Merge branch 'perf/urgent' into perf/core, to pick up fixes
[linux-2.6-microblaze.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove a event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (event->pending_disable) {
2011                 event->pending_disable = 0;
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable a event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         event->pending_disable = 1;
2200         irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204                                  struct perf_event_context *ctx)
2205 {
2206         /*
2207          * use the correct time source for the time snapshot
2208          *
2209          * We could get by without this by leveraging the
2210          * fact that to get to this function, the caller
2211          * has most likely already called update_context_time()
2212          * and update_cgrp_time_xx() and thus both timestamp
2213          * are identical (or very close). Given that tstamp is,
2214          * already adjusted for cgroup, we could say that:
2215          *    tstamp - ctx->timestamp
2216          * is equivalent to
2217          *    tstamp - cgrp->timestamp.
2218          *
2219          * Then, in perf_output_read(), the calculation would
2220          * work with no changes because:
2221          * - event is guaranteed scheduled in
2222          * - no scheduled out in between
2223          * - thus the timestamp would be the same
2224          *
2225          * But this is a bit hairy.
2226          *
2227          * So instead, we have an explicit cgroup call to remain
2228          * within the time time source all along. We believe it
2229          * is cleaner and simpler to understand.
2230          */
2231         if (is_cgroup_event(event))
2232                 perf_cgroup_set_shadow_time(event, event->tstamp);
2233         else
2234                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244                  struct perf_cpu_context *cpuctx,
2245                  struct perf_event_context *ctx)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held(&ctx->lock);
2250
2251         if (event->state <= PERF_EVENT_STATE_OFF)
2252                 return 0;
2253
2254         WRITE_ONCE(event->oncpu, smp_processor_id());
2255         /*
2256          * Order event::oncpu write to happen before the ACTIVE state is
2257          * visible. This allows perf_event_{stop,read}() to observe the correct
2258          * ->oncpu if it sees ACTIVE.
2259          */
2260         smp_wmb();
2261         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263         /*
2264          * Unthrottle events, since we scheduled we might have missed several
2265          * ticks already, also for a heavily scheduling task there is little
2266          * guarantee it'll get a tick in a timely manner.
2267          */
2268         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                 perf_log_throttle(event, 1);
2270                 event->hw.interrupts = 0;
2271         }
2272
2273         perf_pmu_disable(event->pmu);
2274
2275         perf_set_shadow_time(event, ctx);
2276
2277         perf_log_itrace_start(event);
2278
2279         if (event->pmu->add(event, PERF_EF_START)) {
2280                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                 event->oncpu = -1;
2282                 ret = -EAGAIN;
2283                 goto out;
2284         }
2285
2286         if (!is_software_event(event))
2287                 cpuctx->active_oncpu++;
2288         if (!ctx->nr_active++)
2289                 perf_event_ctx_activate(ctx);
2290         if (event->attr.freq && event->attr.sample_freq)
2291                 ctx->nr_freq++;
2292
2293         if (event->attr.exclusive)
2294                 cpuctx->exclusive = 1;
2295
2296 out:
2297         perf_pmu_enable(event->pmu);
2298
2299         return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304                struct perf_cpu_context *cpuctx,
2305                struct perf_event_context *ctx)
2306 {
2307         struct perf_event *event, *partial_group = NULL;
2308         struct pmu *pmu = ctx->pmu;
2309
2310         if (group_event->state == PERF_EVENT_STATE_OFF)
2311                 return 0;
2312
2313         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315         if (event_sched_in(group_event, cpuctx, ctx)) {
2316                 pmu->cancel_txn(pmu);
2317                 perf_mux_hrtimer_restart(cpuctx);
2318                 return -EAGAIN;
2319         }
2320
2321         /*
2322          * Schedule in siblings as one group (if any):
2323          */
2324         for_each_sibling_event(event, group_event) {
2325                 if (event_sched_in(event, cpuctx, ctx)) {
2326                         partial_group = event;
2327                         goto group_error;
2328                 }
2329         }
2330
2331         if (!pmu->commit_txn(pmu))
2332                 return 0;
2333
2334 group_error:
2335         /*
2336          * Groups can be scheduled in as one unit only, so undo any
2337          * partial group before returning:
2338          * The events up to the failed event are scheduled out normally.
2339          */
2340         for_each_sibling_event(event, group_event) {
2341                 if (event == partial_group)
2342                         break;
2343
2344                 event_sched_out(event, cpuctx, ctx);
2345         }
2346         event_sched_out(group_event, cpuctx, ctx);
2347
2348         pmu->cancel_txn(pmu);
2349
2350         perf_mux_hrtimer_restart(cpuctx);
2351
2352         return -EAGAIN;
2353 }
2354
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359                            struct perf_cpu_context *cpuctx,
2360                            int can_add_hw)
2361 {
2362         /*
2363          * Groups consisting entirely of software events can always go on.
2364          */
2365         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                 return 1;
2367         /*
2368          * If an exclusive group is already on, no other hardware
2369          * events can go on.
2370          */
2371         if (cpuctx->exclusive)
2372                 return 0;
2373         /*
2374          * If this group is exclusive and there are already
2375          * events on the CPU, it can't go on.
2376          */
2377         if (event->attr.exclusive && cpuctx->active_oncpu)
2378                 return 0;
2379         /*
2380          * Otherwise, try to add it if all previous groups were able
2381          * to go on.
2382          */
2383         return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387                                struct perf_event_context *ctx)
2388 {
2389         list_add_event(event, ctx);
2390         perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394                           struct perf_cpu_context *cpuctx,
2395                           enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398              struct perf_cpu_context *cpuctx,
2399              enum event_type_t event_type,
2400              struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                                struct perf_event_context *ctx,
2404                                enum event_type_t event_type)
2405 {
2406         if (!cpuctx->task_ctx)
2407                 return;
2408
2409         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                 return;
2411
2412         ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                 struct perf_event_context *ctx,
2417                                 struct task_struct *task)
2418 {
2419         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420         if (ctx)
2421                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                         struct perf_event_context *task_ctx,
2444                         enum event_type_t event_type)
2445 {
2446         enum event_type_t ctx_event_type;
2447         bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449         /*
2450          * If pinned groups are involved, flexible groups also need to be
2451          * scheduled out.
2452          */
2453         if (event_type & EVENT_PINNED)
2454                 event_type |= EVENT_FLEXIBLE;
2455
2456         ctx_event_type = event_type & EVENT_ALL;
2457
2458         perf_pmu_disable(cpuctx->ctx.pmu);
2459         if (task_ctx)
2460                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462         /*
2463          * Decide which cpu ctx groups to schedule out based on the types
2464          * of events that caused rescheduling:
2465          *  - EVENT_CPU: schedule out corresponding groups;
2466          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467          *  - otherwise, do nothing more.
2468          */
2469         if (cpu_event)
2470                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471         else if (ctx_event_type & EVENT_PINNED)
2472                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474         perf_event_sched_in(cpuctx, task_ctx, current);
2475         perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486         struct perf_event *event = info;
2487         struct perf_event_context *ctx = event->ctx;
2488         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490         bool reprogram = true;
2491         int ret = 0;
2492
2493         raw_spin_lock(&cpuctx->ctx.lock);
2494         if (ctx->task) {
2495                 raw_spin_lock(&ctx->lock);
2496                 task_ctx = ctx;
2497
2498                 reprogram = (ctx->task == current);
2499
2500                 /*
2501                  * If the task is running, it must be running on this CPU,
2502                  * otherwise we cannot reprogram things.
2503                  *
2504                  * If its not running, we don't care, ctx->lock will
2505                  * serialize against it becoming runnable.
2506                  */
2507                 if (task_curr(ctx->task) && !reprogram) {
2508                         ret = -ESRCH;
2509                         goto unlock;
2510                 }
2511
2512                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513         } else if (task_ctx) {
2514                 raw_spin_lock(&task_ctx->lock);
2515         }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518         if (is_cgroup_event(event)) {
2519                 /*
2520                  * If the current cgroup doesn't match the event's
2521                  * cgroup, we should not try to schedule it.
2522                  */
2523                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                         event->cgrp->css.cgroup);
2526         }
2527 #endif
2528
2529         if (reprogram) {
2530                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                 add_event_to_ctx(event, ctx);
2532                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533         } else {
2534                 add_event_to_ctx(event, ctx);
2535         }
2536
2537 unlock:
2538         perf_ctx_unlock(cpuctx, task_ctx);
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550                         struct perf_event *event,
2551                         int cpu)
2552 {
2553         struct task_struct *task = READ_ONCE(ctx->task);
2554
2555         lockdep_assert_held(&ctx->mutex);
2556
2557         if (event->cpu != -1)
2558                 event->cpu = cpu;
2559
2560         /*
2561          * Ensures that if we can observe event->ctx, both the event and ctx
2562          * will be 'complete'. See perf_iterate_sb_cpu().
2563          */
2564         smp_store_release(&event->ctx, ctx);
2565
2566         if (!task) {
2567                 cpu_function_call(cpu, __perf_install_in_context, event);
2568                 return;
2569         }
2570
2571         /*
2572          * Should not happen, we validate the ctx is still alive before calling.
2573          */
2574         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                 return;
2576
2577         /*
2578          * Installing events is tricky because we cannot rely on ctx->is_active
2579          * to be set in case this is the nr_events 0 -> 1 transition.
2580          *
2581          * Instead we use task_curr(), which tells us if the task is running.
2582          * However, since we use task_curr() outside of rq::lock, we can race
2583          * against the actual state. This means the result can be wrong.
2584          *
2585          * If we get a false positive, we retry, this is harmless.
2586          *
2587          * If we get a false negative, things are complicated. If we are after
2588          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589          * value must be correct. If we're before, it doesn't matter since
2590          * perf_event_context_sched_in() will program the counter.
2591          *
2592          * However, this hinges on the remote context switch having observed
2593          * our task->perf_event_ctxp[] store, such that it will in fact take
2594          * ctx::lock in perf_event_context_sched_in().
2595          *
2596          * We do this by task_function_call(), if the IPI fails to hit the task
2597          * we know any future context switch of task must see the
2598          * perf_event_ctpx[] store.
2599          */
2600
2601         /*
2602          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603          * task_cpu() load, such that if the IPI then does not find the task
2604          * running, a future context switch of that task must observe the
2605          * store.
2606          */
2607         smp_mb();
2608 again:
2609         if (!task_function_call(task, __perf_install_in_context, event))
2610                 return;
2611
2612         raw_spin_lock_irq(&ctx->lock);
2613         task = ctx->task;
2614         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                 /*
2616                  * Cannot happen because we already checked above (which also
2617                  * cannot happen), and we hold ctx->mutex, which serializes us
2618                  * against perf_event_exit_task_context().
2619                  */
2620                 raw_spin_unlock_irq(&ctx->lock);
2621                 return;
2622         }
2623         /*
2624          * If the task is not running, ctx->lock will avoid it becoming so,
2625          * thus we can safely install the event.
2626          */
2627         if (task_curr(task)) {
2628                 raw_spin_unlock_irq(&ctx->lock);
2629                 goto again;
2630         }
2631         add_event_to_ctx(event, ctx);
2632         raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639                                 struct perf_cpu_context *cpuctx,
2640                                 struct perf_event_context *ctx,
2641                                 void *info)
2642 {
2643         struct perf_event *leader = event->group_leader;
2644         struct perf_event_context *task_ctx;
2645
2646         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647             event->state <= PERF_EVENT_STATE_ERROR)
2648                 return;
2649
2650         if (ctx->is_active)
2651                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655         if (!ctx->is_active)
2656                 return;
2657
2658         if (!event_filter_match(event)) {
2659                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                 return;
2661         }
2662
2663         /*
2664          * If the event is in a group and isn't the group leader,
2665          * then don't put it on unless the group is on.
2666          */
2667         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                 return;
2670         }
2671
2672         task_ctx = cpuctx->task_ctx;
2673         if (ctx->task)
2674                 WARN_ON_ONCE(task_ctx != ctx);
2675
2676         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680  * Enable a event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690         struct perf_event_context *ctx = event->ctx;
2691
2692         raw_spin_lock_irq(&ctx->lock);
2693         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694             event->state <  PERF_EVENT_STATE_ERROR) {
2695                 raw_spin_unlock_irq(&ctx->lock);
2696                 return;
2697         }
2698
2699         /*
2700          * If the event is in error state, clear that first.
2701          *
2702          * That way, if we see the event in error state below, we know that it
2703          * has gone back into error state, as distinct from the task having
2704          * been scheduled away before the cross-call arrived.
2705          */
2706         if (event->state == PERF_EVENT_STATE_ERROR)
2707                 event->state = PERF_EVENT_STATE_OFF;
2708         raw_spin_unlock_irq(&ctx->lock);
2709
2710         event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718         struct perf_event_context *ctx;
2719
2720         ctx = perf_event_ctx_lock(event);
2721         _perf_event_enable(event);
2722         perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727         struct perf_event       *event;
2728         unsigned int            restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733         struct stop_event_data *sd = info;
2734         struct perf_event *event = sd->event;
2735
2736         /* if it's already INACTIVE, do nothing */
2737         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                 return 0;
2739
2740         /* matches smp_wmb() in event_sched_in() */
2741         smp_rmb();
2742
2743         /*
2744          * There is a window with interrupts enabled before we get here,
2745          * so we need to check again lest we try to stop another CPU's event.
2746          */
2747         if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                 return -EAGAIN;
2749
2750         event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752         /*
2753          * May race with the actual stop (through perf_pmu_output_stop()),
2754          * but it is only used for events with AUX ring buffer, and such
2755          * events will refuse to restart because of rb::aux_mmap_count==0,
2756          * see comments in perf_aux_output_begin().
2757          *
2758          * Since this is happening on a event-local CPU, no trace is lost
2759          * while restarting.
2760          */
2761         if (sd->restart)
2762                 event->pmu->start(event, 0);
2763
2764         return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769         struct stop_event_data sd = {
2770                 .event          = event,
2771                 .restart        = restart,
2772         };
2773         int ret = 0;
2774
2775         do {
2776                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                         return 0;
2778
2779                 /* matches smp_wmb() in event_sched_in() */
2780                 smp_rmb();
2781
2782                 /*
2783                  * We only want to restart ACTIVE events, so if the event goes
2784                  * inactive here (event->oncpu==-1), there's nothing more to do;
2785                  * fall through with ret==-ENXIO.
2786                  */
2787                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                         __perf_event_stop, &sd);
2789         } while (ret == -EAGAIN);
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820         if (!has_addr_filter(event))
2821                 return;
2822
2823         raw_spin_lock(&ifh->lock);
2824         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                 event->pmu->addr_filters_sync(event);
2826                 event->hw.addr_filters_gen = event->addr_filters_gen;
2827         }
2828         raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834         /*
2835          * not supported on inherited events
2836          */
2837         if (event->attr.inherit || !is_sampling_event(event))
2838                 return -EINVAL;
2839
2840         atomic_add(refresh, &event->event_limit);
2841         _perf_event_enable(event);
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851         struct perf_event_context *ctx;
2852         int ret;
2853
2854         ctx = perf_event_ctx_lock(event);
2855         ret = _perf_event_refresh(event, refresh);
2856         perf_event_ctx_unlock(event, ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                          struct perf_event_attr *attr)
2864 {
2865         int err;
2866
2867         _perf_event_disable(bp);
2868
2869         err = modify_user_hw_breakpoint_check(bp, attr, true);
2870         if (err) {
2871                 if (!bp->attr.disabled)
2872                         _perf_event_enable(bp);
2873
2874                 return err;
2875         }
2876
2877         if (!attr->disabled)
2878                 _perf_event_enable(bp);
2879         return 0;
2880 }
2881
2882 static int perf_event_modify_attr(struct perf_event *event,
2883                                   struct perf_event_attr *attr)
2884 {
2885         if (event->attr.type != attr->type)
2886                 return -EINVAL;
2887
2888         switch (event->attr.type) {
2889         case PERF_TYPE_BREAKPOINT:
2890                 return perf_event_modify_breakpoint(event, attr);
2891         default:
2892                 /* Place holder for future additions. */
2893                 return -EOPNOTSUPP;
2894         }
2895 }
2896
2897 static void ctx_sched_out(struct perf_event_context *ctx,
2898                           struct perf_cpu_context *cpuctx,
2899                           enum event_type_t event_type)
2900 {
2901         struct perf_event *event, *tmp;
2902         int is_active = ctx->is_active;
2903
2904         lockdep_assert_held(&ctx->lock);
2905
2906         if (likely(!ctx->nr_events)) {
2907                 /*
2908                  * See __perf_remove_from_context().
2909                  */
2910                 WARN_ON_ONCE(ctx->is_active);
2911                 if (ctx->task)
2912                         WARN_ON_ONCE(cpuctx->task_ctx);
2913                 return;
2914         }
2915
2916         ctx->is_active &= ~event_type;
2917         if (!(ctx->is_active & EVENT_ALL))
2918                 ctx->is_active = 0;
2919
2920         if (ctx->task) {
2921                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922                 if (!ctx->is_active)
2923                         cpuctx->task_ctx = NULL;
2924         }
2925
2926         /*
2927          * Always update time if it was set; not only when it changes.
2928          * Otherwise we can 'forget' to update time for any but the last
2929          * context we sched out. For example:
2930          *
2931          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932          *   ctx_sched_out(.event_type = EVENT_PINNED)
2933          *
2934          * would only update time for the pinned events.
2935          */
2936         if (is_active & EVENT_TIME) {
2937                 /* update (and stop) ctx time */
2938                 update_context_time(ctx);
2939                 update_cgrp_time_from_cpuctx(cpuctx);
2940         }
2941
2942         is_active ^= ctx->is_active; /* changed bits */
2943
2944         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945                 return;
2946
2947         perf_pmu_disable(ctx->pmu);
2948         if (is_active & EVENT_PINNED) {
2949                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950                         group_sched_out(event, cpuctx, ctx);
2951         }
2952
2953         if (is_active & EVENT_FLEXIBLE) {
2954                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955                         group_sched_out(event, cpuctx, ctx);
2956         }
2957         perf_pmu_enable(ctx->pmu);
2958 }
2959
2960 /*
2961  * Test whether two contexts are equivalent, i.e. whether they have both been
2962  * cloned from the same version of the same context.
2963  *
2964  * Equivalence is measured using a generation number in the context that is
2965  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966  * and list_del_event().
2967  */
2968 static int context_equiv(struct perf_event_context *ctx1,
2969                          struct perf_event_context *ctx2)
2970 {
2971         lockdep_assert_held(&ctx1->lock);
2972         lockdep_assert_held(&ctx2->lock);
2973
2974         /* Pinning disables the swap optimization */
2975         if (ctx1->pin_count || ctx2->pin_count)
2976                 return 0;
2977
2978         /* If ctx1 is the parent of ctx2 */
2979         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980                 return 1;
2981
2982         /* If ctx2 is the parent of ctx1 */
2983         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984                 return 1;
2985
2986         /*
2987          * If ctx1 and ctx2 have the same parent; we flatten the parent
2988          * hierarchy, see perf_event_init_context().
2989          */
2990         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991                         ctx1->parent_gen == ctx2->parent_gen)
2992                 return 1;
2993
2994         /* Unmatched */
2995         return 0;
2996 }
2997
2998 static void __perf_event_sync_stat(struct perf_event *event,
2999                                      struct perf_event *next_event)
3000 {
3001         u64 value;
3002
3003         if (!event->attr.inherit_stat)
3004                 return;
3005
3006         /*
3007          * Update the event value, we cannot use perf_event_read()
3008          * because we're in the middle of a context switch and have IRQs
3009          * disabled, which upsets smp_call_function_single(), however
3010          * we know the event must be on the current CPU, therefore we
3011          * don't need to use it.
3012          */
3013         if (event->state == PERF_EVENT_STATE_ACTIVE)
3014                 event->pmu->read(event);
3015
3016         perf_event_update_time(event);
3017
3018         /*
3019          * In order to keep per-task stats reliable we need to flip the event
3020          * values when we flip the contexts.
3021          */
3022         value = local64_read(&next_event->count);
3023         value = local64_xchg(&event->count, value);
3024         local64_set(&next_event->count, value);
3025
3026         swap(event->total_time_enabled, next_event->total_time_enabled);
3027         swap(event->total_time_running, next_event->total_time_running);
3028
3029         /*
3030          * Since we swizzled the values, update the user visible data too.
3031          */
3032         perf_event_update_userpage(event);
3033         perf_event_update_userpage(next_event);
3034 }
3035
3036 static void perf_event_sync_stat(struct perf_event_context *ctx,
3037                                    struct perf_event_context *next_ctx)
3038 {
3039         struct perf_event *event, *next_event;
3040
3041         if (!ctx->nr_stat)
3042                 return;
3043
3044         update_context_time(ctx);
3045
3046         event = list_first_entry(&ctx->event_list,
3047                                    struct perf_event, event_entry);
3048
3049         next_event = list_first_entry(&next_ctx->event_list,
3050                                         struct perf_event, event_entry);
3051
3052         while (&event->event_entry != &ctx->event_list &&
3053                &next_event->event_entry != &next_ctx->event_list) {
3054
3055                 __perf_event_sync_stat(event, next_event);
3056
3057                 event = list_next_entry(event, event_entry);
3058                 next_event = list_next_entry(next_event, event_entry);
3059         }
3060 }
3061
3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063                                          struct task_struct *next)
3064 {
3065         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066         struct perf_event_context *next_ctx;
3067         struct perf_event_context *parent, *next_parent;
3068         struct perf_cpu_context *cpuctx;
3069         int do_switch = 1;
3070
3071         if (likely(!ctx))
3072                 return;
3073
3074         cpuctx = __get_cpu_context(ctx);
3075         if (!cpuctx->task_ctx)
3076                 return;
3077
3078         rcu_read_lock();
3079         next_ctx = next->perf_event_ctxp[ctxn];
3080         if (!next_ctx)
3081                 goto unlock;
3082
3083         parent = rcu_dereference(ctx->parent_ctx);
3084         next_parent = rcu_dereference(next_ctx->parent_ctx);
3085
3086         /* If neither context have a parent context; they cannot be clones. */
3087         if (!parent && !next_parent)
3088                 goto unlock;
3089
3090         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091                 /*
3092                  * Looks like the two contexts are clones, so we might be
3093                  * able to optimize the context switch.  We lock both
3094                  * contexts and check that they are clones under the
3095                  * lock (including re-checking that neither has been
3096                  * uncloned in the meantime).  It doesn't matter which
3097                  * order we take the locks because no other cpu could
3098                  * be trying to lock both of these tasks.
3099                  */
3100                 raw_spin_lock(&ctx->lock);
3101                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102                 if (context_equiv(ctx, next_ctx)) {
3103                         WRITE_ONCE(ctx->task, next);
3104                         WRITE_ONCE(next_ctx->task, task);
3105
3106                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107
3108                         /*
3109                          * RCU_INIT_POINTER here is safe because we've not
3110                          * modified the ctx and the above modification of
3111                          * ctx->task and ctx->task_ctx_data are immaterial
3112                          * since those values are always verified under
3113                          * ctx->lock which we're now holding.
3114                          */
3115                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117
3118                         do_switch = 0;
3119
3120                         perf_event_sync_stat(ctx, next_ctx);
3121                 }
3122                 raw_spin_unlock(&next_ctx->lock);
3123                 raw_spin_unlock(&ctx->lock);
3124         }
3125 unlock:
3126         rcu_read_unlock();
3127
3128         if (do_switch) {
3129                 raw_spin_lock(&ctx->lock);
3130                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131                 raw_spin_unlock(&ctx->lock);
3132         }
3133 }
3134
3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136
3137 void perf_sched_cb_dec(struct pmu *pmu)
3138 {
3139         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140
3141         this_cpu_dec(perf_sched_cb_usages);
3142
3143         if (!--cpuctx->sched_cb_usage)
3144                 list_del(&cpuctx->sched_cb_entry);
3145 }
3146
3147
3148 void perf_sched_cb_inc(struct pmu *pmu)
3149 {
3150         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151
3152         if (!cpuctx->sched_cb_usage++)
3153                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154
3155         this_cpu_inc(perf_sched_cb_usages);
3156 }
3157
3158 /*
3159  * This function provides the context switch callback to the lower code
3160  * layer. It is invoked ONLY when the context switch callback is enabled.
3161  *
3162  * This callback is relevant even to per-cpu events; for example multi event
3163  * PEBS requires this to provide PID/TID information. This requires we flush
3164  * all queued PEBS records before we context switch to a new task.
3165  */
3166 static void perf_pmu_sched_task(struct task_struct *prev,
3167                                 struct task_struct *next,
3168                                 bool sched_in)
3169 {
3170         struct perf_cpu_context *cpuctx;
3171         struct pmu *pmu;
3172
3173         if (prev == next)
3174                 return;
3175
3176         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178
3179                 if (WARN_ON_ONCE(!pmu->sched_task))
3180                         continue;
3181
3182                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183                 perf_pmu_disable(pmu);
3184
3185                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3186
3187                 perf_pmu_enable(pmu);
3188                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189         }
3190 }
3191
3192 static void perf_event_switch(struct task_struct *task,
3193                               struct task_struct *next_prev, bool sched_in);
3194
3195 #define for_each_task_context_nr(ctxn)                                  \
3196         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197
3198 /*
3199  * Called from scheduler to remove the events of the current task,
3200  * with interrupts disabled.
3201  *
3202  * We stop each event and update the event value in event->count.
3203  *
3204  * This does not protect us against NMI, but disable()
3205  * sets the disabled bit in the control field of event _before_
3206  * accessing the event control register. If a NMI hits, then it will
3207  * not restart the event.
3208  */
3209 void __perf_event_task_sched_out(struct task_struct *task,
3210                                  struct task_struct *next)
3211 {
3212         int ctxn;
3213
3214         if (__this_cpu_read(perf_sched_cb_usages))
3215                 perf_pmu_sched_task(task, next, false);
3216
3217         if (atomic_read(&nr_switch_events))
3218                 perf_event_switch(task, next, false);
3219
3220         for_each_task_context_nr(ctxn)
3221                 perf_event_context_sched_out(task, ctxn, next);
3222
3223         /*
3224          * if cgroup events exist on this CPU, then we need
3225          * to check if we have to switch out PMU state.
3226          * cgroup event are system-wide mode only
3227          */
3228         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229                 perf_cgroup_sched_out(task, next);
3230 }
3231
3232 /*
3233  * Called with IRQs disabled
3234  */
3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236                               enum event_type_t event_type)
3237 {
3238         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 }
3240
3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242                               int (*func)(struct perf_event *, void *), void *data)
3243 {
3244         struct perf_event **evt, *evt1, *evt2;
3245         int ret;
3246
3247         evt1 = perf_event_groups_first(groups, -1);
3248         evt2 = perf_event_groups_first(groups, cpu);
3249
3250         while (evt1 || evt2) {
3251                 if (evt1 && evt2) {
3252                         if (evt1->group_index < evt2->group_index)
3253                                 evt = &evt1;
3254                         else
3255                                 evt = &evt2;
3256                 } else if (evt1) {
3257                         evt = &evt1;
3258                 } else {
3259                         evt = &evt2;
3260                 }
3261
3262                 ret = func(*evt, data);
3263                 if (ret)
3264                         return ret;
3265
3266                 *evt = perf_event_groups_next(*evt);
3267         }
3268
3269         return 0;
3270 }
3271
3272 struct sched_in_data {
3273         struct perf_event_context *ctx;
3274         struct perf_cpu_context *cpuctx;
3275         int can_add_hw;
3276 };
3277
3278 static int pinned_sched_in(struct perf_event *event, void *data)
3279 {
3280         struct sched_in_data *sid = data;
3281
3282         if (event->state <= PERF_EVENT_STATE_OFF)
3283                 return 0;
3284
3285         if (!event_filter_match(event))
3286                 return 0;
3287
3288         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291         }
3292
3293         /*
3294          * If this pinned group hasn't been scheduled,
3295          * put it in error state.
3296          */
3297         if (event->state == PERF_EVENT_STATE_INACTIVE)
3298                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299
3300         return 0;
3301 }
3302
3303 static int flexible_sched_in(struct perf_event *event, void *data)
3304 {
3305         struct sched_in_data *sid = data;
3306
3307         if (event->state <= PERF_EVENT_STATE_OFF)
3308                 return 0;
3309
3310         if (!event_filter_match(event))
3311                 return 0;
3312
3313         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316                 else
3317                         sid->can_add_hw = 0;
3318         }
3319
3320         return 0;
3321 }
3322
3323 static void
3324 ctx_pinned_sched_in(struct perf_event_context *ctx,
3325                     struct perf_cpu_context *cpuctx)
3326 {
3327         struct sched_in_data sid = {
3328                 .ctx = ctx,
3329                 .cpuctx = cpuctx,
3330                 .can_add_hw = 1,
3331         };
3332
3333         visit_groups_merge(&ctx->pinned_groups,
3334                            smp_processor_id(),
3335                            pinned_sched_in, &sid);
3336 }
3337
3338 static void
3339 ctx_flexible_sched_in(struct perf_event_context *ctx,
3340                       struct perf_cpu_context *cpuctx)
3341 {
3342         struct sched_in_data sid = {
3343                 .ctx = ctx,
3344                 .cpuctx = cpuctx,
3345                 .can_add_hw = 1,
3346         };
3347
3348         visit_groups_merge(&ctx->flexible_groups,
3349                            smp_processor_id(),
3350                            flexible_sched_in, &sid);
3351 }
3352
3353 static void
3354 ctx_sched_in(struct perf_event_context *ctx,
3355              struct perf_cpu_context *cpuctx,
3356              enum event_type_t event_type,
3357              struct task_struct *task)
3358 {
3359         int is_active = ctx->is_active;
3360         u64 now;
3361
3362         lockdep_assert_held(&ctx->lock);
3363
3364         if (likely(!ctx->nr_events))
3365                 return;
3366
3367         ctx->is_active |= (event_type | EVENT_TIME);
3368         if (ctx->task) {
3369                 if (!is_active)
3370                         cpuctx->task_ctx = ctx;
3371                 else
3372                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373         }
3374
3375         is_active ^= ctx->is_active; /* changed bits */
3376
3377         if (is_active & EVENT_TIME) {
3378                 /* start ctx time */
3379                 now = perf_clock();
3380                 ctx->timestamp = now;
3381                 perf_cgroup_set_timestamp(task, ctx);
3382         }
3383
3384         /*
3385          * First go through the list and put on any pinned groups
3386          * in order to give them the best chance of going on.
3387          */
3388         if (is_active & EVENT_PINNED)
3389                 ctx_pinned_sched_in(ctx, cpuctx);
3390
3391         /* Then walk through the lower prio flexible groups */
3392         if (is_active & EVENT_FLEXIBLE)
3393                 ctx_flexible_sched_in(ctx, cpuctx);
3394 }
3395
3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397                              enum event_type_t event_type,
3398                              struct task_struct *task)
3399 {
3400         struct perf_event_context *ctx = &cpuctx->ctx;
3401
3402         ctx_sched_in(ctx, cpuctx, event_type, task);
3403 }
3404
3405 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406                                         struct task_struct *task)
3407 {
3408         struct perf_cpu_context *cpuctx;
3409
3410         cpuctx = __get_cpu_context(ctx);
3411         if (cpuctx->task_ctx == ctx)
3412                 return;
3413
3414         perf_ctx_lock(cpuctx, ctx);
3415         /*
3416          * We must check ctx->nr_events while holding ctx->lock, such
3417          * that we serialize against perf_install_in_context().
3418          */
3419         if (!ctx->nr_events)
3420                 goto unlock;
3421
3422         perf_pmu_disable(ctx->pmu);
3423         /*
3424          * We want to keep the following priority order:
3425          * cpu pinned (that don't need to move), task pinned,
3426          * cpu flexible, task flexible.
3427          *
3428          * However, if task's ctx is not carrying any pinned
3429          * events, no need to flip the cpuctx's events around.
3430          */
3431         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433         perf_event_sched_in(cpuctx, ctx, task);
3434         perf_pmu_enable(ctx->pmu);
3435
3436 unlock:
3437         perf_ctx_unlock(cpuctx, ctx);
3438 }
3439
3440 /*
3441  * Called from scheduler to add the events of the current task
3442  * with interrupts disabled.
3443  *
3444  * We restore the event value and then enable it.
3445  *
3446  * This does not protect us against NMI, but enable()
3447  * sets the enabled bit in the control field of event _before_
3448  * accessing the event control register. If a NMI hits, then it will
3449  * keep the event running.
3450  */
3451 void __perf_event_task_sched_in(struct task_struct *prev,
3452                                 struct task_struct *task)
3453 {
3454         struct perf_event_context *ctx;
3455         int ctxn;
3456
3457         /*
3458          * If cgroup events exist on this CPU, then we need to check if we have
3459          * to switch in PMU state; cgroup event are system-wide mode only.
3460          *
3461          * Since cgroup events are CPU events, we must schedule these in before
3462          * we schedule in the task events.
3463          */
3464         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465                 perf_cgroup_sched_in(prev, task);
3466
3467         for_each_task_context_nr(ctxn) {
3468                 ctx = task->perf_event_ctxp[ctxn];
3469                 if (likely(!ctx))
3470                         continue;
3471
3472                 perf_event_context_sched_in(ctx, task);
3473         }
3474
3475         if (atomic_read(&nr_switch_events))
3476                 perf_event_switch(task, prev, true);
3477
3478         if (__this_cpu_read(perf_sched_cb_usages))
3479                 perf_pmu_sched_task(prev, task, true);
3480 }
3481
3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483 {
3484         u64 frequency = event->attr.sample_freq;
3485         u64 sec = NSEC_PER_SEC;
3486         u64 divisor, dividend;
3487
3488         int count_fls, nsec_fls, frequency_fls, sec_fls;
3489
3490         count_fls = fls64(count);
3491         nsec_fls = fls64(nsec);
3492         frequency_fls = fls64(frequency);
3493         sec_fls = 30;
3494
3495         /*
3496          * We got @count in @nsec, with a target of sample_freq HZ
3497          * the target period becomes:
3498          *
3499          *             @count * 10^9
3500          * period = -------------------
3501          *          @nsec * sample_freq
3502          *
3503          */
3504
3505         /*
3506          * Reduce accuracy by one bit such that @a and @b converge
3507          * to a similar magnitude.
