s390/vdso: drop unnecessary cc-ldoption
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892         struct perf_event *sibling, *tmp;
1893         struct perf_event_context *ctx = event->ctx;
1894
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_GROUP))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905         /*
1906          * If this is a sibling, remove it from its group.
1907          */
1908         if (event->group_leader != event) {
1909                 list_del_init(&event->sibling_list);
1910                 event->group_leader->nr_siblings--;
1911                 goto out;
1912         }
1913
1914         /*
1915          * If this was a group event with sibling events then
1916          * upgrade the siblings to singleton events by adding them
1917          * to whatever list we are on.
1918          */
1919         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921                 sibling->group_leader = sibling;
1922                 list_del_init(&sibling->sibling_list);
1923
1924                 /* Inherit group flags from the previous leader */
1925                 sibling->group_caps = event->group_caps;
1926
1927                 if (!RB_EMPTY_NODE(&event->group_node)) {
1928                         add_event_to_groups(sibling, event->ctx);
1929
1930                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931                                 struct list_head *list = sibling->attr.pinned ?
1932                                         &ctx->pinned_active : &ctx->flexible_active;
1933
1934                                 list_add_tail(&sibling->active_list, list);
1935                         }
1936                 }
1937
1938                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939         }
1940
1941 out:
1942         perf_event__header_size(event->group_leader);
1943
1944         for_each_sibling_event(tmp, event->group_leader)
1945                 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950         return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955         struct pmu *pmu = event->pmu;
1956         return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967         struct perf_event *sibling;
1968
1969         if (!__pmu_filter_match(event))
1970                 return 0;
1971
1972         for_each_sibling_event(sibling, event) {
1973                 if (!__pmu_filter_match(sibling))
1974                         return 0;
1975         }
1976
1977         return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984                perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989                   struct perf_cpu_context *cpuctx,
1990                   struct perf_event_context *ctx)
1991 {
1992         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         if (event->state != PERF_EVENT_STATE_ACTIVE)
1998                 return;
1999
2000         /*
2001          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002          * we can schedule events _OUT_ individually through things like
2003          * __perf_remove_from_context().
2004          */
2005         list_del_init(&event->active_list);
2006
2007         perf_pmu_disable(event->pmu);
2008
2009         event->pmu->del(event, 0);
2010         event->oncpu = -1;
2011
2012         if (event->pending_disable) {
2013                 event->pending_disable = 0;
2014                 state = PERF_EVENT_STATE_OFF;
2015         }
2016         perf_event_set_state(event, state);
2017
2018         if (!is_software_event(event))
2019                 cpuctx->active_oncpu--;
2020         if (!--ctx->nr_active)
2021                 perf_event_ctx_deactivate(ctx);
2022         if (event->attr.freq && event->attr.sample_freq)
2023                 ctx->nr_freq--;
2024         if (event->attr.exclusive || !cpuctx->active_oncpu)
2025                 cpuctx->exclusive = 0;
2026
2027         perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032                 struct perf_cpu_context *cpuctx,
2033                 struct perf_event_context *ctx)
2034 {
2035         struct perf_event *event;
2036
2037         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         perf_pmu_disable(ctx->pmu);
2041
2042         event_sched_out(group_event, cpuctx, ctx);
2043
2044         /*
2045          * Schedule out siblings (if any):
2046          */
2047         for_each_sibling_event(event, group_event)
2048                 event_sched_out(event, cpuctx, ctx);
2049
2050         perf_pmu_enable(ctx->pmu);
2051
2052         if (group_event->attr.exclusive)
2053                 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP    0x01UL
2057
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066                            struct perf_cpu_context *cpuctx,
2067                            struct perf_event_context *ctx,
2068                            void *info)
2069 {
2070         unsigned long flags = (unsigned long)info;
2071
2072         if (ctx->is_active & EVENT_TIME) {
2073                 update_context_time(ctx);
2074                 update_cgrp_time_from_cpuctx(cpuctx);
2075         }
2076
2077         event_sched_out(event, cpuctx, ctx);
2078         if (flags & DETACH_GROUP)
2079                 perf_group_detach(event);
2080         list_del_event(event, ctx);
2081
2082         if (!ctx->nr_events && ctx->is_active) {
2083                 ctx->is_active = 0;
2084                 if (ctx->task) {
2085                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086                         cpuctx->task_ctx = NULL;
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104
2105         lockdep_assert_held(&ctx->mutex);
2106
2107         event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109         /*
2110          * The above event_function_call() can NO-OP when it hits
2111          * TASK_TOMBSTONE. In that case we must already have been detached
2112          * from the context (by perf_event_exit_event()) but the grouping
2113          * might still be in-tact.
2114          */
2115         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116         if ((flags & DETACH_GROUP) &&
2117             (event->attach_state & PERF_ATTACH_GROUP)) {
2118                 /*
2119                  * Since in that case we cannot possibly be scheduled, simply
2120                  * detach now.
2121                  */
2122                 raw_spin_lock_irq(&ctx->lock);
2123                 perf_group_detach(event);
2124                 raw_spin_unlock_irq(&ctx->lock);
2125         }
2126 }
2127
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132                                  struct perf_cpu_context *cpuctx,
2133                                  struct perf_event_context *ctx,
2134                                  void *info)
2135 {
2136         if (event->state < PERF_EVENT_STATE_INACTIVE)
2137                 return;
2138
2139         if (ctx->is_active & EVENT_TIME) {
2140                 update_context_time(ctx);
2141                 update_cgrp_time_from_event(event);
2142         }
2143
2144         if (event == event->group_leader)
2145                 group_sched_out(event, cpuctx, ctx);
2146         else
2147                 event_sched_out(event, cpuctx, ctx);
2148
2149         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168         struct perf_event_context *ctx = event->ctx;
2169
2170         raw_spin_lock_irq(&ctx->lock);
2171         if (event->state <= PERF_EVENT_STATE_OFF) {
2172                 raw_spin_unlock_irq(&ctx->lock);
2173                 return;
2174         }
2175         raw_spin_unlock_irq(&ctx->lock);
2176
2177         event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182         event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191         struct perf_event_context *ctx;
2192
2193         ctx = perf_event_ctx_lock(event);
2194         _perf_event_disable(event);
2195         perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201         event->pending_disable = 1;
2202         irq_work_queue(&event->pending);
2203 }
2204
2205 static void perf_set_shadow_time(struct perf_event *event,
2206                                  struct perf_event_context *ctx)
2207 {
2208         /*
2209          * use the correct time source for the time snapshot
2210          *
2211          * We could get by without this by leveraging the
2212          * fact that to get to this function, the caller
2213          * has most likely already called update_context_time()
2214          * and update_cgrp_time_xx() and thus both timestamp
2215          * are identical (or very close). Given that tstamp is,
2216          * already adjusted for cgroup, we could say that:
2217          *    tstamp - ctx->timestamp
2218          * is equivalent to
2219          *    tstamp - cgrp->timestamp.
