dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type);
578
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581
582 void __weak perf_event_print_debug(void)        { }
583
584 static inline u64 perf_clock(void)
585 {
586         return local_clock();
587 }
588
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591         return event->clock();
592 }
593
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619         struct perf_event *leader = event->group_leader;
620
621         if (leader->state <= PERF_EVENT_STATE_OFF)
622                 return leader->state;
623
624         return event->state;
625 }
626
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630         enum perf_event_state state = __perf_effective_state(event);
631         u64 delta = now - event->tstamp;
632
633         *enabled = event->total_time_enabled;
634         if (state >= PERF_EVENT_STATE_INACTIVE)
635                 *enabled += delta;
636
637         *running = event->total_time_running;
638         if (state >= PERF_EVENT_STATE_ACTIVE)
639                 *running += delta;
640 }
641
642 static void perf_event_update_time(struct perf_event *event)
643 {
644         u64 now = perf_event_time(event);
645
646         __perf_update_times(event, now, &event->total_time_enabled,
647                                         &event->total_time_running);
648         event->tstamp = now;
649 }
650
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653         struct perf_event *sibling;
654
655         for_each_sibling_event(sibling, leader)
656                 perf_event_update_time(sibling);
657 }
658
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662         if (event->state == state)
663                 return;
664
665         perf_event_update_time(event);
666         /*
667          * If a group leader gets enabled/disabled all its siblings
668          * are affected too.
669          */
670         if ((event->state < 0) ^ (state < 0))
671                 perf_event_update_sibling_time(event);
672
673         WRITE_ONCE(event->state, state);
674 }
675
676 /*
677  * UP store-release, load-acquire
678  */
679
680 #define __store_release(ptr, val)                                       \
681 do {                                                                    \
682         barrier();                                                      \
683         WRITE_ONCE(*(ptr), (val));                                      \
684 } while (0)
685
686 #define __load_acquire(ptr)                                             \
687 ({                                                                      \
688         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
689         barrier();                                                      \
690         ___p;                                                           \
691 })
692
693 #ifdef CONFIG_CGROUP_PERF
694
695 static inline bool
696 perf_cgroup_match(struct perf_event *event)
697 {
698         struct perf_event_context *ctx = event->ctx;
699         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700
701         /* @event doesn't care about cgroup */
702         if (!event->cgrp)
703                 return true;
704
705         /* wants specific cgroup scope but @cpuctx isn't associated with any */
706         if (!cpuctx->cgrp)
707                 return false;
708
709         /*
710          * Cgroup scoping is recursive.  An event enabled for a cgroup is
711          * also enabled for all its descendant cgroups.  If @cpuctx's
712          * cgroup is a descendant of @event's (the test covers identity
713          * case), it's a match.
714          */
715         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
716                                     event->cgrp->css.cgroup);
717 }
718
719 static inline void perf_detach_cgroup(struct perf_event *event)
720 {
721         css_put(&event->cgrp->css);
722         event->cgrp = NULL;
723 }
724
725 static inline int is_cgroup_event(struct perf_event *event)
726 {
727         return event->cgrp != NULL;
728 }
729
730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
731 {
732         struct perf_cgroup_info *t;
733
734         t = per_cpu_ptr(event->cgrp->info, event->cpu);
735         return t->time;
736 }
737
738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
739 {
740         struct perf_cgroup_info *t;
741
742         t = per_cpu_ptr(event->cgrp->info, event->cpu);
743         if (!__load_acquire(&t->active))
744                 return t->time;
745         now += READ_ONCE(t->timeoffset);
746         return now;
747 }
748
749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
750 {
751         if (adv)
752                 info->time += now - info->timestamp;
753         info->timestamp = now;
754         /*
755          * see update_context_time()
756          */
757         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
758 }
759
760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
761 {
762         struct perf_cgroup *cgrp = cpuctx->cgrp;
763         struct cgroup_subsys_state *css;
764         struct perf_cgroup_info *info;
765
766         if (cgrp) {
767                 u64 now = perf_clock();
768
769                 for (css = &cgrp->css; css; css = css->parent) {
770                         cgrp = container_of(css, struct perf_cgroup, css);
771                         info = this_cpu_ptr(cgrp->info);
772
773                         __update_cgrp_time(info, now, true);
774                         if (final)
775                                 __store_release(&info->active, 0);
776                 }
777         }
778 }
779
780 static inline void update_cgrp_time_from_event(struct perf_event *event)
781 {
782         struct perf_cgroup_info *info;
783
784         /*
785          * ensure we access cgroup data only when needed and
786          * when we know the cgroup is pinned (css_get)
787          */
788         if (!is_cgroup_event(event))
789                 return;
790
791         info = this_cpu_ptr(event->cgrp->info);
792         /*
793          * Do not update time when cgroup is not active
794          */
795         if (info->active)
796                 __update_cgrp_time(info, perf_clock(), true);
797 }
798
799 static inline void
800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
801 {
802         struct perf_event_context *ctx = &cpuctx->ctx;
803         struct perf_cgroup *cgrp = cpuctx->cgrp;
804         struct perf_cgroup_info *info;
805         struct cgroup_subsys_state *css;
806
807         /*
808          * ctx->lock held by caller
809          * ensure we do not access cgroup data
810          * unless we have the cgroup pinned (css_get)
811          */
812         if (!cgrp)
813                 return;
814
815         WARN_ON_ONCE(!ctx->nr_cgroups);
816
817         for (css = &cgrp->css; css; css = css->parent) {
818                 cgrp = container_of(css, struct perf_cgroup, css);
819                 info = this_cpu_ptr(cgrp->info);
820                 __update_cgrp_time(info, ctx->timestamp, false);
821                 __store_release(&info->active, 1);
822         }
823 }
824
825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
826
827 /*
828  * reschedule events based on the cgroup constraint of task.
829  */
830 static void perf_cgroup_switch(struct task_struct *task)
831 {
832         struct perf_cgroup *cgrp;
833         struct perf_cpu_context *cpuctx, *tmp;
834         struct list_head *list;
835         unsigned long flags;
836
837         /*
838          * Disable interrupts and preemption to avoid this CPU's
839          * cgrp_cpuctx_entry to change under us.
840          */
841         local_irq_save(flags);
842
843         cgrp = perf_cgroup_from_task(task, NULL);
844
845         list = this_cpu_ptr(&cgrp_cpuctx_list);
846         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
847                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
848                 if (READ_ONCE(cpuctx->cgrp) == cgrp)
849                         continue;
850
851                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
852                 perf_pmu_disable(cpuctx->ctx.pmu);
853
854                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
855                 /*
856                  * must not be done before ctxswout due
857                  * to update_cgrp_time_from_cpuctx() in
858                  * ctx_sched_out()
859                  */
860                 cpuctx->cgrp = cgrp;
861                 /*
862                  * set cgrp before ctxsw in to allow
863                  * perf_cgroup_set_timestamp() in ctx_sched_in()
864                  * to not have to pass task around
865                  */
866                 cpu_ctx_sched_in(cpuctx, EVENT_ALL);
867
868                 perf_pmu_enable(cpuctx->ctx.pmu);
869                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
870         }
871
872         local_irq_restore(flags);
873 }
874
875 static int perf_cgroup_ensure_storage(struct perf_event *event,
876                                 struct cgroup_subsys_state *css)
877 {
878         struct perf_cpu_context *cpuctx;
879         struct perf_event **storage;
880         int cpu, heap_size, ret = 0;
881
882         /*
883          * Allow storage to have sufficent space for an iterator for each
884          * possibly nested cgroup plus an iterator for events with no cgroup.
885          */
886         for (heap_size = 1; css; css = css->parent)
887                 heap_size++;
888
889         for_each_possible_cpu(cpu) {
890                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
891                 if (heap_size <= cpuctx->heap_size)
892                         continue;
893
894                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
895                                        GFP_KERNEL, cpu_to_node(cpu));
896                 if (!storage) {
897                         ret = -ENOMEM;
898                         break;
899                 }
900
901                 raw_spin_lock_irq(&cpuctx->ctx.lock);
902                 if (cpuctx->heap_size < heap_size) {
903                         swap(cpuctx->heap, storage);
904                         if (storage == cpuctx->heap_default)
905                                 storage = NULL;
906                         cpuctx->heap_size = heap_size;
907                 }
908                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
909
910                 kfree(storage);
911         }
912
913         return ret;
914 }
915
916 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
917                                       struct perf_event_attr *attr,
918                                       struct perf_event *group_leader)
919 {
920         struct perf_cgroup *cgrp;
921         struct cgroup_subsys_state *css;
922         struct fd f = fdget(fd);
923         int ret = 0;
924
925         if (!f.file)
926                 return -EBADF;
927
928         css = css_tryget_online_from_dir(f.file->f_path.dentry,
929                                          &perf_event_cgrp_subsys);
930         if (IS_ERR(css)) {
931                 ret = PTR_ERR(css);
932                 goto out;
933         }
934
935         ret = perf_cgroup_ensure_storage(event, css);
936         if (ret)
937                 goto out;
938
939         cgrp = container_of(css, struct perf_cgroup, css);
940         event->cgrp = cgrp;
941
942         /*
943          * all events in a group must monitor
944          * the same cgroup because a task belongs
945          * to only one perf cgroup at a time
946          */
947         if (group_leader && group_leader->cgrp != cgrp) {
948                 perf_detach_cgroup(event);
949                 ret = -EINVAL;
950         }
951 out:
952         fdput(f);
953         return ret;
954 }
955
956 static inline void
957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
958 {
959         struct perf_cpu_context *cpuctx;
960
961         if (!is_cgroup_event(event))
962                 return;
963
964         /*
965          * Because cgroup events are always per-cpu events,
966          * @ctx == &cpuctx->ctx.
967          */
968         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
969
970         if (ctx->nr_cgroups++)
971                 return;
972
973         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
974         list_add(&cpuctx->cgrp_cpuctx_entry,
975                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
976 }
977
978 static inline void
979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
980 {
981         struct perf_cpu_context *cpuctx;
982
983         if (!is_cgroup_event(event))
984                 return;
985
986         /*
987          * Because cgroup events are always per-cpu events,
988          * @ctx == &cpuctx->ctx.
989          */
990         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
991
992         if (--ctx->nr_cgroups)
993                 return;
994
995         cpuctx->cgrp = NULL;
996         list_del(&cpuctx->cgrp_cpuctx_entry);
997 }
998
999 #else /* !CONFIG_CGROUP_PERF */
1000
1001 static inline bool
1002 perf_cgroup_match(struct perf_event *event)
1003 {
1004         return true;
1005 }
1006
1007 static inline void perf_detach_cgroup(struct perf_event *event)
1008 {}
1009
1010 static inline int is_cgroup_event(struct perf_event *event)
1011 {
1012         return 0;
1013 }
1014
1015 static inline void update_cgrp_time_from_event(struct perf_event *event)
1016 {
1017 }
1018
1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1020                                                 bool final)
1021 {
1022 }
1023
1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1025                                       struct perf_event_attr *attr,
1026                                       struct perf_event *group_leader)
1027 {
1028         return -EINVAL;
1029 }
1030
1031 static inline void
1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1033 {
1034 }
1035
1036 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1037 {
1038         return 0;
1039 }
1040
1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1042 {
1043         return 0;
1044 }
1045
1046 static inline void
1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1048 {
1049 }
1050
1051 static inline void
1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1053 {
1054 }
1055
1056 static void perf_cgroup_switch(struct task_struct *task)
1057 {
1058 }
1059 #endif
1060
1061 /*
1062  * set default to be dependent on timer tick just
1063  * like original code
1064  */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067  * function must be called with interrupts disabled
1068  */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071         struct perf_cpu_context *cpuctx;
1072         bool rotations;
1073
1074         lockdep_assert_irqs_disabled();
1075
1076         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077         rotations = perf_rotate_context(cpuctx);
1078
1079         raw_spin_lock(&cpuctx->hrtimer_lock);
1080         if (rotations)
1081                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082         else
1083                 cpuctx->hrtimer_active = 0;
1084         raw_spin_unlock(&cpuctx->hrtimer_lock);
1085
1086         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091         struct hrtimer *timer = &cpuctx->hrtimer;
1092         struct pmu *pmu = cpuctx->ctx.pmu;
1093         u64 interval;
1094
1095         /* no multiplexing needed for SW PMU */
1096         if (pmu->task_ctx_nr == perf_sw_context)
1097                 return;
1098
1099         /*
1100          * check default is sane, if not set then force to
1101          * default interval (1/tick)
1102          */
1103         interval = pmu->hrtimer_interval_ms;
1104         if (interval < 1)
1105                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106
1107         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108
1109         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1111         timer->function = perf_mux_hrtimer_handler;
1112 }
1113
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116         struct hrtimer *timer = &cpuctx->hrtimer;
1117         struct pmu *pmu = cpuctx->ctx.pmu;
1118         unsigned long flags;
1119
1120         /* not for SW PMU */
1121         if (pmu->task_ctx_nr == perf_sw_context)
1122                 return 0;
1123
1124         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125         if (!cpuctx->hrtimer_active) {
1126                 cpuctx->hrtimer_active = 1;
1127                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1129         }
1130         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131
1132         return 0;
1133 }
1134
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138         if (!(*count)++)
1139                 pmu->pmu_disable(pmu);
1140 }
1141
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145         if (!--(*count))
1146                 pmu->pmu_enable(pmu);
1147 }
1148
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150
1151 /*
1152  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153  * perf_event_task_tick() are fully serialized because they're strictly cpu
1154  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155  * disabled, while perf_event_task_tick is called from IRQ context.
1156  */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160
1161         lockdep_assert_irqs_disabled();
1162
1163         WARN_ON(!list_empty(&ctx->active_ctx_list));
1164
1165         list_add(&ctx->active_ctx_list, head);
1166 }
1167
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170         lockdep_assert_irqs_disabled();
1171
1172         WARN_ON(list_empty(&ctx->active_ctx_list));
1173
1174         list_del_init(&ctx->active_ctx_list);
1175 }
1176
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179         refcount_inc(&ctx->refcount);
1180 }
1181
1182 static void *alloc_task_ctx_data(struct pmu *pmu)
1183 {
1184         if (pmu->task_ctx_cache)
1185                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1186
1187         return NULL;
1188 }
1189
1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1191 {
1192         if (pmu->task_ctx_cache && task_ctx_data)
1193                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1194 }
1195
1196 static void free_ctx(struct rcu_head *head)
1197 {
1198         struct perf_event_context *ctx;
1199
1200         ctx = container_of(head, struct perf_event_context, rcu_head);
1201         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1202         kfree(ctx);
1203 }
1204
1205 static void put_ctx(struct perf_event_context *ctx)
1206 {
1207         if (refcount_dec_and_test(&ctx->refcount)) {
1208                 if (ctx->parent_ctx)
1209                         put_ctx(ctx->parent_ctx);
1210                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1211                         put_task_struct(ctx->task);
1212                 call_rcu(&ctx->rcu_head, free_ctx);
1213         }
1214 }
1215
1216 /*
1217  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1218  * perf_pmu_migrate_context() we need some magic.
1219  *
1220  * Those places that change perf_event::ctx will hold both
1221  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1222  *
1223  * Lock ordering is by mutex address. There are two other sites where
1224  * perf_event_context::mutex nests and those are:
1225  *
1226  *  - perf_event_exit_task_context()    [ child , 0 ]
1227  *      perf_event_exit_event()
1228  *        put_event()                   [ parent, 1 ]
1229  *
1230  *  - perf_event_init_context()         [ parent, 0 ]
1231  *      inherit_task_group()
1232  *        inherit_group()
1233  *          inherit_event()
1234  *            perf_event_alloc()
1235  *              perf_init_event()
1236  *                perf_try_init_event() [ child , 1 ]
1237  *
1238  * While it appears there is an obvious deadlock here -- the parent and child
1239  * nesting levels are inverted between the two. This is in fact safe because
1240  * life-time rules separate them. That is an exiting task cannot fork, and a
1241  * spawning task cannot (yet) exit.
1242  *
1243  * But remember that these are parent<->child context relations, and
1244  * migration does not affect children, therefore these two orderings should not
1245  * interact.
1246  *
1247  * The change in perf_event::ctx does not affect children (as claimed above)
1248  * because the sys_perf_event_open() case will install a new event and break
1249  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1250  * concerned with cpuctx and that doesn't have children.
1251  *
1252  * The places that change perf_event::ctx will issue:
1253  *
1254  *   perf_remove_from_context();
1255  *   synchronize_rcu();
1256  *   perf_install_in_context();
1257  *
1258  * to affect the change. The remove_from_context() + synchronize_rcu() should
1259  * quiesce the event, after which we can install it in the new location. This
1260  * means that only external vectors (perf_fops, prctl) can perturb the event
1261  * while in transit. Therefore all such accessors should also acquire
1262  * perf_event_context::mutex to serialize against this.
1263  *
1264  * However; because event->ctx can change while we're waiting to acquire
1265  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1266  * function.
1267  *
1268  * Lock order:
1269  *    exec_update_lock
1270  *      task_struct::perf_event_mutex
1271  *        perf_event_context::mutex
1272  *          perf_event::child_mutex;
1273  *            perf_event_context::lock
1274  *          perf_event::mmap_mutex
1275  *          mmap_lock
1276  *            perf_addr_filters_head::lock
1277  *
1278  *    cpu_hotplug_lock
1279  *      pmus_lock
1280  *        cpuctx->mutex / perf_event_context::mutex
1281  */
1282 static struct perf_event_context *
1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1284 {
1285         struct perf_event_context *ctx;
1286
1287 again:
1288         rcu_read_lock();
1289         ctx = READ_ONCE(event->ctx);
1290         if (!refcount_inc_not_zero(&ctx->refcount)) {
1291                 rcu_read_unlock();
1292                 goto again;
1293         }
1294         rcu_read_unlock();
1295
1296         mutex_lock_nested(&ctx->mutex, nesting);
1297         if (event->ctx != ctx) {
1298                 mutex_unlock(&ctx->mutex);
1299                 put_ctx(ctx);
1300                 goto again;
1301         }
1302
1303         return ctx;
1304 }
1305
1306 static inline struct perf_event_context *
1307 perf_event_ctx_lock(struct perf_event *event)
1308 {
1309         return perf_event_ctx_lock_nested(event, 0);
1310 }
1311
1312 static void perf_event_ctx_unlock(struct perf_event *event,
1313                                   struct perf_event_context *ctx)
1314 {
1315         mutex_unlock(&ctx->mutex);
1316         put_ctx(ctx);
1317 }
1318
1319 /*
1320  * This must be done under the ctx->lock, such as to serialize against
1321  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1322  * calling scheduler related locks and ctx->lock nests inside those.
1323  */
1324 static __must_check struct perf_event_context *
1325 unclone_ctx(struct perf_event_context *ctx)
1326 {
1327         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1328
1329         lockdep_assert_held(&ctx->lock);
1330
1331         if (parent_ctx)
1332                 ctx->parent_ctx = NULL;
1333         ctx->generation++;
1334
1335         return parent_ctx;
1336 }
1337
1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1339                                 enum pid_type type)
1340 {
1341         u32 nr;
1342         /*
1343          * only top level events have the pid namespace they were created in
1344          */
1345         if (event->parent)
1346                 event = event->parent;
1347
1348         nr = __task_pid_nr_ns(p, type, event->ns);
1349         /* avoid -1 if it is idle thread or runs in another ns */
1350         if (!nr && !pid_alive(p))
1351                 nr = -1;
1352         return nr;
1353 }
1354
1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1356 {
1357         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1358 }
1359
1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1361 {
1362         return perf_event_pid_type(event, p, PIDTYPE_PID);
1363 }
1364
1365 /*
1366  * If we inherit events we want to return the parent event id
1367  * to userspace.
1368  */
1369 static u64 primary_event_id(struct perf_event *event)
1370 {
1371         u64 id = event->id;
1372
1373         if (event->parent)
1374                 id = event->parent->id;
1375
1376         return id;
1377 }
1378
1379 /*
1380  * Get the perf_event_context for a task and lock it.
1381  *
1382  * This has to cope with the fact that until it is locked,
1383  * the context could get moved to another task.
1384  */
1385 static struct perf_event_context *
1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1387 {
1388         struct perf_event_context *ctx;
1389
1390 retry:
1391         /*
1392          * One of the few rules of preemptible RCU is that one cannot do
1393          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1394          * part of the read side critical section was irqs-enabled -- see
1395          * rcu_read_unlock_special().
1396          *
1397          * Since ctx->lock nests under rq->lock we must ensure the entire read
1398          * side critical section has interrupts disabled.
1399          */
1400         local_irq_save(*flags);
1401         rcu_read_lock();
1402         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1403         if (ctx) {
1404                 /*
1405                  * If this context is a clone of another, it might
1406                  * get swapped for another underneath us by
1407                  * perf_event_task_sched_out, though the
1408                  * rcu_read_lock() protects us from any context
1409                  * getting freed.  Lock the context and check if it
1410                  * got swapped before we could get the lock, and retry
1411                  * if so.  If we locked the right context, then it
1412                  * can't get swapped on us any more.
1413                  */
1414                 raw_spin_lock(&ctx->lock);
1415                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1416                         raw_spin_unlock(&ctx->lock);
1417                         rcu_read_unlock();
1418                         local_irq_restore(*flags);
1419                         goto retry;
1420                 }
1421
1422                 if (ctx->task == TASK_TOMBSTONE ||
1423                     !refcount_inc_not_zero(&ctx->refcount)) {
1424                         raw_spin_unlock(&ctx->lock);
1425                         ctx = NULL;
1426                 } else {
1427                         WARN_ON_ONCE(ctx->task != task);
1428                 }
1429         }
1430         rcu_read_unlock();
1431         if (!ctx)
1432                 local_irq_restore(*flags);
1433         return ctx;
1434 }
1435
1436 /*
1437  * Get the context for a task and increment its pin_count so it
1438  * can't get swapped to another task.  This also increments its
1439  * reference count so that the context can't get freed.
1440  */
1441 static struct perf_event_context *
1442 perf_pin_task_context(struct task_struct *task, int ctxn)
1443 {
1444         struct perf_event_context *ctx;
1445         unsigned long flags;
1446
1447         ctx = perf_lock_task_context(task, ctxn, &flags);
1448         if (ctx) {
1449                 ++ctx->pin_count;
1450                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451         }
1452         return ctx;
1453 }
1454
1455 static void perf_unpin_context(struct perf_event_context *ctx)
1456 {
1457         unsigned long flags;
1458
1459         raw_spin_lock_irqsave(&ctx->lock, flags);
1460         --ctx->pin_count;
1461         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1462 }
1463
1464 /*
1465  * Update the record of the current time in a context.
1466  */
1467 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1468 {
1469         u64 now = perf_clock();
1470
1471         if (adv)
1472                 ctx->time += now - ctx->timestamp;
1473         ctx->timestamp = now;
1474
1475         /*
1476          * The above: time' = time + (now - timestamp), can be re-arranged
1477          * into: time` = now + (time - timestamp), which gives a single value
1478          * offset to compute future time without locks on.
1479          *
1480          * See perf_event_time_now(), which can be used from NMI context where
1481          * it's (obviously) not possible to acquire ctx->lock in order to read
1482          * both the above values in a consistent manner.
1483          */
1484         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1485 }
1486
1487 static void update_context_time(struct perf_event_context *ctx)
1488 {
1489         __update_context_time(ctx, true);
1490 }
1491
1492 static u64 perf_event_time(struct perf_event *event)
1493 {
1494         struct perf_event_context *ctx = event->ctx;
1495
1496         if (unlikely(!ctx))
1497                 return 0;
1498
1499         if (is_cgroup_event(event))
1500                 return perf_cgroup_event_time(event);
1501
1502         return ctx->time;
1503 }
1504
1505 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1506 {
1507         struct perf_event_context *ctx = event->ctx;
1508
1509         if (unlikely(!ctx))
1510                 return 0;
1511
1512         if (is_cgroup_event(event))
1513                 return perf_cgroup_event_time_now(event, now);
1514
1515         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1516                 return ctx->time;
1517
1518         now += READ_ONCE(ctx->timeoffset);
1519         return now;
1520 }
1521
1522 static enum event_type_t get_event_type(struct perf_event *event)
1523 {
1524         struct perf_event_context *ctx = event->ctx;
1525         enum event_type_t event_type;
1526
1527         lockdep_assert_held(&ctx->lock);
1528
1529         /*
1530          * It's 'group type', really, because if our group leader is
1531          * pinned, so are we.
1532          */
1533         if (event->group_leader != event)
1534                 event = event->group_leader;
1535
1536         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1537         if (!ctx->task)
1538                 event_type |= EVENT_CPU;
1539
1540         return event_type;
1541 }
1542
1543 /*
1544  * Helper function to initialize event group nodes.
1545  */
1546 static void init_event_group(struct perf_event *event)
1547 {
1548         RB_CLEAR_NODE(&event->group_node);
1549         event->group_index = 0;
1550 }
1551
1552 /*
1553  * Extract pinned or flexible groups from the context
1554  * based on event attrs bits.
1555  */
1556 static struct perf_event_groups *
1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1558 {
1559         if (event->attr.pinned)
1560                 return &ctx->pinned_groups;
1561         else
1562                 return &ctx->flexible_groups;
1563 }
1564
1565 /*
1566  * Helper function to initializes perf_event_group trees.
1567  */
1568 static void perf_event_groups_init(struct perf_event_groups *groups)
1569 {
1570         groups->tree = RB_ROOT;
1571         groups->index = 0;
1572 }
1573
1574 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1575 {
1576         struct cgroup *cgroup = NULL;
1577
1578 #ifdef CONFIG_CGROUP_PERF
1579         if (event->cgrp)
1580                 cgroup = event->cgrp->css.cgroup;
1581 #endif
1582
1583         return cgroup;
1584 }
1585
1586 /*
1587  * Compare function for event groups;
1588  *
1589  * Implements complex key that first sorts by CPU and then by virtual index
1590  * which provides ordering when rotating groups for the same CPU.
1591  */
1592 static __always_inline int
1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1594                       const u64 left_group_index, const struct perf_event *right)
1595 {
1596         if (left_cpu < right->cpu)
1597                 return -1;
1598         if (left_cpu > right->cpu)
1599                 return 1;
1600
1601 #ifdef CONFIG_CGROUP_PERF
1602         {
1603                 const struct cgroup *right_cgroup = event_cgroup(right);
1604
1605                 if (left_cgroup != right_cgroup) {
1606                         if (!left_cgroup) {
1607                                 /*
1608                                  * Left has no cgroup but right does, no
1609                                  * cgroups come first.
1610                                  */
1611                                 return -1;
1612                         }
1613                         if (!right_cgroup) {
1614                                 /*
1615                                  * Right has no cgroup but left does, no
1616                                  * cgroups come first.
1617                                  */
1618                                 return 1;
1619                         }
1620                         /* Two dissimilar cgroups, order by id. */
1621                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1622                                 return -1;
1623
1624                         return 1;
1625                 }
1626         }
1627 #endif
1628
1629         if (left_group_index < right->group_index)
1630                 return -1;
1631         if (left_group_index > right->group_index)
1632                 return 1;
1633
1634         return 0;
1635 }
1636
1637 #define __node_2_pe(node) \
1638         rb_entry((node), struct perf_event, group_node)
1639
1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1641 {
1642         struct perf_event *e = __node_2_pe(a);
1643         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1644                                      __node_2_pe(b)) < 0;
1645 }
1646
1647 struct __group_key {
1648         int cpu;
1649         struct cgroup *cgroup;
1650 };
1651
1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654         const struct __group_key *a = key;
1655         const struct perf_event *b = __node_2_pe(node);
1656
1657         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1658         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1659 }
1660
1661 /*
1662  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1663  * key (see perf_event_groups_less). This places it last inside the CPU
1664  * subtree.
1665  */
1666 static void
1667 perf_event_groups_insert(struct perf_event_groups *groups,
1668                          struct perf_event *event)
1669 {
1670         event->group_index = ++groups->index;
1671
1672         rb_add(&event->group_node, &groups->tree, __group_less);
1673 }
1674
1675 /*
1676  * Helper function to insert event into the pinned or flexible groups.
1677  */
1678 static void
1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1680 {
1681         struct perf_event_groups *groups;
1682
1683         groups = get_event_groups(event, ctx);
1684         perf_event_groups_insert(groups, event);
1685 }
1686
1687 /*
1688  * Delete a group from a tree.
1689  */
1690 static void
1691 perf_event_groups_delete(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1695                      RB_EMPTY_ROOT(&groups->tree));
1696
1697         rb_erase(&event->group_node, &groups->tree);
1698         init_event_group(event);
1699 }
1700
1701 /*
1702  * Helper function to delete event from its groups.
1703  */
1704 static void
1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707         struct perf_event_groups *groups;
1708
1709         groups = get_event_groups(event, ctx);
1710         perf_event_groups_delete(groups, event);
1711 }
1712
1713 /*
1714  * Get the leftmost event in the cpu/cgroup subtree.
1715  */
1716 static struct perf_event *
1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1718                         struct cgroup *cgrp)
1719 {
1720         struct __group_key key = {
1721                 .cpu = cpu,
1722                 .cgroup = cgrp,
1723         };
1724         struct rb_node *node;
1725
1726         node = rb_find_first(&key, &groups->tree, __group_cmp);
1727         if (node)
1728                 return __node_2_pe(node);
1729
1730         return NULL;
1731 }
1732
1733 /*
1734  * Like rb_entry_next_safe() for the @cpu subtree.
1735  */
1736 static struct perf_event *
1737 perf_event_groups_next(struct perf_event *event)
1738 {
1739         struct __group_key key = {
1740                 .cpu = event->cpu,
1741                 .cgroup = event_cgroup(event),
1742         };
1743         struct rb_node *next;
1744
1745         next = rb_next_match(&key, &event->group_node, __group_cmp);
1746         if (next)
1747                 return __node_2_pe(next);
1748
1749         return NULL;
1750 }
1751
1752 /*
1753  * Iterate through the whole groups tree.
1754  */
1755 #define perf_event_groups_for_each(event, groups)                       \
1756         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1757                                 typeof(*event), group_node); event;     \
1758                 event = rb_entry_safe(rb_next(&event->group_node),      \
1759                                 typeof(*event), group_node))
1760
1761 /*
1762  * Add an event from the lists for its context.
1763  * Must be called with ctx->mutex and ctx->lock held.
1764  */
1765 static void
1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1767 {
1768         lockdep_assert_held(&ctx->lock);
1769
1770         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1771         event->attach_state |= PERF_ATTACH_CONTEXT;
1772
1773         event->tstamp = perf_event_time(event);
1774
1775         /*
1776          * If we're a stand alone event or group leader, we go to the context
1777          * list, group events are kept attached to the group so that
1778          * perf_group_detach can, at all times, locate all siblings.
1779          */
1780         if (event->group_leader == event) {
1781                 event->group_caps = event->event_caps;
1782                 add_event_to_groups(event, ctx);
1783         }
1784
1785         list_add_rcu(&event->event_entry, &ctx->event_list);
1786         ctx->nr_events++;
1787         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1788                 ctx->nr_user++;
1789         if (event->attr.inherit_stat)
1790                 ctx->nr_stat++;
1791
1792         if (event->state > PERF_EVENT_STATE_OFF)
1793                 perf_cgroup_event_enable(event, ctx);
1794
1795         ctx->generation++;
1796 }
1797
1798 /*
1799  * Initialize event state based on the perf_event_attr::disabled.
1800  */
1801 static inline void perf_event__state_init(struct perf_event *event)
1802 {
1803         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1804                                               PERF_EVENT_STATE_INACTIVE;
1805 }
1806
1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1808 {
1809         int entry = sizeof(u64); /* value */
1810         int size = 0;
1811         int nr = 1;
1812
1813         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1814                 size += sizeof(u64);
1815
1816         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1817                 size += sizeof(u64);
1818
1819         if (event->attr.read_format & PERF_FORMAT_ID)
1820                 entry += sizeof(u64);
1821
1822         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1823                 nr += nr_siblings;
1824                 size += sizeof(u64);
1825         }
1826
1827         size += entry * nr;
1828         event->read_size = size;
1829 }
1830
1831 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1832 {
1833         struct perf_sample_data *data;
1834         u16 size = 0;
1835
1836         if (sample_type & PERF_SAMPLE_IP)
1837                 size += sizeof(data->ip);
1838
1839         if (sample_type & PERF_SAMPLE_ADDR)
1840                 size += sizeof(data->addr);
1841
1842         if (sample_type & PERF_SAMPLE_PERIOD)
1843                 size += sizeof(data->period);
1844
1845         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1846                 size += sizeof(data->weight.full);
1847
1848         if (sample_type & PERF_SAMPLE_READ)
1849                 size += event->read_size;
1850
1851         if (sample_type & PERF_SAMPLE_DATA_SRC)
1852                 size += sizeof(data->data_src.val);
1853
1854         if (sample_type & PERF_SAMPLE_TRANSACTION)
1855                 size += sizeof(data->txn);
1856
1857         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1858                 size += sizeof(data->phys_addr);
1859
1860         if (sample_type & PERF_SAMPLE_CGROUP)
1861                 size += sizeof(data->cgroup);
1862
1863         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1864                 size += sizeof(data->data_page_size);
1865
1866         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1867                 size += sizeof(data->code_page_size);
1868
1869         event->header_size = size;
1870 }
1871
1872 /*
1873  * Called at perf_event creation and when events are attached/detached from a
1874  * group.
1875  */
1876 static void perf_event__header_size(struct perf_event *event)
1877 {
1878         __perf_event_read_size(event,
1879                                event->group_leader->nr_siblings);
1880         __perf_event_header_size(event, event->attr.sample_type);
1881 }
1882
1883 static void perf_event__id_header_size(struct perf_event *event)
1884 {
1885         struct perf_sample_data *data;
1886         u64 sample_type = event->attr.sample_type;
1887         u16 size = 0;
1888
1889         if (sample_type & PERF_SAMPLE_TID)
1890                 size += sizeof(data->tid_entry);
1891
1892         if (sample_type & PERF_SAMPLE_TIME)
1893                 size += sizeof(data->time);
1894
1895         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1896                 size += sizeof(data->id);
1897
1898         if (sample_type & PERF_SAMPLE_ID)
1899                 size += sizeof(data->id);
1900
1901         if (sample_type & PERF_SAMPLE_STREAM_ID)
1902                 size += sizeof(data->stream_id);
1903
1904         if (sample_type & PERF_SAMPLE_CPU)
1905                 size += sizeof(data->cpu_entry);
1906
1907         event->id_header_size = size;
1908 }
1909
1910 static bool perf_event_validate_size(struct perf_event *event)
1911 {
1912         /*
1913          * The values computed here will be over-written when we actually
1914          * attach the event.
1915          */
1916         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1917         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1918         perf_event__id_header_size(event);
1919
1920         /*
1921          * Sum the lot; should not exceed the 64k limit we have on records.
1922          * Conservative limit to allow for callchains and other variable fields.
1923          */
1924         if (event->read_size + event->header_size +
1925             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1926                 return false;
1927
1928         return true;
1929 }
1930
1931 static void perf_group_attach(struct perf_event *event)
1932 {
1933         struct perf_event *group_leader = event->group_leader, *pos;
1934
1935         lockdep_assert_held(&event->ctx->lock);
1936
1937         /*
1938          * We can have double attach due to group movement in perf_event_open.
1939          */
1940         if (event->attach_state & PERF_ATTACH_GROUP)
1941                 return;
1942
1943         event->attach_state |= PERF_ATTACH_GROUP;
1944
1945         if (group_leader == event)
1946                 return;
1947
1948         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1949
1950         group_leader->group_caps &= event->event_caps;
1951
1952         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1953         group_leader->nr_siblings++;
1954
1955         perf_event__header_size(group_leader);
1956
1957         for_each_sibling_event(pos, group_leader)
1958                 perf_event__header_size(pos);
1959 }
1960
1961 /*
1962  * Remove an event from the lists for its context.
1963  * Must be called with ctx->mutex and ctx->lock held.
1964  */
1965 static void
1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1967 {
1968         WARN_ON_ONCE(event->ctx != ctx);
1969         lockdep_assert_held(&ctx->lock);
1970
1971         /*
1972          * We can have double detach due to exit/hot-unplug + close.
1973          */
1974         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1975                 return;
1976
1977         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1978
1979         ctx->nr_events--;
1980         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1981                 ctx->nr_user--;
1982         if (event->attr.inherit_stat)
1983                 ctx->nr_stat--;
1984
1985         list_del_rcu(&event->event_entry);
1986
1987         if (event->group_leader == event)
1988                 del_event_from_groups(event, ctx);
1989
1990         /*
1991          * If event was in error state, then keep it
1992          * that way, otherwise bogus counts will be
1993          * returned on read(). The only way to get out
1994          * of error state is by explicit re-enabling
1995          * of the event
1996          */
1997         if (event->state > PERF_EVENT_STATE_OFF) {
1998                 perf_cgroup_event_disable(event, ctx);
1999                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2000         }
2001
2002         ctx->generation++;
2003 }
2004
2005 static int
2006 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2007 {
2008         if (!has_aux(aux_event))
2009                 return 0;
2010
2011         if (!event->pmu->aux_output_match)
2012                 return 0;
2013
2014         return event->pmu->aux_output_match(aux_event);
2015 }
2016
2017 static void put_event(struct perf_event *event);
2018 static void event_sched_out(struct perf_event *event,
2019                             struct perf_cpu_context *cpuctx,
2020                             struct perf_event_context *ctx);
2021
2022 static void perf_put_aux_event(struct perf_event *event)
2023 {
2024         struct perf_event_context *ctx = event->ctx;
2025         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2026         struct perf_event *iter;
2027
2028         /*
2029          * If event uses aux_event tear down the link
2030          */
2031         if (event->aux_event) {
2032                 iter = event->aux_event;
2033                 event->aux_event = NULL;
2034                 put_event(iter);
2035                 return;
2036         }
2037
2038         /*
2039          * If the event is an aux_event, tear down all links to
2040          * it from other events.
2041          */
2042         for_each_sibling_event(iter, event->group_leader) {
2043                 if (iter->aux_event != event)
2044                         continue;
2045
2046                 iter->aux_event = NULL;
2047                 put_event(event);
2048
2049                 /*
2050                  * If it's ACTIVE, schedule it out and put it into ERROR
2051                  * state so that we don't try to schedule it again. Note
2052                  * that perf_event_enable() will clear the ERROR status.
2053                  */
2054                 event_sched_out(iter, cpuctx, ctx);
2055                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2056         }
2057 }
2058
2059 static bool perf_need_aux_event(struct perf_event *event)
2060 {
2061         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2062 }
2063
2064 static int perf_get_aux_event(struct perf_event *event,
2065                               struct perf_event *group_leader)
2066 {
2067         /*
2068          * Our group leader must be an aux event if we want to be
2069          * an aux_output. This way, the aux event will precede its
2070          * aux_output events in the group, and therefore will always
2071          * schedule first.
2072          */
2073         if (!group_leader)
2074                 return 0;
2075
2076         /*
2077          * aux_output and aux_sample_size are mutually exclusive.
2078          */
2079         if (event->attr.aux_output && event->attr.aux_sample_size)
2080                 return 0;
2081
2082         if (event->attr.aux_output &&
2083             !perf_aux_output_match(event, group_leader))
2084                 return 0;
2085
2086         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2087                 return 0;
2088
2089         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2090                 return 0;
2091
2092         /*
2093          * Link aux_outputs to their aux event; this is undone in
2094          * perf_group_detach() by perf_put_aux_event(). When the
2095          * group in torn down, the aux_output events loose their
2096          * link to the aux_event and can't schedule any more.
2097          */
2098         event->aux_event = group_leader;
2099
2100         return 1;
2101 }
2102
2103 static inline struct list_head *get_event_list(struct perf_event *event)
2104 {
2105         struct perf_event_context *ctx = event->ctx;
2106         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2107 }
2108
2109 /*
2110  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2111  * cannot exist on their own, schedule them out and move them into the ERROR
2112  * state. Also see _perf_event_enable(), it will not be able to recover
2113  * this ERROR state.
2114  */
2115 static inline void perf_remove_sibling_event(struct perf_event *event)
2116 {
2117         struct perf_event_context *ctx = event->ctx;
2118         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2119
2120         event_sched_out(event, cpuctx, ctx);
2121         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2122 }
2123
2124 static void perf_group_detach(struct perf_event *event)
2125 {
2126         struct perf_event *leader = event->group_leader;
2127         struct perf_event *sibling, *tmp;
2128         struct perf_event_context *ctx = event->ctx;
2129
2130         lockdep_assert_held(&ctx->lock);
2131
2132         /*
2133          * We can have double detach due to exit/hot-unplug + close.
2134          */
2135         if (!(event->attach_state & PERF_ATTACH_GROUP))
2136                 return;
2137
2138         event->attach_state &= ~PERF_ATTACH_GROUP;
2139
2140         perf_put_aux_event(event);
2141
2142         /*
2143          * If this is a sibling, remove it from its group.
2144          */
2145         if (leader != event) {
2146                 list_del_init(&event->sibling_list);
2147                 event->group_leader->nr_siblings--;
2148                 goto out;
2149         }
2150
2151         /*
2152          * If this was a group event with sibling events then
2153          * upgrade the siblings to singleton events by adding them
2154          * to whatever list we are on.
2155          */
2156         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2157
2158                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2159                         perf_remove_sibling_event(sibling);
2160
2161                 sibling->group_leader = sibling;
2162                 list_del_init(&sibling->sibling_list);
2163
2164                 /* Inherit group flags from the previous leader */
2165                 sibling->group_caps = event->group_caps;
2166
2167                 if (!RB_EMPTY_NODE(&event->group_node)) {
2168                         add_event_to_groups(sibling, event->ctx);
2169
2170                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2171                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2172                 }
2173
2174                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2175         }
2176
2177 out:
2178         for_each_sibling_event(tmp, leader)
2179                 perf_event__header_size(tmp);
2180
2181         perf_event__header_size(leader);
2182 }
2183
2184 static void sync_child_event(struct perf_event *child_event);
2185
2186 static void perf_child_detach(struct perf_event *event)
2187 {
2188         struct perf_event *parent_event = event->parent;
2189
2190         if (!(event->attach_state & PERF_ATTACH_CHILD))
2191                 return;
2192
2193         event->attach_state &= ~PERF_ATTACH_CHILD;
2194
2195         if (WARN_ON_ONCE(!parent_event))
2196                 return;
2197
2198         lockdep_assert_held(&parent_event->child_mutex);
2199
2200         sync_child_event(event);
2201         list_del_init(&event->child_list);
2202 }
2203
2204 static bool is_orphaned_event(struct perf_event *event)
2205 {
2206         return event->state == PERF_EVENT_STATE_DEAD;
2207 }
2208
2209 static inline int __pmu_filter_match(struct perf_event *event)
2210 {
2211         struct pmu *pmu = event->pmu;
2212         return pmu->filter_match ? pmu->filter_match(event) : 1;
2213 }
2214
2215 /*
2216  * Check whether we should attempt to schedule an event group based on
2217  * PMU-specific filtering. An event group can consist of HW and SW events,
2218  * potentially with a SW leader, so we must check all the filters, to
2219  * determine whether a group is schedulable:
2220  */
2221 static inline int pmu_filter_match(struct perf_event *event)
2222 {
2223         struct perf_event *sibling;
2224
2225         if (!__pmu_filter_match(event))
2226                 return 0;
2227
2228         for_each_sibling_event(sibling, event) {
2229                 if (!__pmu_filter_match(sibling))
2230                         return 0;
2231         }
2232
2233         return 1;
2234 }
2235
2236 static inline int
2237 event_filter_match(struct perf_event *event)
2238 {
2239         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2240                perf_cgroup_match(event) && pmu_filter_match(event);
2241 }
2242
2243 static void
2244 event_sched_out(struct perf_event *event,
2245                   struct perf_cpu_context *cpuctx,
2246                   struct perf_event_context *ctx)
2247 {
2248         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2249
2250         WARN_ON_ONCE(event->ctx != ctx);
2251         lockdep_assert_held(&ctx->lock);
2252
2253         if (event->state != PERF_EVENT_STATE_ACTIVE)
2254                 return;
2255
2256         /*
2257          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2258          * we can schedule events _OUT_ individually through things like
2259          * __perf_remove_from_context().
2260          */
2261         list_del_init(&event->active_list);
2262
2263         perf_pmu_disable(event->pmu);
2264
2265         event->pmu->del(event, 0);
2266         event->oncpu = -1;
2267
2268         if (READ_ONCE(event->pending_disable) >= 0) {
2269                 WRITE_ONCE(event->pending_disable, -1);
2270                 perf_cgroup_event_disable(event, ctx);
2271                 state = PERF_EVENT_STATE_OFF;
2272         }
2273         perf_event_set_state(event, state);
2274
2275         if (!is_software_event(event))
2276                 cpuctx->active_oncpu--;
2277         if (!--ctx->nr_active)
2278                 perf_event_ctx_deactivate(ctx);
2279         if (event->attr.freq && event->attr.sample_freq)
2280                 ctx->nr_freq--;
2281         if (event->attr.exclusive || !cpuctx->active_oncpu)
2282                 cpuctx->exclusive = 0;
2283
2284         perf_pmu_enable(event->pmu);
2285 }
2286
2287 static void
2288 group_sched_out(struct perf_event *group_event,
2289                 struct perf_cpu_context *cpuctx,
2290                 struct perf_event_context *ctx)
2291 {
2292         struct perf_event *event;
2293
2294         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2295                 return;
2296
2297         perf_pmu_disable(ctx->pmu);
2298
2299         event_sched_out(group_event, cpuctx, ctx);
2300
2301         /*
2302          * Schedule out siblings (if any):
2303          */
2304         for_each_sibling_event(event, group_event)
2305                 event_sched_out(event, cpuctx, ctx);
2306
2307         perf_pmu_enable(ctx->pmu);
2308 }
2309
2310 #define DETACH_GROUP    0x01UL
2311 #define DETACH_CHILD    0x02UL
2312
2313 /*
2314  * Cross CPU call to remove a performance event
2315  *
2316  * We disable the event on the hardware level first. After that we
2317  * remove it from the context list.
2318  */
2319 static void
2320 __perf_remove_from_context(struct perf_event *event,
2321                            struct perf_cpu_context *cpuctx,
2322                            struct perf_event_context *ctx,
2323                            void *info)
2324 {
2325         unsigned long flags = (unsigned long)info;
2326
2327         if (ctx->is_active & EVENT_TIME) {
2328                 update_context_time(ctx);
2329                 update_cgrp_time_from_cpuctx(cpuctx, false);
2330         }
2331
2332         event_sched_out(event, cpuctx, ctx);
2333         if (flags & DETACH_GROUP)
2334                 perf_group_detach(event);
2335         if (flags & DETACH_CHILD)
2336                 perf_child_detach(event);
2337         list_del_event(event, ctx);
2338
2339         if (!ctx->nr_events && ctx->is_active) {
2340                 if (ctx == &cpuctx->ctx)
2341                         update_cgrp_time_from_cpuctx(cpuctx, true);
2342
2343                 ctx->is_active = 0;
2344                 ctx->rotate_necessary = 0;
2345                 if (ctx->task) {
2346                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2347                         cpuctx->task_ctx = NULL;
2348                 }
2349         }
2350 }
2351
2352 /*
2353  * Remove the event from a task's (or a CPU's) list of events.