3508          */
3509 #define REDUCE_FLS(a, b)                \
3510 do {                                    \
3511         if (a##_fls > b##_fls) {        \
3512                 a >>= 1;                \
3513                 a##_fls--;              \
3514         } else {                        \
3515                 b >>= 1;                \
3516                 b##_fls--;              \
3517         }                               \
3518 } while (0)
3519
3520         /*
3521          * Reduce accuracy until either term fits in a u64, then proceed with
3522          * the other, so that finally we can do a u64/u64 division.
3523          */
3524         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525                 REDUCE_FLS(nsec, frequency);
3526                 REDUCE_FLS(sec, count);
3527         }
3528
3529         if (count_fls + sec_fls > 64) {
3530                 divisor = nsec * frequency;
3531
3532                 while (count_fls + sec_fls > 64) {
3533                         REDUCE_FLS(count, sec);
3534                         divisor >>= 1;
3535                 }
3536
3537                 dividend = count * sec;
3538         } else {
3539                 dividend = count * sec;
3540
3541                 while (nsec_fls + frequency_fls > 64) {
3542                         REDUCE_FLS(nsec, frequency);
3543                         dividend >>= 1;
3544                 }
3545
3546                 divisor = nsec * frequency;
3547         }
3548
3549         if (!divisor)
3550                 return dividend;
3551
3552         return div64_u64(dividend, divisor);
3553 }
3554
3555 static DEFINE_PER_CPU(int, perf_throttled_count);
3556 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557
3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559 {
3560         struct hw_perf_event *hwc = &event->hw;
3561         s64 period, sample_period;
3562         s64 delta;
3563
3564         period = perf_calculate_period(event, nsec, count);
3565
3566         delta = (s64)(period - hwc->sample_period);
3567         delta = (delta + 7) / 8; /* low pass filter */
3568
3569         sample_period = hwc->sample_period + delta;
3570
3571         if (!sample_period)
3572                 sample_period = 1;
3573
3574         hwc->sample_period = sample_period;
3575
3576         if (local64_read(&hwc->period_left) > 8*sample_period) {
3577                 if (disable)
3578                         event->pmu->stop(event, PERF_EF_UPDATE);
3579
3580                 local64_set(&hwc->period_left, 0);
3581
3582                 if (disable)
3583                         event->pmu->start(event, PERF_EF_RELOAD);
3584         }
3585 }
3586
3587 /*
3588  * combine freq adjustment with unthrottling to avoid two passes over the
3589  * events. At the same time, make sure, having freq events does not change
3590  * the rate of unthrottling as that would introduce bias.
3591  */
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593                                            int needs_unthr)
3594 {
3595         struct perf_event *event;
3596         struct hw_perf_event *hwc;
3597         u64 now, period = TICK_NSEC;
3598         s64 delta;
3599
3600         /*
3601          * only need to iterate over all events iff:
3602          * - context have events in frequency mode (needs freq adjust)
3603          * - there are events to unthrottle on this cpu
3604          */
3605         if (!(ctx->nr_freq || needs_unthr))
3606                 return;
3607
3608         raw_spin_lock(&ctx->lock);
3609         perf_pmu_disable(ctx->pmu);
3610
3611         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3613                         continue;
3614
3615                 if (!event_filter_match(event))
3616                         continue;
3617
3618                 perf_pmu_disable(event->pmu);
3619
3620                 hwc = &event->hw;
3621
3622                 if (hwc->interrupts == MAX_INTERRUPTS) {
3623                         hwc->interrupts = 0;
3624                         perf_log_throttle(event, 1);
3625                         event->pmu->start(event, 0);
3626                 }
3627
3628                 if (!event->attr.freq || !event->attr.sample_freq)
3629                         goto next;
3630
3631                 /*
3632                  * stop the event and update event->count
3633                  */
3634                 event->pmu->stop(event, PERF_EF_UPDATE);
3635
3636                 now = local64_read(&event->count);
3637                 delta = now - hwc->freq_count_stamp;
3638                 hwc->freq_count_stamp = now;
3639
3640                 /*
3641                  * restart the event
3642                  * reload only if value has changed
3643                  * we have stopped the event so tell that
3644                  * to perf_adjust_period() to avoid stopping it
3645                  * twice.
3646                  */
3647                 if (delta > 0)
3648                         perf_adjust_period(event, period, delta, false);
3649
3650                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651         next:
3652                 perf_pmu_enable(event->pmu);
3653         }
3654
3655         perf_pmu_enable(ctx->pmu);
3656         raw_spin_unlock(&ctx->lock);
3657 }
3658
3659 /*
3660  * Move @event to the tail of the @ctx's elegible events.
3661  */
3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3663 {
3664         /*
3665          * Rotate the first entry last of non-pinned groups. Rotation might be
3666          * disabled by the inheritance code.
3667          */
3668         if (ctx->rotate_disable)
3669                 return;
3670
3671         perf_event_groups_delete(&ctx->flexible_groups, event);
3672         perf_event_groups_insert(&ctx->flexible_groups, event);
3673 }
3674
3675 static inline struct perf_event *
3676 ctx_first_active(struct perf_event_context *ctx)
3677 {
3678         return list_first_entry_or_null(&ctx->flexible_active,
3679                                         struct perf_event, active_list);
3680 }
3681
3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683 {
3684         struct perf_event *cpu_event = NULL, *task_event = NULL;
3685         bool cpu_rotate = false, task_rotate = false;
3686         struct perf_event_context *ctx = NULL;
3687
3688         /*
3689          * Since we run this from IRQ context, nobody can install new
3690          * events, thus the event count values are stable.
3691          */
3692
3693         if (cpuctx->ctx.nr_events) {
3694                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695                         cpu_rotate = true;
3696         }
3697
3698         ctx = cpuctx->task_ctx;
3699         if (ctx && ctx->nr_events) {
3700                 if (ctx->nr_events != ctx->nr_active)
3701                         task_rotate = true;
3702         }
3703
3704         if (!(cpu_rotate || task_rotate))
3705                 return false;
3706
3707         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708         perf_pmu_disable(cpuctx->ctx.pmu);
3709
3710         if (task_rotate)
3711                 task_event = ctx_first_active(ctx);
3712         if (cpu_rotate)
3713                 cpu_event = ctx_first_active(&cpuctx->ctx);
3714
3715         /*
3716          * As per the order given at ctx_resched() first 'pop' task flexible
3717          * and then, if needed CPU flexible.
3718          */
3719         if (task_event || (ctx && cpu_event))
3720                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721         if (cpu_event)
3722                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3723
3724         if (task_event)
3725                 rotate_ctx(ctx, task_event);
3726         if (cpu_event)
3727                 rotate_ctx(&cpuctx->ctx, cpu_event);
3728
3729         perf_event_sched_in(cpuctx, ctx, current);
3730
3731         perf_pmu_enable(cpuctx->ctx.pmu);
3732         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733
3734         return true;
3735 }
3736
3737 void perf_event_task_tick(void)
3738 {
3739         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740         struct perf_event_context *ctx, *tmp;
3741         int throttled;
3742
3743         lockdep_assert_irqs_disabled();
3744
3745         __this_cpu_inc(perf_throttled_seq);
3746         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748
3749         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750                 perf_adjust_freq_unthr_context(ctx, throttled);
3751 }
3752
3753 static int event_enable_on_exec(struct perf_event *event,
3754                                 struct perf_event_context *ctx)
3755 {
3756         if (!event->attr.enable_on_exec)
3757                 return 0;
3758
3759         event->attr.enable_on_exec = 0;
3760         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761                 return 0;
3762
3763         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764
3765         return 1;
3766 }
3767
3768 /*
3769  * Enable all of a task's events that have been marked enable-on-exec.
3770  * This expects task == current.
3771  */
3772 static void perf_event_enable_on_exec(int ctxn)
3773 {
3774         struct perf_event_context *ctx, *clone_ctx = NULL;
3775         enum event_type_t event_type = 0;
3776         struct perf_cpu_context *cpuctx;
3777         struct perf_event *event;
3778         unsigned long flags;
3779         int enabled = 0;
3780
3781         local_irq_save(flags);
3782         ctx = current->perf_event_ctxp[ctxn];
3783         if (!ctx || !ctx->nr_events)
3784                 goto out;
3785
3786         cpuctx = __get_cpu_context(ctx);
3787         perf_ctx_lock(cpuctx, ctx);
3788         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789         list_for_each_entry(event, &ctx->event_list, event_entry) {
3790                 enabled |= event_enable_on_exec(event, ctx);
3791                 event_type |= get_event_type(event);
3792         }
3793
3794         /*
3795          * Unclone and reschedule this context if we enabled any event.
3796          */
3797         if (enabled) {
3798                 clone_ctx = unclone_ctx(ctx);
3799                 ctx_resched(cpuctx, ctx, event_type);
3800         } else {
3801                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802         }
3803         perf_ctx_unlock(cpuctx, ctx);
3804
3805 out:
3806         local_irq_restore(flags);
3807
3808         if (clone_ctx)
3809                 put_ctx(clone_ctx);
3810 }
3811
3812 struct perf_read_data {
3813         struct perf_event *event;
3814         bool group;
3815         int ret;
3816 };
3817
3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 {
3820         u16 local_pkg, event_pkg;
3821
3822         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823                 int local_cpu = smp_processor_id();
3824
3825                 event_pkg = topology_physical_package_id(event_cpu);
3826                 local_pkg = topology_physical_package_id(local_cpu);
3827
3828                 if (event_pkg == local_pkg)
3829                         return local_cpu;
3830         }
3831
3832         return event_cpu;
3833 }
3834
3835 /*
3836  * Cross CPU call to read the hardware event
3837  */
3838 static void __perf_event_read(void *info)
3839 {
3840         struct perf_read_data *data = info;
3841         struct perf_event *sub, *event = data->event;
3842         struct perf_event_context *ctx = event->ctx;
3843         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844         struct pmu *pmu = event->pmu;
3845
3846         /*
3847          * If this is a task context, we need to check whether it is
3848          * the current task context of this cpu.  If not it has been
3849          * scheduled out before the smp call arrived.  In that case
3850          * event->count would have been updated to a recent sample
3851          * when the event was scheduled out.
3852          */
3853         if (ctx->task && cpuctx->task_ctx != ctx)
3854                 return;
3855
3856         raw_spin_lock(&ctx->lock);
3857         if (ctx->is_active & EVENT_TIME) {
3858                 update_context_time(ctx);
3859                 update_cgrp_time_from_event(event);
3860         }
3861
3862         perf_event_update_time(event);
3863         if (data->group)
3864                 perf_event_update_sibling_time(event);
3865
3866         if (event->state != PERF_EVENT_STATE_ACTIVE)
3867                 goto unlock;
3868
3869         if (!data->group) {
3870                 pmu->read(event);
3871                 data->ret = 0;
3872                 goto unlock;
3873         }
3874
3875         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876
3877         pmu->read(event);
3878
3879         for_each_sibling_event(sub, event) {
3880                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881                         /*
3882                          * Use sibling's PMU rather than @event's since
3883                          * sibling could be on different (eg: software) PMU.
3884                          */
3885                         sub->pmu->read(sub);
3886                 }
3887         }
3888
3889         data->ret = pmu->commit_txn(pmu);
3890
3891 unlock:
3892         raw_spin_unlock(&ctx->lock);
3893 }
3894
3895 static inline u64 perf_event_count(struct perf_event *event)
3896 {
3897         return local64_read(&event->count) + atomic64_read(&event->child_count);
3898 }
3899
3900 /*
3901  * NMI-safe method to read a local event, that is an event that
3902  * is:
3903  *   - either for the current task, or for this CPU
3904  *   - does not have inherit set, for inherited task events
3905  *     will not be local and we cannot read them atomically
3906  *   - must not have a pmu::count method
3907  */
3908 int perf_event_read_local(struct perf_event *event, u64 *value,
3909                           u64 *enabled, u64 *running)
3910 {
3911         unsigned long flags;
3912         int ret = 0;
3913
3914         /*
3915          * Disabling interrupts avoids all counter scheduling (context
3916          * switches, timer based rotation and IPIs).
3917          */
3918         local_irq_save(flags);
3919
3920         /*
3921          * It must not be an event with inherit set, we cannot read
3922          * all child counters from atomic context.
3923          */
3924         if (event->attr.inherit) {
3925                 ret = -EOPNOTSUPP;
3926                 goto out;
3927         }
3928
3929         /* If this is a per-task event, it must be for current */
3930         if ((event->attach_state & PERF_ATTACH_TASK) &&
3931             event->hw.target != current) {
3932                 ret = -EINVAL;
3933                 goto out;
3934         }
3935
3936         /* If this is a per-CPU event, it must be for this CPU */
3937         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938             event->cpu != smp_processor_id()) {
3939                 ret = -EINVAL;
3940                 goto out;
3941         }
3942
3943         /*
3944          * If the event is currently on this CPU, its either a per-task event,
3945          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946          * oncpu == -1).
3947          */
3948         if (event->oncpu == smp_processor_id())
3949                 event->pmu->read(event);
3950
3951         *value = local64_read(&event->count);
3952         if (enabled || running) {
3953                 u64 now = event->shadow_ctx_time + perf_clock();
3954                 u64 __enabled, __running;
3955
3956                 __perf_update_times(event, now, &__enabled, &__running);
3957                 if (enabled)
3958                         *enabled = __enabled;
3959                 if (running)
3960                         *running = __running;
3961         }
3962 out:
3963         local_irq_restore(flags);
3964
3965         return ret;
3966 }
3967
3968 static int perf_event_read(struct perf_event *event, bool group)
3969 {
3970         enum perf_event_state state = READ_ONCE(event->state);
3971         int event_cpu, ret = 0;
3972
3973         /*
3974          * If event is enabled and currently active on a CPU, update the
3975          * value in the event structure:
3976          */
3977 again:
3978         if (state == PERF_EVENT_STATE_ACTIVE) {
3979                 struct perf_read_data data;
3980
3981                 /*
3982                  * Orders the ->state and ->oncpu loads such that if we see
3983                  * ACTIVE we must also see the right ->oncpu.
3984                  *
3985                  * Matches the smp_wmb() from event_sched_in().
3986                  */
3987                 smp_rmb();
3988
3989                 event_cpu = READ_ONCE(event->oncpu);
3990                 if ((unsigned)event_cpu >= nr_cpu_ids)
3991                         return 0;
3992
3993                 data = (struct perf_read_data){
3994                         .event = event,
3995                         .group = group,
3996                         .ret = 0,
3997                 };
3998
3999                 preempt_disable();
4000                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4001
4002                 /*
4003                  * Purposely ignore the smp_call_function_single() return
4004                  * value.
4005                  *
4006                  * If event_cpu isn't a valid CPU it means the event got
4007                  * scheduled out and that will have updated the event count.
4008                  *
4009                  * Therefore, either way, we'll have an up-to-date event count
4010                  * after this.
4011                  */
4012                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013                 preempt_enable();
4014                 ret = data.ret;
4015
4016         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4017                 struct perf_event_context *ctx = event->ctx;
4018                 unsigned long flags;
4019
4020                 raw_spin_lock_irqsave(&ctx->lock, flags);
4021                 state = event->state;
4022                 if (state != PERF_EVENT_STATE_INACTIVE) {
4023                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024                         goto again;
4025                 }
4026
4027                 /*
4028                  * May read while context is not active (e.g., thread is
4029                  * blocked), in that case we cannot update context time
4030                  */
4031                 if (ctx->is_active & EVENT_TIME) {
4032                         update_context_time(ctx);
4033                         update_cgrp_time_from_event(event);
4034                 }
4035
4036                 perf_event_update_time(event);
4037                 if (group)
4038                         perf_event_update_sibling_time(event);
4039                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040         }
4041
4042         return ret;
4043 }
4044
4045 /*
4046  * Initialize the perf_event context in a task_struct:
4047  */
4048 static void __perf_event_init_context(struct perf_event_context *ctx)
4049 {
4050         raw_spin_lock_init(&ctx->lock);
4051         mutex_init(&ctx->mutex);
4052         INIT_LIST_HEAD(&ctx->active_ctx_list);
4053         perf_event_groups_init(&ctx->pinned_groups);
4054         perf_event_groups_init(&ctx->flexible_groups);
4055         INIT_LIST_HEAD(&ctx->event_list);
4056         INIT_LIST_HEAD(&ctx->pinned_active);
4057         INIT_LIST_HEAD(&ctx->flexible_active);
4058         atomic_set(&ctx->refcount, 1);
4059 }
4060
4061 static struct perf_event_context *
4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063 {
4064         struct perf_event_context *ctx;
4065
4066         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067         if (!ctx)
4068                 return NULL;
4069
4070         __perf_event_init_context(ctx);
4071         if (task) {
4072                 ctx->task = task;
4073                 get_task_struct(task);
4074         }
4075         ctx->pmu = pmu;
4076
4077         return ctx;
4078 }
4079
4080 static struct task_struct *
4081 find_lively_task_by_vpid(pid_t vpid)
4082 {
4083         struct task_struct *task;
4084
4085         rcu_read_lock();
4086         if (!vpid)
4087                 task = current;
4088         else
4089                 task = find_task_by_vpid(vpid);
4090         if (task)
4091                 get_task_struct(task);
4092         rcu_read_unlock();
4093
4094         if (!task)
4095                 return ERR_PTR(-ESRCH);
4096
4097         return task;
4098 }
4099
4100 /*
4101  * Returns a matching context with refcount and pincount.
4102  */
4103 static struct perf_event_context *
4104 find_get_context(struct pmu *pmu, struct task_struct *task,
4105                 struct perf_event *event)
4106 {
4107         struct perf_event_context *ctx, *clone_ctx = NULL;
4108         struct perf_cpu_context *cpuctx;
4109         void *task_ctx_data = NULL;
4110         unsigned long flags;
4111         int ctxn, err;
4112         int cpu = event->cpu;
4113
4114         if (!task) {
4115                 /* Must be root to operate on a CPU event: */
4116                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117                         return ERR_PTR(-EACCES);
4118
4119                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120                 ctx = &cpuctx->ctx;
4121                 get_ctx(ctx);
4122                 ++ctx->pin_count;
4123
4124                 return ctx;
4125         }
4126
4127         err = -EINVAL;
4128         ctxn = pmu->task_ctx_nr;
4129         if (ctxn < 0)
4130                 goto errout;
4131
4132         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134                 if (!task_ctx_data) {
4135                         err = -ENOMEM;
4136                         goto errout;
4137                 }
4138         }
4139
4140 retry:
4141         ctx = perf_lock_task_context(task, ctxn, &flags);
4142         if (ctx) {
4143                 clone_ctx = unclone_ctx(ctx);
4144                 ++ctx->pin_count;
4145
4146                 if (task_ctx_data && !ctx->task_ctx_data) {
4147                         ctx->task_ctx_data = task_ctx_data;
4148                         task_ctx_data = NULL;
4149                 }
4150                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151
4152                 if (clone_ctx)
4153                         put_ctx(clone_ctx);
4154         } else {
4155                 ctx = alloc_perf_context(pmu, task);
4156                 err = -ENOMEM;
4157                 if (!ctx)
4158                         goto errout;
4159
4160                 if (task_ctx_data) {
4161                         ctx->task_ctx_data = task_ctx_data;
4162                         task_ctx_data = NULL;
4163                 }
4164
4165                 err = 0;
4166                 mutex_lock(&task->perf_event_mutex);
4167                 /*
4168                  * If it has already passed perf_event_exit_task().
4169                  * we must see PF_EXITING, it takes this mutex too.
4170                  */
4171                 if (task->flags & PF_EXITING)
4172                         err = -ESRCH;
4173                 else if (task->perf_event_ctxp[ctxn])
4174                         err = -EAGAIN;
4175                 else {
4176                         get_ctx(ctx);
4177                         ++ctx->pin_count;
4178                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179                 }
4180                 mutex_unlock(&task->perf_event_mutex);
4181
4182                 if (unlikely(err)) {
4183                         put_ctx(ctx);
4184
4185                         if (err == -EAGAIN)
4186                                 goto retry;
4187                         goto errout;
4188                 }
4189         }
4190
4191         kfree(task_ctx_data);
4192         return ctx;
4193
4194 errout:
4195         kfree(task_ctx_data);
4196         return ERR_PTR(err);
4197 }
4198
4199 static void perf_event_free_filter(struct perf_event *event);
4200 static void perf_event_free_bpf_prog(struct perf_event *event);
4201
4202 static void free_event_rcu(struct rcu_head *head)
4203 {
4204         struct perf_event *event;
4205
4206         event = container_of(head, struct perf_event, rcu_head);
4207         if (event->ns)
4208                 put_pid_ns(event->ns);
4209         perf_event_free_filter(event);
4210         kfree(event);
4211 }
4212
4213 static void ring_buffer_attach(struct perf_event *event,
4214                                struct ring_buffer *rb);
4215
4216 static void detach_sb_event(struct perf_event *event)
4217 {
4218         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219
4220         raw_spin_lock(&pel->lock);
4221         list_del_rcu(&event->sb_list);
4222         raw_spin_unlock(&pel->lock);
4223 }
4224
4225 static bool is_sb_event(struct perf_event *event)
4226 {
4227         struct perf_event_attr *attr = &event->attr;
4228
4229         if (event->parent)
4230                 return false;
4231
4232         if (event->attach_state & PERF_ATTACH_TASK)
4233                 return false;
4234
4235         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236             attr->comm || attr->comm_exec ||
4237             attr->task ||
4238             attr->context_switch)
4239                 return true;
4240         return false;
4241 }
4242
4243 static void unaccount_pmu_sb_event(struct perf_event *event)
4244 {
4245         if (is_sb_event(event))
4246                 detach_sb_event(event);
4247 }
4248
4249 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250 {
4251         if (event->parent)
4252                 return;
4253
4254         if (is_cgroup_event(event))
4255                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256 }
4257
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock);
4260 #endif
4261
4262 static void unaccount_freq_event_nohz(void)
4263 {
4264 #ifdef CONFIG_NO_HZ_FULL
4265         spin_lock(&nr_freq_lock);
4266         if (atomic_dec_and_test(&nr_freq_events))
4267                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268         spin_unlock(&nr_freq_lock);
4269 #endif
4270 }
4271
4272 static void unaccount_freq_event(void)
4273 {
4274         if (tick_nohz_full_enabled())
4275                 unaccount_freq_event_nohz();
4276         else
4277                 atomic_dec(&nr_freq_events);
4278 }
4279
4280 static void unaccount_event(struct perf_event *event)
4281 {
4282         bool dec = false;
4283
4284         if (event->parent)
4285                 return;
4286
4287         if (event->attach_state & PERF_ATTACH_TASK)
4288                 dec = true;
4289         if (event->attr.mmap || event->attr.mmap_data)
4290                 atomic_dec(&nr_mmap_events);
4291         if (event->attr.comm)
4292                 atomic_dec(&nr_comm_events);
4293         if (event->attr.namespaces)
4294                 atomic_dec(&nr_namespaces_events);
4295         if (event->attr.task)
4296                 atomic_dec(&nr_task_events);
4297         if (event->attr.freq)
4298                 unaccount_freq_event();
4299         if (event->attr.context_switch) {
4300                 dec = true;
4301                 atomic_dec(&nr_switch_events);
4302         }
4303         if (is_cgroup_event(event))
4304                 dec = true;
4305         if (has_branch_stack(event))
4306                 dec = true;
4307
4308         if (dec) {
4309                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310                         schedule_delayed_work(&perf_sched_work, HZ);
4311         }
4312
4313         unaccount_event_cpu(event, event->cpu);
4314
4315         unaccount_pmu_sb_event(event);
4316 }
4317
4318 static void perf_sched_delayed(struct work_struct *work)
4319 {
4320         mutex_lock(&perf_sched_mutex);
4321         if (atomic_dec_and_test(&perf_sched_count))
4322                 static_branch_disable(&perf_sched_events);
4323         mutex_unlock(&perf_sched_mutex);
4324 }
4325
4326 /*
4327  * The following implement mutual exclusion of events on "exclusive" pmus
4328  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329  * at a time, so we disallow creating events that might conflict, namely:
4330  *
4331  *  1) cpu-wide events in the presence of per-task events,
4332  *  2) per-task events in the presence of cpu-wide events,
4333  *  3) two matching events on the same context.
4334  *
4335  * The former two cases are handled in the allocation path (perf_event_alloc(),
4336  * _free_event()), the latter -- before the first perf_install_in_context().
4337  */
4338 static int exclusive_event_init(struct perf_event *event)
4339 {
4340         struct pmu *pmu = event->pmu;
4341
4342         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343                 return 0;
4344
4345         /*
4346          * Prevent co-existence of per-task and cpu-wide events on the
4347          * same exclusive pmu.
4348          *
4349          * Negative pmu::exclusive_cnt means there are cpu-wide
4350          * events on this "exclusive" pmu, positive means there are
4351          * per-task events.
4352          *
4353          * Since this is called in perf_event_alloc() path, event::ctx
4354          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355          * to mean "per-task event", because unlike other attach states it
4356          * never gets cleared.
4357          */
4358         if (event->attach_state & PERF_ATTACH_TASK) {
4359                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360                         return -EBUSY;
4361         } else {
4362                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363                         return -EBUSY;
4364         }
4365
4366         return 0;
4367 }
4368
4369 static void exclusive_event_destroy(struct perf_event *event)
4370 {
4371         struct pmu *pmu = event->pmu;
4372
4373         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374                 return;
4375
4376         /* see comment in exclusive_event_init() */
4377         if (event->attach_state & PERF_ATTACH_TASK)
4378                 atomic_dec(&pmu->exclusive_cnt);
4379         else
4380                 atomic_inc(&pmu->exclusive_cnt);
4381 }
4382
4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384 {
4385         if ((e1->pmu == e2->pmu) &&
4386             (e1->cpu == e2->cpu ||
4387              e1->cpu == -1 ||
4388              e2->cpu == -1))
4389                 return true;
4390         return false;
4391 }
4392
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event *event,
4395                                         struct perf_event_context *ctx)
4396 {
4397         struct perf_event *iter_event;
4398         struct pmu *pmu = event->pmu;
4399
4400         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401                 return true;
4402
4403         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404                 if (exclusive_event_match(iter_event, event))
4405                         return false;
4406         }
4407
4408         return true;
4409 }
4410
4411 static void perf_addr_filters_splice(struct perf_event *event,
4412                                        struct list_head *head);
4413
4414 static void _free_event(struct perf_event *event)
4415 {
4416         irq_work_sync(&event->pending);
4417
4418         unaccount_event(event);
4419
4420         if (event->rb) {
4421                 /*
4422                  * Can happen when we close an event with re-directed output.
4423                  *
4424                  * Since we have a 0 refcount, perf_mmap_close() will skip
4425                  * over us; possibly making our ring_buffer_put() the last.
4426                  */
4427                 mutex_lock(&event->mmap_mutex);
4428                 ring_buffer_attach(event, NULL);
4429                 mutex_unlock(&event->mmap_mutex);
4430         }
4431
4432         if (is_cgroup_event(event))
4433                 perf_detach_cgroup(event);
4434
4435         if (!event->parent) {
4436                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437                         put_callchain_buffers();
4438         }
4439
4440         perf_event_free_bpf_prog(event);
4441         perf_addr_filters_splice(event, NULL);
4442         kfree(event->addr_filters_offs);
4443
4444         if (event->destroy)
4445                 event->destroy(event);
4446
4447         if (event->ctx)
4448                 put_ctx(event->ctx);
4449
4450         exclusive_event_destroy(event);
4451         module_put(event->pmu->module);
4452
4453         call_rcu(&event->rcu_head, free_event_rcu);
4454 }
4455
4456 /*
4457  * Used to free events which have a known refcount of 1, such as in error paths
4458  * where the event isn't exposed yet and inherited events.
4459  */
4460 static void free_event(struct perf_event *event)
4461 {
4462         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4463                                 "unexpected event refcount: %ld; ptr=%p\n",
4464                                 atomic_long_read(&event->refcount), event)) {
4465                 /* leak to avoid use-after-free */
4466                 return;
4467         }
4468
4469         _free_event(event);
4470 }
4471
4472 /*
4473  * Remove user event from the owner task.
4474  */
4475 static void perf_remove_from_owner(struct perf_event *event)
4476 {
4477         struct task_struct *owner;
4478
4479         rcu_read_lock();
4480         /*
4481          * Matches the smp_store_release() in perf_event_exit_task(). If we
4482          * observe !owner it means the list deletion is complete and we can
4483          * indeed free this event, otherwise we need to serialize on
4484          * owner->perf_event_mutex.
4485          */
4486         owner = READ_ONCE(event->owner);
4487         if (owner) {
4488                 /*
4489                  * Since delayed_put_task_struct() also drops the last
4490                  * task reference we can safely take a new reference
4491                  * while holding the rcu_read_lock().
4492                  */
4493                 get_task_struct(owner);
4494         }
4495         rcu_read_unlock();
4496
4497         if (owner) {
4498                 /*
4499                  * If we're here through perf_event_exit_task() we're already
4500                  * holding ctx->mutex which would be an inversion wrt. the
4501                  * normal lock order.
4502                  *
4503                  * However we can safely take this lock because its the child
4504                  * ctx->mutex.
4505                  */
4506                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4507
4508                 /*
4509                  * We have to re-check the event->owner field, if it is cleared
4510                  * we raced with perf_event_exit_task(), acquiring the mutex
4511                  * ensured they're done, and we can proceed with freeing the
4512                  * event.
4513                  */
4514                 if (event->owner) {
4515                         list_del_init(&event->owner_entry);
4516                         smp_store_release(&event->owner, NULL);
4517                 }
4518                 mutex_unlock(&owner->perf_event_mutex);
4519                 put_task_struct(owner);
4520         }
4521 }
4522
4523 static void put_event(struct perf_event *event)
4524 {
4525         if (!atomic_long_dec_and_test(&event->refcount))
4526                 return;
4527
4528         _free_event(event);
4529 }
4530
4531 /*
4532  * Kill an event dead; while event:refcount will preserve the event
4533  * object, it will not preserve its functionality. Once the last 'user'
4534  * gives up the object, we'll destroy the thing.
4535  */
4536 int perf_event_release_kernel(struct perf_event *event)
4537 {
4538         struct perf_event_context *ctx = event->ctx;
4539         struct perf_event *child, *tmp;
4540         LIST_HEAD(free_list);
4541
4542         /*
4543          * If we got here through err_file: fput(event_file); we will not have
4544          * attached to a context yet.
4545          */
4546         if (!ctx) {
4547                 WARN_ON_ONCE(event->attach_state &
4548                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4549                 goto no_ctx;
4550         }
4551
4552         if (!is_kernel_event(event))
4553                 perf_remove_from_owner(event);
4554
4555         ctx = perf_event_ctx_lock(event);
4556         WARN_ON_ONCE(ctx->parent_ctx);
4557         perf_remove_from_context(event, DETACH_GROUP);
4558
4559         raw_spin_lock_irq(&ctx->lock);
4560         /*
4561          * Mark this event as STATE_DEAD, there is no external reference to it
4562          * anymore.
4563          *
4564          * Anybody acquiring event->child_mutex after the below loop _must_
4565          * also see this, most importantly inherit_event() which will avoid
4566          * placing more children on the list.
4567          *
4568          * Thus this guarantees that we will in fact observe and kill _ALL_
4569          * child events.
4570          */
4571         event->state = PERF_EVENT_STATE_DEAD;
4572         raw_spin_unlock_irq(&ctx->lock);
4573
4574         perf_event_ctx_unlock(event, ctx);
4575
4576 again:
4577         mutex_lock(&event->child_mutex);
4578         list_for_each_entry(child, &event->child_list, child_list) {
4579
4580                 /*
4581                  * Cannot change, child events are not migrated, see the
4582                  * comment with perf_event_ctx_lock_nested().
4583                  */
4584                 ctx = READ_ONCE(child->ctx);
4585                 /*
4586                  * Since child_mutex nests inside ctx::mutex, we must jump
4587                  * through hoops. We start by grabbing a reference on the ctx.
4588                  *
4589                  * Since the event cannot get freed while we hold the
4590                  * child_mutex, the context must also exist and have a !0
4591                  * reference count.
4592                  */
4593                 get_ctx(ctx);
4594
4595                 /*
4596                  * Now that we have a ctx ref, we can drop child_mutex, and
4597                  * acquire ctx::mutex without fear of it going away. Then we
4598                  * can re-acquire child_mutex.
4599                  */
4600                 mutex_unlock(&event->child_mutex);
4601                 mutex_lock(&ctx->mutex);
4602                 mutex_lock(&event->child_mutex);
4603
4604                 /*
4605                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4606                  * state, if child is still the first entry, it didn't get freed
4607                  * and we can continue doing so.
4608                  */
4609                 tmp = list_first_entry_or_null(&event->child_list,
4610                                                struct perf_event, child_list);
4611                 if (tmp == child) {
4612                         perf_remove_from_context(child, DETACH_GROUP);
4613                         list_move(&child->child_list, &free_list);
4614                         /*
4615                          * This matches the refcount bump in inherit_event();
4616                          * this can't be the last reference.
4617                          */
4618                         put_event(event);
4619                 }
4620
4621                 mutex_unlock(&event->child_mutex);
4622                 mutex_unlock(&ctx->mutex);
4623                 put_ctx(ctx);
4624                 goto again;
4625         }
4626         mutex_unlock(&event->child_mutex);
4627
4628         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4629                 list_del(&child->child_list);
4630                 free_event(child);
4631         }
4632
4633 no_ctx:
4634         put_event(event); /* Must be the 'last' reference */
4635         return 0;
4636 }
4637 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4638
4639 /*
4640  * Called when the last reference to the file is gone.
4641  */
4642 static int perf_release(struct inode *inode, struct file *file)
4643 {
4644         perf_event_release_kernel(file->private_data);
4645         return 0;
4646 }
4647
4648 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4649 {
4650         struct perf_event *child;
4651         u64 total = 0;
4652
4653         *enabled = 0;
4654         *running = 0;
4655
4656         mutex_lock(&event->child_mutex);
4657
4658         (void)perf_event_read(event, false);
4659         total += perf_event_count(event);
4660
4661         *enabled += event->total_time_enabled +
4662                         atomic64_read(&event->child_total_time_enabled);
4663         *running += event->total_time_running +
4664                         atomic64_read(&event->child_total_time_running);
4665
4666         list_for_each_entry(child, &event->child_list, child_list) {
4667                 (void)perf_event_read(child, false);
4668                 total += perf_event_count(child);
4669                 *enabled += child->total_time_enabled;
4670                 *running += child->total_time_running;
4671         }
4672         mutex_unlock(&event->child_mutex);
4673
4674         return total;
4675 }
4676
4677 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4678 {
4679         struct perf_event_context *ctx;
4680         u64 count;
4681
4682         ctx = perf_event_ctx_lock(event);
4683         count = __perf_event_read_value(event, enabled, running);
4684         perf_event_ctx_unlock(event, ctx);
4685
4686         return count;
4687 }
4688 EXPORT_SYMBOL_GPL(perf_event_read_value);
4689
4690 static int __perf_read_group_add(struct perf_event *leader,
4691                                         u64 read_format, u64 *values)
4692 {
4693         struct perf_event_context *ctx = leader->ctx;
4694         struct perf_event *sub;
4695         unsigned long flags;
4696         int n = 1; /* skip @nr */
4697         int ret;
4698
4699         ret = perf_event_read(leader, true);
4700         if (ret)
4701                 return ret;
4702
4703         raw_spin_lock_irqsave(&ctx->lock, flags);
4704
4705         /*
4706          * Since we co-schedule groups, {enabled,running} times of siblings
4707          * will be identical to those of the leader, so we only publish one
4708          * set.