2220          *
2221          * Then, in perf_output_read(), the calculation would
2222          * work with no changes because:
2223          * - event is guaranteed scheduled in
2224          * - no scheduled out in between
2225          * - thus the timestamp would be the same
2226          *
2227          * But this is a bit hairy.
2228          *
2229          * So instead, we have an explicit cgroup call to remain
2230          * within the time time source all along. We believe it
2231          * is cleaner and simpler to understand.
2232          */
2233         if (is_cgroup_event(event))
2234                 perf_cgroup_set_shadow_time(event, event->tstamp);
2235         else
2236                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2237 }
2238
2239 #define MAX_INTERRUPTS (~0ULL)
2240
2241 static void perf_log_throttle(struct perf_event *event, int enable);
2242 static void perf_log_itrace_start(struct perf_event *event);
2243
2244 static int
2245 event_sched_in(struct perf_event *event,
2246                  struct perf_cpu_context *cpuctx,
2247                  struct perf_event_context *ctx)
2248 {
2249         int ret = 0;
2250
2251         lockdep_assert_held(&ctx->lock);
2252
2253         if (event->state <= PERF_EVENT_STATE_OFF)
2254                 return 0;
2255
2256         WRITE_ONCE(event->oncpu, smp_processor_id());
2257         /*
2258          * Order event::oncpu write to happen before the ACTIVE state is
2259          * visible. This allows perf_event_{stop,read}() to observe the correct
2260          * ->oncpu if it sees ACTIVE.
2261          */
2262         smp_wmb();
2263         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2264
2265         /*
2266          * Unthrottle events, since we scheduled we might have missed several
2267          * ticks already, also for a heavily scheduling task there is little
2268          * guarantee it'll get a tick in a timely manner.
2269          */
2270         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2271                 perf_log_throttle(event, 1);
2272                 event->hw.interrupts = 0;
2273         }
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         perf_set_shadow_time(event, ctx);
2278
2279         perf_log_itrace_start(event);
2280
2281         if (event->pmu->add(event, PERF_EF_START)) {
2282                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2283                 event->oncpu = -1;
2284                 ret = -EAGAIN;
2285                 goto out;
2286         }
2287
2288         if (!is_software_event(event))
2289                 cpuctx->active_oncpu++;
2290         if (!ctx->nr_active++)
2291                 perf_event_ctx_activate(ctx);
2292         if (event->attr.freq && event->attr.sample_freq)
2293                 ctx->nr_freq++;
2294
2295         if (event->attr.exclusive)
2296                 cpuctx->exclusive = 1;
2297
2298 out:
2299         perf_pmu_enable(event->pmu);
2300
2301         return ret;
2302 }
2303
2304 static int
2305 group_sched_in(struct perf_event *group_event,
2306                struct perf_cpu_context *cpuctx,
2307                struct perf_event_context *ctx)
2308 {
2309         struct perf_event *event, *partial_group = NULL;
2310         struct pmu *pmu = ctx->pmu;
2311
2312         if (group_event->state == PERF_EVENT_STATE_OFF)
2313                 return 0;
2314
2315         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2316
2317         if (event_sched_in(group_event, cpuctx, ctx)) {
2318                 pmu->cancel_txn(pmu);
2319                 perf_mux_hrtimer_restart(cpuctx);
2320                 return -EAGAIN;
2321         }
2322
2323         /*
2324          * Schedule in siblings as one group (if any):
2325          */
2326         for_each_sibling_event(event, group_event) {
2327                 if (event_sched_in(event, cpuctx, ctx)) {
2328                         partial_group = event;
2329                         goto group_error;
2330                 }
2331         }
2332
2333         if (!pmu->commit_txn(pmu))
2334                 return 0;
2335
2336 group_error:
2337         /*
2338          * Groups can be scheduled in as one unit only, so undo any
2339          * partial group before returning:
2340          * The events up to the failed event are scheduled out normally.
2341          */
2342         for_each_sibling_event(event, group_event) {
2343                 if (event == partial_group)
2344                         break;
2345
2346                 event_sched_out(event, cpuctx, ctx);
2347         }
2348         event_sched_out(group_event, cpuctx, ctx);
2349
2350         pmu->cancel_txn(pmu);
2351
2352         perf_mux_hrtimer_restart(cpuctx);
2353
2354         return -EAGAIN;
2355 }
2356
2357 /*
2358  * Work out whether we can put this event group on the CPU now.
2359  */
2360 static int group_can_go_on(struct perf_event *event,
2361                            struct perf_cpu_context *cpuctx,
2362                            int can_add_hw)
2363 {
2364         /*
2365          * Groups consisting entirely of software events can always go on.
2366          */
2367         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2368                 return 1;
2369         /*
2370          * If an exclusive group is already on, no other hardware
2371          * events can go on.
2372          */
2373         if (cpuctx->exclusive)
2374                 return 0;
2375         /*
2376          * If this group is exclusive and there are already
2377          * events on the CPU, it can't go on.
2378          */
2379         if (event->attr.exclusive && cpuctx->active_oncpu)
2380                 return 0;
2381         /*
2382          * Otherwise, try to add it if all previous groups were able
2383          * to go on.