2354  *
2355  * If event->ctx is a cloned context, callers must make sure that
2356  * every task struct that event->ctx->task could possibly point to
2357  * remains valid.  This is OK when called from perf_release since
2358  * that only calls us on the top-level context, which can't be a clone.
2359  * When called from perf_event_exit_task, it's OK because the
2360  * context has been detached from its task.
2361  */
2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2363 {
2364         struct perf_event_context *ctx = event->ctx;
2365
2366         lockdep_assert_held(&ctx->mutex);
2367
2368         /*
2369          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2370          * to work in the face of TASK_TOMBSTONE, unlike every other
2371          * event_function_call() user.
2372          */
2373         raw_spin_lock_irq(&ctx->lock);
2374         /*
2375          * Cgroup events are per-cpu events, and must IPI because of
2376          * cgrp_cpuctx_list.
2377          */
2378         if (!ctx->is_active && !is_cgroup_event(event)) {
2379                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2380                                            ctx, (void *)flags);
2381                 raw_spin_unlock_irq(&ctx->lock);
2382                 return;
2383         }
2384         raw_spin_unlock_irq(&ctx->lock);
2385
2386         event_function_call(event, __perf_remove_from_context, (void *)flags);
2387 }
2388
2389 /*
2390  * Cross CPU call to disable a performance event
2391  */
2392 static void __perf_event_disable(struct perf_event *event,
2393                                  struct perf_cpu_context *cpuctx,
2394                                  struct perf_event_context *ctx,
2395                                  void *info)
2396 {
2397         if (event->state < PERF_EVENT_STATE_INACTIVE)
2398                 return;
2399
2400         if (ctx->is_active & EVENT_TIME) {
2401                 update_context_time(ctx);
2402                 update_cgrp_time_from_event(event);
2403         }
2404
2405         if (event == event->group_leader)
2406                 group_sched_out(event, cpuctx, ctx);
2407         else
2408                 event_sched_out(event, cpuctx, ctx);
2409
2410         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2411         perf_cgroup_event_disable(event, ctx);
2412 }
2413
2414 /*
2415  * Disable an event.
2416  *
2417  * If event->ctx is a cloned context, callers must make sure that
2418  * every task struct that event->ctx->task could possibly point to
2419  * remains valid.  This condition is satisfied when called through
2420  * perf_event_for_each_child or perf_event_for_each because they
2421  * hold the top-level event's child_mutex, so any descendant that
2422  * goes to exit will block in perf_event_exit_event().
2423  *
2424  * When called from perf_pending_event it's OK because event->ctx
2425  * is the current context on this CPU and preemption is disabled,
2426  * hence we can't get into perf_event_task_sched_out for this context.
2427  */
2428 static void _perf_event_disable(struct perf_event *event)
2429 {
2430         struct perf_event_context *ctx = event->ctx;
2431
2432         raw_spin_lock_irq(&ctx->lock);
2433         if (event->state <= PERF_EVENT_STATE_OFF) {
2434                 raw_spin_unlock_irq(&ctx->lock);
2435                 return;
2436         }
2437         raw_spin_unlock_irq(&ctx->lock);
2438
2439         event_function_call(event, __perf_event_disable, NULL);
2440 }
2441
2442 void perf_event_disable_local(struct perf_event *event)
2443 {
2444         event_function_local(event, __perf_event_disable, NULL);
2445 }
2446
2447 /*
2448  * Strictly speaking kernel users cannot create groups and therefore this
2449  * interface does not need the perf_event_ctx_lock() magic.
2450  */
2451 void perf_event_disable(struct perf_event *event)
2452 {
2453         struct perf_event_context *ctx;
2454
2455         ctx = perf_event_ctx_lock(event);
2456         _perf_event_disable(event);
2457         perf_event_ctx_unlock(event, ctx);
2458 }
2459 EXPORT_SYMBOL_GPL(perf_event_disable);
2460
2461 void perf_event_disable_inatomic(struct perf_event *event)
2462 {
2463         WRITE_ONCE(event->pending_disable, smp_processor_id());
2464         /* can fail, see perf_pending_event_disable() */
2465         irq_work_queue(&event->pending);
2466 }
2467
2468 #define MAX_INTERRUPTS (~0ULL)
2469
2470 static void perf_log_throttle(struct perf_event *event, int enable);
2471 static void perf_log_itrace_start(struct perf_event *event);
2472
2473 static int
2474 event_sched_in(struct perf_event *event,
2475                  struct perf_cpu_context *cpuctx,
2476                  struct perf_event_context *ctx)
2477 {
2478         int ret = 0;
2479
2480         WARN_ON_ONCE(event->ctx != ctx);
2481
2482         lockdep_assert_held(&ctx->lock);
2483
2484         if (event->state <= PERF_EVENT_STATE_OFF)
2485                 return 0;
2486
2487         WRITE_ONCE(event->oncpu, smp_processor_id());
2488         /*
2489          * Order event::oncpu write to happen before the ACTIVE state is
2490          * visible. This allows perf_event_{stop,read}() to observe the correct
2491          * ->oncpu if it sees ACTIVE.
2492          */
2493         smp_wmb();
2494         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2495
2496         /*
2497          * Unthrottle events, since we scheduled we might have missed several
2498          * ticks already, also for a heavily scheduling task there is little
2499          * guarantee it'll get a tick in a timely manner.
2500          */
2501         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2502                 perf_log_throttle(event, 1);
2503                 event->hw.interrupts = 0;
2504         }
2505
2506         perf_pmu_disable(event->pmu);
2507
2508         perf_log_itrace_start(event);
2509
2510         if (event->pmu->add(event, PERF_EF_START)) {
2511                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2512                 event->oncpu = -1;
2513                 ret = -EAGAIN;
2514                 goto out;
2515         }
2516
2517         if (!is_software_event(event))
2518                 cpuctx->active_oncpu++;
2519         if (!ctx->nr_active++)
2520                 perf_event_ctx_activate(ctx);
2521         if (event->attr.freq && event->attr.sample_freq)
2522                 ctx->nr_freq++;
2523
2524         if (event->attr.exclusive)
2525                 cpuctx->exclusive = 1;
2526
2527 out:
2528         perf_pmu_enable(event->pmu);
2529
2530         return ret;
2531 }
2532
2533 static int
2534 group_sched_in(struct perf_event *group_event,
2535                struct perf_cpu_context *cpuctx,
2536                struct perf_event_context *ctx)
2537 {
2538         struct perf_event *event, *partial_group = NULL;
2539         struct pmu *pmu = ctx->pmu;
2540
2541         if (group_event->state == PERF_EVENT_STATE_OFF)
2542                 return 0;
2543
2544         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2545
2546         if (event_sched_in(group_event, cpuctx, ctx))
2547                 goto error;
2548
2549         /*
2550          * Schedule in siblings as one group (if any):
2551          */
2552         for_each_sibling_event(event, group_event) {
2553                 if (event_sched_in(event, cpuctx, ctx)) {
2554                         partial_group = event;
2555                         goto group_error;
2556                 }
2557         }
2558
2559         if (!pmu->commit_txn(pmu))
2560                 return 0;
2561
2562 group_error:
2563         /*
2564          * Groups can be scheduled in as one unit only, so undo any
2565          * partial group before returning:
2566          * The events up to the failed event are scheduled out normally.
2567          */
2568         for_each_sibling_event(event, group_event) {
2569                 if (event == partial_group)
2570                         break;
2571
2572                 event_sched_out(event, cpuctx, ctx);
2573         }
2574         event_sched_out(group_event, cpuctx, ctx);
2575
2576 error:
2577         pmu->cancel_txn(pmu);
2578         return -EAGAIN;
2579 }
2580
2581 /*
2582  * Work out whether we can put this event group on the CPU now.
2583  */
2584 static int group_can_go_on(struct perf_event *event,
2585                            struct perf_cpu_context *cpuctx,
2586                            int can_add_hw)
2587 {
2588         /*
2589          * Groups consisting entirely of software events can always go on.
2590          */
2591         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2592                 return 1;
2593         /*
2594          * If an exclusive group is already on, no other hardware
2595          * events can go on.
2596          */
2597         if (cpuctx->exclusive)
2598                 return 0;
2599         /*
2600          * If this group is exclusive and there are already
2601          * events on the CPU, it can't go on.
2602          */
2603         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2604                 return 0;
2605         /*
2606          * Otherwise, try to add it if all previous groups were able
2607          * to go on.
2608          */
2609         return can_add_hw;
2610 }
2611
2612 static void add_event_to_ctx(struct perf_event *event,
2613                                struct perf_event_context *ctx)
2614 {
2615         list_add_event(event, ctx);
2616         perf_group_attach(event);
2617 }
2618
2619 static void ctx_sched_out(struct perf_event_context *ctx,
2620                           struct perf_cpu_context *cpuctx,
2621                           enum event_type_t event_type);
2622 static void
2623 ctx_sched_in(struct perf_event_context *ctx,
2624              struct perf_cpu_context *cpuctx,
2625              enum event_type_t event_type);
2626
2627 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2628                                struct perf_event_context *ctx,
2629                                enum event_type_t event_type)
2630 {
2631         if (!cpuctx->task_ctx)
2632                 return;
2633
2634         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2635                 return;
2636
2637         ctx_sched_out(ctx, cpuctx, event_type);
2638 }
2639
2640 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2641                                 struct perf_event_context *ctx)
2642 {
2643         cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2644         if (ctx)
2645                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2646         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2647         if (ctx)
2648                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2649 }
2650
2651 /*
2652  * We want to maintain the following priority of scheduling:
2653  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2654  *  - task pinned (EVENT_PINNED)
2655  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2656  *  - task flexible (EVENT_FLEXIBLE).
2657  *
2658  * In order to avoid unscheduling and scheduling back in everything every
2659  * time an event is added, only do it for the groups of equal priority and
2660  * below.
2661  *
2662  * This can be called after a batch operation on task events, in which case
2663  * event_type is a bit mask of the types of events involved. For CPU events,
2664  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2665  */
2666 static void ctx_resched(struct perf_cpu_context *cpuctx,
2667                         struct perf_event_context *task_ctx,
2668                         enum event_type_t event_type)
2669 {
2670         enum event_type_t ctx_event_type;
2671         bool cpu_event = !!(event_type & EVENT_CPU);
2672
2673         /*
2674          * If pinned groups are involved, flexible groups also need to be
2675          * scheduled out.
2676          */
2677         if (event_type & EVENT_PINNED)
2678                 event_type |= EVENT_FLEXIBLE;
2679
2680         ctx_event_type = event_type & EVENT_ALL;
2681
2682         perf_pmu_disable(cpuctx->ctx.pmu);
2683         if (task_ctx)
2684                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2685
2686         /*
2687          * Decide which cpu ctx groups to schedule out based on the types
2688          * of events that caused rescheduling:
2689          *  - EVENT_CPU: schedule out corresponding groups;
2690          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2691          *  - otherwise, do nothing more.
2692          */
2693         if (cpu_event)
2694                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2695         else if (ctx_event_type & EVENT_PINNED)
2696                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2697
2698         perf_event_sched_in(cpuctx, task_ctx);
2699         perf_pmu_enable(cpuctx->ctx.pmu);
2700 }
2701
2702 void perf_pmu_resched(struct pmu *pmu)
2703 {
2704         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2705         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2706
2707         perf_ctx_lock(cpuctx, task_ctx);
2708         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2709         perf_ctx_unlock(cpuctx, task_ctx);
2710 }
2711
2712 /*
2713  * Cross CPU call to install and enable a performance event
2714  *
2715  * Very similar to remote_function() + event_function() but cannot assume that
2716  * things like ctx->is_active and cpuctx->task_ctx are set.
2717  */
2718 static int  __perf_install_in_context(void *info)
2719 {
2720         struct perf_event *event = info;
2721         struct perf_event_context *ctx = event->ctx;
2722         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2723         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2724         bool reprogram = true;
2725         int ret = 0;
2726
2727         raw_spin_lock(&cpuctx->ctx.lock);
2728         if (ctx->task) {
2729                 raw_spin_lock(&ctx->lock);
2730                 task_ctx = ctx;
2731
2732                 reprogram = (ctx->task == current);
2733
2734                 /*
2735                  * If the task is running, it must be running on this CPU,
2736                  * otherwise we cannot reprogram things.
2737                  *
2738                  * If its not running, we don't care, ctx->lock will
2739                  * serialize against it becoming runnable.
2740                  */
2741                 if (task_curr(ctx->task) && !reprogram) {
2742                         ret = -ESRCH;
2743                         goto unlock;
2744                 }
2745
2746                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2747         } else if (task_ctx) {
2748                 raw_spin_lock(&task_ctx->lock);
2749         }
2750
2751 #ifdef CONFIG_CGROUP_PERF
2752         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2753                 /*
2754                  * If the current cgroup doesn't match the event's
2755                  * cgroup, we should not try to schedule it.
2756                  */
2757                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2758                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2759                                         event->cgrp->css.cgroup);
2760         }
2761 #endif
2762
2763         if (reprogram) {
2764                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2765                 add_event_to_ctx(event, ctx);
2766                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2767         } else {
2768                 add_event_to_ctx(event, ctx);
2769         }
2770
2771 unlock:
2772         perf_ctx_unlock(cpuctx, task_ctx);
2773
2774         return ret;
2775 }
2776
2777 static bool exclusive_event_installable(struct perf_event *event,
2778                                         struct perf_event_context *ctx);
2779
2780 /*
2781  * Attach a performance event to a context.
2782  *
2783  * Very similar to event_function_call, see comment there.
2784  */
2785 static void
2786 perf_install_in_context(struct perf_event_context *ctx,
2787                         struct perf_event *event,
2788                         int cpu)
2789 {
2790         struct task_struct *task = READ_ONCE(ctx->task);
2791
2792         lockdep_assert_held(&ctx->mutex);
2793
2794         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2795
2796         if (event->cpu != -1)
2797                 event->cpu = cpu;
2798
2799         /*
2800          * Ensures that if we can observe event->ctx, both the event and ctx
2801          * will be 'complete'. See perf_iterate_sb_cpu().
2802          */
2803         smp_store_release(&event->ctx, ctx);
2804
2805         /*
2806          * perf_event_attr::disabled events will not run and can be initialized
2807          * without IPI. Except when this is the first event for the context, in
2808          * that case we need the magic of the IPI to set ctx->is_active.
2809          * Similarly, cgroup events for the context also needs the IPI to
2810          * manipulate the cgrp_cpuctx_list.
2811          *
2812          * The IOC_ENABLE that is sure to follow the creation of a disabled
2813          * event will issue the IPI and reprogram the hardware.
2814          */
2815         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2816             ctx->nr_events && !is_cgroup_event(event)) {
2817                 raw_spin_lock_irq(&ctx->lock);
2818                 if (ctx->task == TASK_TOMBSTONE) {
2819                         raw_spin_unlock_irq(&ctx->lock);
2820                         return;
2821                 }
2822                 add_event_to_ctx(event, ctx);
2823                 raw_spin_unlock_irq(&ctx->lock);
2824                 return;
2825         }
2826
2827         if (!task) {
2828                 cpu_function_call(cpu, __perf_install_in_context, event);
2829                 return;
2830         }
2831
2832         /*
2833          * Should not happen, we validate the ctx is still alive before calling.
2834          */
2835         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2836                 return;
2837
2838         /*
2839          * Installing events is tricky because we cannot rely on ctx->is_active
2840          * to be set in case this is the nr_events 0 -> 1 transition.
2841          *
2842          * Instead we use task_curr(), which tells us if the task is running.
2843          * However, since we use task_curr() outside of rq::lock, we can race
2844          * against the actual state. This means the result can be wrong.
2845          *
2846          * If we get a false positive, we retry, this is harmless.
2847          *
2848          * If we get a false negative, things are complicated. If we are after
2849          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2850          * value must be correct. If we're before, it doesn't matter since
2851          * perf_event_context_sched_in() will program the counter.
2852          *
2853          * However, this hinges on the remote context switch having observed
2854          * our task->perf_event_ctxp[] store, such that it will in fact take
2855          * ctx::lock in perf_event_context_sched_in().
2856          *
2857          * We do this by task_function_call(), if the IPI fails to hit the task
2858          * we know any future context switch of task must see the
2859          * perf_event_ctpx[] store.
2860          */
2861
2862         /*
2863          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2864          * task_cpu() load, such that if the IPI then does not find the task
2865          * running, a future context switch of that task must observe the
2866          * store.
2867          */
2868         smp_mb();
2869 again:
2870         if (!task_function_call(task, __perf_install_in_context, event))
2871                 return;
2872
2873         raw_spin_lock_irq(&ctx->lock);
2874         task = ctx->task;
2875         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2876                 /*
2877                  * Cannot happen because we already checked above (which also
2878                  * cannot happen), and we hold ctx->mutex, which serializes us
2879                  * against perf_event_exit_task_context().
2880                  */
2881                 raw_spin_unlock_irq(&ctx->lock);
2882                 return;
2883         }
2884         /*
2885          * If the task is not running, ctx->lock will avoid it becoming so,
2886          * thus we can safely install the event.
2887          */
2888         if (task_curr(task)) {
2889                 raw_spin_unlock_irq(&ctx->lock);
2890                 goto again;
2891         }
2892         add_event_to_ctx(event, ctx);
2893         raw_spin_unlock_irq(&ctx->lock);
2894 }
2895
2896 /*
2897  * Cross CPU call to enable a performance event
2898  */
2899 static void __perf_event_enable(struct perf_event *event,
2900                                 struct perf_cpu_context *cpuctx,
2901                                 struct perf_event_context *ctx,
2902                                 void *info)
2903 {
2904         struct perf_event *leader = event->group_leader;
2905         struct perf_event_context *task_ctx;
2906
2907         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2908             event->state <= PERF_EVENT_STATE_ERROR)
2909                 return;
2910
2911         if (ctx->is_active)
2912                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2913
2914         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2915         perf_cgroup_event_enable(event, ctx);
2916
2917         if (!ctx->is_active)
2918                 return;
2919
2920         if (!event_filter_match(event)) {
2921                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2922                 return;
2923         }
2924
2925         /*
2926          * If the event is in a group and isn't the group leader,
2927          * then don't put it on unless the group is on.
2928          */
2929         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2930                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2931                 return;
2932         }
2933
2934         task_ctx = cpuctx->task_ctx;
2935         if (ctx->task)
2936                 WARN_ON_ONCE(task_ctx != ctx);
2937
2938         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2939 }
2940
2941 /*
2942  * Enable an event.
2943  *
2944  * If event->ctx is a cloned context, callers must make sure that
2945  * every task struct that event->ctx->task could possibly point to
2946  * remains valid.  This condition is satisfied when called through
2947  * perf_event_for_each_child or perf_event_for_each as described
2948  * for perf_event_disable.
2949  */
2950 static void _perf_event_enable(struct perf_event *event)
2951 {
2952         struct perf_event_context *ctx = event->ctx;
2953
2954         raw_spin_lock_irq(&ctx->lock);
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <  PERF_EVENT_STATE_ERROR) {
2957 out:
2958                 raw_spin_unlock_irq(&ctx->lock);
2959                 return;
2960         }
2961
2962         /*
2963          * If the event is in error state, clear that first.
2964          *
2965          * That way, if we see the event in error state below, we know that it
2966          * has gone back into error state, as distinct from the task having
2967          * been scheduled away before the cross-call arrived.
2968          */
2969         if (event->state == PERF_EVENT_STATE_ERROR) {
2970                 /*
2971                  * Detached SIBLING events cannot leave ERROR state.
2972                  */
2973                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2974                     event->group_leader == event)
2975                         goto out;
2976
2977                 event->state = PERF_EVENT_STATE_OFF;
2978         }
2979         raw_spin_unlock_irq(&ctx->lock);
2980
2981         event_function_call(event, __perf_event_enable, NULL);
2982 }
2983
2984 /*
2985  * See perf_event_disable();
2986  */
2987 void perf_event_enable(struct perf_event *event)
2988 {
2989         struct perf_event_context *ctx;
2990
2991         ctx = perf_event_ctx_lock(event);
2992         _perf_event_enable(event);
2993         perf_event_ctx_unlock(event, ctx);
2994 }
2995 EXPORT_SYMBOL_GPL(perf_event_enable);
2996
2997 struct stop_event_data {
2998         struct perf_event       *event;
2999         unsigned int            restart;
3000 };
3001
3002 static int __perf_event_stop(void *info)
3003 {
3004         struct stop_event_data *sd = info;
3005         struct perf_event *event = sd->event;
3006
3007         /* if it's already INACTIVE, do nothing */
3008         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3009                 return 0;
3010
3011         /* matches smp_wmb() in event_sched_in() */
3012         smp_rmb();
3013
3014         /*
3015          * There is a window with interrupts enabled before we get here,
3016          * so we need to check again lest we try to stop another CPU's event.
3017          */
3018         if (READ_ONCE(event->oncpu) != smp_processor_id())
3019                 return -EAGAIN;
3020
3021         event->pmu->stop(event, PERF_EF_UPDATE);
3022
3023         /*
3024          * May race with the actual stop (through perf_pmu_output_stop()),
3025          * but it is only used for events with AUX ring buffer, and such
3026          * events will refuse to restart because of rb::aux_mmap_count==0,
3027          * see comments in perf_aux_output_begin().
3028          *
3029          * Since this is happening on an event-local CPU, no trace is lost
3030          * while restarting.
3031          */
3032         if (sd->restart)
3033                 event->pmu->start(event, 0);
3034
3035         return 0;
3036 }
3037
3038 static int perf_event_stop(struct perf_event *event, int restart)
3039 {
3040         struct stop_event_data sd = {
3041                 .event          = event,
3042                 .restart        = restart,
3043         };
3044         int ret = 0;
3045
3046         do {
3047                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3048                         return 0;
3049
3050                 /* matches smp_wmb() in event_sched_in() */
3051                 smp_rmb();
3052
3053                 /*
3054                  * We only want to restart ACTIVE events, so if the event goes
3055                  * inactive here (event->oncpu==-1), there's nothing more to do;
3056                  * fall through with ret==-ENXIO.
3057                  */
3058                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3059                                         __perf_event_stop, &sd);
3060         } while (ret == -EAGAIN);
3061
3062         return ret;
3063 }
3064
3065 /*
3066  * In order to contain the amount of racy and tricky in the address filter
3067  * configuration management, it is a two part process:
3068  *
3069  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3070  *      we update the addresses of corresponding vmas in
3071  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3072  * (p2) when an event is scheduled in (pmu::add), it calls
3073  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3074  *      if the generation has changed since the previous call.
3075  *
3076  * If (p1) happens while the event is active, we restart it to force (p2).
3077  *
3078  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3079  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3080  *     ioctl;
3081  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3082  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3083  *     for reading;
3084  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3085  *     of exec.
3086  */
3087 void perf_event_addr_filters_sync(struct perf_event *event)
3088 {
3089         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3090
3091         if (!has_addr_filter(event))
3092                 return;
3093
3094         raw_spin_lock(&ifh->lock);
3095         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3096                 event->pmu->addr_filters_sync(event);
3097                 event->hw.addr_filters_gen = event->addr_filters_gen;
3098         }
3099         raw_spin_unlock(&ifh->lock);
3100 }
3101 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3102
3103 static int _perf_event_refresh(struct perf_event *event, int refresh)
3104 {
3105         /*
3106          * not supported on inherited events
3107          */
3108         if (event->attr.inherit || !is_sampling_event(event))
3109                 return -EINVAL;
3110
3111         atomic_add(refresh, &event->event_limit);
3112         _perf_event_enable(event);
3113
3114         return 0;
3115 }
3116
3117 /*
3118  * See perf_event_disable()
3119  */
3120 int perf_event_refresh(struct perf_event *event, int refresh)
3121 {
3122         struct perf_event_context *ctx;
3123         int ret;
3124
3125         ctx = perf_event_ctx_lock(event);
3126         ret = _perf_event_refresh(event, refresh);
3127         perf_event_ctx_unlock(event, ctx);
3128
3129         return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(perf_event_refresh);
3132
3133 static int perf_event_modify_breakpoint(struct perf_event *bp,
3134                                          struct perf_event_attr *attr)
3135 {
3136         int err;
3137
3138         _perf_event_disable(bp);
3139
3140         err = modify_user_hw_breakpoint_check(bp, attr, true);
3141
3142         if (!bp->attr.disabled)
3143                 _perf_event_enable(bp);
3144
3145         return err;
3146 }
3147
3148 /*
3149  * Copy event-type-independent attributes that may be modified.
3150  */
3151 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3152                                         const struct perf_event_attr *from)
3153 {
3154         to->sig_data = from->sig_data;
3155 }
3156
3157 static int perf_event_modify_attr(struct perf_event *event,
3158                                   struct perf_event_attr *attr)
3159 {
3160         int (*func)(struct perf_event *, struct perf_event_attr *);
3161         struct perf_event *child;
3162         int err;
3163
3164         if (event->attr.type != attr->type)
3165                 return -EINVAL;
3166
3167         switch (event->attr.type) {
3168         case PERF_TYPE_BREAKPOINT:
3169                 func = perf_event_modify_breakpoint;
3170                 break;
3171         default:
3172                 /* Place holder for future additions. */
3173                 return -EOPNOTSUPP;
3174         }
3175
3176         WARN_ON_ONCE(event->ctx->parent_ctx);
3177
3178         mutex_lock(&event->child_mutex);
3179         /*
3180          * Event-type-independent attributes must be copied before event-type
3181          * modification, which will validate that final attributes match the
3182          * source attributes after all relevant attributes have been copied.
3183          */
3184         perf_event_modify_copy_attr(&event->attr, attr);
3185         err = func(event, attr);
3186         if (err)
3187                 goto out;
3188         list_for_each_entry(child, &event->child_list, child_list) {
3189                 perf_event_modify_copy_attr(&child->attr, attr);
3190                 err = func(child, attr);
3191                 if (err)
3192                         goto out;
3193         }
3194 out:
3195         mutex_unlock(&event->child_mutex);
3196         return err;
3197 }
3198
3199 static void ctx_sched_out(struct perf_event_context *ctx,
3200                           struct perf_cpu_context *cpuctx,
3201                           enum event_type_t event_type)
3202 {
3203         struct perf_event *event, *tmp;
3204         int is_active = ctx->is_active;
3205
3206         lockdep_assert_held(&ctx->lock);
3207
3208         if (likely(!ctx->nr_events)) {
3209                 /*
3210                  * See __perf_remove_from_context().
3211                  */
3212                 WARN_ON_ONCE(ctx->is_active);
3213                 if (ctx->task)
3214                         WARN_ON_ONCE(cpuctx->task_ctx);
3215                 return;
3216         }
3217
3218         /*
3219          * Always update time if it was set; not only when it changes.
3220          * Otherwise we can 'forget' to update time for any but the last
3221          * context we sched out. For example:
3222          *
3223          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3224          *   ctx_sched_out(.event_type = EVENT_PINNED)
3225          *
3226          * would only update time for the pinned events.
3227          */
3228         if (is_active & EVENT_TIME) {
3229                 /* update (and stop) ctx time */
3230                 update_context_time(ctx);
3231                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3232                 /*
3233                  * CPU-release for the below ->is_active store,
3234                  * see __load_acquire() in perf_event_time_now()
3235                  */
3236                 barrier();
3237         }
3238
3239         ctx->is_active &= ~event_type;
3240         if (!(ctx->is_active & EVENT_ALL))
3241                 ctx->is_active = 0;
3242
3243         if (ctx->task) {
3244                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3245                 if (!ctx->is_active)
3246                         cpuctx->task_ctx = NULL;
3247         }
3248
3249         is_active ^= ctx->is_active; /* changed bits */
3250
3251         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3252                 return;
3253
3254         perf_pmu_disable(ctx->pmu);
3255         if (is_active & EVENT_PINNED) {
3256                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3257                         group_sched_out(event, cpuctx, ctx);
3258         }
3259
3260         if (is_active & EVENT_FLEXIBLE) {
3261                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3262                         group_sched_out(event, cpuctx, ctx);
3263
3264                 /*
3265                  * Since we cleared EVENT_FLEXIBLE, also clear
3266                  * rotate_necessary, is will be reset by
3267                  * ctx_flexible_sched_in() when needed.
3268                  */
3269                 ctx->rotate_necessary = 0;
3270         }
3271         perf_pmu_enable(ctx->pmu);
3272 }
3273
3274 /*
3275  * Test whether two contexts are equivalent, i.e. whether they have both been
3276  * cloned from the same version of the same context.
3277  *
3278  * Equivalence is measured using a generation number in the context that is
3279  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3280  * and list_del_event().
3281  */
3282 static int context_equiv(struct perf_event_context *ctx1,
3283                          struct perf_event_context *ctx2)
3284 {
3285         lockdep_assert_held(&ctx1->lock);
3286         lockdep_assert_held(&ctx2->lock);
3287
3288         /* Pinning disables the swap optimization */
3289         if (ctx1->pin_count || ctx2->pin_count)
3290                 return 0;
3291
3292         /* If ctx1 is the parent of ctx2 */
3293         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3294                 return 1;
3295
3296         /* If ctx2 is the parent of ctx1 */
3297         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3298                 return 1;
3299
3300         /*
3301          * If ctx1 and ctx2 have the same parent; we flatten the parent
3302          * hierarchy, see perf_event_init_context().
3303          */
3304         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3305                         ctx1->parent_gen == ctx2->parent_gen)
3306                 return 1;
3307
3308         /* Unmatched */
3309         return 0;
3310 }
3311
3312 static void __perf_event_sync_stat(struct perf_event *event,
3313                                      struct perf_event *next_event)
3314 {
3315         u64 value;
3316
3317         if (!event->attr.inherit_stat)
3318                 return;
3319
3320         /*
3321          * Update the event value, we cannot use perf_event_read()
3322          * because we're in the middle of a context switch and have IRQs
3323          * disabled, which upsets smp_call_function_single(), however
3324          * we know the event must be on the current CPU, therefore we
3325          * don't need to use it.
3326          */
3327         if (event->state == PERF_EVENT_STATE_ACTIVE)
3328                 event->pmu->read(event);
3329
3330         perf_event_update_time(event);
3331
3332         /*
3333          * In order to keep per-task stats reliable we need to flip the event
3334          * values when we flip the contexts.
3335          */
3336         value = local64_read(&next_event->count);
3337         value = local64_xchg(&event->count, value);
3338         local64_set(&next_event->count, value);
3339
3340         swap(event->total_time_enabled, next_event->total_time_enabled);
3341         swap(event->total_time_running, next_event->total_time_running);
3342
3343         /*
3344          * Since we swizzled the values, update the user visible data too.
3345          */
3346         perf_event_update_userpage(event);
3347         perf_event_update_userpage(next_event);
3348 }
3349
3350 static void perf_event_sync_stat(struct perf_event_context *ctx,
3351                                    struct perf_event_context *next_ctx)
3352 {
3353         struct perf_event *event, *next_event;
3354
3355         if (!ctx->nr_stat)
3356                 return;
3357
3358         update_context_time(ctx);
3359
3360         event = list_first_entry(&ctx->event_list,
3361                                    struct perf_event, event_entry);
3362
3363         next_event = list_first_entry(&next_ctx->event_list,
3364                                         struct perf_event, event_entry);
3365
3366         while (&event->event_entry != &ctx->event_list &&
3367                &next_event->event_entry != &next_ctx->event_list) {
3368
3369                 __perf_event_sync_stat(event, next_event);
3370
3371                 event = list_next_entry(event, event_entry);
3372                 next_event = list_next_entry(next_event, event_entry);
3373         }
3374 }
3375
3376 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3377                                          struct task_struct *next)
3378 {
3379         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3380         struct perf_event_context *next_ctx;
3381         struct perf_event_context *parent, *next_parent;
3382         struct perf_cpu_context *cpuctx;
3383         int do_switch = 1;
3384         struct pmu *pmu;
3385
3386         if (likely(!ctx))
3387                 return;
3388
3389         pmu = ctx->pmu;
3390         cpuctx = __get_cpu_context(ctx);
3391         if (!cpuctx->task_ctx)
3392                 return;
3393
3394         rcu_read_lock();
3395         next_ctx = next->perf_event_ctxp[ctxn];
3396         if (!next_ctx)
3397                 goto unlock;
3398
3399         parent = rcu_dereference(ctx->parent_ctx);
3400         next_parent = rcu_dereference(next_ctx->parent_ctx);
3401
3402         /* If neither context have a parent context; they cannot be clones. */
3403         if (!parent && !next_parent)
3404                 goto unlock;
3405
3406         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3407                 /*
3408                  * Looks like the two contexts are clones, so we might be
3409                  * able to optimize the context switch.  We lock both
3410                  * contexts and check that they are clones under the
3411                  * lock (including re-checking that neither has been
3412                  * uncloned in the meantime).  It doesn't matter which
3413                  * order we take the locks because no other cpu could
3414                  * be trying to lock both of these tasks.
3415                  */
3416                 raw_spin_lock(&ctx->lock);
3417                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3418                 if (context_equiv(ctx, next_ctx)) {
3419
3420                         WRITE_ONCE(ctx->task, next);
3421                         WRITE_ONCE(next_ctx->task, task);
3422
3423                         perf_pmu_disable(pmu);
3424
3425                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3426                                 pmu->sched_task(ctx, false);
3427
3428                         /*
3429                          * PMU specific parts of task perf context can require
3430                          * additional synchronization. As an example of such
3431                          * synchronization see implementation details of Intel
3432                          * LBR call stack data profiling;
3433                          */
3434                         if (pmu->swap_task_ctx)
3435                                 pmu->swap_task_ctx(ctx, next_ctx);
3436                         else
3437                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3438
3439                         perf_pmu_enable(pmu);
3440
3441                         /*
3442                          * RCU_INIT_POINTER here is safe because we've not
3443                          * modified the ctx and the above modification of
3444                          * ctx->task and ctx->task_ctx_data are immaterial
3445                          * since those values are always verified under
3446                          * ctx->lock which we're now holding.
3447                          */
3448                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3449                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3450
3451                         do_switch = 0;
3452
3453                         perf_event_sync_stat(ctx, next_ctx);
3454                 }
3455                 raw_spin_unlock(&next_ctx->lock);
3456                 raw_spin_unlock(&ctx->lock);
3457         }
3458 unlock:
3459         rcu_read_unlock();
3460
3461         if (do_switch) {
3462                 raw_spin_lock(&ctx->lock);
3463                 perf_pmu_disable(pmu);
3464
3465                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3466                         pmu->sched_task(ctx, false);
3467                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3468
3469                 perf_pmu_enable(pmu);
3470                 raw_spin_unlock(&ctx->lock);
3471         }
3472 }
3473
3474 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3475
3476 void perf_sched_cb_dec(struct pmu *pmu)
3477 {
3478         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3479
3480         this_cpu_dec(perf_sched_cb_usages);
3481
3482         if (!--cpuctx->sched_cb_usage)
3483                 list_del(&cpuctx->sched_cb_entry);
3484 }
3485
3486
3487 void perf_sched_cb_inc(struct pmu *pmu)
3488 {
3489         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3490
3491         if (!cpuctx->sched_cb_usage++)
3492                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3493
3494         this_cpu_inc(perf_sched_cb_usages);
3495 }
3496
3497 /*
3498  * This function provides the context switch callback to the lower code
3499  * layer. It is invoked ONLY when the context switch callback is enabled.
3500  *
3501  * This callback is relevant even to per-cpu events; for example multi event
3502  * PEBS requires this to provide PID/TID information. This requires we flush
3503  * all queued PEBS records before we context switch to a new task.
3504  */
3505 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3506 {
3507         struct pmu *pmu;
3508
3509         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3510
3511         if (WARN_ON_ONCE(!pmu->sched_task))
3512                 return;
3513
3514         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3515         perf_pmu_disable(pmu);
3516
3517         pmu->sched_task(cpuctx->task_ctx, sched_in);
3518
3519         perf_pmu_enable(pmu);
3520         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3521 }
3522
3523 static void perf_pmu_sched_task(struct task_struct *prev,
3524                                 struct task_struct *next,
3525                                 bool sched_in)
3526 {
3527         struct perf_cpu_context *cpuctx;
3528
3529         if (prev == next)
3530                 return;
3531
3532         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3533                 /* will be handled in perf_event_context_sched_in/out */
3534                 if (cpuctx->task_ctx)
3535                         continue;
3536
3537                 __perf_pmu_sched_task(cpuctx, sched_in);
3538         }
3539 }
3540
3541 static void perf_event_switch(struct task_struct *task,
3542                               struct task_struct *next_prev, bool sched_in);
3543
3544 #define for_each_task_context_nr(ctxn)                                  \
3545         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3546
3547 /*
3548  * Called from scheduler to remove the events of the current task,
3549  * with interrupts disabled.
3550  *
3551  * We stop each event and update the event value in event->count.
3552  *
3553  * This does not protect us against NMI, but disable()
3554  * sets the disabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * not restart the event.
3557  */
3558 void __perf_event_task_sched_out(struct task_struct *task,
3559                                  struct task_struct *next)
3560 {
3561         int ctxn;
3562
3563         if (__this_cpu_read(perf_sched_cb_usages))
3564                 perf_pmu_sched_task(task, next, false);
3565
3566         if (atomic_read(&nr_switch_events))
3567                 perf_event_switch(task, next, false);
3568
3569         for_each_task_context_nr(ctxn)
3570                 perf_event_context_sched_out(task, ctxn, next);
3571
3572         /*
3573          * if cgroup events exist on this CPU, then we need
3574          * to check if we have to switch out PMU state.
3575          * cgroup event are system-wide mode only
3576          */
3577         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3578                 perf_cgroup_switch(next);
3579 }
3580
3581 /*
3582  * Called with IRQs disabled
3583  */
3584 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3585                               enum event_type_t event_type)
3586 {
3587         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3588 }
3589
3590 static bool perf_less_group_idx(const void *l, const void *r)
3591 {
3592         const struct perf_event *le = *(const struct perf_event **)l;
3593         const struct perf_event *re = *(const struct perf_event **)r;
3594
3595         return le->group_index < re->group_index;
3596 }
3597
3598 static void swap_ptr(void *l, void *r)
3599 {
3600         void **lp = l, **rp = r;
3601
3602         swap(*lp, *rp);
3603 }
3604
3605 static const struct min_heap_callbacks perf_min_heap = {
3606         .elem_size = sizeof(struct perf_event *),
3607         .less = perf_less_group_idx,
3608         .swp = swap_ptr,
3609 };
3610
3611 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3612 {
3613         struct perf_event **itrs = heap->data;
3614
3615         if (event) {
3616                 itrs[heap->nr] = event;
3617                 heap->nr++;
3618         }
3619 }
3620
3621 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3622                                 struct perf_event_groups *groups, int cpu,
3623                                 int (*func)(struct perf_event *, void *),
3624                                 void *data)
3625 {
3626 #ifdef CONFIG_CGROUP_PERF
3627         struct cgroup_subsys_state *css = NULL;
3628 #endif
3629         /* Space for per CPU and/or any CPU event iterators. */
3630         struct perf_event *itrs[2];
3631         struct min_heap event_heap;
3632         struct perf_event **evt;
3633         int ret;
3634
3635         if (cpuctx) {
3636                 event_heap = (struct min_heap){
3637                         .data = cpuctx->heap,
3638                         .nr = 0,
3639                         .size = cpuctx->heap_size,
3640                 };
3641
3642                 lockdep_assert_held(&cpuctx->ctx.lock);
3643
3644 #ifdef CONFIG_CGROUP_PERF
3645                 if (cpuctx->cgrp)
3646                         css = &cpuctx->cgrp->css;
3647 #endif
3648         } else {
3649                 event_heap = (struct min_heap){
3650                         .data = itrs,
3651                         .nr = 0,
3652                         .size = ARRAY_SIZE(itrs),
3653                 };
3654                 /* Events not within a CPU context may be on any CPU. */
3655                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3656         }
3657         evt = event_heap.data;
3658
3659         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3660
3661 #ifdef CONFIG_CGROUP_PERF
3662         for (; css; css = css->parent)
3663                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3664 #endif
3665
3666         min_heapify_all(&event_heap, &perf_min_heap);
3667
3668         while (event_heap.nr) {
3669                 ret = func(*evt, data);
3670                 if (ret)
3671                         return ret;
3672
3673                 *evt = perf_event_groups_next(*evt);
3674                 if (*evt)
3675                         min_heapify(&event_heap, 0, &perf_min_heap);
3676                 else
3677                         min_heap_pop(&event_heap, &perf_min_heap);
3678         }
3679
3680         return 0;
3681 }
3682
3683 /*
3684  * Because the userpage is strictly per-event (there is no concept of context,
3685  * so there cannot be a context indirection), every userpage must be updated
3686  * when context time starts :-(
3687  *
3688  * IOW, we must not miss EVENT_TIME edges.
3689  */
3690 static inline bool event_update_userpage(struct perf_event *event)
3691 {
3692         if (likely(!atomic_read(&event->mmap_count)))
3693                 return false;
3694
3695         perf_event_update_time(event);
3696         perf_event_update_userpage(event);
3697
3698         return true;
3699 }
3700
3701 static inline void group_update_userpage(struct perf_event *group_event)
3702 {
3703         struct perf_event *event;
3704
3705         if (!event_update_userpage(group_event))
3706                 return;
3707
3708         for_each_sibling_event(event, group_event)
3709                 event_update_userpage(event);
3710 }
3711
3712 static int merge_sched_in(struct perf_event *event, void *data)
3713 {
3714         struct perf_event_context *ctx = event->ctx;
3715         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3716         int *can_add_hw = data;
3717
3718         if (event->state <= PERF_EVENT_STATE_OFF)
3719                 return 0;
3720
3721         if (!event_filter_match(event))
3722                 return 0;
3723
3724         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3725                 if (!group_sched_in(event, cpuctx, ctx))
3726                         list_add_tail(&event->active_list, get_event_list(event));
3727         }
3728
3729         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3730                 *can_add_hw = 0;
3731                 if (event->attr.pinned) {
3732                         perf_cgroup_event_disable(event, ctx);
3733                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3734                 } else {
3735                         ctx->rotate_necessary = 1;
3736                         perf_mux_hrtimer_restart(cpuctx);
3737                         group_update_userpage(event);
3738                 }
3739         }
3740
3741         return 0;
3742 }
3743
3744 static void
3745 ctx_pinned_sched_in(struct perf_event_context *ctx,
3746                     struct perf_cpu_context *cpuctx)
3747 {
3748         int can_add_hw = 1;
3749
3750         if (ctx != &cpuctx->ctx)
3751                 cpuctx = NULL;
3752
3753         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3754                            smp_processor_id(),
3755                            merge_sched_in, &can_add_hw);
3756 }
3757
3758 static void
3759 ctx_flexible_sched_in(struct perf_event_context *ctx,
3760                       struct perf_cpu_context *cpuctx)
3761 {
3762         int can_add_hw = 1;
3763
3764         if (ctx != &cpuctx->ctx)
3765                 cpuctx = NULL;
3766
3767         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3768                            smp_processor_id(),
3769                            merge_sched_in, &can_add_hw);
3770 }
3771
3772 static void
3773 ctx_sched_in(struct perf_event_context *ctx,
3774              struct perf_cpu_context *cpuctx,
3775              enum event_type_t event_type)
3776 {
3777         int is_active = ctx->is_active;
3778
3779         lockdep_assert_held(&ctx->lock);
3780
3781         if (likely(!ctx->nr_events))
3782                 return;
3783
3784         if (is_active ^ EVENT_TIME) {
3785                 /* start ctx time */
3786                 __update_context_time(ctx, false);
3787                 perf_cgroup_set_timestamp(cpuctx);
3788                 /*
3789                  * CPU-release for the below ->is_active store,
3790                  * see __load_acquire() in perf_event_time_now()
3791                  */
3792                 barrier();
3793         }
3794
3795         ctx->is_active |= (event_type | EVENT_TIME);
3796         if (ctx->task) {
3797                 if (!is_active)
3798                         cpuctx->task_ctx = ctx;
3799                 else
3800                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3801         }
3802
3803         is_active ^= ctx->is_active; /* changed bits */
3804
3805         /*
3806          * First go through the list and put on any pinned groups
3807          * in order to give them the best chance of going on.
3808          */
3809         if (is_active & EVENT_PINNED)
3810                 ctx_pinned_sched_in(ctx, cpuctx);
3811
3812         /* Then walk through the lower prio flexible groups */
3813         if (is_active & EVENT_FLEXIBLE)
3814                 ctx_flexible_sched_in(ctx, cpuctx);
3815 }
3816
3817 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3818                              enum event_type_t event_type)
3819 {
3820         struct perf_event_context *ctx = &cpuctx->ctx;
3821
3822         ctx_sched_in(ctx, cpuctx, event_type);
3823 }
3824
3825 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3826                                         struct task_struct *task)
3827 {
3828         struct perf_cpu_context *cpuctx;
3829         struct pmu *pmu;
3830
3831         cpuctx = __get_cpu_context(ctx);
3832
3833         /*
3834          * HACK: for HETEROGENEOUS the task context might have switched to a
3835          * different PMU, force (re)set the context,
3836          */
3837         pmu = ctx->pmu = cpuctx->ctx.pmu;
3838
3839         if (cpuctx->task_ctx == ctx) {
3840                 if (cpuctx->sched_cb_usage)
3841                         __perf_pmu_sched_task(cpuctx, true);
3842                 return;
3843         }
3844
3845         perf_ctx_lock(cpuctx, ctx);
3846         /*
3847          * We must check ctx->nr_events while holding ctx->lock, such
3848          * that we serialize against perf_install_in_context().
3849          */
3850         if (!ctx->nr_events)
3851                 goto unlock;
3852
3853         perf_pmu_disable(pmu);
3854         /*
3855          * We want to keep the following priority order:
3856          * cpu pinned (that don't need to move), task pinned,
3857          * cpu flexible, task flexible.
3858          *
3859          * However, if task's ctx is not carrying any pinned
3860          * events, no need to flip the cpuctx's events around.
3861          */
3862         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3863                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3864         perf_event_sched_in(cpuctx, ctx);
3865
3866         if (cpuctx->sched_cb_usage && pmu->sched_task)
3867                 pmu->sched_task(cpuctx->task_ctx, true);
3868
3869         perf_pmu_enable(pmu);
3870
3871 unlock:
3872         perf_ctx_unlock(cpuctx, ctx);
3873 }
3874
3875 /*
3876  * Called from scheduler to add the events of the current task
3877  * with interrupts disabled.
3878  *
3879  * We restore the event value and then enable it.
3880  *
3881  * This does not protect us against NMI, but enable()
3882  * sets the enabled bit in the control field of event _before_
3883  * accessing the event control register. If a NMI hits, then it will
3884  * keep the event running.