4709          */
4710         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4711                 values[n++] += leader->total_time_enabled +
4712                         atomic64_read(&leader->child_total_time_enabled);
4713         }
4714
4715         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4716                 values[n++] += leader->total_time_running +
4717                         atomic64_read(&leader->child_total_time_running);
4718         }
4719
4720         /*
4721          * Write {count,id} tuples for every sibling.
4722          */
4723         values[n++] += perf_event_count(leader);
4724         if (read_format & PERF_FORMAT_ID)
4725                 values[n++] = primary_event_id(leader);
4726
4727         for_each_sibling_event(sub, leader) {
4728                 values[n++] += perf_event_count(sub);
4729                 if (read_format & PERF_FORMAT_ID)
4730                         values[n++] = primary_event_id(sub);
4731         }
4732
4733         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4734         return 0;
4735 }
4736
4737 static int perf_read_group(struct perf_event *event,
4738                                    u64 read_format, char __user *buf)
4739 {
4740         struct perf_event *leader = event->group_leader, *child;
4741         struct perf_event_context *ctx = leader->ctx;
4742         int ret;
4743         u64 *values;
4744
4745         lockdep_assert_held(&ctx->mutex);
4746
4747         values = kzalloc(event->read_size, GFP_KERNEL);
4748         if (!values)
4749                 return -ENOMEM;
4750
4751         values[0] = 1 + leader->nr_siblings;
4752
4753         /*
4754          * By locking the child_mutex of the leader we effectively
4755          * lock the child list of all siblings.. XXX explain how.
4756          */
4757         mutex_lock(&leader->child_mutex);
4758
4759         ret = __perf_read_group_add(leader, read_format, values);
4760         if (ret)
4761                 goto unlock;
4762
4763         list_for_each_entry(child, &leader->child_list, child_list) {
4764                 ret = __perf_read_group_add(child, read_format, values);
4765                 if (ret)
4766                         goto unlock;
4767         }
4768
4769         mutex_unlock(&leader->child_mutex);
4770
4771         ret = event->read_size;
4772         if (copy_to_user(buf, values, event->read_size))
4773                 ret = -EFAULT;
4774         goto out;
4775
4776 unlock:
4777         mutex_unlock(&leader->child_mutex);
4778 out:
4779         kfree(values);
4780         return ret;
4781 }
4782
4783 static int perf_read_one(struct perf_event *event,
4784                                  u64 read_format, char __user *buf)
4785 {
4786         u64 enabled, running;
4787         u64 values[4];
4788         int n = 0;
4789
4790         values[n++] = __perf_event_read_value(event, &enabled, &running);
4791         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4792                 values[n++] = enabled;
4793         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4794                 values[n++] = running;
4795         if (read_format & PERF_FORMAT_ID)
4796                 values[n++] = primary_event_id(event);
4797
4798         if (copy_to_user(buf, values, n * sizeof(u64)))
4799                 return -EFAULT;
4800
4801         return n * sizeof(u64);
4802 }
4803
4804 static bool is_event_hup(struct perf_event *event)
4805 {
4806         bool no_children;
4807
4808         if (event->state > PERF_EVENT_STATE_EXIT)
4809                 return false;
4810
4811         mutex_lock(&event->child_mutex);
4812         no_children = list_empty(&event->child_list);
4813         mutex_unlock(&event->child_mutex);
4814         return no_children;
4815 }
4816
4817 /*
4818  * Read the performance event - simple non blocking version for now
4819  */
4820 static ssize_t
4821 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4822 {
4823         u64 read_format = event->attr.read_format;
4824         int ret;
4825
4826         /*
4827          * Return end-of-file for a read on a event that is in
4828          * error state (i.e. because it was pinned but it couldn't be
4829          * scheduled on to the CPU at some point).
4830          */
4831         if (event->state == PERF_EVENT_STATE_ERROR)
4832                 return 0;
4833
4834         if (count < event->read_size)
4835                 return -ENOSPC;
4836
4837         WARN_ON_ONCE(event->ctx->parent_ctx);
4838         if (read_format & PERF_FORMAT_GROUP)
4839                 ret = perf_read_group(event, read_format, buf);
4840         else
4841                 ret = perf_read_one(event, read_format, buf);
4842
4843         return ret;
4844 }
4845
4846 static ssize_t
4847 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4848 {
4849         struct perf_event *event = file->private_data;
4850         struct perf_event_context *ctx;
4851         int ret;
4852
4853         ctx = perf_event_ctx_lock(event);
4854         ret = __perf_read(event, buf, count);
4855         perf_event_ctx_unlock(event, ctx);
4856
4857         return ret;
4858 }
4859
4860 static __poll_t perf_poll(struct file *file, poll_table *wait)
4861 {
4862         struct perf_event *event = file->private_data;
4863         struct ring_buffer *rb;
4864         __poll_t events = EPOLLHUP;
4865
4866         poll_wait(file, &event->waitq, wait);
4867
4868         if (is_event_hup(event))
4869                 return events;
4870
4871         /*
4872          * Pin the event->rb by taking event->mmap_mutex; otherwise
4873          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4874          */
4875         mutex_lock(&event->mmap_mutex);
4876         rb = event->rb;
4877         if (rb)
4878                 events = atomic_xchg(&rb->poll, 0);
4879         mutex_unlock(&event->mmap_mutex);
4880         return events;
4881 }
4882
4883 static void _perf_event_reset(struct perf_event *event)
4884 {
4885         (void)perf_event_read(event, false);
4886         local64_set(&event->count, 0);
4887         perf_event_update_userpage(event);
4888 }
4889
4890 /*
4891  * Holding the top-level event's child_mutex means that any
4892  * descendant process that has inherited this event will block
4893  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4894  * task existence requirements of perf_event_enable/disable.
4895  */
4896 static void perf_event_for_each_child(struct perf_event *event,
4897                                         void (*func)(struct perf_event *))
4898 {
4899         struct perf_event *child;
4900
4901         WARN_ON_ONCE(event->ctx->parent_ctx);
4902
4903         mutex_lock(&event->child_mutex);
4904         func(event);
4905         list_for_each_entry(child, &event->child_list, child_list)
4906                 func(child);
4907         mutex_unlock(&event->child_mutex);
4908 }
4909
4910 static void perf_event_for_each(struct perf_event *event,
4911                                   void (*func)(struct perf_event *))
4912 {
4913         struct perf_event_context *ctx = event->ctx;
4914         struct perf_event *sibling;
4915
4916         lockdep_assert_held(&ctx->mutex);
4917
4918         event = event->group_leader;
4919
4920         perf_event_for_each_child(event, func);
4921         for_each_sibling_event(sibling, event)
4922                 perf_event_for_each_child(sibling, func);
4923 }
4924
4925 static void __perf_event_period(struct perf_event *event,
4926                                 struct perf_cpu_context *cpuctx,
4927                                 struct perf_event_context *ctx,
4928                                 void *info)
4929 {
4930         u64 value = *((u64 *)info);
4931         bool active;
4932
4933         if (event->attr.freq) {
4934                 event->attr.sample_freq = value;
4935         } else {
4936                 event->attr.sample_period = value;
4937                 event->hw.sample_period = value;
4938         }
4939
4940         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4941         if (active) {
4942                 perf_pmu_disable(ctx->pmu);
4943                 /*
4944                  * We could be throttled; unthrottle now to avoid the tick
4945                  * trying to unthrottle while we already re-started the event.
4946                  */
4947                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4948                         event->hw.interrupts = 0;
4949                         perf_log_throttle(event, 1);
4950                 }
4951                 event->pmu->stop(event, PERF_EF_UPDATE);
4952         }
4953
4954         local64_set(&event->hw.period_left, 0);
4955
4956         if (active) {
4957                 event->pmu->start(event, PERF_EF_RELOAD);
4958                 perf_pmu_enable(ctx->pmu);
4959         }
4960 }
4961
4962 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4963 {
4964         u64 value;
4965
4966         if (!is_sampling_event(event))
4967                 return -EINVAL;
4968
4969         if (copy_from_user(&value, arg, sizeof(value)))
4970                 return -EFAULT;
4971
4972         if (!value)
4973                 return -EINVAL;
4974
4975         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4976                 return -EINVAL;
4977
4978         event_function_call(event, __perf_event_period, &value);
4979
4980         return 0;
4981 }
4982
4983 static const struct file_operations perf_fops;
4984
4985 static inline int perf_fget_light(int fd, struct fd *p)
4986 {
4987         struct fd f = fdget(fd);
4988         if (!f.file)
4989                 return -EBADF;
4990
4991         if (f.file->f_op != &perf_fops) {
4992                 fdput(f);
4993                 return -EBADF;
4994         }
4995         *p = f;
4996         return 0;
4997 }
4998
4999 static int perf_event_set_output(struct perf_event *event,
5000                                  struct perf_event *output_event);
5001 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5002 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5003 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5004                           struct perf_event_attr *attr);
5005
5006 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5007 {
5008         void (*func)(struct perf_event *);
5009         u32 flags = arg;
5010
5011         switch (cmd) {
5012         case PERF_EVENT_IOC_ENABLE:
5013                 func = _perf_event_enable;
5014                 break;
5015         case PERF_EVENT_IOC_DISABLE:
5016                 func = _perf_event_disable;
5017                 break;
5018         case PERF_EVENT_IOC_RESET:
5019                 func = _perf_event_reset;
5020                 break;
5021
5022         case PERF_EVENT_IOC_REFRESH:
5023                 return _perf_event_refresh(event, arg);
5024
5025         case PERF_EVENT_IOC_PERIOD:
5026                 return perf_event_period(event, (u64 __user *)arg);
5027
5028         case PERF_EVENT_IOC_ID:
5029         {
5030                 u64 id = primary_event_id(event);
5031
5032                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5033                         return -EFAULT;
5034                 return 0;
5035         }
5036
5037         case PERF_EVENT_IOC_SET_OUTPUT:
5038         {
5039                 int ret;
5040                 if (arg != -1) {
5041                         struct perf_event *output_event;
5042                         struct fd output;
5043                         ret = perf_fget_light(arg, &output);
5044                         if (ret)
5045                                 return ret;
5046                         output_event = output.file->private_data;
5047                         ret = perf_event_set_output(event, output_event);
5048                         fdput(output);
5049                 } else {
5050                         ret = perf_event_set_output(event, NULL);
5051                 }
5052                 return ret;
5053         }
5054
5055         case PERF_EVENT_IOC_SET_FILTER:
5056                 return perf_event_set_filter(event, (void __user *)arg);
5057
5058         case PERF_EVENT_IOC_SET_BPF:
5059                 return perf_event_set_bpf_prog(event, arg);
5060
5061         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5062                 struct ring_buffer *rb;
5063
5064                 rcu_read_lock();
5065                 rb = rcu_dereference(event->rb);
5066                 if (!rb || !rb->nr_pages) {
5067                         rcu_read_unlock();
5068                         return -EINVAL;
5069                 }
5070                 rb_toggle_paused(rb, !!arg);
5071                 rcu_read_unlock();
5072                 return 0;
5073         }
5074
5075         case PERF_EVENT_IOC_QUERY_BPF:
5076                 return perf_event_query_prog_array(event, (void __user *)arg);
5077
5078         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5079                 struct perf_event_attr new_attr;
5080                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5081                                          &new_attr);
5082
5083                 if (err)
5084                         return err;
5085
5086                 return perf_event_modify_attr(event,  &new_attr);
5087         }
5088         default:
5089                 return -ENOTTY;
5090         }
5091
5092         if (flags & PERF_IOC_FLAG_GROUP)
5093                 perf_event_for_each(event, func);
5094         else
5095                 perf_event_for_each_child(event, func);
5096
5097         return 0;
5098 }
5099
5100 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5101 {
5102         struct perf_event *event = file->private_data;
5103         struct perf_event_context *ctx;
5104         long ret;
5105
5106         ctx = perf_event_ctx_lock(event);
5107         ret = _perf_ioctl(event, cmd, arg);
5108         perf_event_ctx_unlock(event, ctx);
5109
5110         return ret;
5111 }
5112
5113 #ifdef CONFIG_COMPAT
5114 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5115                                 unsigned long arg)
5116 {
5117         switch (_IOC_NR(cmd)) {
5118         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5119         case _IOC_NR(PERF_EVENT_IOC_ID):
5120                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5121                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5122                         cmd &= ~IOCSIZE_MASK;
5123                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5124                 }
5125                 break;
5126         }
5127         return perf_ioctl(file, cmd, arg);
5128 }
5129 #else
5130 # define perf_compat_ioctl NULL
5131 #endif
5132
5133 int perf_event_task_enable(void)
5134 {
5135         struct perf_event_context *ctx;
5136         struct perf_event *event;
5137
5138         mutex_lock(&current->perf_event_mutex);
5139         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5140                 ctx = perf_event_ctx_lock(event);
5141                 perf_event_for_each_child(event, _perf_event_enable);
5142                 perf_event_ctx_unlock(event, ctx);
5143         }
5144         mutex_unlock(&current->perf_event_mutex);
5145
5146         return 0;
5147 }
5148
5149 int perf_event_task_disable(void)
5150 {
5151         struct perf_event_context *ctx;
5152         struct perf_event *event;
5153
5154         mutex_lock(&current->perf_event_mutex);
5155         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5156                 ctx = perf_event_ctx_lock(event);
5157                 perf_event_for_each_child(event, _perf_event_disable);
5158                 perf_event_ctx_unlock(event, ctx);
5159         }
5160         mutex_unlock(&current->perf_event_mutex);
5161
5162         return 0;
5163 }
5164
5165 static int perf_event_index(struct perf_event *event)
5166 {
5167         if (event->hw.state & PERF_HES_STOPPED)
5168                 return 0;
5169
5170         if (event->state != PERF_EVENT_STATE_ACTIVE)
5171                 return 0;
5172
5173         return event->pmu->event_idx(event);
5174 }
5175
5176 static void calc_timer_values(struct perf_event *event,
5177                                 u64 *now,
5178                                 u64 *enabled,
5179                                 u64 *running)
5180 {
5181         u64 ctx_time;
5182
5183         *now = perf_clock();
5184         ctx_time = event->shadow_ctx_time + *now;
5185         __perf_update_times(event, ctx_time, enabled, running);
5186 }
5187
5188 static void perf_event_init_userpage(struct perf_event *event)
5189 {
5190         struct perf_event_mmap_page *userpg;
5191         struct ring_buffer *rb;
5192
5193         rcu_read_lock();
5194         rb = rcu_dereference(event->rb);
5195         if (!rb)
5196                 goto unlock;
5197
5198         userpg = rb->user_page;
5199
5200         /* Allow new userspace to detect that bit 0 is deprecated */
5201         userpg->cap_bit0_is_deprecated = 1;
5202         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5203         userpg->data_offset = PAGE_SIZE;
5204         userpg->data_size = perf_data_size(rb);
5205
5206 unlock:
5207         rcu_read_unlock();
5208 }
5209
5210 void __weak arch_perf_update_userpage(
5211         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5212 {
5213 }
5214
5215 /*
5216  * Callers need to ensure there can be no nesting of this function, otherwise
5217  * the seqlock logic goes bad. We can not serialize this because the arch
5218  * code calls this from NMI context.
5219  */
5220 void perf_event_update_userpage(struct perf_event *event)
5221 {
5222         struct perf_event_mmap_page *userpg;
5223         struct ring_buffer *rb;
5224         u64 enabled, running, now;
5225
5226         rcu_read_lock();
5227         rb = rcu_dereference(event->rb);
5228         if (!rb)
5229                 goto unlock;
5230
5231         /*
5232          * compute total_time_enabled, total_time_running
5233          * based on snapshot values taken when the event
5234          * was last scheduled in.
5235          *
5236          * we cannot simply called update_context_time()
5237          * because of locking issue as we can be called in
5238          * NMI context
5239          */
5240         calc_timer_values(event, &now, &enabled, &running);
5241
5242         userpg = rb->user_page;
5243         /*
5244          * Disable preemption so as to not let the corresponding user-space
5245          * spin too long if we get preempted.
5246          */
5247         preempt_disable();
5248         ++userpg->lock;
5249         barrier();
5250         userpg->index = perf_event_index(event);
5251         userpg->offset = perf_event_count(event);
5252         if (userpg->index)
5253                 userpg->offset -= local64_read(&event->hw.prev_count);
5254
5255         userpg->time_enabled = enabled +
5256                         atomic64_read(&event->child_total_time_enabled);
5257
5258         userpg->time_running = running +
5259                         atomic64_read(&event->child_total_time_running);
5260
5261         arch_perf_update_userpage(event, userpg, now);
5262
5263         barrier();
5264         ++userpg->lock;
5265         preempt_enable();
5266 unlock:
5267         rcu_read_unlock();
5268 }
5269 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5270
5271 static int perf_mmap_fault(struct vm_fault *vmf)
5272 {
5273         struct perf_event *event = vmf->vma->vm_file->private_data;
5274         struct ring_buffer *rb;
5275         int ret = VM_FAULT_SIGBUS;
5276
5277         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5278                 if (vmf->pgoff == 0)
5279                         ret = 0;
5280                 return ret;
5281         }
5282
5283         rcu_read_lock();
5284         rb = rcu_dereference(event->rb);
5285         if (!rb)
5286                 goto unlock;
5287
5288         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5289                 goto unlock;
5290
5291         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5292         if (!vmf->page)
5293                 goto unlock;
5294
5295         get_page(vmf->page);
5296         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5297         vmf->page->index   = vmf->pgoff;
5298
5299         ret = 0;
5300 unlock:
5301         rcu_read_unlock();
5302
5303         return ret;
5304 }
5305
5306 static void ring_buffer_attach(struct perf_event *event,
5307                                struct ring_buffer *rb)
5308 {
5309         struct ring_buffer *old_rb = NULL;
5310         unsigned long flags;
5311
5312         if (event->rb) {
5313                 /*
5314                  * Should be impossible, we set this when removing
5315                  * event->rb_entry and wait/clear when adding event->rb_entry.
5316                  */
5317                 WARN_ON_ONCE(event->rcu_pending);
5318
5319                 old_rb = event->rb;
5320                 spin_lock_irqsave(&old_rb->event_lock, flags);
5321                 list_del_rcu(&event->rb_entry);
5322                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5323
5324                 event->rcu_batches = get_state_synchronize_rcu();
5325                 event->rcu_pending = 1;
5326         }
5327
5328         if (rb) {
5329                 if (event->rcu_pending) {
5330                         cond_synchronize_rcu(event->rcu_batches);
5331                         event->rcu_pending = 0;
5332                 }
5333
5334                 spin_lock_irqsave(&rb->event_lock, flags);
5335                 list_add_rcu(&event->rb_entry, &rb->event_list);
5336                 spin_unlock_irqrestore(&rb->event_lock, flags);
5337         }
5338
5339         /*
5340          * Avoid racing with perf_mmap_close(AUX): stop the event
5341          * before swizzling the event::rb pointer; if it's getting
5342          * unmapped, its aux_mmap_count will be 0 and it won't
5343          * restart. See the comment in __perf_pmu_output_stop().
5344          *
5345          * Data will inevitably be lost when set_output is done in
5346          * mid-air, but then again, whoever does it like this is
5347          * not in for the data anyway.
5348          */
5349         if (has_aux(event))
5350                 perf_event_stop(event, 0);
5351
5352         rcu_assign_pointer(event->rb, rb);
5353
5354         if (old_rb) {
5355                 ring_buffer_put(old_rb);
5356                 /*
5357                  * Since we detached before setting the new rb, so that we
5358                  * could attach the new rb, we could have missed a wakeup.
5359                  * Provide it now.
5360                  */
5361                 wake_up_all(&event->waitq);
5362         }
5363 }
5364
5365 static void ring_buffer_wakeup(struct perf_event *event)
5366 {
5367         struct ring_buffer *rb;
5368
5369         rcu_read_lock();
5370         rb = rcu_dereference(event->rb);
5371         if (rb) {
5372                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5373                         wake_up_all(&event->waitq);
5374         }
5375         rcu_read_unlock();
5376 }
5377
5378 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5379 {
5380         struct ring_buffer *rb;
5381
5382         rcu_read_lock();
5383         rb = rcu_dereference(event->rb);
5384         if (rb) {
5385                 if (!atomic_inc_not_zero(&rb->refcount))
5386                         rb = NULL;
5387         }
5388         rcu_read_unlock();
5389
5390         return rb;
5391 }
5392
5393 void ring_buffer_put(struct ring_buffer *rb)
5394 {
5395         if (!atomic_dec_and_test(&rb->refcount))
5396                 return;
5397
5398         WARN_ON_ONCE(!list_empty(&rb->event_list));
5399
5400         call_rcu(&rb->rcu_head, rb_free_rcu);
5401 }
5402
5403 static void perf_mmap_open(struct vm_area_struct *vma)
5404 {
5405         struct perf_event *event = vma->vm_file->private_data;
5406
5407         atomic_inc(&event->mmap_count);
5408         atomic_inc(&event->rb->mmap_count);
5409
5410         if (vma->vm_pgoff)
5411                 atomic_inc(&event->rb->aux_mmap_count);
5412
5413         if (event->pmu->event_mapped)
5414                 event->pmu->event_mapped(event, vma->vm_mm);
5415 }
5416
5417 static void perf_pmu_output_stop(struct perf_event *event);
5418
5419 /*
5420  * A buffer can be mmap()ed multiple times; either directly through the same
5421  * event, or through other events by use of perf_event_set_output().
5422  *
5423  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5424  * the buffer here, where we still have a VM context. This means we need
5425  * to detach all events redirecting to us.
5426  */
5427 static void perf_mmap_close(struct vm_area_struct *vma)
5428 {
5429         struct perf_event *event = vma->vm_file->private_data;
5430
5431         struct ring_buffer *rb = ring_buffer_get(event);
5432         struct user_struct *mmap_user = rb->mmap_user;
5433         int mmap_locked = rb->mmap_locked;
5434         unsigned long size = perf_data_size(rb);
5435
5436         if (event->pmu->event_unmapped)
5437                 event->pmu->event_unmapped(event, vma->vm_mm);
5438
5439         /*
5440          * rb->aux_mmap_count will always drop before rb->mmap_count and
5441          * event->mmap_count, so it is ok to use event->mmap_mutex to
5442          * serialize with perf_mmap here.
5443          */
5444         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5445             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5446                 /*
5447                  * Stop all AUX events that are writing to this buffer,
5448                  * so that we can free its AUX pages and corresponding PMU
5449                  * data. Note that after rb::aux_mmap_count dropped to zero,
5450                  * they won't start any more (see perf_aux_output_begin()).
5451                  */
5452                 perf_pmu_output_stop(event);
5453
5454                 /* now it's safe to free the pages */
5455                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5456                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5457
5458                 /* this has to be the last one */
5459                 rb_free_aux(rb);
5460                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5461
5462                 mutex_unlock(&event->mmap_mutex);
5463         }
5464
5465         atomic_dec(&rb->mmap_count);
5466
5467         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5468                 goto out_put;
5469
5470         ring_buffer_attach(event, NULL);
5471         mutex_unlock(&event->mmap_mutex);
5472
5473         /* If there's still other mmap()s of this buffer, we're done. */
5474         if (atomic_read(&rb->mmap_count))
5475                 goto out_put;
5476
5477         /*
5478          * No other mmap()s, detach from all other events that might redirect
5479          * into the now unreachable buffer. Somewhat complicated by the
5480          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5481          */
5482 again:
5483         rcu_read_lock();
5484         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5485                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5486                         /*
5487                          * This event is en-route to free_event() which will
5488                          * detach it and remove it from the list.
5489                          */
5490                         continue;
5491                 }
5492                 rcu_read_unlock();
5493
5494                 mutex_lock(&event->mmap_mutex);
5495                 /*
5496                  * Check we didn't race with perf_event_set_output() which can
5497                  * swizzle the rb from under us while we were waiting to
5498                  * acquire mmap_mutex.
5499                  *
5500                  * If we find a different rb; ignore this event, a next
5501                  * iteration will no longer find it on the list. We have to
5502                  * still restart the iteration to make sure we're not now
5503                  * iterating the wrong list.
5504                  */
5505                 if (event->rb == rb)
5506                         ring_buffer_attach(event, NULL);
5507
5508                 mutex_unlock(&event->mmap_mutex);
5509                 put_event(event);
5510
5511                 /*
5512                  * Restart the iteration; either we're on the wrong list or
5513                  * destroyed its integrity by doing a deletion.
5514                  */
5515                 goto again;
5516         }
5517         rcu_read_unlock();
5518
5519         /*
5520          * It could be there's still a few 0-ref events on the list; they'll
5521          * get cleaned up by free_event() -- they'll also still have their
5522          * ref on the rb and will free it whenever they are done with it.
5523          *
5524          * Aside from that, this buffer is 'fully' detached and unmapped,
5525          * undo the VM accounting.
5526          */
5527
5528         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5529         vma->vm_mm->pinned_vm -= mmap_locked;
5530         free_uid(mmap_user);
5531
5532 out_put:
5533         ring_buffer_put(rb); /* could be last */
5534 }
5535
5536 static const struct vm_operations_struct perf_mmap_vmops = {
5537         .open           = perf_mmap_open,
5538         .close          = perf_mmap_close, /* non mergable */
5539         .fault          = perf_mmap_fault,
5540         .page_mkwrite   = perf_mmap_fault,
5541 };
5542
5543 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5544 {
5545         struct perf_event *event = file->private_data;
5546         unsigned long user_locked, user_lock_limit;
5547         struct user_struct *user = current_user();
5548         unsigned long locked, lock_limit;
5549         struct ring_buffer *rb = NULL;
5550         unsigned long vma_size;
5551         unsigned long nr_pages;
5552         long user_extra = 0, extra = 0;
5553         int ret = 0, flags = 0;
5554
5555         /*
5556          * Don't allow mmap() of inherited per-task counters. This would
5557          * create a performance issue due to all children writing to the
5558          * same rb.
5559          */
5560         if (event->cpu == -1 && event->attr.inherit)
5561                 return -EINVAL;
5562
5563         if (!(vma->vm_flags & VM_SHARED))
5564                 return -EINVAL;
5565
5566         vma_size = vma->vm_end - vma->vm_start;
5567
5568         if (vma->vm_pgoff == 0) {
5569                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5570         } else {
5571                 /*
5572                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5573                  * mapped, all subsequent mappings should have the same size
5574                  * and offset. Must be above the normal perf buffer.
5575                  */
5576                 u64 aux_offset, aux_size;
5577
5578                 if (!event->rb)
5579                         return -EINVAL;
5580
5581                 nr_pages = vma_size / PAGE_SIZE;
5582
5583                 mutex_lock(&event->mmap_mutex);
5584                 ret = -EINVAL;
5585
5586                 rb = event->rb;
5587                 if (!rb)
5588                         goto aux_unlock;
5589
5590                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5591                 aux_size = READ_ONCE(rb->user_page->aux_size);
5592
5593                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5594                         goto aux_unlock;
5595
5596                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5597                         goto aux_unlock;
5598
5599                 /* already mapped with a different offset */
5600                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5601                         goto aux_unlock;
5602
5603                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5604                         goto aux_unlock;
5605
5606                 /* already mapped with a different size */
5607                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5608                         goto aux_unlock;
5609
5610                 if (!is_power_of_2(nr_pages))
5611                         goto aux_unlock;
5612
5613                 if (!atomic_inc_not_zero(&rb->mmap_count))
5614                         goto aux_unlock;
5615
5616                 if (rb_has_aux(rb)) {
5617                         atomic_inc(&rb->aux_mmap_count);
5618                         ret = 0;
5619                         goto unlock;
5620                 }
5621
5622                 atomic_set(&rb->aux_mmap_count, 1);
5623                 user_extra = nr_pages;
5624
5625                 goto accounting;
5626         }
5627
5628         /*
5629          * If we have rb pages ensure they're a power-of-two number, so we
5630          * can do bitmasks instead of modulo.
5631          */
5632         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5633                 return -EINVAL;
5634
5635         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5636                 return -EINVAL;
5637
5638         WARN_ON_ONCE(event->ctx->parent_ctx);
5639 again:
5640         mutex_lock(&event->mmap_mutex);
5641         if (event->rb) {
5642                 if (event->rb->nr_pages != nr_pages) {
5643                         ret = -EINVAL;
5644                         goto unlock;
5645                 }
5646
5647                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5648                         /*
5649                          * Raced against perf_mmap_close() through
5650                          * perf_event_set_output(). Try again, hope for better
5651                          * luck.
5652                          */
5653                         mutex_unlock(&event->mmap_mutex);
5654                         goto again;
5655                 }
5656
5657                 goto unlock;
5658         }
5659
5660         user_extra = nr_pages + 1;
5661
5662 accounting:
5663         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5664
5665         /*
5666          * Increase the limit linearly with more CPUs:
5667          */
5668         user_lock_limit *= num_online_cpus();
5669
5670         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5671
5672         if (user_locked > user_lock_limit)
5673                 extra = user_locked - user_lock_limit;
5674
5675         lock_limit = rlimit(RLIMIT_MEMLOCK);
5676         lock_limit >>= PAGE_SHIFT;
5677         locked = vma->vm_mm->pinned_vm + extra;
5678
5679         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5680                 !capable(CAP_IPC_LOCK)) {
5681                 ret = -EPERM;
5682                 goto unlock;
5683         }
5684
5685         WARN_ON(!rb && event->rb);
5686
5687         if (vma->vm_flags & VM_WRITE)
5688                 flags |= RING_BUFFER_WRITABLE;
5689
5690         if (!rb) {
5691                 rb = rb_alloc(nr_pages,
5692                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5693                               event->cpu, flags);
5694
5695                 if (!rb) {
5696                         ret = -ENOMEM;
5697                         goto unlock;
5698                 }
5699
5700                 atomic_set(&rb->mmap_count, 1);
5701                 rb->mmap_user = get_current_user();
5702                 rb->mmap_locked = extra;
5703
5704                 ring_buffer_attach(event, rb);
5705
5706                 perf_event_init_userpage(event);
5707                 perf_event_update_userpage(event);
5708         } else {
5709                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5710                                    event->attr.aux_watermark, flags);
5711                 if (!ret)
5712                         rb->aux_mmap_locked = extra;
5713         }
5714
5715 unlock:
5716         if (!ret) {
5717                 atomic_long_add(user_extra, &user->locked_vm);
5718                 vma->vm_mm->pinned_vm += extra;
5719
5720                 atomic_inc(&event->mmap_count);
5721         } else if (rb) {
5722                 atomic_dec(&rb->mmap_count);
5723         }
5724 aux_unlock:
5725         mutex_unlock(&event->mmap_mutex);
5726
5727         /*
5728          * Since pinned accounting is per vm we cannot allow fork() to copy our
5729          * vma.
5730          */
5731         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5732         vma->vm_ops = &perf_mmap_vmops;
5733
5734         if (event->pmu->event_mapped)
5735                 event->pmu->event_mapped(event, vma->vm_mm);
5736
5737         return ret;
5738 }
5739
5740 static int perf_fasync(int fd, struct file *filp, int on)
5741 {
5742         struct inode *inode = file_inode(filp);
5743         struct perf_event *event = filp->private_data;
5744         int retval;
5745
5746         inode_lock(inode);
5747         retval = fasync_helper(fd, filp, on, &event->fasync);
5748         inode_unlock(inode);
5749
5750         if (retval < 0)
5751                 return retval;
5752
5753         return 0;
5754 }
5755
5756 static const struct file_operations perf_fops = {
5757         .llseek                 = no_llseek,
5758         .release                = perf_release,
5759         .read                   = perf_read,
5760         .poll                   = perf_poll,
5761         .unlocked_ioctl         = perf_ioctl,
5762         .compat_ioctl           = perf_compat_ioctl,
5763         .mmap                   = perf_mmap,
5764         .fasync                 = perf_fasync,
5765 };
5766
5767 /*
5768  * Perf event wakeup
5769  *
5770  * If there's data, ensure we set the poll() state and publish everything
5771  * to user-space before waking everybody up.
5772  */
5773
5774 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5775 {
5776         /* only the parent has fasync state */
5777         if (event->parent)
5778                 event = event->parent;
5779         return &event->fasync;
5780 }
5781
5782 void perf_event_wakeup(struct perf_event *event)
5783 {
5784         ring_buffer_wakeup(event);
5785
5786         if (event->pending_kill) {
5787                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5788                 event->pending_kill = 0;
5789         }
5790 }
5791
5792 static void perf_pending_event(struct irq_work *entry)
5793 {
5794         struct perf_event *event = container_of(entry,
5795                         struct perf_event, pending);
5796         int rctx;
5797
5798         rctx = perf_swevent_get_recursion_context();
5799         /*
5800          * If we 'fail' here, that's OK, it means recursion is already disabled
5801          * and we won't recurse 'further'.
5802          */
5803
5804         if (event->pending_disable) {
5805                 event->pending_disable = 0;
5806                 perf_event_disable_local(event);
5807         }
5808
5809         if (event->pending_wakeup) {
5810                 event->pending_wakeup = 0;
5811                 perf_event_wakeup(event);
5812         }
5813
5814         if (rctx >= 0)
5815                 perf_swevent_put_recursion_context(rctx);
5816 }
5817
5818 /*
5819  * We assume there is only KVM supporting the callbacks.
5820  * Later on, we might change it to a list if there is
5821  * another virtualization implementation supporting the callbacks.
