
7549                        &task_event,
7550                        task_ctx);
7551 }
7552
7553 void perf_event_fork(struct task_struct *task)
7554 {
7555         perf_event_task(task, NULL, 1);
7556         perf_event_namespaces(task);
7557 }
7558
7559 /*
7560  * comm tracking
7561  */
7562
7563 struct perf_comm_event {
7564         struct task_struct      *task;
7565         char                    *comm;
7566         int                     comm_size;
7567
7568         struct {
7569                 struct perf_event_header        header;
7570
7571                 u32                             pid;
7572                 u32                             tid;
7573         } event_id;
7574 };
7575
7576 static int perf_event_comm_match(struct perf_event *event)
7577 {
7578         return event->attr.comm;
7579 }
7580
7581 static void perf_event_comm_output(struct perf_event *event,
7582                                    void *data)
7583 {
7584         struct perf_comm_event *comm_event = data;
7585         struct perf_output_handle handle;
7586         struct perf_sample_data sample;
7587         int size = comm_event->event_id.header.size;
7588         int ret;
7589
7590         if (!perf_event_comm_match(event))
7591                 return;
7592
7593         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7594         ret = perf_output_begin(&handle, event,
7595                                 comm_event->event_id.header.size);
7596
7597         if (ret)
7598                 goto out;
7599
7600         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7601         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7602
7603         perf_output_put(&handle, comm_event->event_id);
7604         __output_copy(&handle, comm_event->comm,
7605                                    comm_event->comm_size);
7606
7607         perf_event__output_id_sample(event, &handle, &sample);
7608
7609         perf_output_end(&handle);
7610 out:
7611         comm_event->event_id.header.size = size;
7612 }
7613
7614 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7615 {
7616         char comm[TASK_COMM_LEN];
7617         unsigned int size;
7618
7619         memset(comm, 0, sizeof(comm));
7620         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7621         size = ALIGN(strlen(comm)+1, sizeof(u64));
7622
7623         comm_event->comm = comm;
7624         comm_event->comm_size = size;
7625
7626         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7627
7628         perf_iterate_sb(perf_event_comm_output,
7629                        comm_event,
7630                        NULL);
7631 }
7632
7633 void perf_event_comm(struct task_struct *task, bool exec)
7634 {
7635         struct perf_comm_event comm_event;
7636
7637         if (!atomic_read(&nr_comm_events))
7638                 return;
7639
7640         comm_event = (struct perf_comm_event){
7641                 .task   = task,
7642                 /* .comm      */
7643                 /* .comm_size */
7644                 .event_id  = {
7645                         .header = {
7646                                 .type = PERF_RECORD_COMM,
7647                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7648                                 /* .size */
7649                         },
7650                         /* .pid */
7651                         /* .tid */
7652                 },
7653         };
7654
7655         perf_event_comm_event(&comm_event);
7656 }
7657
7658 /*
7659  * namespaces tracking
7660  */
7661
7662 struct perf_namespaces_event {
7663         struct task_struct              *task;
7664
7665         struct {
7666                 struct perf_event_header        header;
7667
7668                 u32                             pid;
7669                 u32                             tid;
7670                 u64                             nr_namespaces;
7671                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7672         } event_id;
7673 };
7674
7675 static int perf_event_namespaces_match(struct perf_event *event)
7676 {
7677         return event->attr.namespaces;
7678 }
7679
7680 static void perf_event_namespaces_output(struct perf_event *event,
7681                                          void *data)
7682 {
7683         struct perf_namespaces_event *namespaces_event = data;
7684         struct perf_output_handle handle;
7685         struct perf_sample_data sample;
7686         u16 header_size = namespaces_event->event_id.header.size;
7687         int ret;
7688
7689         if (!perf_event_namespaces_match(event))
7690                 return;
7691
7692         perf_event_header__init_id(&namespaces_event->event_id.header,
7693                                    &sample, event);
7694         ret = perf_output_begin(&handle, event,
7695                                 namespaces_event->event_id.header.size);
7696         if (ret)
7697                 goto out;
7698
7699         namespaces_event->event_id.pid = perf_event_pid(event,
7700                                                         namespaces_event->task);
7701         namespaces_event->event_id.tid = perf_event_tid(event,
7702                                                         namespaces_event->task);
7703
7704         perf_output_put(&handle, namespaces_event->event_id);
7705
7706         perf_event__output_id_sample(event, &handle, &sample);
7707
7708         perf_output_end(&handle);
7709 out:
7710         namespaces_event->event_id.header.size = header_size;
7711 }
7712
7713 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7714                                    struct task_struct *task,
7715                                    const struct proc_ns_operations *ns_ops)
7716 {
7717         struct path ns_path;
7718         struct inode *ns_inode;
7719         int error;
7720
7721         error = ns_get_path(&ns_path, task, ns_ops);
7722         if (!error) {
7723                 ns_inode = ns_path.dentry->d_inode;
7724                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7725                 ns_link_info->ino = ns_inode->i_ino;
7726                 path_put(&ns_path);
7727         }
7728 }
7729
7730 void perf_event_namespaces(struct task_struct *task)
7731 {
7732         struct perf_namespaces_event namespaces_event;
7733         struct perf_ns_link_info *ns_link_info;
7734
7735         if (!atomic_read(&nr_namespaces_events))
7736                 return;
7737
7738         namespaces_event = (struct perf_namespaces_event){
7739                 .task   = task,
7740                 .event_id  = {
7741                         .header = {
7742                                 .type = PERF_RECORD_NAMESPACES,
7743                                 .misc = 0,
7744                                 .size = sizeof(namespaces_event.event_id),
7745                         },
7746                         /* .pid */
7747                         /* .tid */
7748                         .nr_namespaces = NR_NAMESPACES,
7749                         /* .link_info[NR_NAMESPACES] */
7750                 },
7751         };
7752
7753         ns_link_info = namespaces_event.event_id.link_info;
7754
7755         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7756                                task, &mntns_operations);
7757
7758 #ifdef CONFIG_USER_NS
7759         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7760                                task, &userns_operations);
7761 #endif
7762 #ifdef CONFIG_NET_NS
7763         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7764                                task, &netns_operations);
7765 #endif
7766 #ifdef CONFIG_UTS_NS
7767         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7768                                task, &utsns_operations);
7769 #endif
7770 #ifdef CONFIG_IPC_NS
7771         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7772                                task, &ipcns_operations);
7773 #endif
7774 #ifdef CONFIG_PID_NS
7775         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7776                                task, &pidns_operations);
7777 #endif
7778 #ifdef CONFIG_CGROUPS
7779         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7780                                task, &cgroupns_operations);
7781 #endif
7782
7783         perf_iterate_sb(perf_event_namespaces_output,
7784                         &namespaces_event,
7785                         NULL);
7786 }
7787
7788 /*
7789  * cgroup tracking
7790  */
7791 #ifdef CONFIG_CGROUP_PERF
7792
7793 struct perf_cgroup_event {
7794         char                            *path;
7795         int                             path_size;
7796         struct {
7797                 struct perf_event_header        header;
7798                 u64                             id;
7799                 char                            path[];
7800         } event_id;
7801 };
7802
7803 static int perf_event_cgroup_match(struct perf_event *event)
7804 {
7805         return event->attr.cgroup;
7806 }
7807
7808 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7809 {
7810         struct perf_cgroup_event *cgroup_event = data;
7811         struct perf_output_handle handle;
7812         struct perf_sample_data sample;
7813         u16 header_size = cgroup_event->event_id.header.size;
7814         int ret;
7815
7816         if (!perf_event_cgroup_match(event))
7817                 return;
7818
7819         perf_event_header__init_id(&cgroup_event->event_id.header,
7820                                    &sample, event);
7821         ret = perf_output_begin(&handle, event,
7822                                 cgroup_event->event_id.header.size);
7823         if (ret)
7824                 goto out;
7825
7826         perf_output_put(&handle, cgroup_event->event_id);
7827         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7828
7829         perf_event__output_id_sample(event, &handle, &sample);
7830
7831         perf_output_end(&handle);
7832 out:
7833         cgroup_event->event_id.header.size = header_size;
7834 }
7835
7836 static void perf_event_cgroup(struct cgroup *cgrp)
7837 {
7838         struct perf_cgroup_event cgroup_event;
7839         char path_enomem[16] = "//enomem";
7840         char *pathname;
7841         size_t size;
7842
7843         if (!atomic_read(&nr_cgroup_events))
7844                 return;
7845
7846         cgroup_event = (struct perf_cgroup_event){
7847                 .event_id  = {
7848                         .header = {
7849                                 .type = PERF_RECORD_CGROUP,
7850                                 .misc = 0,
7851                                 .size = sizeof(cgroup_event.event_id),
7852                         },
7853                         .id = cgroup_id(cgrp),
7854                 },
7855         };
7856
7857         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7858         if (pathname == NULL) {
7859                 cgroup_event.path = path_enomem;
7860         } else {
7861                 /* just to be sure to have enough space for alignment */
7862                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7863                 cgroup_event.path = pathname;
7864         }
7865
7866         /*
7867          * Since our buffer works in 8 byte units we need to align our string
7868          * size to a multiple of 8. However, we must guarantee the tail end is
7869          * zero'd out to avoid leaking random bits to userspace.
7870          */
7871         size = strlen(cgroup_event.path) + 1;
7872         while (!IS_ALIGNED(size, sizeof(u64)))
7873                 cgroup_event.path[size++] = '\0';
7874
7875         cgroup_event.event_id.header.size += size;
7876         cgroup_event.path_size = size;
7877
7878         perf_iterate_sb(perf_event_cgroup_output,
7879                         &cgroup_event,
7880                         NULL);
7881
7882         kfree(pathname);
7883 }
7884
7885 #endif
7886
7887 /*
7888  * mmap tracking
7889  */
7890
7891 struct perf_mmap_event {
7892         struct vm_area_struct   *vma;
7893
7894         const char              *file_name;
7895         int                     file_size;
7896         int                     maj, min;
7897         u64                     ino;
7898         u64                     ino_generation;
7899         u32                     prot, flags;
7900
7901         struct {
7902                 struct perf_event_header        header;
7903
7904                 u32                             pid;
7905                 u32                             tid;
7906                 u64                             start;
7907                 u64                             len;
7908                 u64                             pgoff;
7909         } event_id;
7910 };
7911
7912 static int perf_event_mmap_match(struct perf_event *event,
7913                                  void *data)
7914 {
7915         struct perf_mmap_event *mmap_event = data;
7916         struct vm_area_struct *vma = mmap_event->vma;
7917         int executable = vma->vm_flags & VM_EXEC;
7918
7919         return (!executable && event->attr.mmap_data) ||
7920                (executable && (event->attr.mmap || event->attr.mmap2));
7921 }
7922
7923 static void perf_event_mmap_output(struct perf_event *event,
7924                                    void *data)
7925 {
7926         struct perf_mmap_event *mmap_event = data;
7927         struct perf_output_handle handle;
7928         struct perf_sample_data sample;
7929         int size = mmap_event->event_id.header.size;
7930         u32 type = mmap_event->event_id.header.type;
7931         int ret;
7932
7933         if (!perf_event_mmap_match(event, data))
7934                 return;
7935
7936         if (event->attr.mmap2) {
7937                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7938                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7939                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7940                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7941                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7942                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7943                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7944         }
7945
7946         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7947         ret = perf_output_begin(&handle, event,
7948                                 mmap_event->event_id.header.size);
7949         if (ret)
7950                 goto out;
7951
7952         mmap_event->event_id.pid = perf_event_pid(event, current);
7953         mmap_event->event_id.tid = perf_event_tid(event, current);
7954
7955         perf_output_put(&handle, mmap_event->event_id);
7956
7957         if (event->attr.mmap2) {
7958                 perf_output_put(&handle, mmap_event->maj);
7959                 perf_output_put(&handle, mmap_event->min);
7960                 perf_output_put(&handle, mmap_event->ino);
7961                 perf_output_put(&handle, mmap_event->ino_generation);
7962                 perf_output_put(&handle, mmap_event->prot);
7963                 perf_output_put(&handle, mmap_event->flags);
7964         }
7965
7966         __output_copy(&handle, mmap_event->file_name,
7967                                    mmap_event->file_size);
7968
7969         perf_event__output_id_sample(event, &handle, &sample);
7970
7971         perf_output_end(&handle);
7972 out:
7973         mmap_event->event_id.header.size = size;
7974         mmap_event->event_id.header.type = type;
7975 }
7976
7977 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7978 {
7979         struct vm_area_struct *vma = mmap_event->vma;
7980         struct file *file = vma->vm_file;
7981         int maj = 0, min = 0;
7982         u64 ino = 0, gen = 0;
7983         u32 prot = 0, flags = 0;
7984         unsigned int size;
7985         char tmp[16];
7986         char *buf = NULL;
7987         char *name;
7988
7989         if (vma->vm_flags & VM_READ)
7990                 prot |= PROT_READ;
7991         if (vma->vm_flags & VM_WRITE)
7992                 prot |= PROT_WRITE;
7993         if (vma->vm_flags & VM_EXEC)
7994                 prot |= PROT_EXEC;
7995
7996         if (vma->vm_flags & VM_MAYSHARE)
7997                 flags = MAP_SHARED;
7998         else
7999                 flags = MAP_PRIVATE;
8000
8001         if (vma->vm_flags & VM_DENYWRITE)
8002                 flags |= MAP_DENYWRITE;
8003         if (vma->vm_flags & VM_MAYEXEC)
8004                 flags |= MAP_EXECUTABLE;
8005         if (vma->vm_flags & VM_LOCKED)
8006                 flags |= MAP_LOCKED;
8007         if (is_vm_hugetlb_page(vma))
8008                 flags |= MAP_HUGETLB;
8009
8010         if (file) {
8011                 struct inode *inode;
8012                 dev_t dev;
8013
8014                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8015                 if (!buf) {
8016                         name = "//enomem";
8017                         goto cpy_name;
8018                 }
8019                 /*
8020                  * d_path() works from the end of the rb backwards, so we
8021                  * need to add enough zero bytes after the string to handle
8022                  * the 64bit alignment we do later.
8023                  */
8024                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8025                 if (IS_ERR(name)) {
8026                         name = "//toolong";
8027                         goto cpy_name;
8028                 }
8029                 inode = file_inode(vma->vm_file);
8030                 dev = inode->i_sb->s_dev;
8031                 ino = inode->i_ino;
8032                 gen = inode->i_generation;
8033                 maj = MAJOR(dev);
8034                 min = MINOR(dev);
8035
8036                 goto got_name;
8037         } else {
8038                 if (vma->vm_ops && vma->vm_ops->name) {
8039                         name = (char *) vma->vm_ops->name(vma);
8040                         if (name)
8041                                 goto cpy_name;
8042                 }
8043
8044                 name = (char *)arch_vma_name(vma);
8045                 if (name)
8046                         goto cpy_name;
8047
8048                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8049                                 vma->vm_end >= vma->vm_mm->brk) {
8050                         name = "[heap]";
8051                         goto cpy_name;
8052                 }
8053                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8054                                 vma->vm_end >= vma->vm_mm->start_stack) {
8055                         name = "[stack]";
8056                         goto cpy_name;
8057                 }
8058
8059                 name = "//anon";
8060                 goto cpy_name;
8061         }
8062
8063 cpy_name:
8064         strlcpy(tmp, name, sizeof(tmp));
8065         name = tmp;
8066 got_name:
8067         /*
8068          * Since our buffer works in 8 byte units we need to align our string
8069          * size to a multiple of 8. However, we must guarantee the tail end is
8070          * zero'd out to avoid leaking random bits to userspace.
8071          */
8072         size = strlen(name)+1;
8073         while (!IS_ALIGNED(size, sizeof(u64)))
8074                 name[size++] = '\0';
8075
8076         mmap_event->file_name = name;
8077         mmap_event->file_size = size;
8078         mmap_event->maj = maj;
8079         mmap_event->min = min;
8080         mmap_event->ino = ino;
8081         mmap_event->ino_generation = gen;
8082         mmap_event->prot = prot;
8083         mmap_event->flags = flags;
8084
8085         if (!(vma->vm_flags & VM_EXEC))
8086                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8087
8088         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8089
8090         perf_iterate_sb(perf_event_mmap_output,
8091                        mmap_event,
8092                        NULL);
8093
8094         kfree(buf);
8095 }
8096
8097 /*
8098  * Check whether inode and address range match filter criteria.