3885  */
3886 void __perf_event_task_sched_in(struct task_struct *prev,
3887                                 struct task_struct *task)
3888 {
3889         struct perf_event_context *ctx;
3890         int ctxn;
3891
3892         for_each_task_context_nr(ctxn) {
3893                 ctx = task->perf_event_ctxp[ctxn];
3894                 if (likely(!ctx))
3895                         continue;
3896
3897                 perf_event_context_sched_in(ctx, task);
3898         }
3899
3900         if (atomic_read(&nr_switch_events))
3901                 perf_event_switch(task, prev, true);
3902
3903         if (__this_cpu_read(perf_sched_cb_usages))
3904                 perf_pmu_sched_task(prev, task, true);
3905 }
3906
3907 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3908 {
3909         u64 frequency = event->attr.sample_freq;
3910         u64 sec = NSEC_PER_SEC;
3911         u64 divisor, dividend;
3912
3913         int count_fls, nsec_fls, frequency_fls, sec_fls;
3914
3915         count_fls = fls64(count);
3916         nsec_fls = fls64(nsec);
3917         frequency_fls = fls64(frequency);
3918         sec_fls = 30;
3919
3920         /*
3921          * We got @count in @nsec, with a target of sample_freq HZ
3922          * the target period becomes:
3923          *
3924          *             @count * 10^9
3925          * period = -------------------
3926          *          @nsec * sample_freq
3927          *
3928          */
3929
3930         /*
3931          * Reduce accuracy by one bit such that @a and @b converge
3932          * to a similar magnitude.
3933          */
3934 #define REDUCE_FLS(a, b)                \
3935 do {                                    \
3936         if (a##_fls > b##_fls) {        \
3937                 a >>= 1;                \
3938                 a##_fls--;              \
3939         } else {                        \
3940                 b >>= 1;                \
3941                 b##_fls--;              \
3942         }                               \
3943 } while (0)
3944
3945         /*
3946          * Reduce accuracy until either term fits in a u64, then proceed with
3947          * the other, so that finally we can do a u64/u64 division.
3948          */
3949         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3950                 REDUCE_FLS(nsec, frequency);
3951                 REDUCE_FLS(sec, count);
3952         }
3953
3954         if (count_fls + sec_fls > 64) {
3955                 divisor = nsec * frequency;
3956
3957                 while (count_fls + sec_fls > 64) {
3958                         REDUCE_FLS(count, sec);
3959                         divisor >>= 1;
3960                 }
3961
3962                 dividend = count * sec;
3963         } else {
3964                 dividend = count * sec;
3965
3966                 while (nsec_fls + frequency_fls > 64) {
3967                         REDUCE_FLS(nsec, frequency);
3968                         dividend >>= 1;
3969                 }
3970
3971                 divisor = nsec * frequency;
3972         }
3973
3974         if (!divisor)
3975                 return dividend;
3976
3977         return div64_u64(dividend, divisor);
3978 }
3979
3980 static DEFINE_PER_CPU(int, perf_throttled_count);
3981 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3982
3983 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3984 {
3985         struct hw_perf_event *hwc = &event->hw;
3986         s64 period, sample_period;
3987         s64 delta;
3988
3989         period = perf_calculate_period(event, nsec, count);
3990
3991         delta = (s64)(period - hwc->sample_period);
3992         delta = (delta + 7) / 8; /* low pass filter */
3993
3994         sample_period = hwc->sample_period + delta;
3995
3996         if (!sample_period)
3997                 sample_period = 1;
3998
3999         hwc->sample_period = sample_period;
4000
4001         if (local64_read(&hwc->period_left) > 8*sample_period) {
4002                 if (disable)
4003                         event->pmu->stop(event, PERF_EF_UPDATE);
4004
4005                 local64_set(&hwc->period_left, 0);
4006
4007                 if (disable)
4008                         event->pmu->start(event, PERF_EF_RELOAD);
4009         }
4010 }
4011
4012 /*
4013  * combine freq adjustment with unthrottling to avoid two passes over the
4014  * events. At the same time, make sure, having freq events does not change
4015  * the rate of unthrottling as that would introduce bias.
4016  */
4017 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4018                                            int needs_unthr)
4019 {
4020         struct perf_event *event;
4021         struct hw_perf_event *hwc;
4022         u64 now, period = TICK_NSEC;
4023         s64 delta;
4024
4025         /*
4026          * only need to iterate over all events iff:
4027          * - context have events in frequency mode (needs freq adjust)
4028          * - there are events to unthrottle on this cpu
4029          */
4030         if (!(ctx->nr_freq || needs_unthr))
4031                 return;
4032
4033         raw_spin_lock(&ctx->lock);
4034         perf_pmu_disable(ctx->pmu);
4035
4036         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4037                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4038                         continue;
4039
4040                 if (!event_filter_match(event))
4041                         continue;
4042
4043                 perf_pmu_disable(event->pmu);
4044
4045                 hwc = &event->hw;
4046
4047                 if (hwc->interrupts == MAX_INTERRUPTS) {
4048                         hwc->interrupts = 0;
4049                         perf_log_throttle(event, 1);
4050                         event->pmu->start(event, 0);
4051                 }
4052
4053                 if (!event->attr.freq || !event->attr.sample_freq)
4054                         goto next;
4055
4056                 /*
4057                  * stop the event and update event->count
4058                  */
4059                 event->pmu->stop(event, PERF_EF_UPDATE);
4060
4061                 now = local64_read(&event->count);
4062                 delta = now - hwc->freq_count_stamp;
4063                 hwc->freq_count_stamp = now;
4064
4065                 /*
4066                  * restart the event
4067                  * reload only if value has changed
4068                  * we have stopped the event so tell that
4069                  * to perf_adjust_period() to avoid stopping it
4070                  * twice.
4071                  */
4072                 if (delta > 0)
4073                         perf_adjust_period(event, period, delta, false);
4074
4075                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4076         next:
4077                 perf_pmu_enable(event->pmu);
4078         }
4079
4080         perf_pmu_enable(ctx->pmu);
4081         raw_spin_unlock(&ctx->lock);
4082 }
4083
4084 /*
4085  * Move @event to the tail of the @ctx's elegible events.
4086  */
4087 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4088 {
4089         /*
4090          * Rotate the first entry last of non-pinned groups. Rotation might be
4091          * disabled by the inheritance code.
4092          */
4093         if (ctx->rotate_disable)
4094                 return;
4095
4096         perf_event_groups_delete(&ctx->flexible_groups, event);
4097         perf_event_groups_insert(&ctx->flexible_groups, event);
4098 }
4099
4100 /* pick an event from the flexible_groups to rotate */
4101 static inline struct perf_event *
4102 ctx_event_to_rotate(struct perf_event_context *ctx)
4103 {
4104         struct perf_event *event;
4105
4106         /* pick the first active flexible event */
4107         event = list_first_entry_or_null(&ctx->flexible_active,
4108                                          struct perf_event, active_list);
4109
4110         /* if no active flexible event, pick the first event */
4111         if (!event) {
4112                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4113                                       typeof(*event), group_node);
4114         }
4115
4116         /*
4117          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4118          * finds there are unschedulable events, it will set it again.
4119          */
4120         ctx->rotate_necessary = 0;
4121
4122         return event;
4123 }
4124
4125 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4126 {
4127         struct perf_event *cpu_event = NULL, *task_event = NULL;
4128         struct perf_event_context *task_ctx = NULL;
4129         int cpu_rotate, task_rotate;
4130
4131         /*
4132          * Since we run this from IRQ context, nobody can install new
4133          * events, thus the event count values are stable.
4134          */
4135
4136         cpu_rotate = cpuctx->ctx.rotate_necessary;
4137         task_ctx = cpuctx->task_ctx;
4138         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4139
4140         if (!(cpu_rotate || task_rotate))
4141                 return false;
4142
4143         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4144         perf_pmu_disable(cpuctx->ctx.pmu);
4145
4146         if (task_rotate)
4147                 task_event = ctx_event_to_rotate(task_ctx);
4148         if (cpu_rotate)
4149                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4150
4151         /*
4152          * As per the order given at ctx_resched() first 'pop' task flexible
4153          * and then, if needed CPU flexible.
4154          */
4155         if (task_event || (task_ctx && cpu_event))
4156                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4157         if (cpu_event)
4158                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4159
4160         if (task_event)
4161                 rotate_ctx(task_ctx, task_event);
4162         if (cpu_event)
4163                 rotate_ctx(&cpuctx->ctx, cpu_event);
4164
4165         perf_event_sched_in(cpuctx, task_ctx);
4166
4167         perf_pmu_enable(cpuctx->ctx.pmu);
4168         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4169
4170         return true;
4171 }
4172
4173 void perf_event_task_tick(void)
4174 {
4175         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4176         struct perf_event_context *ctx, *tmp;
4177         int throttled;
4178
4179         lockdep_assert_irqs_disabled();
4180
4181         __this_cpu_inc(perf_throttled_seq);
4182         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4183         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4184
4185         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4186                 perf_adjust_freq_unthr_context(ctx, throttled);
4187 }
4188
4189 static int event_enable_on_exec(struct perf_event *event,
4190                                 struct perf_event_context *ctx)
4191 {
4192         if (!event->attr.enable_on_exec)
4193                 return 0;
4194
4195         event->attr.enable_on_exec = 0;
4196         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4197                 return 0;
4198
4199         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4200
4201         return 1;
4202 }
4203
4204 /*
4205  * Enable all of a task's events that have been marked enable-on-exec.
4206  * This expects task == current.
4207  */
4208 static void perf_event_enable_on_exec(int ctxn)
4209 {
4210         struct perf_event_context *ctx, *clone_ctx = NULL;
4211         enum event_type_t event_type = 0;
4212         struct perf_cpu_context *cpuctx;
4213         struct perf_event *event;
4214         unsigned long flags;
4215         int enabled = 0;
4216
4217         local_irq_save(flags);
4218         ctx = current->perf_event_ctxp[ctxn];
4219         if (!ctx || !ctx->nr_events)
4220                 goto out;
4221
4222         cpuctx = __get_cpu_context(ctx);
4223         perf_ctx_lock(cpuctx, ctx);
4224         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4225         list_for_each_entry(event, &ctx->event_list, event_entry) {
4226                 enabled |= event_enable_on_exec(event, ctx);
4227                 event_type |= get_event_type(event);
4228         }
4229
4230         /*
4231          * Unclone and reschedule this context if we enabled any event.
4232          */
4233         if (enabled) {
4234                 clone_ctx = unclone_ctx(ctx);
4235                 ctx_resched(cpuctx, ctx, event_type);
4236         } else {
4237                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4238         }
4239         perf_ctx_unlock(cpuctx, ctx);
4240
4241 out:
4242         local_irq_restore(flags);
4243
4244         if (clone_ctx)
4245                 put_ctx(clone_ctx);
4246 }
4247
4248 static void perf_remove_from_owner(struct perf_event *event);
4249 static void perf_event_exit_event(struct perf_event *event,
4250                                   struct perf_event_context *ctx);
4251
4252 /*
4253  * Removes all events from the current task that have been marked
4254  * remove-on-exec, and feeds their values back to parent events.
4255  */
4256 static void perf_event_remove_on_exec(int ctxn)
4257 {
4258         struct perf_event_context *ctx, *clone_ctx = NULL;
4259         struct perf_event *event, *next;
4260         unsigned long flags;
4261         bool modified = false;
4262
4263         ctx = perf_pin_task_context(current, ctxn);
4264         if (!ctx)
4265                 return;
4266
4267         mutex_lock(&ctx->mutex);
4268
4269         if (WARN_ON_ONCE(ctx->task != current))
4270                 goto unlock;
4271
4272         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4273                 if (!event->attr.remove_on_exec)
4274                         continue;
4275
4276                 if (!is_kernel_event(event))
4277                         perf_remove_from_owner(event);
4278
4279                 modified = true;
4280
4281                 perf_event_exit_event(event, ctx);
4282         }
4283
4284         raw_spin_lock_irqsave(&ctx->lock, flags);
4285         if (modified)
4286                 clone_ctx = unclone_ctx(ctx);
4287         --ctx->pin_count;
4288         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4289
4290 unlock:
4291         mutex_unlock(&ctx->mutex);
4292
4293         put_ctx(ctx);
4294         if (clone_ctx)
4295                 put_ctx(clone_ctx);
4296 }
4297
4298 struct perf_read_data {
4299         struct perf_event *event;
4300         bool group;
4301         int ret;
4302 };
4303
4304 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4305 {
4306         u16 local_pkg, event_pkg;
4307
4308         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4309                 int local_cpu = smp_processor_id();
4310
4311                 event_pkg = topology_physical_package_id(event_cpu);
4312                 local_pkg = topology_physical_package_id(local_cpu);
4313
4314                 if (event_pkg == local_pkg)
4315                         return local_cpu;
4316         }
4317
4318         return event_cpu;
4319 }
4320
4321 /*
4322  * Cross CPU call to read the hardware event
4323  */
4324 static void __perf_event_read(void *info)
4325 {
4326         struct perf_read_data *data = info;
4327         struct perf_event *sub, *event = data->event;
4328         struct perf_event_context *ctx = event->ctx;
4329         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4330         struct pmu *pmu = event->pmu;
4331
4332         /*
4333          * If this is a task context, we need to check whether it is
4334          * the current task context of this cpu.  If not it has been
4335          * scheduled out before the smp call arrived.  In that case
4336          * event->count would have been updated to a recent sample
4337          * when the event was scheduled out.
4338          */
4339         if (ctx->task && cpuctx->task_ctx != ctx)
4340                 return;
4341
4342         raw_spin_lock(&ctx->lock);
4343         if (ctx->is_active & EVENT_TIME) {
4344                 update_context_time(ctx);
4345                 update_cgrp_time_from_event(event);
4346         }
4347
4348         perf_event_update_time(event);
4349         if (data->group)
4350                 perf_event_update_sibling_time(event);
4351
4352         if (event->state != PERF_EVENT_STATE_ACTIVE)
4353                 goto unlock;
4354
4355         if (!data->group) {
4356                 pmu->read(event);
4357                 data->ret = 0;
4358                 goto unlock;
4359         }
4360
4361         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4362
4363         pmu->read(event);
4364
4365         for_each_sibling_event(sub, event) {
4366                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4367                         /*
4368                          * Use sibling's PMU rather than @event's since
4369                          * sibling could be on different (eg: software) PMU.
4370                          */
4371                         sub->pmu->read(sub);
4372                 }
4373         }
4374
4375         data->ret = pmu->commit_txn(pmu);
4376
4377 unlock:
4378         raw_spin_unlock(&ctx->lock);
4379 }
4380
4381 static inline u64 perf_event_count(struct perf_event *event)
4382 {
4383         return local64_read(&event->count) + atomic64_read(&event->child_count);
4384 }
4385
4386 static void calc_timer_values(struct perf_event *event,
4387                                 u64 *now,
4388                                 u64 *enabled,
4389                                 u64 *running)
4390 {
4391         u64 ctx_time;
4392
4393         *now = perf_clock();
4394         ctx_time = perf_event_time_now(event, *now);
4395         __perf_update_times(event, ctx_time, enabled, running);
4396 }
4397
4398 /*
4399  * NMI-safe method to read a local event, that is an event that
4400  * is:
4401  *   - either for the current task, or for this CPU
4402  *   - does not have inherit set, for inherited task events
4403  *     will not be local and we cannot read them atomically
4404  *   - must not have a pmu::count method
4405  */
4406 int perf_event_read_local(struct perf_event *event, u64 *value,
4407                           u64 *enabled, u64 *running)
4408 {
4409         unsigned long flags;
4410         int ret = 0;
4411
4412         /*
4413          * Disabling interrupts avoids all counter scheduling (context
4414          * switches, timer based rotation and IPIs).
4415          */
4416         local_irq_save(flags);
4417
4418         /*
4419          * It must not be an event with inherit set, we cannot read
4420          * all child counters from atomic context.
4421          */
4422         if (event->attr.inherit) {
4423                 ret = -EOPNOTSUPP;
4424                 goto out;
4425         }
4426
4427         /* If this is a per-task event, it must be for current */
4428         if ((event->attach_state & PERF_ATTACH_TASK) &&
4429             event->hw.target != current) {
4430                 ret = -EINVAL;
4431                 goto out;
4432         }
4433
4434         /* If this is a per-CPU event, it must be for this CPU */
4435         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4436             event->cpu != smp_processor_id()) {
4437                 ret = -EINVAL;
4438                 goto out;
4439         }
4440
4441         /* If this is a pinned event it must be running on this CPU */
4442         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4443                 ret = -EBUSY;
4444                 goto out;
4445         }
4446
4447         /*
4448          * If the event is currently on this CPU, its either a per-task event,
4449          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4450          * oncpu == -1).
4451          */
4452         if (event->oncpu == smp_processor_id())
4453                 event->pmu->read(event);
4454
4455         *value = local64_read(&event->count);
4456         if (enabled || running) {
4457                 u64 __enabled, __running, __now;;
4458
4459                 calc_timer_values(event, &__now, &__enabled, &__running);
4460                 if (enabled)
4461                         *enabled = __enabled;
4462                 if (running)
4463                         *running = __running;
4464         }
4465 out:
4466         local_irq_restore(flags);
4467
4468         return ret;
4469 }
4470
4471 static int perf_event_read(struct perf_event *event, bool group)
4472 {
4473         enum perf_event_state state = READ_ONCE(event->state);
4474         int event_cpu, ret = 0;
4475
4476         /*
4477          * If event is enabled and currently active on a CPU, update the
4478          * value in the event structure:
4479          */
4480 again:
4481         if (state == PERF_EVENT_STATE_ACTIVE) {
4482                 struct perf_read_data data;
4483
4484                 /*
4485                  * Orders the ->state and ->oncpu loads such that if we see
4486                  * ACTIVE we must also see the right ->oncpu.
4487                  *
4488                  * Matches the smp_wmb() from event_sched_in().
4489                  */
4490                 smp_rmb();
4491
4492                 event_cpu = READ_ONCE(event->oncpu);
4493                 if ((unsigned)event_cpu >= nr_cpu_ids)
4494                         return 0;
4495
4496                 data = (struct perf_read_data){
4497                         .event = event,
4498                         .group = group,
4499                         .ret = 0,
4500                 };
4501
4502                 preempt_disable();
4503                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4504
4505                 /*
4506                  * Purposely ignore the smp_call_function_single() return
4507                  * value.
4508                  *
4509                  * If event_cpu isn't a valid CPU it means the event got
4510                  * scheduled out and that will have updated the event count.
4511                  *
4512                  * Therefore, either way, we'll have an up-to-date event count
4513                  * after this.
4514                  */
4515                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4516                 preempt_enable();
4517                 ret = data.ret;
4518
4519         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4520                 struct perf_event_context *ctx = event->ctx;
4521                 unsigned long flags;
4522
4523                 raw_spin_lock_irqsave(&ctx->lock, flags);
4524                 state = event->state;
4525                 if (state != PERF_EVENT_STATE_INACTIVE) {
4526                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4527                         goto again;
4528                 }
4529
4530                 /*
4531                  * May read while context is not active (e.g., thread is
4532                  * blocked), in that case we cannot update context time
4533                  */
4534                 if (ctx->is_active & EVENT_TIME) {
4535                         update_context_time(ctx);
4536                         update_cgrp_time_from_event(event);
4537                 }
4538
4539                 perf_event_update_time(event);
4540                 if (group)
4541                         perf_event_update_sibling_time(event);
4542                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4543         }
4544
4545         return ret;
4546 }
4547
4548 /*
4549  * Initialize the perf_event context in a task_struct:
4550  */
4551 static void __perf_event_init_context(struct perf_event_context *ctx)
4552 {
4553         raw_spin_lock_init(&ctx->lock);
4554         mutex_init(&ctx->mutex);
4555         INIT_LIST_HEAD(&ctx->active_ctx_list);
4556         perf_event_groups_init(&ctx->pinned_groups);
4557         perf_event_groups_init(&ctx->flexible_groups);
4558         INIT_LIST_HEAD(&ctx->event_list);
4559         INIT_LIST_HEAD(&ctx->pinned_active);
4560         INIT_LIST_HEAD(&ctx->flexible_active);
4561         refcount_set(&ctx->refcount, 1);
4562 }
4563
4564 static struct perf_event_context *
4565 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4566 {
4567         struct perf_event_context *ctx;
4568
4569         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4570         if (!ctx)
4571                 return NULL;
4572
4573         __perf_event_init_context(ctx);
4574         if (task)
4575                 ctx->task = get_task_struct(task);
4576         ctx->pmu = pmu;
4577
4578         return ctx;
4579 }
4580
4581 static struct task_struct *
4582 find_lively_task_by_vpid(pid_t vpid)
4583 {
4584         struct task_struct *task;
4585
4586         rcu_read_lock();
4587         if (!vpid)
4588                 task = current;
4589         else
4590                 task = find_task_by_vpid(vpid);
4591         if (task)
4592                 get_task_struct(task);
4593         rcu_read_unlock();
4594
4595         if (!task)
4596                 return ERR_PTR(-ESRCH);
4597
4598         return task;
4599 }
4600
4601 /*
4602  * Returns a matching context with refcount and pincount.
4603  */
4604 static struct perf_event_context *
4605 find_get_context(struct pmu *pmu, struct task_struct *task,
4606                 struct perf_event *event)
4607 {
4608         struct perf_event_context *ctx, *clone_ctx = NULL;
4609         struct perf_cpu_context *cpuctx;
4610         void *task_ctx_data = NULL;
4611         unsigned long flags;
4612         int ctxn, err;
4613         int cpu = event->cpu;
4614
4615         if (!task) {
4616                 /* Must be root to operate on a CPU event: */
4617                 err = perf_allow_cpu(&event->attr);
4618                 if (err)
4619                         return ERR_PTR(err);
4620
4621                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4622                 ctx = &cpuctx->ctx;
4623                 get_ctx(ctx);
4624                 raw_spin_lock_irqsave(&ctx->lock, flags);
4625                 ++ctx->pin_count;
4626                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4627
4628                 return ctx;
4629         }
4630
4631         err = -EINVAL;
4632         ctxn = pmu->task_ctx_nr;
4633         if (ctxn < 0)
4634                 goto errout;
4635
4636         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4637                 task_ctx_data = alloc_task_ctx_data(pmu);
4638                 if (!task_ctx_data) {
4639                         err = -ENOMEM;
4640                         goto errout;
4641                 }
4642         }
4643
4644 retry:
4645         ctx = perf_lock_task_context(task, ctxn, &flags);
4646         if (ctx) {
4647                 clone_ctx = unclone_ctx(ctx);
4648                 ++ctx->pin_count;
4649
4650                 if (task_ctx_data && !ctx->task_ctx_data) {
4651                         ctx->task_ctx_data = task_ctx_data;
4652                         task_ctx_data = NULL;
4653                 }
4654                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4655
4656                 if (clone_ctx)
4657                         put_ctx(clone_ctx);
4658         } else {
4659                 ctx = alloc_perf_context(pmu, task);
4660                 err = -ENOMEM;
4661                 if (!ctx)
4662                         goto errout;
4663
4664                 if (task_ctx_data) {
4665                         ctx->task_ctx_data = task_ctx_data;
4666                         task_ctx_data = NULL;
4667                 }
4668
4669                 err = 0;
4670                 mutex_lock(&task->perf_event_mutex);
4671                 /*
4672                  * If it has already passed perf_event_exit_task().
4673                  * we must see PF_EXITING, it takes this mutex too.
4674                  */
4675                 if (task->flags & PF_EXITING)
4676                         err = -ESRCH;
4677                 else if (task->perf_event_ctxp[ctxn])
4678                         err = -EAGAIN;
4679                 else {
4680                         get_ctx(ctx);
4681                         ++ctx->pin_count;
4682                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4683                 }
4684                 mutex_unlock(&task->perf_event_mutex);
4685
4686                 if (unlikely(err)) {
4687                         put_ctx(ctx);
4688
4689                         if (err == -EAGAIN)
4690                                 goto retry;
4691                         goto errout;
4692                 }
4693         }
4694
4695         free_task_ctx_data(pmu, task_ctx_data);
4696         return ctx;
4697
4698 errout:
4699         free_task_ctx_data(pmu, task_ctx_data);
4700         return ERR_PTR(err);
4701 }
4702
4703 static void perf_event_free_filter(struct perf_event *event);
4704
4705 static void free_event_rcu(struct rcu_head *head)
4706 {
4707         struct perf_event *event;
4708
4709         event = container_of(head, struct perf_event, rcu_head);
4710         if (event->ns)
4711                 put_pid_ns(event->ns);
4712         perf_event_free_filter(event);
4713         kmem_cache_free(perf_event_cache, event);
4714 }
4715
4716 static void ring_buffer_attach(struct perf_event *event,
4717                                struct perf_buffer *rb);
4718
4719 static void detach_sb_event(struct perf_event *event)
4720 {
4721         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4722
4723         raw_spin_lock(&pel->lock);
4724         list_del_rcu(&event->sb_list);
4725         raw_spin_unlock(&pel->lock);
4726 }
4727
4728 static bool is_sb_event(struct perf_event *event)
4729 {
4730         struct perf_event_attr *attr = &event->attr;
4731
4732         if (event->parent)
4733                 return false;
4734
4735         if (event->attach_state & PERF_ATTACH_TASK)
4736                 return false;
4737
4738         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4739             attr->comm || attr->comm_exec ||
4740             attr->task || attr->ksymbol ||
4741             attr->context_switch || attr->text_poke ||
4742             attr->bpf_event)
4743                 return true;
4744         return false;
4745 }
4746
4747 static void unaccount_pmu_sb_event(struct perf_event *event)
4748 {
4749         if (is_sb_event(event))
4750                 detach_sb_event(event);
4751 }
4752
4753 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4754 {
4755         if (event->parent)
4756                 return;
4757
4758         if (is_cgroup_event(event))
4759                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4760 }
4761
4762 #ifdef CONFIG_NO_HZ_FULL
4763 static DEFINE_SPINLOCK(nr_freq_lock);
4764 #endif
4765
4766 static void unaccount_freq_event_nohz(void)
4767 {
4768 #ifdef CONFIG_NO_HZ_FULL
4769         spin_lock(&nr_freq_lock);
4770         if (atomic_dec_and_test(&nr_freq_events))
4771                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4772         spin_unlock(&nr_freq_lock);
4773 #endif
4774 }
4775
4776 static void unaccount_freq_event(void)
4777 {
4778         if (tick_nohz_full_enabled())
4779                 unaccount_freq_event_nohz();
4780         else
4781                 atomic_dec(&nr_freq_events);
4782 }
4783
4784 static void unaccount_event(struct perf_event *event)
4785 {
4786         bool dec = false;
4787
4788         if (event->parent)
4789                 return;
4790
4791         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4792                 dec = true;
4793         if (event->attr.mmap || event->attr.mmap_data)
4794                 atomic_dec(&nr_mmap_events);
4795         if (event->attr.build_id)
4796                 atomic_dec(&nr_build_id_events);
4797         if (event->attr.comm)
4798                 atomic_dec(&nr_comm_events);
4799         if (event->attr.namespaces)
4800                 atomic_dec(&nr_namespaces_events);
4801         if (event->attr.cgroup)
4802                 atomic_dec(&nr_cgroup_events);
4803         if (event->attr.task)
4804                 atomic_dec(&nr_task_events);
4805         if (event->attr.freq)
4806                 unaccount_freq_event();
4807         if (event->attr.context_switch) {
4808                 dec = true;
4809                 atomic_dec(&nr_switch_events);
4810         }
4811         if (is_cgroup_event(event))
4812                 dec = true;
4813         if (has_branch_stack(event))
4814                 dec = true;
4815         if (event->attr.ksymbol)
4816                 atomic_dec(&nr_ksymbol_events);
4817         if (event->attr.bpf_event)
4818                 atomic_dec(&nr_bpf_events);
4819         if (event->attr.text_poke)
4820                 atomic_dec(&nr_text_poke_events);
4821
4822         if (dec) {
4823                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4824                         schedule_delayed_work(&perf_sched_work, HZ);
4825         }
4826
4827         unaccount_event_cpu(event, event->cpu);
4828
4829         unaccount_pmu_sb_event(event);
4830 }
4831
4832 static void perf_sched_delayed(struct work_struct *work)
4833 {
4834         mutex_lock(&perf_sched_mutex);
4835         if (atomic_dec_and_test(&perf_sched_count))
4836                 static_branch_disable(&perf_sched_events);
4837         mutex_unlock(&perf_sched_mutex);
4838 }
4839
4840 /*
4841  * The following implement mutual exclusion of events on "exclusive" pmus
4842  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4843  * at a time, so we disallow creating events that might conflict, namely:
4844  *
4845  *  1) cpu-wide events in the presence of per-task events,
4846  *  2) per-task events in the presence of cpu-wide events,
4847  *  3) two matching events on the same context.
4848  *
4849  * The former two cases are handled in the allocation path (perf_event_alloc(),
4850  * _free_event()), the latter -- before the first perf_install_in_context().
4851  */
4852 static int exclusive_event_init(struct perf_event *event)
4853 {
4854         struct pmu *pmu = event->pmu;
4855
4856         if (!is_exclusive_pmu(pmu))
4857                 return 0;
4858
4859         /*
4860          * Prevent co-existence of per-task and cpu-wide events on the
4861          * same exclusive pmu.
4862          *
4863          * Negative pmu::exclusive_cnt means there are cpu-wide
4864          * events on this "exclusive" pmu, positive means there are
4865          * per-task events.
4866          *
4867          * Since this is called in perf_event_alloc() path, event::ctx
4868          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4869          * to mean "per-task event", because unlike other attach states it
4870          * never gets cleared.
4871          */
4872         if (event->attach_state & PERF_ATTACH_TASK) {
4873                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4874                         return -EBUSY;
4875         } else {
4876                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4877                         return -EBUSY;
4878         }
4879
4880         return 0;
4881 }
4882
4883 static void exclusive_event_destroy(struct perf_event *event)
4884 {
4885         struct pmu *pmu = event->pmu;
4886
4887         if (!is_exclusive_pmu(pmu))
4888                 return;
4889
4890         /* see comment in exclusive_event_init() */
4891         if (event->attach_state & PERF_ATTACH_TASK)
4892                 atomic_dec(&pmu->exclusive_cnt);
4893         else
4894                 atomic_inc(&pmu->exclusive_cnt);
4895 }
4896
4897 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4898 {
4899         if ((e1->pmu == e2->pmu) &&
4900             (e1->cpu == e2->cpu ||
4901              e1->cpu == -1 ||
4902              e2->cpu == -1))
4903                 return true;
4904         return false;
4905 }
4906
4907 static bool exclusive_event_installable(struct perf_event *event,
4908                                         struct perf_event_context *ctx)
4909 {
4910         struct perf_event *iter_event;
4911         struct pmu *pmu = event->pmu;
4912
4913         lockdep_assert_held(&ctx->mutex);
4914
4915         if (!is_exclusive_pmu(pmu))
4916                 return true;
4917
4918         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4919                 if (exclusive_event_match(iter_event, event))
4920                         return false;
4921         }
4922
4923         return true;
4924 }
4925
4926 static void perf_addr_filters_splice(struct perf_event *event,
4927                                        struct list_head *head);
4928
4929 static void _free_event(struct perf_event *event)
4930 {
4931         irq_work_sync(&event->pending);
4932
4933         unaccount_event(event);
4934
4935         security_perf_event_free(event);
4936
4937         if (event->rb) {
4938                 /*
4939                  * Can happen when we close an event with re-directed output.
4940                  *
4941                  * Since we have a 0 refcount, perf_mmap_close() will skip
4942                  * over us; possibly making our ring_buffer_put() the last.
4943                  */
4944                 mutex_lock(&event->mmap_mutex);
4945                 ring_buffer_attach(event, NULL);
4946                 mutex_unlock(&event->mmap_mutex);
4947         }
4948
4949         if (is_cgroup_event(event))
4950                 perf_detach_cgroup(event);
4951
4952         if (!event->parent) {
4953                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4954                         put_callchain_buffers();
4955         }
4956
4957         perf_event_free_bpf_prog(event);
4958         perf_addr_filters_splice(event, NULL);
4959         kfree(event->addr_filter_ranges);
4960
4961         if (event->destroy)
4962                 event->destroy(event);
4963
4964         /*
4965          * Must be after ->destroy(), due to uprobe_perf_close() using
4966          * hw.target.
4967          */
4968         if (event->hw.target)
4969                 put_task_struct(event->hw.target);
4970
4971         /*
4972          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4973          * all task references must be cleaned up.
4974          */
4975         if (event->ctx)
4976                 put_ctx(event->ctx);
4977
4978         exclusive_event_destroy(event);
4979         module_put(event->pmu->module);
4980
4981         call_rcu(&event->rcu_head, free_event_rcu);
4982 }
4983
4984 /*
4985  * Used to free events which have a known refcount of 1, such as in error paths
4986  * where the event isn't exposed yet and inherited events.
4987  */
4988 static void free_event(struct perf_event *event)
4989 {
4990         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4991                                 "unexpected event refcount: %ld; ptr=%p\n",
4992                                 atomic_long_read(&event->refcount), event)) {
4993                 /* leak to avoid use-after-free */
4994                 return;
4995         }
4996
4997         _free_event(event);
4998 }
4999
5000 /*
5001  * Remove user event from the owner task.
5002  */
5003 static void perf_remove_from_owner(struct perf_event *event)
5004 {
5005         struct task_struct *owner;
5006
5007         rcu_read_lock();
5008         /*
5009          * Matches the smp_store_release() in perf_event_exit_task(). If we
5010          * observe !owner it means the list deletion is complete and we can
5011          * indeed free this event, otherwise we need to serialize on
5012          * owner->perf_event_mutex.
5013          */
5014         owner = READ_ONCE(event->owner);
5015         if (owner) {
5016                 /*
5017                  * Since delayed_put_task_struct() also drops the last
5018                  * task reference we can safely take a new reference
5019                  * while holding the rcu_read_lock().
5020                  */
5021                 get_task_struct(owner);
5022         }
5023         rcu_read_unlock();
5024
5025         if (owner) {
5026                 /*
5027                  * If we're here through perf_event_exit_task() we're already
5028                  * holding ctx->mutex which would be an inversion wrt. the
5029                  * normal lock order.
5030                  *
5031                  * However we can safely take this lock because its the child
5032                  * ctx->mutex.
5033                  */
5034                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5035
5036                 /*
5037                  * We have to re-check the event->owner field, if it is cleared
5038                  * we raced with perf_event_exit_task(), acquiring the mutex
5039                  * ensured they're done, and we can proceed with freeing the
5040                  * event.
5041                  */
5042                 if (event->owner) {
5043                         list_del_init(&event->owner_entry);
5044                         smp_store_release(&event->owner, NULL);
5045                 }
5046                 mutex_unlock(&owner->perf_event_mutex);
5047                 put_task_struct(owner);
5048         }
5049 }
5050
5051 static void put_event(struct perf_event *event)
5052 {
5053         if (!atomic_long_dec_and_test(&event->refcount))
5054                 return;
5055
5056         _free_event(event);
5057 }
5058
5059 /*
5060  * Kill an event dead; while event:refcount will preserve the event
5061  * object, it will not preserve its functionality. Once the last 'user'
5062  * gives up the object, we'll destroy the thing.
5063  */
5064 int perf_event_release_kernel(struct perf_event *event)
5065 {
5066         struct perf_event_context *ctx = event->ctx;
5067         struct perf_event *child, *tmp;
5068         LIST_HEAD(free_list);
5069
5070         /*
5071          * If we got here through err_file: fput(event_file); we will not have
5072          * attached to a context yet.
5073          */
5074         if (!ctx) {
5075                 WARN_ON_ONCE(event->attach_state &
5076                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5077                 goto no_ctx;
5078         }
5079
5080         if (!is_kernel_event(event))
5081                 perf_remove_from_owner(event);
5082
5083         ctx = perf_event_ctx_lock(event);
5084         WARN_ON_ONCE(ctx->parent_ctx);
5085         perf_remove_from_context(event, DETACH_GROUP);
5086
5087         raw_spin_lock_irq(&ctx->lock);
5088         /*
5089          * Mark this event as STATE_DEAD, there is no external reference to it
5090          * anymore.
5091          *
5092          * Anybody acquiring event->child_mutex after the below loop _must_
5093          * also see this, most importantly inherit_event() which will avoid
5094          * placing more children on the list.
5095          *
5096          * Thus this guarantees that we will in fact observe and kill _ALL_
5097          * child events.
5098          */
5099         event->state = PERF_EVENT_STATE_DEAD;
5100         raw_spin_unlock_irq(&ctx->lock);
5101
5102         perf_event_ctx_unlock(event, ctx);
5103
5104 again:
5105         mutex_lock(&event->child_mutex);
5106         list_for_each_entry(child, &event->child_list, child_list) {
5107
5108                 /*
5109                  * Cannot change, child events are not migrated, see the
5110                  * comment with perf_event_ctx_lock_nested().
5111                  */
5112                 ctx = READ_ONCE(child->ctx);
5113                 /*
5114                  * Since child_mutex nests inside ctx::mutex, we must jump
5115                  * through hoops. We start by grabbing a reference on the ctx.
5116                  *
5117                  * Since the event cannot get freed while we hold the
5118                  * child_mutex, the context must also exist and have a !0
5119                  * reference count.
5120                  */
5121                 get_ctx(ctx);
5122
5123                 /*
5124                  * Now that we have a ctx ref, we can drop child_mutex, and
5125                  * acquire ctx::mutex without fear of it going away. Then we
5126                  * can re-acquire child_mutex.
5127                  */
5128                 mutex_unlock(&event->child_mutex);
5129                 mutex_lock(&ctx->mutex);
5130                 mutex_lock(&event->child_mutex);
5131
5132                 /*
5133                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5134                  * state, if child is still the first entry, it didn't get freed
5135                  * and we can continue doing so.
5136                  */
5137                 tmp = list_first_entry_or_null(&event->child_list,
5138                                                struct perf_event, child_list);
5139                 if (tmp == child) {
5140                         perf_remove_from_context(child, DETACH_GROUP);
5141                         list_move(&child->child_list, &free_list);
5142                         /*
5143                          * This matches the refcount bump in inherit_event();
5144                          * this can't be the last reference.
5145                          */
5146                         put_event(event);
5147                 }
5148
5149                 mutex_unlock(&event->child_mutex);
5150                 mutex_unlock(&ctx->mutex);
5151                 put_ctx(ctx);
5152                 goto again;
5153         }
5154         mutex_unlock(&event->child_mutex);
5155
5156         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5157                 void *var = &child->ctx->refcount;
5158
5159                 list_del(&child->child_list);
5160                 free_event(child);
5161
5162                 /*
5163                  * Wake any perf_event_free_task() waiting for this event to be
5164                  * freed.
5165                  */
5166                 smp_mb(); /* pairs with wait_var_event() */
5167                 wake_up_var(var);
5168         }
5169
5170 no_ctx:
5171         put_event(event); /* Must be the 'last' reference */
5172         return 0;
5173 }
5174 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5175
5176 /*
5177  * Called when the last reference to the file is gone.
5178  */
5179 static int perf_release(struct inode *inode, struct file *file)
5180 {
5181         perf_event_release_kernel(file->private_data);
5182         return 0;
5183 }
5184
5185 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5186 {
5187         struct perf_event *child;
5188         u64 total = 0;
5189
5190         *enabled = 0;
5191         *running = 0;
5192
5193         mutex_lock(&event->child_mutex);
5194
5195         (void)perf_event_read(event, false);
5196         total += perf_event_count(event);
5197
5198         *enabled += event->total_time_enabled +
5199                         atomic64_read(&event->child_total_time_enabled);
5200         *running += event->total_time_running +
5201                         atomic64_read(&event->child_total_time_running);
5202
5203         list_for_each_entry(child, &event->child_list, child_list) {
5204                 (void)perf_event_read(child, false);
5205                 total += perf_event_count(child);
5206                 *enabled += child->total_time_enabled;
5207                 *running += child->total_time_running;
5208         }
5209         mutex_unlock(&event->child_mutex);
5210
5211         return total;
5212 }
5213
5214 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5215 {
5216         struct perf_event_context *ctx;
5217         u64 count;
5218
5219         ctx = perf_event_ctx_lock(event);
5220         count = __perf_event_read_value(event, enabled, running);
5221         perf_event_ctx_unlock(event, ctx);
5222
5223         return count;
5224 }
5225 EXPORT_SYMBOL_GPL(perf_event_read_value);
5226
5227 static int __perf_read_group_add(struct perf_event *leader,
5228                                         u64 read_format, u64 *values)
5229 {
5230         struct perf_event_context *ctx = leader->ctx;
5231         struct perf_event *sub;
5232         unsigned long flags;
5233         int n = 1; /* skip @nr */
5234         int ret;
5235
5236         ret = perf_event_read(leader, true);
5237         if (ret)
5238                 return ret;
5239
5240         raw_spin_lock_irqsave(&ctx->lock, flags);
5241
5242         /*
5243          * Since we co-schedule groups, {enabled,running} times of siblings
5244          * will be identical to those of the leader, so we only publish one
5245          * set.
5246          */
5247         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5248                 values[n++] += leader->total_time_enabled +
5249                         atomic64_read(&leader->child_total_time_enabled);
5250         }
5251
5252         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5253                 values[n++] += leader->total_time_running +
5254                         atomic64_read(&leader->child_total_time_running);
5255         }
5256
5257         /*
5258          * Write {count,id} tuples for every sibling.
5259          */
5260         values[n++] += perf_event_count(leader);
5261         if (read_format & PERF_FORMAT_ID)
5262                 values[n++] = primary_event_id(leader);
5263
5264         for_each_sibling_event(sub, leader) {
5265                 values[n++] += perf_event_count(sub);
5266                 if (read_format & PERF_FORMAT_ID)
5267                         values[n++] = primary_event_id(sub);
5268         }
5269
5270         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5271         return 0;
5272 }
5273
5274 static int perf_read_group(struct perf_event *event,
5275                                    u64 read_format, char __user *buf)
5276 {
5277         struct perf_event *leader = event->group_leader, *child;
5278         struct perf_event_context *ctx = leader->ctx;
5279         int ret;
5280         u64 *values;
5281
5282         lockdep_assert_held(&ctx->mutex);
5283
5284         values = kzalloc(event->read_size, GFP_KERNEL);
5285         if (!values)
5286                 return -ENOMEM;
5287
5288         values[0] = 1 + leader->nr_siblings;
5289
5290         /*
5291          * By locking the child_mutex of the leader we effectively
5292          * lock the child list of all siblings.. XXX explain how.
5293          */
5294         mutex_lock(&leader->child_mutex);
5295
5296         ret = __perf_read_group_add(leader, read_format, values);
5297         if (ret)
5298                 goto unlock;
5299
5300         list_for_each_entry(child, &leader->child_list, child_list) {
5301                 ret = __perf_read_group_add(child, read_format, values);
5302                 if (ret)
5303                         goto unlock;
5304         }
5305
5306         mutex_unlock(&leader->child_mutex);
5307
5308         ret = event->read_size;
5309         if (copy_to_user(buf, values, event->read_size))
5310                 ret = -EFAULT;
5311         goto out;
5312
5313 unlock:
5314         mutex_unlock(&leader->child_mutex);
5315 out:
5316         kfree(values);
5317         return ret;
5318 }
5319
5320 static int perf_read_one(struct perf_event *event,
5321                                  u64 read_format, char __user *buf)
5322 {
5323         u64 enabled, running;
5324         u64 values[4];
5325         int n = 0;
5326
5327         values[n++] = __perf_event_read_value(event, &enabled, &running);
5328         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5329                 values[n++] = enabled;
5330         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5331                 values[n++] = running;
5332         if (read_format & PERF_FORMAT_ID)
5333                 values[n++] = primary_event_id(event);
5334
5335         if (copy_to_user(buf, values, n * sizeof(u64)))
5336                 return -EFAULT;
5337
5338         return n * sizeof(u64);
5339 }
5340
5341 static bool is_event_hup(struct perf_event *event)
5342 {
5343         bool no_children;
5344
5345         if (event->state > PERF_EVENT_STATE_EXIT)
5346                 return false;
5347
5348         mutex_lock(&event->child_mutex);
5349         no_children = list_empty(&event->child_list);
5350         mutex_unlock(&event->child_mutex);
5351         return no_children;
5352 }
5353
5354 /*
5355  * Read the performance event - simple non blocking version for now
5356  */
5357 static ssize_t
5358 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5359 {
5360         u64 read_format = event->attr.read_format;
5361         int ret;
5362
5363         /*
5364          * Return end-of-file for a read on an event that is in
5365          * error state (i.e. because it was pinned but it couldn't be
5366          * scheduled on to the CPU at some point).
5367          */
5368         if (event->state == PERF_EVENT_STATE_ERROR)
5369                 return 0;
5370
5371         if (count < event->read_size)
5372                 return -ENOSPC;
5373
5374         WARN_ON_ONCE(event->ctx->parent_ctx);
5375         if (read_format & PERF_FORMAT_GROUP)
5376                 ret = perf_read_group(event, read_format, buf);
5377         else
5378                 ret = perf_read_one(event, read_format, buf);
5379
5380         return ret;
5381 }
5382
5383 static ssize_t
5384 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5385 {
5386         struct perf_event *event = file->private_data;
5387         struct perf_event_context *ctx;
5388         int ret;
5389
5390         ret = security_perf_event_read(event);
5391         if (ret)
5392                 return ret;
5393
5394         ctx = perf_event_ctx_lock(event);
5395         ret = __perf_read(event, buf, count);
5396         perf_event_ctx_unlock(event, ctx);
5397
5398         return ret;
5399 }
5400
5401 static __poll_t perf_poll(struct file *file, poll_table *wait)
5402 {
5403         struct perf_event *event = file->private_data;
5404         struct perf_buffer *rb;
5405         __poll_t events = EPOLLHUP;
5406
5407         poll_wait(file, &event->waitq, wait);
5408
5409         if (is_event_hup(event))
5410                 return events;
5411
5412         /*
5413          * Pin the event->rb by taking event->mmap_mutex; otherwise
5414          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5415          */
5416         mutex_lock(&event->mmap_mutex);
5417         rb = event->rb;
5418         if (rb)
5419                 events = atomic_xchg(&rb->poll, 0);
5420         mutex_unlock(&event->mmap_mutex);
5421         return events;
5422 }
5423
5424 static void _perf_event_reset(struct perf_event *event)
5425 {
5426         (void)perf_event_read(event, false);
5427         local64_set(&event->count, 0);
5428         perf_event_update_userpage(event);
5429 }
5430
5431 /* Assume it's not an event with inherit set. */
5432 u64 perf_event_pause(struct perf_event *event, bool reset)
5433 {
5434         struct perf_event_context *ctx;
5435         u64 count;
5436
5437         ctx = perf_event_ctx_lock(event);
5438         WARN_ON_ONCE(event->attr.inherit);
5439         _perf_event_disable(event);
5440         count = local64_read(&event->count);
5441         if (reset)
5442                 local64_set(&event->count, 0);
5443         perf_event_ctx_unlock(event, ctx);
5444
5445         return count;
5446 }
5447 EXPORT_SYMBOL_GPL(perf_event_pause);
5448
5449 /*
5450  * Holding the top-level event's child_mutex means that any
5451  * descendant process that has inherited this event will block
5452  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5453  * task existence requirements of perf_event_enable/disable.