5822  */
5823 struct perf_guest_info_callbacks *perf_guest_cbs;
5824
5825 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5826 {
5827         perf_guest_cbs = cbs;
5828         return 0;
5829 }
5830 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5831
5832 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5833 {
5834         perf_guest_cbs = NULL;
5835         return 0;
5836 }
5837 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5838
5839 static void
5840 perf_output_sample_regs(struct perf_output_handle *handle,
5841                         struct pt_regs *regs, u64 mask)
5842 {
5843         int bit;
5844         DECLARE_BITMAP(_mask, 64);
5845
5846         bitmap_from_u64(_mask, mask);
5847         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5848                 u64 val;
5849
5850                 val = perf_reg_value(regs, bit);
5851                 perf_output_put(handle, val);
5852         }
5853 }
5854
5855 static void perf_sample_regs_user(struct perf_regs *regs_user,
5856                                   struct pt_regs *regs,
5857                                   struct pt_regs *regs_user_copy)
5858 {
5859         if (user_mode(regs)) {
5860                 regs_user->abi = perf_reg_abi(current);
5861                 regs_user->regs = regs;
5862         } else if (current->mm) {
5863                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5864         } else {
5865                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5866                 regs_user->regs = NULL;
5867         }
5868 }
5869
5870 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5871                                   struct pt_regs *regs)
5872 {
5873         regs_intr->regs = regs;
5874         regs_intr->abi  = perf_reg_abi(current);
5875 }
5876
5877
5878 /*
5879  * Get remaining task size from user stack pointer.
5880  *
5881  * It'd be better to take stack vma map and limit this more
5882  * precisly, but there's no way to get it safely under interrupt,
5883  * so using TASK_SIZE as limit.
5884  */
5885 static u64 perf_ustack_task_size(struct pt_regs *regs)
5886 {
5887         unsigned long addr = perf_user_stack_pointer(regs);
5888
5889         if (!addr || addr >= TASK_SIZE)
5890                 return 0;
5891
5892         return TASK_SIZE - addr;
5893 }
5894
5895 static u16
5896 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5897                         struct pt_regs *regs)
5898 {
5899         u64 task_size;
5900
5901         /* No regs, no stack pointer, no dump. */
5902         if (!regs)
5903                 return 0;
5904
5905         /*
5906          * Check if we fit in with the requested stack size into the:
5907          * - TASK_SIZE
5908          *   If we don't, we limit the size to the TASK_SIZE.
5909          *
5910          * - remaining sample size
5911          *   If we don't, we customize the stack size to
5912          *   fit in to the remaining sample size.
5913          */
5914
5915         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5916         stack_size = min(stack_size, (u16) task_size);
5917
5918         /* Current header size plus static size and dynamic size. */
5919         header_size += 2 * sizeof(u64);
5920
5921         /* Do we fit in with the current stack dump size? */
5922         if ((u16) (header_size + stack_size) < header_size) {
5923                 /*
5924                  * If we overflow the maximum size for the sample,
5925                  * we customize the stack dump size to fit in.
5926                  */
5927                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5928                 stack_size = round_up(stack_size, sizeof(u64));
5929         }
5930
5931         return stack_size;
5932 }
5933
5934 static void
5935 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5936                           struct pt_regs *regs)
5937 {
5938         /* Case of a kernel thread, nothing to dump */
5939         if (!regs) {
5940                 u64 size = 0;
5941                 perf_output_put(handle, size);
5942         } else {
5943                 unsigned long sp;
5944                 unsigned int rem;
5945                 u64 dyn_size;
5946
5947                 /*
5948                  * We dump:
5949                  * static size
5950                  *   - the size requested by user or the best one we can fit
5951                  *     in to the sample max size
5952                  * data
5953                  *   - user stack dump data
5954                  * dynamic size
5955                  *   - the actual dumped size
5956                  */
5957
5958                 /* Static size. */
5959                 perf_output_put(handle, dump_size);
5960
5961                 /* Data. */
5962                 sp = perf_user_stack_pointer(regs);
5963                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5964                 dyn_size = dump_size - rem;
5965
5966                 perf_output_skip(handle, rem);
5967
5968                 /* Dynamic size. */
5969                 perf_output_put(handle, dyn_size);
5970         }
5971 }
5972
5973 static void __perf_event_header__init_id(struct perf_event_header *header,
5974                                          struct perf_sample_data *data,
5975                                          struct perf_event *event)
5976 {
5977         u64 sample_type = event->attr.sample_type;
5978
5979         data->type = sample_type;
5980         header->size += event->id_header_size;
5981
5982         if (sample_type & PERF_SAMPLE_TID) {
5983                 /* namespace issues */
5984                 data->tid_entry.pid = perf_event_pid(event, current);
5985                 data->tid_entry.tid = perf_event_tid(event, current);
5986         }
5987
5988         if (sample_type & PERF_SAMPLE_TIME)
5989                 data->time = perf_event_clock(event);
5990
5991         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5992                 data->id = primary_event_id(event);
5993
5994         if (sample_type & PERF_SAMPLE_STREAM_ID)
5995                 data->stream_id = event->id;
5996
5997         if (sample_type & PERF_SAMPLE_CPU) {
5998                 data->cpu_entry.cpu      = raw_smp_processor_id();
5999                 data->cpu_entry.reserved = 0;
6000         }
6001 }
6002
6003 void perf_event_header__init_id(struct perf_event_header *header,
6004                                 struct perf_sample_data *data,
6005                                 struct perf_event *event)
6006 {
6007         if (event->attr.sample_id_all)
6008                 __perf_event_header__init_id(header, data, event);
6009 }
6010
6011 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6012                                            struct perf_sample_data *data)
6013 {
6014         u64 sample_type = data->type;
6015
6016         if (sample_type & PERF_SAMPLE_TID)
6017                 perf_output_put(handle, data->tid_entry);
6018
6019         if (sample_type & PERF_SAMPLE_TIME)
6020                 perf_output_put(handle, data->time);
6021
6022         if (sample_type & PERF_SAMPLE_ID)
6023                 perf_output_put(handle, data->id);
6024
6025         if (sample_type & PERF_SAMPLE_STREAM_ID)
6026                 perf_output_put(handle, data->stream_id);
6027
6028         if (sample_type & PERF_SAMPLE_CPU)
6029                 perf_output_put(handle, data->cpu_entry);
6030
6031         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6032                 perf_output_put(handle, data->id);
6033 }
6034
6035 void perf_event__output_id_sample(struct perf_event *event,
6036                                   struct perf_output_handle *handle,
6037                                   struct perf_sample_data *sample)
6038 {
6039         if (event->attr.sample_id_all)
6040                 __perf_event__output_id_sample(handle, sample);
6041 }
6042
6043 static void perf_output_read_one(struct perf_output_handle *handle,
6044                                  struct perf_event *event,
6045                                  u64 enabled, u64 running)
6046 {
6047         u64 read_format = event->attr.read_format;
6048         u64 values[4];
6049         int n = 0;
6050
6051         values[n++] = perf_event_count(event);
6052         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6053                 values[n++] = enabled +
6054                         atomic64_read(&event->child_total_time_enabled);
6055         }
6056         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6057                 values[n++] = running +
6058                         atomic64_read(&event->child_total_time_running);
6059         }
6060         if (read_format & PERF_FORMAT_ID)
6061                 values[n++] = primary_event_id(event);
6062
6063         __output_copy(handle, values, n * sizeof(u64));
6064 }
6065
6066 static void perf_output_read_group(struct perf_output_handle *handle,
6067                             struct perf_event *event,
6068                             u64 enabled, u64 running)
6069 {
6070         struct perf_event *leader = event->group_leader, *sub;
6071         u64 read_format = event->attr.read_format;
6072         u64 values[5];
6073         int n = 0;
6074
6075         values[n++] = 1 + leader->nr_siblings;
6076
6077         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6078                 values[n++] = enabled;
6079
6080         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6081                 values[n++] = running;
6082
6083         if ((leader != event) &&
6084             (leader->state == PERF_EVENT_STATE_ACTIVE))
6085                 leader->pmu->read(leader);
6086
6087         values[n++] = perf_event_count(leader);
6088         if (read_format & PERF_FORMAT_ID)
6089                 values[n++] = primary_event_id(leader);
6090
6091         __output_copy(handle, values, n * sizeof(u64));
6092
6093         for_each_sibling_event(sub, leader) {
6094                 n = 0;
6095
6096                 if ((sub != event) &&
6097                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6098                         sub->pmu->read(sub);
6099
6100                 values[n++] = perf_event_count(sub);
6101                 if (read_format & PERF_FORMAT_ID)
6102                         values[n++] = primary_event_id(sub);
6103
6104                 __output_copy(handle, values, n * sizeof(u64));
6105         }
6106 }
6107
6108 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6109                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6110
6111 /*
6112  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6113  *
6114  * The problem is that its both hard and excessively expensive to iterate the
6115  * child list, not to mention that its impossible to IPI the children running
6116  * on another CPU, from interrupt/NMI context.
6117  */
6118 static void perf_output_read(struct perf_output_handle *handle,
6119                              struct perf_event *event)
6120 {
6121         u64 enabled = 0, running = 0, now;
6122         u64 read_format = event->attr.read_format;
6123
6124         /*
6125          * compute total_time_enabled, total_time_running
6126          * based on snapshot values taken when the event
6127          * was last scheduled in.
6128          *
6129          * we cannot simply called update_context_time()
6130          * because of locking issue as we are called in
6131          * NMI context
6132          */
6133         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6134                 calc_timer_values(event, &now, &enabled, &running);
6135
6136         if (event->attr.read_format & PERF_FORMAT_GROUP)
6137                 perf_output_read_group(handle, event, enabled, running);
6138         else
6139                 perf_output_read_one(handle, event, enabled, running);
6140 }
6141
6142 void perf_output_sample(struct perf_output_handle *handle,
6143                         struct perf_event_header *header,
6144                         struct perf_sample_data *data,
6145                         struct perf_event *event)
6146 {
6147         u64 sample_type = data->type;
6148
6149         perf_output_put(handle, *header);
6150
6151         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6152                 perf_output_put(handle, data->id);
6153
6154         if (sample_type & PERF_SAMPLE_IP)
6155                 perf_output_put(handle, data->ip);
6156
6157         if (sample_type & PERF_SAMPLE_TID)
6158                 perf_output_put(handle, data->tid_entry);
6159
6160         if (sample_type & PERF_SAMPLE_TIME)
6161                 perf_output_put(handle, data->time);
6162
6163         if (sample_type & PERF_SAMPLE_ADDR)
6164                 perf_output_put(handle, data->addr);
6165
6166         if (sample_type & PERF_SAMPLE_ID)
6167                 perf_output_put(handle, data->id);
6168
6169         if (sample_type & PERF_SAMPLE_STREAM_ID)
6170                 perf_output_put(handle, data->stream_id);
6171
6172         if (sample_type & PERF_SAMPLE_CPU)
6173                 perf_output_put(handle, data->cpu_entry);
6174
6175         if (sample_type & PERF_SAMPLE_PERIOD)
6176                 perf_output_put(handle, data->period);
6177
6178         if (sample_type & PERF_SAMPLE_READ)
6179                 perf_output_read(handle, event);
6180
6181         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6182                 int size = 1;
6183
6184                 size += data->callchain->nr;
6185                 size *= sizeof(u64);
6186                 __output_copy(handle, data->callchain, size);
6187         }
6188
6189         if (sample_type & PERF_SAMPLE_RAW) {
6190                 struct perf_raw_record *raw = data->raw;
6191
6192                 if (raw) {
6193                         struct perf_raw_frag *frag = &raw->frag;
6194
6195                         perf_output_put(handle, raw->size);
6196                         do {
6197                                 if (frag->copy) {
6198                                         __output_custom(handle, frag->copy,
6199                                                         frag->data, frag->size);
6200                                 } else {
6201                                         __output_copy(handle, frag->data,
6202                                                       frag->size);
6203                                 }
6204                                 if (perf_raw_frag_last(frag))
6205                                         break;
6206                                 frag = frag->next;
6207                         } while (1);
6208                         if (frag->pad)
6209                                 __output_skip(handle, NULL, frag->pad);
6210                 } else {
6211                         struct {
6212                                 u32     size;
6213                                 u32     data;
6214                         } raw = {
6215                                 .size = sizeof(u32),
6216                                 .data = 0,
6217                         };
6218                         perf_output_put(handle, raw);
6219                 }
6220         }
6221
6222         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6223                 if (data->br_stack) {
6224                         size_t size;
6225
6226                         size = data->br_stack->nr
6227                              * sizeof(struct perf_branch_entry);
6228
6229                         perf_output_put(handle, data->br_stack->nr);
6230                         perf_output_copy(handle, data->br_stack->entries, size);
6231                 } else {
6232                         /*
6233                          * we always store at least the value of nr
6234                          */
6235                         u64 nr = 0;
6236                         perf_output_put(handle, nr);
6237                 }
6238         }
6239
6240         if (sample_type & PERF_SAMPLE_REGS_USER) {
6241                 u64 abi = data->regs_user.abi;
6242
6243                 /*
6244                  * If there are no regs to dump, notice it through
6245                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6246                  */
6247                 perf_output_put(handle, abi);
6248
6249                 if (abi) {
6250                         u64 mask = event->attr.sample_regs_user;
6251                         perf_output_sample_regs(handle,
6252                                                 data->regs_user.regs,
6253                                                 mask);
6254                 }
6255         }
6256
6257         if (sample_type & PERF_SAMPLE_STACK_USER) {
6258                 perf_output_sample_ustack(handle,
6259                                           data->stack_user_size,
6260                                           data->regs_user.regs);
6261         }
6262
6263         if (sample_type & PERF_SAMPLE_WEIGHT)
6264                 perf_output_put(handle, data->weight);
6265
6266         if (sample_type & PERF_SAMPLE_DATA_SRC)
6267                 perf_output_put(handle, data->data_src.val);
6268
6269         if (sample_type & PERF_SAMPLE_TRANSACTION)
6270                 perf_output_put(handle, data->txn);
6271
6272         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6273                 u64 abi = data->regs_intr.abi;
6274                 /*
6275                  * If there are no regs to dump, notice it through
6276                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6277                  */
6278                 perf_output_put(handle, abi);
6279
6280                 if (abi) {
6281                         u64 mask = event->attr.sample_regs_intr;
6282
6283                         perf_output_sample_regs(handle,
6284                                                 data->regs_intr.regs,
6285                                                 mask);
6286                 }
6287         }
6288
6289         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6290                 perf_output_put(handle, data->phys_addr);
6291
6292         if (!event->attr.watermark) {
6293                 int wakeup_events = event->attr.wakeup_events;
6294
6295                 if (wakeup_events) {
6296                         struct ring_buffer *rb = handle->rb;
6297                         int events = local_inc_return(&rb->events);
6298
6299                         if (events >= wakeup_events) {
6300                                 local_sub(wakeup_events, &rb->events);
6301                                 local_inc(&rb->wakeup);
6302                         }
6303                 }
6304         }
6305 }
6306
6307 static u64 perf_virt_to_phys(u64 virt)
6308 {
6309         u64 phys_addr = 0;
6310         struct page *p = NULL;
6311
6312         if (!virt)
6313                 return 0;
6314
6315         if (virt >= TASK_SIZE) {
6316                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6317                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6318                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6319                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6320         } else {
6321                 /*
6322                  * Walking the pages tables for user address.
6323                  * Interrupts are disabled, so it prevents any tear down
6324                  * of the page tables.
6325                  * Try IRQ-safe __get_user_pages_fast first.
6326                  * If failed, leave phys_addr as 0.
6327                  */
6328                 if ((current->mm != NULL) &&
6329                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6330                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6331
6332                 if (p)
6333                         put_page(p);
6334         }
6335
6336         return phys_addr;
6337 }
6338
6339 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6340
6341 static struct perf_callchain_entry *
6342 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6343 {
6344         bool kernel = !event->attr.exclude_callchain_kernel;
6345         bool user   = !event->attr.exclude_callchain_user;
6346         /* Disallow cross-task user callchains. */
6347         bool crosstask = event->ctx->task && event->ctx->task != current;
6348         const u32 max_stack = event->attr.sample_max_stack;
6349         struct perf_callchain_entry *callchain;
6350
6351         if (!kernel && !user)
6352                 return &__empty_callchain;
6353
6354         callchain = get_perf_callchain(regs, 0, kernel, user,
6355                                        max_stack, crosstask, true);
6356         return callchain ?: &__empty_callchain;
6357 }
6358
6359 void perf_prepare_sample(struct perf_event_header *header,
6360                          struct perf_sample_data *data,
6361                          struct perf_event *event,
6362                          struct pt_regs *regs)
6363 {
6364         u64 sample_type = event->attr.sample_type;
6365
6366         header->type = PERF_RECORD_SAMPLE;
6367         header->size = sizeof(*header) + event->header_size;
6368
6369         header->misc = 0;
6370         header->misc |= perf_misc_flags(regs);
6371
6372         __perf_event_header__init_id(header, data, event);
6373
6374         if (sample_type & PERF_SAMPLE_IP)
6375                 data->ip = perf_instruction_pointer(regs);
6376
6377         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6378                 int size = 1;
6379
6380                 data->callchain = perf_callchain(event, regs);
6381                 size += data->callchain->nr;
6382
6383                 header->size += size * sizeof(u64);
6384         }
6385
6386         if (sample_type & PERF_SAMPLE_RAW) {
6387                 struct perf_raw_record *raw = data->raw;
6388                 int size;
6389
6390                 if (raw) {
6391                         struct perf_raw_frag *frag = &raw->frag;
6392                         u32 sum = 0;
6393
6394                         do {
6395                                 sum += frag->size;
6396                                 if (perf_raw_frag_last(frag))
6397                                         break;
6398                                 frag = frag->next;
6399                         } while (1);
6400
6401                         size = round_up(sum + sizeof(u32), sizeof(u64));
6402                         raw->size = size - sizeof(u32);
6403                         frag->pad = raw->size - sum;
6404                 } else {
6405                         size = sizeof(u64);
6406                 }
6407
6408                 header->size += size;
6409         }
6410
6411         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6412                 int size = sizeof(u64); /* nr */
6413                 if (data->br_stack) {
6414                         size += data->br_stack->nr
6415                               * sizeof(struct perf_branch_entry);
6416                 }
6417                 header->size += size;
6418         }
6419
6420         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6421                 perf_sample_regs_user(&data->regs_user, regs,
6422                                       &data->regs_user_copy);
6423
6424         if (sample_type & PERF_SAMPLE_REGS_USER) {
6425                 /* regs dump ABI info */
6426                 int size = sizeof(u64);
6427
6428                 if (data->regs_user.regs) {
6429                         u64 mask = event->attr.sample_regs_user;
6430                         size += hweight64(mask) * sizeof(u64);
6431                 }
6432
6433                 header->size += size;
6434         }
6435
6436         if (sample_type & PERF_SAMPLE_STACK_USER) {
6437                 /*
6438                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6439                  * processed as the last one or have additional check added
6440                  * in case new sample type is added, because we could eat
6441                  * up the rest of the sample size.
6442                  */
6443                 u16 stack_size = event->attr.sample_stack_user;
6444                 u16 size = sizeof(u64);
6445
6446                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6447                                                      data->regs_user.regs);
6448
6449                 /*
6450                  * If there is something to dump, add space for the dump
6451                  * itself and for the field that tells the dynamic size,
6452                  * which is how many have been actually dumped.
6453                  */
6454                 if (stack_size)
6455                         size += sizeof(u64) + stack_size;
6456
6457                 data->stack_user_size = stack_size;
6458                 header->size += size;
6459         }
6460
6461         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6462                 /* regs dump ABI info */
6463                 int size = sizeof(u64);
6464
6465                 perf_sample_regs_intr(&data->regs_intr, regs);
6466
6467                 if (data->regs_intr.regs) {
6468                         u64 mask = event->attr.sample_regs_intr;
6469
6470                         size += hweight64(mask) * sizeof(u64);
6471                 }
6472
6473                 header->size += size;
6474         }
6475
6476         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6477                 data->phys_addr = perf_virt_to_phys(data->addr);
6478 }
6479
6480 static void __always_inline
6481 __perf_event_output(struct perf_event *event,
6482                     struct perf_sample_data *data,
6483                     struct pt_regs *regs,
6484                     int (*output_begin)(struct perf_output_handle *,
6485                                         struct perf_event *,
6486                                         unsigned int))
6487 {
6488         struct perf_output_handle handle;
6489         struct perf_event_header header;
6490
6491         /* protect the callchain buffers */
6492         rcu_read_lock();
6493
6494         perf_prepare_sample(&header, data, event, regs);
6495
6496         if (output_begin(&handle, event, header.size))
6497                 goto exit;
6498
6499         perf_output_sample(&handle, &header, data, event);
6500
6501         perf_output_end(&handle);
6502
6503 exit:
6504         rcu_read_unlock();
6505 }
6506
6507 void
6508 perf_event_output_forward(struct perf_event *event,
6509                          struct perf_sample_data *data,
6510                          struct pt_regs *regs)
6511 {
6512         __perf_event_output(event, data, regs, perf_output_begin_forward);
6513 }
6514
6515 void
6516 perf_event_output_backward(struct perf_event *event,
6517                            struct perf_sample_data *data,
6518                            struct pt_regs *regs)
6519 {
6520         __perf_event_output(event, data, regs, perf_output_begin_backward);
6521 }
6522
6523 void
6524 perf_event_output(struct perf_event *event,
6525                   struct perf_sample_data *data,
6526                   struct pt_regs *regs)
6527 {
6528         __perf_event_output(event, data, regs, perf_output_begin);
6529 }
6530
6531 /*
6532  * read event_id
6533  */
6534
6535 struct perf_read_event {
6536         struct perf_event_header        header;
6537
6538         u32                             pid;
6539         u32                             tid;
6540 };
6541
6542 static void
6543 perf_event_read_event(struct perf_event *event,
6544                         struct task_struct *task)
6545 {
6546         struct perf_output_handle handle;
6547         struct perf_sample_data sample;
6548         struct perf_read_event read_event = {
6549                 .header = {
6550                         .type = PERF_RECORD_READ,
6551                         .misc = 0,
6552                         .size = sizeof(read_event) + event->read_size,
6553                 },
6554                 .pid = perf_event_pid(event, task),
6555                 .tid = perf_event_tid(event, task),
6556         };
6557         int ret;
6558
6559         perf_event_header__init_id(&read_event.header, &sample, event);
6560         ret = perf_output_begin(&handle, event, read_event.header.size);
6561         if (ret)
6562                 return;
6563
6564         perf_output_put(&handle, read_event);
6565         perf_output_read(&handle, event);
6566         perf_event__output_id_sample(event, &handle, &sample);
6567
6568         perf_output_end(&handle);
6569 }
6570
6571 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6572
6573 static void
6574 perf_iterate_ctx(struct perf_event_context *ctx,
6575                    perf_iterate_f output,
6576                    void *data, bool all)
6577 {
6578         struct perf_event *event;
6579
6580         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6581                 if (!all) {
6582                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6583                                 continue;
6584                         if (!event_filter_match(event))
6585                                 continue;
6586                 }
6587
6588                 output(event, data);
6589         }
6590 }
6591
6592 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6593 {
6594         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6595         struct perf_event *event;
6596
6597         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6598                 /*
6599                  * Skip events that are not fully formed yet; ensure that
6600                  * if we observe event->ctx, both event and ctx will be
6601                  * complete enough. See perf_install_in_context().
6602                  */
6603                 if (!smp_load_acquire(&event->ctx))
6604                         continue;
6605
6606                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6607                         continue;
6608                 if (!event_filter_match(event))
6609                         continue;
6610                 output(event, data);
6611         }
6612 }
6613
6614 /*
6615  * Iterate all events that need to receive side-band events.
6616  *
6617  * For new callers; ensure that account_pmu_sb_event() includes
6618  * your event, otherwise it might not get delivered.
6619  */
6620 static void
6621 perf_iterate_sb(perf_iterate_f output, void *data,
6622                struct perf_event_context *task_ctx)
6623 {
6624         struct perf_event_context *ctx;
6625         int ctxn;
6626
6627         rcu_read_lock();
6628         preempt_disable();
6629
6630         /*
6631          * If we have task_ctx != NULL we only notify the task context itself.
6632          * The task_ctx is set only for EXIT events before releasing task
6633          * context.
6634          */
6635         if (task_ctx) {
6636                 perf_iterate_ctx(task_ctx, output, data, false);
6637                 goto done;
6638         }
6639
6640         perf_iterate_sb_cpu(output, data);
6641
6642         for_each_task_context_nr(ctxn) {
6643                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6644                 if (ctx)
6645                         perf_iterate_ctx(ctx, output, data, false);
6646         }
6647 done:
6648         preempt_enable();
6649         rcu_read_unlock();
6650 }
6651
6652 /*
6653  * Clear all file-based filters at exec, they'll have to be
6654  * re-instated when/if these objects are mmapped again.
6655  */
6656 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6657 {
6658         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6659         struct perf_addr_filter *filter;
6660         unsigned int restart = 0, count = 0;
6661         unsigned long flags;
6662
6663         if (!has_addr_filter(event))
6664                 return;
6665
6666         raw_spin_lock_irqsave(&ifh->lock, flags);
6667         list_for_each_entry(filter, &ifh->list, entry) {
6668                 if (filter->inode) {
6669                         event->addr_filters_offs[count] = 0;
6670                         restart++;
6671                 }
6672
6673                 count++;
6674         }
6675
6676         if (restart)
6677                 event->addr_filters_gen++;
6678         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6679
6680         if (restart)
6681                 perf_event_stop(event, 1);
6682 }
6683
6684 void perf_event_exec(void)
6685 {
6686         struct perf_event_context *ctx;
6687         int ctxn;
6688
6689         rcu_read_lock();
6690         for_each_task_context_nr(ctxn) {
6691                 ctx = current->perf_event_ctxp[ctxn];
6692                 if (!ctx)
6693                         continue;
6694
6695                 perf_event_enable_on_exec(ctxn);
6696
6697                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6698                                    true);
6699         }
6700         rcu_read_unlock();
6701 }
6702
6703 struct remote_output {
6704         struct ring_buffer      *rb;
6705         int                     err;
6706 };
6707
6708 static void __perf_event_output_stop(struct perf_event *event, void *data)
6709 {
6710         struct perf_event *parent = event->parent;
6711         struct remote_output *ro = data;
6712         struct ring_buffer *rb = ro->rb;
6713         struct stop_event_data sd = {
6714                 .event  = event,
6715         };
6716
6717         if (!has_aux(event))
6718                 return;
6719
6720         if (!parent)
6721                 parent = event;
6722
6723         /*
6724          * In case of inheritance, it will be the parent that links to the
6725          * ring-buffer, but it will be the child that's actually using it.
6726          *
6727          * We are using event::rb to determine if the event should be stopped,
6728          * however this may race with ring_buffer_attach() (through set_output),
6729          * which will make us skip the event that actually needs to be stopped.
6730          * So ring_buffer_attach() has to stop an aux event before re-assigning
6731          * its rb pointer.
6732          */
6733         if (rcu_dereference(parent->rb) == rb)
6734                 ro->err = __perf_event_stop(&sd);
6735 }
6736
6737 static int __perf_pmu_output_stop(void *info)
6738 {
6739         struct perf_event *event = info;
6740         struct pmu *pmu = event->pmu;
6741         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6742         struct remote_output ro = {
6743                 .rb     = event->rb,
6744         };
6745
6746         rcu_read_lock();
6747         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6748         if (cpuctx->task_ctx)
6749                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6750                                    &ro, false);
6751         rcu_read_unlock();
6752
6753         return ro.err;
6754 }
6755
6756 static void perf_pmu_output_stop(struct perf_event *event)
6757 {
6758         struct perf_event *iter;
6759         int err, cpu;
6760
6761 restart:
6762         rcu_read_lock();
6763         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6764                 /*
6765                  * For per-CPU events, we need to make sure that neither they
6766                  * nor their children are running; for cpu==-1 events it's
6767                  * sufficient to stop the event itself if it's active, since
6768                  * it can't have children.