2384          */
2385         return can_add_hw;
2386 }
2387
2388 static void add_event_to_ctx(struct perf_event *event,
2389                                struct perf_event_context *ctx)
2390 {
2391         list_add_event(event, ctx);
2392         perf_group_attach(event);
2393 }
2394
2395 static void ctx_sched_out(struct perf_event_context *ctx,
2396                           struct perf_cpu_context *cpuctx,
2397                           enum event_type_t event_type);
2398 static void
2399 ctx_sched_in(struct perf_event_context *ctx,
2400              struct perf_cpu_context *cpuctx,
2401              enum event_type_t event_type,
2402              struct task_struct *task);
2403
2404 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2405                                struct perf_event_context *ctx,
2406                                enum event_type_t event_type)
2407 {
2408         if (!cpuctx->task_ctx)
2409                 return;
2410
2411         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412                 return;
2413
2414         ctx_sched_out(ctx, cpuctx, event_type);
2415 }
2416
2417 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2418                                 struct perf_event_context *ctx,
2419                                 struct task_struct *task)
2420 {
2421         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2422         if (ctx)
2423                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2424         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2425         if (ctx)
2426                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2427 }
2428
2429 /*
2430  * We want to maintain the following priority of scheduling:
2431  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432  *  - task pinned (EVENT_PINNED)
2433  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434  *  - task flexible (EVENT_FLEXIBLE).
2435  *
2436  * In order to avoid unscheduling and scheduling back in everything every
2437  * time an event is added, only do it for the groups of equal priority and
2438  * below.
2439  *
2440  * This can be called after a batch operation on task events, in which case
2441  * event_type is a bit mask of the types of events involved. For CPU events,
2442  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2443  */
2444 static void ctx_resched(struct perf_cpu_context *cpuctx,
2445                         struct perf_event_context *task_ctx,
2446                         enum event_type_t event_type)
2447 {
2448         enum event_type_t ctx_event_type;
2449         bool cpu_event = !!(event_type & EVENT_CPU);
2450
2451         /*
2452          * If pinned groups are involved, flexible groups also need to be
2453          * scheduled out.
2454          */
2455         if (event_type & EVENT_PINNED)
2456                 event_type |= EVENT_FLEXIBLE;
2457
2458         ctx_event_type = event_type & EVENT_ALL;
2459
2460         perf_pmu_disable(cpuctx->ctx.pmu);
2461         if (task_ctx)
2462                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463
2464         /*
2465          * Decide which cpu ctx groups to schedule out based on the types
2466          * of events that caused rescheduling:
2467          *  - EVENT_CPU: schedule out corresponding groups;
2468          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469          *  - otherwise, do nothing more.
2470          */
2471         if (cpu_event)
2472                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2473         else if (ctx_event_type & EVENT_PINNED)
2474                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2475
2476         perf_event_sched_in(cpuctx, task_ctx, current);
2477         perf_pmu_enable(cpuctx->ctx.pmu);
2478 }
2479
2480 /*
2481  * Cross CPU call to install and enable a performance event
2482  *
2483  * Very similar to remote_function() + event_function() but cannot assume that
2484  * things like ctx->is_active and cpuctx->task_ctx are set.
2485  */
2486 static int  __perf_install_in_context(void *info)
2487 {
2488         struct perf_event *event = info;
2489         struct perf_event_context *ctx = event->ctx;
2490         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2491         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2492         bool reprogram = true;
2493         int ret = 0;
2494
2495         raw_spin_lock(&cpuctx->ctx.lock);
2496         if (ctx->task) {
2497                 raw_spin_lock(&ctx->lock);
2498                 task_ctx = ctx;
2499
2500                 reprogram = (ctx->task == current);
2501
2502                 /*
2503                  * If the task is running, it must be running on this CPU,
2504                  * otherwise we cannot reprogram things.
2505                  *
2506                  * If its not running, we don't care, ctx->lock will
2507                  * serialize against it becoming runnable.
2508                  */
2509                 if (task_curr(ctx->task) && !reprogram) {
2510                         ret = -ESRCH;
2511                         goto unlock;
2512                 }
2513
2514                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2515         } else if (task_ctx) {
2516                 raw_spin_lock(&task_ctx->lock);
2517         }
2518
2519 #ifdef CONFIG_CGROUP_PERF
2520         if (is_cgroup_event(event)) {
2521                 /*
2522                  * If the current cgroup doesn't match the event's
2523                  * cgroup, we should not try to schedule it.
2524                  */
2525                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2526                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2527                                         event->cgrp->css.cgroup);
2528         }
2529 #endif
2530
2531         if (reprogram) {
2532                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2533                 add_event_to_ctx(event, ctx);
2534                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2535         } else {
2536                 add_event_to_ctx(event, ctx);
2537         }
2538
2539 unlock:
2540         perf_ctx_unlock(cpuctx, task_ctx);
2541
2542         return ret;
2543 }
2544
2545 /*
2546  * Attach a performance event to a context.
2547  *
2548  * Very similar to event_function_call, see comment there.
2549  */
2550 static void
2551 perf_install_in_context(struct perf_event_context *ctx,
2552                         struct perf_event *event,
2553                         int cpu)
2554 {
2555         struct task_struct *task = READ_ONCE(ctx->task);
2556
2557         lockdep_assert_held(&ctx->mutex);
2558
2559         if (event->cpu != -1)
2560                 event->cpu = cpu;
2561
2562         /*
2563          * Ensures that if we can observe event->ctx, both the event and ctx
2564          * will be 'complete'. See perf_iterate_sb_cpu().
2565          */
2566         smp_store_release(&event->ctx, ctx);
2567
2568         if (!task) {
2569                 cpu_function_call(cpu, __perf_install_in_context, event);
2570                 return;
2571         }
2572
2573         /*
2574          * Should not happen, we validate the ctx is still alive before calling.
2575          */
2576         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2577                 return;
2578
2579         /*
2580          * Installing events is tricky because we cannot rely on ctx->is_active
2581          * to be set in case this is the nr_events 0 -> 1 transition.
2582          *
2583          * Instead we use task_curr(), which tells us if the task is running.
2584          * However, since we use task_curr() outside of rq::lock, we can race
2585          * against the actual state. This means the result can be wrong.
2586          *
2587          * If we get a false positive, we retry, this is harmless.
2588          *
2589          * If we get a false negative, things are complicated. If we are after
2590          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2591          * value must be correct. If we're before, it doesn't matter since
2592          * perf_event_context_sched_in() will program the counter.