8099  */
8100 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8101                                      struct file *file, unsigned long offset,
8102                                      unsigned long size)
8103 {
8104         /* d_inode(NULL) won't be equal to any mapped user-space file */
8105         if (!filter->path.dentry)
8106                 return false;
8107
8108         if (d_inode(filter->path.dentry) != file_inode(file))
8109                 return false;
8110
8111         if (filter->offset > offset + size)
8112                 return false;
8113
8114         if (filter->offset + filter->size < offset)
8115                 return false;
8116
8117         return true;
8118 }
8119
8120 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8121                                         struct vm_area_struct *vma,
8122                                         struct perf_addr_filter_range *fr)
8123 {
8124         unsigned long vma_size = vma->vm_end - vma->vm_start;
8125         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8126         struct file *file = vma->vm_file;
8127
8128         if (!perf_addr_filter_match(filter, file, off, vma_size))
8129                 return false;
8130
8131         if (filter->offset < off) {
8132                 fr->start = vma->vm_start;
8133                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8134         } else {
8135                 fr->start = vma->vm_start + filter->offset - off;
8136                 fr->size = min(vma->vm_end - fr->start, filter->size);
8137         }
8138
8139         return true;
8140 }
8141
8142 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8143 {
8144         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8145         struct vm_area_struct *vma = data;
8146         struct perf_addr_filter *filter;
8147         unsigned int restart = 0, count = 0;
8148         unsigned long flags;
8149
8150         if (!has_addr_filter(event))
8151                 return;
8152
8153         if (!vma->vm_file)
8154                 return;
8155
8156         raw_spin_lock_irqsave(&ifh->lock, flags);
8157         list_for_each_entry(filter, &ifh->list, entry) {
8158                 if (perf_addr_filter_vma_adjust(filter, vma,
8159                                                 &event->addr_filter_ranges[count]))
8160                         restart++;
8161
8162                 count++;
8163         }
8164
8165         if (restart)
8166                 event->addr_filters_gen++;
8167         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8168
8169         if (restart)
8170                 perf_event_stop(event, 1);
8171 }
8172
8173 /*
8174  * Adjust all task's events' filters to the new vma
8175  */
8176 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8177 {
8178         struct perf_event_context *ctx;
8179         int ctxn;
8180
8181         /*
8182          * Data tracing isn't supported yet and as such there is no need
8183          * to keep track of anything that isn't related to executable code:
8184          */
8185         if (!(vma->vm_flags & VM_EXEC))
8186                 return;
8187
8188         rcu_read_lock();
8189         for_each_task_context_nr(ctxn) {
8190                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8191                 if (!ctx)
8192                         continue;
8193
8194                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8195         }
8196         rcu_read_unlock();
8197 }
8198
8199 void perf_event_mmap(struct vm_area_struct *vma)
8200 {
8201         struct perf_mmap_event mmap_event;
8202
8203         if (!atomic_read(&nr_mmap_events))
8204                 return;
8205
8206         mmap_event = (struct perf_mmap_event){
8207                 .vma    = vma,
8208                 /* .file_name */
8209                 /* .file_size */
8210                 .event_id  = {
8211                         .header = {
8212                                 .type = PERF_RECORD_MMAP,
8213                                 .misc = PERF_RECORD_MISC_USER,
8214                                 /* .size */
8215                         },
8216                         /* .pid */
8217                         /* .tid */
8218                         .start  = vma->vm_start,
8219                         .len    = vma->vm_end - vma->vm_start,
8220                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8221                 },
8222                 /* .maj (attr_mmap2 only) */
8223                 /* .min (attr_mmap2 only) */
8224                 /* .ino (attr_mmap2 only) */
8225                 /* .ino_generation (attr_mmap2 only) */
8226                 /* .prot (attr_mmap2 only) */
8227                 /* .flags (attr_mmap2 only) */
8228         };
8229
8230         perf_addr_filters_adjust(vma);
8231         perf_event_mmap_event(&mmap_event);
8232 }
8233
8234 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8235                           unsigned long size, u64 flags)
8236 {
8237         struct perf_output_handle handle;
8238         struct perf_sample_data sample;
8239         struct perf_aux_event {
8240                 struct perf_event_header        header;
8241                 u64                             offset;
8242                 u64                             size;
8243                 u64                             flags;
8244         } rec = {
8245                 .header = {
8246                         .type = PERF_RECORD_AUX,
8247                         .misc = 0,
8248                         .size = sizeof(rec),
8249                 },
8250                 .offset         = head,
8251                 .size           = size,
8252                 .flags          = flags,
8253         };
8254         int ret;
8255
8256         perf_event_header__init_id(&rec.header, &sample, event);
8257         ret = perf_output_begin(&handle, event, rec.header.size);
8258
8259         if (ret)
8260                 return;
8261
8262         perf_output_put(&handle, rec);
8263         perf_event__output_id_sample(event, &handle, &sample);
8264
8265         perf_output_end(&handle);
8266 }
8267
8268 /*
8269  * Lost/dropped samples logging
8270  */
8271 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8272 {
8273         struct perf_output_handle handle;
8274         struct perf_sample_data sample;
8275         int ret;
8276
8277         struct {
8278                 struct perf_event_header        header;
8279                 u64                             lost;
8280         } lost_samples_event = {
8281                 .header = {
8282                         .type = PERF_RECORD_LOST_SAMPLES,
8283                         .misc = 0,
8284                         .size = sizeof(lost_samples_event),
8285                 },
8286                 .lost           = lost,
8287         };
8288
8289         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8290
8291         ret = perf_output_begin(&handle, event,
8292                                 lost_samples_event.header.size);
8293         if (ret)
8294                 return;
8295
8296         perf_output_put(&handle, lost_samples_event);
8297         perf_event__output_id_sample(event, &handle, &sample);
8298         perf_output_end(&handle);
8299 }
8300
8301 /*
8302  * context_switch tracking
8303  */
8304
8305 struct perf_switch_event {
8306         struct task_struct      *task;
8307         struct task_struct      *next_prev;
8308
8309         struct {
8310                 struct perf_event_header        header;
8311                 u32                             next_prev_pid;
8312                 u32                             next_prev_tid;
8313         } event_id;
8314 };
8315
8316 static int perf_event_switch_match(struct perf_event *event)
8317 {
8318         return event->attr.context_switch;
8319 }
8320
8321 static void perf_event_switch_output(struct perf_event *event, void *data)
8322 {
8323         struct perf_switch_event *se = data;
8324         struct perf_output_handle handle;
8325         struct perf_sample_data sample;
8326         int ret;
8327
8328         if (!perf_event_switch_match(event))
8329                 return;
8330
8331         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8332         if (event->ctx->task) {
8333                 se->event_id.header.type = PERF_RECORD_SWITCH;
8334                 se->event_id.header.size = sizeof(se->event_id.header);
8335         } else {
8336                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8337                 se->event_id.header.size = sizeof(se->event_id);
8338                 se->event_id.next_prev_pid =
8339                                         perf_event_pid(event, se->next_prev);
8340                 se->event_id.next_prev_tid =
8341                                         perf_event_tid(event, se->next_prev);
8342         }
8343
8344         perf_event_header__init_id(&se->event_id.header, &sample, event);
8345
8346         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8347         if (ret)
8348                 return;
8349
8350         if (event->ctx->task)
8351                 perf_output_put(&handle, se->event_id.header);
8352         else
8353                 perf_output_put(&handle, se->event_id);
8354
8355         perf_event__output_id_sample(event, &handle, &sample);
8356
8357         perf_output_end(&handle);
8358 }
8359
8360 static void perf_event_switch(struct task_struct *task,
8361                               struct task_struct *next_prev, bool sched_in)
8362 {
8363         struct perf_switch_event switch_event;
8364
8365         /* N.B. caller checks nr_switch_events != 0 */
8366
8367         switch_event = (struct perf_switch_event){
8368                 .task           = task,
8369                 .next_prev      = next_prev,
8370                 .event_id       = {
8371                         .header = {
8372                                 /* .type */
8373                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8374                                 /* .size */
8375                         },
8376                         /* .next_prev_pid */
8377                         /* .next_prev_tid */
8378                 },
8379         };
8380
8381         if (!sched_in && task->state == TASK_RUNNING)
8382                 switch_event.event_id.header.misc |=
8383                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8384
8385         perf_iterate_sb(perf_event_switch_output,
8386                        &switch_event,
8387                        NULL);
8388 }
8389
8390 /*
8391  * IRQ throttle logging
8392  */
8393
8394 static void perf_log_throttle(struct perf_event *event, int enable)
8395 {
8396         struct perf_output_handle handle;
8397         struct perf_sample_data sample;
8398         int ret;
8399
8400         struct {
8401                 struct perf_event_header        header;
8402                 u64                             time;
8403                 u64                             id;
8404                 u64                             stream_id;
8405         } throttle_event = {
8406                 .header = {
8407                         .type = PERF_RECORD_THROTTLE,
8408                         .misc = 0,
8409                         .size = sizeof(throttle_event),
8410                 },
8411                 .time           = perf_event_clock(event),
8412                 .id             = primary_event_id(event),
8413                 .stream_id      = event->id,
8414         };
8415
8416         if (enable)
8417                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8418
8419         perf_event_header__init_id(&throttle_event.header, &sample, event);
8420
8421         ret = perf_output_begin(&handle, event,
8422                                 throttle_event.header.size);
8423         if (ret)
8424                 return;
8425
8426         perf_output_put(&handle, throttle_event);
8427         perf_event__output_id_sample(event, &handle, &sample);
8428         perf_output_end(&handle);
8429 }
8430
8431 /*
8432  * ksymbol register/unregister tracking
8433  */
8434
8435 struct perf_ksymbol_event {
8436         const char      *name;
8437         int             name_len;
8438         struct {
8439                 struct perf_event_header        header;
8440                 u64                             addr;
8441                 u32                             len;
8442                 u16                             ksym_type;
8443                 u16                             flags;
8444         } event_id;
8445 };
8446
8447 static int perf_event_ksymbol_match(struct perf_event *event)
8448 {
8449         return event->attr.ksymbol;
8450 }
8451
8452 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8453 {
8454         struct perf_ksymbol_event *ksymbol_event = data;
8455         struct perf_output_handle handle;
8456         struct perf_sample_data sample;
8457         int ret;
8458
8459         if (!perf_event_ksymbol_match(event))
8460                 return;
8461
8462         perf_event_header__init_id(&ksymbol_event->event_id.header,
8463                                    &sample, event);
8464         ret = perf_output_begin(&handle, event,
8465                                 ksymbol_event->event_id.header.size);
8466         if (ret)
8467                 return;
8468
8469         perf_output_put(&handle, ksymbol_event->event_id);
8470         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8471         perf_event__output_id_sample(event, &handle, &sample);
8472
8473         perf_output_end(&handle);
8474 }
8475
8476 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8477                         const char *sym)
8478 {
8479         struct perf_ksymbol_event ksymbol_event;
8480         char name[KSYM_NAME_LEN];
8481         u16 flags = 0;
8482         int name_len;
8483
8484         if (!atomic_read(&nr_ksymbol_events))
8485                 return;
8486
8487         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8488             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8489                 goto err;
8490
8491         strlcpy(name, sym, KSYM_NAME_LEN);
8492         name_len = strlen(name) + 1;
8493         while (!IS_ALIGNED(name_len, sizeof(u64)))
8494                 name[name_len++] = '\0';
8495         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8496
8497         if (unregister)
8498                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8499
8500         ksymbol_event = (struct perf_ksymbol_event){
8501                 .name = name,
8502                 .name_len = name_len,
8503                 .event_id = {
8504                         .header = {
8505                                 .type = PERF_RECORD_KSYMBOL,
8506                                 .size = sizeof(ksymbol_event.event_id) +
8507                                         name_len,
8508                         },
8509                         .addr = addr,
8510                         .len = len,
8511                         .ksym_type = ksym_type,
8512                         .flags = flags,
8513                 },
8514         };
8515
8516         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8517         return;
8518 err:
8519         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8520 }
8521
8522 /*
8523  * bpf program load/unload tracking
8524  */
8525
8526 struct perf_bpf_event {
8527         struct bpf_prog *prog;
8528         struct {
8529                 struct perf_event_header        header;
8530                 u16                             type;
8531                 u16                             flags;
8532                 u32                             id;
8533                 u8                              tag[BPF_TAG_SIZE];
8534         } event_id;
8535 };
8536
8537 static int perf_event_bpf_match(struct perf_event *event)
8538 {
8539         return event->attr.bpf_event;
8540 }
8541
8542 static void perf_event_bpf_output(struct perf_event *event, void *data)
8543 {
8544         struct perf_bpf_event *bpf_event = data;
8545         struct perf_output_handle handle;
8546         struct perf_sample_data sample;
8547         int ret;
8548
8549         if (!perf_event_bpf_match(event))
8550                 return;
8551
8552         perf_event_header__init_id(&bpf_event->event_id.header,
8553                                    &sample, event);
8554         ret = perf_output_begin(&handle, event,
8555                                 bpf_event->event_id.header.size);
8556         if (ret)
8557                 return;
8558
8559         perf_output_put(&handle, bpf_event->event_id);
8560         perf_event__output_id_sample(event, &handle, &sample);
8561
8562         perf_output_end(&handle);
8563 }
8564
8565 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8566                                          enum perf_bpf_event_type type)
8567 {
8568         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8569         int i;
8570
8571         if (prog->aux->func_cnt == 0) {
8572                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8573                                    (u64)(unsigned long)prog->bpf_func,
8574                                    prog->jited_len, unregister,
8575                                    prog->aux->ksym.name);
8576         } else {
8577                 for (i = 0; i < prog->aux->func_cnt; i++) {
8578                         struct bpf_prog *subprog = prog->aux->func[i];
8579
8580                         perf_event_ksymbol(
8581                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8582                                 (u64)(unsigned long)subprog->bpf_func,
8583                                 subprog->jited_len, unregister,
8584                                 prog->aux->ksym.name);
8585                 }
8586         }
8587 }
8588
8589 void perf_event_bpf_event(struct bpf_prog *prog,
8590                           enum perf_bpf_event_type type,
8591                           u16 flags)
8592 {
8593         struct perf_bpf_event bpf_event;
8594
8595         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8596             type >= PERF_BPF_EVENT_MAX)
8597                 return;
8598
8599         switch (type) {
8600         case PERF_BPF_EVENT_PROG_LOAD:
8601         case PERF_BPF_EVENT_PROG_UNLOAD:
8602                 if (atomic_read(&nr_ksymbol_events))
8603                         perf_event_bpf_emit_ksymbols(prog, type);
8604                 break;
8605         default:
8606                 break;
8607         }
8608
8609         if (!atomic_read(&nr_bpf_events))
8610                 return;
8611
8612         bpf_event = (struct perf_bpf_event){
8613                 .prog = prog,
8614                 .event_id = {
8615                         .header = {
8616                                 .type = PERF_RECORD_BPF_EVENT,
8617                                 .size = sizeof(bpf_event.event_id),
8618                         },
8619                         .type = type,
8620                         .flags = flags,
8621                         .id = prog->aux->id,
8622                 },
8623         };
8624
8625         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8626
8627         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8628         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8629 }
8630
8631 void perf_event_itrace_started(struct perf_event *event)
8632 {
8633         event->attach_state |= PERF_ATTACH_ITRACE;
8634 }
8635
8636 static void perf_log_itrace_start(struct perf_event *event)
8637 {
8638         struct perf_output_handle handle;
8639         struct perf_sample_data sample;
8640         struct perf_aux_event {
8641                 struct perf_event_header        header;
8642                 u32                             pid;
8643                 u32                             tid;
8644         } rec;
8645         int ret;
8646
8647         if (event->parent)
8648                 event = event->parent;
8649
8650         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8651             event->attach_state & PERF_ATTACH_ITRACE)
8652                 return;
8653
8654         rec.header.type = PERF_RECORD_ITRACE_START;
8655         rec.header.misc = 0;
8656         rec.header.size = sizeof(rec);
8657         rec.pid = perf_event_pid(event, current);
8658         rec.tid = perf_event_tid(event, current);
8659
8660         perf_event_header__init_id(&rec.header, &sample, event);
8661         ret = perf_output_begin(&handle, event, rec.header.size);
8662
8663         if (ret)
8664                 return;
8665
8666         perf_output_put(&handle, rec);
8667         perf_event__output_id_sample(event, &handle, &sample);
8668
8669         perf_output_end(&handle);
8670 }
8671
8672 static int
8673 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8674 {
8675         struct hw_perf_event *hwc = &event->hw;
8676         int ret = 0;
8677         u64 seq;
8678
8679         seq = __this_cpu_read(perf_throttled_seq);
8680         if (seq != hwc->interrupts_seq) {
8681                 hwc->interrupts_seq = seq;
8682                 hwc->interrupts = 1;
8683         } else {
8684                 hwc->interrupts++;
8685                 if (unlikely(throttle
8686                              && hwc->interrupts >= max_samples_per_tick)) {
8687                         __this_cpu_inc(perf_throttled_count);
8688                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8689                         hwc->interrupts = MAX_INTERRUPTS;
8690                         perf_log_throttle(event, 0);
8691                         ret = 1;
8692                 }
8693         }
8694
8695         if (event->attr.freq) {
8696                 u64 now = perf_clock();
8697                 s64 delta = now - hwc->freq_time_stamp;
8698
8699                 hwc->freq_time_stamp = now;
8700
8701                 if (delta > 0 && delta < 2*TICK_NSEC)
8702                         perf_adjust_period(event, delta, hwc->last_period, true);
8703         }
8704
8705         return ret;
8706 }
8707
8708 int perf_event_account_interrupt(struct perf_event *event)
8709 {
8710         return __perf_event_account_interrupt(event, 1);
8711 }
8712
8713 /*
8714  * Generic event overflow handling, sampling.
8715  */
8716
8717 static int __perf_event_overflow(struct perf_event *event,
8718                                    int throttle, struct perf_sample_data *data,
8719                                    struct pt_regs *regs)
8720 {
8721         int events = atomic_read(&event->event_limit);
8722         int ret = 0;
8723
8724         /*
8725          * Non-sampling counters might still use the PMI to fold short
8726          * hardware counters, ignore those.
8727          */
8728         if (unlikely(!is_sampling_event(event)))
8729                 return 0;
8730
8731         ret = __perf_event_account_interrupt(event, throttle);
8732
8733         /*
8734          * XXX event_limit might not quite work as expected on inherited
8735          * events
8736          */
8737
8738         event->pending_kill = POLL_IN;
8739         if (events && atomic_dec_and_test(&event->event_limit)) {
8740                 ret = 1;
8741                 event->pending_kill = POLL_HUP;
8742
8743                 perf_event_disable_inatomic(event);
8744         }
8745
8746         READ_ONCE(event->overflow_handler)(event, data, regs);
8747
8748         if (*perf_event_fasync(event) && event->pending_kill) {
8749                 event->pending_wakeup = 1;
8750                 irq_work_queue(&event->pending);
8751         }
8752
8753         return ret;
8754 }
8755
8756 int perf_event_overflow(struct perf_event *event,
8757                           struct perf_sample_data *data,
8758                           struct pt_regs *regs)
8759 {
8760         return __perf_event_overflow(event, 1, data, regs);
8761 }
8762
8763 /*
8764  * Generic software event infrastructure
8765  */
8766
8767 struct swevent_htable {
8768         struct swevent_hlist            *swevent_hlist;
8769         struct mutex                    hlist_mutex;
8770         int                             hlist_refcount;
8771
8772         /* Recursion avoidance in each contexts */
8773         int                             recursion[PERF_NR_CONTEXTS];
8774 };
8775
8776 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8777
8778 /*
8779  * We directly increment event->count and keep a second value in
8780  * event->hw.period_left to count intervals. This period event
8781  * is kept in the range [-sample_period, 0] so that we can use the
8782  * sign as trigger.
8783  */
8784
8785 u64 perf_swevent_set_period(struct perf_event *event)
8786 {
8787         struct hw_perf_event *hwc = &event->hw;
8788         u64 period = hwc->last_period;
8789         u64 nr, offset;
8790         s64 old, val;
8791
8792         hwc->last_period = hwc->sample_period;
8793
8794 again:
8795         old = val = local64_read(&hwc->period_left);
8796         if (val < 0)
8797                 return 0;
8798
8799         nr = div64_u64(period + val, period);
8800         offset = nr * period;
8801         val -= offset;
8802         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8803                 goto again;
8804
8805         return nr;
8806 }
8807
8808 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8809                                     struct perf_sample_data *data,
8810                                     struct pt_regs *regs)
8811 {
8812         struct hw_perf_event *hwc = &event->hw;
8813         int throttle = 0;
8814
8815         if (!overflow)
8816                 overflow = perf_swevent_set_period(event);
8817
8818         if (hwc->interrupts == MAX_INTERRUPTS)
8819                 return;
8820
8821         for (; overflow; overflow--) {
8822                 if (__perf_event_overflow(event, throttle,
8823                                             data, regs)) {
8824                         /*
8825                          * We inhibit the overflow from happening when
8826                          * hwc->interrupts == MAX_INTERRUPTS.
8827                          */
8828                         break;
8829                 }
8830                 throttle = 1;
8831         }
8832 }
8833
8834 static void perf_swevent_event(struct perf_event *event, u64 nr,
8835                                struct perf_sample_data *data,
8836                                struct pt_regs *regs)
8837 {
8838         struct hw_perf_event *hwc = &event->hw;
8839
8840         local64_add(nr, &event->count);
8841
8842         if (!regs)
8843                 return;
8844
8845         if (!is_sampling_event(event))
8846                 return;
8847
8848         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8849                 data->period = nr;
8850                 return perf_swevent_overflow(event, 1, data, regs);
8851         } else
8852                 data->period = event->hw.last_period;
8853
8854         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8855                 return perf_swevent_overflow(event, 1, data, regs);
8856
8857         if (local64_add_negative(nr, &hwc->period_left))
8858                 return;
8859
8860         perf_swevent_overflow(event, 0, data, regs);
8861 }
8862
8863 static int perf_exclude_event(struct perf_event *event,
8864                               struct pt_regs *regs)
8865 {
8866         if (event->hw.state & PERF_HES_STOPPED)
8867                 return 1;
8868
8869         if (regs) {
8870                 if (event->attr.exclude_user && user_mode(regs))
8871                         return 1;
8872
8873                 if (event->attr.exclude_kernel && !user_mode(regs))
8874                         return 1;
8875         }
8876
8877         return 0;
8878 }
8879
8880 static int perf_swevent_match(struct perf_event *event,
8881                                 enum perf_type_id type,
8882                                 u32 event_id,
8883                                 struct perf_sample_data *data,
8884                                 struct pt_regs *regs)
8885 {
8886         if (event->attr.type != type)
8887                 return 0;
8888
8889         if (event->attr.config != event_id)
8890                 return 0;
8891
8892         if (perf_exclude_event(event, regs))
8893                 return 0;
8894
8895         return 1;
8896 }
8897
8898 static inline u64 swevent_hash(u64 type, u32 event_id)
8899 {
8900         u64 val = event_id | (type << 32);
8901
8902         return hash_64(val, SWEVENT_HLIST_BITS);
8903 }
8904
8905 static inline struct hlist_head *
8906 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8907 {
8908         u64 hash = swevent_hash(type, event_id);
8909
8910         return &hlist->heads[hash];
8911 }
8912
8913 /* For the read side: events when they trigger */
8914 static inline struct hlist_head *
8915 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8916 {
8917         struct swevent_hlist *hlist;
8918
8919         hlist = rcu_dereference(swhash->swevent_hlist);
8920         if (!hlist)
8921                 return NULL;
8922
8923         return __find_swevent_head(hlist, type, event_id);
8924 }
8925
8926 /* For the event head insertion and removal in the hlist */
8927 static inline struct hlist_head *
8928 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8929 {
8930         struct swevent_hlist *hlist;
8931         u32 event_id = event->attr.config;
8932         u64 type = event->attr.type;
8933
8934         /*
8935          * Event scheduling is always serialized against hlist allocation
8936          * and release. Which makes the protected version suitable here.