6769                  */
6770                 cpu = iter->cpu;
6771                 if (cpu == -1)
6772                         cpu = READ_ONCE(iter->oncpu);
6773
6774                 if (cpu == -1)
6775                         continue;
6776
6777                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6778                 if (err == -EAGAIN) {
6779                         rcu_read_unlock();
6780                         goto restart;
6781                 }
6782         }
6783         rcu_read_unlock();
6784 }
6785
6786 /*
6787  * task tracking -- fork/exit
6788  *
6789  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6790  */
6791
6792 struct perf_task_event {
6793         struct task_struct              *task;
6794         struct perf_event_context       *task_ctx;
6795
6796         struct {
6797                 struct perf_event_header        header;
6798
6799                 u32                             pid;
6800                 u32                             ppid;
6801                 u32                             tid;
6802                 u32                             ptid;
6803                 u64                             time;
6804         } event_id;
6805 };
6806
6807 static int perf_event_task_match(struct perf_event *event)
6808 {
6809         return event->attr.comm  || event->attr.mmap ||
6810                event->attr.mmap2 || event->attr.mmap_data ||
6811                event->attr.task;
6812 }
6813
6814 static void perf_event_task_output(struct perf_event *event,
6815                                    void *data)
6816 {
6817         struct perf_task_event *task_event = data;
6818         struct perf_output_handle handle;
6819         struct perf_sample_data sample;
6820         struct task_struct *task = task_event->task;
6821         int ret, size = task_event->event_id.header.size;
6822
6823         if (!perf_event_task_match(event))
6824                 return;
6825
6826         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6827
6828         ret = perf_output_begin(&handle, event,
6829                                 task_event->event_id.header.size);
6830         if (ret)
6831                 goto out;
6832
6833         task_event->event_id.pid = perf_event_pid(event, task);
6834         task_event->event_id.ppid = perf_event_pid(event, current);
6835
6836         task_event->event_id.tid = perf_event_tid(event, task);
6837         task_event->event_id.ptid = perf_event_tid(event, current);
6838
6839         task_event->event_id.time = perf_event_clock(event);
6840
6841         perf_output_put(&handle, task_event->event_id);
6842
6843         perf_event__output_id_sample(event, &handle, &sample);
6844
6845         perf_output_end(&handle);
6846 out:
6847         task_event->event_id.header.size = size;
6848 }
6849
6850 static void perf_event_task(struct task_struct *task,
6851                               struct perf_event_context *task_ctx,
6852                               int new)
6853 {
6854         struct perf_task_event task_event;
6855
6856         if (!atomic_read(&nr_comm_events) &&
6857             !atomic_read(&nr_mmap_events) &&
6858             !atomic_read(&nr_task_events))
6859                 return;
6860
6861         task_event = (struct perf_task_event){
6862                 .task     = task,
6863                 .task_ctx = task_ctx,
6864                 .event_id    = {
6865                         .header = {
6866                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6867                                 .misc = 0,
6868                                 .size = sizeof(task_event.event_id),
6869                         },
6870                         /* .pid  */
6871                         /* .ppid */
6872                         /* .tid  */
6873                         /* .ptid */
6874                         /* .time */
6875                 },
6876         };
6877
6878         perf_iterate_sb(perf_event_task_output,
6879                        &task_event,
6880                        task_ctx);
6881 }
6882
6883 void perf_event_fork(struct task_struct *task)
6884 {
6885         perf_event_task(task, NULL, 1);
6886         perf_event_namespaces(task);
6887 }
6888
6889 /*
6890  * comm tracking
6891  */
6892
6893 struct perf_comm_event {
6894         struct task_struct      *task;
6895         char                    *comm;
6896         int                     comm_size;
6897
6898         struct {
6899                 struct perf_event_header        header;
6900
6901                 u32                             pid;
6902                 u32                             tid;
6903         } event_id;
6904 };
6905
6906 static int perf_event_comm_match(struct perf_event *event)
6907 {
6908         return event->attr.comm;
6909 }
6910
6911 static void perf_event_comm_output(struct perf_event *event,
6912                                    void *data)
6913 {
6914         struct perf_comm_event *comm_event = data;
6915         struct perf_output_handle handle;
6916         struct perf_sample_data sample;
6917         int size = comm_event->event_id.header.size;
6918         int ret;
6919
6920         if (!perf_event_comm_match(event))
6921                 return;
6922
6923         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6924         ret = perf_output_begin(&handle, event,
6925                                 comm_event->event_id.header.size);
6926
6927         if (ret)
6928                 goto out;
6929
6930         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6931         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6932
6933         perf_output_put(&handle, comm_event->event_id);
6934         __output_copy(&handle, comm_event->comm,
6935                                    comm_event->comm_size);
6936
6937         perf_event__output_id_sample(event, &handle, &sample);
6938
6939         perf_output_end(&handle);
6940 out:
6941         comm_event->event_id.header.size = size;
6942 }
6943
6944 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6945 {
6946         char comm[TASK_COMM_LEN];
6947         unsigned int size;
6948
6949         memset(comm, 0, sizeof(comm));
6950         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6951         size = ALIGN(strlen(comm)+1, sizeof(u64));
6952
6953         comm_event->comm = comm;
6954         comm_event->comm_size = size;
6955
6956         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6957
6958         perf_iterate_sb(perf_event_comm_output,
6959                        comm_event,
6960                        NULL);
6961 }
6962
6963 void perf_event_comm(struct task_struct *task, bool exec)
6964 {
6965         struct perf_comm_event comm_event;
6966
6967         if (!atomic_read(&nr_comm_events))
6968                 return;
6969
6970         comm_event = (struct perf_comm_event){
6971                 .task   = task,
6972                 /* .comm      */
6973                 /* .comm_size */
6974                 .event_id  = {
6975                         .header = {
6976                                 .type = PERF_RECORD_COMM,
6977                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6978                                 /* .size */
6979                         },
6980                         /* .pid */
6981                         /* .tid */
6982                 },
6983         };
6984
6985         perf_event_comm_event(&comm_event);
6986 }
6987
6988 /*
6989  * namespaces tracking
6990  */
6991
6992 struct perf_namespaces_event {
6993         struct task_struct              *task;
6994
6995         struct {
6996                 struct perf_event_header        header;
6997
6998                 u32                             pid;
6999                 u32                             tid;
7000                 u64                             nr_namespaces;
7001                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7002         } event_id;
7003 };
7004
7005 static int perf_event_namespaces_match(struct perf_event *event)
7006 {
7007         return event->attr.namespaces;
7008 }
7009
7010 static void perf_event_namespaces_output(struct perf_event *event,
7011                                          void *data)
7012 {
7013         struct perf_namespaces_event *namespaces_event = data;
7014         struct perf_output_handle handle;
7015         struct perf_sample_data sample;
7016         u16 header_size = namespaces_event->event_id.header.size;
7017         int ret;
7018
7019         if (!perf_event_namespaces_match(event))
7020                 return;
7021
7022         perf_event_header__init_id(&namespaces_event->event_id.header,
7023                                    &sample, event);
7024         ret = perf_output_begin(&handle, event,
7025                                 namespaces_event->event_id.header.size);
7026         if (ret)
7027                 goto out;
7028
7029         namespaces_event->event_id.pid = perf_event_pid(event,
7030                                                         namespaces_event->task);
7031         namespaces_event->event_id.tid = perf_event_tid(event,
7032                                                         namespaces_event->task);
7033
7034         perf_output_put(&handle, namespaces_event->event_id);
7035
7036         perf_event__output_id_sample(event, &handle, &sample);
7037
7038         perf_output_end(&handle);
7039 out:
7040         namespaces_event->event_id.header.size = header_size;
7041 }
7042
7043 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7044                                    struct task_struct *task,
7045                                    const struct proc_ns_operations *ns_ops)
7046 {
7047         struct path ns_path;
7048         struct inode *ns_inode;
7049         void *error;
7050
7051         error = ns_get_path(&ns_path, task, ns_ops);
7052         if (!error) {
7053                 ns_inode = ns_path.dentry->d_inode;
7054                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7055                 ns_link_info->ino = ns_inode->i_ino;
7056                 path_put(&ns_path);
7057         }
7058 }
7059
7060 void perf_event_namespaces(struct task_struct *task)
7061 {
7062         struct perf_namespaces_event namespaces_event;
7063         struct perf_ns_link_info *ns_link_info;
7064
7065         if (!atomic_read(&nr_namespaces_events))
7066                 return;
7067
7068         namespaces_event = (struct perf_namespaces_event){
7069                 .task   = task,
7070                 .event_id  = {
7071                         .header = {
7072                                 .type = PERF_RECORD_NAMESPACES,
7073                                 .misc = 0,
7074                                 .size = sizeof(namespaces_event.event_id),
7075                         },
7076                         /* .pid */
7077                         /* .tid */
7078                         .nr_namespaces = NR_NAMESPACES,
7079                         /* .link_info[NR_NAMESPACES] */
7080                 },
7081         };
7082
7083         ns_link_info = namespaces_event.event_id.link_info;
7084
7085         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7086                                task, &mntns_operations);
7087
7088 #ifdef CONFIG_USER_NS
7089         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7090                                task, &userns_operations);
7091 #endif
7092 #ifdef CONFIG_NET_NS
7093         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7094                                task, &netns_operations);
7095 #endif
7096 #ifdef CONFIG_UTS_NS
7097         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7098                                task, &utsns_operations);
7099 #endif
7100 #ifdef CONFIG_IPC_NS
7101         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7102                                task, &ipcns_operations);
7103 #endif
7104 #ifdef CONFIG_PID_NS
7105         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7106                                task, &pidns_operations);
7107 #endif
7108 #ifdef CONFIG_CGROUPS
7109         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7110                                task, &cgroupns_operations);
7111 #endif
7112
7113         perf_iterate_sb(perf_event_namespaces_output,
7114                         &namespaces_event,
7115                         NULL);
7116 }
7117
7118 /*
7119  * mmap tracking
7120  */
7121
7122 struct perf_mmap_event {
7123         struct vm_area_struct   *vma;
7124
7125         const char              *file_name;
7126         int                     file_size;
7127         int                     maj, min;
7128         u64                     ino;
7129         u64                     ino_generation;
7130         u32                     prot, flags;
7131
7132         struct {
7133                 struct perf_event_header        header;
7134
7135                 u32                             pid;
7136                 u32                             tid;
7137                 u64                             start;
7138                 u64                             len;
7139                 u64                             pgoff;
7140         } event_id;
7141 };
7142
7143 static int perf_event_mmap_match(struct perf_event *event,
7144                                  void *data)
7145 {
7146         struct perf_mmap_event *mmap_event = data;
7147         struct vm_area_struct *vma = mmap_event->vma;
7148         int executable = vma->vm_flags & VM_EXEC;
7149
7150         return (!executable && event->attr.mmap_data) ||
7151                (executable && (event->attr.mmap || event->attr.mmap2));
7152 }
7153
7154 static void perf_event_mmap_output(struct perf_event *event,
7155                                    void *data)
7156 {
7157         struct perf_mmap_event *mmap_event = data;
7158         struct perf_output_handle handle;
7159         struct perf_sample_data sample;
7160         int size = mmap_event->event_id.header.size;
7161         int ret;
7162
7163         if (!perf_event_mmap_match(event, data))
7164                 return;
7165
7166         if (event->attr.mmap2) {
7167                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7168                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7169                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7170                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7171                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7172                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7173                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7174         }
7175
7176         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7177         ret = perf_output_begin(&handle, event,
7178                                 mmap_event->event_id.header.size);
7179         if (ret)
7180                 goto out;
7181
7182         mmap_event->event_id.pid = perf_event_pid(event, current);
7183         mmap_event->event_id.tid = perf_event_tid(event, current);
7184
7185         perf_output_put(&handle, mmap_event->event_id);
7186
7187         if (event->attr.mmap2) {
7188                 perf_output_put(&handle, mmap_event->maj);
7189                 perf_output_put(&handle, mmap_event->min);
7190                 perf_output_put(&handle, mmap_event->ino);
7191                 perf_output_put(&handle, mmap_event->ino_generation);
7192                 perf_output_put(&handle, mmap_event->prot);
7193                 perf_output_put(&handle, mmap_event->flags);
7194         }
7195
7196         __output_copy(&handle, mmap_event->file_name,
7197                                    mmap_event->file_size);
7198
7199         perf_event__output_id_sample(event, &handle, &sample);
7200
7201         perf_output_end(&handle);
7202 out:
7203         mmap_event->event_id.header.size = size;
7204 }
7205
7206 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7207 {
7208         struct vm_area_struct *vma = mmap_event->vma;
7209         struct file *file = vma->vm_file;
7210         int maj = 0, min = 0;
7211         u64 ino = 0, gen = 0;
7212         u32 prot = 0, flags = 0;
7213         unsigned int size;
7214         char tmp[16];
7215         char *buf = NULL;
7216         char *name;
7217
7218         if (vma->vm_flags & VM_READ)
7219                 prot |= PROT_READ;
7220         if (vma->vm_flags & VM_WRITE)
7221                 prot |= PROT_WRITE;
7222         if (vma->vm_flags & VM_EXEC)
7223                 prot |= PROT_EXEC;
7224
7225         if (vma->vm_flags & VM_MAYSHARE)
7226                 flags = MAP_SHARED;
7227         else
7228                 flags = MAP_PRIVATE;
7229
7230         if (vma->vm_flags & VM_DENYWRITE)
7231                 flags |= MAP_DENYWRITE;
7232         if (vma->vm_flags & VM_MAYEXEC)
7233                 flags |= MAP_EXECUTABLE;
7234         if (vma->vm_flags & VM_LOCKED)
7235                 flags |= MAP_LOCKED;
7236         if (vma->vm_flags & VM_HUGETLB)
7237                 flags |= MAP_HUGETLB;
7238
7239         if (file) {
7240                 struct inode *inode;
7241                 dev_t dev;
7242
7243                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7244                 if (!buf) {
7245                         name = "//enomem";
7246                         goto cpy_name;
7247                 }
7248                 /*
7249                  * d_path() works from the end of the rb backwards, so we
7250                  * need to add enough zero bytes after the string to handle
7251                  * the 64bit alignment we do later.
7252                  */
7253                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7254                 if (IS_ERR(name)) {
7255                         name = "//toolong";
7256                         goto cpy_name;
7257                 }
7258                 inode = file_inode(vma->vm_file);
7259                 dev = inode->i_sb->s_dev;
7260                 ino = inode->i_ino;
7261                 gen = inode->i_generation;
7262                 maj = MAJOR(dev);
7263                 min = MINOR(dev);
7264
7265                 goto got_name;
7266         } else {
7267                 if (vma->vm_ops && vma->vm_ops->name) {
7268                         name = (char *) vma->vm_ops->name(vma);
7269                         if (name)
7270                                 goto cpy_name;
7271                 }
7272
7273                 name = (char *)arch_vma_name(vma);
7274                 if (name)
7275                         goto cpy_name;
7276
7277                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7278                                 vma->vm_end >= vma->vm_mm->brk) {
7279                         name = "[heap]";
7280                         goto cpy_name;
7281                 }
7282                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7283                                 vma->vm_end >= vma->vm_mm->start_stack) {
7284                         name = "[stack]";
7285                         goto cpy_name;
7286                 }
7287
7288                 name = "//anon";
7289                 goto cpy_name;
7290         }
7291
7292 cpy_name:
7293         strlcpy(tmp, name, sizeof(tmp));
7294         name = tmp;
7295 got_name:
7296         /*
7297          * Since our buffer works in 8 byte units we need to align our string
7298          * size to a multiple of 8. However, we must guarantee the tail end is
7299          * zero'd out to avoid leaking random bits to userspace.
7300          */
7301         size = strlen(name)+1;
7302         while (!IS_ALIGNED(size, sizeof(u64)))
7303                 name[size++] = '\0';
7304
7305         mmap_event->file_name = name;
7306         mmap_event->file_size = size;
7307         mmap_event->maj = maj;
7308         mmap_event->min = min;
7309         mmap_event->ino = ino;
7310         mmap_event->ino_generation = gen;
7311         mmap_event->prot = prot;
7312         mmap_event->flags = flags;
7313
7314         if (!(vma->vm_flags & VM_EXEC))
7315                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7316
7317         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7318
7319         perf_iterate_sb(perf_event_mmap_output,
7320                        mmap_event,
7321                        NULL);
7322
7323         kfree(buf);
7324 }
7325
7326 /*
7327  * Check whether inode and address range match filter criteria.
7328  */
7329 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7330                                      struct file *file, unsigned long offset,
7331                                      unsigned long size)
7332 {
7333         if (filter->inode != file_inode(file))
7334                 return false;
7335
7336         if (filter->offset > offset + size)
7337                 return false;
7338
7339         if (filter->offset + filter->size < offset)
7340                 return false;
7341
7342         return true;
7343 }
7344
7345 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7346 {
7347         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7348         struct vm_area_struct *vma = data;
7349         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7350         struct file *file = vma->vm_file;
7351         struct perf_addr_filter *filter;
7352         unsigned int restart = 0, count = 0;
7353
7354         if (!has_addr_filter(event))
7355                 return;
7356
7357         if (!file)
7358                 return;
7359
7360         raw_spin_lock_irqsave(&ifh->lock, flags);
7361         list_for_each_entry(filter, &ifh->list, entry) {
7362                 if (perf_addr_filter_match(filter, file, off,
7363                                              vma->vm_end - vma->vm_start)) {
7364                         event->addr_filters_offs[count] = vma->vm_start;
7365                         restart++;
7366                 }
7367
7368                 count++;
7369         }
7370
7371         if (restart)
7372                 event->addr_filters_gen++;
7373         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7374
7375         if (restart)
7376                 perf_event_stop(event, 1);
7377 }
7378
7379 /*
7380  * Adjust all task's events' filters to the new vma
7381  */
7382 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7383 {
7384         struct perf_event_context *ctx;
7385         int ctxn;
7386
7387         /*
7388          * Data tracing isn't supported yet and as such there is no need
7389          * to keep track of anything that isn't related to executable code:
7390          */
7391         if (!(vma->vm_flags & VM_EXEC))
7392                 return;
7393
7394         rcu_read_lock();
7395         for_each_task_context_nr(ctxn) {
7396                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7397                 if (!ctx)
7398                         continue;
7399
7400                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7401         }
7402         rcu_read_unlock();
7403 }
7404
7405 void perf_event_mmap(struct vm_area_struct *vma)
7406 {
7407         struct perf_mmap_event mmap_event;
7408
7409         if (!atomic_read(&nr_mmap_events))
7410                 return;
7411
7412         mmap_event = (struct perf_mmap_event){
7413                 .vma    = vma,
7414                 /* .file_name */
7415                 /* .file_size */
7416                 .event_id  = {
7417                         .header = {
7418                                 .type = PERF_RECORD_MMAP,
7419                                 .misc = PERF_RECORD_MISC_USER,
7420                                 /* .size */
7421                         },
7422                         /* .pid */
7423                         /* .tid */
7424                         .start  = vma->vm_start,
7425                         .len    = vma->vm_end - vma->vm_start,
7426                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7427                 },
7428                 /* .maj (attr_mmap2 only) */
7429                 /* .min (attr_mmap2 only) */
7430                 /* .ino (attr_mmap2 only) */
7431                 /* .ino_generation (attr_mmap2 only) */
7432                 /* .prot (attr_mmap2 only) */
7433                 /* .flags (attr_mmap2 only) */
7434         };
7435
7436         perf_addr_filters_adjust(vma);
7437         perf_event_mmap_event(&mmap_event);
7438 }
7439
7440 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7441                           unsigned long size, u64 flags)
7442 {
7443         struct perf_output_handle handle;
7444         struct perf_sample_data sample;
7445         struct perf_aux_event {
7446                 struct perf_event_header        header;
7447                 u64                             offset;
7448                 u64                             size;
7449                 u64                             flags;
7450         } rec = {
7451                 .header = {
7452                         .type = PERF_RECORD_AUX,
7453                         .misc = 0,
7454                         .size = sizeof(rec),
7455                 },
7456                 .offset         = head,
7457                 .size           = size,
7458                 .flags          = flags,
7459         };
7460         int ret;
7461
7462         perf_event_header__init_id(&rec.header, &sample, event);
7463         ret = perf_output_begin(&handle, event, rec.header.size);
7464
7465         if (ret)
7466                 return;
7467
7468         perf_output_put(&handle, rec);
7469         perf_event__output_id_sample(event, &handle, &sample);
7470
7471         perf_output_end(&handle);
7472 }
7473
7474 /*
7475  * Lost/dropped samples logging
7476  */
7477 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7478 {
7479         struct perf_output_handle handle;
7480         struct perf_sample_data sample;
7481         int ret;
7482
7483         struct {
7484                 struct perf_event_header        header;
7485                 u64                             lost;
7486         } lost_samples_event = {
7487                 .header = {
7488                         .type = PERF_RECORD_LOST_SAMPLES,
7489                         .misc = 0,
7490                         .size = sizeof(lost_samples_event),
7491                 },
7492                 .lost           = lost,
7493         };
7494
7495         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7496
7497         ret = perf_output_begin(&handle, event,
7498                                 lost_samples_event.header.size);
7499         if (ret)
7500                 return;
7501
7502         perf_output_put(&handle, lost_samples_event);
7503         perf_event__output_id_sample(event, &handle, &sample);
7504         perf_output_end(&handle);
7505 }
7506
7507 /*
7508  * context_switch tracking
7509  */
7510
7511 struct perf_switch_event {
7512         struct task_struct      *task;
7513         struct task_struct      *next_prev;
7514
7515         struct {
7516                 struct perf_event_header        header;
7517                 u32                             next_prev_pid;
7518                 u32                             next_prev_tid;
7519         } event_id;
7520 };
7521
7522 static int perf_event_switch_match(struct perf_event *event)
7523 {
7524         return event->attr.context_switch;
7525 }
7526
7527 static void perf_event_switch_output(struct perf_event *event, void *data)
7528 {
7529         struct perf_switch_event *se = data;
7530         struct perf_output_handle handle;
7531         struct perf_sample_data sample;
7532         int ret;
7533
7534         if (!perf_event_switch_match(event))
7535                 return;
7536
7537         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7538         if (event->ctx->task) {
7539                 se->event_id.header.type = PERF_RECORD_SWITCH;
7540                 se->event_id.header.size = sizeof(se->event_id.header);
7541         } else {
7542                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7543                 se->event_id.header.size = sizeof(se->event_id);
7544                 se->event_id.next_prev_pid =
7545                                         perf_event_pid(event, se->next_prev);
7546                 se->event_id.next_prev_tid =
7547                                         perf_event_tid(event, se->next_prev);
7548         }
7549
7550         perf_event_header__init_id(&se->event_id.header, &sample, event);
7551
7552         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7553         if (ret)
7554                 return;
7555
7556         if (event->ctx->task)
7557                 perf_output_put(&handle, se->event_id.header);
7558         else
7559                 perf_output_put(&handle, se->event_id);
7560
7561         perf_event__output_id_sample(event, &handle, &sample);
7562
7563         perf_output_end(&handle);
7564 }
7565
7566 static void perf_event_switch(struct task_struct *task,
7567                               struct task_struct *next_prev, bool sched_in)
7568 {
7569         struct perf_switch_event switch_event;
7570
7571         /* N.B. caller checks nr_switch_events != 0 */
7572
7573         switch_event = (struct perf_switch_event){
7574                 .task           = task,
7575                 .next_prev      = next_prev,
7576                 .event_id       = {
7577                         .header = {
7578                                 /* .type */
7579                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7580                                 /* .size */
7581                         },
7582                         /* .next_prev_pid */
7583                         /* .next_prev_tid */
7584                 },
7585         };
7586
7587         perf_iterate_sb(perf_event_switch_output,
7588                        &switch_event,
7589                        NULL);
7590 }
7591
7592 /*
7593  * IRQ throttle logging
7594  */
7595
7596 static void perf_log_throttle(struct perf_event *event, int enable)
7597 {
7598         struct perf_output_handle handle;
7599         struct perf_sample_data sample;
7600         int ret;
7601
7602         struct {
7603                 struct perf_event_header        header;
7604                 u64                             time;
7605                 u64                             id;
7606                 u64                             stream_id;
7607         } throttle_event = {
7608                 .header = {
7609                         .type = PERF_RECORD_THROTTLE,
7610                         .misc = 0,
7611                         .size = sizeof(throttle_event),
7612                 },
7613                 .time           = perf_event_clock(event),
7614                 .id             = primary_event_id(event),
7615                 .stream_id      = event->id,
7616         };
7617
7618         if (enable)
7619                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7620
7621         perf_event_header__init_id(&throttle_event.header, &sample, event);
7622
7623         ret = perf_output_begin(&handle, event,
7624                                 throttle_event.header.size);
7625         if (ret)
7626                 return;
7627
7628         perf_output_put(&handle, throttle_event);
7629         perf_event__output_id_sample(event, &handle, &sample);
7630         perf_output_end(&handle);
7631 }
7632
7633 void perf_event_itrace_started(struct perf_event *event)
7634 {
7635         event->attach_state |= PERF_ATTACH_ITRACE;
7636 }
7637
7638 static void perf_log_itrace_start(struct perf_event *event)
7639 {
7640         struct perf_output_handle handle;
7641         struct perf_sample_data sample;
7642         struct perf_aux_event {
7643                 struct perf_event_header        header;
7644                 u32                             pid;
7645                 u32                             tid;
7646         } rec;
7647         int ret;
7648
7649         if (event->parent)
7650                 event = event->parent;
7651
7652         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7653             event->attach_state & PERF_ATTACH_ITRACE)
7654                 return;
7655
7656         rec.header.type = PERF_RECORD_ITRACE_START;
7657         rec.header.misc = 0;
7658         rec.header.size = sizeof(rec);
7659         rec.pid = perf_event_pid(event, current);
7660         rec.tid = perf_event_tid(event, current);
7661
7662         perf_event_header__init_id(&rec.header, &sample, event);
7663         ret = perf_output_begin(&handle, event, rec.header.size);
7664
7665         if (ret)
7666                 return;
7667
7668         perf_output_put(&handle, rec);
7669         perf_event__output_id_sample(event, &handle, &sample);
7670
7671         perf_output_end(&handle);
7672 }
7673
7674 static int
7675 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7676 {
7677         struct hw_perf_event *hwc = &event->hw;
7678         int ret = 0;
7679         u64 seq;
7680
7681         seq = __this_cpu_read(perf_throttled_seq);
7682         if (seq != hwc->interrupts_seq) {
7683                 hwc->interrupts_seq = seq;
7684                 hwc->interrupts = 1;
7685         } else {
7686                 hwc->interrupts++;
7687                 if (unlikely(throttle
7688                              && hwc->interrupts >= max_samples_per_tick)) {
7689                         __this_cpu_inc(perf_throttled_count);
7690                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7691                         hwc->interrupts = MAX_INTERRUPTS;
7692                         perf_log_throttle(event, 0);
7693                         ret = 1;
7694                 }
7695         }
7696
7697         if (event->attr.freq) {
7698                 u64 now = perf_clock();
7699                 s64 delta = now - hwc->freq_time_stamp;
7700
7701                 hwc->freq_time_stamp = now;
7702
7703                 if (delta > 0 && delta < 2*TICK_NSEC)
7704                         perf_adjust_period(event, delta, hwc->last_period, true);
7705         }
7706
7707         return ret;
7708 }
7709
7710 int perf_event_account_interrupt(struct perf_event *event)
7711 {
7712         return __perf_event_account_interrupt(event, 1);
7713 }
7714
7715 /*
7716  * Generic event overflow handling, sampling.
7717  */
7718
7719 static int __perf_event_overflow(struct perf_event *event,
7720                                    int throttle, struct perf_sample_data *data,
7721                                    struct pt_regs *regs)
7722 {
7723         int events = atomic_read(&event->event_limit);
7724         int ret = 0;
7725
7726         /*
7727          * Non-sampling counters might still use the PMI to fold short
7728          * hardware counters, ignore those.
7729          */
7730         if (unlikely(!is_sampling_event(event)))
7731                 return 0;
7732
7733         ret = __perf_event_account_interrupt(event, throttle);
7734
7735         /*
7736          * XXX event_limit might not quite work as expected on inherited
7737          * events
7738          */
7739
7740         event->pending_kill = POLL_IN;
7741         if (events && atomic_dec_and_test(&event->event_limit)) {
7742                 ret = 1;
7743                 event->pending_kill = POLL_HUP;
7744
7745                 perf_event_disable_inatomic(event);
7746         }
7747
7748         READ_ONCE(event->overflow_handler)(event, data, regs);
7749
7750         if (*perf_event_fasync(event) && event->pending_kill) {
7751                 event->pending_wakeup = 1;
7752                 irq_work_queue(&event->pending);
7753         }
7754
7755         return ret;
7756 }
7757
7758 int perf_event_overflow(struct perf_event *event,
7759                           struct perf_sample_data *data,
7760                           struct pt_regs *regs)
7761 {
7762         return __perf_event_overflow(event, 1, data, regs);
7763 }
7764
7765 /*
7766  * Generic software event infrastructure
7767  */
7768
7769 struct swevent_htable {
7770         struct swevent_hlist            *swevent_hlist;
7771         struct mutex                    hlist_mutex;
7772         int                             hlist_refcount;
7773
7774         /* Recursion avoidance in each contexts */
7775         int                             recursion[PERF_NR_CONTEXTS];
7776 };
7777
7778 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7779
7780 /*
7781  * We directly increment event->count and keep a second value in
7782  * event->hw.period_left to count intervals. This period event
7783  * is kept in the range [-sample_period, 0] so that we can use the
7784  * sign as trigger.
7785  */
7786
7787 u64 perf_swevent_set_period(struct perf_event *event)
7788 {
7789         struct hw_perf_event *hwc = &event->hw;
7790         u64 period = hwc->last_period;
7791         u64 nr, offset;
7792         s64 old, val;
7793
7794         hwc->last_period = hwc->sample_period;
7795
7796 again:
7797         old = val = local64_read(&hwc->period_left);
7798         if (val < 0)
7799                 return 0;
7800
7801         nr = div64_u64(period + val, period);
7802         offset = nr * period;
7803         val -= offset;
7804         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7805                 goto again;
7806
7807         return nr;
7808 }
7809
7810 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7811                                     struct perf_sample_data *data,
7812                                     struct pt_regs *regs)
7813 {
7814         struct hw_perf_event *hwc = &event->hw;
7815         int throttle = 0;
7816
7817         if (!overflow)
7818                 overflow = perf_swevent_set_period(event);
7819
7820         if (hwc->interrupts == MAX_INTERRUPTS)
7821                 return;
7822
7823         for (; overflow; overflow--) {
7824                 if (__perf_event_overflow(event, throttle,
7825                                             data, regs)) {
7826                         /*
7827                          * We inhibit the overflow from happening when
7828                          * hwc->interrupts == MAX_INTERRUPTS.
7829                          */
7830                         break;
7831                 }
7832                 throttle = 1;
7833         }
7834 }
7835
7836 static void perf_swevent_event(struct perf_event *event, u64 nr,
7837                                struct perf_sample_data *data,
7838                                struct pt_regs *regs)
7839 {
7840         struct hw_perf_event *hwc = &event->hw;
7841
7842         local64_add(nr, &event->count);
7843
7844         if (!regs)
7845                 return;
7846
7847         if (!is_sampling_event(event))
7848                 return;
7849
7850         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7851                 data->period = nr;
7852                 return perf_swevent_overflow(event, 1, data, regs);
7853         } else
7854                 data->period = event->hw.last_period;
7855
7856         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7857                 return perf_swevent_overflow(event, 1, data, regs);
7858
7859         if (local64_add_negative(nr, &hwc->period_left))
7860                 return;
7861
7862         perf_swevent_overflow(event, 0, data, regs);
7863 }
7864
7865 static int perf_exclude_event(struct perf_event *event,
7866                               struct pt_regs *regs)
7867 {
7868         if (event->hw.state & PERF_HES_STOPPED)
7869                 return 1;
7870
7871         if (regs) {
7872                 if (event->attr.exclude_user && user_mode(regs))
7873                         return 1;
7874
7875                 if (event->attr.exclude_kernel && !user_mode(regs))
7876                         return 1;
7877         }
7878
7879         return 0;
7880 }
7881
7882 static int perf_swevent_match(struct perf_event *event,
7883                                 enum perf_type_id type,
7884                                 u32 event_id,
7885                                 struct perf_sample_data *data,
7886                                 struct pt_regs *regs)
7887 {
7888         if (event->attr.type != type)
7889                 return 0;
7890
7891         if (event->attr.config != event_id)
7892                 return 0;
7893
7894         if (perf_exclude_event(event, regs))
7895                 return 0;
7896
7897         return 1;
7898 }
7899
7900 static inline u64 swevent_hash(u64 type, u32 event_id)
7901 {
7902         u64 val = event_id | (type << 32);
7903
7904         return hash_64(val, SWEVENT_HLIST_BITS);
7905 }
7906
7907 static inline struct hlist_head *
7908 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7909 {
7910         u64 hash = swevent_hash(type, event_id);
7911
7912         return &hlist->heads[hash];
7913 }
7914
7915 /* For the read side: events when they trigger */
7916 static inline struct hlist_head *
7917 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7918 {
7919         struct swevent_hlist *hlist;
7920
7921         hlist = rcu_dereference(swhash->swevent_hlist);
7922         if (!hlist)
7923                 return NULL;
7924
7925         return __find_swevent_head(hlist, type, event_id);
7926 }
7927
7928 /* For the event head insertion and removal in the hlist */
7929 static inline struct hlist_head *
7930 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7931 {
7932         struct swevent_hlist *hlist;
7933         u32 event_id = event->attr.config;
7934         u64 type = event->attr.type;
7935
7936         /*
7937          * Event scheduling is always serialized against hlist allocation
7938          * and release. Which makes the protected version suitable here.
7939          * The context lock guarantees that.
7940          */
7941         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7942                                           lockdep_is_held(&event->ctx->lock));
7943         if (!hlist)
7944                 return NULL;
7945
7946         return __find_swevent_head(hlist, type, event_id);
7947 }
7948
7949 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7950                                     u64 nr,
7951                                     struct perf_sample_data *data,
7952                                     struct pt_regs *regs)
7953 {
7954         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7955         struct perf_event *event;
7956         struct hlist_head *head;
7957
7958         rcu_read_lock();
7959         head = find_swevent_head_rcu(swhash, type, event_id);
7960         if (!head)
7961                 goto end;
7962
7963         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7964                 if (perf_swevent_match(event, type, event_id, data, regs))
7965                         perf_swevent_event(event, nr, data, regs);
7966         }
7967 end:
7968         rcu_read_unlock();
7969 }
7970
7971 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7972
7973 int perf_swevent_get_recursion_context(void)
7974 {
7975         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7976
7977         return get_recursion_context(swhash->recursion);
7978 }
7979 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7980
7981 void perf_swevent_put_recursion_context(int rctx)
7982 {
7983         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7984
7985         put_recursion_context(swhash->recursion, rctx);
7986 }
7987
7988 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7989 {
7990         struct perf_sample_data data;
7991
7992         if (WARN_ON_ONCE(!regs))
7993                 return;
7994
7995         perf_sample_data_init(&data, addr, 0);
7996         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7997 }
7998
7999 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8000 {
8001         int rctx;
8002
8003         preempt_disable_notrace();
8004         rctx = perf_swevent_get_recursion_context();
8005         if (unlikely(rctx < 0))
8006                 goto fail;
8007
8008         ___perf_sw_event(event_id, nr, regs, addr);
8009
8010         perf_swevent_put_recursion_context(rctx);
8011 fail:
8012         preempt_enable_notrace();
8013 }
8014
8015 static void perf_swevent_read(struct perf_event *event)
8016 {
8017 }
8018
8019 static int perf_swevent_add(struct perf_event *event, int flags)
8020 {
8021         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8022         struct hw_perf_event *hwc = &event->hw;
8023         struct hlist_head *head;
8024
8025         if (is_sampling_event(event)) {
8026                 hwc->last_period = hwc->sample_period;
8027                 perf_swevent_set_period(event);
8028         }
8029
8030         hwc->state = !(flags & PERF_EF_START);
8031
8032         head = find_swevent_head(swhash, event);
8033         if (WARN_ON_ONCE(!head))
8034                 return -EINVAL;
8035
8036         hlist_add_head_rcu(&event->hlist_entry, head);
8037         perf_event_update_userpage(event);
8038
8039         return 0;
8040 }
8041
8042 static void perf_swevent_del(struct perf_event *event, int flags)
8043 {
8044         hlist_del_rcu(&event->hlist_entry);
8045 }
8046
8047 static void perf_swevent_start(struct perf_event *event, int flags)
8048 {
8049         event->hw.state = 0;
8050 }
8051
8052 static void perf_swevent_stop(struct perf_event *event, int flags)
8053 {
8054         event->hw.state = PERF_HES_STOPPED;
8055 }
8056
8057 /* Deref the hlist from the update side */
8058 static inline struct swevent_hlist *
8059 swevent_hlist_deref(struct swevent_htable *swhash)
8060 {
8061         return rcu_dereference_protected(swhash->swevent_hlist,
8062                                          lockdep_is_held(&swhash->hlist_mutex));
8063 }
8064
8065 static void swevent_hlist_release(struct swevent_htable *swhash)
8066 {
8067         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8068
8069         if (!hlist)
8070                 return;
8071
8072         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8073         kfree_rcu(hlist, rcu_head);
8074 }
8075
8076 static void swevent_hlist_put_cpu(int cpu)
8077 {
8078         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8079
8080         mutex_lock(&swhash->hlist_mutex);
8081
8082         if (!--swhash->hlist_refcount)
8083                 swevent_hlist_release(swhash);
8084
8085         mutex_unlock(&swhash->hlist_mutex);
8086 }
8087
8088 static void swevent_hlist_put(void)
8089 {
8090         int cpu;
8091
8092         for_each_possible_cpu(cpu)
8093                 swevent_hlist_put_cpu(cpu);
8094 }
8095
8096 static int swevent_hlist_get_cpu(int cpu)
8097 {
8098         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8099         int err = 0;
8100
8101         mutex_lock(&swhash->hlist_mutex);
8102         if (!swevent_hlist_deref(swhash) &&
8103             cpumask_test_cpu(cpu, perf_online_mask)) {
8104                 struct swevent_hlist *hlist;
8105
8106                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8107                 if (!hlist) {
8108                         err = -ENOMEM;
8109                         goto exit;
8110                 }
8111                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8112         }
8113         swhash->hlist_refcount++;
8114 exit:
8115         mutex_unlock(&swhash->hlist_mutex);
8116
8117         return err;
8118 }
8119
8120 static int swevent_hlist_get(void)
8121 {
8122         int err, cpu, failed_cpu;
8123
8124         mutex_lock(&pmus_lock);
8125         for_each_possible_cpu(cpu) {
8126                 err = swevent_hlist_get_cpu(cpu);
8127                 if (err) {
8128                         failed_cpu = cpu;
8129                         goto fail;
8130                 }
8131         }
8132         mutex_unlock(&pmus_lock);
8133         return 0;
8134 fail:
8135         for_each_possible_cpu(cpu) {
8136                 if (cpu == failed_cpu)
8137                         break;
8138                 swevent_hlist_put_cpu(cpu);
8139         }
8140         mutex_unlock(&pmus_lock);
8141         return err;
8142 }
8143
8144 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8145
8146 static void sw_perf_event_destroy(struct perf_event *event)
8147 {
8148         u64 event_id = event->attr.config;
8149
8150         WARN_ON(event->parent);
8151
8152         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8153         swevent_hlist_put();
8154 }
8155
8156 static int perf_swevent_init(struct perf_event *event)
8157 {
8158         u64 event_id = event->attr.config;
8159
8160         if (event->attr.type != PERF_TYPE_SOFTWARE)
8161                 return -ENOENT;
8162
8163         /*
8164          * no branch sampling for software events
8165          */
8166         if (has_branch_stack(event))
8167                 return -EOPNOTSUPP;
8168
8169         switch (event_id) {
8170         case PERF_COUNT_SW_CPU_CLOCK:
8171         case PERF_COUNT_SW_TASK_CLOCK:
8172                 return -ENOENT;
8173
8174         default:
8175                 break;
8176         }
8177
8178         if (event_id >= PERF_COUNT_SW_MAX)
8179                 return -ENOENT;
8180
8181         if (!event->parent) {
8182                 int err;
8183
8184                 err = swevent_hlist_get();
8185                 if (err)
8186                         return err;
8187
8188                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8189                 event->destroy = sw_perf_event_destroy;
8190         }
8191
8192         return 0;
8193 }
8194
8195 static struct pmu perf_swevent = {
8196         .task_ctx_nr    = perf_sw_context,
8197
8198         .capabilities   = PERF_PMU_CAP_NO_NMI,
8199
8200         .event_init     = perf_swevent_init,
8201         .add            = perf_swevent_add,
8202         .del            = perf_swevent_del,
8203         .start          = perf_swevent_start,
8204         .stop           = perf_swevent_stop,
8205         .read           = perf_swevent_read,
8206 };
8207
8208 #ifdef CONFIG_EVENT_TRACING
8209
8210 static int perf_tp_filter_match(struct perf_event *event,
8211                                 struct perf_sample_data *data)
8212 {
8213         void *record = data->raw->frag.data;
8214
8215         /* only top level events have filters set */
8216         if (event->parent)
8217                 event = event->parent;
8218
8219         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8220                 return 1;
8221         return 0;
8222 }
8223
8224 static int perf_tp_event_match(struct perf_event *event,
8225                                 struct perf_sample_data *data,
8226                                 struct pt_regs *regs)
8227 {
8228         if (event->hw.state & PERF_HES_STOPPED)
8229                 return 0;
8230         /*
8231          * All tracepoints are from kernel-space.