5454  */
5455 static void perf_event_for_each_child(struct perf_event *event,
5456                                         void (*func)(struct perf_event *))
5457 {
5458         struct perf_event *child;
5459
5460         WARN_ON_ONCE(event->ctx->parent_ctx);
5461
5462         mutex_lock(&event->child_mutex);
5463         func(event);
5464         list_for_each_entry(child, &event->child_list, child_list)
5465                 func(child);
5466         mutex_unlock(&event->child_mutex);
5467 }
5468
5469 static void perf_event_for_each(struct perf_event *event,
5470                                   void (*func)(struct perf_event *))
5471 {
5472         struct perf_event_context *ctx = event->ctx;
5473         struct perf_event *sibling;
5474
5475         lockdep_assert_held(&ctx->mutex);
5476
5477         event = event->group_leader;
5478
5479         perf_event_for_each_child(event, func);
5480         for_each_sibling_event(sibling, event)
5481                 perf_event_for_each_child(sibling, func);
5482 }
5483
5484 static void __perf_event_period(struct perf_event *event,
5485                                 struct perf_cpu_context *cpuctx,
5486                                 struct perf_event_context *ctx,
5487                                 void *info)
5488 {
5489         u64 value = *((u64 *)info);
5490         bool active;
5491
5492         if (event->attr.freq) {
5493                 event->attr.sample_freq = value;
5494         } else {
5495                 event->attr.sample_period = value;
5496                 event->hw.sample_period = value;
5497         }
5498
5499         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5500         if (active) {
5501                 perf_pmu_disable(ctx->pmu);
5502                 /*
5503                  * We could be throttled; unthrottle now to avoid the tick
5504                  * trying to unthrottle while we already re-started the event.
5505                  */
5506                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5507                         event->hw.interrupts = 0;
5508                         perf_log_throttle(event, 1);
5509                 }
5510                 event->pmu->stop(event, PERF_EF_UPDATE);
5511         }
5512
5513         local64_set(&event->hw.period_left, 0);
5514
5515         if (active) {
5516                 event->pmu->start(event, PERF_EF_RELOAD);
5517                 perf_pmu_enable(ctx->pmu);
5518         }
5519 }
5520
5521 static int perf_event_check_period(struct perf_event *event, u64 value)
5522 {
5523         return event->pmu->check_period(event, value);
5524 }
5525
5526 static int _perf_event_period(struct perf_event *event, u64 value)
5527 {
5528         if (!is_sampling_event(event))
5529                 return -EINVAL;
5530
5531         if (!value)
5532                 return -EINVAL;
5533
5534         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5535                 return -EINVAL;
5536
5537         if (perf_event_check_period(event, value))
5538                 return -EINVAL;
5539
5540         if (!event->attr.freq && (value & (1ULL << 63)))
5541                 return -EINVAL;
5542
5543         event_function_call(event, __perf_event_period, &value);
5544
5545         return 0;
5546 }
5547
5548 int perf_event_period(struct perf_event *event, u64 value)
5549 {
5550         struct perf_event_context *ctx;
5551         int ret;
5552
5553         ctx = perf_event_ctx_lock(event);
5554         ret = _perf_event_period(event, value);
5555         perf_event_ctx_unlock(event, ctx);
5556
5557         return ret;
5558 }
5559 EXPORT_SYMBOL_GPL(perf_event_period);
5560
5561 static const struct file_operations perf_fops;
5562
5563 static inline int perf_fget_light(int fd, struct fd *p)
5564 {
5565         struct fd f = fdget(fd);
5566         if (!f.file)
5567                 return -EBADF;
5568
5569         if (f.file->f_op != &perf_fops) {
5570                 fdput(f);
5571                 return -EBADF;
5572         }
5573         *p = f;
5574         return 0;
5575 }
5576
5577 static int perf_event_set_output(struct perf_event *event,
5578                                  struct perf_event *output_event);
5579 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5580 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5581                           struct perf_event_attr *attr);
5582
5583 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5584 {
5585         void (*func)(struct perf_event *);
5586         u32 flags = arg;
5587
5588         switch (cmd) {
5589         case PERF_EVENT_IOC_ENABLE:
5590                 func = _perf_event_enable;
5591                 break;
5592         case PERF_EVENT_IOC_DISABLE:
5593                 func = _perf_event_disable;
5594                 break;
5595         case PERF_EVENT_IOC_RESET:
5596                 func = _perf_event_reset;
5597                 break;
5598
5599         case PERF_EVENT_IOC_REFRESH:
5600                 return _perf_event_refresh(event, arg);
5601
5602         case PERF_EVENT_IOC_PERIOD:
5603         {
5604                 u64 value;
5605
5606                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5607                         return -EFAULT;
5608
5609                 return _perf_event_period(event, value);
5610         }
5611         case PERF_EVENT_IOC_ID:
5612         {
5613                 u64 id = primary_event_id(event);
5614
5615                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5616                         return -EFAULT;
5617                 return 0;
5618         }
5619
5620         case PERF_EVENT_IOC_SET_OUTPUT:
5621         {
5622                 int ret;
5623                 if (arg != -1) {
5624                         struct perf_event *output_event;
5625                         struct fd output;
5626                         ret = perf_fget_light(arg, &output);
5627                         if (ret)
5628                                 return ret;
5629                         output_event = output.file->private_data;
5630                         ret = perf_event_set_output(event, output_event);
5631                         fdput(output);
5632                 } else {
5633                         ret = perf_event_set_output(event, NULL);
5634                 }
5635                 return ret;
5636         }
5637
5638         case PERF_EVENT_IOC_SET_FILTER:
5639                 return perf_event_set_filter(event, (void __user *)arg);
5640
5641         case PERF_EVENT_IOC_SET_BPF:
5642         {
5643                 struct bpf_prog *prog;
5644                 int err;
5645
5646                 prog = bpf_prog_get(arg);
5647                 if (IS_ERR(prog))
5648                         return PTR_ERR(prog);
5649
5650                 err = perf_event_set_bpf_prog(event, prog, 0);
5651                 if (err) {
5652                         bpf_prog_put(prog);
5653                         return err;
5654                 }
5655
5656                 return 0;
5657         }
5658
5659         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5660                 struct perf_buffer *rb;
5661
5662                 rcu_read_lock();
5663                 rb = rcu_dereference(event->rb);
5664                 if (!rb || !rb->nr_pages) {
5665                         rcu_read_unlock();
5666                         return -EINVAL;
5667                 }
5668                 rb_toggle_paused(rb, !!arg);
5669                 rcu_read_unlock();
5670                 return 0;
5671         }
5672
5673         case PERF_EVENT_IOC_QUERY_BPF:
5674                 return perf_event_query_prog_array(event, (void __user *)arg);
5675
5676         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5677                 struct perf_event_attr new_attr;
5678                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5679                                          &new_attr);
5680
5681                 if (err)
5682                         return err;
5683
5684                 return perf_event_modify_attr(event,  &new_attr);
5685         }
5686         default:
5687                 return -ENOTTY;
5688         }
5689
5690         if (flags & PERF_IOC_FLAG_GROUP)
5691                 perf_event_for_each(event, func);
5692         else
5693                 perf_event_for_each_child(event, func);
5694
5695         return 0;
5696 }
5697
5698 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5699 {
5700         struct perf_event *event = file->private_data;
5701         struct perf_event_context *ctx;
5702         long ret;
5703
5704         /* Treat ioctl like writes as it is likely a mutating operation. */
5705         ret = security_perf_event_write(event);
5706         if (ret)
5707                 return ret;
5708
5709         ctx = perf_event_ctx_lock(event);
5710         ret = _perf_ioctl(event, cmd, arg);
5711         perf_event_ctx_unlock(event, ctx);
5712
5713         return ret;
5714 }
5715
5716 #ifdef CONFIG_COMPAT
5717 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5718                                 unsigned long arg)
5719 {
5720         switch (_IOC_NR(cmd)) {
5721         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5722         case _IOC_NR(PERF_EVENT_IOC_ID):
5723         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5724         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5725                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5726                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5727                         cmd &= ~IOCSIZE_MASK;
5728                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5729                 }
5730                 break;
5731         }
5732         return perf_ioctl(file, cmd, arg);
5733 }
5734 #else
5735 # define perf_compat_ioctl NULL
5736 #endif
5737
5738 int perf_event_task_enable(void)
5739 {
5740         struct perf_event_context *ctx;
5741         struct perf_event *event;
5742
5743         mutex_lock(&current->perf_event_mutex);
5744         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5745                 ctx = perf_event_ctx_lock(event);
5746                 perf_event_for_each_child(event, _perf_event_enable);
5747                 perf_event_ctx_unlock(event, ctx);
5748         }
5749         mutex_unlock(&current->perf_event_mutex);
5750
5751         return 0;
5752 }
5753
5754 int perf_event_task_disable(void)
5755 {
5756         struct perf_event_context *ctx;
5757         struct perf_event *event;
5758
5759         mutex_lock(&current->perf_event_mutex);
5760         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5761                 ctx = perf_event_ctx_lock(event);
5762                 perf_event_for_each_child(event, _perf_event_disable);
5763                 perf_event_ctx_unlock(event, ctx);
5764         }
5765         mutex_unlock(&current->perf_event_mutex);
5766
5767         return 0;
5768 }
5769
5770 static int perf_event_index(struct perf_event *event)
5771 {
5772         if (event->hw.state & PERF_HES_STOPPED)
5773                 return 0;
5774
5775         if (event->state != PERF_EVENT_STATE_ACTIVE)
5776                 return 0;
5777
5778         return event->pmu->event_idx(event);
5779 }
5780
5781 static void perf_event_init_userpage(struct perf_event *event)
5782 {
5783         struct perf_event_mmap_page *userpg;
5784         struct perf_buffer *rb;
5785
5786         rcu_read_lock();
5787         rb = rcu_dereference(event->rb);
5788         if (!rb)
5789                 goto unlock;
5790
5791         userpg = rb->user_page;
5792
5793         /* Allow new userspace to detect that bit 0 is deprecated */
5794         userpg->cap_bit0_is_deprecated = 1;
5795         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5796         userpg->data_offset = PAGE_SIZE;
5797         userpg->data_size = perf_data_size(rb);
5798
5799 unlock:
5800         rcu_read_unlock();
5801 }
5802
5803 void __weak arch_perf_update_userpage(
5804         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5805 {
5806 }
5807
5808 /*
5809  * Callers need to ensure there can be no nesting of this function, otherwise
5810  * the seqlock logic goes bad. We can not serialize this because the arch
5811  * code calls this from NMI context.
5812  */
5813 void perf_event_update_userpage(struct perf_event *event)
5814 {
5815         struct perf_event_mmap_page *userpg;
5816         struct perf_buffer *rb;
5817         u64 enabled, running, now;
5818
5819         rcu_read_lock();
5820         rb = rcu_dereference(event->rb);
5821         if (!rb)
5822                 goto unlock;
5823
5824         /*
5825          * compute total_time_enabled, total_time_running
5826          * based on snapshot values taken when the event
5827          * was last scheduled in.
5828          *
5829          * we cannot simply called update_context_time()
5830          * because of locking issue as we can be called in
5831          * NMI context
5832          */
5833         calc_timer_values(event, &now, &enabled, &running);
5834
5835         userpg = rb->user_page;
5836         /*
5837          * Disable preemption to guarantee consistent time stamps are stored to
5838          * the user page.
5839          */
5840         preempt_disable();
5841         ++userpg->lock;
5842         barrier();
5843         userpg->index = perf_event_index(event);
5844         userpg->offset = perf_event_count(event);
5845         if (userpg->index)
5846                 userpg->offset -= local64_read(&event->hw.prev_count);
5847
5848         userpg->time_enabled = enabled +
5849                         atomic64_read(&event->child_total_time_enabled);
5850
5851         userpg->time_running = running +
5852                         atomic64_read(&event->child_total_time_running);
5853
5854         arch_perf_update_userpage(event, userpg, now);
5855
5856         barrier();
5857         ++userpg->lock;
5858         preempt_enable();
5859 unlock:
5860         rcu_read_unlock();
5861 }
5862 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5863
5864 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5865 {
5866         struct perf_event *event = vmf->vma->vm_file->private_data;
5867         struct perf_buffer *rb;
5868         vm_fault_t ret = VM_FAULT_SIGBUS;
5869
5870         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5871                 if (vmf->pgoff == 0)
5872                         ret = 0;
5873                 return ret;
5874         }
5875
5876         rcu_read_lock();
5877         rb = rcu_dereference(event->rb);
5878         if (!rb)
5879                 goto unlock;
5880
5881         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5882                 goto unlock;
5883
5884         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5885         if (!vmf->page)
5886                 goto unlock;
5887
5888         get_page(vmf->page);
5889         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5890         vmf->page->index   = vmf->pgoff;
5891
5892         ret = 0;
5893 unlock:
5894         rcu_read_unlock();
5895
5896         return ret;
5897 }
5898
5899 static void ring_buffer_attach(struct perf_event *event,
5900                                struct perf_buffer *rb)
5901 {
5902         struct perf_buffer *old_rb = NULL;
5903         unsigned long flags;
5904
5905         WARN_ON_ONCE(event->parent);
5906
5907         if (event->rb) {
5908                 /*
5909                  * Should be impossible, we set this when removing
5910                  * event->rb_entry and wait/clear when adding event->rb_entry.
5911                  */
5912                 WARN_ON_ONCE(event->rcu_pending);
5913
5914                 old_rb = event->rb;
5915                 spin_lock_irqsave(&old_rb->event_lock, flags);
5916                 list_del_rcu(&event->rb_entry);
5917                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5918
5919                 event->rcu_batches = get_state_synchronize_rcu();
5920                 event->rcu_pending = 1;
5921         }
5922
5923         if (rb) {
5924                 if (event->rcu_pending) {
5925                         cond_synchronize_rcu(event->rcu_batches);
5926                         event->rcu_pending = 0;
5927                 }
5928
5929                 spin_lock_irqsave(&rb->event_lock, flags);
5930                 list_add_rcu(&event->rb_entry, &rb->event_list);
5931                 spin_unlock_irqrestore(&rb->event_lock, flags);
5932         }
5933
5934         /*
5935          * Avoid racing with perf_mmap_close(AUX): stop the event
5936          * before swizzling the event::rb pointer; if it's getting
5937          * unmapped, its aux_mmap_count will be 0 and it won't
5938          * restart. See the comment in __perf_pmu_output_stop().
5939          *
5940          * Data will inevitably be lost when set_output is done in
5941          * mid-air, but then again, whoever does it like this is
5942          * not in for the data anyway.
5943          */
5944         if (has_aux(event))
5945                 perf_event_stop(event, 0);
5946
5947         rcu_assign_pointer(event->rb, rb);
5948
5949         if (old_rb) {
5950                 ring_buffer_put(old_rb);
5951                 /*
5952                  * Since we detached before setting the new rb, so that we
5953                  * could attach the new rb, we could have missed a wakeup.
5954                  * Provide it now.
5955                  */
5956                 wake_up_all(&event->waitq);
5957         }
5958 }
5959
5960 static void ring_buffer_wakeup(struct perf_event *event)
5961 {
5962         struct perf_buffer *rb;
5963
5964         if (event->parent)
5965                 event = event->parent;
5966
5967         rcu_read_lock();
5968         rb = rcu_dereference(event->rb);
5969         if (rb) {
5970                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5971                         wake_up_all(&event->waitq);
5972         }
5973         rcu_read_unlock();
5974 }
5975
5976 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5977 {
5978         struct perf_buffer *rb;
5979
5980         if (event->parent)
5981                 event = event->parent;
5982
5983         rcu_read_lock();
5984         rb = rcu_dereference(event->rb);
5985         if (rb) {
5986                 if (!refcount_inc_not_zero(&rb->refcount))
5987                         rb = NULL;
5988         }
5989         rcu_read_unlock();
5990
5991         return rb;
5992 }
5993
5994 void ring_buffer_put(struct perf_buffer *rb)
5995 {
5996         if (!refcount_dec_and_test(&rb->refcount))
5997                 return;
5998
5999         WARN_ON_ONCE(!list_empty(&rb->event_list));
6000
6001         call_rcu(&rb->rcu_head, rb_free_rcu);
6002 }
6003
6004 static void perf_mmap_open(struct vm_area_struct *vma)
6005 {
6006         struct perf_event *event = vma->vm_file->private_data;
6007
6008         atomic_inc(&event->mmap_count);
6009         atomic_inc(&event->rb->mmap_count);
6010
6011         if (vma->vm_pgoff)
6012                 atomic_inc(&event->rb->aux_mmap_count);
6013
6014         if (event->pmu->event_mapped)
6015                 event->pmu->event_mapped(event, vma->vm_mm);
6016 }
6017
6018 static void perf_pmu_output_stop(struct perf_event *event);
6019
6020 /*
6021  * A buffer can be mmap()ed multiple times; either directly through the same
6022  * event, or through other events by use of perf_event_set_output().
6023  *
6024  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6025  * the buffer here, where we still have a VM context. This means we need
6026  * to detach all events redirecting to us.
6027  */
6028 static void perf_mmap_close(struct vm_area_struct *vma)
6029 {
6030         struct perf_event *event = vma->vm_file->private_data;
6031         struct perf_buffer *rb = ring_buffer_get(event);
6032         struct user_struct *mmap_user = rb->mmap_user;
6033         int mmap_locked = rb->mmap_locked;
6034         unsigned long size = perf_data_size(rb);
6035         bool detach_rest = false;
6036
6037         if (event->pmu->event_unmapped)
6038                 event->pmu->event_unmapped(event, vma->vm_mm);
6039
6040         /*
6041          * rb->aux_mmap_count will always drop before rb->mmap_count and
6042          * event->mmap_count, so it is ok to use event->mmap_mutex to
6043          * serialize with perf_mmap here.
6044          */
6045         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6046             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6047                 /*
6048                  * Stop all AUX events that are writing to this buffer,
6049                  * so that we can free its AUX pages and corresponding PMU
6050                  * data. Note that after rb::aux_mmap_count dropped to zero,
6051                  * they won't start any more (see perf_aux_output_begin()).
6052                  */
6053                 perf_pmu_output_stop(event);
6054
6055                 /* now it's safe to free the pages */
6056                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6057                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6058
6059                 /* this has to be the last one */
6060                 rb_free_aux(rb);
6061                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6062
6063                 mutex_unlock(&event->mmap_mutex);
6064         }
6065
6066         if (atomic_dec_and_test(&rb->mmap_count))
6067                 detach_rest = true;
6068
6069         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6070                 goto out_put;
6071
6072         ring_buffer_attach(event, NULL);
6073         mutex_unlock(&event->mmap_mutex);
6074
6075         /* If there's still other mmap()s of this buffer, we're done. */
6076         if (!detach_rest)
6077                 goto out_put;
6078
6079         /*
6080          * No other mmap()s, detach from all other events that might redirect
6081          * into the now unreachable buffer. Somewhat complicated by the
6082          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6083          */
6084 again:
6085         rcu_read_lock();
6086         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6087                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6088                         /*
6089                          * This event is en-route to free_event() which will
6090                          * detach it and remove it from the list.
6091                          */
6092                         continue;
6093                 }
6094                 rcu_read_unlock();
6095
6096                 mutex_lock(&event->mmap_mutex);
6097                 /*
6098                  * Check we didn't race with perf_event_set_output() which can
6099                  * swizzle the rb from under us while we were waiting to
6100                  * acquire mmap_mutex.
6101                  *
6102                  * If we find a different rb; ignore this event, a next
6103                  * iteration will no longer find it on the list. We have to
6104                  * still restart the iteration to make sure we're not now
6105                  * iterating the wrong list.
6106                  */
6107                 if (event->rb == rb)
6108                         ring_buffer_attach(event, NULL);
6109
6110                 mutex_unlock(&event->mmap_mutex);
6111                 put_event(event);
6112
6113                 /*
6114                  * Restart the iteration; either we're on the wrong list or
6115                  * destroyed its integrity by doing a deletion.
6116                  */
6117                 goto again;
6118         }
6119         rcu_read_unlock();
6120
6121         /*
6122          * It could be there's still a few 0-ref events on the list; they'll
6123          * get cleaned up by free_event() -- they'll also still have their
6124          * ref on the rb and will free it whenever they are done with it.
6125          *
6126          * Aside from that, this buffer is 'fully' detached and unmapped,
6127          * undo the VM accounting.
6128          */
6129
6130         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6131                         &mmap_user->locked_vm);
6132         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6133         free_uid(mmap_user);
6134
6135 out_put:
6136         ring_buffer_put(rb); /* could be last */
6137 }
6138
6139 static const struct vm_operations_struct perf_mmap_vmops = {
6140         .open           = perf_mmap_open,
6141         .close          = perf_mmap_close, /* non mergeable */
6142         .fault          = perf_mmap_fault,
6143         .page_mkwrite   = perf_mmap_fault,
6144 };
6145
6146 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6147 {
6148         struct perf_event *event = file->private_data;
6149         unsigned long user_locked, user_lock_limit;
6150         struct user_struct *user = current_user();
6151         struct perf_buffer *rb = NULL;
6152         unsigned long locked, lock_limit;
6153         unsigned long vma_size;
6154         unsigned long nr_pages;
6155         long user_extra = 0, extra = 0;
6156         int ret = 0, flags = 0;
6157
6158         /*
6159          * Don't allow mmap() of inherited per-task counters. This would
6160          * create a performance issue due to all children writing to the
6161          * same rb.
6162          */
6163         if (event->cpu == -1 && event->attr.inherit)
6164                 return -EINVAL;
6165
6166         if (!(vma->vm_flags & VM_SHARED))
6167                 return -EINVAL;
6168
6169         ret = security_perf_event_read(event);
6170         if (ret)
6171                 return ret;
6172
6173         vma_size = vma->vm_end - vma->vm_start;
6174
6175         if (vma->vm_pgoff == 0) {
6176                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6177         } else {
6178                 /*
6179                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6180                  * mapped, all subsequent mappings should have the same size
6181                  * and offset. Must be above the normal perf buffer.
6182                  */
6183                 u64 aux_offset, aux_size;
6184
6185                 if (!event->rb)
6186                         return -EINVAL;
6187
6188                 nr_pages = vma_size / PAGE_SIZE;
6189
6190                 mutex_lock(&event->mmap_mutex);
6191                 ret = -EINVAL;
6192
6193                 rb = event->rb;
6194                 if (!rb)
6195                         goto aux_unlock;
6196
6197                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6198                 aux_size = READ_ONCE(rb->user_page->aux_size);
6199
6200                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6201                         goto aux_unlock;
6202
6203                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6204                         goto aux_unlock;
6205
6206                 /* already mapped with a different offset */
6207                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6208                         goto aux_unlock;
6209
6210                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6211                         goto aux_unlock;
6212
6213                 /* already mapped with a different size */
6214                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6215                         goto aux_unlock;
6216
6217                 if (!is_power_of_2(nr_pages))
6218                         goto aux_unlock;
6219
6220                 if (!atomic_inc_not_zero(&rb->mmap_count))
6221                         goto aux_unlock;
6222
6223                 if (rb_has_aux(rb)) {
6224                         atomic_inc(&rb->aux_mmap_count);
6225                         ret = 0;
6226                         goto unlock;
6227                 }
6228
6229                 atomic_set(&rb->aux_mmap_count, 1);
6230                 user_extra = nr_pages;
6231
6232                 goto accounting;
6233         }
6234
6235         /*
6236          * If we have rb pages ensure they're a power-of-two number, so we
6237          * can do bitmasks instead of modulo.
6238          */
6239         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6240                 return -EINVAL;
6241
6242         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6243                 return -EINVAL;
6244
6245         WARN_ON_ONCE(event->ctx->parent_ctx);
6246 again:
6247         mutex_lock(&event->mmap_mutex);
6248         if (event->rb) {
6249                 if (data_page_nr(event->rb) != nr_pages) {
6250                         ret = -EINVAL;
6251                         goto unlock;
6252                 }
6253
6254                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6255                         /*
6256                          * Raced against perf_mmap_close() through
6257                          * perf_event_set_output(). Try again, hope for better
6258                          * luck.
6259                          */
6260                         mutex_unlock(&event->mmap_mutex);
6261                         goto again;
6262                 }
6263
6264                 goto unlock;
6265         }
6266
6267         user_extra = nr_pages + 1;
6268
6269 accounting:
6270         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6271
6272         /*
6273          * Increase the limit linearly with more CPUs:
6274          */
6275         user_lock_limit *= num_online_cpus();
6276
6277         user_locked = atomic_long_read(&user->locked_vm);
6278
6279         /*
6280          * sysctl_perf_event_mlock may have changed, so that
6281          *     user->locked_vm > user_lock_limit
6282          */
6283         if (user_locked > user_lock_limit)
6284                 user_locked = user_lock_limit;
6285         user_locked += user_extra;
6286
6287         if (user_locked > user_lock_limit) {
6288                 /*
6289                  * charge locked_vm until it hits user_lock_limit;
6290                  * charge the rest from pinned_vm
6291                  */
6292                 extra = user_locked - user_lock_limit;
6293                 user_extra -= extra;
6294         }
6295
6296         lock_limit = rlimit(RLIMIT_MEMLOCK);
6297         lock_limit >>= PAGE_SHIFT;
6298         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6299
6300         if ((locked > lock_limit) && perf_is_paranoid() &&
6301                 !capable(CAP_IPC_LOCK)) {
6302                 ret = -EPERM;
6303                 goto unlock;
6304         }
6305
6306         WARN_ON(!rb && event->rb);
6307
6308         if (vma->vm_flags & VM_WRITE)
6309                 flags |= RING_BUFFER_WRITABLE;
6310
6311         if (!rb) {
6312                 rb = rb_alloc(nr_pages,
6313                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6314                               event->cpu, flags);
6315
6316                 if (!rb) {
6317                         ret = -ENOMEM;
6318                         goto unlock;
6319                 }
6320
6321                 atomic_set(&rb->mmap_count, 1);
6322                 rb->mmap_user = get_current_user();
6323                 rb->mmap_locked = extra;
6324
6325                 ring_buffer_attach(event, rb);
6326
6327                 perf_event_update_time(event);
6328                 perf_event_init_userpage(event);
6329                 perf_event_update_userpage(event);
6330         } else {
6331                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6332                                    event->attr.aux_watermark, flags);
6333                 if (!ret)
6334                         rb->aux_mmap_locked = extra;
6335         }
6336
6337 unlock:
6338         if (!ret) {
6339                 atomic_long_add(user_extra, &user->locked_vm);
6340                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6341
6342                 atomic_inc(&event->mmap_count);
6343         } else if (rb) {
6344                 atomic_dec(&rb->mmap_count);
6345         }
6346 aux_unlock:
6347         mutex_unlock(&event->mmap_mutex);
6348
6349         /*
6350          * Since pinned accounting is per vm we cannot allow fork() to copy our
6351          * vma.
6352          */
6353         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6354         vma->vm_ops = &perf_mmap_vmops;
6355
6356         if (event->pmu->event_mapped)
6357                 event->pmu->event_mapped(event, vma->vm_mm);
6358
6359         return ret;
6360 }
6361
6362 static int perf_fasync(int fd, struct file *filp, int on)
6363 {
6364         struct inode *inode = file_inode(filp);
6365         struct perf_event *event = filp->private_data;
6366         int retval;
6367
6368         inode_lock(inode);
6369         retval = fasync_helper(fd, filp, on, &event->fasync);
6370         inode_unlock(inode);
6371
6372         if (retval < 0)
6373                 return retval;
6374
6375         return 0;
6376 }
6377
6378 static const struct file_operations perf_fops = {
6379         .llseek                 = no_llseek,
6380         .release                = perf_release,
6381         .read                   = perf_read,
6382         .poll                   = perf_poll,
6383         .unlocked_ioctl         = perf_ioctl,
6384         .compat_ioctl           = perf_compat_ioctl,
6385         .mmap                   = perf_mmap,
6386         .fasync                 = perf_fasync,
6387 };
6388
6389 /*
6390  * Perf event wakeup
6391  *
6392  * If there's data, ensure we set the poll() state and publish everything
6393  * to user-space before waking everybody up.
6394  */
6395
6396 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6397 {
6398         /* only the parent has fasync state */
6399         if (event->parent)
6400                 event = event->parent;
6401         return &event->fasync;
6402 }
6403
6404 void perf_event_wakeup(struct perf_event *event)
6405 {
6406         ring_buffer_wakeup(event);
6407
6408         if (event->pending_kill) {
6409                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6410                 event->pending_kill = 0;
6411         }
6412 }
6413
6414 static void perf_sigtrap(struct perf_event *event)
6415 {
6416         /*
6417          * We'd expect this to only occur if the irq_work is delayed and either
6418          * ctx->task or current has changed in the meantime. This can be the
6419          * case on architectures that do not implement arch_irq_work_raise().
6420          */
6421         if (WARN_ON_ONCE(event->ctx->task != current))
6422                 return;
6423
6424         /*
6425          * perf_pending_event() can race with the task exiting.
6426          */
6427         if (current->flags & PF_EXITING)
6428                 return;
6429
6430         send_sig_perf((void __user *)event->pending_addr,
6431                       event->attr.type, event->attr.sig_data);
6432 }
6433
6434 static void perf_pending_event_disable(struct perf_event *event)
6435 {
6436         int cpu = READ_ONCE(event->pending_disable);
6437
6438         if (cpu < 0)
6439                 return;
6440
6441         if (cpu == smp_processor_id()) {
6442                 WRITE_ONCE(event->pending_disable, -1);
6443
6444                 if (event->attr.sigtrap) {
6445                         perf_sigtrap(event);
6446                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6447                         return;
6448                 }
6449
6450                 perf_event_disable_local(event);
6451                 return;
6452         }
6453
6454         /*
6455          *  CPU-A                       CPU-B
6456          *
6457          *  perf_event_disable_inatomic()
6458          *    @pending_disable = CPU-A;
6459          *    irq_work_queue();
6460          *
6461          *  sched-out
6462          *    @pending_disable = -1;
6463          *
6464          *                              sched-in
6465          *                              perf_event_disable_inatomic()
6466          *                                @pending_disable = CPU-B;
6467          *                                irq_work_queue(); // FAILS
6468          *
6469          *  irq_work_run()
6470          *    perf_pending_event()
6471          *
6472          * But the event runs on CPU-B and wants disabling there.
6473          */
6474         irq_work_queue_on(&event->pending, cpu);
6475 }
6476
6477 static void perf_pending_event(struct irq_work *entry)
6478 {
6479         struct perf_event *event = container_of(entry, struct perf_event, pending);
6480         int rctx;
6481
6482         rctx = perf_swevent_get_recursion_context();
6483         /*
6484          * If we 'fail' here, that's OK, it means recursion is already disabled
6485          * and we won't recurse 'further'.
6486          */
6487
6488         perf_pending_event_disable(event);
6489
6490         if (event->pending_wakeup) {
6491                 event->pending_wakeup = 0;
6492                 perf_event_wakeup(event);
6493         }
6494
6495         if (rctx >= 0)
6496                 perf_swevent_put_recursion_context(rctx);
6497 }
6498
6499 #ifdef CONFIG_GUEST_PERF_EVENTS
6500 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6501
6502 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6503 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6504 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6505
6506 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6507 {
6508         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6509                 return;
6510
6511         rcu_assign_pointer(perf_guest_cbs, cbs);
6512         static_call_update(__perf_guest_state, cbs->state);
6513         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6514
6515         /* Implementing ->handle_intel_pt_intr is optional. */
6516         if (cbs->handle_intel_pt_intr)
6517                 static_call_update(__perf_guest_handle_intel_pt_intr,
6518                                    cbs->handle_intel_pt_intr);
6519 }
6520 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6521
6522 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6523 {
6524         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6525                 return;
6526
6527         rcu_assign_pointer(perf_guest_cbs, NULL);
6528         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6529         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6530         static_call_update(__perf_guest_handle_intel_pt_intr,
6531                            (void *)&__static_call_return0);
6532         synchronize_rcu();
6533 }
6534 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6535 #endif
6536
6537 static void
6538 perf_output_sample_regs(struct perf_output_handle *handle,
6539                         struct pt_regs *regs, u64 mask)
6540 {
6541         int bit;
6542         DECLARE_BITMAP(_mask, 64);
6543
6544         bitmap_from_u64(_mask, mask);
6545         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6546                 u64 val;
6547
6548                 val = perf_reg_value(regs, bit);
6549                 perf_output_put(handle, val);
6550         }
6551 }
6552
6553 static void perf_sample_regs_user(struct perf_regs *regs_user,
6554                                   struct pt_regs *regs)
6555 {
6556         if (user_mode(regs)) {
6557                 regs_user->abi = perf_reg_abi(current);
6558                 regs_user->regs = regs;
6559         } else if (!(current->flags & PF_KTHREAD)) {
6560                 perf_get_regs_user(regs_user, regs);
6561         } else {
6562                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6563                 regs_user->regs = NULL;
6564         }
6565 }
6566
6567 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6568                                   struct pt_regs *regs)
6569 {
6570         regs_intr->regs = regs;
6571         regs_intr->abi  = perf_reg_abi(current);
6572 }
6573
6574
6575 /*
6576  * Get remaining task size from user stack pointer.
6577  *
6578  * It'd be better to take stack vma map and limit this more
6579  * precisely, but there's no way to get it safely under interrupt,
6580  * so using TASK_SIZE as limit.
6581  */
6582 static u64 perf_ustack_task_size(struct pt_regs *regs)
6583 {
6584         unsigned long addr = perf_user_stack_pointer(regs);
6585
6586         if (!addr || addr >= TASK_SIZE)
6587                 return 0;
6588
6589         return TASK_SIZE - addr;
6590 }
6591
6592 static u16
6593 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6594                         struct pt_regs *regs)
6595 {
6596         u64 task_size;
6597
6598         /* No regs, no stack pointer, no dump. */
6599         if (!regs)
6600                 return 0;
6601
6602         /*
6603          * Check if we fit in with the requested stack size into the:
6604          * - TASK_SIZE
6605          *   If we don't, we limit the size to the TASK_SIZE.
6606          *
6607          * - remaining sample size
6608          *   If we don't, we customize the stack size to
6609          *   fit in to the remaining sample size.
6610          */
6611
6612         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6613         stack_size = min(stack_size, (u16) task_size);
6614
6615         /* Current header size plus static size and dynamic size. */
6616         header_size += 2 * sizeof(u64);
6617
6618         /* Do we fit in with the current stack dump size? */
6619         if ((u16) (header_size + stack_size) < header_size) {
6620                 /*
6621                  * If we overflow the maximum size for the sample,
6622                  * we customize the stack dump size to fit in.
6623                  */
6624                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6625                 stack_size = round_up(stack_size, sizeof(u64));
6626         }
6627
6628         return stack_size;
6629 }
6630
6631 static void
6632 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6633                           struct pt_regs *regs)
6634 {
6635         /* Case of a kernel thread, nothing to dump */
6636         if (!regs) {
6637                 u64 size = 0;
6638                 perf_output_put(handle, size);
6639         } else {
6640                 unsigned long sp;
6641                 unsigned int rem;
6642                 u64 dyn_size;
6643
6644                 /*
6645                  * We dump:
6646                  * static size
6647                  *   - the size requested by user or the best one we can fit
6648                  *     in to the sample max size
6649                  * data
6650                  *   - user stack dump data
6651                  * dynamic size
6652                  *   - the actual dumped size
6653                  */
6654
6655                 /* Static size. */
6656                 perf_output_put(handle, dump_size);
6657
6658                 /* Data. */
6659                 sp = perf_user_stack_pointer(regs);
6660                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6661                 dyn_size = dump_size - rem;
6662
6663                 perf_output_skip(handle, rem);
6664
6665                 /* Dynamic size. */
6666                 perf_output_put(handle, dyn_size);
6667         }
6668 }
6669
6670 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6671                                           struct perf_sample_data *data,
6672                                           size_t size)
6673 {
6674         struct perf_event *sampler = event->aux_event;
6675         struct perf_buffer *rb;
6676
6677         data->aux_size = 0;
6678
6679         if (!sampler)
6680                 goto out;
6681
6682         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6683                 goto out;
6684
6685         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6686                 goto out;
6687
6688         rb = ring_buffer_get(sampler);
6689         if (!rb)
6690                 goto out;
6691
6692         /*
6693          * If this is an NMI hit inside sampling code, don't take
6694          * the sample. See also perf_aux_sample_output().
6695          */
6696         if (READ_ONCE(rb->aux_in_sampling)) {
6697                 data->aux_size = 0;
6698         } else {
6699                 size = min_t(size_t, size, perf_aux_size(rb));
6700                 data->aux_size = ALIGN(size, sizeof(u64));
6701         }
6702         ring_buffer_put(rb);
6703
6704 out:
6705         return data->aux_size;
6706 }
6707
6708 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6709                                  struct perf_event *event,
6710                                  struct perf_output_handle *handle,
6711                                  unsigned long size)
6712 {
6713         unsigned long flags;
6714         long ret;
6715
6716         /*
6717          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6718          * paths. If we start calling them in NMI context, they may race with
6719          * the IRQ ones, that is, for example, re-starting an event that's just
6720          * been stopped, which is why we're using a separate callback that
6721          * doesn't change the event state.
6722          *
6723          * IRQs need to be disabled to prevent IPIs from racing with us.
6724          */
6725         local_irq_save(flags);
6726         /*
6727          * Guard against NMI hits inside the critical section;
6728          * see also perf_prepare_sample_aux().
6729          */
6730         WRITE_ONCE(rb->aux_in_sampling, 1);
6731         barrier();
6732
6733         ret = event->pmu->snapshot_aux(event, handle, size);
6734
6735         barrier();
6736         WRITE_ONCE(rb->aux_in_sampling, 0);
6737         local_irq_restore(flags);
6738
6739         return ret;
6740 }
6741
6742 static void perf_aux_sample_output(struct perf_event *event,
6743                                    struct perf_output_handle *handle,
6744                                    struct perf_sample_data *data)
6745 {
6746         struct perf_event *sampler = event->aux_event;
6747         struct perf_buffer *rb;
6748         unsigned long pad;
6749         long size;
6750
6751         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6752                 return;
6753
6754         rb = ring_buffer_get(sampler);
6755         if (!rb)
6756                 return;
6757
6758         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6759
6760         /*
6761          * An error here means that perf_output_copy() failed (returned a
6762          * non-zero surplus that it didn't copy), which in its current
6763          * enlightened implementation is not possible. If that changes, we'd
6764          * like to know.
6765          */
6766         if (WARN_ON_ONCE(size < 0))
6767                 goto out_put;
6768
6769         /*
6770          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6771          * perf_prepare_sample_aux(), so should not be more than that.
6772          */
6773         pad = data->aux_size - size;
6774         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6775                 pad = 8;
6776
6777         if (pad) {
6778                 u64 zero = 0;
6779                 perf_output_copy(handle, &zero, pad);
6780         }
6781
6782 out_put:
6783         ring_buffer_put(rb);
6784 }
6785
6786 static void __perf_event_header__init_id(struct perf_event_header *header,
6787                                          struct perf_sample_data *data,
6788                                          struct perf_event *event)
6789 {
6790         u64 sample_type = event->attr.sample_type;
6791
6792         data->type = sample_type;
6793         header->size += event->id_header_size;
6794
6795         if (sample_type & PERF_SAMPLE_TID) {
6796                 /* namespace issues */
6797                 data->tid_entry.pid = perf_event_pid(event, current);
6798                 data->tid_entry.tid = perf_event_tid(event, current);
6799         }
6800
6801         if (sample_type & PERF_SAMPLE_TIME)
6802                 data->time = perf_event_clock(event);
6803
6804         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6805                 data->id = primary_event_id(event);
6806
6807         if (sample_type & PERF_SAMPLE_STREAM_ID)
6808                 data->stream_id = event->id;
6809
6810         if (sample_type & PERF_SAMPLE_CPU) {
6811                 data->cpu_entry.cpu      = raw_smp_processor_id();
6812                 data->cpu_entry.reserved = 0;
6813         }
6814 }
6815
6816 void perf_event_header__init_id(struct perf_event_header *header,
6817                                 struct perf_sample_data *data,
6818                                 struct perf_event *event)
6819 {
6820         if (event->attr.sample_id_all)
6821                 __perf_event_header__init_id(header, data, event);
6822 }
6823
6824 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6825                                            struct perf_sample_data *data)
6826 {
6827         u64 sample_type = data->type;
6828
6829         if (sample_type & PERF_SAMPLE_TID)
6830                 perf_output_put(handle, data->tid_entry);
6831
6832         if (sample_type & PERF_SAMPLE_TIME)
6833                 perf_output_put(handle, data->time);
6834
6835         if (sample_type & PERF_SAMPLE_ID)
6836                 perf_output_put(handle, data->id);
6837
6838         if (sample_type & PERF_SAMPLE_STREAM_ID)
6839                 perf_output_put(handle, data->stream_id);
6840
6841         if (sample_type & PERF_SAMPLE_CPU)
6842                 perf_output_put(handle, data->cpu_entry);
6843
6844         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6845                 perf_output_put(handle, data->id);
6846 }
6847
6848 void perf_event__output_id_sample(struct perf_event *event,
6849                                   struct perf_output_handle *handle,
6850                                   struct perf_sample_data *sample)
6851 {
6852         if (event->attr.sample_id_all)
6853                 __perf_event__output_id_sample(handle, sample);
6854 }
6855
6856 static void perf_output_read_one(struct perf_output_handle *handle,
6857                                  struct perf_event *event,
6858                                  u64 enabled, u64 running)
6859 {
6860         u64 read_format = event->attr.read_format;
6861         u64 values[4];
6862         int n = 0;
6863
6864         values[n++] = perf_event_count(event);
6865         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6866                 values[n++] = enabled +
6867                         atomic64_read(&event->child_total_time_enabled);
6868         }
6869         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6870                 values[n++] = running +
6871                         atomic64_read(&event->child_total_time_running);
6872         }
6873         if (read_format & PERF_FORMAT_ID)
6874                 values[n++] = primary_event_id(event);
6875
6876         __output_copy(handle, values, n * sizeof(u64));
6877 }
6878
6879 static void perf_output_read_group(struct perf_output_handle *handle,
6880                             struct perf_event *event,
6881                             u64 enabled, u64 running)
6882 {
6883         struct perf_event *leader = event->group_leader, *sub;
6884         u64 read_format = event->attr.read_format;
6885         u64 values[5];
6886         int n = 0;
6887
6888         values[n++] = 1 + leader->nr_siblings;
6889
6890         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6891                 values[n++] = enabled;
6892
6893         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6894                 values[n++] = running;
6895
6896         if ((leader != event) &&
6897             (leader->state == PERF_EVENT_STATE_ACTIVE))
6898                 leader->pmu->read(leader);
6899
6900         values[n++] = perf_event_count(leader);
6901         if (read_format & PERF_FORMAT_ID)
6902                 values[n++] = primary_event_id(leader);
6903
6904         __output_copy(handle, values, n * sizeof(u64));
6905
6906         for_each_sibling_event(sub, leader) {
6907                 n = 0;
6908
6909                 if ((sub != event) &&
6910                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6911                         sub->pmu->read(sub);
6912
6913                 values[n++] = perf_event_count(sub);
6914                 if (read_format & PERF_FORMAT_ID)
6915                         values[n++] = primary_event_id(sub);
6916
6917                 __output_copy(handle, values, n * sizeof(u64));
6918         }
6919 }
6920
6921 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6922                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6923
6924 /*
6925  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6926  *
6927  * The problem is that its both hard and excessively expensive to iterate the
6928  * child list, not to mention that its impossible to IPI the children running
6929  * on another CPU, from interrupt/NMI context.
6930  */
6931 static void perf_output_read(struct perf_output_handle *handle,
6932                              struct perf_event *event)
6933 {
6934         u64 enabled = 0, running = 0, now;
6935         u64 read_format = event->attr.read_format;
6936
6937         /*
6938          * compute total_time_enabled, total_time_running
6939          * based on snapshot values taken when the event
6940          * was last scheduled in.