8937          * The context lock guarantees that.
8938          */
8939         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8940                                           lockdep_is_held(&event->ctx->lock));
8941         if (!hlist)
8942                 return NULL;
8943
8944         return __find_swevent_head(hlist, type, event_id);
8945 }
8946
8947 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8948                                     u64 nr,
8949                                     struct perf_sample_data *data,
8950                                     struct pt_regs *regs)
8951 {
8952         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8953         struct perf_event *event;
8954         struct hlist_head *head;
8955
8956         rcu_read_lock();
8957         head = find_swevent_head_rcu(swhash, type, event_id);
8958         if (!head)
8959                 goto end;
8960
8961         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8962                 if (perf_swevent_match(event, type, event_id, data, regs))
8963                         perf_swevent_event(event, nr, data, regs);
8964         }
8965 end:
8966         rcu_read_unlock();
8967 }
8968
8969 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8970
8971 int perf_swevent_get_recursion_context(void)
8972 {
8973         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8974
8975         return get_recursion_context(swhash->recursion);
8976 }
8977 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8978
8979 void perf_swevent_put_recursion_context(int rctx)
8980 {
8981         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8982
8983         put_recursion_context(swhash->recursion, rctx);
8984 }
8985
8986 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8987 {
8988         struct perf_sample_data data;
8989
8990         if (WARN_ON_ONCE(!regs))
8991                 return;
8992
8993         perf_sample_data_init(&data, addr, 0);
8994         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8995 }
8996
8997 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8998 {
8999         int rctx;
9000
9001         preempt_disable_notrace();
9002         rctx = perf_swevent_get_recursion_context();
9003         if (unlikely(rctx < 0))
9004                 goto fail;
9005
9006         ___perf_sw_event(event_id, nr, regs, addr);
9007
9008         perf_swevent_put_recursion_context(rctx);
9009 fail:
9010         preempt_enable_notrace();
9011 }
9012
9013 static void perf_swevent_read(struct perf_event *event)
9014 {
9015 }
9016
9017 static int perf_swevent_add(struct perf_event *event, int flags)
9018 {
9019         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9020         struct hw_perf_event *hwc = &event->hw;
9021         struct hlist_head *head;
9022
9023         if (is_sampling_event(event)) {
9024                 hwc->last_period = hwc->sample_period;
9025                 perf_swevent_set_period(event);
9026         }
9027
9028         hwc->state = !(flags & PERF_EF_START);
9029
9030         head = find_swevent_head(swhash, event);
9031         if (WARN_ON_ONCE(!head))
9032                 return -EINVAL;
9033
9034         hlist_add_head_rcu(&event->hlist_entry, head);
9035         perf_event_update_userpage(event);
9036
9037         return 0;
9038 }
9039
9040 static void perf_swevent_del(struct perf_event *event, int flags)
9041 {
9042         hlist_del_rcu(&event->hlist_entry);
9043 }
9044
9045 static void perf_swevent_start(struct perf_event *event, int flags)
9046 {
9047         event->hw.state = 0;
9048 }
9049
9050 static void perf_swevent_stop(struct perf_event *event, int flags)
9051 {
9052         event->hw.state = PERF_HES_STOPPED;
9053 }
9054
9055 /* Deref the hlist from the update side */
9056 static inline struct swevent_hlist *
9057 swevent_hlist_deref(struct swevent_htable *swhash)
9058 {
9059         return rcu_dereference_protected(swhash->swevent_hlist,
9060                                          lockdep_is_held(&swhash->hlist_mutex));
9061 }
9062
9063 static void swevent_hlist_release(struct swevent_htable *swhash)
9064 {
9065         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9066
9067         if (!hlist)
9068                 return;
9069
9070         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9071         kfree_rcu(hlist, rcu_head);
9072 }
9073
9074 static void swevent_hlist_put_cpu(int cpu)
9075 {
9076         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9077
9078         mutex_lock(&swhash->hlist_mutex);
9079
9080         if (!--swhash->hlist_refcount)
9081                 swevent_hlist_release(swhash);
9082
9083         mutex_unlock(&swhash->hlist_mutex);
9084 }
9085
9086 static void swevent_hlist_put(void)
9087 {
9088         int cpu;
9089
9090         for_each_possible_cpu(cpu)
9091                 swevent_hlist_put_cpu(cpu);
9092 }
9093
9094 static int swevent_hlist_get_cpu(int cpu)
9095 {
9096         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9097         int err = 0;
9098
9099         mutex_lock(&swhash->hlist_mutex);
9100         if (!swevent_hlist_deref(swhash) &&
9101             cpumask_test_cpu(cpu, perf_online_mask)) {
9102                 struct swevent_hlist *hlist;
9103
9104                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9105                 if (!hlist) {
9106                         err = -ENOMEM;
9107                         goto exit;
9108                 }
9109                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9110         }
9111         swhash->hlist_refcount++;
9112 exit:
9113         mutex_unlock(&swhash->hlist_mutex);
9114
9115         return err;
9116 }
9117
9118 static int swevent_hlist_get(void)
9119 {
9120         int err, cpu, failed_cpu;
9121
9122         mutex_lock(&pmus_lock);
9123         for_each_possible_cpu(cpu) {
9124                 err = swevent_hlist_get_cpu(cpu);
9125                 if (err) {
9126                         failed_cpu = cpu;
9127                         goto fail;
9128                 }
9129         }
9130         mutex_unlock(&pmus_lock);
9131         return 0;
9132 fail:
9133         for_each_possible_cpu(cpu) {
9134                 if (cpu == failed_cpu)
9135                         break;
9136                 swevent_hlist_put_cpu(cpu);
9137         }
9138         mutex_unlock(&pmus_lock);
9139         return err;
9140 }
9141
9142 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9143
9144 static void sw_perf_event_destroy(struct perf_event *event)
9145 {
9146         u64 event_id = event->attr.config;
9147
9148         WARN_ON(event->parent);
9149
9150         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9151         swevent_hlist_put();
9152 }
9153
9154 static int perf_swevent_init(struct perf_event *event)
9155 {
9156         u64 event_id = event->attr.config;
9157
9158         if (event->attr.type != PERF_TYPE_SOFTWARE)
9159                 return -ENOENT;
9160
9161         /*
9162          * no branch sampling for software events
9163          */
9164         if (has_branch_stack(event))
9165                 return -EOPNOTSUPP;
9166
9167         switch (event_id) {
9168         case PERF_COUNT_SW_CPU_CLOCK:
9169         case PERF_COUNT_SW_TASK_CLOCK:
9170                 return -ENOENT;
9171
9172         default:
9173                 break;
9174         }
9175
9176         if (event_id >= PERF_COUNT_SW_MAX)
9177                 return -ENOENT;
9178
9179         if (!event->parent) {
9180                 int err;
9181
9182                 err = swevent_hlist_get();
9183                 if (err)
9184                         return err;
9185
9186                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9187                 event->destroy = sw_perf_event_destroy;
9188         }
9189
9190         return 0;
9191 }
9192
9193 static struct pmu perf_swevent = {
9194         .task_ctx_nr    = perf_sw_context,
9195
9196         .capabilities   = PERF_PMU_CAP_NO_NMI,
9197
9198         .event_init     = perf_swevent_init,
9199         .add            = perf_swevent_add,
9200         .del            = perf_swevent_del,
9201         .start          = perf_swevent_start,
9202         .stop           = perf_swevent_stop,
9203         .read           = perf_swevent_read,
9204 };
9205
9206 #ifdef CONFIG_EVENT_TRACING
9207
9208 static int perf_tp_filter_match(struct perf_event *event,
9209                                 struct perf_sample_data *data)
9210 {
9211         void *record = data->raw->frag.data;
9212
9213         /* only top level events have filters set */
9214         if (event->parent)
9215                 event = event->parent;
9216
9217         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9218                 return 1;
9219         return 0;
9220 }
9221
9222 static int perf_tp_event_match(struct perf_event *event,
9223                                 struct perf_sample_data *data,
9224                                 struct pt_regs *regs)
9225 {
9226         if (event->hw.state & PERF_HES_STOPPED)
9227                 return 0;
9228         /*
9229          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9230          */
9231         if (event->attr.exclude_kernel && !user_mode(regs))
9232                 return 0;
9233
9234         if (!perf_tp_filter_match(event, data))
9235                 return 0;
9236
9237         return 1;
9238 }
9239
9240 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9241                                struct trace_event_call *call, u64 count,
9242                                struct pt_regs *regs, struct hlist_head *head,
9243                                struct task_struct *task)
9244 {
9245         if (bpf_prog_array_valid(call)) {
9246                 *(struct pt_regs **)raw_data = regs;
9247                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9248                         perf_swevent_put_recursion_context(rctx);
9249                         return;
9250                 }
9251         }
9252         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9253                       rctx, task);
9254 }
9255 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9256
9257 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9258                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9259                    struct task_struct *task)
9260 {
9261         struct perf_sample_data data;
9262         struct perf_event *event;
9263
9264         struct perf_raw_record raw = {
9265                 .frag = {
9266                         .size = entry_size,
9267                         .data = record,
9268                 },
9269         };
9270
9271         perf_sample_data_init(&data, 0, 0);
9272         data.raw = &raw;
9273
9274         perf_trace_buf_update(record, event_type);
9275
9276         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9277                 if (perf_tp_event_match(event, &data, regs))
9278                         perf_swevent_event(event, count, &data, regs);
9279         }
9280
9281         /*
9282          * If we got specified a target task, also iterate its context and
9283          * deliver this event there too.
9284          */
9285         if (task && task != current) {
9286                 struct perf_event_context *ctx;
9287                 struct trace_entry *entry = record;
9288
9289                 rcu_read_lock();
9290                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9291                 if (!ctx)
9292                         goto unlock;
9293
9294                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9295                         if (event->cpu != smp_processor_id())
9296                                 continue;
9297                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9298                                 continue;
9299                         if (event->attr.config != entry->type)
9300                                 continue;
9301                         if (perf_tp_event_match(event, &data, regs))
9302                                 perf_swevent_event(event, count, &data, regs);
9303                 }
9304 unlock:
9305                 rcu_read_unlock();
9306         }
9307
9308         perf_swevent_put_recursion_context(rctx);
9309 }
9310 EXPORT_SYMBOL_GPL(perf_tp_event);
9311
9312 static void tp_perf_event_destroy(struct perf_event *event)
9313 {
9314         perf_trace_destroy(event);
9315 }
9316
9317 static int perf_tp_event_init(struct perf_event *event)
9318 {
9319         int err;
9320
9321         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9322                 return -ENOENT;
9323
9324         /*
9325          * no branch sampling for tracepoint events
9326          */
9327         if (has_branch_stack(event))
9328                 return -EOPNOTSUPP;
9329
9330         err = perf_trace_init(event);
9331         if (err)
9332                 return err;
9333
9334         event->destroy = tp_perf_event_destroy;
9335
9336         return 0;
9337 }
9338
9339 static struct pmu perf_tracepoint = {
9340         .task_ctx_nr    = perf_sw_context,
9341
9342         .event_init     = perf_tp_event_init,
9343         .add            = perf_trace_add,
9344         .del            = perf_trace_del,
9345         .start          = perf_swevent_start,
9346         .stop           = perf_swevent_stop,
9347         .read           = perf_swevent_read,
9348 };
9349
9350 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9351 /*
9352  * Flags in config, used by dynamic PMU kprobe and uprobe
9353  * The flags should match following PMU_FORMAT_ATTR().
9354  *
9355  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9356  *                               if not set, create kprobe/uprobe
9357  *
9358  * The following values specify a reference counter (or semaphore in the
9359  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9360  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9361  *
9362  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9363  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9364  */
9365 enum perf_probe_config {
9366         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9367         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9368         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9369 };
9370
9371 PMU_FORMAT_ATTR(retprobe, "config:0");
9372 #endif
9373
9374 #ifdef CONFIG_KPROBE_EVENTS
9375 static struct attribute *kprobe_attrs[] = {
9376         &format_attr_retprobe.attr,
9377         NULL,
9378 };
9379
9380 static struct attribute_group kprobe_format_group = {
9381         .name = "format",
9382         .attrs = kprobe_attrs,
9383 };
9384
9385 static const struct attribute_group *kprobe_attr_groups[] = {
9386         &kprobe_format_group,
9387         NULL,
9388 };
9389
9390 static int perf_kprobe_event_init(struct perf_event *event);
9391 static struct pmu perf_kprobe = {
9392         .task_ctx_nr    = perf_sw_context,
9393         .event_init     = perf_kprobe_event_init,
9394         .add            = perf_trace_add,
9395         .del            = perf_trace_del,
9396         .start          = perf_swevent_start,
9397         .stop           = perf_swevent_stop,
9398         .read           = perf_swevent_read,
9399         .attr_groups    = kprobe_attr_groups,
9400 };
9401
9402 static int perf_kprobe_event_init(struct perf_event *event)
9403 {
9404         int err;
9405         bool is_retprobe;
9406
9407         if (event->attr.type != perf_kprobe.type)
9408                 return -ENOENT;
9409
9410         if (!perfmon_capable())
9411                 return -EACCES;
9412
9413         /*
9414          * no branch sampling for probe events
9415          */
9416         if (has_branch_stack(event))
9417                 return -EOPNOTSUPP;
9418
9419         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9420         err = perf_kprobe_init(event, is_retprobe);
9421         if (err)
9422                 return err;
9423
9424         event->destroy = perf_kprobe_destroy;
9425
9426         return 0;
9427 }
9428 #endif /* CONFIG_KPROBE_EVENTS */
9429
9430 #ifdef CONFIG_UPROBE_EVENTS
9431 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9432
9433 static struct attribute *uprobe_attrs[] = {
9434         &format_attr_retprobe.attr,
9435         &format_attr_ref_ctr_offset.attr,
9436         NULL,
9437 };
9438
9439 static struct attribute_group uprobe_format_group = {
9440         .name = "format",
9441         .attrs = uprobe_attrs,
9442 };
9443
9444 static const struct attribute_group *uprobe_attr_groups[] = {
9445         &uprobe_format_group,
9446         NULL,
9447 };
9448
9449 static int perf_uprobe_event_init(struct perf_event *event);
9450 static struct pmu perf_uprobe = {
9451         .task_ctx_nr    = perf_sw_context,
9452         .event_init     = perf_uprobe_event_init,
9453         .add            = perf_trace_add,
9454         .del            = perf_trace_del,
9455         .start          = perf_swevent_start,
9456         .stop           = perf_swevent_stop,
9457         .read           = perf_swevent_read,
9458         .attr_groups    = uprobe_attr_groups,
9459 };
9460
9461 static int perf_uprobe_event_init(struct perf_event *event)
9462 {
9463         int err;
9464         unsigned long ref_ctr_offset;
9465         bool is_retprobe;
9466
9467         if (event->attr.type != perf_uprobe.type)
9468                 return -ENOENT;
9469
9470         if (!perfmon_capable())
9471                 return -EACCES;
9472
9473         /*
9474          * no branch sampling for probe events
9475          */
9476         if (has_branch_stack(event))
9477                 return -EOPNOTSUPP;
9478
9479         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9480         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9481         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9482         if (err)
9483                 return err;
9484
9485         event->destroy = perf_uprobe_destroy;
9486
9487         return 0;
9488 }
9489 #endif /* CONFIG_UPROBE_EVENTS */
9490
9491 static inline void perf_tp_register(void)
9492 {
9493         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9494 #ifdef CONFIG_KPROBE_EVENTS
9495         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9496 #endif
9497 #ifdef CONFIG_UPROBE_EVENTS
9498         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9499 #endif
9500 }
9501
9502 static void perf_event_free_filter(struct perf_event *event)
9503 {
9504         ftrace_profile_free_filter(event);
9505 }
9506
9507 #ifdef CONFIG_BPF_SYSCALL
9508 static void bpf_overflow_handler(struct perf_event *event,
9509                                  struct perf_sample_data *data,
9510                                  struct pt_regs *regs)
9511 {
9512         struct bpf_perf_event_data_kern ctx = {
9513                 .data = data,
9514                 .event = event,
9515         };
9516         int ret = 0;
9517
9518         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9519         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9520                 goto out;
9521         rcu_read_lock();
9522         ret = BPF_PROG_RUN(event->prog, &ctx);
9523         rcu_read_unlock();
9524 out:
9525         __this_cpu_dec(bpf_prog_active);
9526         if (!ret)
9527                 return;
9528
9529         event->orig_overflow_handler(event, data, regs);
9530 }
9531
9532 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9533 {
9534         struct bpf_prog *prog;
9535
9536         if (event->overflow_handler_context)
9537                 /* hw breakpoint or kernel counter */
9538                 return -EINVAL;
9539
9540         if (event->prog)
9541                 return -EEXIST;
9542
9543         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9544         if (IS_ERR(prog))
9545                 return PTR_ERR(prog);
9546
9547         event->prog = prog;
9548         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9549         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9550         return 0;
9551 }
9552
9553 static void perf_event_free_bpf_handler(struct perf_event *event)
9554 {
9555         struct bpf_prog *prog = event->prog;
9556
9557         if (!prog)
9558                 return;
9559
9560         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9561         event->prog = NULL;
9562         bpf_prog_put(prog);
9563 }
9564 #else
9565 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9566 {
9567         return -EOPNOTSUPP;
9568 }
9569 static void perf_event_free_bpf_handler(struct perf_event *event)
9570 {
9571 }
9572 #endif
9573
9574 /*
9575  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9576  * with perf_event_open()
9577  */
9578 static inline bool perf_event_is_tracing(struct perf_event *event)
9579 {
9580         if (event->pmu == &perf_tracepoint)
9581                 return true;
9582 #ifdef CONFIG_KPROBE_EVENTS
9583         if (event->pmu == &perf_kprobe)
9584                 return true;
9585 #endif
9586 #ifdef CONFIG_UPROBE_EVENTS
9587         if (event->pmu == &perf_uprobe)
9588                 return true;
9589 #endif
9590         return false;
9591 }
9592
9593 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9594 {
9595         bool is_kprobe, is_tracepoint, is_syscall_tp;
9596         struct bpf_prog *prog;
9597         int ret;
9598
9599         if (!perf_event_is_tracing(event))
9600                 return perf_event_set_bpf_handler(event, prog_fd);
9601
9602         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9603         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9604         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9605         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9606                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9607                 return -EINVAL;
9608
9609         prog = bpf_prog_get(prog_fd);
9610         if (IS_ERR(prog))
9611                 return PTR_ERR(prog);
9612
9613         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9614             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9615             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9616                 /* valid fd, but invalid bpf program type */
9617                 bpf_prog_put(prog);
9618                 return -EINVAL;
9619         }
9620
9621         /* Kprobe override only works for kprobes, not uprobes. */
9622         if (prog->kprobe_override &&
9623             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9624                 bpf_prog_put(prog);
9625                 return -EINVAL;
9626         }
9627
9628         if (is_tracepoint || is_syscall_tp) {
9629                 int off = trace_event_get_offsets(event->tp_event);
9630
9631                 if (prog->aux->max_ctx_offset > off) {
9632                         bpf_prog_put(prog);
9633                         return -EACCES;
9634                 }
9635         }
9636
9637         ret = perf_event_attach_bpf_prog(event, prog);
9638         if (ret)
9639                 bpf_prog_put(prog);
9640         return ret;
9641 }
9642
9643 static void perf_event_free_bpf_prog(struct perf_event *event)
9644 {
9645         if (!perf_event_is_tracing(event)) {
9646                 perf_event_free_bpf_handler(event);
9647                 return;
9648         }
9649         perf_event_detach_bpf_prog(event);
9650 }
9651
9652 #else
9653
9654 static inline void perf_tp_register(void)
9655 {
9656 }
9657
9658 static void perf_event_free_filter(struct perf_event *event)
9659 {
9660 }
9661
9662 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9663 {
9664         return -ENOENT;
9665 }
9666
9667 static void perf_event_free_bpf_prog(struct perf_event *event)
9668 {
9669 }
9670 #endif /* CONFIG_EVENT_TRACING */
9671
9672 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9673 void perf_bp_event(struct perf_event *bp, void *data)
9674 {
9675         struct perf_sample_data sample;
9676         struct pt_regs *regs = data;
9677
9678         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9679
9680         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9681                 perf_swevent_event(bp, 1, &sample, regs);
9682 }
9683 #endif
9684
9685 /*
9686  * Allocate a new address filter
9687  */
9688 static struct perf_addr_filter *
9689 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9690 {
9691         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9692         struct perf_addr_filter *filter;
9693
9694         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9695         if (!filter)
9696                 return NULL;
9697
9698         INIT_LIST_HEAD(&filter->entry);
9699         list_add_tail(&filter->entry, filters);
9700
9701         return filter;
9702 }
9703
9704 static void free_filters_list(struct list_head *filters)
9705 {
9706         struct perf_addr_filter *filter, *iter;
9707
9708         list_for_each_entry_safe(filter, iter, filters, entry) {
9709                 path_put(&filter->path);
9710                 list_del(&filter->entry);
9711                 kfree(filter);
9712         }
9713 }
9714
9715 /*
9716  * Free existing address filters and optionally install new ones
9717  */
9718 static void perf_addr_filters_splice(struct perf_event *event,
9719                                      struct list_head *head)
9720 {
9721         unsigned long flags;
9722         LIST_HEAD(list);
9723
9724         if (!has_addr_filter(event))
9725                 return;
9726
9727         /* don't bother with children, they don't have their own filters */
9728         if (event->parent)
9729                 return;
9730
9731         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9732
9733         list_splice_init(&event->addr_filters.list, &list);
9734         if (head)
9735                 list_splice(head, &event->addr_filters.list);
9736
9737         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9738
9739         free_filters_list(&list);
9740 }
9741
9742 /*
9743  * Scan through mm's vmas and see if one of them matches the
9744  * @filter; if so, adjust filter's address range.