8232          */
8233         if (event->attr.exclude_kernel)
8234                 return 0;
8235
8236         if (!perf_tp_filter_match(event, data))
8237                 return 0;
8238
8239         return 1;
8240 }
8241
8242 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8243                                struct trace_event_call *call, u64 count,
8244                                struct pt_regs *regs, struct hlist_head *head,
8245                                struct task_struct *task)
8246 {
8247         if (bpf_prog_array_valid(call)) {
8248                 *(struct pt_regs **)raw_data = regs;
8249                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8250                         perf_swevent_put_recursion_context(rctx);
8251                         return;
8252                 }
8253         }
8254         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8255                       rctx, task);
8256 }
8257 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8258
8259 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8260                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8261                    struct task_struct *task)
8262 {
8263         struct perf_sample_data data;
8264         struct perf_event *event;
8265
8266         struct perf_raw_record raw = {
8267                 .frag = {
8268                         .size = entry_size,
8269                         .data = record,
8270                 },
8271         };
8272
8273         perf_sample_data_init(&data, 0, 0);
8274         data.raw = &raw;
8275
8276         perf_trace_buf_update(record, event_type);
8277
8278         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8279                 if (perf_tp_event_match(event, &data, regs))
8280                         perf_swevent_event(event, count, &data, regs);
8281         }
8282
8283         /*
8284          * If we got specified a target task, also iterate its context and
8285          * deliver this event there too.
8286          */
8287         if (task && task != current) {
8288                 struct perf_event_context *ctx;
8289                 struct trace_entry *entry = record;
8290
8291                 rcu_read_lock();
8292                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8293                 if (!ctx)
8294                         goto unlock;
8295
8296                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8297                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8298                                 continue;
8299                         if (event->attr.config != entry->type)
8300                                 continue;
8301                         if (perf_tp_event_match(event, &data, regs))
8302                                 perf_swevent_event(event, count, &data, regs);
8303                 }
8304 unlock:
8305                 rcu_read_unlock();
8306         }
8307
8308         perf_swevent_put_recursion_context(rctx);
8309 }
8310 EXPORT_SYMBOL_GPL(perf_tp_event);
8311
8312 static void tp_perf_event_destroy(struct perf_event *event)
8313 {
8314         perf_trace_destroy(event);
8315 }
8316
8317 static int perf_tp_event_init(struct perf_event *event)
8318 {
8319         int err;
8320
8321         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8322                 return -ENOENT;
8323
8324         /*
8325          * no branch sampling for tracepoint events
8326          */
8327         if (has_branch_stack(event))
8328                 return -EOPNOTSUPP;
8329
8330         err = perf_trace_init(event);
8331         if (err)
8332                 return err;
8333
8334         event->destroy = tp_perf_event_destroy;
8335
8336         return 0;
8337 }
8338
8339 static struct pmu perf_tracepoint = {
8340         .task_ctx_nr    = perf_sw_context,
8341
8342         .event_init     = perf_tp_event_init,
8343         .add            = perf_trace_add,
8344         .del            = perf_trace_del,
8345         .start          = perf_swevent_start,
8346         .stop           = perf_swevent_stop,
8347         .read           = perf_swevent_read,
8348 };
8349
8350 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8351 /*
8352  * Flags in config, used by dynamic PMU kprobe and uprobe
8353  * The flags should match following PMU_FORMAT_ATTR().
8354  *
8355  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8356  *                               if not set, create kprobe/uprobe
8357  */
8358 enum perf_probe_config {
8359         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8360 };
8361
8362 PMU_FORMAT_ATTR(retprobe, "config:0");
8363
8364 static struct attribute *probe_attrs[] = {
8365         &format_attr_retprobe.attr,
8366         NULL,
8367 };
8368
8369 static struct attribute_group probe_format_group = {
8370         .name = "format",
8371         .attrs = probe_attrs,
8372 };
8373
8374 static const struct attribute_group *probe_attr_groups[] = {
8375         &probe_format_group,
8376         NULL,
8377 };
8378 #endif
8379
8380 #ifdef CONFIG_KPROBE_EVENTS
8381 static int perf_kprobe_event_init(struct perf_event *event);
8382 static struct pmu perf_kprobe = {
8383         .task_ctx_nr    = perf_sw_context,
8384         .event_init     = perf_kprobe_event_init,
8385         .add            = perf_trace_add,
8386         .del            = perf_trace_del,
8387         .start          = perf_swevent_start,
8388         .stop           = perf_swevent_stop,
8389         .read           = perf_swevent_read,
8390         .attr_groups    = probe_attr_groups,
8391 };
8392
8393 static int perf_kprobe_event_init(struct perf_event *event)
8394 {
8395         int err;
8396         bool is_retprobe;
8397
8398         if (event->attr.type != perf_kprobe.type)
8399                 return -ENOENT;
8400         /*
8401          * no branch sampling for probe events
8402          */
8403         if (has_branch_stack(event))
8404                 return -EOPNOTSUPP;
8405
8406         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8407         err = perf_kprobe_init(event, is_retprobe);
8408         if (err)
8409                 return err;
8410
8411         event->destroy = perf_kprobe_destroy;
8412
8413         return 0;
8414 }
8415 #endif /* CONFIG_KPROBE_EVENTS */
8416
8417 #ifdef CONFIG_UPROBE_EVENTS
8418 static int perf_uprobe_event_init(struct perf_event *event);
8419 static struct pmu perf_uprobe = {
8420         .task_ctx_nr    = perf_sw_context,
8421         .event_init     = perf_uprobe_event_init,
8422         .add            = perf_trace_add,
8423         .del            = perf_trace_del,
8424         .start          = perf_swevent_start,
8425         .stop           = perf_swevent_stop,
8426         .read           = perf_swevent_read,
8427         .attr_groups    = probe_attr_groups,
8428 };
8429
8430 static int perf_uprobe_event_init(struct perf_event *event)
8431 {
8432         int err;
8433         bool is_retprobe;
8434
8435         if (event->attr.type != perf_uprobe.type)
8436                 return -ENOENT;
8437         /*
8438          * no branch sampling for probe events
8439          */
8440         if (has_branch_stack(event))
8441                 return -EOPNOTSUPP;
8442
8443         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8444         err = perf_uprobe_init(event, is_retprobe);
8445         if (err)
8446                 return err;
8447
8448         event->destroy = perf_uprobe_destroy;
8449
8450         return 0;
8451 }
8452 #endif /* CONFIG_UPROBE_EVENTS */
8453
8454 static inline void perf_tp_register(void)
8455 {
8456         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8457 #ifdef CONFIG_KPROBE_EVENTS
8458         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8459 #endif
8460 #ifdef CONFIG_UPROBE_EVENTS
8461         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8462 #endif
8463 }
8464
8465 static void perf_event_free_filter(struct perf_event *event)
8466 {
8467         ftrace_profile_free_filter(event);
8468 }
8469
8470 #ifdef CONFIG_BPF_SYSCALL
8471 static void bpf_overflow_handler(struct perf_event *event,
8472                                  struct perf_sample_data *data,
8473                                  struct pt_regs *regs)
8474 {
8475         struct bpf_perf_event_data_kern ctx = {
8476                 .data = data,
8477                 .event = event,
8478         };
8479         int ret = 0;
8480
8481         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8482         preempt_disable();
8483         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8484                 goto out;
8485         rcu_read_lock();
8486         ret = BPF_PROG_RUN(event->prog, &ctx);
8487         rcu_read_unlock();
8488 out:
8489         __this_cpu_dec(bpf_prog_active);
8490         preempt_enable();
8491         if (!ret)
8492                 return;
8493
8494         event->orig_overflow_handler(event, data, regs);
8495 }
8496
8497 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8498 {
8499         struct bpf_prog *prog;
8500
8501         if (event->overflow_handler_context)
8502                 /* hw breakpoint or kernel counter */
8503                 return -EINVAL;
8504
8505         if (event->prog)
8506                 return -EEXIST;
8507
8508         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8509         if (IS_ERR(prog))
8510                 return PTR_ERR(prog);
8511
8512         event->prog = prog;
8513         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8514         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8515         return 0;
8516 }
8517
8518 static void perf_event_free_bpf_handler(struct perf_event *event)
8519 {
8520         struct bpf_prog *prog = event->prog;
8521
8522         if (!prog)
8523                 return;
8524
8525         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8526         event->prog = NULL;
8527         bpf_prog_put(prog);
8528 }
8529 #else
8530 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8531 {
8532         return -EOPNOTSUPP;
8533 }
8534 static void perf_event_free_bpf_handler(struct perf_event *event)
8535 {
8536 }
8537 #endif
8538
8539 /*
8540  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8541  * with perf_event_open()
8542  */
8543 static inline bool perf_event_is_tracing(struct perf_event *event)
8544 {
8545         if (event->pmu == &perf_tracepoint)
8546                 return true;
8547 #ifdef CONFIG_KPROBE_EVENTS
8548         if (event->pmu == &perf_kprobe)
8549                 return true;
8550 #endif
8551 #ifdef CONFIG_UPROBE_EVENTS
8552         if (event->pmu == &perf_uprobe)
8553                 return true;
8554 #endif
8555         return false;
8556 }
8557
8558 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8559 {
8560         bool is_kprobe, is_tracepoint, is_syscall_tp;
8561         struct bpf_prog *prog;
8562         int ret;
8563
8564         if (!perf_event_is_tracing(event))
8565                 return perf_event_set_bpf_handler(event, prog_fd);
8566
8567         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8568         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8569         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8570         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8571                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8572                 return -EINVAL;
8573
8574         prog = bpf_prog_get(prog_fd);
8575         if (IS_ERR(prog))
8576                 return PTR_ERR(prog);
8577
8578         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8579             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8580             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8581                 /* valid fd, but invalid bpf program type */
8582                 bpf_prog_put(prog);
8583                 return -EINVAL;
8584         }
8585
8586         /* Kprobe override only works for kprobes, not uprobes. */
8587         if (prog->kprobe_override &&
8588             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8589                 bpf_prog_put(prog);
8590                 return -EINVAL;
8591         }
8592
8593         if (is_tracepoint || is_syscall_tp) {
8594                 int off = trace_event_get_offsets(event->tp_event);
8595
8596                 if (prog->aux->max_ctx_offset > off) {
8597                         bpf_prog_put(prog);
8598                         return -EACCES;
8599                 }
8600         }
8601
8602         ret = perf_event_attach_bpf_prog(event, prog);
8603         if (ret)
8604                 bpf_prog_put(prog);
8605         return ret;
8606 }
8607
8608 static void perf_event_free_bpf_prog(struct perf_event *event)
8609 {
8610         if (!perf_event_is_tracing(event)) {
8611                 perf_event_free_bpf_handler(event);
8612                 return;
8613         }
8614         perf_event_detach_bpf_prog(event);
8615 }
8616
8617 #else
8618
8619 static inline void perf_tp_register(void)
8620 {
8621 }
8622
8623 static void perf_event_free_filter(struct perf_event *event)
8624 {
8625 }
8626
8627 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8628 {
8629         return -ENOENT;
8630 }
8631
8632 static void perf_event_free_bpf_prog(struct perf_event *event)
8633 {
8634 }
8635 #endif /* CONFIG_EVENT_TRACING */
8636
8637 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8638 void perf_bp_event(struct perf_event *bp, void *data)
8639 {
8640         struct perf_sample_data sample;
8641         struct pt_regs *regs = data;
8642
8643         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8644
8645         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8646                 perf_swevent_event(bp, 1, &sample, regs);
8647 }
8648 #endif
8649
8650 /*
8651  * Allocate a new address filter
8652  */
8653 static struct perf_addr_filter *
8654 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8655 {
8656         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8657         struct perf_addr_filter *filter;
8658
8659         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8660         if (!filter)
8661                 return NULL;
8662
8663         INIT_LIST_HEAD(&filter->entry);
8664         list_add_tail(&filter->entry, filters);
8665
8666         return filter;
8667 }
8668
8669 static void free_filters_list(struct list_head *filters)
8670 {
8671         struct perf_addr_filter *filter, *iter;
8672
8673         list_for_each_entry_safe(filter, iter, filters, entry) {
8674                 if (filter->inode)
8675                         iput(filter->inode);
8676                 list_del(&filter->entry);
8677                 kfree(filter);
8678         }
8679 }
8680
8681 /*
8682  * Free existing address filters and optionally install new ones
8683  */
8684 static void perf_addr_filters_splice(struct perf_event *event,
8685                                      struct list_head *head)
8686 {
8687         unsigned long flags;
8688         LIST_HEAD(list);
8689
8690         if (!has_addr_filter(event))
8691                 return;
8692
8693         /* don't bother with children, they don't have their own filters */
8694         if (event->parent)
8695                 return;
8696
8697         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8698
8699         list_splice_init(&event->addr_filters.list, &list);
8700         if (head)
8701                 list_splice(head, &event->addr_filters.list);
8702
8703         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8704
8705         free_filters_list(&list);
8706 }
8707
8708 /*
8709  * Scan through mm's vmas and see if one of them matches the
8710  * @filter; if so, adjust filter's address range.
8711  * Called with mm::mmap_sem down for reading.
8712  */
8713 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8714                                             struct mm_struct *mm)
8715 {
8716         struct vm_area_struct *vma;
8717
8718         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8719                 struct file *file = vma->vm_file;
8720                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8721                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8722
8723                 if (!file)
8724                         continue;
8725
8726                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8727                         continue;
8728
8729                 return vma->vm_start;
8730         }
8731
8732         return 0;
8733 }
8734
8735 /*
8736  * Update event's address range filters based on the
8737  * task's existing mappings, if any.
8738  */
8739 static void perf_event_addr_filters_apply(struct perf_event *event)
8740 {
8741         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8742         struct task_struct *task = READ_ONCE(event->ctx->task);
8743         struct perf_addr_filter *filter;
8744         struct mm_struct *mm = NULL;
8745         unsigned int count = 0;
8746         unsigned long flags;
8747
8748         /*
8749          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8750          * will stop on the parent's child_mutex that our caller is also holding
8751          */
8752         if (task == TASK_TOMBSTONE)
8753                 return;
8754
8755         if (!ifh->nr_file_filters)
8756                 return;
8757
8758         mm = get_task_mm(event->ctx->task);
8759         if (!mm)
8760                 goto restart;
8761
8762         down_read(&mm->mmap_sem);
8763
8764         raw_spin_lock_irqsave(&ifh->lock, flags);
8765         list_for_each_entry(filter, &ifh->list, entry) {
8766                 event->addr_filters_offs[count] = 0;
8767
8768                 /*
8769                  * Adjust base offset if the filter is associated to a binary
8770                  * that needs to be mapped:
8771                  */
8772                 if (filter->inode)
8773                         event->addr_filters_offs[count] =
8774                                 perf_addr_filter_apply(filter, mm);
8775
8776                 count++;
8777         }
8778
8779         event->addr_filters_gen++;
8780         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8781
8782         up_read(&mm->mmap_sem);
8783
8784         mmput(mm);
8785
8786 restart:
8787         perf_event_stop(event, 1);
8788 }
8789
8790 /*
8791  * Address range filtering: limiting the data to certain
8792  * instruction address ranges. Filters are ioctl()ed to us from
8793  * userspace as ascii strings.
8794  *
8795  * Filter string format:
8796  *
8797  * ACTION RANGE_SPEC
8798  * where ACTION is one of the
8799  *  * "filter": limit the trace to this region
8800  *  * "start": start tracing from this address
8801  *  * "stop": stop tracing at this address/region;
8802  * RANGE_SPEC is
8803  *  * for kernel addresses: <start address>[/<size>]
8804  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8805  *
8806  * if <size> is not specified, the range is treated as a single address.
8807  */
8808 enum {
8809         IF_ACT_NONE = -1,
8810         IF_ACT_FILTER,
8811         IF_ACT_START,
8812         IF_ACT_STOP,
8813         IF_SRC_FILE,
8814         IF_SRC_KERNEL,
8815         IF_SRC_FILEADDR,
8816         IF_SRC_KERNELADDR,
8817 };
8818
8819 enum {
8820         IF_STATE_ACTION = 0,
8821         IF_STATE_SOURCE,
8822         IF_STATE_END,
8823 };
8824
8825 static const match_table_t if_tokens = {
8826         { IF_ACT_FILTER,        "filter" },
8827         { IF_ACT_START,         "start" },
8828         { IF_ACT_STOP,          "stop" },
8829         { IF_SRC_FILE,          "%u/%u@%s" },
8830         { IF_SRC_KERNEL,        "%u/%u" },
8831         { IF_SRC_FILEADDR,      "%u@%s" },
8832         { IF_SRC_KERNELADDR,    "%u" },
8833         { IF_ACT_NONE,          NULL },
8834 };
8835
8836 /*
8837  * Address filter string parser
8838  */
8839 static int
8840 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8841                              struct list_head *filters)
8842 {
8843         struct perf_addr_filter *filter = NULL;
8844         char *start, *orig, *filename = NULL;
8845         struct path path;
8846         substring_t args[MAX_OPT_ARGS];
8847         int state = IF_STATE_ACTION, token;
8848         unsigned int kernel = 0;
8849         int ret = -EINVAL;
8850
8851         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8852         if (!fstr)
8853                 return -ENOMEM;
8854
8855         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8856                 ret = -EINVAL;
8857
8858                 if (!*start)
8859                         continue;
8860
8861                 /* filter definition begins */
8862                 if (state == IF_STATE_ACTION) {
8863                         filter = perf_addr_filter_new(event, filters);
8864                         if (!filter)
8865                                 goto fail;
8866                 }
8867
8868                 token = match_token(start, if_tokens, args);
8869                 switch (token) {
8870                 case IF_ACT_FILTER:
8871                 case IF_ACT_START:
8872                         filter->filter = 1;
8873
8874                 case IF_ACT_STOP:
8875                         if (state != IF_STATE_ACTION)
8876                                 goto fail;
8877
8878                         state = IF_STATE_SOURCE;
8879                         break;
8880
8881                 case IF_SRC_KERNELADDR:
8882                 case IF_SRC_KERNEL:
8883                         kernel = 1;
8884
8885                 case IF_SRC_FILEADDR:
8886                 case IF_SRC_FILE:
8887                         if (state != IF_STATE_SOURCE)
8888                                 goto fail;
8889
8890                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8891                                 filter->range = 1;
8892
8893                         *args[0].to = 0;
8894                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8895                         if (ret)
8896                                 goto fail;
8897
8898                         if (filter->range) {
8899                                 *args[1].to = 0;
8900                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8901                                 if (ret)
8902                                         goto fail;
8903                         }
8904
8905                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8906                                 int fpos = filter->range ? 2 : 1;
8907
8908                                 filename = match_strdup(&args[fpos]);
8909                                 if (!filename) {
8910                                         ret = -ENOMEM;
8911                                         goto fail;
8912                                 }
8913                         }
8914
8915                         state = IF_STATE_END;
8916                         break;
8917
8918                 default:
8919                         goto fail;
8920                 }
8921
8922                 /*
8923                  * Filter definition is fully parsed, validate and install it.
8924                  * Make sure that it doesn't contradict itself or the event's
8925                  * attribute.
8926                  */
8927                 if (state == IF_STATE_END) {
8928                         ret = -EINVAL;
8929                         if (kernel && event->attr.exclude_kernel)
8930                                 goto fail;
8931
8932                         if (!kernel) {
8933                                 if (!filename)
8934                                         goto fail;
8935
8936                                 /*
8937                                  * For now, we only support file-based filters
8938                                  * in per-task events; doing so for CPU-wide
8939                                  * events requires additional context switching
8940                                  * trickery, since same object code will be
8941                                  * mapped at different virtual addresses in
8942                                  * different processes.
8943                                  */
8944                                 ret = -EOPNOTSUPP;
8945                                 if (!event->ctx->task)
8946                                         goto fail_free_name;
8947
8948                                 /* look up the path and grab its inode */
8949                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8950                                 if (ret)
8951                                         goto fail_free_name;
8952
8953                                 filter->inode = igrab(d_inode(path.dentry));
8954                                 path_put(&path);
8955                                 kfree(filename);
8956                                 filename = NULL;
8957
8958                                 ret = -EINVAL;
8959                                 if (!filter->inode ||
8960                                     !S_ISREG(filter->inode->i_mode))
8961                                         /* free_filters_list() will iput() */
8962                                         goto fail;
8963
8964                                 event->addr_filters.nr_file_filters++;
8965                         }
8966
8967                         /* ready to consume more filters */
8968                         state = IF_STATE_ACTION;
8969                         filter = NULL;
8970                 }
8971         }
8972
8973         if (state != IF_STATE_ACTION)
8974                 goto fail;
8975
8976         kfree(orig);
8977
8978         return 0;
8979
8980 fail_free_name:
8981         kfree(filename);
8982 fail:
8983         free_filters_list(filters);
8984         kfree(orig);
8985
8986         return ret;
8987 }
8988
8989 static int
8990 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8991 {
8992         LIST_HEAD(filters);
8993         int ret;
8994
8995         /*
8996          * Since this is called in perf_ioctl() path, we're already holding
8997          * ctx::mutex.
8998          */
8999         lockdep_assert_held(&event->ctx->mutex);
9000
9001         if (WARN_ON_ONCE(event->parent))
9002                 return -EINVAL;
9003
9004         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9005         if (ret)
9006                 goto fail_clear_files;
9007
9008         ret = event->pmu->addr_filters_validate(&filters);
9009         if (ret)
9010                 goto fail_free_filters;
9011
9012         /* remove existing filters, if any */
9013         perf_addr_filters_splice(event, &filters);
9014
9015         /* install new filters */
9016         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9017
9018         return ret;
9019
9020 fail_free_filters:
9021         free_filters_list(&filters);
9022
9023 fail_clear_files:
9024         event->addr_filters.nr_file_filters = 0;
9025
9026         return ret;
9027 }
9028
9029 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9030 {
9031         int ret = -EINVAL;
9032         char *filter_str;
9033
9034         filter_str = strndup_user(arg, PAGE_SIZE);
9035         if (IS_ERR(filter_str))
9036                 return PTR_ERR(filter_str);
9037
9038 #ifdef CONFIG_EVENT_TRACING
9039         if (perf_event_is_tracing(event)) {
9040                 struct perf_event_context *ctx = event->ctx;
9041
9042                 /*
9043                  * Beware, here be dragons!!
9044                  *
9045                  * the tracepoint muck will deadlock against ctx->mutex, but
9046                  * the tracepoint stuff does not actually need it. So
9047                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9048                  * already have a reference on ctx.
9049                  *
9050                  * This can result in event getting moved to a different ctx,
9051                  * but that does not affect the tracepoint state.
9052                  */
9053                 mutex_unlock(&ctx->mutex);
9054                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9055                 mutex_lock(&ctx->mutex);
9056         } else
9057 #endif
9058         if (has_addr_filter(event))
9059                 ret = perf_event_set_addr_filter(event, filter_str);
9060
9061         kfree(filter_str);
9062         return ret;
9063 }
9064
9065 /*
9066  * hrtimer based swevent callback
9067  */
9068
9069 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9070 {
9071         enum hrtimer_restart ret = HRTIMER_RESTART;
9072         struct perf_sample_data data;
9073         struct pt_regs *regs;
9074         struct perf_event *event;
9075         u64 period;
9076
9077         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9078
9079         if (event->state != PERF_EVENT_STATE_ACTIVE)
9080                 return HRTIMER_NORESTART;
9081
9082         event->pmu->read(event);
9083
9084         perf_sample_data_init(&data, 0, event->hw.last_period);
9085         regs = get_irq_regs();
9086
9087         if (regs && !perf_exclude_event(event, regs)) {
9088                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9089                         if (__perf_event_overflow(event, 1, &data, regs))
9090                                 ret = HRTIMER_NORESTART;
9091         }
9092
9093         period = max_t(u64, 10000, event->hw.sample_period);
9094         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9095
9096         return ret;
9097 }
9098
9099 static void perf_swevent_start_hrtimer(struct perf_event *event)
9100 {
9101         struct hw_perf_event *hwc = &event->hw;
9102         s64 period;
9103
9104         if (!is_sampling_event(event))
9105                 return;
9106
9107         period = local64_read(&hwc->period_left);
9108         if (period) {
9109                 if (period < 0)
9110                         period = 10000;
9111
9112                 local64_set(&hwc->period_left, 0);
9113         } else {
9114                 period = max_t(u64, 10000, hwc->sample_period);
9115         }
9116         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9117                       HRTIMER_MODE_REL_PINNED);
9118 }
9119
9120 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9121 {
9122         struct hw_perf_event *hwc = &event->hw;
9123
9124         if (is_sampling_event(event)) {
9125                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9126                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9127
9128                 hrtimer_cancel(&hwc->hrtimer);
9129         }
9130 }
9131
9132 static void perf_swevent_init_hrtimer(struct perf_event *event)
9133 {
9134         struct hw_perf_event *hwc = &event->hw;
9135
9136         if (!is_sampling_event(event))
9137                 return;
9138
9139         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9140         hwc->hrtimer.function = perf_swevent_hrtimer;
9141
9142         /*
9143          * Since hrtimers have a fixed rate, we can do a static freq->period
9144          * mapping and avoid the whole period adjust feedback stuff.
9145          */
9146         if (event->attr.freq) {
9147                 long freq = event->attr.sample_freq;
9148
9149                 event->attr.sample_period = NSEC_PER_SEC / freq;
9150                 hwc->sample_period = event->attr.sample_period;
9151                 local64_set(&hwc->period_left, hwc->sample_period);
9152                 hwc->last_period = hwc->sample_period;
9153                 event->attr.freq = 0;
9154         }
9155 }
9156
9157 /*
9158  * Software event: cpu wall time clock
9159  */
9160
9161 static void cpu_clock_event_update(struct perf_event *event)
9162 {
9163         s64 prev;
9164         u64 now;
9165
9166         now = local_clock();
9167         prev = local64_xchg(&event->hw.prev_count, now);
9168         local64_add(now - prev, &event->count);
9169 }
9170
9171 static void cpu_clock_event_start(struct perf_event *event, int flags)
9172 {
9173         local64_set(&event->hw.prev_count, local_clock());
9174         perf_swevent_start_hrtimer(event);
9175 }
9176
9177 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9178 {
9179         perf_swevent_cancel_hrtimer(event);
9180         cpu_clock_event_update(event);
9181 }
9182
9183 static int cpu_clock_event_add(struct perf_event *event, int flags)
9184 {
9185         if (flags & PERF_EF_START)
9186                 cpu_clock_event_start(event, flags);
9187         perf_event_update_userpage(event);
9188
9189         return 0;
9190 }
9191
9192 static void cpu_clock_event_del(struct perf_event *event, int flags)
9193 {
9194         cpu_clock_event_stop(event, flags);
9195 }
9196
9197 static void cpu_clock_event_read(struct perf_event *event)
9198 {
9199         cpu_clock_event_update(event);
9200 }
9201
9202 static int cpu_clock_event_init(struct perf_event *event)
9203 {
9204         if (event->attr.type != PERF_TYPE_SOFTWARE)
9205                 return -ENOENT;
9206
9207         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9208                 return -ENOENT;
9209
9210         /*
9211          * no branch sampling for software events
9212          */
9213         if (has_branch_stack(event))
9214                 return -EOPNOTSUPP;
9215
9216         perf_swevent_init_hrtimer(event);
9217
9218         return 0;
9219 }
9220
9221 static struct pmu perf_cpu_clock = {
9222         .task_ctx_nr    = perf_sw_context,
9223
9224         .capabilities   = PERF_PMU_CAP_NO_NMI,
9225
9226         .event_init     = cpu_clock_event_init,
9227         .add            = cpu_clock_event_add,
9228         .del            = cpu_clock_event_del,
9229         .start          = cpu_clock_event_start,
9230         .stop           = cpu_clock_event_stop,
9231         .read           = cpu_clock_event_read,
9232 };
9233
9234 /*
9235  * Software event: task time clock
9236  */
9237
9238 static void task_clock_event_update(struct perf_event *event, u64 now)
9239 {
9240         u64 prev;
9241         s64 delta;
9242
9243         prev = local64_xchg(&event->hw.prev_count, now);
9244         delta = now - prev;
9245         local64_add(delta, &event->count);
9246 }
9247
9248 static void task_clock_event_start(struct perf_event *event, int flags)
9249 {
9250         local64_set(&event->hw.prev_count, event->ctx->time);
9251         perf_swevent_start_hrtimer(event);
9252 }
9253
9254 static void task_clock_event_stop(struct perf_event *event, int flags)
9255 {
9256         perf_swevent_cancel_hrtimer(event);
9257         task_clock_event_update(event, event->ctx->time);
9258 }
9259
9260 static int task_clock_event_add(struct perf_event *event, int flags)
9261 {
9262         if (flags & PERF_EF_START)
9263                 task_clock_event_start(event, flags);
9264         perf_event_update_userpage(event);
9265
9266         return 0;
9267 }
9268
9269 static void task_clock_event_del(struct perf_event *event, int flags)
9270 {
9271         task_clock_event_stop(event, PERF_EF_UPDATE);
9272 }
9273
9274 static void task_clock_event_read(struct perf_event *event)
9275 {
9276         u64 now = perf_clock();
9277         u64 delta = now - event->ctx->timestamp;
9278         u64 time = event->ctx->time + delta;
9279
9280         task_clock_event_update(event, time);
9281 }
9282
9283 static int task_clock_event_init(struct perf_event *event)
9284 {
9285         if (event->attr.type != PERF_TYPE_SOFTWARE)
9286                 return -ENOENT;
9287
9288         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9289                 return -ENOENT;
9290
9291         /*
9292          * no branch sampling for software events
9293          */
9294         if (has_branch_stack(event))
9295                 return -EOPNOTSUPP;
9296
9297         perf_swevent_init_hrtimer(event);
9298
9299         return 0;
9300 }
9301
9302 static struct pmu perf_task_clock = {
9303         .task_ctx_nr    = perf_sw_context,
9304
9305         .capabilities   = PERF_PMU_CAP_NO_NMI,
9306
9307         .event_init     = task_clock_event_init,
9308         .add            = task_clock_event_add,
9309         .del            = task_clock_event_del,
9310         .start          = task_clock_event_start,
9311         .stop           = task_clock_event_stop,
9312         .read           = task_clock_event_read,
9313 };
9314
9315 static void perf_pmu_nop_void(struct pmu *pmu)
9316 {
9317 }
9318
9319 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9320 {
9321 }
9322
9323 static int perf_pmu_nop_int(struct pmu *pmu)
9324 {
9325         return 0;
9326 }
9327
9328 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9329
9330 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9331 {
9332         __this_cpu_write(nop_txn_flags, flags);
9333
9334         if (flags & ~PERF_PMU_TXN_ADD)
9335                 return;
9336
9337         perf_pmu_disable(pmu);
9338 }
9339
9340 static int perf_pmu_commit_txn(struct pmu *pmu)
9341 {
9342         unsigned int flags = __this_cpu_read(nop_txn_flags);
9343
9344         __this_cpu_write(nop_txn_flags, 0);
9345
9346         if (flags & ~PERF_PMU_TXN_ADD)
9347                 return 0;
9348
9349         perf_pmu_enable(pmu);
9350         return 0;
9351 }
9352
9353 static void perf_pmu_cancel_txn(struct pmu *pmu)
9354 {
9355         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9356
9357         __this_cpu_write(nop_txn_flags, 0);
9358
9359         if (flags & ~PERF_PMU_TXN_ADD)
9360                 return;
9361
9362         perf_pmu_enable(pmu);
9363 }
9364
9365 static int perf_event_idx_default(struct perf_event *event)
9366 {
9367         return 0;
9368 }
9369
9370 /*
9371  * Ensures all contexts with the same task_ctx_nr have the same
9372  * pmu_cpu_context too.
9373  */
9374 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9375 {
9376         struct pmu *pmu;
9377
9378         if (ctxn < 0)
9379                 return NULL;
9380
9381         list_for_each_entry(pmu, &pmus, entry) {
9382                 if (pmu->task_ctx_nr == ctxn)
9383                         return pmu->pmu_cpu_context;
9384         }
9385
9386         return NULL;
9387 }
9388
9389 static void free_pmu_context(struct pmu *pmu)
9390 {
9391         /*
9392          * Static contexts such as perf_sw_context have a global lifetime
9393          * and may be shared between different PMUs. Avoid freeing them
9394          * when a single PMU is going away.