2593          *
2594          * However, this hinges on the remote context switch having observed
2595          * our task->perf_event_ctxp[] store, such that it will in fact take
2596          * ctx::lock in perf_event_context_sched_in().
2597          *
2598          * We do this by task_function_call(), if the IPI fails to hit the task
2599          * we know any future context switch of task must see the
2600          * perf_event_ctpx[] store.
2601          */
2602
2603         /*
2604          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2605          * task_cpu() load, such that if the IPI then does not find the task
2606          * running, a future context switch of that task must observe the
2607          * store.
2608          */
2609         smp_mb();
2610 again:
2611         if (!task_function_call(task, __perf_install_in_context, event))
2612                 return;
2613
2614         raw_spin_lock_irq(&ctx->lock);
2615         task = ctx->task;
2616         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2617                 /*
2618                  * Cannot happen because we already checked above (which also
2619                  * cannot happen), and we hold ctx->mutex, which serializes us
2620                  * against perf_event_exit_task_context().
2621                  */
2622                 raw_spin_unlock_irq(&ctx->lock);
2623                 return;
2624         }
2625         /*
2626          * If the task is not running, ctx->lock will avoid it becoming so,
2627          * thus we can safely install the event.
2628          */
2629         if (task_curr(task)) {
2630                 raw_spin_unlock_irq(&ctx->lock);
2631                 goto again;
2632         }
2633         add_event_to_ctx(event, ctx);
2634         raw_spin_unlock_irq(&ctx->lock);
2635 }
2636
2637 /*
2638  * Cross CPU call to enable a performance event
2639  */
2640 static void __perf_event_enable(struct perf_event *event,
2641                                 struct perf_cpu_context *cpuctx,
2642                                 struct perf_event_context *ctx,
2643                                 void *info)
2644 {
2645         struct perf_event *leader = event->group_leader;
2646         struct perf_event_context *task_ctx;
2647
2648         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2649             event->state <= PERF_EVENT_STATE_ERROR)
2650                 return;
2651
2652         if (ctx->is_active)
2653                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2654
2655         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2656
2657         if (!ctx->is_active)
2658                 return;
2659
2660         if (!event_filter_match(event)) {
2661                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2662                 return;
2663         }
2664
2665         /*
2666          * If the event is in a group and isn't the group leader,
2667          * then don't put it on unless the group is on.
2668          */
2669         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2670                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2671                 return;
2672         }
2673
2674         task_ctx = cpuctx->task_ctx;
2675         if (ctx->task)
2676                 WARN_ON_ONCE(task_ctx != ctx);
2677
2678         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2679 }
2680
2681 /*
2682  * Enable an event.
2683  *
2684  * If event->ctx is a cloned context, callers must make sure that
2685  * every task struct that event->ctx->task could possibly point to
2686  * remains valid.  This condition is satisfied when called through
2687  * perf_event_for_each_child or perf_event_for_each as described
2688  * for perf_event_disable.
2689  */
2690 static void _perf_event_enable(struct perf_event *event)
2691 {
2692         struct perf_event_context *ctx = event->ctx;
2693
2694         raw_spin_lock_irq(&ctx->lock);
2695         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2696             event->state <  PERF_EVENT_STATE_ERROR) {
2697                 raw_spin_unlock_irq(&ctx->lock);
2698                 return;
2699         }
2700
2701         /*
2702          * If the event is in error state, clear that first.
2703          *
2704          * That way, if we see the event in error state below, we know that it
2705          * has gone back into error state, as distinct from the task having
2706          * been scheduled away before the cross-call arrived.
2707          */
2708         if (event->state == PERF_EVENT_STATE_ERROR)
2709                 event->state = PERF_EVENT_STATE_OFF;
2710         raw_spin_unlock_irq(&ctx->lock);
2711
2712         event_function_call(event, __perf_event_enable, NULL);
2713 }
2714
2715 /*
2716  * See perf_event_disable();
2717  */
2718 void perf_event_enable(struct perf_event *event)
2719 {
2720         struct perf_event_context *ctx;
2721
2722         ctx = perf_event_ctx_lock(event);
2723         _perf_event_enable(event);
2724         perf_event_ctx_unlock(event, ctx);
2725 }
2726 EXPORT_SYMBOL_GPL(perf_event_enable);
2727
2728 struct stop_event_data {
2729         struct perf_event       *event;
2730         unsigned int            restart;
2731 };
2732
2733 static int __perf_event_stop(void *info)
2734 {
2735         struct stop_event_data *sd = info;
2736         struct perf_event *event = sd->event;
2737
2738         /* if it's already INACTIVE, do nothing */
2739         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2740                 return 0;
2741
2742         /* matches smp_wmb() in event_sched_in() */
2743         smp_rmb();
2744
2745         /*
2746          * There is a window with interrupts enabled before we get here,
2747          * so we need to check again lest we try to stop another CPU's event.
2748          */
2749         if (READ_ONCE(event->oncpu) != smp_processor_id())
2750                 return -EAGAIN;
2751
2752         event->pmu->stop(event, PERF_EF_UPDATE);
2753
2754         /*
2755          * May race with the actual stop (through perf_pmu_output_stop()),
2756          * but it is only used for events with AUX ring buffer, and such
2757          * events will refuse to restart because of rb::aux_mmap_count==0,
2758          * see comments in perf_aux_output_begin().
2759          *
2760          * Since this is happening on an event-local CPU, no trace is lost
2761          * while restarting.
2762          */
2763         if (sd->restart)
2764                 event->pmu->start(event, 0);
2765
2766         return 0;
2767 }
2768
2769 static int perf_event_stop(struct perf_event *event, int restart)
2770 {
2771         struct stop_event_data sd = {
2772                 .event          = event,
2773                 .restart        = restart,
2774         };
2775         int ret = 0;
2776
2777         do {
2778                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2779                         return 0;
2780
2781                 /* matches smp_wmb() in event_sched_in() */
2782                 smp_rmb();
2783
2784                 /*
2785                  * We only want to restart ACTIVE events, so if the event goes
2786                  * inactive here (event->oncpu==-1), there's nothing more to do;
2787                  * fall through with ret==-ENXIO.