9745  * Called with mm::mmap_lock down for reading.
9746  */
9747 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9748                                    struct mm_struct *mm,
9749                                    struct perf_addr_filter_range *fr)
9750 {
9751         struct vm_area_struct *vma;
9752
9753         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9754                 if (!vma->vm_file)
9755                         continue;
9756
9757                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9758                         return;
9759         }
9760 }
9761
9762 /*
9763  * Update event's address range filters based on the
9764  * task's existing mappings, if any.
9765  */
9766 static void perf_event_addr_filters_apply(struct perf_event *event)
9767 {
9768         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9769         struct task_struct *task = READ_ONCE(event->ctx->task);
9770         struct perf_addr_filter *filter;
9771         struct mm_struct *mm = NULL;
9772         unsigned int count = 0;
9773         unsigned long flags;
9774
9775         /*
9776          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9777          * will stop on the parent's child_mutex that our caller is also holding
9778          */
9779         if (task == TASK_TOMBSTONE)
9780                 return;
9781
9782         if (ifh->nr_file_filters) {
9783                 mm = get_task_mm(event->ctx->task);
9784                 if (!mm)
9785                         goto restart;
9786
9787                 mmap_read_lock(mm);
9788         }
9789
9790         raw_spin_lock_irqsave(&ifh->lock, flags);
9791         list_for_each_entry(filter, &ifh->list, entry) {
9792                 if (filter->path.dentry) {
9793                         /*
9794                          * Adjust base offset if the filter is associated to a
9795                          * binary that needs to be mapped:
9796                          */
9797                         event->addr_filter_ranges[count].start = 0;
9798                         event->addr_filter_ranges[count].size = 0;
9799
9800                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9801                 } else {
9802                         event->addr_filter_ranges[count].start = filter->offset;
9803                         event->addr_filter_ranges[count].size  = filter->size;
9804                 }
9805
9806                 count++;
9807         }
9808
9809         event->addr_filters_gen++;
9810         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9811
9812         if (ifh->nr_file_filters) {
9813                 mmap_read_unlock(mm);
9814
9815                 mmput(mm);
9816         }
9817
9818 restart:
9819         perf_event_stop(event, 1);
9820 }
9821
9822 /*
9823  * Address range filtering: limiting the data to certain
9824  * instruction address ranges. Filters are ioctl()ed to us from
9825  * userspace as ascii strings.
9826  *
9827  * Filter string format:
9828  *
9829  * ACTION RANGE_SPEC
9830  * where ACTION is one of the
9831  *  * "filter": limit the trace to this region
9832  *  * "start": start tracing from this address
9833  *  * "stop": stop tracing at this address/region;
9834  * RANGE_SPEC is
9835  *  * for kernel addresses: <start address>[/<size>]
9836  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9837  *
9838  * if <size> is not specified or is zero, the range is treated as a single
9839  * address; not valid for ACTION=="filter".
9840  */
9841 enum {
9842         IF_ACT_NONE = -1,
9843         IF_ACT_FILTER,
9844         IF_ACT_START,
9845         IF_ACT_STOP,
9846         IF_SRC_FILE,
9847         IF_SRC_KERNEL,
9848         IF_SRC_FILEADDR,
9849         IF_SRC_KERNELADDR,
9850 };
9851
9852 enum {
9853         IF_STATE_ACTION = 0,
9854         IF_STATE_SOURCE,
9855         IF_STATE_END,
9856 };
9857
9858 static const match_table_t if_tokens = {
9859         { IF_ACT_FILTER,        "filter" },
9860         { IF_ACT_START,         "start" },
9861         { IF_ACT_STOP,          "stop" },
9862         { IF_SRC_FILE,          "%u/%u@%s" },
9863         { IF_SRC_KERNEL,        "%u/%u" },
9864         { IF_SRC_FILEADDR,      "%u@%s" },
9865         { IF_SRC_KERNELADDR,    "%u" },
9866         { IF_ACT_NONE,          NULL },
9867 };
9868
9869 /*
9870  * Address filter string parser
9871  */
9872 static int
9873 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9874                              struct list_head *filters)
9875 {
9876         struct perf_addr_filter *filter = NULL;
9877         char *start, *orig, *filename = NULL;
9878         substring_t args[MAX_OPT_ARGS];
9879         int state = IF_STATE_ACTION, token;
9880         unsigned int kernel = 0;
9881         int ret = -EINVAL;
9882
9883         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9884         if (!fstr)
9885                 return -ENOMEM;
9886
9887         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9888                 static const enum perf_addr_filter_action_t actions[] = {
9889                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9890                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9891                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9892                 };
9893                 ret = -EINVAL;
9894
9895                 if (!*start)
9896                         continue;
9897
9898                 /* filter definition begins */
9899                 if (state == IF_STATE_ACTION) {
9900                         filter = perf_addr_filter_new(event, filters);
9901                         if (!filter)
9902                                 goto fail;
9903                 }
9904
9905                 token = match_token(start, if_tokens, args);
9906                 switch (token) {
9907                 case IF_ACT_FILTER:
9908                 case IF_ACT_START:
9909                 case IF_ACT_STOP:
9910                         if (state != IF_STATE_ACTION)
9911                                 goto fail;
9912
9913                         filter->action = actions[token];
9914                         state = IF_STATE_SOURCE;
9915                         break;
9916
9917                 case IF_SRC_KERNELADDR:
9918                 case IF_SRC_KERNEL:
9919                         kernel = 1;
9920                         /* fall through */
9921
9922                 case IF_SRC_FILEADDR:
9923                 case IF_SRC_FILE:
9924                         if (state != IF_STATE_SOURCE)
9925                                 goto fail;
9926
9927                         *args[0].to = 0;
9928                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9929                         if (ret)
9930                                 goto fail;
9931
9932                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9933                                 *args[1].to = 0;
9934                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9935                                 if (ret)
9936                                         goto fail;
9937                         }
9938
9939                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9940                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9941
9942                                 filename = match_strdup(&args[fpos]);
9943                                 if (!filename) {
9944                                         ret = -ENOMEM;
9945                                         goto fail;
9946                                 }
9947                         }
9948
9949                         state = IF_STATE_END;
9950                         break;
9951
9952                 default:
9953                         goto fail;
9954                 }
9955
9956                 /*
9957                  * Filter definition is fully parsed, validate and install it.
9958                  * Make sure that it doesn't contradict itself or the event's
9959                  * attribute.
9960                  */
9961                 if (state == IF_STATE_END) {
9962                         ret = -EINVAL;
9963                         if (kernel && event->attr.exclude_kernel)
9964                                 goto fail;
9965
9966                         /*
9967                          * ACTION "filter" must have a non-zero length region
9968                          * specified.
9969                          */
9970                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9971                             !filter->size)
9972                                 goto fail;
9973
9974                         if (!kernel) {
9975                                 if (!filename)
9976                                         goto fail;
9977
9978                                 /*
9979                                  * For now, we only support file-based filters
9980                                  * in per-task events; doing so for CPU-wide
9981                                  * events requires additional context switching
9982                                  * trickery, since same object code will be
9983                                  * mapped at different virtual addresses in
9984                                  * different processes.
9985                                  */
9986                                 ret = -EOPNOTSUPP;
9987                                 if (!event->ctx->task)
9988                                         goto fail_free_name;
9989
9990                                 /* look up the path and grab its inode */
9991                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9992                                                 &filter->path);
9993                                 if (ret)
9994                                         goto fail_free_name;
9995
9996                                 kfree(filename);
9997                                 filename = NULL;
9998
9999                                 ret = -EINVAL;
10000                                 if (!filter->path.dentry ||
10001                                     !S_ISREG(d_inode(filter->path.dentry)
10002                                              ->i_mode))
10003                                         goto fail;
10004
10005                                 event->addr_filters.nr_file_filters++;
10006                         }
10007
10008                         /* ready to consume more filters */
10009                         state = IF_STATE_ACTION;
10010                         filter = NULL;
10011                 }
10012         }
10013
10014         if (state != IF_STATE_ACTION)
10015                 goto fail;
10016
10017         kfree(orig);
10018
10019         return 0;
10020
10021 fail_free_name:
10022         kfree(filename);
10023 fail:
10024         free_filters_list(filters);
10025         kfree(orig);
10026
10027         return ret;
10028 }
10029
10030 static int
10031 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10032 {
10033         LIST_HEAD(filters);
10034         int ret;
10035
10036         /*
10037          * Since this is called in perf_ioctl() path, we're already holding
10038          * ctx::mutex.
10039          */
10040         lockdep_assert_held(&event->ctx->mutex);
10041
10042         if (WARN_ON_ONCE(event->parent))
10043                 return -EINVAL;
10044
10045         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10046         if (ret)
10047                 goto fail_clear_files;
10048
10049         ret = event->pmu->addr_filters_validate(&filters);
10050         if (ret)
10051                 goto fail_free_filters;
10052
10053         /* remove existing filters, if any */
10054         perf_addr_filters_splice(event, &filters);
10055
10056         /* install new filters */
10057         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10058
10059         return ret;
10060
10061 fail_free_filters:
10062         free_filters_list(&filters);
10063
10064 fail_clear_files:
10065         event->addr_filters.nr_file_filters = 0;
10066
10067         return ret;
10068 }
10069
10070 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10071 {
10072         int ret = -EINVAL;
10073         char *filter_str;
10074
10075         filter_str = strndup_user(arg, PAGE_SIZE);
10076         if (IS_ERR(filter_str))
10077                 return PTR_ERR(filter_str);
10078
10079 #ifdef CONFIG_EVENT_TRACING
10080         if (perf_event_is_tracing(event)) {
10081                 struct perf_event_context *ctx = event->ctx;
10082
10083                 /*
10084                  * Beware, here be dragons!!
10085                  *
10086                  * the tracepoint muck will deadlock against ctx->mutex, but
10087                  * the tracepoint stuff does not actually need it. So
10088                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10089                  * already have a reference on ctx.
10090                  *
10091                  * This can result in event getting moved to a different ctx,
10092                  * but that does not affect the tracepoint state.
10093                  */
10094                 mutex_unlock(&ctx->mutex);
10095                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10096                 mutex_lock(&ctx->mutex);
10097         } else
10098 #endif
10099         if (has_addr_filter(event))
10100                 ret = perf_event_set_addr_filter(event, filter_str);
10101
10102         kfree(filter_str);
10103         return ret;
10104 }
10105
10106 /*
10107  * hrtimer based swevent callback
10108  */
10109
10110 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10111 {
10112         enum hrtimer_restart ret = HRTIMER_RESTART;
10113         struct perf_sample_data data;
10114         struct pt_regs *regs;
10115         struct perf_event *event;
10116         u64 period;
10117
10118         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10119
10120         if (event->state != PERF_EVENT_STATE_ACTIVE)
10121                 return HRTIMER_NORESTART;
10122
10123         event->pmu->read(event);
10124
10125         perf_sample_data_init(&data, 0, event->hw.last_period);
10126         regs = get_irq_regs();
10127
10128         if (regs && !perf_exclude_event(event, regs)) {
10129                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10130                         if (__perf_event_overflow(event, 1, &data, regs))
10131                                 ret = HRTIMER_NORESTART;
10132         }
10133
10134         period = max_t(u64, 10000, event->hw.sample_period);
10135         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10136
10137         return ret;
10138 }
10139
10140 static void perf_swevent_start_hrtimer(struct perf_event *event)
10141 {
10142         struct hw_perf_event *hwc = &event->hw;
10143         s64 period;
10144
10145         if (!is_sampling_event(event))
10146                 return;
10147
10148         period = local64_read(&hwc->period_left);
10149         if (period) {
10150                 if (period < 0)
10151                         period = 10000;
10152
10153                 local64_set(&hwc->period_left, 0);
10154         } else {
10155                 period = max_t(u64, 10000, hwc->sample_period);
10156         }
10157         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10158                       HRTIMER_MODE_REL_PINNED_HARD);
10159 }
10160
10161 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10162 {
10163         struct hw_perf_event *hwc = &event->hw;
10164
10165         if (is_sampling_event(event)) {
10166                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10167                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10168
10169                 hrtimer_cancel(&hwc->hrtimer);
10170         }
10171 }
10172
10173 static void perf_swevent_init_hrtimer(struct perf_event *event)
10174 {
10175         struct hw_perf_event *hwc = &event->hw;
10176
10177         if (!is_sampling_event(event))
10178                 return;
10179
10180         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10181         hwc->hrtimer.function = perf_swevent_hrtimer;
10182
10183         /*
10184          * Since hrtimers have a fixed rate, we can do a static freq->period
10185          * mapping and avoid the whole period adjust feedback stuff.
10186          */
10187         if (event->attr.freq) {
10188                 long freq = event->attr.sample_freq;
10189
10190                 event->attr.sample_period = NSEC_PER_SEC / freq;
10191                 hwc->sample_period = event->attr.sample_period;
10192                 local64_set(&hwc->period_left, hwc->sample_period);
10193                 hwc->last_period = hwc->sample_period;
10194                 event->attr.freq = 0;
10195         }
10196 }
10197
10198 /*
10199  * Software event: cpu wall time clock
10200  */
10201
10202 static void cpu_clock_event_update(struct perf_event *event)
10203 {
10204         s64 prev;
10205         u64 now;
10206
10207         now = local_clock();
10208         prev = local64_xchg(&event->hw.prev_count, now);
10209         local64_add(now - prev, &event->count);
10210 }
10211
10212 static void cpu_clock_event_start(struct perf_event *event, int flags)
10213 {
10214         local64_set(&event->hw.prev_count, local_clock());
10215         perf_swevent_start_hrtimer(event);
10216 }
10217
10218 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10219 {
10220         perf_swevent_cancel_hrtimer(event);
10221         cpu_clock_event_update(event);
10222 }
10223
10224 static int cpu_clock_event_add(struct perf_event *event, int flags)
10225 {
10226         if (flags & PERF_EF_START)
10227                 cpu_clock_event_start(event, flags);
10228         perf_event_update_userpage(event);
10229
10230         return 0;
10231 }
10232
10233 static void cpu_clock_event_del(struct perf_event *event, int flags)
10234 {
10235         cpu_clock_event_stop(event, flags);
10236 }
10237
10238 static void cpu_clock_event_read(struct perf_event *event)
10239 {
10240         cpu_clock_event_update(event);
10241 }
10242
10243 static int cpu_clock_event_init(struct perf_event *event)
10244 {
10245         if (event->attr.type != PERF_TYPE_SOFTWARE)
10246                 return -ENOENT;
10247
10248         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10249                 return -ENOENT;
10250
10251         /*
10252          * no branch sampling for software events
10253          */
10254         if (has_branch_stack(event))
10255                 return -EOPNOTSUPP;
10256
10257         perf_swevent_init_hrtimer(event);
10258
10259         return 0;
10260 }
10261
10262 static struct pmu perf_cpu_clock = {
10263         .task_ctx_nr    = perf_sw_context,
10264
10265         .capabilities   = PERF_PMU_CAP_NO_NMI,
10266
10267         .event_init     = cpu_clock_event_init,
10268         .add            = cpu_clock_event_add,
10269         .del            = cpu_clock_event_del,
10270         .start          = cpu_clock_event_start,
10271         .stop           = cpu_clock_event_stop,
10272         .read           = cpu_clock_event_read,
10273 };
10274
10275 /*
10276  * Software event: task time clock
10277  */
10278
10279 static void task_clock_event_update(struct perf_event *event, u64 now)
10280 {
10281         u64 prev;
10282         s64 delta;
10283
10284         prev = local64_xchg(&event->hw.prev_count, now);
10285         delta = now - prev;
10286         local64_add(delta, &event->count);
10287 }
10288
10289 static void task_clock_event_start(struct perf_event *event, int flags)
10290 {
10291         local64_set(&event->hw.prev_count, event->ctx->time);
10292         perf_swevent_start_hrtimer(event);
10293 }
10294
10295 static void task_clock_event_stop(struct perf_event *event, int flags)
10296 {
10297         perf_swevent_cancel_hrtimer(event);
10298         task_clock_event_update(event, event->ctx->time);
10299 }
10300
10301 static int task_clock_event_add(struct perf_event *event, int flags)
10302 {
10303         if (flags & PERF_EF_START)
10304                 task_clock_event_start(event, flags);
10305         perf_event_update_userpage(event);
10306
10307         return 0;
10308 }
10309
10310 static void task_clock_event_del(struct perf_event *event, int flags)
10311 {
10312         task_clock_event_stop(event, PERF_EF_UPDATE);
10313 }
10314
10315 static void task_clock_event_read(struct perf_event *event)
10316 {
10317         u64 now = perf_clock();
10318         u64 delta = now - event->ctx->timestamp;
10319         u64 time = event->ctx->time + delta;
10320
10321         task_clock_event_update(event, time);
10322 }
10323
10324 static int task_clock_event_init(struct perf_event *event)
10325 {
10326         if (event->attr.type != PERF_TYPE_SOFTWARE)
10327                 return -ENOENT;
10328
10329         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10330                 return -ENOENT;
10331
10332         /*
10333          * no branch sampling for software events
10334          */
10335         if (has_branch_stack(event))
10336                 return -EOPNOTSUPP;
10337
10338         perf_swevent_init_hrtimer(event);
10339
10340         return 0;
10341 }
10342
10343 static struct pmu perf_task_clock = {
10344         .task_ctx_nr    = perf_sw_context,
10345
10346         .capabilities   = PERF_PMU_CAP_NO_NMI,
10347
10348         .event_init     = task_clock_event_init,
10349         .add            = task_clock_event_add,
10350         .del            = task_clock_event_del,
10351         .start          = task_clock_event_start,
10352         .stop           = task_clock_event_stop,
10353         .read           = task_clock_event_read,
10354 };
10355
10356 static void perf_pmu_nop_void(struct pmu *pmu)
10357 {
10358 }
10359
10360 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10361 {
10362 }
10363
10364 static int perf_pmu_nop_int(struct pmu *pmu)
10365 {
10366         return 0;
10367 }
10368
10369 static int perf_event_nop_int(struct perf_event *event, u64 value)
10370 {
10371         return 0;
10372 }
10373
10374 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10375
10376 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10377 {
10378         __this_cpu_write(nop_txn_flags, flags);
10379
10380         if (flags & ~PERF_PMU_TXN_ADD)
10381                 return;
10382
10383         perf_pmu_disable(pmu);
10384 }
10385
10386 static int perf_pmu_commit_txn(struct pmu *pmu)
10387 {
10388         unsigned int flags = __this_cpu_read(nop_txn_flags);
10389
10390         __this_cpu_write(nop_txn_flags, 0);
10391
10392         if (flags & ~PERF_PMU_TXN_ADD)
10393                 return 0;
10394
10395         perf_pmu_enable(pmu);
10396         return 0;
10397 }
10398
10399 static void perf_pmu_cancel_txn(struct pmu *pmu)
10400 {
10401         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10402
10403         __this_cpu_write(nop_txn_flags, 0);
10404
10405         if (flags & ~PERF_PMU_TXN_ADD)
10406                 return;
10407
10408         perf_pmu_enable(pmu);
10409 }
10410
10411 static int perf_event_idx_default(struct perf_event *event)
10412 {
10413         return 0;
10414 }
10415
10416 /*
10417  * Ensures all contexts with the same task_ctx_nr have the same
10418  * pmu_cpu_context too.