9395          */
9396         if (pmu->task_ctx_nr > perf_invalid_context)
9397                 return;
9398
9399         mutex_lock(&pmus_lock);
9400         free_percpu(pmu->pmu_cpu_context);
9401         mutex_unlock(&pmus_lock);
9402 }
9403
9404 /*
9405  * Let userspace know that this PMU supports address range filtering:
9406  */
9407 static ssize_t nr_addr_filters_show(struct device *dev,
9408                                     struct device_attribute *attr,
9409                                     char *page)
9410 {
9411         struct pmu *pmu = dev_get_drvdata(dev);
9412
9413         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9414 }
9415 DEVICE_ATTR_RO(nr_addr_filters);
9416
9417 static struct idr pmu_idr;
9418
9419 static ssize_t
9420 type_show(struct device *dev, struct device_attribute *attr, char *page)
9421 {
9422         struct pmu *pmu = dev_get_drvdata(dev);
9423
9424         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9425 }
9426 static DEVICE_ATTR_RO(type);
9427
9428 static ssize_t
9429 perf_event_mux_interval_ms_show(struct device *dev,
9430                                 struct device_attribute *attr,
9431                                 char *page)
9432 {
9433         struct pmu *pmu = dev_get_drvdata(dev);
9434
9435         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9436 }
9437
9438 static DEFINE_MUTEX(mux_interval_mutex);
9439
9440 static ssize_t
9441 perf_event_mux_interval_ms_store(struct device *dev,
9442                                  struct device_attribute *attr,
9443                                  const char *buf, size_t count)
9444 {
9445         struct pmu *pmu = dev_get_drvdata(dev);
9446         int timer, cpu, ret;
9447
9448         ret = kstrtoint(buf, 0, &timer);
9449         if (ret)
9450                 return ret;
9451
9452         if (timer < 1)
9453                 return -EINVAL;
9454
9455         /* same value, noting to do */
9456         if (timer == pmu->hrtimer_interval_ms)
9457                 return count;
9458
9459         mutex_lock(&mux_interval_mutex);
9460         pmu->hrtimer_interval_ms = timer;
9461
9462         /* update all cpuctx for this PMU */
9463         cpus_read_lock();
9464         for_each_online_cpu(cpu) {
9465                 struct perf_cpu_context *cpuctx;
9466                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9467                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9468
9469                 cpu_function_call(cpu,
9470                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9471         }
9472         cpus_read_unlock();
9473         mutex_unlock(&mux_interval_mutex);
9474
9475         return count;
9476 }
9477 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9478
9479 static struct attribute *pmu_dev_attrs[] = {
9480         &dev_attr_type.attr,
9481         &dev_attr_perf_event_mux_interval_ms.attr,
9482         NULL,
9483 };
9484 ATTRIBUTE_GROUPS(pmu_dev);
9485
9486 static int pmu_bus_running;
9487 static struct bus_type pmu_bus = {
9488         .name           = "event_source",
9489         .dev_groups     = pmu_dev_groups,
9490 };
9491
9492 static void pmu_dev_release(struct device *dev)
9493 {
9494         kfree(dev);
9495 }
9496
9497 static int pmu_dev_alloc(struct pmu *pmu)
9498 {
9499         int ret = -ENOMEM;
9500
9501         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9502         if (!pmu->dev)
9503                 goto out;
9504
9505         pmu->dev->groups = pmu->attr_groups;
9506         device_initialize(pmu->dev);
9507         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9508         if (ret)
9509                 goto free_dev;
9510
9511         dev_set_drvdata(pmu->dev, pmu);
9512         pmu->dev->bus = &pmu_bus;
9513         pmu->dev->release = pmu_dev_release;
9514         ret = device_add(pmu->dev);
9515         if (ret)
9516                 goto free_dev;
9517
9518         /* For PMUs with address filters, throw in an extra attribute: */
9519         if (pmu->nr_addr_filters)
9520                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9521
9522         if (ret)
9523                 goto del_dev;
9524
9525 out:
9526         return ret;
9527
9528 del_dev:
9529         device_del(pmu->dev);
9530
9531 free_dev:
9532         put_device(pmu->dev);
9533         goto out;
9534 }
9535
9536 static struct lock_class_key cpuctx_mutex;
9537 static struct lock_class_key cpuctx_lock;
9538
9539 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9540 {
9541         int cpu, ret;
9542
9543         mutex_lock(&pmus_lock);
9544         ret = -ENOMEM;
9545         pmu->pmu_disable_count = alloc_percpu(int);
9546         if (!pmu->pmu_disable_count)
9547                 goto unlock;
9548
9549         pmu->type = -1;
9550         if (!name)
9551                 goto skip_type;
9552         pmu->name = name;
9553
9554         if (type < 0) {
9555                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9556                 if (type < 0) {
9557                         ret = type;
9558                         goto free_pdc;
9559                 }
9560         }
9561         pmu->type = type;
9562
9563         if (pmu_bus_running) {
9564                 ret = pmu_dev_alloc(pmu);
9565                 if (ret)
9566                         goto free_idr;
9567         }
9568
9569 skip_type:
9570         if (pmu->task_ctx_nr == perf_hw_context) {
9571                 static int hw_context_taken = 0;
9572
9573                 /*
9574                  * Other than systems with heterogeneous CPUs, it never makes
9575                  * sense for two PMUs to share perf_hw_context. PMUs which are
9576                  * uncore must use perf_invalid_context.
9577                  */
9578                 if (WARN_ON_ONCE(hw_context_taken &&
9579                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9580                         pmu->task_ctx_nr = perf_invalid_context;
9581
9582                 hw_context_taken = 1;
9583         }
9584
9585         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9586         if (pmu->pmu_cpu_context)
9587                 goto got_cpu_context;
9588
9589         ret = -ENOMEM;
9590         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9591         if (!pmu->pmu_cpu_context)
9592                 goto free_dev;
9593
9594         for_each_possible_cpu(cpu) {
9595                 struct perf_cpu_context *cpuctx;
9596
9597                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9598                 __perf_event_init_context(&cpuctx->ctx);
9599                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9600                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9601                 cpuctx->ctx.pmu = pmu;
9602                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9603
9604                 __perf_mux_hrtimer_init(cpuctx, cpu);
9605         }
9606
9607 got_cpu_context:
9608         if (!pmu->start_txn) {
9609                 if (pmu->pmu_enable) {
9610                         /*
9611                          * If we have pmu_enable/pmu_disable calls, install
9612                          * transaction stubs that use that to try and batch
9613                          * hardware accesses.
9614                          */
9615                         pmu->start_txn  = perf_pmu_start_txn;
9616                         pmu->commit_txn = perf_pmu_commit_txn;
9617                         pmu->cancel_txn = perf_pmu_cancel_txn;
9618                 } else {
9619                         pmu->start_txn  = perf_pmu_nop_txn;
9620                         pmu->commit_txn = perf_pmu_nop_int;
9621                         pmu->cancel_txn = perf_pmu_nop_void;
9622                 }
9623         }
9624
9625         if (!pmu->pmu_enable) {
9626                 pmu->pmu_enable  = perf_pmu_nop_void;
9627                 pmu->pmu_disable = perf_pmu_nop_void;
9628         }
9629
9630         if (!pmu->event_idx)
9631                 pmu->event_idx = perf_event_idx_default;
9632
9633         list_add_rcu(&pmu->entry, &pmus);
9634         atomic_set(&pmu->exclusive_cnt, 0);
9635         ret = 0;
9636 unlock:
9637         mutex_unlock(&pmus_lock);
9638
9639         return ret;
9640
9641 free_dev:
9642         device_del(pmu->dev);
9643         put_device(pmu->dev);
9644
9645 free_idr:
9646         if (pmu->type >= PERF_TYPE_MAX)
9647                 idr_remove(&pmu_idr, pmu->type);
9648
9649 free_pdc:
9650         free_percpu(pmu->pmu_disable_count);
9651         goto unlock;
9652 }
9653 EXPORT_SYMBOL_GPL(perf_pmu_register);
9654
9655 void perf_pmu_unregister(struct pmu *pmu)
9656 {
9657         int remove_device;
9658
9659         mutex_lock(&pmus_lock);
9660         remove_device = pmu_bus_running;
9661         list_del_rcu(&pmu->entry);
9662         mutex_unlock(&pmus_lock);
9663
9664         /*
9665          * We dereference the pmu list under both SRCU and regular RCU, so
9666          * synchronize against both of those.
9667          */
9668         synchronize_srcu(&pmus_srcu);
9669         synchronize_rcu();
9670
9671         free_percpu(pmu->pmu_disable_count);
9672         if (pmu->type >= PERF_TYPE_MAX)
9673                 idr_remove(&pmu_idr, pmu->type);
9674         if (remove_device) {
9675                 if (pmu->nr_addr_filters)
9676                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9677                 device_del(pmu->dev);
9678                 put_device(pmu->dev);
9679         }
9680         free_pmu_context(pmu);
9681 }
9682 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9683
9684 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9685 {
9686         struct perf_event_context *ctx = NULL;
9687         int ret;
9688
9689         if (!try_module_get(pmu->module))
9690                 return -ENODEV;
9691
9692         /*
9693          * A number of pmu->event_init() methods iterate the sibling_list to,
9694          * for example, validate if the group fits on the PMU. Therefore,
9695          * if this is a sibling event, acquire the ctx->mutex to protect
9696          * the sibling_list.
9697          */
9698         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9699                 /*
9700                  * This ctx->mutex can nest when we're called through
9701                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9702                  */
9703                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9704                                                  SINGLE_DEPTH_NESTING);
9705                 BUG_ON(!ctx);
9706         }
9707
9708         event->pmu = pmu;
9709         ret = pmu->event_init(event);
9710
9711         if (ctx)
9712                 perf_event_ctx_unlock(event->group_leader, ctx);
9713
9714         if (ret)
9715                 module_put(pmu->module);
9716
9717         return ret;
9718 }
9719
9720 static struct pmu *perf_init_event(struct perf_event *event)
9721 {
9722         struct pmu *pmu;
9723         int idx;
9724         int ret;
9725
9726         idx = srcu_read_lock(&pmus_srcu);
9727
9728         /* Try parent's PMU first: */
9729         if (event->parent && event->parent->pmu) {
9730                 pmu = event->parent->pmu;
9731                 ret = perf_try_init_event(pmu, event);
9732                 if (!ret)
9733                         goto unlock;
9734         }
9735
9736         rcu_read_lock();
9737         pmu = idr_find(&pmu_idr, event->attr.type);
9738         rcu_read_unlock();
9739         if (pmu) {
9740                 ret = perf_try_init_event(pmu, event);
9741                 if (ret)
9742                         pmu = ERR_PTR(ret);
9743                 goto unlock;
9744         }
9745
9746         list_for_each_entry_rcu(pmu, &pmus, entry) {
9747                 ret = perf_try_init_event(pmu, event);
9748                 if (!ret)
9749                         goto unlock;
9750
9751                 if (ret != -ENOENT) {
9752                         pmu = ERR_PTR(ret);
9753                         goto unlock;
9754                 }
9755         }
9756         pmu = ERR_PTR(-ENOENT);
9757 unlock:
9758         srcu_read_unlock(&pmus_srcu, idx);
9759
9760         return pmu;
9761 }
9762
9763 static void attach_sb_event(struct perf_event *event)
9764 {
9765         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9766
9767         raw_spin_lock(&pel->lock);
9768         list_add_rcu(&event->sb_list, &pel->list);
9769         raw_spin_unlock(&pel->lock);
9770 }
9771
9772 /*
9773  * We keep a list of all !task (and therefore per-cpu) events
9774  * that need to receive side-band records.
9775  *
9776  * This avoids having to scan all the various PMU per-cpu contexts
9777  * looking for them.
9778  */
9779 static void account_pmu_sb_event(struct perf_event *event)
9780 {
9781         if (is_sb_event(event))
9782                 attach_sb_event(event);
9783 }
9784
9785 static void account_event_cpu(struct perf_event *event, int cpu)
9786 {
9787         if (event->parent)
9788                 return;
9789
9790         if (is_cgroup_event(event))
9791                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9792 }
9793
9794 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9795 static void account_freq_event_nohz(void)
9796 {
9797 #ifdef CONFIG_NO_HZ_FULL
9798         /* Lock so we don't race with concurrent unaccount */
9799         spin_lock(&nr_freq_lock);
9800         if (atomic_inc_return(&nr_freq_events) == 1)
9801                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9802         spin_unlock(&nr_freq_lock);
9803 #endif
9804 }
9805
9806 static void account_freq_event(void)
9807 {
9808         if (tick_nohz_full_enabled())
9809                 account_freq_event_nohz();
9810         else
9811                 atomic_inc(&nr_freq_events);
9812 }
9813
9814
9815 static void account_event(struct perf_event *event)
9816 {
9817         bool inc = false;
9818
9819         if (event->parent)
9820                 return;
9821
9822         if (event->attach_state & PERF_ATTACH_TASK)
9823                 inc = true;
9824         if (event->attr.mmap || event->attr.mmap_data)
9825                 atomic_inc(&nr_mmap_events);
9826         if (event->attr.comm)
9827                 atomic_inc(&nr_comm_events);
9828         if (event->attr.namespaces)
9829                 atomic_inc(&nr_namespaces_events);
9830         if (event->attr.task)
9831                 atomic_inc(&nr_task_events);
9832         if (event->attr.freq)
9833                 account_freq_event();
9834         if (event->attr.context_switch) {
9835                 atomic_inc(&nr_switch_events);
9836                 inc = true;
9837         }
9838         if (has_branch_stack(event))
9839                 inc = true;
9840         if (is_cgroup_event(event))
9841                 inc = true;
9842
9843         if (inc) {
9844                 /*
9845                  * We need the mutex here because static_branch_enable()
9846                  * must complete *before* the perf_sched_count increment
9847                  * becomes visible.
9848                  */
9849                 if (atomic_inc_not_zero(&perf_sched_count))
9850                         goto enabled;
9851
9852                 mutex_lock(&perf_sched_mutex);
9853                 if (!atomic_read(&perf_sched_count)) {
9854                         static_branch_enable(&perf_sched_events);
9855                         /*
9856                          * Guarantee that all CPUs observe they key change and
9857                          * call the perf scheduling hooks before proceeding to
9858                          * install events that need them.
9859                          */
9860                         synchronize_sched();
9861                 }
9862                 /*
9863                  * Now that we have waited for the sync_sched(), allow further
9864                  * increments to by-pass the mutex.
9865                  */
9866                 atomic_inc(&perf_sched_count);
9867                 mutex_unlock(&perf_sched_mutex);
9868         }
9869 enabled:
9870
9871         account_event_cpu(event, event->cpu);
9872
9873         account_pmu_sb_event(event);
9874 }
9875
9876 /*
9877  * Allocate and initialize a event structure
9878  */
9879 static struct perf_event *
9880 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9881                  struct task_struct *task,
9882                  struct perf_event *group_leader,
9883                  struct perf_event *parent_event,
9884                  perf_overflow_handler_t overflow_handler,
9885                  void *context, int cgroup_fd)
9886 {
9887         struct pmu *pmu;
9888         struct perf_event *event;
9889         struct hw_perf_event *hwc;
9890         long err = -EINVAL;
9891
9892         if ((unsigned)cpu >= nr_cpu_ids) {
9893                 if (!task || cpu != -1)
9894                         return ERR_PTR(-EINVAL);
9895         }
9896
9897         event = kzalloc(sizeof(*event), GFP_KERNEL);
9898         if (!event)
9899                 return ERR_PTR(-ENOMEM);
9900
9901         /*
9902          * Single events are their own group leaders, with an
9903          * empty sibling list:
9904          */
9905         if (!group_leader)
9906                 group_leader = event;
9907
9908         mutex_init(&event->child_mutex);
9909         INIT_LIST_HEAD(&event->child_list);
9910
9911         INIT_LIST_HEAD(&event->event_entry);
9912         INIT_LIST_HEAD(&event->sibling_list);
9913         INIT_LIST_HEAD(&event->active_list);
9914         init_event_group(event);
9915         INIT_LIST_HEAD(&event->rb_entry);
9916         INIT_LIST_HEAD(&event->active_entry);
9917         INIT_LIST_HEAD(&event->addr_filters.list);
9918         INIT_HLIST_NODE(&event->hlist_entry);
9919
9920
9921         init_waitqueue_head(&event->waitq);
9922         init_irq_work(&event->pending, perf_pending_event);
9923
9924         mutex_init(&event->mmap_mutex);
9925         raw_spin_lock_init(&event->addr_filters.lock);
9926
9927         atomic_long_set(&event->refcount, 1);
9928         event->cpu              = cpu;
9929         event->attr             = *attr;
9930         event->group_leader     = group_leader;
9931         event->pmu              = NULL;
9932         event->oncpu            = -1;
9933
9934         event->parent           = parent_event;
9935
9936         event->ns               = get_pid_ns(task_active_pid_ns(current));
9937         event->id               = atomic64_inc_return(&perf_event_id);
9938
9939         event->state            = PERF_EVENT_STATE_INACTIVE;
9940
9941         if (task) {
9942                 event->attach_state = PERF_ATTACH_TASK;
9943                 /*
9944                  * XXX pmu::event_init needs to know what task to account to
9945                  * and we cannot use the ctx information because we need the
9946                  * pmu before we get a ctx.
9947                  */
9948                 event->hw.target = task;
9949         }
9950
9951         event->clock = &local_clock;
9952         if (parent_event)
9953                 event->clock = parent_event->clock;
9954
9955         if (!overflow_handler && parent_event) {
9956                 overflow_handler = parent_event->overflow_handler;
9957                 context = parent_event->overflow_handler_context;
9958 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9959                 if (overflow_handler == bpf_overflow_handler) {
9960                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9961
9962                         if (IS_ERR(prog)) {
9963                                 err = PTR_ERR(prog);
9964                                 goto err_ns;
9965                         }
9966                         event->prog = prog;
9967                         event->orig_overflow_handler =
9968                                 parent_event->orig_overflow_handler;
9969                 }
9970 #endif
9971         }
9972
9973         if (overflow_handler) {
9974                 event->overflow_handler = overflow_handler;
9975                 event->overflow_handler_context = context;
9976         } else if (is_write_backward(event)){
9977                 event->overflow_handler = perf_event_output_backward;
9978                 event->overflow_handler_context = NULL;
9979         } else {
9980                 event->overflow_handler = perf_event_output_forward;
9981                 event->overflow_handler_context = NULL;
9982         }
9983
9984         perf_event__state_init(event);
9985
9986         pmu = NULL;
9987
9988         hwc = &event->hw;
9989         hwc->sample_period = attr->sample_period;
9990         if (attr->freq && attr->sample_freq)
9991                 hwc->sample_period = 1;
9992         hwc->last_period = hwc->sample_period;
9993
9994         local64_set(&hwc->period_left, hwc->sample_period);
9995
9996         /*
9997          * We currently do not support PERF_SAMPLE_READ on inherited events.
9998          * See perf_output_read().
9999          */
10000         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10001                 goto err_ns;
10002
10003         if (!has_branch_stack(event))
10004                 event->attr.branch_sample_type = 0;
10005
10006         if (cgroup_fd != -1) {
10007                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10008                 if (err)
10009                         goto err_ns;
10010         }
10011
10012         pmu = perf_init_event(event);
10013         if (IS_ERR(pmu)) {
10014                 err = PTR_ERR(pmu);
10015                 goto err_ns;
10016         }
10017
10018         err = exclusive_event_init(event);
10019         if (err)
10020                 goto err_pmu;
10021
10022         if (has_addr_filter(event)) {
10023                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10024                                                    sizeof(unsigned long),
10025                                                    GFP_KERNEL);
10026                 if (!event->addr_filters_offs) {
10027                         err = -ENOMEM;
10028                         goto err_per_task;
10029                 }
10030
10031                 /* force hw sync on the address filters */
10032                 event->addr_filters_gen = 1;
10033         }
10034
10035         if (!event->parent) {
10036                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10037                         err = get_callchain_buffers(attr->sample_max_stack);
10038                         if (err)
10039                                 goto err_addr_filters;
10040                 }
10041         }
10042
10043         /* symmetric to unaccount_event() in _free_event() */
10044         account_event(event);
10045
10046         return event;
10047
10048 err_addr_filters:
10049         kfree(event->addr_filters_offs);
10050
10051 err_per_task:
10052         exclusive_event_destroy(event);
10053
10054 err_pmu:
10055         if (event->destroy)
10056                 event->destroy(event);
10057         module_put(pmu->module);
10058 err_ns:
10059         if (is_cgroup_event(event))
10060                 perf_detach_cgroup(event);
10061         if (event->ns)
10062                 put_pid_ns(event->ns);
10063         kfree(event);
10064
10065         return ERR_PTR(err);
10066 }
10067
10068 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10069                           struct perf_event_attr *attr)
10070 {
10071         u32 size;
10072         int ret;
10073
10074         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10075                 return -EFAULT;
10076
10077         /*
10078          * zero the full structure, so that a short copy will be nice.
10079          */
10080         memset(attr, 0, sizeof(*attr));
10081
10082         ret = get_user(size, &uattr->size);
10083         if (ret)
10084                 return ret;
10085
10086         if (size > PAGE_SIZE)   /* silly large */
10087                 goto err_size;
10088
10089         if (!size)              /* abi compat */
10090                 size = PERF_ATTR_SIZE_VER0;
10091
10092         if (size < PERF_ATTR_SIZE_VER0)
10093                 goto err_size;
10094
10095         /*
10096          * If we're handed a bigger struct than we know of,
10097          * ensure all the unknown bits are 0 - i.e. new
10098          * user-space does not rely on any kernel feature
10099          * extensions we dont know about yet.
10100          */
10101         if (size > sizeof(*attr)) {
10102                 unsigned char __user *addr;
10103                 unsigned char __user *end;
10104                 unsigned char val;
10105
10106                 addr = (void __user *)uattr + sizeof(*attr);
10107                 end  = (void __user *)uattr + size;
10108
10109                 for (; addr < end; addr++) {
10110                         ret = get_user(val, addr);
10111                         if (ret)
10112                                 return ret;
10113                         if (val)
10114                                 goto err_size;
10115                 }
10116                 size = sizeof(*attr);
10117         }
10118
10119         ret = copy_from_user(attr, uattr, size);
10120         if (ret)
10121                 return -EFAULT;
10122
10123         attr->size = size;
10124
10125         if (attr->__reserved_1)
10126                 return -EINVAL;
10127
10128         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10129                 return -EINVAL;
10130
10131         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10132                 return -EINVAL;
10133
10134         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10135                 u64 mask = attr->branch_sample_type;
10136
10137                 /* only using defined bits */
10138                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10139                         return -EINVAL;
10140
10141                 /* at least one branch bit must be set */
10142                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10143                         return -EINVAL;
10144
10145                 /* propagate priv level, when not set for branch */
10146                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10147
10148                         /* exclude_kernel checked on syscall entry */
10149                         if (!attr->exclude_kernel)
10150                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10151
10152                         if (!attr->exclude_user)
10153                                 mask |= PERF_SAMPLE_BRANCH_USER;
10154
10155                         if (!attr->exclude_hv)
10156                                 mask |= PERF_SAMPLE_BRANCH_HV;
10157                         /*
10158                          * adjust user setting (for HW filter setup)
10159                          */
10160                         attr->branch_sample_type = mask;
10161                 }
10162                 /* privileged levels capture (kernel, hv): check permissions */
10163                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10164                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10165                         return -EACCES;
10166         }
10167
10168         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10169                 ret = perf_reg_validate(attr->sample_regs_user);
10170                 if (ret)
10171                         return ret;
10172         }
10173
10174         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10175                 if (!arch_perf_have_user_stack_dump())
10176                         return -ENOSYS;
10177
10178                 /*
10179                  * We have __u32 type for the size, but so far
10180                  * we can only use __u16 as maximum due to the
10181                  * __u16 sample size limit.
10182                  */
10183                 if (attr->sample_stack_user >= USHRT_MAX)
10184                         ret = -EINVAL;
10185                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10186                         ret = -EINVAL;
10187         }
10188
10189         if (!attr->sample_max_stack)
10190                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10191
10192         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10193                 ret = perf_reg_validate(attr->sample_regs_intr);
10194 out:
10195         return ret;
10196
10197 err_size:
10198         put_user(sizeof(*attr), &uattr->size);
10199         ret = -E2BIG;
10200         goto out;
10201 }
10202
10203 static int
10204 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10205 {
10206         struct ring_buffer *rb = NULL;
10207         int ret = -EINVAL;
10208
10209         if (!output_event)
10210                 goto set;
10211
10212         /* don't allow circular references */
10213         if (event == output_event)
10214                 goto out;
10215
10216         /*
10217          * Don't allow cross-cpu buffers
10218          */
10219         if (output_event->cpu != event->cpu)
10220                 goto out;
10221
10222         /*
10223          * If its not a per-cpu rb, it must be the same task.
10224          */
10225         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10226                 goto out;
10227
10228         /*
10229          * Mixing clocks in the same buffer is trouble you don't need.
10230          */
10231         if (output_event->clock != event->clock)
10232                 goto out;
10233
10234         /*
10235          * Either writing ring buffer from beginning or from end.
10236          * Mixing is not allowed.
10237          */
10238         if (is_write_backward(output_event) != is_write_backward(event))
10239                 goto out;
10240
10241         /*
10242          * If both events generate aux data, they must be on the same PMU
10243          */
10244         if (has_aux(event) && has_aux(output_event) &&
10245             event->pmu != output_event->pmu)
10246                 goto out;
10247
10248 set:
10249         mutex_lock(&event->mmap_mutex);
10250         /* Can't redirect output if we've got an active mmap() */
10251         if (atomic_read(&event->mmap_count))
10252                 goto unlock;
10253
10254         if (output_event) {
10255                 /* get the rb we want to redirect to */
10256                 rb = ring_buffer_get(output_event);
10257                 if (!rb)
10258                         goto unlock;
10259         }
10260
10261         ring_buffer_attach(event, rb);
10262
10263         ret = 0;
10264 unlock:
10265         mutex_unlock(&event->mmap_mutex);
10266
10267 out:
10268         return ret;
10269 }
10270
10271 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10272 {
10273         if (b < a)
10274                 swap(a, b);
10275
10276         mutex_lock(a);
10277         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10278 }
10279
10280 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10281 {
10282         bool nmi_safe = false;
10283
10284         switch (clk_id) {
10285         case CLOCK_MONOTONIC:
10286                 event->clock = &ktime_get_mono_fast_ns;
10287                 nmi_safe = true;
10288                 break;
10289
10290         case CLOCK_MONOTONIC_RAW:
10291                 event->clock = &ktime_get_raw_fast_ns;
10292                 nmi_safe = true;
10293                 break;
10294
10295         case CLOCK_REALTIME:
10296                 event->clock = &ktime_get_real_ns;
10297                 break;
10298
10299         case CLOCK_BOOTTIME:
10300                 event->clock = &ktime_get_boot_ns;
10301                 break;
10302
10303         case CLOCK_TAI:
10304                 event->clock = &ktime_get_tai_ns;
10305                 break;
10306
10307         default:
10308                 return -EINVAL;
10309         }
10310
10311         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10312                 return -EINVAL;
10313
10314         return 0;
10315 }
10316
10317 /*
10318  * Variation on perf_event_ctx_lock_nested(), except we take two context
10319  * mutexes.
10320  */
10321 static struct perf_event_context *
10322 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10323                              struct perf_event_context *ctx)
10324 {
10325         struct perf_event_context *gctx;
10326
10327 again:
10328         rcu_read_lock();
10329         gctx = READ_ONCE(group_leader->ctx);
10330         if (!atomic_inc_not_zero(&gctx->refcount)) {
10331                 rcu_read_unlock();
10332                 goto again;
10333         }
10334         rcu_read_unlock();
10335
10336         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10337
10338         if (group_leader->ctx != gctx) {
10339                 mutex_unlock(&ctx->mutex);
10340                 mutex_unlock(&gctx->mutex);
10341                 put_ctx(gctx);
10342                 goto again;
10343         }
10344
10345         return gctx;
10346 }
10347
10348 /**
10349  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10350  *
10351  * @attr_uptr:  event_id type attributes for monitoring/sampling
10352  * @pid:                target pid
10353  * @cpu:                target cpu
10354  * @group_fd:           group leader event fd
10355  */
10356 SYSCALL_DEFINE5(perf_event_open,
10357                 struct perf_event_attr __user *, attr_uptr,
10358                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10359 {
10360         struct perf_event *group_leader = NULL, *output_event = NULL;
10361         struct perf_event *event, *sibling;
10362         struct perf_event_attr attr;
10363         struct perf_event_context *ctx, *uninitialized_var(gctx);
10364         struct file *event_file = NULL;
10365         struct fd group = {NULL, 0};
10366         struct task_struct *task = NULL;
10367         struct pmu *pmu;
10368         int event_fd;
10369         int move_group = 0;
10370         int err;
10371         int f_flags = O_RDWR;
10372         int cgroup_fd = -1;
10373
10374         /* for future expandability... */
10375         if (flags & ~PERF_FLAG_ALL)
10376                 return -EINVAL;
10377
10378         err = perf_copy_attr(attr_uptr, &attr);
10379         if (err)
10380                 return err;
10381
10382         if (!attr.exclude_kernel) {
10383                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10384                         return -EACCES;
10385         }
10386
10387         if (attr.namespaces) {
10388                 if (!capable(CAP_SYS_ADMIN))
10389                         return -EACCES;
10390         }
10391
10392         if (attr.freq) {
10393                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10394                         return -EINVAL;
10395         } else {
10396                 if (attr.sample_period & (1ULL << 63))
10397                         return -EINVAL;
10398         }
10399
10400         /* Only privileged users can get physical addresses */
10401         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10402             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10403                 return -EACCES;
10404
10405         /*
10406          * In cgroup mode, the pid argument is used to pass the fd
10407          * opened to the cgroup directory in cgroupfs. The cpu argument
10408          * designates the cpu on which to monitor threads from that
10409          * cgroup.
10410          */
10411         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10412                 return -EINVAL;
10413
10414         if (flags & PERF_FLAG_FD_CLOEXEC)
10415                 f_flags |= O_CLOEXEC;
10416
10417         event_fd = get_unused_fd_flags(f_flags);
10418         if (event_fd < 0)
10419                 return event_fd;
10420
10421         if (group_fd != -1) {
10422                 err = perf_fget_light(group_fd, &group);
10423                 if (err)
10424                         goto err_fd;
10425                 group_leader = group.file->private_data;
10426                 if (flags & PERF_FLAG_FD_OUTPUT)
10427                         output_event = group_leader;
10428                 if (flags & PERF_FLAG_FD_NO_GROUP)
10429                         group_leader = NULL;
10430         }
10431
10432         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10433                 task = find_lively_task_by_vpid(pid);
10434                 if (IS_ERR(task)) {
10435                         err = PTR_ERR(task);
10436                         goto err_group_fd;
10437                 }
10438         }
10439
10440         if (task && group_leader &&
10441             group_leader->attr.inherit != attr.inherit) {
10442                 err = -EINVAL;
10443                 goto err_task;
10444         }
10445
10446         if (task) {
10447                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10448                 if (err)
10449                         goto err_task;
10450
10451                 /*
10452                  * Reuse ptrace permission checks for now.
10453                  *
10454                  * We must hold cred_guard_mutex across this and any potential
10455                  * perf_install_in_context() call for this new event to
10456                  * serialize against exec() altering our credentials (and the
10457                  * perf_event_exit_task() that could imply).
10458                  */
10459                 err = -EACCES;
10460                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10461                         goto err_cred;
10462         }
10463
10464         if (flags & PERF_FLAG_PID_CGROUP)
10465                 cgroup_fd = pid;
10466
10467         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10468                                  NULL, NULL, cgroup_fd);
10469         if (IS_ERR(event)) {
10470                 err = PTR_ERR(event);
10471                 goto err_cred;
10472         }
10473
10474         if (is_sampling_event(event)) {
10475                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10476                         err = -EOPNOTSUPP;
10477                         goto err_alloc;
10478                 }
10479         }
10480
10481         /*
10482          * Special case software events and allow them to be part of
10483          * any hardware group.
10484          */
10485         pmu = event->pmu;
10486
10487         if (attr.use_clockid) {
10488                 err = perf_event_set_clock(event, attr.clockid);
10489                 if (err)
10490                         goto err_alloc;
10491         }
10492
10493         if (pmu->task_ctx_nr == perf_sw_context)
10494                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10495
10496         if (group_leader &&
10497             (is_software_event(event) != is_software_event(group_leader))) {
10498                 if (is_software_event(event)) {
10499                         /*
10500                          * If event and group_leader are not both a software
10501                          * event, and event is, then group leader is not.
10502                          *
10503                          * Allow the addition of software events to !software
10504                          * groups, this is safe because software events never
10505                          * fail to schedule.
10506                          */
10507                         pmu = group_leader->pmu;
10508                 } else if (is_software_event(group_leader) &&
10509                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10510                         /*
10511                          * In case the group is a pure software group, and we
10512                          * try to add a hardware event, move the whole group to
10513                          * the hardware context.
10514                          */
10515                         move_group = 1;
10516                 }
10517         }
10518
10519         /*
10520          * Get the target context (task or percpu):
10521          */
10522         ctx = find_get_context(pmu, task, event);
10523         if (IS_ERR(ctx)) {
10524                 err = PTR_ERR(ctx);
10525                 goto err_alloc;
10526         }
10527
10528         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10529                 err = -EBUSY;
10530                 goto err_context;
10531         }
10532
10533         /*
10534          * Look up the group leader (we will attach this event to it):
10535          */
10536         if (group_leader) {
10537                 err = -EINVAL;
10538
10539                 /*
10540                  * Do not allow a recursive hierarchy (this new sibling
10541                  * becoming part of another group-sibling):
10542                  */
10543                 if (group_leader->group_leader != group_leader)
10544                         goto err_context;
10545
10546                 /* All events in a group should have the same clock */
10547                 if (group_leader->clock != event->clock)
10548                         goto err_context;
10549
10550                 /*
10551                  * Make sure we're both events for the same CPU;
10552                  * grouping events for different CPUs is broken; since
10553                  * you can never concurrently schedule them anyhow.
10554                  */
10555                 if (group_leader->cpu != event->cpu)
10556                         goto err_context;
10557
10558                 /*
10559                  * Make sure we're both on the same task, or both
10560                  * per-CPU events.
10561                  */
10562                 if (group_leader->ctx->task != ctx->task)
10563                         goto err_context;
10564
10565                 /*
10566                  * Do not allow to attach to a group in a different task
10567                  * or CPU context. If we're moving SW events, we'll fix
10568                  * this up later, so allow that.
10569                  */
10570                 if (!move_group && group_leader->ctx != ctx)
10571                         goto err_context;
10572
10573                 /*
10574                  * Only a group leader can be exclusive or pinned
10575                  */
10576                 if (attr.exclusive || attr.pinned)
10577                         goto err_context;
10578         }
10579
10580         if (output_event) {
10581                 err = perf_event_set_output(event, output_event);
10582                 if (err)
10583                         goto err_context;
10584         }
10585
10586         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10587                                         f_flags);
10588         if (IS_ERR(event_file)) {
10589                 err = PTR_ERR(event_file);
10590                 event_file = NULL;
10591                 goto err_context;
10592         }
10593
10594         if (move_group) {
10595                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10596
10597                 if (gctx->task == TASK_TOMBSTONE) {
10598                         err = -ESRCH;
10599                         goto err_locked;
10600                 }
10601
10602                 /*
10603                  * Check if we raced against another sys_perf_event_open() call
10604                  * moving the software group underneath us.
10605                  */
10606                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10607                         /*
10608                          * If someone moved the group out from under us, check
10609                          * if this new event wound up on the same ctx, if so
10610                          * its the regular !move_group case, otherwise fail.
10611                          */
10612                         if (gctx != ctx) {
10613                                 err = -EINVAL;
10614                                 goto err_locked;
10615                         } else {
10616                                 perf_event_ctx_unlock(group_leader, gctx);
10617                                 move_group = 0;
10618                         }
10619                 }
10620         } else {
10621                 mutex_lock(&ctx->mutex);
10622         }
10623
10624         if (ctx->task == TASK_TOMBSTONE) {
10625                 err = -ESRCH;
10626                 goto err_locked;
10627         }
10628
10629         if (!perf_event_validate_size(event)) {
10630                 err = -E2BIG;
10631                 goto err_locked;
10632         }
10633
10634         if (!task) {
10635                 /*
10636                  * Check if the @cpu we're creating an event for is online.