6941          *
6942          * we cannot simply called update_context_time()
6943          * because of locking issue as we are called in
6944          * NMI context
6945          */
6946         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6947                 calc_timer_values(event, &now, &enabled, &running);
6948
6949         if (event->attr.read_format & PERF_FORMAT_GROUP)
6950                 perf_output_read_group(handle, event, enabled, running);
6951         else
6952                 perf_output_read_one(handle, event, enabled, running);
6953 }
6954
6955 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6956 {
6957         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6958 }
6959
6960 void perf_output_sample(struct perf_output_handle *handle,
6961                         struct perf_event_header *header,
6962                         struct perf_sample_data *data,
6963                         struct perf_event *event)
6964 {
6965         u64 sample_type = data->type;
6966
6967         perf_output_put(handle, *header);
6968
6969         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6970                 perf_output_put(handle, data->id);
6971
6972         if (sample_type & PERF_SAMPLE_IP)
6973                 perf_output_put(handle, data->ip);
6974
6975         if (sample_type & PERF_SAMPLE_TID)
6976                 perf_output_put(handle, data->tid_entry);
6977
6978         if (sample_type & PERF_SAMPLE_TIME)
6979                 perf_output_put(handle, data->time);
6980
6981         if (sample_type & PERF_SAMPLE_ADDR)
6982                 perf_output_put(handle, data->addr);
6983
6984         if (sample_type & PERF_SAMPLE_ID)
6985                 perf_output_put(handle, data->id);
6986
6987         if (sample_type & PERF_SAMPLE_STREAM_ID)
6988                 perf_output_put(handle, data->stream_id);
6989
6990         if (sample_type & PERF_SAMPLE_CPU)
6991                 perf_output_put(handle, data->cpu_entry);
6992
6993         if (sample_type & PERF_SAMPLE_PERIOD)
6994                 perf_output_put(handle, data->period);
6995
6996         if (sample_type & PERF_SAMPLE_READ)
6997                 perf_output_read(handle, event);
6998
6999         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7000                 int size = 1;
7001
7002                 size += data->callchain->nr;
7003                 size *= sizeof(u64);
7004                 __output_copy(handle, data->callchain, size);
7005         }
7006
7007         if (sample_type & PERF_SAMPLE_RAW) {
7008                 struct perf_raw_record *raw = data->raw;
7009
7010                 if (raw) {
7011                         struct perf_raw_frag *frag = &raw->frag;
7012
7013                         perf_output_put(handle, raw->size);
7014                         do {
7015                                 if (frag->copy) {
7016                                         __output_custom(handle, frag->copy,
7017                                                         frag->data, frag->size);
7018                                 } else {
7019                                         __output_copy(handle, frag->data,
7020                                                       frag->size);
7021                                 }
7022                                 if (perf_raw_frag_last(frag))
7023                                         break;
7024                                 frag = frag->next;
7025                         } while (1);
7026                         if (frag->pad)
7027                                 __output_skip(handle, NULL, frag->pad);
7028                 } else {
7029                         struct {
7030                                 u32     size;
7031                                 u32     data;
7032                         } raw = {
7033                                 .size = sizeof(u32),
7034                                 .data = 0,
7035                         };
7036                         perf_output_put(handle, raw);
7037                 }
7038         }
7039
7040         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7041                 if (data->br_stack) {
7042                         size_t size;
7043
7044                         size = data->br_stack->nr
7045                              * sizeof(struct perf_branch_entry);
7046
7047                         perf_output_put(handle, data->br_stack->nr);
7048                         if (perf_sample_save_hw_index(event))
7049                                 perf_output_put(handle, data->br_stack->hw_idx);
7050                         perf_output_copy(handle, data->br_stack->entries, size);
7051                 } else {
7052                         /*
7053                          * we always store at least the value of nr
7054                          */
7055                         u64 nr = 0;
7056                         perf_output_put(handle, nr);
7057                 }
7058         }
7059
7060         if (sample_type & PERF_SAMPLE_REGS_USER) {
7061                 u64 abi = data->regs_user.abi;
7062
7063                 /*
7064                  * If there are no regs to dump, notice it through
7065                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7066                  */
7067                 perf_output_put(handle, abi);
7068
7069                 if (abi) {
7070                         u64 mask = event->attr.sample_regs_user;
7071                         perf_output_sample_regs(handle,
7072                                                 data->regs_user.regs,
7073                                                 mask);
7074                 }
7075         }
7076
7077         if (sample_type & PERF_SAMPLE_STACK_USER) {
7078                 perf_output_sample_ustack(handle,
7079                                           data->stack_user_size,
7080                                           data->regs_user.regs);
7081         }
7082
7083         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7084                 perf_output_put(handle, data->weight.full);
7085
7086         if (sample_type & PERF_SAMPLE_DATA_SRC)
7087                 perf_output_put(handle, data->data_src.val);
7088
7089         if (sample_type & PERF_SAMPLE_TRANSACTION)
7090                 perf_output_put(handle, data->txn);
7091
7092         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7093                 u64 abi = data->regs_intr.abi;
7094                 /*
7095                  * If there are no regs to dump, notice it through
7096                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7097                  */
7098                 perf_output_put(handle, abi);
7099
7100                 if (abi) {
7101                         u64 mask = event->attr.sample_regs_intr;
7102
7103                         perf_output_sample_regs(handle,
7104                                                 data->regs_intr.regs,
7105                                                 mask);
7106                 }
7107         }
7108
7109         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7110                 perf_output_put(handle, data->phys_addr);
7111
7112         if (sample_type & PERF_SAMPLE_CGROUP)
7113                 perf_output_put(handle, data->cgroup);
7114
7115         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7116                 perf_output_put(handle, data->data_page_size);
7117
7118         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7119                 perf_output_put(handle, data->code_page_size);
7120
7121         if (sample_type & PERF_SAMPLE_AUX) {
7122                 perf_output_put(handle, data->aux_size);
7123
7124                 if (data->aux_size)
7125                         perf_aux_sample_output(event, handle, data);
7126         }
7127
7128         if (!event->attr.watermark) {
7129                 int wakeup_events = event->attr.wakeup_events;
7130
7131                 if (wakeup_events) {
7132                         struct perf_buffer *rb = handle->rb;
7133                         int events = local_inc_return(&rb->events);
7134
7135                         if (events >= wakeup_events) {
7136                                 local_sub(wakeup_events, &rb->events);
7137                                 local_inc(&rb->wakeup);
7138                         }
7139                 }
7140         }
7141 }
7142
7143 static u64 perf_virt_to_phys(u64 virt)
7144 {
7145         u64 phys_addr = 0;
7146
7147         if (!virt)
7148                 return 0;
7149
7150         if (virt >= TASK_SIZE) {
7151                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7152                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7153                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7154                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7155         } else {
7156                 /*
7157                  * Walking the pages tables for user address.
7158                  * Interrupts are disabled, so it prevents any tear down
7159                  * of the page tables.
7160                  * Try IRQ-safe get_user_page_fast_only first.
7161                  * If failed, leave phys_addr as 0.
7162                  */
7163                 if (current->mm != NULL) {
7164                         struct page *p;
7165
7166                         pagefault_disable();
7167                         if (get_user_page_fast_only(virt, 0, &p)) {
7168                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7169                                 put_page(p);
7170                         }
7171                         pagefault_enable();
7172                 }
7173         }
7174
7175         return phys_addr;
7176 }
7177
7178 /*
7179  * Return the pagetable size of a given virtual address.
7180  */
7181 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7182 {
7183         u64 size = 0;
7184
7185 #ifdef CONFIG_HAVE_FAST_GUP
7186         pgd_t *pgdp, pgd;
7187         p4d_t *p4dp, p4d;
7188         pud_t *pudp, pud;
7189         pmd_t *pmdp, pmd;
7190         pte_t *ptep, pte;
7191
7192         pgdp = pgd_offset(mm, addr);
7193         pgd = READ_ONCE(*pgdp);
7194         if (pgd_none(pgd))
7195                 return 0;
7196
7197         if (pgd_leaf(pgd))
7198                 return pgd_leaf_size(pgd);
7199
7200         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7201         p4d = READ_ONCE(*p4dp);
7202         if (!p4d_present(p4d))
7203                 return 0;
7204
7205         if (p4d_leaf(p4d))
7206                 return p4d_leaf_size(p4d);
7207
7208         pudp = pud_offset_lockless(p4dp, p4d, addr);
7209         pud = READ_ONCE(*pudp);
7210         if (!pud_present(pud))
7211                 return 0;
7212
7213         if (pud_leaf(pud))
7214                 return pud_leaf_size(pud);
7215
7216         pmdp = pmd_offset_lockless(pudp, pud, addr);
7217         pmd = READ_ONCE(*pmdp);
7218         if (!pmd_present(pmd))
7219                 return 0;
7220
7221         if (pmd_leaf(pmd))
7222                 return pmd_leaf_size(pmd);
7223
7224         ptep = pte_offset_map(&pmd, addr);
7225         pte = ptep_get_lockless(ptep);
7226         if (pte_present(pte))
7227                 size = pte_leaf_size(pte);
7228         pte_unmap(ptep);
7229 #endif /* CONFIG_HAVE_FAST_GUP */
7230
7231         return size;
7232 }
7233
7234 static u64 perf_get_page_size(unsigned long addr)
7235 {
7236         struct mm_struct *mm;
7237         unsigned long flags;
7238         u64 size;
7239
7240         if (!addr)
7241                 return 0;
7242
7243         /*
7244          * Software page-table walkers must disable IRQs,
7245          * which prevents any tear down of the page tables.
7246          */
7247         local_irq_save(flags);
7248
7249         mm = current->mm;
7250         if (!mm) {
7251                 /*
7252                  * For kernel threads and the like, use init_mm so that
7253                  * we can find kernel memory.
7254                  */
7255                 mm = &init_mm;
7256         }
7257
7258         size = perf_get_pgtable_size(mm, addr);
7259
7260         local_irq_restore(flags);
7261
7262         return size;
7263 }
7264
7265 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7266
7267 struct perf_callchain_entry *
7268 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7269 {
7270         bool kernel = !event->attr.exclude_callchain_kernel;
7271         bool user   = !event->attr.exclude_callchain_user;
7272         /* Disallow cross-task user callchains. */
7273         bool crosstask = event->ctx->task && event->ctx->task != current;
7274         const u32 max_stack = event->attr.sample_max_stack;
7275         struct perf_callchain_entry *callchain;
7276
7277         if (!kernel && !user)
7278                 return &__empty_callchain;
7279
7280         callchain = get_perf_callchain(regs, 0, kernel, user,
7281                                        max_stack, crosstask, true);
7282         return callchain ?: &__empty_callchain;
7283 }
7284
7285 void perf_prepare_sample(struct perf_event_header *header,
7286                          struct perf_sample_data *data,
7287                          struct perf_event *event,
7288                          struct pt_regs *regs)
7289 {
7290         u64 sample_type = event->attr.sample_type;
7291
7292         header->type = PERF_RECORD_SAMPLE;
7293         header->size = sizeof(*header) + event->header_size;
7294
7295         header->misc = 0;
7296         header->misc |= perf_misc_flags(regs);
7297
7298         __perf_event_header__init_id(header, data, event);
7299
7300         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7301                 data->ip = perf_instruction_pointer(regs);
7302
7303         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7304                 int size = 1;
7305
7306                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7307                         data->callchain = perf_callchain(event, regs);
7308
7309                 size += data->callchain->nr;
7310
7311                 header->size += size * sizeof(u64);
7312         }
7313
7314         if (sample_type & PERF_SAMPLE_RAW) {
7315                 struct perf_raw_record *raw = data->raw;
7316                 int size;
7317
7318                 if (raw) {
7319                         struct perf_raw_frag *frag = &raw->frag;
7320                         u32 sum = 0;
7321
7322                         do {
7323                                 sum += frag->size;
7324                                 if (perf_raw_frag_last(frag))
7325                                         break;
7326                                 frag = frag->next;
7327                         } while (1);
7328
7329                         size = round_up(sum + sizeof(u32), sizeof(u64));
7330                         raw->size = size - sizeof(u32);
7331                         frag->pad = raw->size - sum;
7332                 } else {
7333                         size = sizeof(u64);
7334                 }
7335
7336                 header->size += size;
7337         }
7338
7339         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7340                 int size = sizeof(u64); /* nr */
7341                 if (data->br_stack) {
7342                         if (perf_sample_save_hw_index(event))
7343                                 size += sizeof(u64);
7344
7345                         size += data->br_stack->nr
7346                               * sizeof(struct perf_branch_entry);
7347                 }
7348                 header->size += size;
7349         }
7350
7351         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7352                 perf_sample_regs_user(&data->regs_user, regs);
7353
7354         if (sample_type & PERF_SAMPLE_REGS_USER) {
7355                 /* regs dump ABI info */
7356                 int size = sizeof(u64);
7357
7358                 if (data->regs_user.regs) {
7359                         u64 mask = event->attr.sample_regs_user;
7360                         size += hweight64(mask) * sizeof(u64);
7361                 }
7362
7363                 header->size += size;
7364         }
7365
7366         if (sample_type & PERF_SAMPLE_STACK_USER) {
7367                 /*
7368                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7369                  * processed as the last one or have additional check added
7370                  * in case new sample type is added, because we could eat
7371                  * up the rest of the sample size.
7372                  */
7373                 u16 stack_size = event->attr.sample_stack_user;
7374                 u16 size = sizeof(u64);
7375
7376                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7377                                                      data->regs_user.regs);
7378
7379                 /*
7380                  * If there is something to dump, add space for the dump
7381                  * itself and for the field that tells the dynamic size,
7382                  * which is how many have been actually dumped.
7383                  */
7384                 if (stack_size)
7385                         size += sizeof(u64) + stack_size;
7386
7387                 data->stack_user_size = stack_size;
7388                 header->size += size;
7389         }
7390
7391         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7392                 /* regs dump ABI info */
7393                 int size = sizeof(u64);
7394
7395                 perf_sample_regs_intr(&data->regs_intr, regs);
7396
7397                 if (data->regs_intr.regs) {
7398                         u64 mask = event->attr.sample_regs_intr;
7399
7400                         size += hweight64(mask) * sizeof(u64);
7401                 }
7402
7403                 header->size += size;
7404         }
7405
7406         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7407                 data->phys_addr = perf_virt_to_phys(data->addr);
7408
7409 #ifdef CONFIG_CGROUP_PERF
7410         if (sample_type & PERF_SAMPLE_CGROUP) {
7411                 struct cgroup *cgrp;
7412
7413                 /* protected by RCU */
7414                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7415                 data->cgroup = cgroup_id(cgrp);
7416         }
7417 #endif
7418
7419         /*
7420          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7421          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7422          * but the value will not dump to the userspace.
7423          */
7424         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7425                 data->data_page_size = perf_get_page_size(data->addr);
7426
7427         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7428                 data->code_page_size = perf_get_page_size(data->ip);
7429
7430         if (sample_type & PERF_SAMPLE_AUX) {
7431                 u64 size;
7432
7433                 header->size += sizeof(u64); /* size */
7434
7435                 /*
7436                  * Given the 16bit nature of header::size, an AUX sample can
7437                  * easily overflow it, what with all the preceding sample bits.
7438                  * Make sure this doesn't happen by using up to U16_MAX bytes
7439                  * per sample in total (rounded down to 8 byte boundary).
7440                  */
7441                 size = min_t(size_t, U16_MAX - header->size,
7442                              event->attr.aux_sample_size);
7443                 size = rounddown(size, 8);
7444                 size = perf_prepare_sample_aux(event, data, size);
7445
7446                 WARN_ON_ONCE(size + header->size > U16_MAX);
7447                 header->size += size;
7448         }
7449         /*
7450          * If you're adding more sample types here, you likely need to do
7451          * something about the overflowing header::size, like repurpose the
7452          * lowest 3 bits of size, which should be always zero at the moment.
7453          * This raises a more important question, do we really need 512k sized
7454          * samples and why, so good argumentation is in order for whatever you
7455          * do here next.
7456          */
7457         WARN_ON_ONCE(header->size & 7);
7458 }
7459
7460 static __always_inline int
7461 __perf_event_output(struct perf_event *event,
7462                     struct perf_sample_data *data,
7463                     struct pt_regs *regs,
7464                     int (*output_begin)(struct perf_output_handle *,
7465                                         struct perf_sample_data *,
7466                                         struct perf_event *,
7467                                         unsigned int))
7468 {
7469         struct perf_output_handle handle;
7470         struct perf_event_header header;
7471         int err;
7472
7473         /* protect the callchain buffers */
7474         rcu_read_lock();
7475
7476         perf_prepare_sample(&header, data, event, regs);
7477
7478         err = output_begin(&handle, data, event, header.size);
7479         if (err)
7480                 goto exit;
7481
7482         perf_output_sample(&handle, &header, data, event);
7483
7484         perf_output_end(&handle);
7485
7486 exit:
7487         rcu_read_unlock();
7488         return err;
7489 }
7490
7491 void
7492 perf_event_output_forward(struct perf_event *event,
7493                          struct perf_sample_data *data,
7494                          struct pt_regs *regs)
7495 {
7496         __perf_event_output(event, data, regs, perf_output_begin_forward);
7497 }
7498
7499 void
7500 perf_event_output_backward(struct perf_event *event,
7501                            struct perf_sample_data *data,
7502                            struct pt_regs *regs)
7503 {
7504         __perf_event_output(event, data, regs, perf_output_begin_backward);
7505 }
7506
7507 int
7508 perf_event_output(struct perf_event *event,
7509                   struct perf_sample_data *data,
7510                   struct pt_regs *regs)
7511 {
7512         return __perf_event_output(event, data, regs, perf_output_begin);
7513 }
7514
7515 /*
7516  * read event_id
7517  */
7518
7519 struct perf_read_event {
7520         struct perf_event_header        header;
7521
7522         u32                             pid;
7523         u32                             tid;
7524 };
7525
7526 static void
7527 perf_event_read_event(struct perf_event *event,
7528                         struct task_struct *task)
7529 {
7530         struct perf_output_handle handle;
7531         struct perf_sample_data sample;
7532         struct perf_read_event read_event = {
7533                 .header = {
7534                         .type = PERF_RECORD_READ,
7535                         .misc = 0,
7536                         .size = sizeof(read_event) + event->read_size,
7537                 },
7538                 .pid = perf_event_pid(event, task),
7539                 .tid = perf_event_tid(event, task),
7540         };
7541         int ret;
7542
7543         perf_event_header__init_id(&read_event.header, &sample, event);
7544         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7545         if (ret)
7546                 return;
7547
7548         perf_output_put(&handle, read_event);
7549         perf_output_read(&handle, event);
7550         perf_event__output_id_sample(event, &handle, &sample);
7551
7552         perf_output_end(&handle);
7553 }
7554
7555 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7556
7557 static void
7558 perf_iterate_ctx(struct perf_event_context *ctx,
7559                    perf_iterate_f output,
7560                    void *data, bool all)
7561 {
7562         struct perf_event *event;
7563
7564         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7565                 if (!all) {
7566                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7567                                 continue;
7568                         if (!event_filter_match(event))
7569                                 continue;
7570                 }
7571
7572                 output(event, data);
7573         }
7574 }
7575
7576 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7577 {
7578         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7579         struct perf_event *event;
7580
7581         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7582                 /*
7583                  * Skip events that are not fully formed yet; ensure that
7584                  * if we observe event->ctx, both event and ctx will be
7585                  * complete enough. See perf_install_in_context().
7586                  */
7587                 if (!smp_load_acquire(&event->ctx))
7588                         continue;
7589
7590                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7591                         continue;
7592                 if (!event_filter_match(event))
7593                         continue;
7594                 output(event, data);
7595         }
7596 }
7597
7598 /*
7599  * Iterate all events that need to receive side-band events.
7600  *
7601  * For new callers; ensure that account_pmu_sb_event() includes
7602  * your event, otherwise it might not get delivered.
7603  */
7604 static void
7605 perf_iterate_sb(perf_iterate_f output, void *data,
7606                struct perf_event_context *task_ctx)
7607 {
7608         struct perf_event_context *ctx;
7609         int ctxn;
7610
7611         rcu_read_lock();
7612         preempt_disable();
7613
7614         /*
7615          * If we have task_ctx != NULL we only notify the task context itself.
7616          * The task_ctx is set only for EXIT events before releasing task
7617          * context.
7618          */
7619         if (task_ctx) {
7620                 perf_iterate_ctx(task_ctx, output, data, false);
7621                 goto done;
7622         }
7623
7624         perf_iterate_sb_cpu(output, data);
7625
7626         for_each_task_context_nr(ctxn) {
7627                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7628                 if (ctx)
7629                         perf_iterate_ctx(ctx, output, data, false);
7630         }
7631 done:
7632         preempt_enable();
7633         rcu_read_unlock();
7634 }
7635
7636 /*
7637  * Clear all file-based filters at exec, they'll have to be
7638  * re-instated when/if these objects are mmapped again.
7639  */
7640 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7641 {
7642         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7643         struct perf_addr_filter *filter;
7644         unsigned int restart = 0, count = 0;
7645         unsigned long flags;
7646
7647         if (!has_addr_filter(event))
7648                 return;
7649
7650         raw_spin_lock_irqsave(&ifh->lock, flags);
7651         list_for_each_entry(filter, &ifh->list, entry) {
7652                 if (filter->path.dentry) {
7653                         event->addr_filter_ranges[count].start = 0;
7654                         event->addr_filter_ranges[count].size = 0;
7655                         restart++;
7656                 }
7657
7658                 count++;
7659         }
7660
7661         if (restart)
7662                 event->addr_filters_gen++;
7663         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7664
7665         if (restart)
7666                 perf_event_stop(event, 1);
7667 }
7668
7669 void perf_event_exec(void)
7670 {
7671         struct perf_event_context *ctx;
7672         int ctxn;
7673
7674         for_each_task_context_nr(ctxn) {
7675                 perf_event_enable_on_exec(ctxn);
7676                 perf_event_remove_on_exec(ctxn);
7677
7678                 rcu_read_lock();
7679                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7680                 if (ctx) {
7681                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7682                                          NULL, true);
7683                 }
7684                 rcu_read_unlock();
7685         }
7686 }
7687
7688 struct remote_output {
7689         struct perf_buffer      *rb;
7690         int                     err;
7691 };
7692
7693 static void __perf_event_output_stop(struct perf_event *event, void *data)
7694 {
7695         struct perf_event *parent = event->parent;
7696         struct remote_output *ro = data;
7697         struct perf_buffer *rb = ro->rb;
7698         struct stop_event_data sd = {
7699                 .event  = event,
7700         };
7701
7702         if (!has_aux(event))
7703                 return;
7704
7705         if (!parent)
7706                 parent = event;
7707
7708         /*
7709          * In case of inheritance, it will be the parent that links to the
7710          * ring-buffer, but it will be the child that's actually using it.
7711          *
7712          * We are using event::rb to determine if the event should be stopped,
7713          * however this may race with ring_buffer_attach() (through set_output),
7714          * which will make us skip the event that actually needs to be stopped.
7715          * So ring_buffer_attach() has to stop an aux event before re-assigning
7716          * its rb pointer.
7717          */
7718         if (rcu_dereference(parent->rb) == rb)
7719                 ro->err = __perf_event_stop(&sd);
7720 }
7721
7722 static int __perf_pmu_output_stop(void *info)
7723 {
7724         struct perf_event *event = info;
7725         struct pmu *pmu = event->ctx->pmu;
7726         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7727         struct remote_output ro = {
7728                 .rb     = event->rb,
7729         };
7730
7731         rcu_read_lock();
7732         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7733         if (cpuctx->task_ctx)
7734                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7735                                    &ro, false);
7736         rcu_read_unlock();
7737
7738         return ro.err;
7739 }
7740
7741 static void perf_pmu_output_stop(struct perf_event *event)
7742 {
7743         struct perf_event *iter;
7744         int err, cpu;
7745
7746 restart:
7747         rcu_read_lock();
7748         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7749                 /*
7750                  * For per-CPU events, we need to make sure that neither they
7751                  * nor their children are running; for cpu==-1 events it's
7752                  * sufficient to stop the event itself if it's active, since
7753                  * it can't have children.
7754                  */
7755                 cpu = iter->cpu;
7756                 if (cpu == -1)
7757                         cpu = READ_ONCE(iter->oncpu);
7758
7759                 if (cpu == -1)
7760                         continue;
7761
7762                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7763                 if (err == -EAGAIN) {
7764                         rcu_read_unlock();
7765                         goto restart;
7766                 }
7767         }
7768         rcu_read_unlock();
7769 }
7770
7771 /*
7772  * task tracking -- fork/exit
7773  *
7774  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7775  */
7776
7777 struct perf_task_event {
7778         struct task_struct              *task;
7779         struct perf_event_context       *task_ctx;
7780
7781         struct {
7782                 struct perf_event_header        header;
7783
7784                 u32                             pid;
7785                 u32                             ppid;
7786                 u32                             tid;
7787                 u32                             ptid;
7788                 u64                             time;
7789         } event_id;
7790 };
7791
7792 static int perf_event_task_match(struct perf_event *event)
7793 {
7794         return event->attr.comm  || event->attr.mmap ||
7795                event->attr.mmap2 || event->attr.mmap_data ||
7796                event->attr.task;
7797 }
7798
7799 static void perf_event_task_output(struct perf_event *event,
7800                                    void *data)
7801 {
7802         struct perf_task_event *task_event = data;
7803         struct perf_output_handle handle;
7804         struct perf_sample_data sample;
7805         struct task_struct *task = task_event->task;
7806         int ret, size = task_event->event_id.header.size;
7807
7808         if (!perf_event_task_match(event))
7809                 return;
7810
7811         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7812
7813         ret = perf_output_begin(&handle, &sample, event,
7814                                 task_event->event_id.header.size);
7815         if (ret)
7816                 goto out;
7817
7818         task_event->event_id.pid = perf_event_pid(event, task);
7819         task_event->event_id.tid = perf_event_tid(event, task);
7820
7821         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7822                 task_event->event_id.ppid = perf_event_pid(event,
7823                                                         task->real_parent);
7824                 task_event->event_id.ptid = perf_event_pid(event,
7825                                                         task->real_parent);
7826         } else {  /* PERF_RECORD_FORK */
7827                 task_event->event_id.ppid = perf_event_pid(event, current);
7828                 task_event->event_id.ptid = perf_event_tid(event, current);
7829         }
7830
7831         task_event->event_id.time = perf_event_clock(event);
7832
7833         perf_output_put(&handle, task_event->event_id);
7834
7835         perf_event__output_id_sample(event, &handle, &sample);
7836
7837         perf_output_end(&handle);
7838 out:
7839         task_event->event_id.header.size = size;
7840 }
7841
7842 static void perf_event_task(struct task_struct *task,
7843                               struct perf_event_context *task_ctx,
7844                               int new)
7845 {
7846         struct perf_task_event task_event;
7847
7848         if (!atomic_read(&nr_comm_events) &&
7849             !atomic_read(&nr_mmap_events) &&
7850             !atomic_read(&nr_task_events))
7851                 return;
7852
7853         task_event = (struct perf_task_event){
7854                 .task     = task,
7855                 .task_ctx = task_ctx,
7856                 .event_id    = {
7857                         .header = {
7858                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7859                                 .misc = 0,
7860                                 .size = sizeof(task_event.event_id),
7861                         },
7862                         /* .pid  */
7863                         /* .ppid */
7864                         /* .tid  */
7865                         /* .ptid */
7866                         /* .time */
7867                 },
7868         };
7869
7870         perf_iterate_sb(perf_event_task_output,
7871                        &task_event,
7872                        task_ctx);
7873 }
7874
7875 void perf_event_fork(struct task_struct *task)
7876 {
7877         perf_event_task(task, NULL, 1);
7878         perf_event_namespaces(task);
7879 }
7880
7881 /*
7882  * comm tracking
7883  */
7884
7885 struct perf_comm_event {
7886         struct task_struct      *task;
7887         char                    *comm;
7888         int                     comm_size;
7889
7890         struct {
7891                 struct perf_event_header        header;
7892
7893                 u32                             pid;
7894                 u32                             tid;
7895         } event_id;
7896 };
7897
7898 static int perf_event_comm_match(struct perf_event *event)
7899 {
7900         return event->attr.comm;
7901 }
7902
7903 static void perf_event_comm_output(struct perf_event *event,
7904                                    void *data)
7905 {
7906         struct perf_comm_event *comm_event = data;
7907         struct perf_output_handle handle;
7908         struct perf_sample_data sample;
7909         int size = comm_event->event_id.header.size;
7910         int ret;
7911
7912         if (!perf_event_comm_match(event))
7913                 return;
7914
7915         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7916         ret = perf_output_begin(&handle, &sample, event,
7917                                 comm_event->event_id.header.size);
7918
7919         if (ret)
7920                 goto out;
7921
7922         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7923         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7924
7925         perf_output_put(&handle, comm_event->event_id);
7926         __output_copy(&handle, comm_event->comm,
7927                                    comm_event->comm_size);
7928
7929         perf_event__output_id_sample(event, &handle, &sample);
7930
7931         perf_output_end(&handle);
7932 out:
7933         comm_event->event_id.header.size = size;
7934 }
7935
7936 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7937 {
7938         char comm[TASK_COMM_LEN];
7939         unsigned int size;
7940
7941         memset(comm, 0, sizeof(comm));
7942         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7943         size = ALIGN(strlen(comm)+1, sizeof(u64));
7944
7945         comm_event->comm = comm;
7946         comm_event->comm_size = size;
7947
7948         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7949
7950         perf_iterate_sb(perf_event_comm_output,
7951                        comm_event,
7952                        NULL);
7953 }
7954
7955 void perf_event_comm(struct task_struct *task, bool exec)
7956 {
7957         struct perf_comm_event comm_event;
7958
7959         if (!atomic_read(&nr_comm_events))
7960                 return;
7961
7962         comm_event = (struct perf_comm_event){
7963                 .task   = task,
7964                 /* .comm      */
7965                 /* .comm_size */
7966                 .event_id  = {
7967                         .header = {
7968                                 .type = PERF_RECORD_COMM,
7969                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7970                                 /* .size */
7971                         },
7972                         /* .pid */
7973                         /* .tid */
7974                 },
7975         };
7976
7977         perf_event_comm_event(&comm_event);
7978 }
7979
7980 /*
7981  * namespaces tracking
7982  */
7983
7984 struct perf_namespaces_event {
7985         struct task_struct              *task;
7986
7987         struct {
7988                 struct perf_event_header        header;
7989
7990                 u32                             pid;
7991                 u32                             tid;
7992                 u64                             nr_namespaces;
7993                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7994         } event_id;
7995 };
7996
7997 static int perf_event_namespaces_match(struct perf_event *event)
7998 {
7999         return event->attr.namespaces;
8000 }
8001
8002 static void perf_event_namespaces_output(struct perf_event *event,
8003                                          void *data)
8004 {
8005         struct perf_namespaces_event *namespaces_event = data;
8006         struct perf_output_handle handle;
8007         struct perf_sample_data sample;
8008         u16 header_size = namespaces_event->event_id.header.size;
8009         int ret;
8010
8011         if (!perf_event_namespaces_match(event))
8012                 return;
8013
8014         perf_event_header__init_id(&namespaces_event->event_id.header,
8015                                    &sample, event);
8016         ret = perf_output_begin(&handle, &sample, event,
8017                                 namespaces_event->event_id.header.size);
8018         if (ret)
8019                 goto out;
8020
8021         namespaces_event->event_id.pid = perf_event_pid(event,
8022                                                         namespaces_event->task);
8023         namespaces_event->event_id.tid = perf_event_tid(event,
8024                                                         namespaces_event->task);
8025
8026         perf_output_put(&handle, namespaces_event->event_id);
8027
8028         perf_event__output_id_sample(event, &handle, &sample);
8029
8030         perf_output_end(&handle);
8031 out:
8032         namespaces_event->event_id.header.size = header_size;
8033 }
8034
8035 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8036                                    struct task_struct *task,
8037                                    const struct proc_ns_operations *ns_ops)
8038 {
8039         struct path ns_path;
8040         struct inode *ns_inode;
8041         int error;
8042
8043         error = ns_get_path(&ns_path, task, ns_ops);
8044         if (!error) {
8045                 ns_inode = ns_path.dentry->d_inode;
8046                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8047                 ns_link_info->ino = ns_inode->i_ino;
8048                 path_put(&ns_path);
8049         }
8050 }
8051
8052 void perf_event_namespaces(struct task_struct *task)
8053 {
8054         struct perf_namespaces_event namespaces_event;
8055         struct perf_ns_link_info *ns_link_info;
8056
8057         if (!atomic_read(&nr_namespaces_events))
8058                 return;
8059
8060         namespaces_event = (struct perf_namespaces_event){
8061                 .task   = task,
8062                 .event_id  = {
8063                         .header = {
8064                                 .type = PERF_RECORD_NAMESPACES,
8065                                 .misc = 0,
8066                                 .size = sizeof(namespaces_event.event_id),
8067                         },
8068                         /* .pid */
8069                         /* .tid */
8070                         .nr_namespaces = NR_NAMESPACES,
8071                         /* .link_info[NR_NAMESPACES] */
8072                 },
8073         };
8074
8075         ns_link_info = namespaces_event.event_id.link_info;
8076
8077         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8078                                task, &mntns_operations);
8079
8080 #ifdef CONFIG_USER_NS
8081         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8082                                task, &userns_operations);
8083 #endif
8084 #ifdef CONFIG_NET_NS
8085         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8086                                task, &netns_operations);
8087 #endif
8088 #ifdef CONFIG_UTS_NS
8089         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8090                                task, &utsns_operations);
8091 #endif
8092 #ifdef CONFIG_IPC_NS
8093         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8094                                task, &ipcns_operations);
8095 #endif
8096 #ifdef CONFIG_PID_NS
8097         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8098                                task, &pidns_operations);
8099 #endif
8100 #ifdef CONFIG_CGROUPS
8101         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8102                                task, &cgroupns_operations);
8103 #endif
8104
8105         perf_iterate_sb(perf_event_namespaces_output,
8106                         &namespaces_event,
8107                         NULL);
8108 }
8109
8110 /*
8111  * cgroup tracking
8112  */
8113 #ifdef CONFIG_CGROUP_PERF
8114
8115 struct perf_cgroup_event {
8116         char                            *path;
8117         int                             path_size;
8118         struct {
8119                 struct perf_event_header        header;
8120                 u64                             id;
8121                 char                            path[];
8122         } event_id;
8123 };
8124
8125 static int perf_event_cgroup_match(struct perf_event *event)
8126 {
8127         return event->attr.cgroup;
8128 }
8129
8130 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8131 {
8132         struct perf_cgroup_event *cgroup_event = data;
8133         struct perf_output_handle handle;
8134         struct perf_sample_data sample;
8135         u16 header_size = cgroup_event->event_id.header.size;
8136         int ret;
8137
8138         if (!perf_event_cgroup_match(event))
8139                 return;
8140
8141         perf_event_header__init_id(&cgroup_event->event_id.header,
8142                                    &sample, event);
8143         ret = perf_output_begin(&handle, &sample, event,
8144                                 cgroup_event->event_id.header.size);
8145         if (ret)
8146                 goto out;
8147
8148         perf_output_put(&handle, cgroup_event->event_id);
8149         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8150
8151         perf_event__output_id_sample(event, &handle, &sample);
8152
8153         perf_output_end(&handle);
8154 out:
8155         cgroup_event->event_id.header.size = header_size;
8156 }
8157
8158 static void perf_event_cgroup(struct cgroup *cgrp)
8159 {
8160         struct perf_cgroup_event cgroup_event;
8161         char path_enomem[16] = "//enomem";
8162         char *pathname;
8163         size_t size;
8164
8165         if (!atomic_read(&nr_cgroup_events))
8166                 return;
8167
8168         cgroup_event = (struct perf_cgroup_event){
8169                 .event_id  = {
8170                         .header = {
8171                                 .type = PERF_RECORD_CGROUP,
8172                                 .misc = 0,
8173                                 .size = sizeof(cgroup_event.event_id),
8174                         },
8175                         .id = cgroup_id(cgrp),
8176                 },
8177         };
8178
8179         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8180         if (pathname == NULL) {
8181                 cgroup_event.path = path_enomem;
8182         } else {
8183                 /* just to be sure to have enough space for alignment */
8184                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8185                 cgroup_event.path = pathname;
8186         }
8187
8188         /*
8189          * Since our buffer works in 8 byte units we need to align our string
8190          * size to a multiple of 8. However, we must guarantee the tail end is
8191          * zero'd out to avoid leaking random bits to userspace.
8192          */
8193         size = strlen(cgroup_event.path) + 1;
8194         while (!IS_ALIGNED(size, sizeof(u64)))
8195                 cgroup_event.path[size++] = '\0';
8196
8197         cgroup_event.event_id.header.size += size;
8198         cgroup_event.path_size = size;
8199
8200         perf_iterate_sb(perf_event_cgroup_output,
8201                         &cgroup_event,
8202                         NULL);
8203
8204         kfree(pathname);
8205 }
8206
8207 #endif
8208
8209 /*
8210  * mmap tracking
8211  */
8212
8213 struct perf_mmap_event {
8214         struct vm_area_struct   *vma;
8215
8216         const char              *file_name;
8217         int                     file_size;
8218         int                     maj, min;
8219         u64                     ino;
8220         u64                     ino_generation;
8221         u32                     prot, flags;
8222         u8                      build_id[BUILD_ID_SIZE_MAX];
8223         u32                     build_id_size;
8224
8225         struct {
8226                 struct perf_event_header        header;
8227
8228                 u32                             pid;
8229                 u32                             tid;
8230                 u64                             start;
8231                 u64                             len;
8232                 u64                             pgoff;
8233         } event_id;
8234 };
8235
8236 static int perf_event_mmap_match(struct perf_event *event,
8237                                  void *data)
8238 {
8239         struct perf_mmap_event *mmap_event = data;
8240         struct vm_area_struct *vma = mmap_event->vma;
8241         int executable = vma->vm_flags & VM_EXEC;
8242
8243         return (!executable && event->attr.mmap_data) ||
8244                (executable && (event->attr.mmap || event->attr.mmap2));
8245 }
8246
8247 static void perf_event_mmap_output(struct perf_event *event,
8248                                    void *data)
8249 {
8250         struct perf_mmap_event *mmap_event = data;
8251         struct perf_output_handle handle;
8252         struct perf_sample_data sample;
8253         int size = mmap_event->event_id.header.size;
8254         u32 type = mmap_event->event_id.header.type;
8255         bool use_build_id;
8256         int ret;
8257
8258         if (!perf_event_mmap_match(event, data))
8259                 return;
8260
8261         if (event->attr.mmap2) {
8262                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8263                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8264                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8265                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8266                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8267                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8268                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8269         }
8270
8271         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8272         ret = perf_output_begin(&handle, &sample, event,
8273                                 mmap_event->event_id.header.size);
8274         if (ret)
8275                 goto out;
8276
8277         mmap_event->event_id.pid = perf_event_pid(event, current);
8278         mmap_event->event_id.tid = perf_event_tid(event, current);
8279
8280         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8281
8282         if (event->attr.mmap2 && use_build_id)
8283                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8284
8285         perf_output_put(&handle, mmap_event->event_id);
8286
8287         if (event->attr.mmap2) {
8288                 if (use_build_id) {
8289                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8290
8291                         __output_copy(&handle, size, 4);
8292                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8293                 } else {
8294                         perf_output_put(&handle, mmap_event->maj);
8295                         perf_output_put(&handle, mmap_event->min);
8296                         perf_output_put(&handle, mmap_event->ino);
8297                         perf_output_put(&handle, mmap_event->ino_generation);
8298                 }
8299                 perf_output_put(&handle, mmap_event->prot);
8300                 perf_output_put(&handle, mmap_event->flags);
8301         }
8302
8303         __output_copy(&handle, mmap_event->file_name,
8304                                    mmap_event->file_size);
8305
8306         perf_event__output_id_sample(event, &handle, &sample);
8307
8308         perf_output_end(&handle);
8309 out:
8310         mmap_event->event_id.header.size = size;
8311         mmap_event->event_id.header.type = type;
8312 }
8313
8314 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8315 {
8316         struct vm_area_struct *vma = mmap_event->vma;
8317         struct file *file = vma->vm_file;
8318         int maj = 0, min = 0;
8319         u64 ino = 0, gen = 0;
8320         u32 prot = 0, flags = 0;
8321         unsigned int size;
8322         char tmp[16];
8323         char *buf = NULL;
8324         char *name;
8325
8326         if (vma->vm_flags & VM_READ)
8327                 prot |= PROT_READ;
8328         if (vma->vm_flags & VM_WRITE)
8329                 prot |= PROT_WRITE;
8330         if (vma->vm_flags & VM_EXEC)
8331                 prot |= PROT_EXEC;
8332
8333         if (vma->vm_flags & VM_MAYSHARE)
8334                 flags = MAP_SHARED;
8335         else
8336                 flags = MAP_PRIVATE;
8337
8338         if (vma->vm_flags & VM_LOCKED)
8339                 flags |= MAP_LOCKED;
8340         if (is_vm_hugetlb_page(vma))
8341                 flags |= MAP_HUGETLB;
8342
8343         if (file) {
8344                 struct inode *inode;
8345                 dev_t dev;
8346
8347                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8348                 if (!buf) {
8349                         name = "//enomem";
8350                         goto cpy_name;
8351                 }
8352                 /*
8353                  * d_path() works from the end of the rb backwards, so we
8354                  * need to add enough zero bytes after the string to handle
8355                  * the 64bit alignment we do later.
8356                  */
8357                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8358                 if (IS_ERR(name)) {
8359                         name = "//toolong";
8360                         goto cpy_name;
8361                 }
8362                 inode = file_inode(vma->vm_file);
8363                 dev = inode->i_sb->s_dev;
8364                 ino = inode->i_ino;
8365                 gen = inode->i_generation;
8366                 maj = MAJOR(dev);
8367                 min = MINOR(dev);
8368
8369                 goto got_name;
8370         } else {
8371                 if (vma->vm_ops && vma->vm_ops->name) {
8372                         name = (char *) vma->vm_ops->name(vma);
8373                         if (name)
8374                                 goto cpy_name;
8375                 }
8376
8377                 name = (char *)arch_vma_name(vma);
8378                 if (name)
8379                         goto cpy_name;
8380
8381                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8382                                 vma->vm_end >= vma->vm_mm->brk) {
8383                         name = "[heap]";
8384                         goto cpy_name;
8385                 }
8386                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8387                                 vma->vm_end >= vma->vm_mm->start_stack) {
8388                         name = "[stack]";
8389                         goto cpy_name;
8390                 }
8391
8392                 name = "//anon";
8393                 goto cpy_name;
8394         }
8395
8396 cpy_name:
8397         strlcpy(tmp, name, sizeof(tmp));
8398         name = tmp;
8399 got_name:
8400         /*
8401          * Since our buffer works in 8 byte units we need to align our string
8402          * size to a multiple of 8. However, we must guarantee the tail end is
8403          * zero'd out to avoid leaking random bits to userspace.
8404          */
8405         size = strlen(name)+1;
8406         while (!IS_ALIGNED(size, sizeof(u64)))
8407                 name[size++] = '\0';
8408
8409         mmap_event->file_name = name;
8410         mmap_event->file_size = size;
8411         mmap_event->maj = maj;
8412         mmap_event->min = min;
8413         mmap_event->ino = ino;
8414         mmap_event->ino_generation = gen;
8415         mmap_event->prot = prot;
8416         mmap_event->flags = flags;
8417
8418         if (!(vma->vm_flags & VM_EXEC))
8419                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8420
8421         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8422
8423         if (atomic_read(&nr_build_id_events))
8424                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8425
8426         perf_iterate_sb(perf_event_mmap_output,
8427                        mmap_event,
8428                        NULL);
8429
8430         kfree(buf);
8431 }
8432
8433 /*
8434  * Check whether inode and address range match filter criteria.