10419  */
10420 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10421 {
10422         struct pmu *pmu;
10423
10424         if (ctxn < 0)
10425                 return NULL;
10426
10427         list_for_each_entry(pmu, &pmus, entry) {
10428                 if (pmu->task_ctx_nr == ctxn)
10429                         return pmu->pmu_cpu_context;
10430         }
10431
10432         return NULL;
10433 }
10434
10435 static void free_pmu_context(struct pmu *pmu)
10436 {
10437         /*
10438          * Static contexts such as perf_sw_context have a global lifetime
10439          * and may be shared between different PMUs. Avoid freeing them
10440          * when a single PMU is going away.
10441          */
10442         if (pmu->task_ctx_nr > perf_invalid_context)
10443                 return;
10444
10445         free_percpu(pmu->pmu_cpu_context);
10446 }
10447
10448 /*
10449  * Let userspace know that this PMU supports address range filtering:
10450  */
10451 static ssize_t nr_addr_filters_show(struct device *dev,
10452                                     struct device_attribute *attr,
10453                                     char *page)
10454 {
10455         struct pmu *pmu = dev_get_drvdata(dev);
10456
10457         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10458 }
10459 DEVICE_ATTR_RO(nr_addr_filters);
10460
10461 static struct idr pmu_idr;
10462
10463 static ssize_t
10464 type_show(struct device *dev, struct device_attribute *attr, char *page)
10465 {
10466         struct pmu *pmu = dev_get_drvdata(dev);
10467
10468         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10469 }
10470 static DEVICE_ATTR_RO(type);
10471
10472 static ssize_t
10473 perf_event_mux_interval_ms_show(struct device *dev,
10474                                 struct device_attribute *attr,
10475                                 char *page)
10476 {
10477         struct pmu *pmu = dev_get_drvdata(dev);
10478
10479         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10480 }
10481
10482 static DEFINE_MUTEX(mux_interval_mutex);
10483
10484 static ssize_t
10485 perf_event_mux_interval_ms_store(struct device *dev,
10486                                  struct device_attribute *attr,
10487                                  const char *buf, size_t count)
10488 {
10489         struct pmu *pmu = dev_get_drvdata(dev);
10490         int timer, cpu, ret;
10491
10492         ret = kstrtoint(buf, 0, &timer);
10493         if (ret)
10494                 return ret;
10495
10496         if (timer < 1)
10497                 return -EINVAL;
10498
10499         /* same value, noting to do */
10500         if (timer == pmu->hrtimer_interval_ms)
10501                 return count;
10502
10503         mutex_lock(&mux_interval_mutex);
10504         pmu->hrtimer_interval_ms = timer;
10505
10506         /* update all cpuctx for this PMU */
10507         cpus_read_lock();
10508         for_each_online_cpu(cpu) {
10509                 struct perf_cpu_context *cpuctx;
10510                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10511                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10512
10513                 cpu_function_call(cpu,
10514                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10515         }
10516         cpus_read_unlock();
10517         mutex_unlock(&mux_interval_mutex);
10518
10519         return count;
10520 }
10521 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10522
10523 static struct attribute *pmu_dev_attrs[] = {
10524         &dev_attr_type.attr,
10525         &dev_attr_perf_event_mux_interval_ms.attr,
10526         NULL,
10527 };
10528 ATTRIBUTE_GROUPS(pmu_dev);
10529
10530 static int pmu_bus_running;
10531 static struct bus_type pmu_bus = {
10532         .name           = "event_source",
10533         .dev_groups     = pmu_dev_groups,
10534 };
10535
10536 static void pmu_dev_release(struct device *dev)
10537 {
10538         kfree(dev);
10539 }
10540
10541 static int pmu_dev_alloc(struct pmu *pmu)
10542 {
10543         int ret = -ENOMEM;
10544
10545         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10546         if (!pmu->dev)
10547                 goto out;
10548
10549         pmu->dev->groups = pmu->attr_groups;
10550         device_initialize(pmu->dev);
10551         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10552         if (ret)
10553                 goto free_dev;
10554
10555         dev_set_drvdata(pmu->dev, pmu);
10556         pmu->dev->bus = &pmu_bus;
10557         pmu->dev->release = pmu_dev_release;
10558         ret = device_add(pmu->dev);
10559         if (ret)
10560                 goto free_dev;
10561
10562         /* For PMUs with address filters, throw in an extra attribute: */
10563         if (pmu->nr_addr_filters)
10564                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10565
10566         if (ret)
10567                 goto del_dev;
10568
10569         if (pmu->attr_update)
10570                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10571
10572         if (ret)
10573                 goto del_dev;
10574
10575 out:
10576         return ret;
10577
10578 del_dev:
10579         device_del(pmu->dev);
10580
10581 free_dev:
10582         put_device(pmu->dev);
10583         goto out;
10584 }
10585
10586 static struct lock_class_key cpuctx_mutex;
10587 static struct lock_class_key cpuctx_lock;
10588
10589 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10590 {
10591         int cpu, ret, max = PERF_TYPE_MAX;
10592
10593         mutex_lock(&pmus_lock);
10594         ret = -ENOMEM;
10595         pmu->pmu_disable_count = alloc_percpu(int);
10596         if (!pmu->pmu_disable_count)
10597                 goto unlock;
10598
10599         pmu->type = -1;
10600         if (!name)
10601                 goto skip_type;
10602         pmu->name = name;
10603
10604         if (type != PERF_TYPE_SOFTWARE) {
10605                 if (type >= 0)
10606                         max = type;
10607
10608                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10609                 if (ret < 0)
10610                         goto free_pdc;
10611
10612                 WARN_ON(type >= 0 && ret != type);
10613
10614                 type = ret;
10615         }
10616         pmu->type = type;
10617
10618         if (pmu_bus_running) {
10619                 ret = pmu_dev_alloc(pmu);
10620                 if (ret)
10621                         goto free_idr;
10622         }
10623
10624 skip_type:
10625         if (pmu->task_ctx_nr == perf_hw_context) {
10626                 static int hw_context_taken = 0;
10627
10628                 /*
10629                  * Other than systems with heterogeneous CPUs, it never makes
10630                  * sense for two PMUs to share perf_hw_context. PMUs which are
10631                  * uncore must use perf_invalid_context.
10632                  */
10633                 if (WARN_ON_ONCE(hw_context_taken &&
10634                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10635                         pmu->task_ctx_nr = perf_invalid_context;
10636
10637                 hw_context_taken = 1;
10638         }
10639
10640         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10641         if (pmu->pmu_cpu_context)
10642                 goto got_cpu_context;
10643
10644         ret = -ENOMEM;
10645         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10646         if (!pmu->pmu_cpu_context)
10647                 goto free_dev;
10648
10649         for_each_possible_cpu(cpu) {
10650                 struct perf_cpu_context *cpuctx;
10651
10652                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10653                 __perf_event_init_context(&cpuctx->ctx);
10654                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10655                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10656                 cpuctx->ctx.pmu = pmu;
10657                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10658
10659                 __perf_mux_hrtimer_init(cpuctx, cpu);
10660
10661                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10662                 cpuctx->heap = cpuctx->heap_default;
10663         }
10664
10665 got_cpu_context:
10666         if (!pmu->start_txn) {
10667                 if (pmu->pmu_enable) {
10668                         /*
10669                          * If we have pmu_enable/pmu_disable calls, install
10670                          * transaction stubs that use that to try and batch
10671                          * hardware accesses.
10672                          */
10673                         pmu->start_txn  = perf_pmu_start_txn;
10674                         pmu->commit_txn = perf_pmu_commit_txn;
10675                         pmu->cancel_txn = perf_pmu_cancel_txn;
10676                 } else {
10677                         pmu->start_txn  = perf_pmu_nop_txn;
10678                         pmu->commit_txn = perf_pmu_nop_int;
10679                         pmu->cancel_txn = perf_pmu_nop_void;
10680                 }
10681         }
10682
10683         if (!pmu->pmu_enable) {
10684                 pmu->pmu_enable  = perf_pmu_nop_void;
10685                 pmu->pmu_disable = perf_pmu_nop_void;
10686         }
10687
10688         if (!pmu->check_period)
10689                 pmu->check_period = perf_event_nop_int;
10690
10691         if (!pmu->event_idx)
10692                 pmu->event_idx = perf_event_idx_default;
10693
10694         /*
10695          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10696          * since these cannot be in the IDR. This way the linear search
10697          * is fast, provided a valid software event is provided.
10698          */
10699         if (type == PERF_TYPE_SOFTWARE || !name)
10700                 list_add_rcu(&pmu->entry, &pmus);
10701         else
10702                 list_add_tail_rcu(&pmu->entry, &pmus);
10703
10704         atomic_set(&pmu->exclusive_cnt, 0);
10705         ret = 0;
10706 unlock:
10707         mutex_unlock(&pmus_lock);
10708
10709         return ret;
10710
10711 free_dev:
10712         device_del(pmu->dev);
10713         put_device(pmu->dev);
10714
10715 free_idr:
10716         if (pmu->type != PERF_TYPE_SOFTWARE)
10717                 idr_remove(&pmu_idr, pmu->type);
10718
10719 free_pdc:
10720         free_percpu(pmu->pmu_disable_count);
10721         goto unlock;
10722 }
10723 EXPORT_SYMBOL_GPL(perf_pmu_register);
10724
10725 void perf_pmu_unregister(struct pmu *pmu)
10726 {
10727         mutex_lock(&pmus_lock);
10728         list_del_rcu(&pmu->entry);
10729
10730         /*
10731          * We dereference the pmu list under both SRCU and regular RCU, so
10732          * synchronize against both of those.
10733          */
10734         synchronize_srcu(&pmus_srcu);
10735         synchronize_rcu();
10736
10737         free_percpu(pmu->pmu_disable_count);
10738         if (pmu->type != PERF_TYPE_SOFTWARE)
10739                 idr_remove(&pmu_idr, pmu->type);
10740         if (pmu_bus_running) {
10741                 if (pmu->nr_addr_filters)
10742                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10743                 device_del(pmu->dev);
10744                 put_device(pmu->dev);
10745         }
10746         free_pmu_context(pmu);
10747         mutex_unlock(&pmus_lock);
10748 }
10749 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10750
10751 static inline bool has_extended_regs(struct perf_event *event)
10752 {
10753         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10754                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10755 }
10756
10757 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10758 {
10759         struct perf_event_context *ctx = NULL;
10760         int ret;
10761
10762         if (!try_module_get(pmu->module))
10763                 return -ENODEV;
10764
10765         /*
10766          * A number of pmu->event_init() methods iterate the sibling_list to,
10767          * for example, validate if the group fits on the PMU. Therefore,
10768          * if this is a sibling event, acquire the ctx->mutex to protect
10769          * the sibling_list.
10770          */
10771         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10772                 /*
10773                  * This ctx->mutex can nest when we're called through
10774                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10775                  */
10776                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10777                                                  SINGLE_DEPTH_NESTING);
10778                 BUG_ON(!ctx);
10779         }
10780
10781         event->pmu = pmu;
10782         ret = pmu->event_init(event);
10783
10784         if (ctx)
10785                 perf_event_ctx_unlock(event->group_leader, ctx);
10786
10787         if (!ret) {
10788                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10789                     has_extended_regs(event))
10790                         ret = -EOPNOTSUPP;
10791
10792                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10793                     event_has_any_exclude_flag(event))
10794                         ret = -EINVAL;
10795
10796                 if (ret && event->destroy)
10797                         event->destroy(event);
10798         }
10799
10800         if (ret)
10801                 module_put(pmu->module);
10802
10803         return ret;
10804 }
10805
10806 static struct pmu *perf_init_event(struct perf_event *event)
10807 {
10808         int idx, type, ret;
10809         struct pmu *pmu;
10810
10811         idx = srcu_read_lock(&pmus_srcu);
10812
10813         /* Try parent's PMU first: */
10814         if (event->parent && event->parent->pmu) {
10815                 pmu = event->parent->pmu;
10816                 ret = perf_try_init_event(pmu, event);
10817                 if (!ret)
10818                         goto unlock;
10819         }
10820
10821         /*
10822          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10823          * are often aliases for PERF_TYPE_RAW.
10824          */
10825         type = event->attr.type;
10826         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10827                 type = PERF_TYPE_RAW;
10828
10829 again:
10830         rcu_read_lock();
10831         pmu = idr_find(&pmu_idr, type);
10832         rcu_read_unlock();
10833         if (pmu) {
10834                 ret = perf_try_init_event(pmu, event);
10835                 if (ret == -ENOENT && event->attr.type != type) {
10836                         type = event->attr.type;
10837                         goto again;
10838                 }
10839
10840                 if (ret)
10841                         pmu = ERR_PTR(ret);
10842
10843                 goto unlock;
10844         }
10845
10846         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10847                 ret = perf_try_init_event(pmu, event);
10848                 if (!ret)
10849                         goto unlock;
10850
10851                 if (ret != -ENOENT) {
10852                         pmu = ERR_PTR(ret);
10853                         goto unlock;
10854                 }
10855         }
10856         pmu = ERR_PTR(-ENOENT);
10857 unlock:
10858         srcu_read_unlock(&pmus_srcu, idx);
10859
10860         return pmu;
10861 }
10862
10863 static void attach_sb_event(struct perf_event *event)
10864 {
10865         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10866
10867         raw_spin_lock(&pel->lock);
10868         list_add_rcu(&event->sb_list, &pel->list);
10869         raw_spin_unlock(&pel->lock);
10870 }
10871
10872 /*
10873  * We keep a list of all !task (and therefore per-cpu) events
10874  * that need to receive side-band records.
10875  *
10876  * This avoids having to scan all the various PMU per-cpu contexts
10877  * looking for them.
10878  */
10879 static void account_pmu_sb_event(struct perf_event *event)
10880 {
10881         if (is_sb_event(event))
10882                 attach_sb_event(event);
10883 }
10884
10885 static void account_event_cpu(struct perf_event *event, int cpu)
10886 {
10887         if (event->parent)
10888                 return;
10889
10890         if (is_cgroup_event(event))
10891                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10892 }
10893
10894 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10895 static void account_freq_event_nohz(void)
10896 {
10897 #ifdef CONFIG_NO_HZ_FULL
10898         /* Lock so we don't race with concurrent unaccount */
10899         spin_lock(&nr_freq_lock);
10900         if (atomic_inc_return(&nr_freq_events) == 1)
10901                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10902         spin_unlock(&nr_freq_lock);
10903 #endif
10904 }
10905
10906 static void account_freq_event(void)
10907 {
10908         if (tick_nohz_full_enabled())
10909                 account_freq_event_nohz();
10910         else
10911                 atomic_inc(&nr_freq_events);
10912 }
10913
10914
10915 static void account_event(struct perf_event *event)
10916 {
10917         bool inc = false;
10918
10919         if (event->parent)
10920                 return;
10921
10922         if (event->attach_state & PERF_ATTACH_TASK)
10923                 inc = true;
10924         if (event->attr.mmap || event->attr.mmap_data)
10925                 atomic_inc(&nr_mmap_events);
10926         if (event->attr.comm)
10927                 atomic_inc(&nr_comm_events);
10928         if (event->attr.namespaces)
10929                 atomic_inc(&nr_namespaces_events);
10930         if (event->attr.cgroup)
10931                 atomic_inc(&nr_cgroup_events);
10932         if (event->attr.task)
10933                 atomic_inc(&nr_task_events);
10934         if (event->attr.freq)
10935                 account_freq_event();
10936         if (event->attr.context_switch) {
10937                 atomic_inc(&nr_switch_events);
10938                 inc = true;
10939         }
10940         if (has_branch_stack(event))
10941                 inc = true;
10942         if (is_cgroup_event(event))
10943                 inc = true;
10944         if (event->attr.ksymbol)
10945                 atomic_inc(&nr_ksymbol_events);
10946         if (event->attr.bpf_event)
10947                 atomic_inc(&nr_bpf_events);
10948
10949         if (inc) {
10950                 /*
10951                  * We need the mutex here because static_branch_enable()
10952                  * must complete *before* the perf_sched_count increment
10953                  * becomes visible.
10954                  */
10955                 if (atomic_inc_not_zero(&perf_sched_count))
10956                         goto enabled;
10957
10958                 mutex_lock(&perf_sched_mutex);
10959                 if (!atomic_read(&perf_sched_count)) {
10960                         static_branch_enable(&perf_sched_events);
10961                         /*
10962                          * Guarantee that all CPUs observe they key change and
10963                          * call the perf scheduling hooks before proceeding to
10964                          * install events that need them.
10965                          */
10966                         synchronize_rcu();
10967                 }
10968                 /*
10969                  * Now that we have waited for the sync_sched(), allow further
10970                  * increments to by-pass the mutex.