2788                  */
2789                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2790                                         __perf_event_stop, &sd);
2791         } while (ret == -EAGAIN);
2792
2793         return ret;
2794 }
2795
2796 /*
2797  * In order to contain the amount of racy and tricky in the address filter
2798  * configuration management, it is a two part process:
2799  *
2800  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2801  *      we update the addresses of corresponding vmas in
2802  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2803  * (p2) when an event is scheduled in (pmu::add), it calls
2804  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2805  *      if the generation has changed since the previous call.
2806  *
2807  * If (p1) happens while the event is active, we restart it to force (p2).
2808  *
2809  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2810  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2811  *     ioctl;
2812  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2813  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2814  *     for reading;
2815  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816  *     of exec.
2817  */
2818 void perf_event_addr_filters_sync(struct perf_event *event)
2819 {
2820         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2821
2822         if (!has_addr_filter(event))
2823                 return;
2824
2825         raw_spin_lock(&ifh->lock);
2826         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2827                 event->pmu->addr_filters_sync(event);
2828                 event->hw.addr_filters_gen = event->addr_filters_gen;
2829         }
2830         raw_spin_unlock(&ifh->lock);
2831 }
2832 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2833
2834 static int _perf_event_refresh(struct perf_event *event, int refresh)
2835 {
2836         /*
2837          * not supported on inherited events
2838          */
2839         if (event->attr.inherit || !is_sampling_event(event))
2840                 return -EINVAL;
2841
2842         atomic_add(refresh, &event->event_limit);
2843         _perf_event_enable(event);
2844
2845         return 0;
2846 }
2847
2848 /*
2849  * See perf_event_disable()
2850  */
2851 int perf_event_refresh(struct perf_event *event, int refresh)
2852 {
2853         struct perf_event_context *ctx;
2854         int ret;
2855
2856         ctx = perf_event_ctx_lock(event);
2857         ret = _perf_event_refresh(event, refresh);
2858         perf_event_ctx_unlock(event, ctx);
2859
2860         return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(perf_event_refresh);
2863
2864 static int perf_event_modify_breakpoint(struct perf_event *bp,
2865                                          struct perf_event_attr *attr)
2866 {
2867         int err;
2868
2869         _perf_event_disable(bp);
2870
2871         err = modify_user_hw_breakpoint_check(bp, attr, true);
2872
2873         if (!bp->attr.disabled)
2874                 _perf_event_enable(bp);
2875
2876         return err;
2877 }
2878
2879 static int perf_event_modify_attr(struct perf_event *event,
2880                                   struct perf_event_attr *attr)
2881 {
2882         if (event->attr.type != attr->type)
2883                 return -EINVAL;
2884
2885         switch (event->attr.type) {
2886         case PERF_TYPE_BREAKPOINT:
2887                 return perf_event_modify_breakpoint(event, attr);
2888         default:
2889                 /* Place holder for future additions. */
2890                 return -EOPNOTSUPP;
2891         }
2892 }
2893
2894 static void ctx_sched_out(struct perf_event_context *ctx,
2895                           struct perf_cpu_context *cpuctx,
2896                           enum event_type_t event_type)
2897 {
2898         struct perf_event *event, *tmp;
2899         int is_active = ctx->is_active;
2900
2901         lockdep_assert_held(&ctx->lock);
2902
2903         if (likely(!ctx->nr_events)) {
2904                 /*
2905                  * See __perf_remove_from_context().
2906                  */
2907                 WARN_ON_ONCE(ctx->is_active);
2908                 if (ctx->task)
2909                         WARN_ON_ONCE(cpuctx->task_ctx);
2910                 return;
2911         }
2912
2913         ctx->is_active &= ~event_type;
2914         if (!(ctx->is_active & EVENT_ALL))
2915                 ctx->is_active = 0;
2916
2917         if (ctx->task) {
2918                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2919                 if (!ctx->is_active)
2920                         cpuctx->task_ctx = NULL;
2921         }
2922
2923         /*
2924          * Always update time if it was set; not only when it changes.
2925          * Otherwise we can 'forget' to update time for any but the last
2926          * context we sched out. For example:
2927          *
2928          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2929          *   ctx_sched_out(.event_type = EVENT_PINNED)
2930          *
2931          * would only update time for the pinned events.
2932          */
2933         if (is_active & EVENT_TIME) {
2934                 /* update (and stop) ctx time */
2935                 update_context_time(ctx);
2936                 update_cgrp_time_from_cpuctx(cpuctx);
2937         }
2938
2939         is_active ^= ctx->is_active; /* changed bits */
2940
2941         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2942                 return;
2943
2944         perf_pmu_disable(ctx->pmu);
2945         if (is_active & EVENT_PINNED) {
2946                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2947                         group_sched_out(event, cpuctx, ctx);
2948         }
2949
2950         if (is_active & EVENT_FLEXIBLE) {
2951                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2952                         group_sched_out(event, cpuctx, ctx);
2953         }
2954         perf_pmu_enable(ctx->pmu);
2955 }
2956
2957 /*
2958  * Test whether two contexts are equivalent, i.e. whether they have both been
2959  * cloned from the same version of the same context.
2960  *
2961  * Equivalence is measured using a generation number in the context that is
2962  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2963  * and list_del_event().
2964  */
2965 static int context_equiv(struct perf_event_context *ctx1,
2966                          struct perf_event_context *ctx2)
2967 {
2968         lockdep_assert_held(&ctx1->lock);
2969         lockdep_assert_held(&ctx2->lock);
2970
2971         /* Pinning disables the swap optimization */
2972         if (ctx1->pin_count || ctx2->pin_count)
2973                 return 0;
2974
2975         /* If ctx1 is the parent of ctx2 */
2976         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2977                 return 1;
2978
2979         /* If ctx2 is the parent of ctx1 */
2980         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2981                 return 1;
2982
2983         /*
2984          * If ctx1 and ctx2 have the same parent; we flatten the parent
2985          * hierarchy, see perf_event_init_context().