8435  */
8436 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8437                                      struct file *file, unsigned long offset,
8438                                      unsigned long size)
8439 {
8440         /* d_inode(NULL) won't be equal to any mapped user-space file */
8441         if (!filter->path.dentry)
8442                 return false;
8443
8444         if (d_inode(filter->path.dentry) != file_inode(file))
8445                 return false;
8446
8447         if (filter->offset > offset + size)
8448                 return false;
8449
8450         if (filter->offset + filter->size < offset)
8451                 return false;
8452
8453         return true;
8454 }
8455
8456 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8457                                         struct vm_area_struct *vma,
8458                                         struct perf_addr_filter_range *fr)
8459 {
8460         unsigned long vma_size = vma->vm_end - vma->vm_start;
8461         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8462         struct file *file = vma->vm_file;
8463
8464         if (!perf_addr_filter_match(filter, file, off, vma_size))
8465                 return false;
8466
8467         if (filter->offset < off) {
8468                 fr->start = vma->vm_start;
8469                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8470         } else {
8471                 fr->start = vma->vm_start + filter->offset - off;
8472                 fr->size = min(vma->vm_end - fr->start, filter->size);
8473         }
8474
8475         return true;
8476 }
8477
8478 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8479 {
8480         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8481         struct vm_area_struct *vma = data;
8482         struct perf_addr_filter *filter;
8483         unsigned int restart = 0, count = 0;
8484         unsigned long flags;
8485
8486         if (!has_addr_filter(event))
8487                 return;
8488
8489         if (!vma->vm_file)
8490                 return;
8491
8492         raw_spin_lock_irqsave(&ifh->lock, flags);
8493         list_for_each_entry(filter, &ifh->list, entry) {
8494                 if (perf_addr_filter_vma_adjust(filter, vma,
8495                                                 &event->addr_filter_ranges[count]))
8496                         restart++;
8497
8498                 count++;
8499         }
8500
8501         if (restart)
8502                 event->addr_filters_gen++;
8503         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8504
8505         if (restart)
8506                 perf_event_stop(event, 1);
8507 }
8508
8509 /*
8510  * Adjust all task's events' filters to the new vma
8511  */
8512 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8513 {
8514         struct perf_event_context *ctx;
8515         int ctxn;
8516
8517         /*
8518          * Data tracing isn't supported yet and as such there is no need
8519          * to keep track of anything that isn't related to executable code:
8520          */
8521         if (!(vma->vm_flags & VM_EXEC))
8522                 return;
8523
8524         rcu_read_lock();
8525         for_each_task_context_nr(ctxn) {
8526                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8527                 if (!ctx)
8528                         continue;
8529
8530                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8531         }
8532         rcu_read_unlock();
8533 }
8534
8535 void perf_event_mmap(struct vm_area_struct *vma)
8536 {
8537         struct perf_mmap_event mmap_event;
8538
8539         if (!atomic_read(&nr_mmap_events))
8540                 return;
8541
8542         mmap_event = (struct perf_mmap_event){
8543                 .vma    = vma,
8544                 /* .file_name */
8545                 /* .file_size */
8546                 .event_id  = {
8547                         .header = {
8548                                 .type = PERF_RECORD_MMAP,
8549                                 .misc = PERF_RECORD_MISC_USER,
8550                                 /* .size */
8551                         },
8552                         /* .pid */
8553                         /* .tid */
8554                         .start  = vma->vm_start,
8555                         .len    = vma->vm_end - vma->vm_start,
8556                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8557                 },
8558                 /* .maj (attr_mmap2 only) */
8559                 /* .min (attr_mmap2 only) */
8560                 /* .ino (attr_mmap2 only) */
8561                 /* .ino_generation (attr_mmap2 only) */
8562                 /* .prot (attr_mmap2 only) */
8563                 /* .flags (attr_mmap2 only) */
8564         };
8565
8566         perf_addr_filters_adjust(vma);
8567         perf_event_mmap_event(&mmap_event);
8568 }
8569
8570 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8571                           unsigned long size, u64 flags)
8572 {
8573         struct perf_output_handle handle;
8574         struct perf_sample_data sample;
8575         struct perf_aux_event {
8576                 struct perf_event_header        header;
8577                 u64                             offset;
8578                 u64                             size;
8579                 u64                             flags;
8580         } rec = {
8581                 .header = {
8582                         .type = PERF_RECORD_AUX,
8583                         .misc = 0,
8584                         .size = sizeof(rec),
8585                 },
8586                 .offset         = head,
8587                 .size           = size,
8588                 .flags          = flags,
8589         };
8590         int ret;
8591
8592         perf_event_header__init_id(&rec.header, &sample, event);
8593         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8594
8595         if (ret)
8596                 return;
8597
8598         perf_output_put(&handle, rec);
8599         perf_event__output_id_sample(event, &handle, &sample);
8600
8601         perf_output_end(&handle);
8602 }
8603
8604 /*
8605  * Lost/dropped samples logging
8606  */
8607 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8608 {
8609         struct perf_output_handle handle;
8610         struct perf_sample_data sample;
8611         int ret;
8612
8613         struct {
8614                 struct perf_event_header        header;
8615                 u64                             lost;
8616         } lost_samples_event = {
8617                 .header = {
8618                         .type = PERF_RECORD_LOST_SAMPLES,
8619                         .misc = 0,
8620                         .size = sizeof(lost_samples_event),
8621                 },
8622                 .lost           = lost,
8623         };
8624
8625         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8626
8627         ret = perf_output_begin(&handle, &sample, event,
8628                                 lost_samples_event.header.size);
8629         if (ret)
8630                 return;
8631
8632         perf_output_put(&handle, lost_samples_event);
8633         perf_event__output_id_sample(event, &handle, &sample);
8634         perf_output_end(&handle);
8635 }
8636
8637 /*
8638  * context_switch tracking
8639  */
8640
8641 struct perf_switch_event {
8642         struct task_struct      *task;
8643         struct task_struct      *next_prev;
8644
8645         struct {
8646                 struct perf_event_header        header;
8647                 u32                             next_prev_pid;
8648                 u32                             next_prev_tid;
8649         } event_id;
8650 };
8651
8652 static int perf_event_switch_match(struct perf_event *event)
8653 {
8654         return event->attr.context_switch;
8655 }
8656
8657 static void perf_event_switch_output(struct perf_event *event, void *data)
8658 {
8659         struct perf_switch_event *se = data;
8660         struct perf_output_handle handle;
8661         struct perf_sample_data sample;
8662         int ret;
8663
8664         if (!perf_event_switch_match(event))
8665                 return;
8666
8667         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8668         if (event->ctx->task) {
8669                 se->event_id.header.type = PERF_RECORD_SWITCH;
8670                 se->event_id.header.size = sizeof(se->event_id.header);
8671         } else {
8672                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8673                 se->event_id.header.size = sizeof(se->event_id);
8674                 se->event_id.next_prev_pid =
8675                                         perf_event_pid(event, se->next_prev);
8676                 se->event_id.next_prev_tid =
8677                                         perf_event_tid(event, se->next_prev);
8678         }
8679
8680         perf_event_header__init_id(&se->event_id.header, &sample, event);
8681
8682         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8683         if (ret)
8684                 return;
8685
8686         if (event->ctx->task)
8687                 perf_output_put(&handle, se->event_id.header);
8688         else
8689                 perf_output_put(&handle, se->event_id);
8690
8691         perf_event__output_id_sample(event, &handle, &sample);
8692
8693         perf_output_end(&handle);
8694 }
8695
8696 static void perf_event_switch(struct task_struct *task,
8697                               struct task_struct *next_prev, bool sched_in)
8698 {
8699         struct perf_switch_event switch_event;
8700
8701         /* N.B. caller checks nr_switch_events != 0 */
8702
8703         switch_event = (struct perf_switch_event){
8704                 .task           = task,
8705                 .next_prev      = next_prev,
8706                 .event_id       = {
8707                         .header = {
8708                                 /* .type */
8709                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8710                                 /* .size */
8711                         },
8712                         /* .next_prev_pid */
8713                         /* .next_prev_tid */
8714                 },
8715         };
8716
8717         if (!sched_in && task->on_rq) {
8718                 switch_event.event_id.header.misc |=
8719                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8720         }
8721
8722         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8723 }
8724
8725 /*
8726  * IRQ throttle logging
8727  */
8728
8729 static void perf_log_throttle(struct perf_event *event, int enable)
8730 {
8731         struct perf_output_handle handle;
8732         struct perf_sample_data sample;
8733         int ret;
8734
8735         struct {
8736                 struct perf_event_header        header;
8737                 u64                             time;
8738                 u64                             id;
8739                 u64                             stream_id;
8740         } throttle_event = {
8741                 .header = {
8742                         .type = PERF_RECORD_THROTTLE,
8743                         .misc = 0,
8744                         .size = sizeof(throttle_event),
8745                 },
8746                 .time           = perf_event_clock(event),
8747                 .id             = primary_event_id(event),
8748                 .stream_id      = event->id,
8749         };
8750
8751         if (enable)
8752                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8753
8754         perf_event_header__init_id(&throttle_event.header, &sample, event);
8755
8756         ret = perf_output_begin(&handle, &sample, event,
8757                                 throttle_event.header.size);
8758         if (ret)
8759                 return;
8760
8761         perf_output_put(&handle, throttle_event);
8762         perf_event__output_id_sample(event, &handle, &sample);
8763         perf_output_end(&handle);
8764 }
8765
8766 /*
8767  * ksymbol register/unregister tracking
8768  */
8769
8770 struct perf_ksymbol_event {
8771         const char      *name;
8772         int             name_len;
8773         struct {
8774                 struct perf_event_header        header;
8775                 u64                             addr;
8776                 u32                             len;
8777                 u16                             ksym_type;
8778                 u16                             flags;
8779         } event_id;
8780 };
8781
8782 static int perf_event_ksymbol_match(struct perf_event *event)
8783 {
8784         return event->attr.ksymbol;
8785 }
8786
8787 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8788 {
8789         struct perf_ksymbol_event *ksymbol_event = data;
8790         struct perf_output_handle handle;
8791         struct perf_sample_data sample;
8792         int ret;
8793
8794         if (!perf_event_ksymbol_match(event))
8795                 return;
8796
8797         perf_event_header__init_id(&ksymbol_event->event_id.header,
8798                                    &sample, event);
8799         ret = perf_output_begin(&handle, &sample, event,
8800                                 ksymbol_event->event_id.header.size);
8801         if (ret)
8802                 return;
8803
8804         perf_output_put(&handle, ksymbol_event->event_id);
8805         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8806         perf_event__output_id_sample(event, &handle, &sample);
8807
8808         perf_output_end(&handle);
8809 }
8810
8811 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8812                         const char *sym)
8813 {
8814         struct perf_ksymbol_event ksymbol_event;
8815         char name[KSYM_NAME_LEN];
8816         u16 flags = 0;
8817         int name_len;
8818
8819         if (!atomic_read(&nr_ksymbol_events))
8820                 return;
8821
8822         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8823             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8824                 goto err;
8825
8826         strlcpy(name, sym, KSYM_NAME_LEN);
8827         name_len = strlen(name) + 1;
8828         while (!IS_ALIGNED(name_len, sizeof(u64)))
8829                 name[name_len++] = '\0';
8830         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8831
8832         if (unregister)
8833                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8834
8835         ksymbol_event = (struct perf_ksymbol_event){
8836                 .name = name,
8837                 .name_len = name_len,
8838                 .event_id = {
8839                         .header = {
8840                                 .type = PERF_RECORD_KSYMBOL,
8841                                 .size = sizeof(ksymbol_event.event_id) +
8842                                         name_len,
8843                         },
8844                         .addr = addr,
8845                         .len = len,
8846                         .ksym_type = ksym_type,
8847                         .flags = flags,
8848                 },
8849         };
8850
8851         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8852         return;
8853 err:
8854         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8855 }
8856
8857 /*
8858  * bpf program load/unload tracking
8859  */
8860
8861 struct perf_bpf_event {
8862         struct bpf_prog *prog;
8863         struct {
8864                 struct perf_event_header        header;
8865                 u16                             type;
8866                 u16                             flags;
8867                 u32                             id;
8868                 u8                              tag[BPF_TAG_SIZE];
8869         } event_id;
8870 };
8871
8872 static int perf_event_bpf_match(struct perf_event *event)
8873 {
8874         return event->attr.bpf_event;
8875 }
8876
8877 static void perf_event_bpf_output(struct perf_event *event, void *data)
8878 {
8879         struct perf_bpf_event *bpf_event = data;
8880         struct perf_output_handle handle;
8881         struct perf_sample_data sample;
8882         int ret;
8883
8884         if (!perf_event_bpf_match(event))
8885                 return;
8886
8887         perf_event_header__init_id(&bpf_event->event_id.header,
8888                                    &sample, event);
8889         ret = perf_output_begin(&handle, data, event,
8890                                 bpf_event->event_id.header.size);
8891         if (ret)
8892                 return;
8893
8894         perf_output_put(&handle, bpf_event->event_id);
8895         perf_event__output_id_sample(event, &handle, &sample);
8896
8897         perf_output_end(&handle);
8898 }
8899
8900 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8901                                          enum perf_bpf_event_type type)
8902 {
8903         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8904         int i;
8905
8906         if (prog->aux->func_cnt == 0) {
8907                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8908                                    (u64)(unsigned long)prog->bpf_func,
8909                                    prog->jited_len, unregister,
8910                                    prog->aux->ksym.name);
8911         } else {
8912                 for (i = 0; i < prog->aux->func_cnt; i++) {
8913                         struct bpf_prog *subprog = prog->aux->func[i];
8914
8915                         perf_event_ksymbol(
8916                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8917                                 (u64)(unsigned long)subprog->bpf_func,
8918                                 subprog->jited_len, unregister,
8919                                 prog->aux->ksym.name);
8920                 }
8921         }
8922 }
8923
8924 void perf_event_bpf_event(struct bpf_prog *prog,
8925                           enum perf_bpf_event_type type,
8926                           u16 flags)
8927 {
8928         struct perf_bpf_event bpf_event;
8929
8930         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8931             type >= PERF_BPF_EVENT_MAX)
8932                 return;
8933
8934         switch (type) {
8935         case PERF_BPF_EVENT_PROG_LOAD:
8936         case PERF_BPF_EVENT_PROG_UNLOAD:
8937                 if (atomic_read(&nr_ksymbol_events))
8938                         perf_event_bpf_emit_ksymbols(prog, type);
8939                 break;
8940         default:
8941                 break;
8942         }
8943
8944         if (!atomic_read(&nr_bpf_events))
8945                 return;
8946
8947         bpf_event = (struct perf_bpf_event){
8948                 .prog = prog,
8949                 .event_id = {
8950                         .header = {
8951                                 .type = PERF_RECORD_BPF_EVENT,
8952                                 .size = sizeof(bpf_event.event_id),
8953                         },
8954                         .type = type,
8955                         .flags = flags,
8956                         .id = prog->aux->id,
8957                 },
8958         };
8959
8960         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8961
8962         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8963         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8964 }
8965
8966 struct perf_text_poke_event {
8967         const void              *old_bytes;
8968         const void              *new_bytes;
8969         size_t                  pad;
8970         u16                     old_len;
8971         u16                     new_len;
8972
8973         struct {
8974                 struct perf_event_header        header;
8975
8976                 u64                             addr;
8977         } event_id;
8978 };
8979
8980 static int perf_event_text_poke_match(struct perf_event *event)
8981 {
8982         return event->attr.text_poke;
8983 }
8984
8985 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8986 {
8987         struct perf_text_poke_event *text_poke_event = data;
8988         struct perf_output_handle handle;
8989         struct perf_sample_data sample;
8990         u64 padding = 0;
8991         int ret;
8992
8993         if (!perf_event_text_poke_match(event))
8994                 return;
8995
8996         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8997
8998         ret = perf_output_begin(&handle, &sample, event,
8999                                 text_poke_event->event_id.header.size);
9000         if (ret)
9001                 return;
9002
9003         perf_output_put(&handle, text_poke_event->event_id);
9004         perf_output_put(&handle, text_poke_event->old_len);
9005         perf_output_put(&handle, text_poke_event->new_len);
9006
9007         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9008         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9009
9010         if (text_poke_event->pad)
9011                 __output_copy(&handle, &padding, text_poke_event->pad);
9012
9013         perf_event__output_id_sample(event, &handle, &sample);
9014
9015         perf_output_end(&handle);
9016 }
9017
9018 void perf_event_text_poke(const void *addr, const void *old_bytes,
9019                           size_t old_len, const void *new_bytes, size_t new_len)
9020 {
9021         struct perf_text_poke_event text_poke_event;
9022         size_t tot, pad;
9023
9024         if (!atomic_read(&nr_text_poke_events))
9025                 return;
9026
9027         tot  = sizeof(text_poke_event.old_len) + old_len;
9028         tot += sizeof(text_poke_event.new_len) + new_len;
9029         pad  = ALIGN(tot, sizeof(u64)) - tot;
9030
9031         text_poke_event = (struct perf_text_poke_event){
9032                 .old_bytes    = old_bytes,
9033                 .new_bytes    = new_bytes,
9034                 .pad          = pad,
9035                 .old_len      = old_len,
9036                 .new_len      = new_len,
9037                 .event_id  = {
9038                         .header = {
9039                                 .type = PERF_RECORD_TEXT_POKE,
9040                                 .misc = PERF_RECORD_MISC_KERNEL,
9041                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9042                         },
9043                         .addr = (unsigned long)addr,
9044                 },
9045         };
9046
9047         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9048 }
9049
9050 void perf_event_itrace_started(struct perf_event *event)
9051 {
9052         event->attach_state |= PERF_ATTACH_ITRACE;
9053 }
9054
9055 static void perf_log_itrace_start(struct perf_event *event)
9056 {
9057         struct perf_output_handle handle;
9058         struct perf_sample_data sample;
9059         struct perf_aux_event {
9060                 struct perf_event_header        header;
9061                 u32                             pid;
9062                 u32                             tid;
9063         } rec;
9064         int ret;
9065
9066         if (event->parent)
9067                 event = event->parent;
9068
9069         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9070             event->attach_state & PERF_ATTACH_ITRACE)
9071                 return;
9072
9073         rec.header.type = PERF_RECORD_ITRACE_START;
9074         rec.header.misc = 0;
9075         rec.header.size = sizeof(rec);
9076         rec.pid = perf_event_pid(event, current);
9077         rec.tid = perf_event_tid(event, current);
9078
9079         perf_event_header__init_id(&rec.header, &sample, event);
9080         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9081
9082         if (ret)
9083                 return;
9084
9085         perf_output_put(&handle, rec);
9086         perf_event__output_id_sample(event, &handle, &sample);
9087
9088         perf_output_end(&handle);
9089 }
9090
9091 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9092 {
9093         struct perf_output_handle handle;
9094         struct perf_sample_data sample;
9095         struct perf_aux_event {
9096                 struct perf_event_header        header;
9097                 u64                             hw_id;
9098         } rec;
9099         int ret;
9100
9101         if (event->parent)
9102                 event = event->parent;
9103
9104         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9105         rec.header.misc = 0;
9106         rec.header.size = sizeof(rec);
9107         rec.hw_id       = hw_id;
9108
9109         perf_event_header__init_id(&rec.header, &sample, event);
9110         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9111
9112         if (ret)
9113                 return;
9114
9115         perf_output_put(&handle, rec);
9116         perf_event__output_id_sample(event, &handle, &sample);
9117
9118         perf_output_end(&handle);
9119 }
9120
9121 static int
9122 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9123 {
9124         struct hw_perf_event *hwc = &event->hw;
9125         int ret = 0;
9126         u64 seq;
9127
9128         seq = __this_cpu_read(perf_throttled_seq);
9129         if (seq != hwc->interrupts_seq) {
9130                 hwc->interrupts_seq = seq;
9131                 hwc->interrupts = 1;
9132         } else {
9133                 hwc->interrupts++;
9134                 if (unlikely(throttle
9135                              && hwc->interrupts >= max_samples_per_tick)) {
9136                         __this_cpu_inc(perf_throttled_count);
9137                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9138                         hwc->interrupts = MAX_INTERRUPTS;
9139                         perf_log_throttle(event, 0);
9140                         ret = 1;
9141                 }
9142         }
9143
9144         if (event->attr.freq) {
9145                 u64 now = perf_clock();
9146                 s64 delta = now - hwc->freq_time_stamp;
9147
9148                 hwc->freq_time_stamp = now;
9149
9150                 if (delta > 0 && delta < 2*TICK_NSEC)
9151                         perf_adjust_period(event, delta, hwc->last_period, true);
9152         }
9153
9154         return ret;
9155 }
9156
9157 int perf_event_account_interrupt(struct perf_event *event)
9158 {
9159         return __perf_event_account_interrupt(event, 1);
9160 }
9161
9162 /*
9163  * Generic event overflow handling, sampling.
9164  */
9165
9166 static int __perf_event_overflow(struct perf_event *event,
9167                                    int throttle, struct perf_sample_data *data,
9168                                    struct pt_regs *regs)
9169 {
9170         int events = atomic_read(&event->event_limit);
9171         int ret = 0;
9172
9173         /*
9174          * Non-sampling counters might still use the PMI to fold short
9175          * hardware counters, ignore those.
9176          */
9177         if (unlikely(!is_sampling_event(event)))
9178                 return 0;
9179
9180         ret = __perf_event_account_interrupt(event, throttle);
9181
9182         /*
9183          * XXX event_limit might not quite work as expected on inherited
9184          * events
9185          */
9186
9187         event->pending_kill = POLL_IN;
9188         if (events && atomic_dec_and_test(&event->event_limit)) {
9189                 ret = 1;
9190                 event->pending_kill = POLL_HUP;
9191                 event->pending_addr = data->addr;
9192
9193                 perf_event_disable_inatomic(event);
9194         }
9195
9196         READ_ONCE(event->overflow_handler)(event, data, regs);
9197
9198         if (*perf_event_fasync(event) && event->pending_kill) {
9199                 event->pending_wakeup = 1;
9200                 irq_work_queue(&event->pending);
9201         }
9202
9203         return ret;
9204 }
9205
9206 int perf_event_overflow(struct perf_event *event,
9207                           struct perf_sample_data *data,
9208                           struct pt_regs *regs)
9209 {
9210         return __perf_event_overflow(event, 1, data, regs);
9211 }
9212
9213 /*
9214  * Generic software event infrastructure
9215  */
9216
9217 struct swevent_htable {
9218         struct swevent_hlist            *swevent_hlist;
9219         struct mutex                    hlist_mutex;
9220         int                             hlist_refcount;
9221
9222         /* Recursion avoidance in each contexts */
9223         int                             recursion[PERF_NR_CONTEXTS];
9224 };
9225
9226 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9227
9228 /*
9229  * We directly increment event->count and keep a second value in
9230  * event->hw.period_left to count intervals. This period event
9231  * is kept in the range [-sample_period, 0] so that we can use the
9232  * sign as trigger.
9233  */
9234
9235 u64 perf_swevent_set_period(struct perf_event *event)
9236 {
9237         struct hw_perf_event *hwc = &event->hw;
9238         u64 period = hwc->last_period;
9239         u64 nr, offset;
9240         s64 old, val;
9241
9242         hwc->last_period = hwc->sample_period;
9243
9244 again:
9245         old = val = local64_read(&hwc->period_left);
9246         if (val < 0)
9247                 return 0;
9248
9249         nr = div64_u64(period + val, period);
9250         offset = nr * period;
9251         val -= offset;
9252         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9253                 goto again;
9254
9255         return nr;
9256 }
9257
9258 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9259                                     struct perf_sample_data *data,
9260                                     struct pt_regs *regs)
9261 {
9262         struct hw_perf_event *hwc = &event->hw;
9263         int throttle = 0;
9264
9265         if (!overflow)
9266                 overflow = perf_swevent_set_period(event);
9267
9268         if (hwc->interrupts == MAX_INTERRUPTS)
9269                 return;
9270
9271         for (; overflow; overflow--) {
9272                 if (__perf_event_overflow(event, throttle,
9273                                             data, regs)) {
9274                         /*
9275                          * We inhibit the overflow from happening when
9276                          * hwc->interrupts == MAX_INTERRUPTS.
9277                          */
9278                         break;
9279                 }
9280                 throttle = 1;
9281         }
9282 }
9283
9284 static void perf_swevent_event(struct perf_event *event, u64 nr,
9285                                struct perf_sample_data *data,
9286                                struct pt_regs *regs)
9287 {
9288         struct hw_perf_event *hwc = &event->hw;
9289
9290         local64_add(nr, &event->count);
9291
9292         if (!regs)
9293                 return;
9294
9295         if (!is_sampling_event(event))
9296                 return;
9297
9298         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9299                 data->period = nr;
9300                 return perf_swevent_overflow(event, 1, data, regs);
9301         } else
9302                 data->period = event->hw.last_period;
9303
9304         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9305                 return perf_swevent_overflow(event, 1, data, regs);
9306
9307         if (local64_add_negative(nr, &hwc->period_left))
9308                 return;
9309
9310         perf_swevent_overflow(event, 0, data, regs);
9311 }
9312
9313 static int perf_exclude_event(struct perf_event *event,
9314                               struct pt_regs *regs)
9315 {
9316         if (event->hw.state & PERF_HES_STOPPED)
9317                 return 1;
9318
9319         if (regs) {
9320                 if (event->attr.exclude_user && user_mode(regs))
9321                         return 1;
9322
9323                 if (event->attr.exclude_kernel && !user_mode(regs))
9324                         return 1;
9325         }
9326
9327         return 0;
9328 }
9329
9330 static int perf_swevent_match(struct perf_event *event,
9331                                 enum perf_type_id type,
9332                                 u32 event_id,
9333                                 struct perf_sample_data *data,
9334                                 struct pt_regs *regs)
9335 {
9336         if (event->attr.type != type)
9337                 return 0;
9338
9339         if (event->attr.config != event_id)
9340                 return 0;
9341
9342         if (perf_exclude_event(event, regs))
9343                 return 0;
9344
9345         return 1;
9346 }
9347
9348 static inline u64 swevent_hash(u64 type, u32 event_id)
9349 {
9350         u64 val = event_id | (type << 32);
9351
9352         return hash_64(val, SWEVENT_HLIST_BITS);
9353 }
9354
9355 static inline struct hlist_head *
9356 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9357 {
9358         u64 hash = swevent_hash(type, event_id);
9359
9360         return &hlist->heads[hash];
9361 }
9362
9363 /* For the read side: events when they trigger */
9364 static inline struct hlist_head *
9365 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9366 {
9367         struct swevent_hlist *hlist;
9368
9369         hlist = rcu_dereference(swhash->swevent_hlist);
9370         if (!hlist)
9371                 return NULL;
9372
9373         return __find_swevent_head(hlist, type, event_id);
9374 }
9375
9376 /* For the event head insertion and removal in the hlist */
9377 static inline struct hlist_head *
9378 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9379 {
9380         struct swevent_hlist *hlist;
9381         u32 event_id = event->attr.config;
9382         u64 type = event->attr.type;
9383
9384         /*
9385          * Event scheduling is always serialized against hlist allocation
9386          * and release. Which makes the protected version suitable here.
9387          * The context lock guarantees that.
9388          */
9389         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9390                                           lockdep_is_held(&event->ctx->lock));
9391         if (!hlist)
9392                 return NULL;
9393
9394         return __find_swevent_head(hlist, type, event_id);
9395 }
9396
9397 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9398                                     u64 nr,
9399                                     struct perf_sample_data *data,
9400                                     struct pt_regs *regs)
9401 {
9402         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9403         struct perf_event *event;
9404         struct hlist_head *head;
9405
9406         rcu_read_lock();
9407         head = find_swevent_head_rcu(swhash, type, event_id);
9408         if (!head)
9409                 goto end;
9410
9411         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9412                 if (perf_swevent_match(event, type, event_id, data, regs))
9413                         perf_swevent_event(event, nr, data, regs);
9414         }
9415 end:
9416         rcu_read_unlock();
9417 }
9418
9419 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9420
9421 int perf_swevent_get_recursion_context(void)
9422 {
9423         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9424
9425         return get_recursion_context(swhash->recursion);
9426 }
9427 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9428
9429 void perf_swevent_put_recursion_context(int rctx)
9430 {
9431         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9432
9433         put_recursion_context(swhash->recursion, rctx);
9434 }
9435
9436 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9437 {
9438         struct perf_sample_data data;
9439
9440         if (WARN_ON_ONCE(!regs))
9441                 return;
9442
9443         perf_sample_data_init(&data, addr, 0);
9444         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9445 }
9446
9447 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9448 {
9449         int rctx;
9450
9451         preempt_disable_notrace();
9452         rctx = perf_swevent_get_recursion_context();
9453         if (unlikely(rctx < 0))
9454                 goto fail;
9455
9456         ___perf_sw_event(event_id, nr, regs, addr);
9457
9458         perf_swevent_put_recursion_context(rctx);
9459 fail:
9460         preempt_enable_notrace();
9461 }
9462
9463 static void perf_swevent_read(struct perf_event *event)
9464 {
9465 }
9466
9467 static int perf_swevent_add(struct perf_event *event, int flags)
9468 {
9469         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9470         struct hw_perf_event *hwc = &event->hw;
9471         struct hlist_head *head;
9472
9473         if (is_sampling_event(event)) {
9474                 hwc->last_period = hwc->sample_period;
9475                 perf_swevent_set_period(event);
9476         }
9477
9478         hwc->state = !(flags & PERF_EF_START);
9479
9480         head = find_swevent_head(swhash, event);
9481         if (WARN_ON_ONCE(!head))
9482                 return -EINVAL;
9483
9484         hlist_add_head_rcu(&event->hlist_entry, head);
9485         perf_event_update_userpage(event);
9486
9487         return 0;
9488 }
9489
9490 static void perf_swevent_del(struct perf_event *event, int flags)
9491 {
9492         hlist_del_rcu(&event->hlist_entry);
9493 }
9494
9495 static void perf_swevent_start(struct perf_event *event, int flags)
9496 {
9497         event->hw.state = 0;
9498 }
9499
9500 static void perf_swevent_stop(struct perf_event *event, int flags)
9501 {
9502         event->hw.state = PERF_HES_STOPPED;
9503 }
9504
9505 /* Deref the hlist from the update side */
9506 static inline struct swevent_hlist *
9507 swevent_hlist_deref(struct swevent_htable *swhash)
9508 {
9509         return rcu_dereference_protected(swhash->swevent_hlist,
9510                                          lockdep_is_held(&swhash->hlist_mutex));
9511 }
9512
9513 static void swevent_hlist_release(struct swevent_htable *swhash)
9514 {
9515         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9516
9517         if (!hlist)
9518                 return;
9519
9520         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9521         kfree_rcu(hlist, rcu_head);
9522 }
9523
9524 static void swevent_hlist_put_cpu(int cpu)
9525 {
9526         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9527
9528         mutex_lock(&swhash->hlist_mutex);
9529
9530         if (!--swhash->hlist_refcount)
9531                 swevent_hlist_release(swhash);
9532
9533         mutex_unlock(&swhash->hlist_mutex);
9534 }
9535
9536 static void swevent_hlist_put(void)
9537 {
9538         int cpu;
9539
9540         for_each_possible_cpu(cpu)
9541                 swevent_hlist_put_cpu(cpu);
9542 }
9543
9544 static int swevent_hlist_get_cpu(int cpu)
9545 {
9546         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9547         int err = 0;
9548
9549         mutex_lock(&swhash->hlist_mutex);
9550         if (!swevent_hlist_deref(swhash) &&
9551             cpumask_test_cpu(cpu, perf_online_mask)) {
9552                 struct swevent_hlist *hlist;
9553
9554                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9555                 if (!hlist) {
9556                         err = -ENOMEM;
9557                         goto exit;
9558                 }
9559                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9560         }
9561         swhash->hlist_refcount++;
9562 exit:
9563         mutex_unlock(&swhash->hlist_mutex);
9564
9565         return err;
9566 }
9567
9568 static int swevent_hlist_get(void)
9569 {
9570         int err, cpu, failed_cpu;
9571
9572         mutex_lock(&pmus_lock);
9573         for_each_possible_cpu(cpu) {
9574                 err = swevent_hlist_get_cpu(cpu);
9575                 if (err) {
9576                         failed_cpu = cpu;
9577                         goto fail;
9578                 }
9579         }
9580         mutex_unlock(&pmus_lock);
9581         return 0;
9582 fail:
9583         for_each_possible_cpu(cpu) {
9584                 if (cpu == failed_cpu)
9585                         break;
9586                 swevent_hlist_put_cpu(cpu);
9587         }
9588         mutex_unlock(&pmus_lock);
9589         return err;
9590 }
9591
9592 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9593
9594 static void sw_perf_event_destroy(struct perf_event *event)
9595 {
9596         u64 event_id = event->attr.config;
9597
9598         WARN_ON(event->parent);
9599
9600         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9601         swevent_hlist_put();
9602 }
9603
9604 static int perf_swevent_init(struct perf_event *event)
9605 {
9606         u64 event_id = event->attr.config;
9607
9608         if (event->attr.type != PERF_TYPE_SOFTWARE)
9609                 return -ENOENT;
9610
9611         /*
9612          * no branch sampling for software events
9613          */
9614         if (has_branch_stack(event))
9615                 return -EOPNOTSUPP;
9616
9617         switch (event_id) {
9618         case PERF_COUNT_SW_CPU_CLOCK:
9619         case PERF_COUNT_SW_TASK_CLOCK:
9620                 return -ENOENT;
9621
9622         default:
9623                 break;
9624         }
9625
9626         if (event_id >= PERF_COUNT_SW_MAX)
9627                 return -ENOENT;
9628
9629         if (!event->parent) {
9630                 int err;
9631
9632                 err = swevent_hlist_get();
9633                 if (err)
9634                         return err;
9635
9636                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9637                 event->destroy = sw_perf_event_destroy;
9638         }
9639
9640         return 0;
9641 }
9642
9643 static struct pmu perf_swevent = {
9644         .task_ctx_nr    = perf_sw_context,
9645
9646         .capabilities   = PERF_PMU_CAP_NO_NMI,
9647
9648         .event_init     = perf_swevent_init,
9649         .add            = perf_swevent_add,
9650         .del            = perf_swevent_del,
9651         .start          = perf_swevent_start,
9652         .stop           = perf_swevent_stop,
9653         .read           = perf_swevent_read,
9654 };
9655
9656 #ifdef CONFIG_EVENT_TRACING
9657
9658 static int perf_tp_filter_match(struct perf_event *event,
9659                                 struct perf_sample_data *data)
9660 {
9661         void *record = data->raw->frag.data;
9662
9663         /* only top level events have filters set */
9664         if (event->parent)
9665                 event = event->parent;
9666
9667         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9668                 return 1;
9669         return 0;
9670 }
9671
9672 static int perf_tp_event_match(struct perf_event *event,
9673                                 struct perf_sample_data *data,
9674                                 struct pt_regs *regs)
9675 {
9676         if (event->hw.state & PERF_HES_STOPPED)
9677                 return 0;
9678         /*
9679          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9680          */
9681         if (event->attr.exclude_kernel && !user_mode(regs))
9682                 return 0;
9683
9684         if (!perf_tp_filter_match(event, data))
9685                 return 0;
9686
9687         return 1;
9688 }
9689
9690 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9691                                struct trace_event_call *call, u64 count,
9692                                struct pt_regs *regs, struct hlist_head *head,
9693                                struct task_struct *task)
9694 {
9695         if (bpf_prog_array_valid(call)) {
9696                 *(struct pt_regs **)raw_data = regs;
9697                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9698                         perf_swevent_put_recursion_context(rctx);
9699                         return;
9700                 }
9701         }
9702         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9703                       rctx, task);
9704 }
9705 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9706
9707 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9708                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9709                    struct task_struct *task)
9710 {
9711         struct perf_sample_data data;
9712         struct perf_event *event;
9713
9714         struct perf_raw_record raw = {
9715                 .frag = {
9716                         .size = entry_size,
9717                         .data = record,
9718                 },
9719         };
9720
9721         perf_sample_data_init(&data, 0, 0);
9722         data.raw = &raw;
9723
9724         perf_trace_buf_update(record, event_type);
9725
9726         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9727                 if (perf_tp_event_match(event, &data, regs))
9728                         perf_swevent_event(event, count, &data, regs);
9729         }
9730
9731         /*
9732          * If we got specified a target task, also iterate its context and
9733          * deliver this event there too.
9734          */
9735         if (task && task != current) {
9736                 struct perf_event_context *ctx;
9737                 struct trace_entry *entry = record;
9738
9739                 rcu_read_lock();
9740                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9741                 if (!ctx)
9742                         goto unlock;
9743
9744                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9745                         if (event->cpu != smp_processor_id())
9746                                 continue;
9747                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9748                                 continue;
9749                         if (event->attr.config != entry->type)
9750                                 continue;
9751                         /* Cannot deliver synchronous signal to other task. */
9752                         if (event->attr.sigtrap)
9753                                 continue;
9754                         if (perf_tp_event_match(event, &data, regs))
9755                                 perf_swevent_event(event, count, &data, regs);
9756                 }
9757 unlock:
9758                 rcu_read_unlock();
9759         }
9760
9761         perf_swevent_put_recursion_context(rctx);
9762 }
9763 EXPORT_SYMBOL_GPL(perf_tp_event);
9764
9765 static void tp_perf_event_destroy(struct perf_event *event)
9766 {
9767         perf_trace_destroy(event);
9768 }
9769
9770 static int perf_tp_event_init(struct perf_event *event)
9771 {
9772         int err;
9773
9774         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9775                 return -ENOENT;
9776
9777         /*
9778          * no branch sampling for tracepoint events
9779          */
9780         if (has_branch_stack(event))
9781                 return -EOPNOTSUPP;
9782
9783         err = perf_trace_init(event);
9784         if (err)
9785                 return err;
9786
9787         event->destroy = tp_perf_event_destroy;
9788
9789         return 0;
9790 }
9791
9792 static struct pmu perf_tracepoint = {
9793         .task_ctx_nr    = perf_sw_context,
9794
9795         .event_init     = perf_tp_event_init,
9796         .add            = perf_trace_add,
9797         .del            = perf_trace_del,
9798         .start          = perf_swevent_start,
9799         .stop           = perf_swevent_stop,
9800         .read           = perf_swevent_read,
9801 };
9802
9803 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9804 /*
9805  * Flags in config, used by dynamic PMU kprobe and uprobe
9806  * The flags should match following PMU_FORMAT_ATTR().
9807  *
9808  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9809  *                               if not set, create kprobe/uprobe
9810  *
9811  * The following values specify a reference counter (or semaphore in the
9812  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9813  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9814  *
9815  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9816  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9817  */
9818 enum perf_probe_config {
9819         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9820         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9821         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9822 };
9823
9824 PMU_FORMAT_ATTR(retprobe, "config:0");
9825 #endif
9826
9827 #ifdef CONFIG_KPROBE_EVENTS
9828 static struct attribute *kprobe_attrs[] = {
9829         &format_attr_retprobe.attr,
9830         NULL,
9831 };
9832
9833 static struct attribute_group kprobe_format_group = {
9834         .name = "format",
9835         .attrs = kprobe_attrs,
9836 };
9837
9838 static const struct attribute_group *kprobe_attr_groups[] = {
9839         &kprobe_format_group,
9840         NULL,
9841 };
9842
9843 static int perf_kprobe_event_init(struct perf_event *event);
9844 static struct pmu perf_kprobe = {
9845         .task_ctx_nr    = perf_sw_context,
9846         .event_init     = perf_kprobe_event_init,
9847         .add            = perf_trace_add,
9848         .del            = perf_trace_del,
9849         .start          = perf_swevent_start,
9850         .stop           = perf_swevent_stop,
9851         .read           = perf_swevent_read,
9852         .attr_groups    = kprobe_attr_groups,
9853 };
9854
9855 static int perf_kprobe_event_init(struct perf_event *event)
9856 {
9857         int err;
9858         bool is_retprobe;
9859
9860         if (event->attr.type != perf_kprobe.type)
9861                 return -ENOENT;
9862
9863         if (!perfmon_capable())
9864                 return -EACCES;
9865
9866         /*
9867          * no branch sampling for probe events
9868          */
9869         if (has_branch_stack(event))
9870                 return -EOPNOTSUPP;
9871
9872         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9873         err = perf_kprobe_init(event, is_retprobe);
9874         if (err)
9875                 return err;
9876
9877         event->destroy = perf_kprobe_destroy;
9878
9879         return 0;
9880 }
9881 #endif /* CONFIG_KPROBE_EVENTS */
9882
9883 #ifdef CONFIG_UPROBE_EVENTS
9884 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9885
9886 static struct attribute *uprobe_attrs[] = {
9887         &format_attr_retprobe.attr,
9888         &format_attr_ref_ctr_offset.attr,
9889         NULL,
9890 };
9891
9892 static struct attribute_group uprobe_format_group = {
9893         .name = "format",
9894         .attrs = uprobe_attrs,
9895 };
9896
9897 static const struct attribute_group *uprobe_attr_groups[] = {
9898         &uprobe_format_group,
9899         NULL,
9900 };
9901
9902 static int perf_uprobe_event_init(struct perf_event *event);
9903 static struct pmu perf_uprobe = {
9904         .task_ctx_nr    = perf_sw_context,
9905         .event_init     = perf_uprobe_event_init,
9906         .add            = perf_trace_add,
9907         .del            = perf_trace_del,
9908         .start          = perf_swevent_start,
9909         .stop           = perf_swevent_stop,
9910         .read           = perf_swevent_read,
9911         .attr_groups    = uprobe_attr_groups,
9912 };
9913
9914 static int perf_uprobe_event_init(struct perf_event *event)
9915 {
9916         int err;
9917         unsigned long ref_ctr_offset;
9918         bool is_retprobe;
9919
9920         if (event->attr.type != perf_uprobe.type)
9921                 return -ENOENT;
9922
9923         if (!perfmon_capable())
9924                 return -EACCES;
9925
9926         /*
9927          * no branch sampling for probe events
9928          */
9929         if (has_branch_stack(event))
9930                 return -EOPNOTSUPP;
9931
9932         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9933         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9934         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9935         if (err)
9936                 return err;
9937
9938         event->destroy = perf_uprobe_destroy;
9939
9940         return 0;
9941 }
9942 #endif /* CONFIG_UPROBE_EVENTS */
9943
9944 static inline void perf_tp_register(void)
9945 {
9946         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9947 #ifdef CONFIG_KPROBE_EVENTS
9948         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9949 #endif
9950 #ifdef CONFIG_UPROBE_EVENTS
9951         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9952 #endif
9953 }
9954
9955 static void perf_event_free_filter(struct perf_event *event)
9956 {
9957         ftrace_profile_free_filter(event);
9958 }
9959
9960 #ifdef CONFIG_BPF_SYSCALL
9961 static void bpf_overflow_handler(struct perf_event *event,
9962                                  struct perf_sample_data *data,
9963                                  struct pt_regs *regs)
9964 {
9965         struct bpf_perf_event_data_kern ctx = {
9966                 .data = data,
9967                 .event = event,
9968         };
9969         struct bpf_prog *prog;
9970         int ret = 0;
9971
9972         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9973         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9974                 goto out;
9975         rcu_read_lock();
9976         prog = READ_ONCE(event->prog);
9977         if (prog)
9978                 ret = bpf_prog_run(prog, &ctx);
9979         rcu_read_unlock();
9980 out:
9981         __this_cpu_dec(bpf_prog_active);
9982         if (!ret)
9983                 return;
9984
9985         event->orig_overflow_handler(event, data, regs);
9986 }
9987
9988 static int perf_event_set_bpf_handler(struct perf_event *event,
9989                                       struct bpf_prog *prog,
9990                                       u64 bpf_cookie)
9991 {
9992         if (event->overflow_handler_context)
9993                 /* hw breakpoint or kernel counter */
9994                 return -EINVAL;
9995
9996         if (event->prog)
9997                 return -EEXIST;
9998
9999         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10000                 return -EINVAL;
10001
10002         if (event->attr.precise_ip &&
10003             prog->call_get_stack &&
10004             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10005              event->attr.exclude_callchain_kernel ||
10006              event->attr.exclude_callchain_user)) {
10007                 /*
10008                  * On perf_event with precise_ip, calling bpf_get_stack()
10009                  * may trigger unwinder warnings and occasional crashes.
10010                  * bpf_get_[stack|stackid] works around this issue by using
10011                  * callchain attached to perf_sample_data. If the
10012                  * perf_event does not full (kernel and user) callchain
10013                  * attached to perf_sample_data, do not allow attaching BPF
10014                  * program that calls bpf_get_[stack|stackid].
10015                  */
10016                 return -EPROTO;
10017         }
10018
10019         event->prog = prog;
10020         event->bpf_cookie = bpf_cookie;
10021         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10022         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10023         return 0;
10024 }
10025
10026 static void perf_event_free_bpf_handler(struct perf_event *event)
10027 {
10028         struct bpf_prog *prog = event->prog;
10029
10030         if (!prog)
10031                 return;
10032
10033         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10034         event->prog = NULL;
10035         bpf_prog_put(prog);
10036 }
10037 #else
10038 static int perf_event_set_bpf_handler(struct perf_event *event,
10039                                       struct bpf_prog *prog,
10040                                       u64 bpf_cookie)
10041 {
10042         return -EOPNOTSUPP;
10043 }
10044 static void perf_event_free_bpf_handler(struct perf_event *event)
10045 {
10046 }
10047 #endif
10048
10049 /*
10050  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10051  * with perf_event_open()
10052  */
10053 static inline bool perf_event_is_tracing(struct perf_event *event)
10054 {
10055         if (event->pmu == &perf_tracepoint)
10056                 return true;
10057 #ifdef CONFIG_KPROBE_EVENTS
10058         if (event->pmu == &perf_kprobe)
10059                 return true;
10060 #endif
10061 #ifdef CONFIG_UPROBE_EVENTS
10062         if (event->pmu == &perf_uprobe)
10063                 return true;
10064 #endif
10065         return false;
10066 }
10067
10068 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10069                             u64 bpf_cookie)
10070 {
10071         bool is_kprobe, is_tracepoint, is_syscall_tp;
10072
10073         if (!perf_event_is_tracing(event))
10074                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10075
10076         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10077         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10078         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10079         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10080                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10081                 return -EINVAL;
10082
10083         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10084             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10085             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10086                 return -EINVAL;
10087
10088         /* Kprobe override only works for kprobes, not uprobes. */
10089         if (prog->kprobe_override &&
10090             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10091                 return -EINVAL;
10092
10093         if (is_tracepoint || is_syscall_tp) {
10094                 int off = trace_event_get_offsets(event->tp_event);
10095
10096                 if (prog->aux->max_ctx_offset > off)
10097                         return -EACCES;
10098         }
10099
10100         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10101 }
10102
10103 void perf_event_free_bpf_prog(struct perf_event *event)
10104 {
10105         if (!perf_event_is_tracing(event)) {
10106                 perf_event_free_bpf_handler(event);
10107                 return;
10108         }
10109         perf_event_detach_bpf_prog(event);
10110 }
10111
10112 #else
10113
10114 static inline void perf_tp_register(void)
10115 {
10116 }
10117
10118 static void perf_event_free_filter(struct perf_event *event)
10119 {
10120 }
10121
10122 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10123                             u64 bpf_cookie)
10124 {
10125         return -ENOENT;
10126 }
10127
10128 void perf_event_free_bpf_prog(struct perf_event *event)
10129 {
10130 }
10131 #endif /* CONFIG_EVENT_TRACING */
10132
10133 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10134 void perf_bp_event(struct perf_event *bp, void *data)
10135 {
10136         struct perf_sample_data sample;
10137         struct pt_regs *regs = data;
10138
10139         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10140
10141         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10142                 perf_swevent_event(bp, 1, &sample, regs);
10143 }
10144 #endif
10145
10146 /*
10147  * Allocate a new address filter
10148  */
10149 static struct perf_addr_filter *
10150 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10151 {
10152         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10153         struct perf_addr_filter *filter;
10154
10155         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10156         if (!filter)
10157                 return NULL;
10158
10159         INIT_LIST_HEAD(&filter->entry);
10160         list_add_tail(&filter->entry, filters);
10161
10162         return filter;
10163 }
10164
10165 static void free_filters_list(struct list_head *filters)
10166 {
10167         struct perf_addr_filter *filter, *iter;
10168
10169         list_for_each_entry_safe(filter, iter, filters, entry) {
10170                 path_put(&filter->path);
10171                 list_del(&filter->entry);
10172                 kfree(filter);
10173         }
10174 }
10175
10176 /*
10177  * Free existing address filters and optionally install new ones
10178  */
10179 static void perf_addr_filters_splice(struct perf_event *event,
10180                                      struct list_head *head)
10181 {
10182         unsigned long flags;
10183         LIST_HEAD(list);
10184
10185         if (!has_addr_filter(event))
10186                 return;
10187
10188         /* don't bother with children, they don't have their own filters */
10189         if (event->parent)
10190                 return;
10191
10192         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10193
10194         list_splice_init(&event->addr_filters.list, &list);
10195         if (head)
10196                 list_splice(head, &event->addr_filters.list);
10197
10198         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10199
10200         free_filters_list(&list);
10201 }
10202
10203 /*
10204  * Scan through mm's vmas and see if one of them matches the
10205  * @filter; if so, adjust filter's address range.
10206  * Called with mm::mmap_lock down for reading.
10207  */
10208 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10209                                    struct mm_struct *mm,
10210                                    struct perf_addr_filter_range *fr)
10211 {
10212         struct vm_area_struct *vma;
10213
10214         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10215                 if (!vma->vm_file)
10216                         continue;
10217
10218                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10219                         return;
10220         }
10221 }
10222
10223 /*
10224  * Update event's address range filters based on the
10225  * task's existing mappings, if any.
10226  */
10227 static void perf_event_addr_filters_apply(struct perf_event *event)
10228 {
10229         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10230         struct task_struct *task = READ_ONCE(event->ctx->task);
10231         struct perf_addr_filter *filter;
10232         struct mm_struct *mm = NULL;
10233         unsigned int count = 0;
10234         unsigned long flags;
10235
10236         /*
10237          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10238          * will stop on the parent's child_mutex that our caller is also holding
10239          */
10240         if (task == TASK_TOMBSTONE)
10241                 return;
10242
10243         if (ifh->nr_file_filters) {
10244                 mm = get_task_mm(task);
10245                 if (!mm)
10246                         goto restart;
10247
10248                 mmap_read_lock(mm);
10249         }
10250
10251         raw_spin_lock_irqsave(&ifh->lock, flags);
10252         list_for_each_entry(filter, &ifh->list, entry) {
10253                 if (filter->path.dentry) {
10254                         /*
10255                          * Adjust base offset if the filter is associated to a
10256                          * binary that needs to be mapped:
10257                          */
10258                         event->addr_filter_ranges[count].start = 0;
10259                         event->addr_filter_ranges[count].size = 0;
10260
10261                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10262                 } else {
10263                         event->addr_filter_ranges[count].start = filter->offset;
10264                         event->addr_filter_ranges[count].size  = filter->size;
10265                 }
10266
10267                 count++;
10268         }
10269
10270         event->addr_filters_gen++;
10271         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10272
10273         if (ifh->nr_file_filters) {
10274                 mmap_read_unlock(mm);
10275
10276                 mmput(mm);
10277         }
10278
10279 restart:
10280         perf_event_stop(event, 1);
10281 }
10282
10283 /*
10284  * Address range filtering: limiting the data to certain
10285  * instruction address ranges. Filters are ioctl()ed to us from
10286  * userspace as ascii strings.
10287  *
10288  * Filter string format:
10289  *
10290  * ACTION RANGE_SPEC
10291  * where ACTION is one of the
10292  *  * "filter": limit the trace to this region
10293  *  * "start": start tracing from this address
10294  *  * "stop": stop tracing at this address/region;
10295  * RANGE_SPEC is
10296  *  * for kernel addresses: <start address>[/<size>]
10297  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10298  *
10299  * if <size> is not specified or is zero, the range is treated as a single
10300  * address; not valid for ACTION=="filter".