10971                  */
10972                 atomic_inc(&perf_sched_count);
10973                 mutex_unlock(&perf_sched_mutex);
10974         }
10975 enabled:
10976
10977         account_event_cpu(event, event->cpu);
10978
10979         account_pmu_sb_event(event);
10980 }
10981
10982 /*
10983  * Allocate and initialize an event structure
10984  */
10985 static struct perf_event *
10986 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10987                  struct task_struct *task,
10988                  struct perf_event *group_leader,
10989                  struct perf_event *parent_event,
10990                  perf_overflow_handler_t overflow_handler,
10991                  void *context, int cgroup_fd)
10992 {
10993         struct pmu *pmu;
10994         struct perf_event *event;
10995         struct hw_perf_event *hwc;
10996         long err = -EINVAL;
10997
10998         if ((unsigned)cpu >= nr_cpu_ids) {
10999                 if (!task || cpu != -1)
11000                         return ERR_PTR(-EINVAL);
11001         }
11002
11003         event = kzalloc(sizeof(*event), GFP_KERNEL);
11004         if (!event)
11005                 return ERR_PTR(-ENOMEM);
11006
11007         /*
11008          * Single events are their own group leaders, with an
11009          * empty sibling list:
11010          */
11011         if (!group_leader)
11012                 group_leader = event;
11013
11014         mutex_init(&event->child_mutex);
11015         INIT_LIST_HEAD(&event->child_list);
11016
11017         INIT_LIST_HEAD(&event->event_entry);
11018         INIT_LIST_HEAD(&event->sibling_list);
11019         INIT_LIST_HEAD(&event->active_list);
11020         init_event_group(event);
11021         INIT_LIST_HEAD(&event->rb_entry);
11022         INIT_LIST_HEAD(&event->active_entry);
11023         INIT_LIST_HEAD(&event->addr_filters.list);
11024         INIT_HLIST_NODE(&event->hlist_entry);
11025
11026
11027         init_waitqueue_head(&event->waitq);
11028         event->pending_disable = -1;
11029         init_irq_work(&event->pending, perf_pending_event);
11030
11031         mutex_init(&event->mmap_mutex);
11032         raw_spin_lock_init(&event->addr_filters.lock);
11033
11034         atomic_long_set(&event->refcount, 1);
11035         event->cpu              = cpu;
11036         event->attr             = *attr;
11037         event->group_leader     = group_leader;
11038         event->pmu              = NULL;
11039         event->oncpu            = -1;
11040
11041         event->parent           = parent_event;
11042
11043         event->ns               = get_pid_ns(task_active_pid_ns(current));
11044         event->id               = atomic64_inc_return(&perf_event_id);
11045
11046         event->state            = PERF_EVENT_STATE_INACTIVE;
11047
11048         if (task) {
11049                 event->attach_state = PERF_ATTACH_TASK;
11050                 /*
11051                  * XXX pmu::event_init needs to know what task to account to
11052                  * and we cannot use the ctx information because we need the
11053                  * pmu before we get a ctx.
11054                  */
11055                 event->hw.target = get_task_struct(task);
11056         }
11057
11058         event->clock = &local_clock;
11059         if (parent_event)
11060                 event->clock = parent_event->clock;
11061
11062         if (!overflow_handler && parent_event) {
11063                 overflow_handler = parent_event->overflow_handler;
11064                 context = parent_event->overflow_handler_context;
11065 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11066                 if (overflow_handler == bpf_overflow_handler) {
11067                         struct bpf_prog *prog = parent_event->prog;
11068
11069                         bpf_prog_inc(prog);
11070                         event->prog = prog;
11071                         event->orig_overflow_handler =
11072                                 parent_event->orig_overflow_handler;
11073                 }
11074 #endif
11075         }
11076
11077         if (overflow_handler) {
11078                 event->overflow_handler = overflow_handler;
11079                 event->overflow_handler_context = context;
11080         } else if (is_write_backward(event)){
11081                 event->overflow_handler = perf_event_output_backward;
11082                 event->overflow_handler_context = NULL;
11083         } else {
11084                 event->overflow_handler = perf_event_output_forward;
11085                 event->overflow_handler_context = NULL;
11086         }
11087
11088         perf_event__state_init(event);
11089
11090         pmu = NULL;
11091
11092         hwc = &event->hw;
11093         hwc->sample_period = attr->sample_period;
11094         if (attr->freq && attr->sample_freq)
11095                 hwc->sample_period = 1;
11096         hwc->last_period = hwc->sample_period;
11097
11098         local64_set(&hwc->period_left, hwc->sample_period);
11099
11100         /*
11101          * We currently do not support PERF_SAMPLE_READ on inherited events.
11102          * See perf_output_read().
11103          */
11104         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11105                 goto err_ns;
11106
11107         if (!has_branch_stack(event))
11108                 event->attr.branch_sample_type = 0;
11109
11110         pmu = perf_init_event(event);
11111         if (IS_ERR(pmu)) {
11112                 err = PTR_ERR(pmu);
11113                 goto err_ns;
11114         }
11115
11116         /*
11117          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11118          * be different on other CPUs in the uncore mask.
11119          */
11120         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11121                 err = -EINVAL;
11122                 goto err_pmu;
11123         }
11124
11125         if (event->attr.aux_output &&
11126             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11127                 err = -EOPNOTSUPP;
11128                 goto err_pmu;
11129         }
11130
11131         if (cgroup_fd != -1) {
11132                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11133                 if (err)
11134                         goto err_pmu;
11135         }
11136
11137         err = exclusive_event_init(event);
11138         if (err)
11139                 goto err_pmu;
11140
11141         if (has_addr_filter(event)) {
11142                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11143                                                     sizeof(struct perf_addr_filter_range),
11144                                                     GFP_KERNEL);
11145                 if (!event->addr_filter_ranges) {
11146                         err = -ENOMEM;
11147                         goto err_per_task;
11148                 }
11149
11150                 /*
11151                  * Clone the parent's vma offsets: they are valid until exec()
11152                  * even if the mm is not shared with the parent.
11153                  */
11154                 if (event->parent) {
11155                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11156
11157                         raw_spin_lock_irq(&ifh->lock);
11158                         memcpy(event->addr_filter_ranges,
11159                                event->parent->addr_filter_ranges,
11160                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11161                         raw_spin_unlock_irq(&ifh->lock);
11162                 }
11163
11164                 /* force hw sync on the address filters */
11165                 event->addr_filters_gen = 1;
11166         }
11167
11168         if (!event->parent) {
11169                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11170                         err = get_callchain_buffers(attr->sample_max_stack);
11171                         if (err)
11172                                 goto err_addr_filters;
11173                 }
11174         }
11175
11176         err = security_perf_event_alloc(event);
11177         if (err)
11178                 goto err_callchain_buffer;
11179
11180         /* symmetric to unaccount_event() in _free_event() */
11181         account_event(event);
11182
11183         return event;
11184
11185 err_callchain_buffer:
11186         if (!event->parent) {
11187                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11188                         put_callchain_buffers();
11189         }
11190 err_addr_filters:
11191         kfree(event->addr_filter_ranges);
11192
11193 err_per_task:
11194         exclusive_event_destroy(event);
11195
11196 err_pmu:
11197         if (is_cgroup_event(event))
11198                 perf_detach_cgroup(event);
11199         if (event->destroy)
11200                 event->destroy(event);
11201         module_put(pmu->module);
11202 err_ns:
11203         if (event->ns)
11204                 put_pid_ns(event->ns);
11205         if (event->hw.target)
11206                 put_task_struct(event->hw.target);
11207         kfree(event);
11208
11209         return ERR_PTR(err);
11210 }
11211
11212 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11213                           struct perf_event_attr *attr)
11214 {
11215         u32 size;
11216         int ret;
11217
11218         /* Zero the full structure, so that a short copy will be nice. */
11219         memset(attr, 0, sizeof(*attr));
11220
11221         ret = get_user(size, &uattr->size);
11222         if (ret)
11223                 return ret;
11224
11225         /* ABI compatibility quirk: */
11226         if (!size)
11227                 size = PERF_ATTR_SIZE_VER0;
11228         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11229                 goto err_size;
11230
11231         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11232         if (ret) {
11233                 if (ret == -E2BIG)
11234                         goto err_size;
11235                 return ret;
11236         }
11237
11238         attr->size = size;
11239
11240         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11241                 return -EINVAL;
11242
11243         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11244                 return -EINVAL;
11245
11246         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11247                 return -EINVAL;
11248
11249         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11250                 u64 mask = attr->branch_sample_type;
11251
11252                 /* only using defined bits */
11253                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11254                         return -EINVAL;
11255
11256                 /* at least one branch bit must be set */
11257                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11258                         return -EINVAL;
11259
11260                 /* propagate priv level, when not set for branch */
11261                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11262
11263                         /* exclude_kernel checked on syscall entry */
11264                         if (!attr->exclude_kernel)
11265                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11266
11267                         if (!attr->exclude_user)
11268                                 mask |= PERF_SAMPLE_BRANCH_USER;
11269
11270                         if (!attr->exclude_hv)
11271                                 mask |= PERF_SAMPLE_BRANCH_HV;
11272                         /*
11273                          * adjust user setting (for HW filter setup)
11274                          */
11275                         attr->branch_sample_type = mask;
11276                 }
11277                 /* privileged levels capture (kernel, hv): check permissions */
11278                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11279                         ret = perf_allow_kernel(attr);
11280                         if (ret)
11281                                 return ret;
11282                 }
11283         }
11284
11285         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11286                 ret = perf_reg_validate(attr->sample_regs_user);
11287                 if (ret)
11288                         return ret;
11289         }
11290
11291         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11292                 if (!arch_perf_have_user_stack_dump())
11293                         return -ENOSYS;
11294
11295                 /*
11296                  * We have __u32 type for the size, but so far
11297                  * we can only use __u16 as maximum due to the
11298                  * __u16 sample size limit.
11299                  */
11300                 if (attr->sample_stack_user >= USHRT_MAX)
11301                         return -EINVAL;
11302                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11303                         return -EINVAL;
11304         }
11305
11306         if (!attr->sample_max_stack)
11307                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11308
11309         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11310                 ret = perf_reg_validate(attr->sample_regs_intr);
11311
11312 #ifndef CONFIG_CGROUP_PERF
11313         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11314                 return -EINVAL;
11315 #endif
11316
11317 out:
11318         return ret;
11319
11320 err_size:
11321         put_user(sizeof(*attr), &uattr->size);
11322         ret = -E2BIG;
11323         goto out;
11324 }
11325
11326 static int
11327 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11328 {
11329         struct perf_buffer *rb = NULL;
11330         int ret = -EINVAL;
11331
11332         if (!output_event)
11333                 goto set;
11334
11335         /* don't allow circular references */
11336         if (event == output_event)
11337                 goto out;
11338
11339         /*
11340          * Don't allow cross-cpu buffers
11341          */
11342         if (output_event->cpu != event->cpu)
11343                 goto out;
11344
11345         /*
11346          * If its not a per-cpu rb, it must be the same task.
11347          */
11348         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11349                 goto out;
11350
11351         /*
11352          * Mixing clocks in the same buffer is trouble you don't need.
11353          */
11354         if (output_event->clock != event->clock)
11355                 goto out;
11356
11357         /*
11358          * Either writing ring buffer from beginning or from end.
11359          * Mixing is not allowed.
11360          */
11361         if (is_write_backward(output_event) != is_write_backward(event))
11362                 goto out;
11363
11364         /*
11365          * If both events generate aux data, they must be on the same PMU
11366          */
11367         if (has_aux(event) && has_aux(output_event) &&
11368             event->pmu != output_event->pmu)
11369                 goto out;
11370
11371 set:
11372         mutex_lock(&event->mmap_mutex);
11373         /* Can't redirect output if we've got an active mmap() */
11374         if (atomic_read(&event->mmap_count))
11375                 goto unlock;
11376
11377         if (output_event) {
11378                 /* get the rb we want to redirect to */
11379                 rb = ring_buffer_get(output_event);
11380                 if (!rb)
11381                         goto unlock;
11382         }
11383
11384         ring_buffer_attach(event, rb);
11385
11386         ret = 0;
11387 unlock:
11388         mutex_unlock(&event->mmap_mutex);
11389
11390 out:
11391         return ret;
11392 }
11393
11394 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11395 {
11396         if (b < a)
11397                 swap(a, b);
11398
11399         mutex_lock(a);
11400         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11401 }
11402
11403 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11404 {
11405         bool nmi_safe = false;
11406
11407         switch (clk_id) {
11408         case CLOCK_MONOTONIC:
11409                 event->clock = &ktime_get_mono_fast_ns;
11410                 nmi_safe = true;
11411                 break;
11412
11413         case CLOCK_MONOTONIC_RAW:
11414                 event->clock = &ktime_get_raw_fast_ns;
11415                 nmi_safe = true;
11416                 break;
11417
11418         case CLOCK_REALTIME:
11419                 event->clock = &ktime_get_real_ns;
11420                 break;
11421
11422         case CLOCK_BOOTTIME:
11423                 event->clock = &ktime_get_boottime_ns;
11424                 break;
11425
11426         case CLOCK_TAI:
11427                 event->clock = &ktime_get_clocktai_ns;
11428                 break;
11429
11430         default:
11431                 return -EINVAL;
11432         }
11433
11434         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11435                 return -EINVAL;
11436
11437         return 0;
11438 }
11439
11440 /*
11441  * Variation on perf_event_ctx_lock_nested(), except we take two context
11442  * mutexes.
11443  */
11444 static struct perf_event_context *
11445 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11446                              struct perf_event_context *ctx)
11447 {
11448         struct perf_event_context *gctx;
11449
11450 again:
11451         rcu_read_lock();
11452         gctx = READ_ONCE(group_leader->ctx);
11453         if (!refcount_inc_not_zero(&gctx->refcount)) {
11454                 rcu_read_unlock();
11455                 goto again;
11456         }
11457         rcu_read_unlock();
11458
11459         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11460
11461         if (group_leader->ctx != gctx) {
11462                 mutex_unlock(&ctx->mutex);
11463                 mutex_unlock(&gctx->mutex);
11464                 put_ctx(gctx);
11465                 goto again;
11466         }
11467
11468         return gctx;
11469 }
11470
11471 /**
11472  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11473  *
11474  * @attr_uptr:  event_id type attributes for monitoring/sampling
11475  * @pid:                target pid
11476  * @cpu:                target cpu
11477  * @group_fd:           group leader event fd
11478  */
11479 SYSCALL_DEFINE5(perf_event_open,
11480                 struct perf_event_attr __user *, attr_uptr,
11481                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11482 {
11483         struct perf_event *group_leader = NULL, *output_event = NULL;
11484         struct perf_event *event, *sibling;
11485         struct perf_event_attr attr;
11486         struct perf_event_context *ctx, *uninitialized_var(gctx);
11487         struct file *event_file = NULL;
11488         struct fd group = {NULL, 0};
11489         struct task_struct *task = NULL;
11490         struct pmu *pmu;
11491         int event_fd;
11492         int move_group = 0;
11493         int err;
11494         int f_flags = O_RDWR;
11495         int cgroup_fd = -1;
11496
11497         /* for future expandability... */
11498         if (flags & ~PERF_FLAG_ALL)
11499                 return -EINVAL;
11500
11501         /* Do we allow access to perf_event_open(2) ? */
11502         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11503         if (err)
11504                 return err;
11505
11506         err = perf_copy_attr(attr_uptr, &attr);
11507         if (err)
11508                 return err;
11509
11510         if (!attr.exclude_kernel) {
11511                 err = perf_allow_kernel(&attr);
11512                 if (err)
11513                         return err;
11514         }
11515
11516         if (attr.namespaces) {
11517                 if (!perfmon_capable())
11518                         return -EACCES;
11519         }
11520
11521         if (attr.freq) {
11522                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11523                         return -EINVAL;
11524         } else {
11525                 if (attr.sample_period & (1ULL << 63))
11526                         return -EINVAL;
11527         }
11528
11529         /* Only privileged users can get physical addresses */
11530         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11531                 err = perf_allow_kernel(&attr);
11532                 if (err)
11533                         return err;
11534         }
11535
11536         err = security_locked_down(LOCKDOWN_PERF);
11537         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11538                 /* REGS_INTR can leak data, lockdown must prevent this */
11539                 return err;
11540
11541         err = 0;
11542
11543         /*
11544          * In cgroup mode, the pid argument is used to pass the fd
11545          * opened to the cgroup directory in cgroupfs. The cpu argument
11546          * designates the cpu on which to monitor threads from that
11547          * cgroup.
11548          */
11549         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11550                 return -EINVAL;
11551
11552         if (flags & PERF_FLAG_FD_CLOEXEC)
11553                 f_flags |= O_CLOEXEC;
11554
11555         event_fd = get_unused_fd_flags(f_flags);
11556         if (event_fd < 0)
11557                 return event_fd;
11558
11559         if (group_fd != -1) {
11560                 err = perf_fget_light(group_fd, &group);
11561                 if (err)
11562                         goto err_fd;
11563                 group_leader = group.file->private_data;
11564                 if (flags & PERF_FLAG_FD_OUTPUT)
11565                         output_event = group_leader;
11566                 if (flags & PERF_FLAG_FD_NO_GROUP)
11567                         group_leader = NULL;
11568         }
11569
11570         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11571                 task = find_lively_task_by_vpid(pid);
11572                 if (IS_ERR(task)) {
11573                         err = PTR_ERR(task);
11574                         goto err_group_fd;
11575                 }
11576         }
11577
11578         if (task && group_leader &&
11579             group_leader->attr.inherit != attr.inherit) {
11580                 err = -EINVAL;
11581                 goto err_task;
11582         }
11583
11584         if (task) {
11585                 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11586                 if (err)
11587                         goto err_task;
11588
11589                 /*
11590                  * Reuse ptrace permission checks for now.
11591                  *
11592                  * We must hold exec_update_mutex across this and any potential
11593                  * perf_install_in_context() call for this new event to
11594                  * serialize against exec() altering our credentials (and the
11595                  * perf_event_exit_task() that could imply).
11596                  */
11597                 err = -EACCES;
11598                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11599                         goto err_cred;
11600         }
11601
11602         if (flags & PERF_FLAG_PID_CGROUP)
11603                 cgroup_fd = pid;
11604
11605         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11606                                  NULL, NULL, cgroup_fd);
11607         if (IS_ERR(event)) {
11608                 err = PTR_ERR(event);
11609                 goto err_cred;
11610         }
11611
11612         if (is_sampling_event(event)) {
11613                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11614                         err = -EOPNOTSUPP;
11615                         goto err_alloc;
11616                 }
11617         }
11618
11619         /*
11620          * Special case software events and allow them to be part of
11621          * any hardware group.
11622          */
11623         pmu = event->pmu;
11624
11625         if (attr.use_clockid) {
11626                 err = perf_event_set_clock(event, attr.clockid);
11627                 if (err)
11628                         goto err_alloc;
11629         }
11630
11631         if (pmu->task_ctx_nr == perf_sw_context)
11632                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11633
11634         if (group_leader) {
11635                 if (is_software_event(event) &&
11636                     !in_software_context(group_leader)) {
11637                         /*
11638                          * If the event is a sw event, but the group_leader
11639                          * is on hw context.
11640                          *
11641                          * Allow the addition of software events to hw
11642                          * groups, this is safe because software events
11643                          * never fail to schedule.
11644                          */
11645                         pmu = group_leader->ctx->pmu;
11646                 } else if (!is_software_event(event) &&
11647                            is_software_event(group_leader) &&
11648                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11649                         /*
11650                          * In case the group is a pure software group, and we
11651                          * try to add a hardware event, move the whole group to
11652                          * the hardware context.