2986          */
2987         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2988                         ctx1->parent_gen == ctx2->parent_gen)
2989                 return 1;
2990
2991         /* Unmatched */
2992         return 0;
2993 }
2994
2995 static void __perf_event_sync_stat(struct perf_event *event,
2996                                      struct perf_event *next_event)
2997 {
2998         u64 value;
2999
3000         if (!event->attr.inherit_stat)
3001                 return;
3002
3003         /*
3004          * Update the event value, we cannot use perf_event_read()
3005          * because we're in the middle of a context switch and have IRQs
3006          * disabled, which upsets smp_call_function_single(), however
3007          * we know the event must be on the current CPU, therefore we
3008          * don't need to use it.
3009          */
3010         if (event->state == PERF_EVENT_STATE_ACTIVE)
3011                 event->pmu->read(event);
3012
3013         perf_event_update_time(event);
3014
3015         /*
3016          * In order to keep per-task stats reliable we need to flip the event
3017          * values when we flip the contexts.
3018          */
3019         value = local64_read(&next_event->count);
3020         value = local64_xchg(&event->count, value);
3021         local64_set(&next_event->count, value);
3022
3023         swap(event->total_time_enabled, next_event->total_time_enabled);
3024         swap(event->total_time_running, next_event->total_time_running);
3025
3026         /*
3027          * Since we swizzled the values, update the user visible data too.
3028          */
3029         perf_event_update_userpage(event);
3030         perf_event_update_userpage(next_event);
3031 }
3032
3033 static void perf_event_sync_stat(struct perf_event_context *ctx,
3034                                    struct perf_event_context *next_ctx)
3035 {
3036         struct perf_event *event, *next_event;
3037
3038         if (!ctx->nr_stat)
3039                 return;
3040
3041         update_context_time(ctx);
3042
3043         event = list_first_entry(&ctx->event_list,
3044                                    struct perf_event, event_entry);
3045
3046         next_event = list_first_entry(&next_ctx->event_list,
3047                                         struct perf_event, event_entry);
3048
3049         while (&event->event_entry != &ctx->event_list &&
3050                &next_event->event_entry != &next_ctx->event_list) {
3051
3052                 __perf_event_sync_stat(event, next_event);
3053
3054                 event = list_next_entry(event, event_entry);
3055                 next_event = list_next_entry(next_event, event_entry);
3056         }
3057 }
3058
3059 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3060                                          struct task_struct *next)
3061 {
3062         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3063         struct perf_event_context *next_ctx;
3064         struct perf_event_context *parent, *next_parent;
3065         struct perf_cpu_context *cpuctx;
3066         int do_switch = 1;
3067
3068         if (likely(!ctx))
3069                 return;
3070
3071         cpuctx = __get_cpu_context(ctx);
3072         if (!cpuctx->task_ctx)
3073                 return;
3074
3075         rcu_read_lock();
3076         next_ctx = next->perf_event_ctxp[ctxn];
3077         if (!next_ctx)
3078                 goto unlock;
3079
3080         parent = rcu_dereference(ctx->parent_ctx);
3081         next_parent = rcu_dereference(next_ctx->parent_ctx);
3082
3083         /* If neither context have a parent context; they cannot be clones. */
3084         if (!parent && !next_parent)
3085                 goto unlock;
3086
3087         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3088                 /*
3089                  * Looks like the two contexts are clones, so we might be
3090                  * able to optimize the context switch.  We lock both
3091                  * contexts and check that they are clones under the
3092                  * lock (including re-checking that neither has been
3093                  * uncloned in the meantime).  It doesn't matter which
3094                  * order we take the locks because no other cpu could
3095                  * be trying to lock both of these tasks.
3096                  */
3097                 raw_spin_lock(&ctx->lock);
3098                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3099                 if (context_equiv(ctx, next_ctx)) {
3100                         WRITE_ONCE(ctx->task, next);
3101                         WRITE_ONCE(next_ctx->task, task);
3102
3103                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3104
3105                         /*
3106                          * RCU_INIT_POINTER here is safe because we've not
3107                          * modified the ctx and the above modification of
3108                          * ctx->task and ctx->task_ctx_data are immaterial
3109                          * since those values are always verified under
3110                          * ctx->lock which we're now holding.
3111                          */
3112                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3113                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3114
3115                         do_switch = 0;
3116
3117                         perf_event_sync_stat(ctx, next_ctx);
3118                 }
3119                 raw_spin_unlock(&next_ctx->lock);
3120                 raw_spin_unlock(&ctx->lock);
3121         }
3122 unlock:
3123         rcu_read_unlock();
3124
3125         if (do_switch) {
3126                 raw_spin_lock(&ctx->lock);
3127                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3128                 raw_spin_unlock(&ctx->lock);
3129         }
3130 }
3131
3132 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3133
3134 void perf_sched_cb_dec(struct pmu *pmu)
3135 {
3136         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3137
3138         this_cpu_dec(perf_sched_cb_usages);
3139
3140         if (!--cpuctx->sched_cb_usage)
3141                 list_del(&cpuctx->sched_cb_entry);
3142 }
3143
3144
3145 void perf_sched_cb_inc(struct pmu *pmu)
3146 {
3147         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148
3149         if (!cpuctx->sched_cb_usage++)
3150                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3151
3152         this_cpu_inc(perf_sched_cb_usages);
3153 }
3154
3155 /*
3156  * This function provides the context switch callback to the lower code
3157  * layer. It is invoked ONLY when the context switch callback is enabled.
3158  *
3159  * This callback is relevant even to per-cpu events; for example multi event
3160  * PEBS requires this to provide PID/TID information. This requires we flush
3161  * all queued PEBS records before we context switch to a new task.
3162  */
3163 static void perf_pmu_sched_task(struct task_struct *prev,
3164                                 struct task_struct *next,
3165                                 bool sched_in)
3166 {
3167         struct perf_cpu_context *cpuctx;
3168         struct pmu *pmu;
3169
3170         if (prev == next)
3171                 return;
3172
3173         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3174                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3175
3176                 if (WARN_ON_ONCE(!pmu->sched_task))
3177                         continue;
3178
3179                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3180                 perf_pmu_disable(pmu);
3181
3182                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3183
3184                 perf_pmu_enable(pmu);
3185                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3186         }
3187 }
3188
3189 static void perf_event_switch(struct task_struct *task,
3190                               struct task_struct *next_prev, bool sched_in);
3191
3192 #define for_each_task_context_nr(ctxn)                                  \
3193         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3194
3195 /*
3196  * Called from scheduler to remove the events of the current task,
3197  * with interrupts disabled.