10301  */
10302 enum {
10303         IF_ACT_NONE = -1,
10304         IF_ACT_FILTER,
10305         IF_ACT_START,
10306         IF_ACT_STOP,
10307         IF_SRC_FILE,
10308         IF_SRC_KERNEL,
10309         IF_SRC_FILEADDR,
10310         IF_SRC_KERNELADDR,
10311 };
10312
10313 enum {
10314         IF_STATE_ACTION = 0,
10315         IF_STATE_SOURCE,
10316         IF_STATE_END,
10317 };
10318
10319 static const match_table_t if_tokens = {
10320         { IF_ACT_FILTER,        "filter" },
10321         { IF_ACT_START,         "start" },
10322         { IF_ACT_STOP,          "stop" },
10323         { IF_SRC_FILE,          "%u/%u@%s" },
10324         { IF_SRC_KERNEL,        "%u/%u" },
10325         { IF_SRC_FILEADDR,      "%u@%s" },
10326         { IF_SRC_KERNELADDR,    "%u" },
10327         { IF_ACT_NONE,          NULL },
10328 };
10329
10330 /*
10331  * Address filter string parser
10332  */
10333 static int
10334 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10335                              struct list_head *filters)
10336 {
10337         struct perf_addr_filter *filter = NULL;
10338         char *start, *orig, *filename = NULL;
10339         substring_t args[MAX_OPT_ARGS];
10340         int state = IF_STATE_ACTION, token;
10341         unsigned int kernel = 0;
10342         int ret = -EINVAL;
10343
10344         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10345         if (!fstr)
10346                 return -ENOMEM;
10347
10348         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10349                 static const enum perf_addr_filter_action_t actions[] = {
10350                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10351                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10352                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10353                 };
10354                 ret = -EINVAL;
10355
10356                 if (!*start)
10357                         continue;
10358
10359                 /* filter definition begins */
10360                 if (state == IF_STATE_ACTION) {
10361                         filter = perf_addr_filter_new(event, filters);
10362                         if (!filter)
10363                                 goto fail;
10364                 }
10365
10366                 token = match_token(start, if_tokens, args);
10367                 switch (token) {
10368                 case IF_ACT_FILTER:
10369                 case IF_ACT_START:
10370                 case IF_ACT_STOP:
10371                         if (state != IF_STATE_ACTION)
10372                                 goto fail;
10373
10374                         filter->action = actions[token];
10375                         state = IF_STATE_SOURCE;
10376                         break;
10377
10378                 case IF_SRC_KERNELADDR:
10379                 case IF_SRC_KERNEL:
10380                         kernel = 1;
10381                         fallthrough;
10382
10383                 case IF_SRC_FILEADDR:
10384                 case IF_SRC_FILE:
10385                         if (state != IF_STATE_SOURCE)
10386                                 goto fail;
10387
10388                         *args[0].to = 0;
10389                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10390                         if (ret)
10391                                 goto fail;
10392
10393                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10394                                 *args[1].to = 0;
10395                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10396                                 if (ret)
10397                                         goto fail;
10398                         }
10399
10400                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10401                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10402
10403                                 kfree(filename);
10404                                 filename = match_strdup(&args[fpos]);
10405                                 if (!filename) {
10406                                         ret = -ENOMEM;
10407                                         goto fail;
10408                                 }
10409                         }
10410
10411                         state = IF_STATE_END;
10412                         break;
10413
10414                 default:
10415                         goto fail;
10416                 }
10417
10418                 /*
10419                  * Filter definition is fully parsed, validate and install it.
10420                  * Make sure that it doesn't contradict itself or the event's
10421                  * attribute.
10422                  */
10423                 if (state == IF_STATE_END) {
10424                         ret = -EINVAL;
10425
10426                         /*
10427                          * ACTION "filter" must have a non-zero length region
10428                          * specified.
10429                          */
10430                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10431                             !filter->size)
10432                                 goto fail;
10433
10434                         if (!kernel) {
10435                                 if (!filename)
10436                                         goto fail;
10437
10438                                 /*
10439                                  * For now, we only support file-based filters
10440                                  * in per-task events; doing so for CPU-wide
10441                                  * events requires additional context switching
10442                                  * trickery, since same object code will be
10443                                  * mapped at different virtual addresses in
10444                                  * different processes.
10445                                  */
10446                                 ret = -EOPNOTSUPP;
10447                                 if (!event->ctx->task)
10448                                         goto fail;
10449
10450                                 /* look up the path and grab its inode */
10451                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10452                                                 &filter->path);
10453                                 if (ret)
10454                                         goto fail;
10455
10456                                 ret = -EINVAL;
10457                                 if (!filter->path.dentry ||
10458                                     !S_ISREG(d_inode(filter->path.dentry)
10459                                              ->i_mode))
10460                                         goto fail;
10461
10462                                 event->addr_filters.nr_file_filters++;
10463                         }
10464
10465                         /* ready to consume more filters */
10466                         kfree(filename);
10467                         filename = NULL;
10468                         state = IF_STATE_ACTION;
10469                         filter = NULL;
10470                         kernel = 0;
10471                 }
10472         }
10473
10474         if (state != IF_STATE_ACTION)
10475                 goto fail;
10476
10477         kfree(filename);
10478         kfree(orig);
10479
10480         return 0;
10481
10482 fail:
10483         kfree(filename);
10484         free_filters_list(filters);
10485         kfree(orig);
10486
10487         return ret;
10488 }
10489
10490 static int
10491 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10492 {
10493         LIST_HEAD(filters);
10494         int ret;
10495
10496         /*
10497          * Since this is called in perf_ioctl() path, we're already holding
10498          * ctx::mutex.
10499          */
10500         lockdep_assert_held(&event->ctx->mutex);
10501
10502         if (WARN_ON_ONCE(event->parent))
10503                 return -EINVAL;
10504
10505         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10506         if (ret)
10507                 goto fail_clear_files;
10508
10509         ret = event->pmu->addr_filters_validate(&filters);
10510         if (ret)
10511                 goto fail_free_filters;
10512
10513         /* remove existing filters, if any */
10514         perf_addr_filters_splice(event, &filters);
10515
10516         /* install new filters */
10517         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10518
10519         return ret;
10520
10521 fail_free_filters:
10522         free_filters_list(&filters);
10523
10524 fail_clear_files:
10525         event->addr_filters.nr_file_filters = 0;
10526
10527         return ret;
10528 }
10529
10530 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10531 {
10532         int ret = -EINVAL;
10533         char *filter_str;
10534
10535         filter_str = strndup_user(arg, PAGE_SIZE);
10536         if (IS_ERR(filter_str))
10537                 return PTR_ERR(filter_str);
10538
10539 #ifdef CONFIG_EVENT_TRACING
10540         if (perf_event_is_tracing(event)) {
10541                 struct perf_event_context *ctx = event->ctx;
10542
10543                 /*
10544                  * Beware, here be dragons!!
10545                  *
10546                  * the tracepoint muck will deadlock against ctx->mutex, but
10547                  * the tracepoint stuff does not actually need it. So
10548                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10549                  * already have a reference on ctx.
10550                  *
10551                  * This can result in event getting moved to a different ctx,
10552                  * but that does not affect the tracepoint state.
10553                  */
10554                 mutex_unlock(&ctx->mutex);
10555                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10556                 mutex_lock(&ctx->mutex);
10557         } else
10558 #endif
10559         if (has_addr_filter(event))
10560                 ret = perf_event_set_addr_filter(event, filter_str);
10561
10562         kfree(filter_str);
10563         return ret;
10564 }
10565
10566 /*
10567  * hrtimer based swevent callback
10568  */
10569
10570 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10571 {
10572         enum hrtimer_restart ret = HRTIMER_RESTART;
10573         struct perf_sample_data data;
10574         struct pt_regs *regs;
10575         struct perf_event *event;
10576         u64 period;
10577
10578         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10579
10580         if (event->state != PERF_EVENT_STATE_ACTIVE)
10581                 return HRTIMER_NORESTART;
10582
10583         event->pmu->read(event);
10584
10585         perf_sample_data_init(&data, 0, event->hw.last_period);
10586         regs = get_irq_regs();
10587
10588         if (regs && !perf_exclude_event(event, regs)) {
10589                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10590                         if (__perf_event_overflow(event, 1, &data, regs))
10591                                 ret = HRTIMER_NORESTART;
10592         }
10593
10594         period = max_t(u64, 10000, event->hw.sample_period);
10595         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10596
10597         return ret;
10598 }
10599
10600 static void perf_swevent_start_hrtimer(struct perf_event *event)
10601 {
10602         struct hw_perf_event *hwc = &event->hw;
10603         s64 period;
10604
10605         if (!is_sampling_event(event))
10606                 return;
10607
10608         period = local64_read(&hwc->period_left);
10609         if (period) {
10610                 if (period < 0)
10611                         period = 10000;
10612
10613                 local64_set(&hwc->period_left, 0);
10614         } else {
10615                 period = max_t(u64, 10000, hwc->sample_period);
10616         }
10617         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10618                       HRTIMER_MODE_REL_PINNED_HARD);
10619 }
10620
10621 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10622 {
10623         struct hw_perf_event *hwc = &event->hw;
10624
10625         if (is_sampling_event(event)) {
10626                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10627                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10628
10629                 hrtimer_cancel(&hwc->hrtimer);
10630         }
10631 }
10632
10633 static void perf_swevent_init_hrtimer(struct perf_event *event)
10634 {
10635         struct hw_perf_event *hwc = &event->hw;
10636
10637         if (!is_sampling_event(event))
10638                 return;
10639
10640         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10641         hwc->hrtimer.function = perf_swevent_hrtimer;
10642
10643         /*
10644          * Since hrtimers have a fixed rate, we can do a static freq->period
10645          * mapping and avoid the whole period adjust feedback stuff.
10646          */
10647         if (event->attr.freq) {
10648                 long freq = event->attr.sample_freq;
10649
10650                 event->attr.sample_period = NSEC_PER_SEC / freq;
10651                 hwc->sample_period = event->attr.sample_period;
10652                 local64_set(&hwc->period_left, hwc->sample_period);
10653                 hwc->last_period = hwc->sample_period;
10654                 event->attr.freq = 0;
10655         }
10656 }
10657
10658 /*
10659  * Software event: cpu wall time clock
10660  */
10661
10662 static void cpu_clock_event_update(struct perf_event *event)
10663 {
10664         s64 prev;
10665         u64 now;
10666
10667         now = local_clock();
10668         prev = local64_xchg(&event->hw.prev_count, now);
10669         local64_add(now - prev, &event->count);
10670 }
10671
10672 static void cpu_clock_event_start(struct perf_event *event, int flags)
10673 {
10674         local64_set(&event->hw.prev_count, local_clock());
10675         perf_swevent_start_hrtimer(event);
10676 }
10677
10678 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10679 {
10680         perf_swevent_cancel_hrtimer(event);
10681         cpu_clock_event_update(event);
10682 }
10683
10684 static int cpu_clock_event_add(struct perf_event *event, int flags)
10685 {
10686         if (flags & PERF_EF_START)
10687                 cpu_clock_event_start(event, flags);
10688         perf_event_update_userpage(event);
10689
10690         return 0;
10691 }
10692
10693 static void cpu_clock_event_del(struct perf_event *event, int flags)
10694 {
10695         cpu_clock_event_stop(event, flags);
10696 }
10697
10698 static void cpu_clock_event_read(struct perf_event *event)
10699 {
10700         cpu_clock_event_update(event);
10701 }
10702
10703 static int cpu_clock_event_init(struct perf_event *event)
10704 {
10705         if (event->attr.type != PERF_TYPE_SOFTWARE)
10706                 return -ENOENT;
10707
10708         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10709                 return -ENOENT;
10710
10711         /*
10712          * no branch sampling for software events
10713          */
10714         if (has_branch_stack(event))
10715                 return -EOPNOTSUPP;
10716
10717         perf_swevent_init_hrtimer(event);
10718
10719         return 0;
10720 }
10721
10722 static struct pmu perf_cpu_clock = {
10723         .task_ctx_nr    = perf_sw_context,
10724
10725         .capabilities   = PERF_PMU_CAP_NO_NMI,
10726
10727         .event_init     = cpu_clock_event_init,
10728         .add            = cpu_clock_event_add,
10729         .del            = cpu_clock_event_del,
10730         .start          = cpu_clock_event_start,
10731         .stop           = cpu_clock_event_stop,
10732         .read           = cpu_clock_event_read,
10733 };
10734
10735 /*
10736  * Software event: task time clock
10737  */
10738
10739 static void task_clock_event_update(struct perf_event *event, u64 now)
10740 {
10741         u64 prev;
10742         s64 delta;
10743
10744         prev = local64_xchg(&event->hw.prev_count, now);
10745         delta = now - prev;
10746         local64_add(delta, &event->count);
10747 }
10748
10749 static void task_clock_event_start(struct perf_event *event, int flags)
10750 {
10751         local64_set(&event->hw.prev_count, event->ctx->time);
10752         perf_swevent_start_hrtimer(event);
10753 }
10754
10755 static void task_clock_event_stop(struct perf_event *event, int flags)
10756 {
10757         perf_swevent_cancel_hrtimer(event);
10758         task_clock_event_update(event, event->ctx->time);
10759 }
10760
10761 static int task_clock_event_add(struct perf_event *event, int flags)
10762 {
10763         if (flags & PERF_EF_START)
10764                 task_clock_event_start(event, flags);
10765         perf_event_update_userpage(event);
10766
10767         return 0;
10768 }
10769
10770 static void task_clock_event_del(struct perf_event *event, int flags)
10771 {
10772         task_clock_event_stop(event, PERF_EF_UPDATE);
10773 }
10774
10775 static void task_clock_event_read(struct perf_event *event)
10776 {
10777         u64 now = perf_clock();
10778         u64 delta = now - event->ctx->timestamp;
10779         u64 time = event->ctx->time + delta;
10780
10781         task_clock_event_update(event, time);
10782 }
10783
10784 static int task_clock_event_init(struct perf_event *event)
10785 {
10786         if (event->attr.type != PERF_TYPE_SOFTWARE)
10787                 return -ENOENT;
10788
10789         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10790                 return -ENOENT;
10791
10792         /*
10793          * no branch sampling for software events
10794          */
10795         if (has_branch_stack(event))
10796                 return -EOPNOTSUPP;
10797
10798         perf_swevent_init_hrtimer(event);
10799
10800         return 0;
10801 }
10802
10803 static struct pmu perf_task_clock = {
10804         .task_ctx_nr    = perf_sw_context,
10805
10806         .capabilities   = PERF_PMU_CAP_NO_NMI,
10807
10808         .event_init     = task_clock_event_init,
10809         .add            = task_clock_event_add,
10810         .del            = task_clock_event_del,
10811         .start          = task_clock_event_start,
10812         .stop           = task_clock_event_stop,
10813         .read           = task_clock_event_read,
10814 };
10815
10816 static void perf_pmu_nop_void(struct pmu *pmu)
10817 {
10818 }
10819
10820 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10821 {
10822 }
10823
10824 static int perf_pmu_nop_int(struct pmu *pmu)
10825 {
10826         return 0;
10827 }
10828
10829 static int perf_event_nop_int(struct perf_event *event, u64 value)
10830 {
10831         return 0;
10832 }
10833
10834 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10835
10836 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10837 {
10838         __this_cpu_write(nop_txn_flags, flags);
10839
10840         if (flags & ~PERF_PMU_TXN_ADD)
10841                 return;
10842
10843         perf_pmu_disable(pmu);
10844 }
10845
10846 static int perf_pmu_commit_txn(struct pmu *pmu)
10847 {
10848         unsigned int flags = __this_cpu_read(nop_txn_flags);
10849
10850         __this_cpu_write(nop_txn_flags, 0);
10851
10852         if (flags & ~PERF_PMU_TXN_ADD)
10853                 return 0;
10854
10855         perf_pmu_enable(pmu);
10856         return 0;
10857 }
10858
10859 static void perf_pmu_cancel_txn(struct pmu *pmu)
10860 {
10861         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10862
10863         __this_cpu_write(nop_txn_flags, 0);
10864
10865         if (flags & ~PERF_PMU_TXN_ADD)
10866                 return;
10867
10868         perf_pmu_enable(pmu);
10869 }
10870
10871 static int perf_event_idx_default(struct perf_event *event)
10872 {
10873         return 0;
10874 }
10875
10876 /*
10877  * Ensures all contexts with the same task_ctx_nr have the same
10878  * pmu_cpu_context too.
10879  */
10880 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10881 {
10882         struct pmu *pmu;
10883
10884         if (ctxn < 0)
10885                 return NULL;
10886
10887         list_for_each_entry(pmu, &pmus, entry) {
10888                 if (pmu->task_ctx_nr == ctxn)
10889                         return pmu->pmu_cpu_context;
10890         }
10891
10892         return NULL;
10893 }
10894
10895 static void free_pmu_context(struct pmu *pmu)
10896 {
10897         /*
10898          * Static contexts such as perf_sw_context have a global lifetime
10899          * and may be shared between different PMUs. Avoid freeing them
10900          * when a single PMU is going away.
10901          */
10902         if (pmu->task_ctx_nr > perf_invalid_context)
10903                 return;
10904
10905         free_percpu(pmu->pmu_cpu_context);
10906 }
10907
10908 /*
10909  * Let userspace know that this PMU supports address range filtering:
10910  */
10911 static ssize_t nr_addr_filters_show(struct device *dev,
10912                                     struct device_attribute *attr,
10913                                     char *page)
10914 {
10915         struct pmu *pmu = dev_get_drvdata(dev);
10916
10917         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10918 }
10919 DEVICE_ATTR_RO(nr_addr_filters);
10920
10921 static struct idr pmu_idr;
10922
10923 static ssize_t
10924 type_show(struct device *dev, struct device_attribute *attr, char *page)
10925 {
10926         struct pmu *pmu = dev_get_drvdata(dev);
10927
10928         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10929 }
10930 static DEVICE_ATTR_RO(type);
10931
10932 static ssize_t
10933 perf_event_mux_interval_ms_show(struct device *dev,
10934                                 struct device_attribute *attr,
10935                                 char *page)
10936 {
10937         struct pmu *pmu = dev_get_drvdata(dev);
10938
10939         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10940 }
10941
10942 static DEFINE_MUTEX(mux_interval_mutex);
10943
10944 static ssize_t
10945 perf_event_mux_interval_ms_store(struct device *dev,
10946                                  struct device_attribute *attr,
10947                                  const char *buf, size_t count)
10948 {
10949         struct pmu *pmu = dev_get_drvdata(dev);
10950         int timer, cpu, ret;
10951
10952         ret = kstrtoint(buf, 0, &timer);
10953         if (ret)
10954                 return ret;
10955
10956         if (timer < 1)
10957                 return -EINVAL;
10958
10959         /* same value, noting to do */
10960         if (timer == pmu->hrtimer_interval_ms)
10961                 return count;
10962
10963         mutex_lock(&mux_interval_mutex);
10964         pmu->hrtimer_interval_ms = timer;
10965
10966         /* update all cpuctx for this PMU */
10967         cpus_read_lock();
10968         for_each_online_cpu(cpu) {
10969                 struct perf_cpu_context *cpuctx;
10970                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10971                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10972
10973                 cpu_function_call(cpu,
10974                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10975         }
10976         cpus_read_unlock();
10977         mutex_unlock(&mux_interval_mutex);
10978
10979         return count;
10980 }
10981 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10982
10983 static struct attribute *pmu_dev_attrs[] = {
10984         &dev_attr_type.attr,
10985         &dev_attr_perf_event_mux_interval_ms.attr,
10986         NULL,
10987 };
10988 ATTRIBUTE_GROUPS(pmu_dev);
10989
10990 static int pmu_bus_running;
10991 static struct bus_type pmu_bus = {
10992         .name           = "event_source",
10993         .dev_groups     = pmu_dev_groups,
10994 };
10995
10996 static void pmu_dev_release(struct device *dev)
10997 {
10998         kfree(dev);
10999 }
11000
11001 static int pmu_dev_alloc(struct pmu *pmu)
11002 {
11003         int ret = -ENOMEM;
11004
11005         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11006         if (!pmu->dev)
11007                 goto out;
11008
11009         pmu->dev->groups = pmu->attr_groups;
11010         device_initialize(pmu->dev);
11011         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11012         if (ret)
11013                 goto free_dev;
11014
11015         dev_set_drvdata(pmu->dev, pmu);
11016         pmu->dev->bus = &pmu_bus;
11017         pmu->dev->release = pmu_dev_release;
11018         ret = device_add(pmu->dev);
11019         if (ret)
11020                 goto free_dev;
11021
11022         /* For PMUs with address filters, throw in an extra attribute: */
11023         if (pmu->nr_addr_filters)
11024                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11025
11026         if (ret)
11027                 goto del_dev;
11028
11029         if (pmu->attr_update)
11030                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11031
11032         if (ret)
11033                 goto del_dev;
11034
11035 out:
11036         return ret;
11037
11038 del_dev:
11039         device_del(pmu->dev);
11040
11041 free_dev:
11042         put_device(pmu->dev);
11043         goto out;
11044 }
11045
11046 static struct lock_class_key cpuctx_mutex;
11047 static struct lock_class_key cpuctx_lock;
11048
11049 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11050 {
11051         int cpu, ret, max = PERF_TYPE_MAX;
11052
11053         mutex_lock(&pmus_lock);
11054         ret = -ENOMEM;
11055         pmu->pmu_disable_count = alloc_percpu(int);
11056         if (!pmu->pmu_disable_count)
11057                 goto unlock;
11058
11059         pmu->type = -1;
11060         if (!name)
11061                 goto skip_type;
11062         pmu->name = name;
11063
11064         if (type != PERF_TYPE_SOFTWARE) {
11065                 if (type >= 0)
11066                         max = type;
11067
11068                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11069                 if (ret < 0)
11070                         goto free_pdc;
11071
11072                 WARN_ON(type >= 0 && ret != type);
11073
11074                 type = ret;
11075         }
11076         pmu->type = type;
11077
11078         if (pmu_bus_running) {
11079                 ret = pmu_dev_alloc(pmu);
11080                 if (ret)
11081                         goto free_idr;
11082         }
11083
11084 skip_type:
11085         if (pmu->task_ctx_nr == perf_hw_context) {
11086                 static int hw_context_taken = 0;
11087
11088                 /*
11089                  * Other than systems with heterogeneous CPUs, it never makes
11090                  * sense for two PMUs to share perf_hw_context. PMUs which are
11091                  * uncore must use perf_invalid_context.
11092                  */
11093                 if (WARN_ON_ONCE(hw_context_taken &&
11094                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11095                         pmu->task_ctx_nr = perf_invalid_context;
11096
11097                 hw_context_taken = 1;
11098         }
11099
11100         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11101         if (pmu->pmu_cpu_context)
11102                 goto got_cpu_context;
11103
11104         ret = -ENOMEM;
11105         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11106         if (!pmu->pmu_cpu_context)
11107                 goto free_dev;
11108
11109         for_each_possible_cpu(cpu) {
11110                 struct perf_cpu_context *cpuctx;
11111
11112                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11113                 __perf_event_init_context(&cpuctx->ctx);
11114                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11115                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11116                 cpuctx->ctx.pmu = pmu;
11117                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11118
11119                 __perf_mux_hrtimer_init(cpuctx, cpu);
11120
11121                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11122                 cpuctx->heap = cpuctx->heap_default;
11123         }
11124
11125 got_cpu_context:
11126         if (!pmu->start_txn) {
11127                 if (pmu->pmu_enable) {
11128                         /*
11129                          * If we have pmu_enable/pmu_disable calls, install
11130                          * transaction stubs that use that to try and batch
11131                          * hardware accesses.
11132                          */
11133                         pmu->start_txn  = perf_pmu_start_txn;
11134                         pmu->commit_txn = perf_pmu_commit_txn;
11135                         pmu->cancel_txn = perf_pmu_cancel_txn;
11136                 } else {
11137                         pmu->start_txn  = perf_pmu_nop_txn;
11138                         pmu->commit_txn = perf_pmu_nop_int;
11139                         pmu->cancel_txn = perf_pmu_nop_void;
11140                 }
11141         }
11142
11143         if (!pmu->pmu_enable) {
11144                 pmu->pmu_enable  = perf_pmu_nop_void;
11145                 pmu->pmu_disable = perf_pmu_nop_void;
11146         }
11147
11148         if (!pmu->check_period)
11149                 pmu->check_period = perf_event_nop_int;
11150
11151         if (!pmu->event_idx)
11152                 pmu->event_idx = perf_event_idx_default;
11153
11154         /*
11155          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11156          * since these cannot be in the IDR. This way the linear search
11157          * is fast, provided a valid software event is provided.
11158          */
11159         if (type == PERF_TYPE_SOFTWARE || !name)
11160                 list_add_rcu(&pmu->entry, &pmus);
11161         else
11162                 list_add_tail_rcu(&pmu->entry, &pmus);
11163
11164         atomic_set(&pmu->exclusive_cnt, 0);
11165         ret = 0;
11166 unlock:
11167         mutex_unlock(&pmus_lock);
11168
11169         return ret;
11170
11171 free_dev:
11172         device_del(pmu->dev);
11173         put_device(pmu->dev);
11174
11175 free_idr:
11176         if (pmu->type != PERF_TYPE_SOFTWARE)
11177                 idr_remove(&pmu_idr, pmu->type);
11178
11179 free_pdc:
11180         free_percpu(pmu->pmu_disable_count);
11181         goto unlock;
11182 }
11183 EXPORT_SYMBOL_GPL(perf_pmu_register);
11184
11185 void perf_pmu_unregister(struct pmu *pmu)
11186 {
11187         mutex_lock(&pmus_lock);
11188         list_del_rcu(&pmu->entry);
11189
11190         /*
11191          * We dereference the pmu list under both SRCU and regular RCU, so
11192          * synchronize against both of those.
11193          */
11194         synchronize_srcu(&pmus_srcu);
11195         synchronize_rcu();
11196
11197         free_percpu(pmu->pmu_disable_count);
11198         if (pmu->type != PERF_TYPE_SOFTWARE)
11199                 idr_remove(&pmu_idr, pmu->type);
11200         if (pmu_bus_running) {
11201                 if (pmu->nr_addr_filters)
11202                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11203                 device_del(pmu->dev);
11204                 put_device(pmu->dev);
11205         }
11206         free_pmu_context(pmu);
11207         mutex_unlock(&pmus_lock);
11208 }
11209 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11210
11211 static inline bool has_extended_regs(struct perf_event *event)
11212 {
11213         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11214                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11215 }
11216
11217 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11218 {
11219         struct perf_event_context *ctx = NULL;
11220         int ret;
11221
11222         if (!try_module_get(pmu->module))
11223                 return -ENODEV;
11224
11225         /*
11226          * A number of pmu->event_init() methods iterate the sibling_list to,
11227          * for example, validate if the group fits on the PMU. Therefore,
11228          * if this is a sibling event, acquire the ctx->mutex to protect
11229          * the sibling_list.
11230          */
11231         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11232                 /*
11233                  * This ctx->mutex can nest when we're called through
11234                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11235                  */
11236                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11237                                                  SINGLE_DEPTH_NESTING);
11238                 BUG_ON(!ctx);
11239         }
11240
11241         event->pmu = pmu;
11242         ret = pmu->event_init(event);
11243
11244         if (ctx)
11245                 perf_event_ctx_unlock(event->group_leader, ctx);
11246
11247         if (!ret) {
11248                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11249                     has_extended_regs(event))
11250                         ret = -EOPNOTSUPP;
11251
11252                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11253                     event_has_any_exclude_flag(event))
11254                         ret = -EINVAL;
11255
11256                 if (ret && event->destroy)
11257                         event->destroy(event);
11258         }
11259
11260         if (ret)
11261                 module_put(pmu->module);
11262
11263         return ret;
11264 }
11265
11266 static struct pmu *perf_init_event(struct perf_event *event)
11267 {
11268         bool extended_type = false;
11269         int idx, type, ret;
11270         struct pmu *pmu;
11271
11272         idx = srcu_read_lock(&pmus_srcu);
11273
11274         /* Try parent's PMU first: */
11275         if (event->parent && event->parent->pmu) {
11276                 pmu = event->parent->pmu;
11277                 ret = perf_try_init_event(pmu, event);
11278                 if (!ret)
11279                         goto unlock;
11280         }
11281
11282         /*
11283          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11284          * are often aliases for PERF_TYPE_RAW.
11285          */
11286         type = event->attr.type;
11287         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11288                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11289                 if (!type) {
11290                         type = PERF_TYPE_RAW;
11291                 } else {
11292                         extended_type = true;
11293                         event->attr.config &= PERF_HW_EVENT_MASK;
11294                 }
11295         }
11296
11297 again:
11298         rcu_read_lock();
11299         pmu = idr_find(&pmu_idr, type);
11300         rcu_read_unlock();
11301         if (pmu) {
11302                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11303                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11304                         goto fail;
11305
11306                 ret = perf_try_init_event(pmu, event);
11307                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11308                         type = event->attr.type;
11309                         goto again;
11310                 }
11311
11312                 if (ret)
11313                         pmu = ERR_PTR(ret);
11314
11315                 goto unlock;
11316         }
11317
11318         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11319                 ret = perf_try_init_event(pmu, event);
11320                 if (!ret)
11321                         goto unlock;
11322
11323                 if (ret != -ENOENT) {
11324                         pmu = ERR_PTR(ret);
11325                         goto unlock;
11326                 }
11327         }
11328 fail:
11329         pmu = ERR_PTR(-ENOENT);
11330 unlock:
11331         srcu_read_unlock(&pmus_srcu, idx);
11332
11333         return pmu;
11334 }
11335
11336 static void attach_sb_event(struct perf_event *event)
11337 {
11338         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11339
11340         raw_spin_lock(&pel->lock);
11341         list_add_rcu(&event->sb_list, &pel->list);
11342         raw_spin_unlock(&pel->lock);
11343 }
11344
11345 /*
11346  * We keep a list of all !task (and therefore per-cpu) events
11347  * that need to receive side-band records.
11348  *
11349  * This avoids having to scan all the various PMU per-cpu contexts
11350  * looking for them.
11351  */
11352 static void account_pmu_sb_event(struct perf_event *event)
11353 {
11354         if (is_sb_event(event))
11355                 attach_sb_event(event);
11356 }
11357
11358 static void account_event_cpu(struct perf_event *event, int cpu)
11359 {
11360         if (event->parent)
11361                 return;
11362
11363         if (is_cgroup_event(event))
11364                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11365 }
11366
11367 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11368 static void account_freq_event_nohz(void)
11369 {
11370 #ifdef CONFIG_NO_HZ_FULL
11371         /* Lock so we don't race with concurrent unaccount */
11372         spin_lock(&nr_freq_lock);
11373         if (atomic_inc_return(&nr_freq_events) == 1)
11374                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11375         spin_unlock(&nr_freq_lock);
11376 #endif
11377 }
11378
11379 static void account_freq_event(void)
11380 {
11381         if (tick_nohz_full_enabled())
11382                 account_freq_event_nohz();
11383         else
11384                 atomic_inc(&nr_freq_events);
11385 }
11386
11387
11388 static void account_event(struct perf_event *event)
11389 {
11390         bool inc = false;
11391
11392         if (event->parent)
11393                 return;
11394
11395         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11396                 inc = true;
11397         if (event->attr.mmap || event->attr.mmap_data)
11398                 atomic_inc(&nr_mmap_events);
11399         if (event->attr.build_id)
11400                 atomic_inc(&nr_build_id_events);
11401         if (event->attr.comm)
11402                 atomic_inc(&nr_comm_events);
11403         if (event->attr.namespaces)
11404                 atomic_inc(&nr_namespaces_events);
11405         if (event->attr.cgroup)
11406                 atomic_inc(&nr_cgroup_events);
11407         if (event->attr.task)
11408                 atomic_inc(&nr_task_events);
11409         if (event->attr.freq)
11410                 account_freq_event();
11411         if (event->attr.context_switch) {
11412                 atomic_inc(&nr_switch_events);
11413                 inc = true;
11414         }
11415         if (has_branch_stack(event))
11416                 inc = true;
11417         if (is_cgroup_event(event))
11418                 inc = true;
11419         if (event->attr.ksymbol)
11420                 atomic_inc(&nr_ksymbol_events);
11421         if (event->attr.bpf_event)
11422                 atomic_inc(&nr_bpf_events);
11423         if (event->attr.text_poke)
11424                 atomic_inc(&nr_text_poke_events);
11425
11426         if (inc) {
11427                 /*
11428                  * We need the mutex here because static_branch_enable()
11429                  * must complete *before* the perf_sched_count increment
11430                  * becomes visible.
11431                  */
11432                 if (atomic_inc_not_zero(&perf_sched_count))
11433                         goto enabled;
11434
11435                 mutex_lock(&perf_sched_mutex);
11436                 if (!atomic_read(&perf_sched_count)) {
11437                         static_branch_enable(&perf_sched_events);
11438                         /*
11439                          * Guarantee that all CPUs observe they key change and
11440                          * call the perf scheduling hooks before proceeding to
11441                          * install events that need them.
11442                          */
11443                         synchronize_rcu();
11444                 }
11445                 /*
11446                  * Now that we have waited for the sync_sched(), allow further
11447                  * increments to by-pass the mutex.
11448                  */
11449                 atomic_inc(&perf_sched_count);
11450                 mutex_unlock(&perf_sched_mutex);
11451         }
11452 enabled:
11453
11454         account_event_cpu(event, event->cpu);
11455
11456         account_pmu_sb_event(event);
11457 }
11458
11459 /*
11460  * Allocate and initialize an event structure
11461  */
11462 static struct perf_event *
11463 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11464                  struct task_struct *task,
11465                  struct perf_event *group_leader,
11466                  struct perf_event *parent_event,
11467                  perf_overflow_handler_t overflow_handler,
11468                  void *context, int cgroup_fd)
11469 {
11470         struct pmu *pmu;
11471         struct perf_event *event;
11472         struct hw_perf_event *hwc;
11473         long err = -EINVAL;
11474         int node;
11475
11476         if ((unsigned)cpu >= nr_cpu_ids) {
11477                 if (!task || cpu != -1)
11478                         return ERR_PTR(-EINVAL);
11479         }
11480         if (attr->sigtrap && !task) {
11481                 /* Requires a task: avoid signalling random tasks. */
11482                 return ERR_PTR(-EINVAL);
11483         }
11484
11485         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11486         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11487                                       node);
11488         if (!event)
11489                 return ERR_PTR(-ENOMEM);
11490
11491         /*
11492          * Single events are their own group leaders, with an
11493          * empty sibling list:
11494          */
11495         if (!group_leader)
11496                 group_leader = event;
11497
11498         mutex_init(&event->child_mutex);
11499         INIT_LIST_HEAD(&event->child_list);
11500
11501         INIT_LIST_HEAD(&event->event_entry);
11502         INIT_LIST_HEAD(&event->sibling_list);
11503         INIT_LIST_HEAD(&event->active_list);
11504         init_event_group(event);
11505         INIT_LIST_HEAD(&event->rb_entry);
11506         INIT_LIST_HEAD(&event->active_entry);
11507         INIT_LIST_HEAD(&event->addr_filters.list);
11508         INIT_HLIST_NODE(&event->hlist_entry);
11509
11510
11511         init_waitqueue_head(&event->waitq);
11512         event->pending_disable = -1;
11513         init_irq_work(&event->pending, perf_pending_event);
11514
11515         mutex_init(&event->mmap_mutex);
11516         raw_spin_lock_init(&event->addr_filters.lock);
11517
11518         atomic_long_set(&event->refcount, 1);
11519         event->cpu              = cpu;
11520         event->attr             = *attr;
11521         event->group_leader     = group_leader;
11522         event->pmu              = NULL;
11523         event->oncpu            = -1;
11524
11525         event->parent           = parent_event;
11526
11527         event->ns               = get_pid_ns(task_active_pid_ns(current));
11528         event->id               = atomic64_inc_return(&perf_event_id);
11529
11530         event->state            = PERF_EVENT_STATE_INACTIVE;
11531
11532         if (parent_event)
11533                 event->event_caps = parent_event->event_caps;
11534
11535         if (event->attr.sigtrap)
11536                 atomic_set(&event->event_limit, 1);
11537
11538         if (task) {
11539                 event->attach_state = PERF_ATTACH_TASK;
11540                 /*
11541                  * XXX pmu::event_init needs to know what task to account to
11542                  * and we cannot use the ctx information because we need the
11543                  * pmu before we get a ctx.
11544                  */
11545                 event->hw.target = get_task_struct(task);
11546         }
11547
11548         event->clock = &local_clock;
11549         if (parent_event)
11550                 event->clock = parent_event->clock;
11551
11552         if (!overflow_handler && parent_event) {
11553                 overflow_handler = parent_event->overflow_handler;
11554                 context = parent_event->overflow_handler_context;
11555 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11556                 if (overflow_handler == bpf_overflow_handler) {
11557                         struct bpf_prog *prog = parent_event->prog;
11558
11559                         bpf_prog_inc(prog);
11560                         event->prog = prog;
11561                         event->orig_overflow_handler =
11562                                 parent_event->orig_overflow_handler;
11563                 }
11564 #endif
11565         }
11566
11567         if (overflow_handler) {
11568                 event->overflow_handler = overflow_handler;
11569                 event->overflow_handler_context = context;
11570         } else if (is_write_backward(event)){
11571                 event->overflow_handler = perf_event_output_backward;
11572                 event->overflow_handler_context = NULL;
11573         } else {
11574                 event->overflow_handler = perf_event_output_forward;
11575                 event->overflow_handler_context = NULL;
11576         }
11577
11578         perf_event__state_init(event);
11579
11580         pmu = NULL;
11581
11582         hwc = &event->hw;
11583         hwc->sample_period = attr->sample_period;
11584         if (attr->freq && attr->sample_freq)
11585                 hwc->sample_period = 1;
11586         hwc->last_period = hwc->sample_period;
11587
11588         local64_set(&hwc->period_left, hwc->sample_period);
11589
11590         /*
11591          * We currently do not support PERF_SAMPLE_READ on inherited events.
11592          * See perf_output_read().
11593          */
11594         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11595                 goto err_ns;
11596
11597         if (!has_branch_stack(event))
11598                 event->attr.branch_sample_type = 0;
11599
11600         pmu = perf_init_event(event);
11601         if (IS_ERR(pmu)) {
11602                 err = PTR_ERR(pmu);
11603                 goto err_ns;
11604         }
11605
11606         /*
11607          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11608          * be different on other CPUs in the uncore mask.
11609          */
11610         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11611                 err = -EINVAL;
11612                 goto err_pmu;
11613         }
11614
11615         if (event->attr.aux_output &&
11616             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11617                 err = -EOPNOTSUPP;
11618                 goto err_pmu;
11619         }
11620
11621         if (cgroup_fd != -1) {
11622                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11623                 if (err)
11624                         goto err_pmu;
11625         }
11626
11627         err = exclusive_event_init(event);
11628         if (err)
11629                 goto err_pmu;
11630
11631         if (has_addr_filter(event)) {
11632                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11633                                                     sizeof(struct perf_addr_filter_range),
11634                                                     GFP_KERNEL);
11635                 if (!event->addr_filter_ranges) {
11636                         err = -ENOMEM;
11637                         goto err_per_task;
11638                 }
11639
11640                 /*
11641                  * Clone the parent's vma offsets: they are valid until exec()
11642                  * even if the mm is not shared with the parent.
11643                  */
11644                 if (event->parent) {
11645                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11646
11647                         raw_spin_lock_irq(&ifh->lock);
11648                         memcpy(event->addr_filter_ranges,
11649                                event->parent->addr_filter_ranges,
11650                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11651                         raw_spin_unlock_irq(&ifh->lock);
11652                 }
11653
11654                 /* force hw sync on the address filters */
11655                 event->addr_filters_gen = 1;
11656         }
11657
11658         if (!event->parent) {
11659                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11660                         err = get_callchain_buffers(attr->sample_max_stack);
11661                         if (err)
11662                                 goto err_addr_filters;
11663                 }
11664         }
11665
11666         err = security_perf_event_alloc(event);
11667         if (err)
11668                 goto err_callchain_buffer;
11669
11670         /* symmetric to unaccount_event() in _free_event() */
11671         account_event(event);
11672
11673         return event;
11674
11675 err_callchain_buffer:
11676         if (!event->parent) {
11677                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11678                         put_callchain_buffers();
11679         }
11680 err_addr_filters:
11681         kfree(event->addr_filter_ranges);
11682
11683 err_per_task:
11684         exclusive_event_destroy(event);
11685
11686 err_pmu:
11687         if (is_cgroup_event(event))
11688                 perf_detach_cgroup(event);
11689         if (event->destroy)
11690                 event->destroy(event);
11691         module_put(pmu->module);
11692 err_ns:
11693         if (event->ns)
11694                 put_pid_ns(event->ns);
11695         if (event->hw.target)
11696                 put_task_struct(event->hw.target);
11697         kmem_cache_free(perf_event_cache, event);
11698
11699         return ERR_PTR(err);
11700 }
11701
11702 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11703                           struct perf_event_attr *attr)
11704 {
11705         u32 size;
11706         int ret;
11707
11708         /* Zero the full structure, so that a short copy will be nice. */
11709         memset(attr, 0, sizeof(*attr));
11710
11711         ret = get_user(size, &uattr->size);
11712         if (ret)
11713                 return ret;
11714
11715         /* ABI compatibility quirk: */
11716         if (!size)
11717                 size = PERF_ATTR_SIZE_VER0;
11718         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11719                 goto err_size;
11720
11721         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11722         if (ret) {
11723                 if (ret == -E2BIG)
11724                         goto err_size;
11725                 return ret;
11726         }
11727
11728         attr->size = size;
11729
11730         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11731                 return -EINVAL;
11732
11733         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11734                 return -EINVAL;
11735
11736         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11737                 return -EINVAL;
11738
11739         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11740                 u64 mask = attr->branch_sample_type;
11741
11742                 /* only using defined bits */
11743                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11744                         return -EINVAL;
11745
11746                 /* at least one branch bit must be set */
11747                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11748                         return -EINVAL;
11749
11750                 /* propagate priv level, when not set for branch */
11751                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11752
11753                         /* exclude_kernel checked on syscall entry */
11754                         if (!attr->exclude_kernel)
11755                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11756
11757                         if (!attr->exclude_user)
11758                                 mask |= PERF_SAMPLE_BRANCH_USER;
11759
11760                         if (!attr->exclude_hv)
11761                                 mask |= PERF_SAMPLE_BRANCH_HV;
11762                         /*
11763                          * adjust user setting (for HW filter setup)
11764                          */
11765                         attr->branch_sample_type = mask;
11766                 }
11767                 /* privileged levels capture (kernel, hv): check permissions */
11768                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11769                         ret = perf_allow_kernel(attr);
11770                         if (ret)
11771                                 return ret;
11772                 }
11773         }
11774
11775         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11776                 ret = perf_reg_validate(attr->sample_regs_user);
11777                 if (ret)
11778                         return ret;
11779         }
11780
11781         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11782                 if (!arch_perf_have_user_stack_dump())
11783                         return -ENOSYS;
11784
11785                 /*
11786                  * We have __u32 type for the size, but so far
11787                  * we can only use __u16 as maximum due to the
11788                  * __u16 sample size limit.
11789                  */
11790                 if (attr->sample_stack_user >= USHRT_MAX)
11791                         return -EINVAL;
11792                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11793                         return -EINVAL;
11794         }
11795
11796         if (!attr->sample_max_stack)
11797                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11798
11799         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11800                 ret = perf_reg_validate(attr->sample_regs_intr);
11801
11802 #ifndef CONFIG_CGROUP_PERF
11803         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11804                 return -EINVAL;
11805 #endif
11806         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11807             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11808                 return -EINVAL;
11809
11810         if (!attr->inherit && attr->inherit_thread)
11811                 return -EINVAL;
11812
11813         if (attr->remove_on_exec && attr->enable_on_exec)
11814                 return -EINVAL;
11815
11816         if (attr->sigtrap && !attr->remove_on_exec)
11817                 return -EINVAL;
11818
11819 out:
11820         return ret;
11821
11822 err_size:
11823         put_user(sizeof(*attr), &uattr->size);
11824         ret = -E2BIG;
11825         goto out;
11826 }
11827
11828 static int
11829 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11830 {
11831         struct perf_buffer *rb = NULL;
11832         int ret = -EINVAL;
11833
11834         if (!output_event)
11835                 goto set;
11836
11837         /* don't allow circular references */
11838         if (event == output_event)
11839                 goto out;
11840
11841         /*
11842          * Don't allow cross-cpu buffers
11843          */
11844         if (output_event->cpu != event->cpu)
11845                 goto out;
11846
11847         /*
11848          * If its not a per-cpu rb, it must be the same task.
11849          */
11850         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11851                 goto out;
11852
11853         /*
11854          * Mixing clocks in the same buffer is trouble you don't need.
11855          */
11856         if (output_event->clock != event->clock)
11857                 goto out;
11858
11859         /*
11860          * Either writing ring buffer from beginning or from end.
11861          * Mixing is not allowed.
11862          */
11863         if (is_write_backward(output_event) != is_write_backward(event))
11864                 goto out;
11865
11866         /*
11867          * If both events generate aux data, they must be on the same PMU
11868          */
11869         if (has_aux(event) && has_aux(output_event) &&
11870             event->pmu != output_event->pmu)
11871                 goto out;
11872
11873 set:
11874         mutex_lock(&event->mmap_mutex);
11875         /* Can't redirect output if we've got an active mmap() */
11876         if (atomic_read(&event->mmap_count))
11877                 goto unlock;
11878
11879         if (output_event) {
11880                 /* get the rb we want to redirect to */
11881                 rb = ring_buffer_get(output_event);
11882                 if (!rb)
11883                         goto unlock;
11884         }
11885
11886         ring_buffer_attach(event, rb);
11887
11888         ret = 0;
11889 unlock:
11890         mutex_unlock(&event->mmap_mutex);
11891
11892 out:
11893         return ret;
11894 }
11895
11896 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11897 {
11898         if (b < a)
11899                 swap(a, b);
11900
11901         mutex_lock(a);
11902         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11903 }
11904
11905 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11906 {
11907         bool nmi_safe = false;
11908
11909         switch (clk_id) {
11910         case CLOCK_MONOTONIC:
11911                 event->clock = &ktime_get_mono_fast_ns;
11912                 nmi_safe = true;
11913                 break;
11914
11915         case CLOCK_MONOTONIC_RAW:
11916                 event->clock = &ktime_get_raw_fast_ns;
11917                 nmi_safe = true;
11918                 break;
11919
11920         case CLOCK_REALTIME:
11921                 event->clock = &ktime_get_real_ns;
11922                 break;
11923
11924         case CLOCK_BOOTTIME:
11925                 event->clock = &ktime_get_boottime_ns;
11926                 break;
11927
11928         case CLOCK_TAI:
11929                 event->clock = &ktime_get_clocktai_ns;
11930                 break;
11931
11932         default:
11933                 return -EINVAL;
11934         }
11935
11936         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11937                 return -EINVAL;
11938
11939         return 0;
11940 }
11941
11942 /*
11943  * Variation on perf_event_ctx_lock_nested(), except we take two context
11944  * mutexes.