11653                          */
11654                         move_group = 1;
11655                 }
11656         }
11657
11658         /*
11659          * Get the target context (task or percpu):
11660          */
11661         ctx = find_get_context(pmu, task, event);
11662         if (IS_ERR(ctx)) {
11663                 err = PTR_ERR(ctx);
11664                 goto err_alloc;
11665         }
11666
11667         /*
11668          * Look up the group leader (we will attach this event to it):
11669          */
11670         if (group_leader) {
11671                 err = -EINVAL;
11672
11673                 /*
11674                  * Do not allow a recursive hierarchy (this new sibling
11675                  * becoming part of another group-sibling):
11676                  */
11677                 if (group_leader->group_leader != group_leader)
11678                         goto err_context;
11679
11680                 /* All events in a group should have the same clock */
11681                 if (group_leader->clock != event->clock)
11682                         goto err_context;
11683
11684                 /*
11685                  * Make sure we're both events for the same CPU;
11686                  * grouping events for different CPUs is broken; since
11687                  * you can never concurrently schedule them anyhow.
11688                  */
11689                 if (group_leader->cpu != event->cpu)
11690                         goto err_context;
11691
11692                 /*
11693                  * Make sure we're both on the same task, or both
11694                  * per-CPU events.
11695                  */
11696                 if (group_leader->ctx->task != ctx->task)
11697                         goto err_context;
11698
11699                 /*
11700                  * Do not allow to attach to a group in a different task
11701                  * or CPU context. If we're moving SW events, we'll fix
11702                  * this up later, so allow that.
11703                  */
11704                 if (!move_group && group_leader->ctx != ctx)
11705                         goto err_context;
11706
11707                 /*
11708                  * Only a group leader can be exclusive or pinned
11709                  */
11710                 if (attr.exclusive || attr.pinned)
11711                         goto err_context;
11712         }
11713
11714         if (output_event) {
11715                 err = perf_event_set_output(event, output_event);
11716                 if (err)
11717                         goto err_context;
11718         }
11719
11720         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11721                                         f_flags);
11722         if (IS_ERR(event_file)) {
11723                 err = PTR_ERR(event_file);
11724                 event_file = NULL;
11725                 goto err_context;
11726         }
11727
11728         if (move_group) {
11729                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11730
11731                 if (gctx->task == TASK_TOMBSTONE) {
11732                         err = -ESRCH;
11733                         goto err_locked;
11734                 }
11735
11736                 /*
11737                  * Check if we raced against another sys_perf_event_open() call
11738                  * moving the software group underneath us.
11739                  */
11740                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11741                         /*
11742                          * If someone moved the group out from under us, check
11743                          * if this new event wound up on the same ctx, if so
11744                          * its the regular !move_group case, otherwise fail.
11745                          */
11746                         if (gctx != ctx) {
11747                                 err = -EINVAL;
11748                                 goto err_locked;
11749                         } else {
11750                                 perf_event_ctx_unlock(group_leader, gctx);
11751                                 move_group = 0;
11752                         }
11753                 }
11754
11755                 /*
11756                  * Failure to create exclusive events returns -EBUSY.
11757                  */
11758                 err = -EBUSY;
11759                 if (!exclusive_event_installable(group_leader, ctx))
11760                         goto err_locked;
11761
11762                 for_each_sibling_event(sibling, group_leader) {
11763                         if (!exclusive_event_installable(sibling, ctx))
11764                                 goto err_locked;
11765                 }
11766         } else {
11767                 mutex_lock(&ctx->mutex);
11768         }
11769
11770         if (ctx->task == TASK_TOMBSTONE) {
11771                 err = -ESRCH;
11772                 goto err_locked;
11773         }
11774
11775         if (!perf_event_validate_size(event)) {
11776                 err = -E2BIG;
11777                 goto err_locked;
11778         }
11779
11780         if (!task) {
11781                 /*
11782                  * Check if the @cpu we're creating an event for is online.
11783                  *
11784                  * We use the perf_cpu_context::ctx::mutex to serialize against
11785                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11786                  */
11787                 struct perf_cpu_context *cpuctx =
11788                         container_of(ctx, struct perf_cpu_context, ctx);
11789
11790                 if (!cpuctx->online) {
11791                         err = -ENODEV;
11792                         goto err_locked;
11793                 }
11794         }
11795
11796         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11797                 err = -EINVAL;
11798                 goto err_locked;
11799         }
11800
11801         /*
11802          * Must be under the same ctx::mutex as perf_install_in_context(),
11803          * because we need to serialize with concurrent event creation.
11804          */
11805         if (!exclusive_event_installable(event, ctx)) {
11806                 err = -EBUSY;
11807                 goto err_locked;
11808         }
11809
11810         WARN_ON_ONCE(ctx->parent_ctx);
11811
11812         /*
11813          * This is the point on no return; we cannot fail hereafter. This is
11814          * where we start modifying current state.
11815          */
11816
11817         if (move_group) {
11818                 /*
11819                  * See perf_event_ctx_lock() for comments on the details
11820                  * of swizzling perf_event::ctx.
11821                  */
11822                 perf_remove_from_context(group_leader, 0);
11823                 put_ctx(gctx);
11824
11825                 for_each_sibling_event(sibling, group_leader) {
11826                         perf_remove_from_context(sibling, 0);
11827                         put_ctx(gctx);
11828                 }
11829
11830                 /*
11831                  * Wait for everybody to stop referencing the events through
11832                  * the old lists, before installing it on new lists.
11833                  */
11834                 synchronize_rcu();
11835
11836                 /*
11837                  * Install the group siblings before the group leader.
11838                  *
11839                  * Because a group leader will try and install the entire group
11840                  * (through the sibling list, which is still in-tact), we can
11841                  * end up with siblings installed in the wrong context.
11842                  *
11843                  * By installing siblings first we NO-OP because they're not
11844                  * reachable through the group lists.
11845                  */
11846                 for_each_sibling_event(sibling, group_leader) {
11847                         perf_event__state_init(sibling);
11848                         perf_install_in_context(ctx, sibling, sibling->cpu);
11849                         get_ctx(ctx);
11850                 }
11851
11852                 /*
11853                  * Removing from the context ends up with disabled
11854                  * event. What we want here is event in the initial
11855                  * startup state, ready to be add into new context.
11856                  */
11857                 perf_event__state_init(group_leader);
11858                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11859                 get_ctx(ctx);
11860         }
11861
11862         /*
11863          * Precalculate sample_data sizes; do while holding ctx::mutex such
11864          * that we're serialized against further additions and before
11865          * perf_install_in_context() which is the point the event is active and
11866          * can use these values.
11867          */
11868         perf_event__header_size(event);
11869         perf_event__id_header_size(event);
11870
11871         event->owner = current;
11872
11873         perf_install_in_context(ctx, event, event->cpu);
11874         perf_unpin_context(ctx);
11875
11876         if (move_group)
11877                 perf_event_ctx_unlock(group_leader, gctx);
11878         mutex_unlock(&ctx->mutex);
11879
11880         if (task) {
11881                 mutex_unlock(&task->signal->exec_update_mutex);
11882                 put_task_struct(task);
11883         }
11884
11885         mutex_lock(&current->perf_event_mutex);
11886         list_add_tail(&event->owner_entry, &current->perf_event_list);
11887         mutex_unlock(&current->perf_event_mutex);
11888
11889         /*
11890          * Drop the reference on the group_event after placing the
11891          * new event on the sibling_list. This ensures destruction
11892          * of the group leader will find the pointer to itself in
11893          * perf_group_detach().
11894          */
11895         fdput(group);
11896         fd_install(event_fd, event_file);
11897         return event_fd;
11898
11899 err_locked:
11900         if (move_group)
11901                 perf_event_ctx_unlock(group_leader, gctx);
11902         mutex_unlock(&ctx->mutex);
11903 /* err_file: */
11904         fput(event_file);
11905 err_context:
11906         perf_unpin_context(ctx);
11907         put_ctx(ctx);
11908 err_alloc:
11909         /*
11910          * If event_file is set, the fput() above will have called ->release()
11911          * and that will take care of freeing the event.
11912          */
11913         if (!event_file)
11914                 free_event(event);
11915 err_cred:
11916         if (task)
11917                 mutex_unlock(&task->signal->exec_update_mutex);
11918 err_task:
11919         if (task)
11920                 put_task_struct(task);
11921 err_group_fd:
11922         fdput(group);
11923 err_fd:
11924         put_unused_fd(event_fd);
11925         return err;
11926 }
11927
11928 /**
11929  * perf_event_create_kernel_counter
11930  *
11931  * @attr: attributes of the counter to create
11932  * @cpu: cpu in which the counter is bound
11933  * @task: task to profile (NULL for percpu)
11934  */
11935 struct perf_event *
11936 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11937                                  struct task_struct *task,
11938                                  perf_overflow_handler_t overflow_handler,
11939                                  void *context)
11940 {
11941         struct perf_event_context *ctx;
11942         struct perf_event *event;
11943         int err;
11944
11945         /*
11946          * Grouping is not supported for kernel events, neither is 'AUX',
11947          * make sure the caller's intentions are adjusted.
11948          */
11949         if (attr->aux_output)
11950                 return ERR_PTR(-EINVAL);
11951
11952         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11953                                  overflow_handler, context, -1);
11954         if (IS_ERR(event)) {
11955                 err = PTR_ERR(event);
11956                 goto err;
11957         }
11958
11959         /* Mark owner so we could distinguish it from user events. */
11960         event->owner = TASK_TOMBSTONE;
11961
11962         /*
11963          * Get the target context (task or percpu):
11964          */
11965         ctx = find_get_context(event->pmu, task, event);
11966         if (IS_ERR(ctx)) {
11967                 err = PTR_ERR(ctx);
11968                 goto err_free;
11969         }
11970
11971         WARN_ON_ONCE(ctx->parent_ctx);
11972         mutex_lock(&ctx->mutex);
11973         if (ctx->task == TASK_TOMBSTONE) {
11974                 err = -ESRCH;
11975                 goto err_unlock;
11976         }
11977
11978         if (!task) {
11979                 /*
11980                  * Check if the @cpu we're creating an event for is online.
11981                  *
11982                  * We use the perf_cpu_context::ctx::mutex to serialize against
11983                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11984                  */
11985                 struct perf_cpu_context *cpuctx =
11986                         container_of(ctx, struct perf_cpu_context, ctx);
11987                 if (!cpuctx->online) {
11988                         err = -ENODEV;
11989                         goto err_unlock;
11990                 }
11991         }
11992
11993         if (!exclusive_event_installable(event, ctx)) {
11994                 err = -EBUSY;
11995                 goto err_unlock;
11996         }
11997
11998         perf_install_in_context(ctx, event, event->cpu);
11999         perf_unpin_context(ctx);
12000         mutex_unlock(&ctx->mutex);
12001
12002         return event;
12003
12004 err_unlock:
12005         mutex_unlock(&ctx->mutex);
12006         perf_unpin_context(ctx);
12007         put_ctx(ctx);
12008 err_free:
12009         free_event(event);
12010 err:
12011         return ERR_PTR(err);
12012 }
12013 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12014
12015 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12016 {
12017         struct perf_event_context *src_ctx;
12018         struct perf_event_context *dst_ctx;
12019         struct perf_event *event, *tmp;
12020         LIST_HEAD(events);
12021
12022         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12023         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12024
12025         /*
12026          * See perf_event_ctx_lock() for comments on the details
12027          * of swizzling perf_event::ctx.
12028          */
12029         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12030         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12031                                  event_entry) {
12032                 perf_remove_from_context(event, 0);
12033                 unaccount_event_cpu(event, src_cpu);
12034                 put_ctx(src_ctx);
12035                 list_add(&event->migrate_entry, &events);
12036         }
12037
12038         /*
12039          * Wait for the events to quiesce before re-instating them.
12040          */
12041         synchronize_rcu();
12042
12043         /*
12044          * Re-instate events in 2 passes.
12045          *
12046          * Skip over group leaders and only install siblings on this first
12047          * pass, siblings will not get enabled without a leader, however a
12048          * leader will enable its siblings, even if those are still on the old
12049          * context.
12050          */
12051         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12052                 if (event->group_leader == event)
12053                         continue;
12054
12055                 list_del(&event->migrate_entry);
12056                 if (event->state >= PERF_EVENT_STATE_OFF)
12057                         event->state = PERF_EVENT_STATE_INACTIVE;
12058                 account_event_cpu(event, dst_cpu);
12059                 perf_install_in_context(dst_ctx, event, dst_cpu);
12060                 get_ctx(dst_ctx);
12061         }
12062
12063         /*
12064          * Once all the siblings are setup properly, install the group leaders
12065          * to make it go.
12066          */
12067         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12068                 list_del(&event->migrate_entry);
12069                 if (event->state >= PERF_EVENT_STATE_OFF)
12070                         event->state = PERF_EVENT_STATE_INACTIVE;
12071                 account_event_cpu(event, dst_cpu);
12072                 perf_install_in_context(dst_ctx, event, dst_cpu);
12073                 get_ctx(dst_ctx);
12074         }
12075         mutex_unlock(&dst_ctx->mutex);
12076         mutex_unlock(&src_ctx->mutex);
12077 }
12078 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12079
12080 static void sync_child_event(struct perf_event *child_event,
12081                                struct task_struct *child)
12082 {
12083         struct perf_event *parent_event = child_event->parent;
12084         u64 child_val;
12085
12086         if (child_event->attr.inherit_stat)
12087                 perf_event_read_event(child_event, child);
12088
12089         child_val = perf_event_count(child_event);
12090
12091         /*
12092          * Add back the child's count to the parent's count:
12093          */
12094         atomic64_add(child_val, &parent_event->child_count);
12095         atomic64_add(child_event->total_time_enabled,
12096                      &parent_event->child_total_time_enabled);
12097         atomic64_add(child_event->total_time_running,
12098                      &parent_event->child_total_time_running);
12099 }
12100
12101 static void
12102 perf_event_exit_event(struct perf_event *child_event,
12103                       struct perf_event_context *child_ctx,
12104                       struct task_struct *child)
12105 {
12106         struct perf_event *parent_event = child_event->parent;
12107
12108         /*
12109          * Do not destroy the 'original' grouping; because of the context
12110          * switch optimization the original events could've ended up in a
12111          * random child task.
12112          *
12113          * If we were to destroy the original group, all group related
12114          * operations would cease to function properly after this random
12115          * child dies.
12116          *
12117          * Do destroy all inherited groups, we don't care about those
12118          * and being thorough is better.
12119          */
12120         raw_spin_lock_irq(&child_ctx->lock);
12121         WARN_ON_ONCE(child_ctx->is_active);
12122
12123         if (parent_event)
12124                 perf_group_detach(child_event);
12125         list_del_event(child_event, child_ctx);
12126         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12127         raw_spin_unlock_irq(&child_ctx->lock);
12128
12129         /*
12130          * Parent events are governed by their filedesc, retain them.
12131          */
12132         if (!parent_event) {
12133                 perf_event_wakeup(child_event);
12134                 return;
12135         }
12136         /*
12137          * Child events can be cleaned up.
12138          */
12139
12140         sync_child_event(child_event, child);
12141
12142         /*
12143          * Remove this event from the parent's list
12144          */
12145         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12146         mutex_lock(&parent_event->child_mutex);
12147         list_del_init(&child_event->child_list);
12148         mutex_unlock(&parent_event->child_mutex);
12149
12150         /*
12151          * Kick perf_poll() for is_event_hup().
12152          */
12153         perf_event_wakeup(parent_event);
12154         free_event(child_event);
12155         put_event(parent_event);
12156 }
12157
12158 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12159 {
12160         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12161         struct perf_event *child_event, *next;
12162
12163         WARN_ON_ONCE(child != current);
12164
12165         child_ctx = perf_pin_task_context(child, ctxn);
12166         if (!child_ctx)
12167                 return;
12168
12169         /*
12170          * In order to reduce the amount of tricky in ctx tear-down, we hold
12171          * ctx::mutex over the entire thing. This serializes against almost
12172          * everything that wants to access the ctx.
12173          *
12174          * The exception is sys_perf_event_open() /
12175          * perf_event_create_kernel_count() which does find_get_context()
12176          * without ctx::mutex (it cannot because of the move_group double mutex
12177          * lock thing). See the comments in perf_install_in_context().
12178          */
12179         mutex_lock(&child_ctx->mutex);
12180
12181         /*
12182          * In a single ctx::lock section, de-schedule the events and detach the
12183          * context from the task such that we cannot ever get it scheduled back
12184          * in.
12185          */
12186         raw_spin_lock_irq(&child_ctx->lock);
12187         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12188
12189         /*
12190          * Now that the context is inactive, destroy the task <-> ctx relation
12191          * and mark the context dead.
12192          */
12193         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12194         put_ctx(child_ctx); /* cannot be last */
12195         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12196         put_task_struct(current); /* cannot be last */
12197
12198         clone_ctx = unclone_ctx(child_ctx);
12199         raw_spin_unlock_irq(&child_ctx->lock);
12200
12201         if (clone_ctx)
12202                 put_ctx(clone_ctx);
12203
12204         /*
12205          * Report the task dead after unscheduling the events so that we
12206          * won't get any samples after PERF_RECORD_EXIT. We can however still
12207          * get a few PERF_RECORD_READ events.
12208          */
12209         perf_event_task(child, child_ctx, 0);
12210
12211         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12212                 perf_event_exit_event(child_event, child_ctx, child);
12213
12214         mutex_unlock(&child_ctx->mutex);
12215
12216         put_ctx(child_ctx);
12217 }
12218
12219 /*
12220  * When a child task exits, feed back event values to parent events.
12221  *
12222  * Can be called with exec_update_mutex held when called from
12223  * setup_new_exec().
12224  */
12225 void perf_event_exit_task(struct task_struct *child)
12226 {
12227         struct perf_event *event, *tmp;
12228         int ctxn;
12229
12230         mutex_lock(&child->perf_event_mutex);
12231         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12232                                  owner_entry) {
12233                 list_del_init(&event->owner_entry);
12234
12235                 /*
12236                  * Ensure the list deletion is visible before we clear
12237                  * the owner, closes a race against perf_release() where
12238                  * we need to serialize on the owner->perf_event_mutex.
12239                  */
12240                 smp_store_release(&event->owner, NULL);
12241         }
12242         mutex_unlock(&child->perf_event_mutex);
12243
12244         for_each_task_context_nr(ctxn)
12245                 perf_event_exit_task_context(child, ctxn);
12246
12247         /*
12248          * The perf_event_exit_task_context calls perf_event_task
12249          * with child's task_ctx, which generates EXIT events for
12250          * child contexts and sets child->perf_event_ctxp[] to NULL.
12251          * At this point we need to send EXIT events to cpu contexts.
12252          */
12253         perf_event_task(child, NULL, 0);
12254 }
12255
12256 static void perf_free_event(struct perf_event *event,
12257                             struct perf_event_context *ctx)
12258 {
12259         struct perf_event *parent = event->parent;
12260
12261         if (WARN_ON_ONCE(!parent))
12262                 return;
12263
12264         mutex_lock(&parent->child_mutex);
12265         list_del_init(&event->child_list);
12266         mutex_unlock(&parent->child_mutex);
12267
12268         put_event(parent);
12269
12270         raw_spin_lock_irq(&ctx->lock);
12271         perf_group_detach(event);
12272         list_del_event(event, ctx);
12273         raw_spin_unlock_irq(&ctx->lock);
12274         free_event(event);
12275 }
12276
12277 /*
12278  * Free a context as created by inheritance by perf_event_init_task() below,
12279  * used by fork() in case of fail.
12280  *
12281  * Even though the task has never lived, the context and events have been
12282  * exposed through the child_list, so we must take care tearing it all down.