10637                  *
10638                  * We use the perf_cpu_context::ctx::mutex to serialize against
10639                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10640                  */
10641                 struct perf_cpu_context *cpuctx =
10642                         container_of(ctx, struct perf_cpu_context, ctx);
10643
10644                 if (!cpuctx->online) {
10645                         err = -ENODEV;
10646                         goto err_locked;
10647                 }
10648         }
10649
10650
10651         /*
10652          * Must be under the same ctx::mutex as perf_install_in_context(),
10653          * because we need to serialize with concurrent event creation.
10654          */
10655         if (!exclusive_event_installable(event, ctx)) {
10656                 /* exclusive and group stuff are assumed mutually exclusive */
10657                 WARN_ON_ONCE(move_group);
10658
10659                 err = -EBUSY;
10660                 goto err_locked;
10661         }
10662
10663         WARN_ON_ONCE(ctx->parent_ctx);
10664
10665         /*
10666          * This is the point on no return; we cannot fail hereafter. This is
10667          * where we start modifying current state.
10668          */
10669
10670         if (move_group) {
10671                 /*
10672                  * See perf_event_ctx_lock() for comments on the details
10673                  * of swizzling perf_event::ctx.
10674                  */
10675                 perf_remove_from_context(group_leader, 0);
10676                 put_ctx(gctx);
10677
10678                 for_each_sibling_event(sibling, group_leader) {
10679                         perf_remove_from_context(sibling, 0);
10680                         put_ctx(gctx);
10681                 }
10682
10683                 /*
10684                  * Wait for everybody to stop referencing the events through
10685                  * the old lists, before installing it on new lists.
10686                  */
10687                 synchronize_rcu();
10688
10689                 /*
10690                  * Install the group siblings before the group leader.
10691                  *
10692                  * Because a group leader will try and install the entire group
10693                  * (through the sibling list, which is still in-tact), we can
10694                  * end up with siblings installed in the wrong context.
10695                  *
10696                  * By installing siblings first we NO-OP because they're not
10697                  * reachable through the group lists.
10698                  */
10699                 for_each_sibling_event(sibling, group_leader) {
10700                         perf_event__state_init(sibling);
10701                         perf_install_in_context(ctx, sibling, sibling->cpu);
10702                         get_ctx(ctx);
10703                 }
10704
10705                 /*
10706                  * Removing from the context ends up with disabled
10707                  * event. What we want here is event in the initial
10708                  * startup state, ready to be add into new context.
10709                  */
10710                 perf_event__state_init(group_leader);
10711                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10712                 get_ctx(ctx);
10713         }
10714
10715         /*
10716          * Precalculate sample_data sizes; do while holding ctx::mutex such
10717          * that we're serialized against further additions and before
10718          * perf_install_in_context() which is the point the event is active and
10719          * can use these values.
10720          */
10721         perf_event__header_size(event);
10722         perf_event__id_header_size(event);
10723
10724         event->owner = current;
10725
10726         perf_install_in_context(ctx, event, event->cpu);
10727         perf_unpin_context(ctx);
10728
10729         if (move_group)
10730                 perf_event_ctx_unlock(group_leader, gctx);
10731         mutex_unlock(&ctx->mutex);
10732
10733         if (task) {
10734                 mutex_unlock(&task->signal->cred_guard_mutex);
10735                 put_task_struct(task);
10736         }
10737
10738         mutex_lock(&current->perf_event_mutex);
10739         list_add_tail(&event->owner_entry, &current->perf_event_list);
10740         mutex_unlock(&current->perf_event_mutex);
10741
10742         /*
10743          * Drop the reference on the group_event after placing the
10744          * new event on the sibling_list. This ensures destruction
10745          * of the group leader will find the pointer to itself in
10746          * perf_group_detach().
10747          */
10748         fdput(group);
10749         fd_install(event_fd, event_file);
10750         return event_fd;
10751
10752 err_locked:
10753         if (move_group)
10754                 perf_event_ctx_unlock(group_leader, gctx);
10755         mutex_unlock(&ctx->mutex);
10756 /* err_file: */
10757         fput(event_file);
10758 err_context:
10759         perf_unpin_context(ctx);
10760         put_ctx(ctx);
10761 err_alloc:
10762         /*
10763          * If event_file is set, the fput() above will have called ->release()
10764          * and that will take care of freeing the event.
10765          */
10766         if (!event_file)
10767                 free_event(event);
10768 err_cred:
10769         if (task)
10770                 mutex_unlock(&task->signal->cred_guard_mutex);
10771 err_task:
10772         if (task)
10773                 put_task_struct(task);
10774 err_group_fd:
10775         fdput(group);
10776 err_fd:
10777         put_unused_fd(event_fd);
10778         return err;
10779 }
10780
10781 /**
10782  * perf_event_create_kernel_counter
10783  *
10784  * @attr: attributes of the counter to create
10785  * @cpu: cpu in which the counter is bound
10786  * @task: task to profile (NULL for percpu)
10787  */
10788 struct perf_event *
10789 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10790                                  struct task_struct *task,
10791                                  perf_overflow_handler_t overflow_handler,
10792                                  void *context)
10793 {
10794         struct perf_event_context *ctx;
10795         struct perf_event *event;
10796         int err;
10797
10798         /*
10799          * Get the target context (task or percpu):
10800          */
10801
10802         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10803                                  overflow_handler, context, -1);
10804         if (IS_ERR(event)) {
10805                 err = PTR_ERR(event);
10806                 goto err;
10807         }
10808
10809         /* Mark owner so we could distinguish it from user events. */
10810         event->owner = TASK_TOMBSTONE;
10811
10812         ctx = find_get_context(event->pmu, task, event);
10813         if (IS_ERR(ctx)) {
10814                 err = PTR_ERR(ctx);
10815                 goto err_free;
10816         }
10817
10818         WARN_ON_ONCE(ctx->parent_ctx);
10819         mutex_lock(&ctx->mutex);
10820         if (ctx->task == TASK_TOMBSTONE) {
10821                 err = -ESRCH;
10822                 goto err_unlock;
10823         }
10824
10825         if (!task) {
10826                 /*
10827                  * Check if the @cpu we're creating an event for is online.
10828                  *
10829                  * We use the perf_cpu_context::ctx::mutex to serialize against
10830                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10831                  */
10832                 struct perf_cpu_context *cpuctx =
10833                         container_of(ctx, struct perf_cpu_context, ctx);
10834                 if (!cpuctx->online) {
10835                         err = -ENODEV;
10836                         goto err_unlock;
10837                 }
10838         }
10839
10840         if (!exclusive_event_installable(event, ctx)) {
10841                 err = -EBUSY;
10842                 goto err_unlock;
10843         }
10844
10845         perf_install_in_context(ctx, event, cpu);
10846         perf_unpin_context(ctx);
10847         mutex_unlock(&ctx->mutex);
10848
10849         return event;
10850
10851 err_unlock:
10852         mutex_unlock(&ctx->mutex);
10853         perf_unpin_context(ctx);
10854         put_ctx(ctx);
10855 err_free:
10856         free_event(event);
10857 err:
10858         return ERR_PTR(err);
10859 }
10860 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10861
10862 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10863 {
10864         struct perf_event_context *src_ctx;
10865         struct perf_event_context *dst_ctx;
10866         struct perf_event *event, *tmp;
10867         LIST_HEAD(events);
10868
10869         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10870         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10871
10872         /*
10873          * See perf_event_ctx_lock() for comments on the details
10874          * of swizzling perf_event::ctx.
10875          */
10876         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10877         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10878                                  event_entry) {
10879                 perf_remove_from_context(event, 0);
10880                 unaccount_event_cpu(event, src_cpu);
10881                 put_ctx(src_ctx);
10882                 list_add(&event->migrate_entry, &events);
10883         }
10884
10885         /*
10886          * Wait for the events to quiesce before re-instating them.
10887          */
10888         synchronize_rcu();
10889
10890         /*
10891          * Re-instate events in 2 passes.
10892          *
10893          * Skip over group leaders and only install siblings on this first
10894          * pass, siblings will not get enabled without a leader, however a
10895          * leader will enable its siblings, even if those are still on the old
10896          * context.
10897          */
10898         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10899                 if (event->group_leader == event)
10900                         continue;
10901
10902                 list_del(&event->migrate_entry);
10903                 if (event->state >= PERF_EVENT_STATE_OFF)
10904                         event->state = PERF_EVENT_STATE_INACTIVE;
10905                 account_event_cpu(event, dst_cpu);
10906                 perf_install_in_context(dst_ctx, event, dst_cpu);
10907                 get_ctx(dst_ctx);
10908         }
10909
10910         /*
10911          * Once all the siblings are setup properly, install the group leaders
10912          * to make it go.
10913          */
10914         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10915                 list_del(&event->migrate_entry);
10916                 if (event->state >= PERF_EVENT_STATE_OFF)
10917                         event->state = PERF_EVENT_STATE_INACTIVE;
10918                 account_event_cpu(event, dst_cpu);
10919                 perf_install_in_context(dst_ctx, event, dst_cpu);
10920                 get_ctx(dst_ctx);
10921         }
10922         mutex_unlock(&dst_ctx->mutex);
10923         mutex_unlock(&src_ctx->mutex);
10924 }
10925 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10926
10927 static void sync_child_event(struct perf_event *child_event,
10928                                struct task_struct *child)
10929 {
10930         struct perf_event *parent_event = child_event->parent;
10931         u64 child_val;
10932
10933         if (child_event->attr.inherit_stat)
10934                 perf_event_read_event(child_event, child);
10935
10936         child_val = perf_event_count(child_event);
10937
10938         /*
10939          * Add back the child's count to the parent's count:
10940          */
10941         atomic64_add(child_val, &parent_event->child_count);
10942         atomic64_add(child_event->total_time_enabled,
10943                      &parent_event->child_total_time_enabled);
10944         atomic64_add(child_event->total_time_running,
10945                      &parent_event->child_total_time_running);
10946 }
10947
10948 static void
10949 perf_event_exit_event(struct perf_event *child_event,
10950                       struct perf_event_context *child_ctx,
10951                       struct task_struct *child)
10952 {
10953         struct perf_event *parent_event = child_event->parent;
10954
10955         /*
10956          * Do not destroy the 'original' grouping; because of the context
10957          * switch optimization the original events could've ended up in a
10958          * random child task.
10959          *
10960          * If we were to destroy the original group, all group related
10961          * operations would cease to function properly after this random
10962          * child dies.
10963          *
10964          * Do destroy all inherited groups, we don't care about those
10965          * and being thorough is better.
10966          */
10967         raw_spin_lock_irq(&child_ctx->lock);
10968         WARN_ON_ONCE(child_ctx->is_active);
10969
10970         if (parent_event)
10971                 perf_group_detach(child_event);
10972         list_del_event(child_event, child_ctx);
10973         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10974         raw_spin_unlock_irq(&child_ctx->lock);
10975
10976         /*
10977          * Parent events are governed by their filedesc, retain them.
10978          */
10979         if (!parent_event) {
10980                 perf_event_wakeup(child_event);
10981                 return;
10982         }
10983         /*
10984          * Child events can be cleaned up.
10985          */
10986
10987         sync_child_event(child_event, child);
10988
10989         /*
10990          * Remove this event from the parent's list
10991          */
10992         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10993         mutex_lock(&parent_event->child_mutex);
10994         list_del_init(&child_event->child_list);
10995         mutex_unlock(&parent_event->child_mutex);
10996
10997         /*
10998          * Kick perf_poll() for is_event_hup().
10999          */
11000         perf_event_wakeup(parent_event);
11001         free_event(child_event);
11002         put_event(parent_event);
11003 }
11004
11005 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11006 {
11007         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11008         struct perf_event *child_event, *next;
11009
11010         WARN_ON_ONCE(child != current);
11011
11012         child_ctx = perf_pin_task_context(child, ctxn);
11013         if (!child_ctx)
11014                 return;
11015
11016         /*
11017          * In order to reduce the amount of tricky in ctx tear-down, we hold
11018          * ctx::mutex over the entire thing. This serializes against almost
11019          * everything that wants to access the ctx.
11020          *
11021          * The exception is sys_perf_event_open() /
11022          * perf_event_create_kernel_count() which does find_get_context()
11023          * without ctx::mutex (it cannot because of the move_group double mutex
11024          * lock thing). See the comments in perf_install_in_context().
11025          */
11026         mutex_lock(&child_ctx->mutex);
11027
11028         /*
11029          * In a single ctx::lock section, de-schedule the events and detach the
11030          * context from the task such that we cannot ever get it scheduled back
11031          * in.
11032          */
11033         raw_spin_lock_irq(&child_ctx->lock);
11034         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11035
11036         /*
11037          * Now that the context is inactive, destroy the task <-> ctx relation
11038          * and mark the context dead.
11039          */
11040         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11041         put_ctx(child_ctx); /* cannot be last */
11042         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11043         put_task_struct(current); /* cannot be last */
11044
11045         clone_ctx = unclone_ctx(child_ctx);
11046         raw_spin_unlock_irq(&child_ctx->lock);
11047
11048         if (clone_ctx)
11049                 put_ctx(clone_ctx);
11050
11051         /*
11052          * Report the task dead after unscheduling the events so that we
11053          * won't get any samples after PERF_RECORD_EXIT. We can however still
11054          * get a few PERF_RECORD_READ events.
11055          */
11056         perf_event_task(child, child_ctx, 0);
11057
11058         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11059                 perf_event_exit_event(child_event, child_ctx, child);
11060
11061         mutex_unlock(&child_ctx->mutex);
11062
11063         put_ctx(child_ctx);
11064 }
11065
11066 /*
11067  * When a child task exits, feed back event values to parent events.
11068  *
11069  * Can be called with cred_guard_mutex held when called from
11070  * install_exec_creds().
11071  */
11072 void perf_event_exit_task(struct task_struct *child)
11073 {
11074         struct perf_event *event, *tmp;
11075         int ctxn;
11076
11077         mutex_lock(&child->perf_event_mutex);
11078         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11079                                  owner_entry) {
11080                 list_del_init(&event->owner_entry);
11081
11082                 /*
11083                  * Ensure the list deletion is visible before we clear
11084                  * the owner, closes a race against perf_release() where
11085                  * we need to serialize on the owner->perf_event_mutex.
11086                  */
11087                 smp_store_release(&event->owner, NULL);
11088         }
11089         mutex_unlock(&child->perf_event_mutex);
11090
11091         for_each_task_context_nr(ctxn)
11092                 perf_event_exit_task_context(child, ctxn);
11093
11094         /*
11095          * The perf_event_exit_task_context calls perf_event_task
11096          * with child's task_ctx, which generates EXIT events for
11097          * child contexts and sets child->perf_event_ctxp[] to NULL.
11098          * At this point we need to send EXIT events to cpu contexts.
11099          */
11100         perf_event_task(child, NULL, 0);
11101 }
11102
11103 static void perf_free_event(struct perf_event *event,
11104                             struct perf_event_context *ctx)
11105 {
11106         struct perf_event *parent = event->parent;
11107
11108         if (WARN_ON_ONCE(!parent))
11109                 return;
11110
11111         mutex_lock(&parent->child_mutex);
11112         list_del_init(&event->child_list);
11113         mutex_unlock(&parent->child_mutex);
11114
11115         put_event(parent);
11116
11117         raw_spin_lock_irq(&ctx->lock);
11118         perf_group_detach(event);
11119         list_del_event(event, ctx);
11120         raw_spin_unlock_irq(&ctx->lock);
11121         free_event(event);
11122 }
11123
11124 /*
11125  * Free an unexposed, unused context as created by inheritance by
11126  * perf_event_init_task below, used by fork() in case of fail.
11127  *
11128  * Not all locks are strictly required, but take them anyway to be nice and
11129  * help out with the lockdep assertions.
11130  */
11131 void perf_event_free_task(struct task_struct *task)
11132 {
11133         struct perf_event_context *ctx;
11134         struct perf_event *event, *tmp;
11135         int ctxn;
11136
11137         for_each_task_context_nr(ctxn) {
11138                 ctx = task->perf_event_ctxp[ctxn];
11139                 if (!ctx)
11140                         continue;
11141
11142                 mutex_lock(&ctx->mutex);
11143                 raw_spin_lock_irq(&ctx->lock);
11144                 /*
11145                  * Destroy the task <-> ctx relation and mark the context dead.
11146                  *
11147                  * This is important because even though the task hasn't been
11148                  * exposed yet the context has been (through child_list).
11149                  */
11150                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11151                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11152                 put_task_struct(task); /* cannot be last */
11153                 raw_spin_unlock_irq(&ctx->lock);
11154
11155                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11156                         perf_free_event(event, ctx);
11157
11158                 mutex_unlock(&ctx->mutex);
11159                 put_ctx(ctx);
11160         }
11161 }
11162
11163 void perf_event_delayed_put(struct task_struct *task)
11164 {
11165         int ctxn;
11166
11167         for_each_task_context_nr(ctxn)
11168                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11169 }
11170
11171 struct file *perf_event_get(unsigned int fd)
11172 {
11173         struct file *file;
11174
11175         file = fget_raw(fd);
11176         if (!file)
11177                 return ERR_PTR(-EBADF);
11178
11179         if (file->f_op != &perf_fops) {
11180                 fput(file);
11181                 return ERR_PTR(-EBADF);
11182         }
11183
11184         return file;
11185 }
11186
11187 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11188 {
11189         if (!event)
11190                 return ERR_PTR(-EINVAL);
11191
11192         return &event->attr;
11193 }
11194
11195 /*
11196  * Inherit a event from parent task to child task.
11197  *
11198  * Returns:
11199  *  - valid pointer on success
11200  *  - NULL for orphaned events
11201  *  - IS_ERR() on error
11202  */
11203 static struct perf_event *
11204 inherit_event(struct perf_event *parent_event,
11205               struct task_struct *parent,
11206               struct perf_event_context *parent_ctx,
11207               struct task_struct *child,
11208               struct perf_event *group_leader,
11209               struct perf_event_context *child_ctx)
11210 {
11211         enum perf_event_state parent_state = parent_event->state;
11212         struct perf_event *child_event;
11213         unsigned long flags;
11214
11215         /*
11216          * Instead of creating recursive hierarchies of events,
11217          * we link inherited events back to the original parent,
11218          * which has a filp for sure, which we use as the reference
11219          * count:
11220          */
11221         if (parent_event->parent)
11222                 parent_event = parent_event->parent;
11223
11224         child_event = perf_event_alloc(&parent_event->attr,
11225                                            parent_event->cpu,
11226                                            child,
11227                                            group_leader, parent_event,
11228                                            NULL, NULL, -1);
11229         if (IS_ERR(child_event))
11230                 return child_event;
11231
11232
11233         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11234             !child_ctx->task_ctx_data) {
11235                 struct pmu *pmu = child_event->pmu;
11236
11237                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11238                                                    GFP_KERNEL);
11239                 if (!child_ctx->task_ctx_data) {
11240                         free_event(child_event);
11241                         return NULL;
11242                 }
11243         }
11244
11245         /*
11246          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11247          * must be under the same lock in order to serialize against
11248          * perf_event_release_kernel(), such that either we must observe
11249          * is_orphaned_event() or they will observe us on the child_list.
11250          */
11251         mutex_lock(&parent_event->child_mutex);
11252         if (is_orphaned_event(parent_event) ||
11253             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11254                 mutex_unlock(&parent_event->child_mutex);
11255                 /* task_ctx_data is freed with child_ctx */
11256                 free_event(child_event);
11257                 return NULL;
11258         }
11259
11260         get_ctx(child_ctx);
11261
11262         /*
11263          * Make the child state follow the state of the parent event,
11264          * not its attr.disabled bit.  We hold the parent's mutex,
11265          * so we won't race with perf_event_{en, dis}able_family.
11266          */
11267         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11268                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11269         else
11270                 child_event->state = PERF_EVENT_STATE_OFF;
11271
11272         if (parent_event->attr.freq) {
11273                 u64 sample_period = parent_event->hw.sample_period;
11274                 struct hw_perf_event *hwc = &child_event->hw;
11275
11276                 hwc->sample_period = sample_period;
11277                 hwc->last_period   = sample_period;
11278
11279                 local64_set(&hwc->period_left, sample_period);
11280         }
11281
11282         child_event->ctx = child_ctx;
11283         child_event->overflow_handler = parent_event->overflow_handler;
11284         child_event->overflow_handler_context
11285                 = parent_event->overflow_handler_context;
11286
11287         /*
11288          * Precalculate sample_data sizes
11289          */
11290         perf_event__header_size(child_event);
11291         perf_event__id_header_size(child_event);
11292
11293         /*
11294          * Link it up in the child's context:
11295          */
11296         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11297         add_event_to_ctx(child_event, child_ctx);
11298         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11299
11300         /*
11301          * Link this into the parent event's child list
11302          */
11303         list_add_tail(&child_event->child_list, &parent_event->child_list);
11304         mutex_unlock(&parent_event->child_mutex);
11305
11306         return child_event;
11307 }
11308
11309 /*
11310  * Inherits an event group.
11311  *
11312  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11313  * This matches with perf_event_release_kernel() removing all child events.
11314  *
11315  * Returns:
11316  *  - 0 on success
11317  *  - <0 on error
11318  */
11319 static int inherit_group(struct perf_event *parent_event,
11320               struct task_struct *parent,
11321               struct perf_event_context *parent_ctx,
11322               struct task_struct *child,
11323               struct perf_event_context *child_ctx)
11324 {
11325         struct perf_event *leader;
11326         struct perf_event *sub;
11327         struct perf_event *child_ctr;
11328
11329         leader = inherit_event(parent_event, parent, parent_ctx,
11330                                  child, NULL, child_ctx);
11331         if (IS_ERR(leader))
11332                 return PTR_ERR(leader);
11333         /*
11334          * @leader can be NULL here because of is_orphaned_event(). In this
11335          * case inherit_event() will create individual events, similar to what
11336          * perf_group_detach() would do anyway.
11337          */
11338         for_each_sibling_event(sub, parent_event) {
11339                 child_ctr = inherit_event(sub, parent, parent_ctx,
11340                                             child, leader, child_ctx);
11341                 if (IS_ERR(child_ctr))
11342                         return PTR_ERR(child_ctr);
11343         }
11344         return 0;
11345 }
11346
11347 /*
11348  * Creates the child task context and tries to inherit the event-group.
11349  *
11350  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11351  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11352  * consistent with perf_event_release_kernel() removing all child events.
11353  *
11354  * Returns:
11355  *  - 0 on success
11356  *  - <0 on error
11357  */
11358 static int
11359 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11360                    struct perf_event_context *parent_ctx,
11361                    struct task_struct *child, int ctxn,
11362                    int *inherited_all)
11363 {
11364         int ret;
11365         struct perf_event_context *child_ctx;
11366
11367         if (!event->attr.inherit) {
11368                 *inherited_all = 0;
11369                 return 0;
11370         }
11371
11372         child_ctx = child->perf_event_ctxp[ctxn];
11373         if (!child_ctx) {
11374                 /*
11375                  * This is executed from the parent task context, so
11376                  * inherit events that have been marked for cloning.
11377                  * First allocate and initialize a context for the
11378                  * child.
11379                  */
11380                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11381                 if (!child_ctx)
11382                         return -ENOMEM;
11383
11384                 child->perf_event_ctxp[ctxn] = child_ctx;
11385         }
11386
11387         ret = inherit_group(event, parent, parent_ctx,
11388                             child, child_ctx);
11389
11390         if (ret)
11391                 *inherited_all = 0;
11392
11393         return ret;
11394 }
11395
11396 /*
11397  * Initialize the perf_event context in task_struct
11398  */
11399 static int perf_event_init_context(struct task_struct *child, int ctxn)
11400 {
11401         struct perf_event_context *child_ctx, *parent_ctx;
11402         struct perf_event_context *cloned_ctx;
11403         struct perf_event *event;
11404         struct task_struct *parent = current;
11405         int inherited_all = 1;
11406         unsigned long flags;
11407         int ret = 0;
11408
11409         if (likely(!parent->perf_event_ctxp[ctxn]))
11410                 return 0;
11411
11412         /*
11413          * If the parent's context is a clone, pin it so it won't get
11414          * swapped under us.
11415          */
11416         parent_ctx = perf_pin_task_context(parent, ctxn);
11417         if (!parent_ctx)
11418                 return 0;
11419
11420         /*
11421          * No need to check if parent_ctx != NULL here; since we saw
11422          * it non-NULL earlier, the only reason for it to become NULL
11423          * is if we exit, and since we're currently in the middle of
11424          * a fork we can't be exiting at the same time.
11425          */
11426
11427         /*
11428          * Lock the parent list. No need to lock the child - not PID
11429          * hashed yet and not running, so nobody can access it.
11430          */
11431         mutex_lock(&parent_ctx->mutex);
11432
11433         /*
11434          * We dont have to disable NMIs - we are only looking at
11435          * the list, not manipulating it:
11436          */
11437         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11438                 ret = inherit_task_group(event, parent, parent_ctx,
11439                                          child, ctxn, &inherited_all);
11440                 if (ret)
11441                         goto out_unlock;
11442         }
11443
11444         /*
11445          * We can't hold ctx->lock when iterating the ->flexible_group list due
11446          * to allocations, but we need to prevent rotation because
11447          * rotate_ctx() will change the list from interrupt context.
11448          */
11449         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11450         parent_ctx->rotate_disable = 1;
11451         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11452
11453         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11454                 ret = inherit_task_group(event, parent, parent_ctx,
11455                                          child, ctxn, &inherited_all);
11456                 if (ret)
11457                         goto out_unlock;
11458         }
11459
11460         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11461         parent_ctx->rotate_disable = 0;
11462
11463         child_ctx = child->perf_event_ctxp[ctxn];
11464
11465         if (child_ctx && inherited_all) {
11466                 /*
11467                  * Mark the child context as a clone of the parent
11468                  * context, or of whatever the parent is a clone of.
11469                  *
11470                  * Note that if the parent is a clone, the holding of
11471                  * parent_ctx->lock avoids it from being uncloned.
11472                  */
11473                 cloned_ctx = parent_ctx->parent_ctx;
11474                 if (cloned_ctx) {
11475                         child_ctx->parent_ctx = cloned_ctx;
11476                         child_ctx->parent_gen = parent_ctx->parent_gen;
11477                 } else {
11478                         child_ctx->parent_ctx = parent_ctx;
11479                         child_ctx->parent_gen = parent_ctx->generation;
11480                 }
11481                 get_ctx(child_ctx->parent_ctx);
11482         }
11483
11484         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11485 out_unlock:
11486         mutex_unlock(&parent_ctx->mutex);
11487
11488         perf_unpin_context(parent_ctx);
11489         put_ctx(parent_ctx);
11490
11491         return ret;
11492 }
11493
11494 /*
11495  * Initialize the perf_event context in task_struct
11496  */
11497 int perf_event_init_task(struct task_struct *child)
11498 {
11499         int ctxn, ret;
11500
11501         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11502         mutex_init(&child->perf_event_mutex);
11503         INIT_LIST_HEAD(&child->perf_event_list);
11504
11505         for_each_task_context_nr(ctxn) {
11506                 ret = perf_event_init_context(child, ctxn);
11507                 if (ret) {
11508                         perf_event_free_task(child);
11509                         return ret;
11510                 }
11511         }
11512
11513         return 0;
11514 }
11515
11516 static void __init perf_event_init_all_cpus(void)
11517 {
11518         struct swevent_htable *swhash;
11519         int cpu;
11520
11521         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11522
11523         for_each_possible_cpu(cpu) {
11524                 swhash = &per_cpu(swevent_htable, cpu);
11525                 mutex_init(&swhash->hlist_mutex);
11526                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11527
11528                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11529                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11530
11531 #ifdef CONFIG_CGROUP_PERF
11532                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11533 #endif
11534                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11535         }
11536 }
11537
11538 void perf_swevent_init_cpu(unsigned int cpu)
11539 {
11540         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11541
11542         mutex_lock(&swhash->hlist_mutex);
11543         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11544                 struct swevent_hlist *hlist;
11545
11546                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11547                 WARN_ON(!hlist);
11548                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11549         }
11550         mutex_unlock(&swhash->hlist_mutex);
11551 }
11552
11553 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11554 static void __perf_event_exit_context(void *__info)
11555 {
11556         struct perf_event_context *ctx = __info;
11557         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11558         struct perf_event *event;
11559
11560         raw_spin_lock(&ctx->lock);
11561         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11562         list_for_each_entry(event, &ctx->event_list, event_entry)
11563                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11564         raw_spin_unlock(&ctx->lock);
11565 }
11566
11567 static void perf_event_exit_cpu_context(int cpu)
11568 {
11569         struct perf_cpu_context *cpuctx;
11570         struct perf_event_context *ctx;
11571         struct pmu *pmu;
11572
11573         mutex_lock(&pmus_lock);
11574         list_for_each_entry(pmu, &pmus, entry) {
11575                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11576                 ctx = &cpuctx->ctx;
11577
11578                 mutex_lock(&ctx->mutex);
11579                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11580                 cpuctx->online = 0;
11581                 mutex_unlock(&ctx->mutex);
11582         }
11583         cpumask_clear_cpu(cpu, perf_online_mask);
11584         mutex_unlock(&pmus_lock);
11585 }
11586 #else
11587
11588 static void perf_event_exit_cpu_context(int cpu) { }
11589
11590 #endif
11591
11592 int perf_event_init_cpu(unsigned int cpu)
11593 {
11594         struct perf_cpu_context *cpuctx;
11595         struct perf_event_context *ctx;
11596         struct pmu *pmu;
11597
11598         perf_swevent_init_cpu(cpu);
11599
11600         mutex_lock(&pmus_lock);
11601         cpumask_set_cpu(cpu, perf_online_mask);
11602         list_for_each_entry(pmu, &pmus, entry) {
11603                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11604                 ctx = &cpuctx->ctx;
11605
11606                 mutex_lock(&ctx->mutex);
11607                 cpuctx->online = 1;
11608                 mutex_unlock(&ctx->mutex);
11609         }
11610         mutex_unlock(&pmus_lock);
11611
11612         return 0;
11613 }
11614
11615 int perf_event_exit_cpu(unsigned int cpu)
11616 {
11617         perf_event_exit_cpu_context(cpu);
11618         return 0;
11619 }
11620
11621 static int
11622 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11623 {
11624         int cpu;
11625
11626         for_each_online_cpu(cpu)
11627                 perf_event_exit_cpu(cpu);
11628
11629         return NOTIFY_OK;
11630 }
11631
11632 /*
11633  * Run the perf reboot notifier at the very last possible moment so that
11634  * the generic watchdog code runs as long as possible.
11635  */
11636 static struct notifier_block perf_reboot_notifier = {
11637         .notifier_call = perf_reboot,
11638         .priority = INT_MIN,
11639 };
11640
11641 void __init perf_event_init(void)
11642 {
11643         int ret;
11644
11645         idr_init(&pmu_idr);
11646
11647         perf_event_init_all_cpus();
11648         init_srcu_struct(&pmus_srcu);
11649         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11650         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11651         perf_pmu_register(&perf_task_clock, NULL, -1);
11652         perf_tp_register();
11653         perf_event_init_cpu(smp_processor_id());
11654         register_reboot_notifier(&perf_reboot_notifier);
11655
11656         ret = init_hw_breakpoint();
11657         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11658
11659         /*
11660          * Build time assertion that we keep the data_head at the intended
11661          * location.  IOW, validation we got the __reserved[] size right.
11662          */
11663         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11664                      != 1024);
11665 }
11666
11667 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11668                               char *page)
11669 {
11670         struct perf_pmu_events_attr *pmu_attr =
11671                 container_of(attr, struct perf_pmu_events_attr, attr);
11672
11673         if (pmu_attr->event_str)
11674                 return sprintf(page, "%s\n", pmu_attr->event_str);
11675
11676         return 0;
11677 }
11678 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11679
11680 static int __init perf_event_sysfs_init(void)
11681 {
11682         struct pmu *pmu;
11683         int ret;
11684
11685         mutex_lock(&pmus_lock);
11686
11687         ret = bus_register(&pmu_bus);
11688         if (ret)
11689                 goto unlock;
11690
11691         list_for_each_entry(pmu, &pmus, entry) {
11692                 if (!pmu->name || pmu->type < 0)
11693                         continue;
11694
11695                 ret = pmu_dev_alloc(pmu);
11696                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11697         }
11698         pmu_bus_running = 1;
11699         ret = 0;
11700
11701 unlock:
11702         mutex_unlock(&pmus_lock);
11703
11704         return ret;
11705 }
11706 device_initcall(perf_event_sysfs_init);
11707
11708 #ifdef CONFIG_CGROUP_PERF
11709 static struct cgroup_subsys_state *
11710 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11711 {
11712         struct perf_cgroup *jc;
11713
11714         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11715         if (!jc)
11716                 return ERR_PTR(-ENOMEM);
11717
11718         jc->info = alloc_percpu(struct perf_cgroup_info);
11719         if (!jc->info) {
11720                 kfree(jc);
11721                 return ERR_PTR(-ENOMEM);
11722         }
11723
11724         return &jc->css;
11725 }
11726
11727 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11728 {
11729         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11730
11731         free_percpu(jc->info);
11732         kfree(jc);
11733 }
11734
11735 static int __perf_cgroup_move(void *info)
11736 {
11737         struct task_struct *task = info;
11738         rcu_read_lock();
11739         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11740         rcu_read_unlock();
11741         return 0;
11742 }
11743
11744 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11745 {
11746         struct task_struct *task;
11747         struct cgroup_subsys_state *css;
11748
11749         cgroup_taskset_for_each(task, css, tset)
11750                 task_function_call(task, __perf_cgroup_move, task);
11751 }
11752
11753 struct cgroup_subsys perf_event_cgrp_subsys = {
11754         .css_alloc      = perf_cgroup_css_alloc,
11755         .css_free       = perf_cgroup_css_free,
11756         .attach         = perf_cgroup_attach,
11757         /*
11758          * Implicitly enable on dfl hierarchy so that perf events can
11759          * always be filtered by cgroup2 path as long as perf_event
11760          * controller is not mounted on a legacy hierarchy.
11761          */
11762         .implicit_on_dfl = true,
11763         .threaded       = true,
11764 };
11765 #endif /* CONFIG_CGROUP_PERF */