3198  *
3199  * We stop each event and update the event value in event->count.
3200  *
3201  * This does not protect us against NMI, but disable()
3202  * sets the disabled bit in the control field of event _before_
3203  * accessing the event control register. If a NMI hits, then it will
3204  * not restart the event.
3205  */
3206 void __perf_event_task_sched_out(struct task_struct *task,
3207                                  struct task_struct *next)
3208 {
3209         int ctxn;
3210
3211         if (__this_cpu_read(perf_sched_cb_usages))
3212                 perf_pmu_sched_task(task, next, false);
3213
3214         if (atomic_read(&nr_switch_events))
3215                 perf_event_switch(task, next, false);
3216
3217         for_each_task_context_nr(ctxn)
3218                 perf_event_context_sched_out(task, ctxn, next);
3219
3220         /*
3221          * if cgroup events exist on this CPU, then we need
3222          * to check if we have to switch out PMU state.
3223          * cgroup event are system-wide mode only
3224          */
3225         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3226                 perf_cgroup_sched_out(task, next);
3227 }
3228
3229 /*
3230  * Called with IRQs disabled
3231  */
3232 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3233                               enum event_type_t event_type)
3234 {
3235         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3236 }
3237
3238 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3239                               int (*func)(struct perf_event *, void *), void *data)
3240 {
3241         struct perf_event **evt, *evt1, *evt2;
3242         int ret;
3243
3244         evt1 = perf_event_groups_first(groups, -1);
3245         evt2 = perf_event_groups_first(groups, cpu);
3246
3247         while (evt1 || evt2) {
3248                 if (evt1 && evt2) {
3249                         if (evt1->group_index < evt2->group_index)
3250                                 evt = &evt1;
3251                         else
3252                                 evt = &evt2;
3253                 } else if (evt1) {
3254                         evt = &evt1;
3255                 } else {
3256                         evt = &evt2;
3257                 }
3258
3259                 ret = func(*evt, data);
3260                 if (ret)
3261                         return ret;
3262
3263                 *evt = perf_event_groups_next(*evt);
3264         }
3265
3266         return 0;
3267 }
3268
3269 struct sched_in_data {
3270         struct perf_event_context *ctx;
3271         struct perf_cpu_context *cpuctx;
3272         int can_add_hw;
3273 };
3274
3275 static int pinned_sched_in(struct perf_event *event, void *data)
3276 {
3277         struct sched_in_data *sid = data;
3278
3279         if (event->state <= PERF_EVENT_STATE_OFF)
3280                 return 0;
3281
3282         if (!event_filter_match(event))
3283                 return 0;
3284
3285         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3286                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3287                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3288         }
3289
3290         /*
3291          * If this pinned group hasn't been scheduled,
3292          * put it in error state.
3293          */
3294         if (event->state == PERF_EVENT_STATE_INACTIVE)
3295                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3296
3297         return 0;
3298 }
3299
3300 static int flexible_sched_in(struct perf_event *event, void *data)
3301 {
3302         struct sched_in_data *sid = data;
3303
3304         if (event->state <= PERF_EVENT_STATE_OFF)
3305                 return 0;
3306
3307         if (!event_filter_match(event))
3308                 return 0;
3309
3310         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3311                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3312                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3313                 else
3314                         sid->can_add_hw = 0;
3315         }
3316
3317         return 0;
3318 }
3319
3320 static void
3321 ctx_pinned_sched_in(struct perf_event_context *ctx,
3322                     struct perf_cpu_context *cpuctx)
3323 {
3324         struct sched_in_data sid = {
3325                 .ctx = ctx,
3326                 .cpuctx = cpuctx,
3327                 .can_add_hw = 1,
3328         };
3329
3330         visit_groups_merge(&ctx->pinned_groups,
3331                            smp_processor_id(),
3332                            pinned_sched_in, &sid);
3333 }
3334
3335 static void
3336 ctx_flexible_sched_in(struct perf_event_context *ctx,
3337                       struct perf_cpu_context *cpuctx)
3338 {
3339         struct sched_in_data sid = {
3340                 .ctx = ctx,
3341                 .cpuctx = cpuctx,
3342                 .can_add_hw = 1,
3343         };
3344
3345         visit_groups_merge(&ctx->flexible_groups,
3346                            smp_processor_id(),
3347                            flexible_sched_in, &sid);
3348 }
3349
3350 static void
3351 ctx_sched_in(struct perf_event_context *ctx,
3352              struct perf_cpu_context *cpuctx,
3353              enum event_type_t event_type,
3354              struct task_struct *task)
3355 {
3356         int is_active = ctx->is_active;
3357         u64 now;
3358
3359         lockdep_assert_held(&ctx->lock);
3360
3361         if (likely(!ctx->nr_events))
3362                 return;
3363
3364         ctx->is_active |= (event_type | EVENT_TIME);
3365         if (ctx->task) {
3366                 if (!is_active)
3367                         cpuctx->task_ctx = ctx;
3368                 else
3369                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3370         }
3371
3372         is_active ^= ctx->is_active; /* changed bits */
3373
3374         if (is_active & EVENT_TIME) {
3375                 /* start ctx time */
3376                 now = perf_clock();
3377                 ctx->timestamp = now;
3378                 perf_cgroup_set_timestamp(task, ctx);
3379         }
3380
3381         /*
3382          * First go through the list and put on any pinned groups
3383          * in order to give them the best chance of going on.
3384          */
3385         if (is_active & EVENT_PINNED)
3386                 ctx_pinned_sched_in(ctx, cpuctx);
3387
3388         /* Then walk through the lower prio flexible groups */
3389         if (is_active & EVENT_FLEXIBLE)
3390                 ctx_flexible_sched_in(ctx, cpuctx);
3391 }
3392
3393 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3394                              enum event_type_t event_type,
3395                              struct task_struct *task)
3396 {
3397         struct perf_event_context *ctx = &cpuctx->ctx;
3398
3399         ctx_sched_in(ctx, cpuctx, event_type, task);
3400 }
3401
3402 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3403                                         struct task_struct *task)
3404 {
3405         struct perf_cpu_context *cpuctx;
3406
3407         cpuctx = __get_cpu_context(ctx);
3408         if (cpuctx->task_ctx == ctx)
3409                 return;
3410
3411         perf_ctx_lock(cpuctx, ctx);
3412         /*
3413          * We must check ctx->nr_events while holding ctx->lock, such
3414          * that we serialize against perf_install_in_context().