12283  */
12284 void perf_event_free_task(struct task_struct *task)
12285 {
12286         struct perf_event_context *ctx;
12287         struct perf_event *event, *tmp;
12288         int ctxn;
12289
12290         for_each_task_context_nr(ctxn) {
12291                 ctx = task->perf_event_ctxp[ctxn];
12292                 if (!ctx)
12293                         continue;
12294
12295                 mutex_lock(&ctx->mutex);
12296                 raw_spin_lock_irq(&ctx->lock);
12297                 /*
12298                  * Destroy the task <-> ctx relation and mark the context dead.
12299                  *
12300                  * This is important because even though the task hasn't been
12301                  * exposed yet the context has been (through child_list).
12302                  */
12303                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12304                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12305                 put_task_struct(task); /* cannot be last */
12306                 raw_spin_unlock_irq(&ctx->lock);
12307
12308                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12309                         perf_free_event(event, ctx);
12310
12311                 mutex_unlock(&ctx->mutex);
12312
12313                 /*
12314                  * perf_event_release_kernel() could've stolen some of our
12315                  * child events and still have them on its free_list. In that
12316                  * case we must wait for these events to have been freed (in
12317                  * particular all their references to this task must've been
12318                  * dropped).
12319                  *
12320                  * Without this copy_process() will unconditionally free this
12321                  * task (irrespective of its reference count) and
12322                  * _free_event()'s put_task_struct(event->hw.target) will be a
12323                  * use-after-free.
12324                  *
12325                  * Wait for all events to drop their context reference.
12326                  */
12327                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12328                 put_ctx(ctx); /* must be last */
12329         }
12330 }
12331
12332 void perf_event_delayed_put(struct task_struct *task)
12333 {
12334         int ctxn;
12335
12336         for_each_task_context_nr(ctxn)
12337                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12338 }
12339
12340 struct file *perf_event_get(unsigned int fd)
12341 {
12342         struct file *file = fget(fd);
12343         if (!file)
12344                 return ERR_PTR(-EBADF);
12345
12346         if (file->f_op != &perf_fops) {
12347                 fput(file);
12348                 return ERR_PTR(-EBADF);
12349         }
12350
12351         return file;
12352 }
12353
12354 const struct perf_event *perf_get_event(struct file *file)
12355 {
12356         if (file->f_op != &perf_fops)
12357                 return ERR_PTR(-EINVAL);
12358
12359         return file->private_data;
12360 }
12361
12362 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12363 {
12364         if (!event)
12365                 return ERR_PTR(-EINVAL);
12366
12367         return &event->attr;
12368 }
12369
12370 /*
12371  * Inherit an event from parent task to child task.
12372  *
12373  * Returns:
12374  *  - valid pointer on success
12375  *  - NULL for orphaned events
12376  *  - IS_ERR() on error
12377  */
12378 static struct perf_event *
12379 inherit_event(struct perf_event *parent_event,
12380               struct task_struct *parent,
12381               struct perf_event_context *parent_ctx,
12382               struct task_struct *child,
12383               struct perf_event *group_leader,
12384               struct perf_event_context *child_ctx)
12385 {
12386         enum perf_event_state parent_state = parent_event->state;
12387         struct perf_event *child_event;
12388         unsigned long flags;
12389
12390         /*
12391          * Instead of creating recursive hierarchies of events,
12392          * we link inherited events back to the original parent,
12393          * which has a filp for sure, which we use as the reference
12394          * count:
12395          */
12396         if (parent_event->parent)
12397                 parent_event = parent_event->parent;
12398
12399         child_event = perf_event_alloc(&parent_event->attr,
12400                                            parent_event->cpu,
12401                                            child,
12402                                            group_leader, parent_event,
12403                                            NULL, NULL, -1);
12404         if (IS_ERR(child_event))
12405                 return child_event;
12406
12407
12408         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12409             !child_ctx->task_ctx_data) {
12410                 struct pmu *pmu = child_event->pmu;
12411
12412                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12413                                                    GFP_KERNEL);
12414                 if (!child_ctx->task_ctx_data) {
12415                         free_event(child_event);
12416                         return ERR_PTR(-ENOMEM);
12417                 }
12418         }
12419
12420         /*
12421          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12422          * must be under the same lock in order to serialize against
12423          * perf_event_release_kernel(), such that either we must observe
12424          * is_orphaned_event() or they will observe us on the child_list.
12425          */
12426         mutex_lock(&parent_event->child_mutex);
12427         if (is_orphaned_event(parent_event) ||
12428             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12429                 mutex_unlock(&parent_event->child_mutex);
12430                 /* task_ctx_data is freed with child_ctx */
12431                 free_event(child_event);
12432                 return NULL;
12433         }
12434
12435         get_ctx(child_ctx);
12436
12437         /*
12438          * Make the child state follow the state of the parent event,
12439          * not its attr.disabled bit.  We hold the parent's mutex,
12440          * so we won't race with perf_event_{en, dis}able_family.
12441          */
12442         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12443                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12444         else
12445                 child_event->state = PERF_EVENT_STATE_OFF;
12446
12447         if (parent_event->attr.freq) {
12448                 u64 sample_period = parent_event->hw.sample_period;
12449                 struct hw_perf_event *hwc = &child_event->hw;
12450
12451                 hwc->sample_period = sample_period;
12452                 hwc->last_period   = sample_period;
12453
12454                 local64_set(&hwc->period_left, sample_period);
12455         }
12456
12457         child_event->ctx = child_ctx;
12458         child_event->overflow_handler = parent_event->overflow_handler;
12459         child_event->overflow_handler_context
12460                 = parent_event->overflow_handler_context;
12461
12462         /*
12463          * Precalculate sample_data sizes
12464          */
12465         perf_event__header_size(child_event);
12466         perf_event__id_header_size(child_event);
12467
12468         /*
12469          * Link it up in the child's context:
12470          */
12471         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12472         add_event_to_ctx(child_event, child_ctx);
12473         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12474
12475         /*
12476          * Link this into the parent event's child list
12477          */
12478         list_add_tail(&child_event->child_list, &parent_event->child_list);
12479         mutex_unlock(&parent_event->child_mutex);
12480
12481         return child_event;
12482 }
12483
12484 /*
12485  * Inherits an event group.
12486  *
12487  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12488  * This matches with perf_event_release_kernel() removing all child events.
12489  *
12490  * Returns:
12491  *  - 0 on success
12492  *  - <0 on error
12493  */
12494 static int inherit_group(struct perf_event *parent_event,
12495               struct task_struct *parent,
12496               struct perf_event_context *parent_ctx,
12497               struct task_struct *child,
12498               struct perf_event_context *child_ctx)
12499 {
12500         struct perf_event *leader;
12501         struct perf_event *sub;
12502         struct perf_event *child_ctr;
12503
12504         leader = inherit_event(parent_event, parent, parent_ctx,
12505                                  child, NULL, child_ctx);
12506         if (IS_ERR(leader))
12507                 return PTR_ERR(leader);
12508         /*
12509          * @leader can be NULL here because of is_orphaned_event(). In this
12510          * case inherit_event() will create individual events, similar to what
12511          * perf_group_detach() would do anyway.
12512          */
12513         for_each_sibling_event(sub, parent_event) {
12514                 child_ctr = inherit_event(sub, parent, parent_ctx,
12515                                             child, leader, child_ctx);
12516                 if (IS_ERR(child_ctr))
12517                         return PTR_ERR(child_ctr);
12518
12519                 if (sub->aux_event == parent_event && child_ctr &&
12520                     !perf_get_aux_event(child_ctr, leader))
12521                         return -EINVAL;
12522         }
12523         return 0;
12524 }
12525
12526 /*
12527  * Creates the child task context and tries to inherit the event-group.
12528  *
12529  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12530  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12531  * consistent with perf_event_release_kernel() removing all child events.
12532  *
12533  * Returns:
12534  *  - 0 on success
12535  *  - <0 on error
12536  */
12537 static int
12538 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12539                    struct perf_event_context *parent_ctx,
12540                    struct task_struct *child, int ctxn,
12541                    int *inherited_all)
12542 {
12543         int ret;
12544         struct perf_event_context *child_ctx;
12545
12546         if (!event->attr.inherit) {
12547                 *inherited_all = 0;
12548                 return 0;
12549         }
12550
12551         child_ctx = child->perf_event_ctxp[ctxn];
12552         if (!child_ctx) {
12553                 /*
12554                  * This is executed from the parent task context, so
12555                  * inherit events that have been marked for cloning.
12556                  * First allocate and initialize a context for the
12557                  * child.
12558                  */
12559                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12560                 if (!child_ctx)
12561                         return -ENOMEM;
12562
12563                 child->perf_event_ctxp[ctxn] = child_ctx;
12564         }
12565
12566         ret = inherit_group(event, parent, parent_ctx,
12567                             child, child_ctx);
12568
12569         if (ret)
12570                 *inherited_all = 0;
12571
12572         return ret;
12573 }
12574
12575 /*
12576  * Initialize the perf_event context in task_struct
12577  */
12578 static int perf_event_init_context(struct task_struct *child, int ctxn)
12579 {
12580         struct perf_event_context *child_ctx, *parent_ctx;
12581         struct perf_event_context *cloned_ctx;
12582         struct perf_event *event;
12583         struct task_struct *parent = current;
12584         int inherited_all = 1;
12585         unsigned long flags;
12586         int ret = 0;
12587
12588         if (likely(!parent->perf_event_ctxp[ctxn]))
12589                 return 0;
12590
12591         /*
12592          * If the parent's context is a clone, pin it so it won't get
12593          * swapped under us.
12594          */
12595         parent_ctx = perf_pin_task_context(parent, ctxn);
12596         if (!parent_ctx)
12597                 return 0;
12598
12599         /*
12600          * No need to check if parent_ctx != NULL here; since we saw
12601          * it non-NULL earlier, the only reason for it to become NULL
12602          * is if we exit, and since we're currently in the middle of
12603          * a fork we can't be exiting at the same time.
12604          */
12605
12606         /*
12607          * Lock the parent list. No need to lock the child - not PID
12608          * hashed yet and not running, so nobody can access it.
12609          */
12610         mutex_lock(&parent_ctx->mutex);
12611
12612         /*
12613          * We dont have to disable NMIs - we are only looking at
12614          * the list, not manipulating it:
12615          */
12616         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12617                 ret = inherit_task_group(event, parent, parent_ctx,
12618                                          child, ctxn, &inherited_all);
12619                 if (ret)
12620                         goto out_unlock;
12621         }
12622
12623         /*
12624          * We can't hold ctx->lock when iterating the ->flexible_group list due
12625          * to allocations, but we need to prevent rotation because
12626          * rotate_ctx() will change the list from interrupt context.
12627          */
12628         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12629         parent_ctx->rotate_disable = 1;
12630         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12631
12632         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12633                 ret = inherit_task_group(event, parent, parent_ctx,
12634                                          child, ctxn, &inherited_all);
12635                 if (ret)
12636                         goto out_unlock;
12637         }
12638
12639         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12640         parent_ctx->rotate_disable = 0;
12641
12642         child_ctx = child->perf_event_ctxp[ctxn];
12643
12644         if (child_ctx && inherited_all) {
12645                 /*
12646                  * Mark the child context as a clone of the parent
12647                  * context, or of whatever the parent is a clone of.
12648                  *
12649                  * Note that if the parent is a clone, the holding of
12650                  * parent_ctx->lock avoids it from being uncloned.
12651                  */
12652                 cloned_ctx = parent_ctx->parent_ctx;
12653                 if (cloned_ctx) {
12654                         child_ctx->parent_ctx = cloned_ctx;
12655                         child_ctx->parent_gen = parent_ctx->parent_gen;
12656                 } else {
12657                         child_ctx->parent_ctx = parent_ctx;
12658                         child_ctx->parent_gen = parent_ctx->generation;
12659                 }
12660                 get_ctx(child_ctx->parent_ctx);
12661         }
12662
12663         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12664 out_unlock:
12665         mutex_unlock(&parent_ctx->mutex);
12666
12667         perf_unpin_context(parent_ctx);
12668         put_ctx(parent_ctx);
12669
12670         return ret;
12671 }
12672
12673 /*
12674  * Initialize the perf_event context in task_struct
12675  */
12676 int perf_event_init_task(struct task_struct *child)
12677 {
12678         int ctxn, ret;
12679
12680         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12681         mutex_init(&child->perf_event_mutex);
12682         INIT_LIST_HEAD(&child->perf_event_list);
12683
12684         for_each_task_context_nr(ctxn) {
12685                 ret = perf_event_init_context(child, ctxn);
12686                 if (ret) {
12687                         perf_event_free_task(child);
12688                         return ret;
12689                 }
12690         }
12691
12692         return 0;
12693 }
12694
12695 static void __init perf_event_init_all_cpus(void)
12696 {
12697         struct swevent_htable *swhash;
12698         int cpu;
12699
12700         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12701
12702         for_each_possible_cpu(cpu) {
12703                 swhash = &per_cpu(swevent_htable, cpu);
12704                 mutex_init(&swhash->hlist_mutex);
12705                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12706
12707                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12708                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12709
12710 #ifdef CONFIG_CGROUP_PERF
12711                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12712 #endif
12713                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12714         }
12715 }
12716
12717 static void perf_swevent_init_cpu(unsigned int cpu)
12718 {
12719         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12720
12721         mutex_lock(&swhash->hlist_mutex);
12722         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12723                 struct swevent_hlist *hlist;
12724
12725                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12726                 WARN_ON(!hlist);
12727                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12728         }
12729         mutex_unlock(&swhash->hlist_mutex);
12730 }
12731
12732 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12733 static void __perf_event_exit_context(void *__info)
12734 {
12735         struct perf_event_context *ctx = __info;
12736         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12737         struct perf_event *event;
12738
12739         raw_spin_lock(&ctx->lock);
12740         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12741         list_for_each_entry(event, &ctx->event_list, event_entry)
12742                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12743         raw_spin_unlock(&ctx->lock);
12744 }
12745
12746 static void perf_event_exit_cpu_context(int cpu)
12747 {
12748         struct perf_cpu_context *cpuctx;
12749         struct perf_event_context *ctx;
12750         struct pmu *pmu;
12751
12752         mutex_lock(&pmus_lock);
12753         list_for_each_entry(pmu, &pmus, entry) {
12754                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12755                 ctx = &cpuctx->ctx;
12756
12757                 mutex_lock(&ctx->mutex);
12758                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12759                 cpuctx->online = 0;
12760                 mutex_unlock(&ctx->mutex);
12761         }
12762         cpumask_clear_cpu(cpu, perf_online_mask);
12763         mutex_unlock(&pmus_lock);
12764 }
12765 #else
12766
12767 static void perf_event_exit_cpu_context(int cpu) { }
12768
12769 #endif
12770
12771 int perf_event_init_cpu(unsigned int cpu)
12772 {
12773         struct perf_cpu_context *cpuctx;
12774         struct perf_event_context *ctx;
12775         struct pmu *pmu;
12776
12777         perf_swevent_init_cpu(cpu);
12778
12779         mutex_lock(&pmus_lock);
12780         cpumask_set_cpu(cpu, perf_online_mask);
12781         list_for_each_entry(pmu, &pmus, entry) {
12782                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12783                 ctx = &cpuctx->ctx;
12784
12785                 mutex_lock(&ctx->mutex);
12786                 cpuctx->online = 1;
12787                 mutex_unlock(&ctx->mutex);
12788         }
12789         mutex_unlock(&pmus_lock);
12790
12791         return 0;
12792 }
12793
12794 int perf_event_exit_cpu(unsigned int cpu)
12795 {
12796         perf_event_exit_cpu_context(cpu);
12797         return 0;
12798 }
12799
12800 static int
12801 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12802 {
12803         int cpu;
12804
12805         for_each_online_cpu(cpu)
12806                 perf_event_exit_cpu(cpu);
12807
12808         return NOTIFY_OK;
12809 }
12810
12811 /*
12812  * Run the perf reboot notifier at the very last possible moment so that
12813  * the generic watchdog code runs as long as possible.
12814  */
12815 static struct notifier_block perf_reboot_notifier = {
12816         .notifier_call = perf_reboot,
12817         .priority = INT_MIN,
12818 };
12819
12820 void __init perf_event_init(void)
12821 {
12822         int ret;
12823
12824         idr_init(&pmu_idr);
12825
12826         perf_event_init_all_cpus();
12827         init_srcu_struct(&pmus_srcu);
12828         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12829         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12830         perf_pmu_register(&perf_task_clock, NULL, -1);
12831         perf_tp_register();
12832         perf_event_init_cpu(smp_processor_id());
12833         register_reboot_notifier(&perf_reboot_notifier);
12834
12835         ret = init_hw_breakpoint();
12836         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12837
12838         /*
12839          * Build time assertion that we keep the data_head at the intended
12840          * location.  IOW, validation we got the __reserved[] size right.
12841          */
12842         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12843                      != 1024);
12844 }
12845
12846 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12847                               char *page)
12848 {
12849         struct perf_pmu_events_attr *pmu_attr =
12850                 container_of(attr, struct perf_pmu_events_attr, attr);
12851
12852         if (pmu_attr->event_str)
12853                 return sprintf(page, "%s\n", pmu_attr->event_str);
12854
12855         return 0;
12856 }
12857 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12858
12859 static int __init perf_event_sysfs_init(void)
12860 {
12861         struct pmu *pmu;
12862         int ret;
12863
12864         mutex_lock(&pmus_lock);
12865
12866         ret = bus_register(&pmu_bus);
12867         if (ret)
12868                 goto unlock;
12869
12870         list_for_each_entry(pmu, &pmus, entry) {
12871                 if (!pmu->name || pmu->type < 0)
12872                         continue;
12873
12874                 ret = pmu_dev_alloc(pmu);
12875                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12876         }
12877         pmu_bus_running = 1;
12878         ret = 0;
12879
12880 unlock:
12881         mutex_unlock(&pmus_lock);
12882
12883         return ret;
12884 }
12885 device_initcall(perf_event_sysfs_init);
12886
12887 #ifdef CONFIG_CGROUP_PERF
12888 static struct cgroup_subsys_state *
12889 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12890 {
12891         struct perf_cgroup *jc;
12892
12893         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12894         if (!jc)
12895                 return ERR_PTR(-ENOMEM);
12896
12897         jc->info = alloc_percpu(struct perf_cgroup_info);
12898         if (!jc->info) {
12899                 kfree(jc);
12900                 return ERR_PTR(-ENOMEM);
12901         }
12902
12903         return &jc->css;
12904 }
12905
12906 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12907 {
12908         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12909
12910         free_percpu(jc->info);
12911         kfree(jc);
12912 }
12913
12914 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12915 {
12916         perf_event_cgroup(css->cgroup);
12917         return 0;
12918 }
12919
12920 static int __perf_cgroup_move(void *info)
12921 {
12922         struct task_struct *task = info;
12923         rcu_read_lock();
12924         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12925         rcu_read_unlock();
12926         return 0;
12927 }
12928
12929 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12930 {
12931         struct task_struct *task;
12932         struct cgroup_subsys_state *css;
12933
12934         cgroup_taskset_for_each(task, css, tset)
12935                 task_function_call(task, __perf_cgroup_move, task);
12936 }
12937
12938 struct cgroup_subsys perf_event_cgrp_subsys = {
12939         .css_alloc      = perf_cgroup_css_alloc,
12940         .css_free       = perf_cgroup_css_free,
12941         .css_online     = perf_cgroup_css_online,
12942         .attach         = perf_cgroup_attach,
12943         /*
12944          * Implicitly enable on dfl hierarchy so that perf events can
12945          * always be filtered by cgroup2 path as long as perf_event
12946          * controller is not mounted on a legacy hierarchy.
12947          */
12948         .implicit_on_dfl = true,
12949         .threaded       = true,
12950 };
12951 #endif /* CONFIG_CGROUP_PERF */