11945  */
11946 static struct perf_event_context *
11947 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11948                              struct perf_event_context *ctx)
11949 {
11950         struct perf_event_context *gctx;
11951
11952 again:
11953         rcu_read_lock();
11954         gctx = READ_ONCE(group_leader->ctx);
11955         if (!refcount_inc_not_zero(&gctx->refcount)) {
11956                 rcu_read_unlock();
11957                 goto again;
11958         }
11959         rcu_read_unlock();
11960
11961         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11962
11963         if (group_leader->ctx != gctx) {
11964                 mutex_unlock(&ctx->mutex);
11965                 mutex_unlock(&gctx->mutex);
11966                 put_ctx(gctx);
11967                 goto again;
11968         }
11969
11970         return gctx;
11971 }
11972
11973 static bool
11974 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11975 {
11976         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11977         bool is_capable = perfmon_capable();
11978
11979         if (attr->sigtrap) {
11980                 /*
11981                  * perf_event_attr::sigtrap sends signals to the other task.
11982                  * Require the current task to also have CAP_KILL.
11983                  */
11984                 rcu_read_lock();
11985                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11986                 rcu_read_unlock();
11987
11988                 /*
11989                  * If the required capabilities aren't available, checks for
11990                  * ptrace permissions: upgrade to ATTACH, since sending signals
11991                  * can effectively change the target task.
11992                  */
11993                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11994         }
11995
11996         /*
11997          * Preserve ptrace permission check for backwards compatibility. The
11998          * ptrace check also includes checks that the current task and other
11999          * task have matching uids, and is therefore not done here explicitly.
12000          */
12001         return is_capable || ptrace_may_access(task, ptrace_mode);
12002 }
12003
12004 /**
12005  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12006  *
12007  * @attr_uptr:  event_id type attributes for monitoring/sampling
12008  * @pid:                target pid
12009  * @cpu:                target cpu
12010  * @group_fd:           group leader event fd
12011  * @flags:              perf event open flags
12012  */
12013 SYSCALL_DEFINE5(perf_event_open,
12014                 struct perf_event_attr __user *, attr_uptr,
12015                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12016 {
12017         struct perf_event *group_leader = NULL, *output_event = NULL;
12018         struct perf_event *event, *sibling;
12019         struct perf_event_attr attr;
12020         struct perf_event_context *ctx, *gctx;
12021         struct file *event_file = NULL;
12022         struct fd group = {NULL, 0};
12023         struct task_struct *task = NULL;
12024         struct pmu *pmu;
12025         int event_fd;
12026         int move_group = 0;
12027         int err;
12028         int f_flags = O_RDWR;
12029         int cgroup_fd = -1;
12030
12031         /* for future expandability... */
12032         if (flags & ~PERF_FLAG_ALL)
12033                 return -EINVAL;
12034
12035         /* Do we allow access to perf_event_open(2) ? */
12036         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12037         if (err)
12038                 return err;
12039
12040         err = perf_copy_attr(attr_uptr, &attr);
12041         if (err)
12042                 return err;
12043
12044         if (!attr.exclude_kernel) {
12045                 err = perf_allow_kernel(&attr);
12046                 if (err)
12047                         return err;
12048         }
12049
12050         if (attr.namespaces) {
12051                 if (!perfmon_capable())
12052                         return -EACCES;
12053         }
12054
12055         if (attr.freq) {
12056                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12057                         return -EINVAL;
12058         } else {
12059                 if (attr.sample_period & (1ULL << 63))
12060                         return -EINVAL;
12061         }
12062
12063         /* Only privileged users can get physical addresses */
12064         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12065                 err = perf_allow_kernel(&attr);
12066                 if (err)
12067                         return err;
12068         }
12069
12070         /* REGS_INTR can leak data, lockdown must prevent this */
12071         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12072                 err = security_locked_down(LOCKDOWN_PERF);
12073                 if (err)
12074                         return err;
12075         }
12076
12077         /*
12078          * In cgroup mode, the pid argument is used to pass the fd
12079          * opened to the cgroup directory in cgroupfs. The cpu argument
12080          * designates the cpu on which to monitor threads from that
12081          * cgroup.
12082          */
12083         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12084                 return -EINVAL;
12085
12086         if (flags & PERF_FLAG_FD_CLOEXEC)
12087                 f_flags |= O_CLOEXEC;
12088
12089         event_fd = get_unused_fd_flags(f_flags);
12090         if (event_fd < 0)
12091                 return event_fd;
12092
12093         if (group_fd != -1) {
12094                 err = perf_fget_light(group_fd, &group);
12095                 if (err)
12096                         goto err_fd;
12097                 group_leader = group.file->private_data;
12098                 if (flags & PERF_FLAG_FD_OUTPUT)
12099                         output_event = group_leader;
12100                 if (flags & PERF_FLAG_FD_NO_GROUP)
12101                         group_leader = NULL;
12102         }
12103
12104         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12105                 task = find_lively_task_by_vpid(pid);
12106                 if (IS_ERR(task)) {
12107                         err = PTR_ERR(task);
12108                         goto err_group_fd;
12109                 }
12110         }
12111
12112         if (task && group_leader &&
12113             group_leader->attr.inherit != attr.inherit) {
12114                 err = -EINVAL;
12115                 goto err_task;
12116         }
12117
12118         if (flags & PERF_FLAG_PID_CGROUP)
12119                 cgroup_fd = pid;
12120
12121         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12122                                  NULL, NULL, cgroup_fd);
12123         if (IS_ERR(event)) {
12124                 err = PTR_ERR(event);
12125                 goto err_task;
12126         }
12127
12128         if (is_sampling_event(event)) {
12129                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12130                         err = -EOPNOTSUPP;
12131                         goto err_alloc;
12132                 }
12133         }
12134
12135         /*
12136          * Special case software events and allow them to be part of
12137          * any hardware group.
12138          */
12139         pmu = event->pmu;
12140
12141         if (attr.use_clockid) {
12142                 err = perf_event_set_clock(event, attr.clockid);
12143                 if (err)
12144                         goto err_alloc;
12145         }
12146
12147         if (pmu->task_ctx_nr == perf_sw_context)
12148                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12149
12150         if (group_leader) {
12151                 if (is_software_event(event) &&
12152                     !in_software_context(group_leader)) {
12153                         /*
12154                          * If the event is a sw event, but the group_leader
12155                          * is on hw context.
12156                          *
12157                          * Allow the addition of software events to hw
12158                          * groups, this is safe because software events
12159                          * never fail to schedule.
12160                          */
12161                         pmu = group_leader->ctx->pmu;
12162                 } else if (!is_software_event(event) &&
12163                            is_software_event(group_leader) &&
12164                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12165                         /*
12166                          * In case the group is a pure software group, and we
12167                          * try to add a hardware event, move the whole group to
12168                          * the hardware context.
12169                          */
12170                         move_group = 1;
12171                 }
12172         }
12173
12174         /*
12175          * Get the target context (task or percpu):
12176          */
12177         ctx = find_get_context(pmu, task, event);
12178         if (IS_ERR(ctx)) {
12179                 err = PTR_ERR(ctx);
12180                 goto err_alloc;
12181         }
12182
12183         /*
12184          * Look up the group leader (we will attach this event to it):
12185          */
12186         if (group_leader) {
12187                 err = -EINVAL;
12188
12189                 /*
12190                  * Do not allow a recursive hierarchy (this new sibling
12191                  * becoming part of another group-sibling):
12192                  */
12193                 if (group_leader->group_leader != group_leader)
12194                         goto err_context;
12195
12196                 /* All events in a group should have the same clock */
12197                 if (group_leader->clock != event->clock)
12198                         goto err_context;
12199
12200                 /*
12201                  * Make sure we're both events for the same CPU;
12202                  * grouping events for different CPUs is broken; since
12203                  * you can never concurrently schedule them anyhow.
12204                  */
12205                 if (group_leader->cpu != event->cpu)
12206                         goto err_context;
12207
12208                 /*
12209                  * Make sure we're both on the same task, or both
12210                  * per-CPU events.
12211                  */
12212                 if (group_leader->ctx->task != ctx->task)
12213                         goto err_context;
12214
12215                 /*
12216                  * Do not allow to attach to a group in a different task
12217                  * or CPU context. If we're moving SW events, we'll fix
12218                  * this up later, so allow that.
12219                  *
12220                  * Racy, not holding group_leader->ctx->mutex, see comment with
12221                  * perf_event_ctx_lock().
12222                  */
12223                 if (!move_group && group_leader->ctx != ctx)
12224                         goto err_context;
12225
12226                 /*
12227                  * Only a group leader can be exclusive or pinned
12228                  */
12229                 if (attr.exclusive || attr.pinned)
12230                         goto err_context;
12231         }
12232
12233         if (output_event) {
12234                 err = perf_event_set_output(event, output_event);
12235                 if (err)
12236                         goto err_context;
12237         }
12238
12239         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12240                                         f_flags);
12241         if (IS_ERR(event_file)) {
12242                 err = PTR_ERR(event_file);
12243                 event_file = NULL;
12244                 goto err_context;
12245         }
12246
12247         if (task) {
12248                 err = down_read_interruptible(&task->signal->exec_update_lock);
12249                 if (err)
12250                         goto err_file;
12251
12252                 /*
12253                  * We must hold exec_update_lock across this and any potential
12254                  * perf_install_in_context() call for this new event to
12255                  * serialize against exec() altering our credentials (and the
12256                  * perf_event_exit_task() that could imply).
12257                  */
12258                 err = -EACCES;
12259                 if (!perf_check_permission(&attr, task))
12260                         goto err_cred;
12261         }
12262
12263         if (move_group) {
12264                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12265
12266                 if (gctx->task == TASK_TOMBSTONE) {
12267                         err = -ESRCH;
12268                         goto err_locked;
12269                 }
12270
12271                 /*
12272                  * Check if we raced against another sys_perf_event_open() call
12273                  * moving the software group underneath us.
12274                  */
12275                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12276                         /*
12277                          * If someone moved the group out from under us, check
12278                          * if this new event wound up on the same ctx, if so
12279                          * its the regular !move_group case, otherwise fail.
12280                          */
12281                         if (gctx != ctx) {
12282                                 err = -EINVAL;
12283                                 goto err_locked;
12284                         } else {
12285                                 perf_event_ctx_unlock(group_leader, gctx);
12286                                 move_group = 0;
12287                                 goto not_move_group;
12288                         }
12289                 }
12290
12291                 /*
12292                  * Failure to create exclusive events returns -EBUSY.
12293                  */
12294                 err = -EBUSY;
12295                 if (!exclusive_event_installable(group_leader, ctx))
12296                         goto err_locked;
12297
12298                 for_each_sibling_event(sibling, group_leader) {
12299                         if (!exclusive_event_installable(sibling, ctx))
12300                                 goto err_locked;
12301                 }
12302         } else {
12303                 mutex_lock(&ctx->mutex);
12304
12305                 /*
12306                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12307                  * see the group_leader && !move_group test earlier.
12308                  */
12309                 if (group_leader && group_leader->ctx != ctx) {
12310                         err = -EINVAL;
12311                         goto err_locked;
12312                 }
12313         }
12314 not_move_group:
12315
12316         if (ctx->task == TASK_TOMBSTONE) {
12317                 err = -ESRCH;
12318                 goto err_locked;
12319         }
12320
12321         if (!perf_event_validate_size(event)) {
12322                 err = -E2BIG;
12323                 goto err_locked;
12324         }
12325
12326         if (!task) {
12327                 /*
12328                  * Check if the @cpu we're creating an event for is online.
12329                  *
12330                  * We use the perf_cpu_context::ctx::mutex to serialize against
12331                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12332                  */
12333                 struct perf_cpu_context *cpuctx =
12334                         container_of(ctx, struct perf_cpu_context, ctx);
12335
12336                 if (!cpuctx->online) {
12337                         err = -ENODEV;
12338                         goto err_locked;
12339                 }
12340         }
12341
12342         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12343                 err = -EINVAL;
12344                 goto err_locked;
12345         }
12346
12347         /*
12348          * Must be under the same ctx::mutex as perf_install_in_context(),
12349          * because we need to serialize with concurrent event creation.
12350          */
12351         if (!exclusive_event_installable(event, ctx)) {
12352                 err = -EBUSY;
12353                 goto err_locked;
12354         }
12355
12356         WARN_ON_ONCE(ctx->parent_ctx);
12357
12358         /*
12359          * This is the point on no return; we cannot fail hereafter. This is
12360          * where we start modifying current state.
12361          */
12362
12363         if (move_group) {
12364                 /*
12365                  * See perf_event_ctx_lock() for comments on the details
12366                  * of swizzling perf_event::ctx.
12367                  */
12368                 perf_remove_from_context(group_leader, 0);
12369                 put_ctx(gctx);
12370
12371                 for_each_sibling_event(sibling, group_leader) {
12372                         perf_remove_from_context(sibling, 0);
12373                         put_ctx(gctx);
12374                 }
12375
12376                 /*
12377                  * Wait for everybody to stop referencing the events through
12378                  * the old lists, before installing it on new lists.
12379                  */
12380                 synchronize_rcu();
12381
12382                 /*
12383                  * Install the group siblings before the group leader.
12384                  *
12385                  * Because a group leader will try and install the entire group
12386                  * (through the sibling list, which is still in-tact), we can
12387                  * end up with siblings installed in the wrong context.
12388                  *
12389                  * By installing siblings first we NO-OP because they're not
12390                  * reachable through the group lists.
12391                  */
12392                 for_each_sibling_event(sibling, group_leader) {
12393                         perf_event__state_init(sibling);
12394                         perf_install_in_context(ctx, sibling, sibling->cpu);
12395                         get_ctx(ctx);
12396                 }
12397
12398                 /*
12399                  * Removing from the context ends up with disabled
12400                  * event. What we want here is event in the initial
12401                  * startup state, ready to be add into new context.
12402                  */
12403                 perf_event__state_init(group_leader);
12404                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12405                 get_ctx(ctx);
12406         }
12407
12408         /*
12409          * Precalculate sample_data sizes; do while holding ctx::mutex such
12410          * that we're serialized against further additions and before
12411          * perf_install_in_context() which is the point the event is active and
12412          * can use these values.
12413          */
12414         perf_event__header_size(event);
12415         perf_event__id_header_size(event);
12416
12417         event->owner = current;
12418
12419         perf_install_in_context(ctx, event, event->cpu);
12420         perf_unpin_context(ctx);
12421
12422         if (move_group)
12423                 perf_event_ctx_unlock(group_leader, gctx);
12424         mutex_unlock(&ctx->mutex);
12425
12426         if (task) {
12427                 up_read(&task->signal->exec_update_lock);
12428                 put_task_struct(task);
12429         }
12430
12431         mutex_lock(&current->perf_event_mutex);
12432         list_add_tail(&event->owner_entry, &current->perf_event_list);
12433         mutex_unlock(&current->perf_event_mutex);
12434
12435         /*
12436          * Drop the reference on the group_event after placing the
12437          * new event on the sibling_list. This ensures destruction
12438          * of the group leader will find the pointer to itself in
12439          * perf_group_detach().
12440          */
12441         fdput(group);
12442         fd_install(event_fd, event_file);
12443         return event_fd;
12444
12445 err_locked:
12446         if (move_group)
12447                 perf_event_ctx_unlock(group_leader, gctx);
12448         mutex_unlock(&ctx->mutex);
12449 err_cred:
12450         if (task)
12451                 up_read(&task->signal->exec_update_lock);
12452 err_file:
12453         fput(event_file);
12454 err_context:
12455         perf_unpin_context(ctx);
12456         put_ctx(ctx);
12457 err_alloc:
12458         /*
12459          * If event_file is set, the fput() above will have called ->release()
12460          * and that will take care of freeing the event.
12461          */
12462         if (!event_file)
12463                 free_event(event);
12464 err_task:
12465         if (task)
12466                 put_task_struct(task);
12467 err_group_fd:
12468         fdput(group);
12469 err_fd:
12470         put_unused_fd(event_fd);
12471         return err;
12472 }
12473
12474 /**
12475  * perf_event_create_kernel_counter
12476  *
12477  * @attr: attributes of the counter to create
12478  * @cpu: cpu in which the counter is bound
12479  * @task: task to profile (NULL for percpu)
12480  * @overflow_handler: callback to trigger when we hit the event
12481  * @context: context data could be used in overflow_handler callback
12482  */
12483 struct perf_event *
12484 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12485                                  struct task_struct *task,
12486                                  perf_overflow_handler_t overflow_handler,
12487                                  void *context)
12488 {
12489         struct perf_event_context *ctx;
12490         struct perf_event *event;
12491         int err;
12492
12493         /*
12494          * Grouping is not supported for kernel events, neither is 'AUX',
12495          * make sure the caller's intentions are adjusted.
12496          */
12497         if (attr->aux_output)
12498                 return ERR_PTR(-EINVAL);
12499
12500         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12501                                  overflow_handler, context, -1);
12502         if (IS_ERR(event)) {
12503                 err = PTR_ERR(event);
12504                 goto err;
12505         }
12506
12507         /* Mark owner so we could distinguish it from user events. */
12508         event->owner = TASK_TOMBSTONE;
12509
12510         /*
12511          * Get the target context (task or percpu):
12512          */
12513         ctx = find_get_context(event->pmu, task, event);
12514         if (IS_ERR(ctx)) {
12515                 err = PTR_ERR(ctx);
12516                 goto err_free;
12517         }
12518
12519         WARN_ON_ONCE(ctx->parent_ctx);
12520         mutex_lock(&ctx->mutex);
12521         if (ctx->task == TASK_TOMBSTONE) {
12522                 err = -ESRCH;
12523                 goto err_unlock;
12524         }
12525
12526         if (!task) {
12527                 /*
12528                  * Check if the @cpu we're creating an event for is online.
12529                  *
12530                  * We use the perf_cpu_context::ctx::mutex to serialize against
12531                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12532                  */
12533                 struct perf_cpu_context *cpuctx =
12534                         container_of(ctx, struct perf_cpu_context, ctx);
12535                 if (!cpuctx->online) {
12536                         err = -ENODEV;
12537                         goto err_unlock;
12538                 }
12539         }
12540
12541         if (!exclusive_event_installable(event, ctx)) {
12542                 err = -EBUSY;
12543                 goto err_unlock;
12544         }
12545
12546         perf_install_in_context(ctx, event, event->cpu);
12547         perf_unpin_context(ctx);
12548         mutex_unlock(&ctx->mutex);
12549
12550         return event;
12551
12552 err_unlock:
12553         mutex_unlock(&ctx->mutex);
12554         perf_unpin_context(ctx);
12555         put_ctx(ctx);
12556 err_free:
12557         free_event(event);
12558 err:
12559         return ERR_PTR(err);
12560 }
12561 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12562
12563 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12564 {
12565         struct perf_event_context *src_ctx;
12566         struct perf_event_context *dst_ctx;
12567         struct perf_event *event, *tmp;
12568         LIST_HEAD(events);
12569
12570         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12571         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12572
12573         /*
12574          * See perf_event_ctx_lock() for comments on the details
12575          * of swizzling perf_event::ctx.
12576          */
12577         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12578         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12579                                  event_entry) {
12580                 perf_remove_from_context(event, 0);
12581                 unaccount_event_cpu(event, src_cpu);
12582                 put_ctx(src_ctx);
12583                 list_add(&event->migrate_entry, &events);
12584         }
12585
12586         /*
12587          * Wait for the events to quiesce before re-instating them.
12588          */
12589         synchronize_rcu();
12590
12591         /*
12592          * Re-instate events in 2 passes.
12593          *
12594          * Skip over group leaders and only install siblings on this first
12595          * pass, siblings will not get enabled without a leader, however a
12596          * leader will enable its siblings, even if those are still on the old
12597          * context.
12598          */
12599         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12600                 if (event->group_leader == event)
12601                         continue;
12602
12603                 list_del(&event->migrate_entry);
12604                 if (event->state >= PERF_EVENT_STATE_OFF)
12605                         event->state = PERF_EVENT_STATE_INACTIVE;
12606                 account_event_cpu(event, dst_cpu);
12607                 perf_install_in_context(dst_ctx, event, dst_cpu);
12608                 get_ctx(dst_ctx);
12609         }
12610
12611         /*
12612          * Once all the siblings are setup properly, install the group leaders
12613          * to make it go.
12614          */
12615         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12616                 list_del(&event->migrate_entry);
12617                 if (event->state >= PERF_EVENT_STATE_OFF)
12618                         event->state = PERF_EVENT_STATE_INACTIVE;
12619                 account_event_cpu(event, dst_cpu);
12620                 perf_install_in_context(dst_ctx, event, dst_cpu);
12621                 get_ctx(dst_ctx);
12622         }
12623         mutex_unlock(&dst_ctx->mutex);
12624         mutex_unlock(&src_ctx->mutex);
12625 }
12626 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12627
12628 static void sync_child_event(struct perf_event *child_event)
12629 {
12630         struct perf_event *parent_event = child_event->parent;
12631         u64 child_val;
12632
12633         if (child_event->attr.inherit_stat) {
12634                 struct task_struct *task = child_event->ctx->task;
12635
12636                 if (task && task != TASK_TOMBSTONE)
12637                         perf_event_read_event(child_event, task);
12638         }
12639
12640         child_val = perf_event_count(child_event);
12641
12642         /*
12643          * Add back the child's count to the parent's count:
12644          */
12645         atomic64_add(child_val, &parent_event->child_count);
12646         atomic64_add(child_event->total_time_enabled,
12647                      &parent_event->child_total_time_enabled);
12648         atomic64_add(child_event->total_time_running,
12649                      &parent_event->child_total_time_running);
12650 }
12651
12652 static void
12653 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12654 {
12655         struct perf_event *parent_event = event->parent;
12656         unsigned long detach_flags = 0;
12657
12658         if (parent_event) {
12659                 /*
12660                  * Do not destroy the 'original' grouping; because of the
12661                  * context switch optimization the original events could've
12662                  * ended up in a random child task.
12663                  *
12664                  * If we were to destroy the original group, all group related
12665                  * operations would cease to function properly after this
12666                  * random child dies.
12667                  *
12668                  * Do destroy all inherited groups, we don't care about those
12669                  * and being thorough is better.
12670                  */
12671                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12672                 mutex_lock(&parent_event->child_mutex);
12673         }
12674
12675         perf_remove_from_context(event, detach_flags);
12676
12677         raw_spin_lock_irq(&ctx->lock);
12678         if (event->state > PERF_EVENT_STATE_EXIT)
12679                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12680         raw_spin_unlock_irq(&ctx->lock);
12681
12682         /*
12683          * Child events can be freed.
12684          */
12685         if (parent_event) {
12686                 mutex_unlock(&parent_event->child_mutex);
12687                 /*
12688                  * Kick perf_poll() for is_event_hup();
12689                  */
12690                 perf_event_wakeup(parent_event);
12691                 free_event(event);
12692                 put_event(parent_event);
12693                 return;
12694         }
12695
12696         /*
12697          * Parent events are governed by their filedesc, retain them.
12698          */
12699         perf_event_wakeup(event);
12700 }
12701
12702 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12703 {
12704         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12705         struct perf_event *child_event, *next;
12706
12707         WARN_ON_ONCE(child != current);
12708
12709         child_ctx = perf_pin_task_context(child, ctxn);
12710         if (!child_ctx)
12711                 return;
12712
12713         /*
12714          * In order to reduce the amount of tricky in ctx tear-down, we hold
12715          * ctx::mutex over the entire thing. This serializes against almost
12716          * everything that wants to access the ctx.
12717          *
12718          * The exception is sys_perf_event_open() /
12719          * perf_event_create_kernel_count() which does find_get_context()
12720          * without ctx::mutex (it cannot because of the move_group double mutex
12721          * lock thing). See the comments in perf_install_in_context().
12722          */
12723         mutex_lock(&child_ctx->mutex);
12724
12725         /*
12726          * In a single ctx::lock section, de-schedule the events and detach the
12727          * context from the task such that we cannot ever get it scheduled back
12728          * in.
12729          */
12730         raw_spin_lock_irq(&child_ctx->lock);
12731         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12732
12733         /*
12734          * Now that the context is inactive, destroy the task <-> ctx relation
12735          * and mark the context dead.
12736          */
12737         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12738         put_ctx(child_ctx); /* cannot be last */
12739         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12740         put_task_struct(current); /* cannot be last */
12741
12742         clone_ctx = unclone_ctx(child_ctx);
12743         raw_spin_unlock_irq(&child_ctx->lock);
12744
12745         if (clone_ctx)
12746                 put_ctx(clone_ctx);
12747
12748         /*
12749          * Report the task dead after unscheduling the events so that we
12750          * won't get any samples after PERF_RECORD_EXIT. We can however still
12751          * get a few PERF_RECORD_READ events.
12752          */
12753         perf_event_task(child, child_ctx, 0);
12754
12755         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12756                 perf_event_exit_event(child_event, child_ctx);
12757
12758         mutex_unlock(&child_ctx->mutex);
12759
12760         put_ctx(child_ctx);
12761 }
12762
12763 /*
12764  * When a child task exits, feed back event values to parent events.
12765  *
12766  * Can be called with exec_update_lock held when called from
12767  * setup_new_exec().
12768  */
12769 void perf_event_exit_task(struct task_struct *child)
12770 {
12771         struct perf_event *event, *tmp;
12772         int ctxn;
12773
12774         mutex_lock(&child->perf_event_mutex);
12775         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12776                                  owner_entry) {
12777                 list_del_init(&event->owner_entry);
12778
12779                 /*
12780                  * Ensure the list deletion is visible before we clear
12781                  * the owner, closes a race against perf_release() where
12782                  * we need to serialize on the owner->perf_event_mutex.
12783                  */
12784                 smp_store_release(&event->owner, NULL);
12785         }
12786         mutex_unlock(&child->perf_event_mutex);
12787
12788         for_each_task_context_nr(ctxn)
12789                 perf_event_exit_task_context(child, ctxn);
12790
12791         /*
12792          * The perf_event_exit_task_context calls perf_event_task
12793          * with child's task_ctx, which generates EXIT events for
12794          * child contexts and sets child->perf_event_ctxp[] to NULL.
12795          * At this point we need to send EXIT events to cpu contexts.
12796          */
12797         perf_event_task(child, NULL, 0);
12798 }
12799
12800 static void perf_free_event(struct perf_event *event,
12801                             struct perf_event_context *ctx)
12802 {
12803         struct perf_event *parent = event->parent;
12804
12805         if (WARN_ON_ONCE(!parent))
12806                 return;
12807
12808         mutex_lock(&parent->child_mutex);
12809         list_del_init(&event->child_list);
12810         mutex_unlock(&parent->child_mutex);
12811
12812         put_event(parent);
12813
12814         raw_spin_lock_irq(&ctx->lock);
12815         perf_group_detach(event);
12816         list_del_event(event, ctx);
12817         raw_spin_unlock_irq(&ctx->lock);
12818         free_event(event);
12819 }
12820
12821 /*
12822  * Free a context as created by inheritance by perf_event_init_task() below,
12823  * used by fork() in case of fail.
12824  *
12825  * Even though the task has never lived, the context and events have been
12826  * exposed through the child_list, so we must take care tearing it all down.
12827  */
12828 void perf_event_free_task(struct task_struct *task)
12829 {
12830         struct perf_event_context *ctx;
12831         struct perf_event *event, *tmp;
12832         int ctxn;
12833
12834         for_each_task_context_nr(ctxn) {
12835                 ctx = task->perf_event_ctxp[ctxn];
12836                 if (!ctx)
12837                         continue;
12838
12839                 mutex_lock(&ctx->mutex);
12840                 raw_spin_lock_irq(&ctx->lock);
12841                 /*
12842                  * Destroy the task <-> ctx relation and mark the context dead.
12843                  *
12844                  * This is important because even though the task hasn't been
12845                  * exposed yet the context has been (through child_list).
12846                  */
12847                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12848                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12849                 put_task_struct(task); /* cannot be last */
12850                 raw_spin_unlock_irq(&ctx->lock);
12851
12852                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12853                         perf_free_event(event, ctx);
12854
12855                 mutex_unlock(&ctx->mutex);
12856
12857                 /*
12858                  * perf_event_release_kernel() could've stolen some of our
12859                  * child events and still have them on its free_list. In that
12860                  * case we must wait for these events to have been freed (in
12861                  * particular all their references to this task must've been
12862                  * dropped).
12863                  *
12864                  * Without this copy_process() will unconditionally free this
12865                  * task (irrespective of its reference count) and
12866                  * _free_event()'s put_task_struct(event->hw.target) will be a
12867                  * use-after-free.
12868                  *
12869                  * Wait for all events to drop their context reference.
12870                  */
12871                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12872                 put_ctx(ctx); /* must be last */
12873         }
12874 }
12875
12876 void perf_event_delayed_put(struct task_struct *task)
12877 {
12878         int ctxn;
12879
12880         for_each_task_context_nr(ctxn)
12881                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12882 }
12883
12884 struct file *perf_event_get(unsigned int fd)
12885 {
12886         struct file *file = fget(fd);
12887         if (!file)
12888                 return ERR_PTR(-EBADF);
12889
12890         if (file->f_op != &perf_fops) {
12891                 fput(file);
12892                 return ERR_PTR(-EBADF);
12893         }
12894
12895         return file;
12896 }
12897
12898 const struct perf_event *perf_get_event(struct file *file)
12899 {
12900         if (file->f_op != &perf_fops)
12901                 return ERR_PTR(-EINVAL);
12902
12903         return file->private_data;
12904 }
12905
12906 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12907 {
12908         if (!event)
12909                 return ERR_PTR(-EINVAL);
12910
12911         return &event->attr;
12912 }
12913
12914 /*
12915  * Inherit an event from parent task to child task.
12916  *
12917  * Returns:
12918  *  - valid pointer on success
12919  *  - NULL for orphaned events
12920  *  - IS_ERR() on error
12921  */
12922 static struct perf_event *
12923 inherit_event(struct perf_event *parent_event,
12924               struct task_struct *parent,
12925               struct perf_event_context *parent_ctx,
12926               struct task_struct *child,
12927               struct perf_event *group_leader,
12928               struct perf_event_context *child_ctx)
12929 {
12930         enum perf_event_state parent_state = parent_event->state;
12931         struct perf_event *child_event;
12932         unsigned long flags;
12933
12934         /*
12935          * Instead of creating recursive hierarchies of events,
12936          * we link inherited events back to the original parent,
12937          * which has a filp for sure, which we use as the reference
12938          * count:
12939          */
12940         if (parent_event->parent)
12941                 parent_event = parent_event->parent;
12942
12943         child_event = perf_event_alloc(&parent_event->attr,
12944                                            parent_event->cpu,
12945                                            child,
12946                                            group_leader, parent_event,
12947                                            NULL, NULL, -1);
12948         if (IS_ERR(child_event))
12949                 return child_event;
12950
12951
12952         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12953             !child_ctx->task_ctx_data) {
12954                 struct pmu *pmu = child_event->pmu;
12955
12956                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12957                 if (!child_ctx->task_ctx_data) {
12958                         free_event(child_event);
12959                         return ERR_PTR(-ENOMEM);
12960                 }
12961         }
12962
12963         /*
12964          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12965          * must be under the same lock in order to serialize against
12966          * perf_event_release_kernel(), such that either we must observe
12967          * is_orphaned_event() or they will observe us on the child_list.
12968          */
12969         mutex_lock(&parent_event->child_mutex);
12970         if (is_orphaned_event(parent_event) ||
12971             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12972                 mutex_unlock(&parent_event->child_mutex);
12973                 /* task_ctx_data is freed with child_ctx */
12974                 free_event(child_event);
12975                 return NULL;
12976         }
12977
12978         get_ctx(child_ctx);
12979
12980         /*
12981          * Make the child state follow the state of the parent event,
12982          * not its attr.disabled bit.  We hold the parent's mutex,
12983          * so we won't race with perf_event_{en, dis}able_family.
12984          */
12985         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12986                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12987         else
12988                 child_event->state = PERF_EVENT_STATE_OFF;
12989
12990         if (parent_event->attr.freq) {
12991                 u64 sample_period = parent_event->hw.sample_period;
12992                 struct hw_perf_event *hwc = &child_event->hw;
12993
12994                 hwc->sample_period = sample_period;
12995                 hwc->last_period   = sample_period;
12996
12997                 local64_set(&hwc->period_left, sample_period);
12998         }
12999
13000         child_event->ctx = child_ctx;
13001         child_event->overflow_handler = parent_event->overflow_handler;
13002         child_event->overflow_handler_context
13003                 = parent_event->overflow_handler_context;
13004
13005         /*
13006          * Precalculate sample_data sizes
13007          */
13008         perf_event__header_size(child_event);
13009         perf_event__id_header_size(child_event);
13010
13011         /*
13012          * Link it up in the child's context:
13013          */
13014         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13015         add_event_to_ctx(child_event, child_ctx);
13016         child_event->attach_state |= PERF_ATTACH_CHILD;
13017         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13018
13019         /*
13020          * Link this into the parent event's child list
13021          */
13022         list_add_tail(&child_event->child_list, &parent_event->child_list);
13023         mutex_unlock(&parent_event->child_mutex);
13024
13025         return child_event;
13026 }
13027
13028 /*
13029  * Inherits an event group.
13030  *
13031  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13032  * This matches with perf_event_release_kernel() removing all child events.
13033  *
13034  * Returns:
13035  *  - 0 on success
13036  *  - <0 on error
13037  */
13038 static int inherit_group(struct perf_event *parent_event,
13039               struct task_struct *parent,
13040               struct perf_event_context *parent_ctx,
13041               struct task_struct *child,
13042               struct perf_event_context *child_ctx)
13043 {
13044         struct perf_event *leader;
13045         struct perf_event *sub;
13046         struct perf_event *child_ctr;
13047
13048         leader = inherit_event(parent_event, parent, parent_ctx,
13049                                  child, NULL, child_ctx);
13050         if (IS_ERR(leader))
13051                 return PTR_ERR(leader);
13052         /*
13053          * @leader can be NULL here because of is_orphaned_event(). In this
13054          * case inherit_event() will create individual events, similar to what
13055          * perf_group_detach() would do anyway.
13056          */
13057         for_each_sibling_event(sub, parent_event) {
13058                 child_ctr = inherit_event(sub, parent, parent_ctx,
13059                                             child, leader, child_ctx);
13060                 if (IS_ERR(child_ctr))
13061                         return PTR_ERR(child_ctr);
13062
13063                 if (sub->aux_event == parent_event && child_ctr &&
13064                     !perf_get_aux_event(child_ctr, leader))
13065                         return -EINVAL;
13066         }
13067         return 0;
13068 }
13069
13070 /*
13071  * Creates the child task context and tries to inherit the event-group.
13072  *
13073  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13074  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13075  * consistent with perf_event_release_kernel() removing all child events.
13076  *
13077  * Returns:
13078  *  - 0 on success
13079  *  - <0 on error
13080  */
13081 static int
13082 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13083                    struct perf_event_context *parent_ctx,
13084                    struct task_struct *child, int ctxn,
13085                    u64 clone_flags, int *inherited_all)
13086 {
13087         int ret;
13088         struct perf_event_context *child_ctx;
13089
13090         if (!event->attr.inherit ||
13091             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13092             /* Do not inherit if sigtrap and signal handlers were cleared. */
13093             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13094                 *inherited_all = 0;
13095                 return 0;
13096         }
13097
13098         child_ctx = child->perf_event_ctxp[ctxn];
13099         if (!child_ctx) {
13100                 /*
13101                  * This is executed from the parent task context, so
13102                  * inherit events that have been marked for cloning.
13103                  * First allocate and initialize a context for the
13104                  * child.
13105                  */
13106                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13107                 if (!child_ctx)
13108                         return -ENOMEM;
13109
13110                 child->perf_event_ctxp[ctxn] = child_ctx;
13111         }
13112
13113         ret = inherit_group(event, parent, parent_ctx,
13114                             child, child_ctx);
13115
13116         if (ret)
13117                 *inherited_all = 0;
13118
13119         return ret;
13120 }
13121
13122 /*
13123  * Initialize the perf_event context in task_struct
13124  */
13125 static int perf_event_init_context(struct task_struct *child, int ctxn,
13126                                    u64 clone_flags)
13127 {
13128         struct perf_event_context *child_ctx, *parent_ctx;
13129         struct perf_event_context *cloned_ctx;
13130         struct perf_event *event;
13131         struct task_struct *parent = current;
13132         int inherited_all = 1;
13133         unsigned long flags;
13134         int ret = 0;
13135
13136         if (likely(!parent->perf_event_ctxp[ctxn]))
13137                 return 0;
13138
13139         /*
13140          * If the parent's context is a clone, pin it so it won't get
13141          * swapped under us.
13142          */
13143         parent_ctx = perf_pin_task_context(parent, ctxn);
13144         if (!parent_ctx)
13145                 return 0;
13146
13147         /*
13148          * No need to check if parent_ctx != NULL here; since we saw
13149          * it non-NULL earlier, the only reason for it to become NULL
13150          * is if we exit, and since we're currently in the middle of
13151          * a fork we can't be exiting at the same time.
13152          */
13153
13154         /*
13155          * Lock the parent list. No need to lock the child - not PID
13156          * hashed yet and not running, so nobody can access it.
13157          */
13158         mutex_lock(&parent_ctx->mutex);
13159
13160         /*
13161          * We dont have to disable NMIs - we are only looking at
13162          * the list, not manipulating it:
13163          */
13164         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13165                 ret = inherit_task_group(event, parent, parent_ctx,
13166                                          child, ctxn, clone_flags,
13167                                          &inherited_all);
13168                 if (ret)
13169                         goto out_unlock;
13170         }
13171
13172         /*
13173          * We can't hold ctx->lock when iterating the ->flexible_group list due
13174          * to allocations, but we need to prevent rotation because
13175          * rotate_ctx() will change the list from interrupt context.
13176          */
13177         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13178         parent_ctx->rotate_disable = 1;
13179         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13180
13181         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13182                 ret = inherit_task_group(event, parent, parent_ctx,
13183                                          child, ctxn, clone_flags,
13184                                          &inherited_all);
13185                 if (ret)
13186                         goto out_unlock;
13187         }
13188
13189         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13190         parent_ctx->rotate_disable = 0;
13191
13192         child_ctx = child->perf_event_ctxp[ctxn];
13193
13194         if (child_ctx && inherited_all) {
13195                 /*
13196                  * Mark the child context as a clone of the parent
13197                  * context, or of whatever the parent is a clone of.
13198                  *
13199                  * Note that if the parent is a clone, the holding of
13200                  * parent_ctx->lock avoids it from being uncloned.
13201                  */
13202                 cloned_ctx = parent_ctx->parent_ctx;
13203                 if (cloned_ctx) {
13204                         child_ctx->parent_ctx = cloned_ctx;
13205                         child_ctx->parent_gen = parent_ctx->parent_gen;
13206                 } else {
13207                         child_ctx->parent_ctx = parent_ctx;
13208                         child_ctx->parent_gen = parent_ctx->generation;
13209                 }
13210                 get_ctx(child_ctx->parent_ctx);
13211         }
13212
13213         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13214 out_unlock:
13215         mutex_unlock(&parent_ctx->mutex);
13216
13217         perf_unpin_context(parent_ctx);
13218         put_ctx(parent_ctx);
13219
13220         return ret;
13221 }
13222
13223 /*
13224  * Initialize the perf_event context in task_struct
13225  */
13226 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13227 {
13228         int ctxn, ret;
13229
13230         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13231         mutex_init(&child->perf_event_mutex);
13232         INIT_LIST_HEAD(&child->perf_event_list);
13233
13234         for_each_task_context_nr(ctxn) {
13235                 ret = perf_event_init_context(child, ctxn, clone_flags);
13236                 if (ret) {
13237                         perf_event_free_task(child);
13238                         return ret;
13239                 }
13240         }
13241
13242         return 0;
13243 }
13244
13245 static void __init perf_event_init_all_cpus(void)
13246 {
13247         struct swevent_htable *swhash;
13248         int cpu;
13249
13250         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13251
13252         for_each_possible_cpu(cpu) {
13253                 swhash = &per_cpu(swevent_htable, cpu);
13254                 mutex_init(&swhash->hlist_mutex);
13255                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13256
13257                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13258                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13259
13260 #ifdef CONFIG_CGROUP_PERF
13261                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13262 #endif
13263                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13264         }
13265 }
13266
13267 static void perf_swevent_init_cpu(unsigned int cpu)
13268 {
13269         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13270
13271         mutex_lock(&swhash->hlist_mutex);
13272         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13273                 struct swevent_hlist *hlist;
13274
13275                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13276                 WARN_ON(!hlist);
13277                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13278         }
13279         mutex_unlock(&swhash->hlist_mutex);
13280 }
13281
13282 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13283 static void __perf_event_exit_context(void *__info)
13284 {
13285         struct perf_event_context *ctx = __info;
13286         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13287         struct perf_event *event;
13288
13289         raw_spin_lock(&ctx->lock);
13290         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13291         list_for_each_entry(event, &ctx->event_list, event_entry)
13292                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13293         raw_spin_unlock(&ctx->lock);
13294 }
13295
13296 static void perf_event_exit_cpu_context(int cpu)
13297 {
13298         struct perf_cpu_context *cpuctx;
13299         struct perf_event_context *ctx;
13300         struct pmu *pmu;
13301
13302         mutex_lock(&pmus_lock);
13303         list_for_each_entry(pmu, &pmus, entry) {
13304                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13305                 ctx = &cpuctx->ctx;
13306
13307                 mutex_lock(&ctx->mutex);
13308                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13309                 cpuctx->online = 0;
13310                 mutex_unlock(&ctx->mutex);
13311         }
13312         cpumask_clear_cpu(cpu, perf_online_mask);
13313         mutex_unlock(&pmus_lock);
13314 }
13315 #else
13316
13317 static void perf_event_exit_cpu_context(int cpu) { }
13318
13319 #endif
13320
13321 int perf_event_init_cpu(unsigned int cpu)
13322 {
13323         struct perf_cpu_context *cpuctx;
13324         struct perf_event_context *ctx;
13325         struct pmu *pmu;
13326
13327         perf_swevent_init_cpu(cpu);
13328
13329         mutex_lock(&pmus_lock);
13330         cpumask_set_cpu(cpu, perf_online_mask);
13331         list_for_each_entry(pmu, &pmus, entry) {
13332                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13333                 ctx = &cpuctx->ctx;
13334
13335                 mutex_lock(&ctx->mutex);
13336                 cpuctx->online = 1;
13337                 mutex_unlock(&ctx->mutex);
13338         }
13339         mutex_unlock(&pmus_lock);
13340
13341         return 0;
13342 }
13343
13344 int perf_event_exit_cpu(unsigned int cpu)
13345 {
13346         perf_event_exit_cpu_context(cpu);
13347         return 0;
13348 }
13349
13350 static int
13351 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13352 {
13353         int cpu;
13354
13355         for_each_online_cpu(cpu)
13356                 perf_event_exit_cpu(cpu);
13357
13358         return NOTIFY_OK;
13359 }
13360
13361 /*
13362  * Run the perf reboot notifier at the very last possible moment so that
13363  * the generic watchdog code runs as long as possible.
13364  */
13365 static struct notifier_block perf_reboot_notifier = {
13366         .notifier_call = perf_reboot,
13367         .priority = INT_MIN,
13368 };
13369
13370 void __init perf_event_init(void)
13371 {
13372         int ret;
13373
13374         idr_init(&pmu_idr);
13375
13376         perf_event_init_all_cpus();
13377         init_srcu_struct(&pmus_srcu);
13378         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13379         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13380         perf_pmu_register(&perf_task_clock, NULL, -1);
13381         perf_tp_register();
13382         perf_event_init_cpu(smp_processor_id());
13383         register_reboot_notifier(&perf_reboot_notifier);
13384
13385         ret = init_hw_breakpoint();
13386         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13387
13388         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13389
13390         /*
13391          * Build time assertion that we keep the data_head at the intended
13392          * location.  IOW, validation we got the __reserved[] size right.
13393          */
13394         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13395                      != 1024);
13396 }
13397
13398 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13399                               char *page)
13400 {
13401         struct perf_pmu_events_attr *pmu_attr =
13402                 container_of(attr, struct perf_pmu_events_attr, attr);
13403
13404         if (pmu_attr->event_str)
13405                 return sprintf(page, "%s\n", pmu_attr->event_str);
13406
13407         return 0;
13408 }
13409 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13410
13411 static int __init perf_event_sysfs_init(void)
13412 {
13413         struct pmu *pmu;
13414         int ret;
13415
13416         mutex_lock(&pmus_lock);
13417
13418         ret = bus_register(&pmu_bus);
13419         if (ret)
13420                 goto unlock;
13421
13422         list_for_each_entry(pmu, &pmus, entry) {
13423                 if (!pmu->name || pmu->type < 0)
13424                         continue;
13425
13426                 ret = pmu_dev_alloc(pmu);
13427                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13428         }
13429         pmu_bus_running = 1;
13430         ret = 0;
13431
13432 unlock:
13433         mutex_unlock(&pmus_lock);
13434
13435         return ret;
13436 }
13437 device_initcall(perf_event_sysfs_init);
13438
13439 #ifdef CONFIG_CGROUP_PERF
13440 static struct cgroup_subsys_state *
13441 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13442 {
13443         struct perf_cgroup *jc;
13444
13445         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13446         if (!jc)
13447                 return ERR_PTR(-ENOMEM);
13448
13449         jc->info = alloc_percpu(struct perf_cgroup_info);
13450         if (!jc->info) {
13451                 kfree(jc);
13452                 return ERR_PTR(-ENOMEM);
13453         }
13454
13455         return &jc->css;
13456 }
13457
13458 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13459 {
13460         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13461
13462         free_percpu(jc->info);
13463         kfree(jc);
13464 }
13465
13466 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13467 {
13468         perf_event_cgroup(css->cgroup);
13469         return 0;
13470 }
13471
13472 static int __perf_cgroup_move(void *info)
13473 {
13474         struct task_struct *task = info;
13475         rcu_read_lock();
13476         perf_cgroup_switch(task);
13477         rcu_read_unlock();
13478         return 0;
13479 }
13480
13481 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13482 {
13483         struct task_struct *task;
13484         struct cgroup_subsys_state *css;
13485
13486         cgroup_taskset_for_each(task, css, tset)
13487                 task_function_call(task, __perf_cgroup_move, task);
13488 }
13489
13490 struct cgroup_subsys perf_event_cgrp_subsys = {
13491         .css_alloc      = perf_cgroup_css_alloc,
13492         .css_free       = perf_cgroup_css_free,
13493         .css_online     = perf_cgroup_css_online,
13494         .attach         = perf_cgroup_attach,
13495         /*
13496          * Implicitly enable on dfl hierarchy so that perf events can
13497          * always be filtered by cgroup2 path as long as perf_event
13498          * controller is not mounted on a legacy hierarchy.
13499          */
13500         .implicit_on_dfl = true,
13501         .threaded       = true,
13502 };
13503 #endif /* CONFIG_CGROUP_PERF */
13504
13505 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);