3415          */
3416         if (!ctx->nr_events)
3417                 goto unlock;
3418
3419         perf_pmu_disable(ctx->pmu);
3420         /*
3421          * We want to keep the following priority order:
3422          * cpu pinned (that don't need to move), task pinned,
3423          * cpu flexible, task flexible.
3424          *
3425          * However, if task's ctx is not carrying any pinned
3426          * events, no need to flip the cpuctx's events around.
3427          */
3428         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3429                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3430         perf_event_sched_in(cpuctx, ctx, task);
3431         perf_pmu_enable(ctx->pmu);
3432
3433 unlock:
3434         perf_ctx_unlock(cpuctx, ctx);
3435 }
3436
3437 /*
3438  * Called from scheduler to add the events of the current task
3439  * with interrupts disabled.
3440  *
3441  * We restore the event value and then enable it.
3442  *
3443  * This does not protect us against NMI, but enable()
3444  * sets the enabled bit in the control field of event _before_
3445  * accessing the event control register. If a NMI hits, then it will
3446  * keep the event running.
3447  */
3448 void __perf_event_task_sched_in(struct task_struct *prev,
3449                                 struct task_struct *task)
3450 {
3451         struct perf_event_context *ctx;
3452         int ctxn;
3453
3454         /*
3455          * If cgroup events exist on this CPU, then we need to check if we have
3456          * to switch in PMU state; cgroup event are system-wide mode only.
3457          *
3458          * Since cgroup events are CPU events, we must schedule these in before
3459          * we schedule in the task events.
3460          */
3461         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3462                 perf_cgroup_sched_in(prev, task);
3463
3464         for_each_task_context_nr(ctxn) {
3465                 ctx = task->perf_event_ctxp[ctxn];
3466                 if (likely(!ctx))
3467                         continue;
3468
3469                 perf_event_context_sched_in(ctx, task);
3470         }
3471
3472         if (atomic_read(&nr_switch_events))
3473                 perf_event_switch(task, prev, true);
3474
3475         if (__this_cpu_read(perf_sched_cb_usages))
3476                 perf_pmu_sched_task(prev, task, true);
3477 }
3478
3479 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3480 {
3481         u64 frequency = event->attr.sample_freq;
3482         u64 sec = NSEC_PER_SEC;
3483         u64 divisor, dividend;
3484
3485         int count_fls, nsec_fls, frequency_fls, sec_fls;
3486
3487         count_fls = fls64(count);
3488         nsec_fls = fls64(nsec);
3489         frequency_fls = fls64(frequency);
3490         sec_fls = 30;
3491
3492         /*
3493          * We got @count in @nsec, with a target of sample_freq HZ
3494          * the target period becomes:
3495          *
3496          *             @count * 10^9
3497          * period = -------------------
3498          *          @nsec * sample_freq
3499          *
3500          */
3501
3502         /*
3503          * Reduce accuracy by one bit such that @a and @b converge
3504          * to a similar magnitude.
3505          */
3506 #define REDUCE_FLS(a, b)                \
3507 do {                                    \
3508         if (a##_fls > b##_fls) {        \
3509                 a >>= 1;                \
3510                 a##_fls--;              \
3511         } else {                        \
3512                 b >>= 1;                \
3513                 b##_fls--;              \
3514         }                               \
3515 } while (0)
3516
3517         /*
3518          * Reduce accuracy until either term fits in a u64, then proceed with
3519          * the other, so that finally we can do a u64/u64 division.
3520          */
3521         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3522                 REDUCE_FLS(nsec, frequency);
3523                 REDUCE_FLS(sec, count);
3524         }
3525
3526         if (count_fls + sec_fls > 64) {
3527                 divisor = nsec * frequency;
3528
3529                 while (count_fls + sec_fls > 64) {
3530                         REDUCE_FLS(count, sec);
3531                         divisor >>= 1;
3532                 }
3533
3534                 dividend = count * sec;
3535         } else {
3536                 dividend = count * sec;
3537
3538                 while (nsec_fls + frequency_fls > 64) {
3539                         REDUCE_FLS(nsec, frequency);
3540                         dividend >>= 1;
3541                 }
3542
3543                 divisor = nsec * frequency;
3544         }
3545
3546         if (!divisor)
3547                 return dividend;
3548
3549         return div64_u64(dividend, divisor);
3550 }
3551
3552 static DEFINE_PER_CPU(int, perf_throttled_count);
3553 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3554
3555 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3556 {
3557         struct hw_perf_event *hwc = &event->hw;
3558         s64 period, sample_period;
3559         s64 delta;
3560
3561         period = perf_calculate_period(event, nsec, count);
3562
3563         delta = (s64)(period - hwc->sample_period);
3564         delta = (delta + 7) / 8; /* low pass filter */
3565
3566         sample_period = hwc->sample_period + delta;
3567
3568         if (!sample_period)
3569                 sample_period = 1;
3570
3571         hwc->sample_period = sample_period;
3572
3573         if (local64_read(&hwc->period_left) > 8*sample_period) {
3574                 if (disable)
3575                         event->pmu->stop(event, PERF_EF_UPDATE);
3576
3577                 local64_set(&hwc->period_left, 0);
3578
3579                 if (disable)
3580                         event->pmu->start(event, PERF_EF_RELOAD);
3581         }
3582 }
3583
3584 /*
3585  * combine freq adjustment with unthrottling to avoid two passes over the
3586  * events. At the same time, make sure, having freq events does not change
3587  * the rate of unthrottling as that would introduce bias.
3588  */
3589 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3590                                            int needs_unthr)
3591 {
3592         struct perf_event *event;
3593         struct hw_perf_event *hwc;
3594         u64 now, period = TICK_NSEC;
3595         s64 delta;
3596
3597         /*
3598          * only need to iterate over all events iff:
3599          * - context have events in frequency mode (needs freq adjust)
3600          * - there are events to unthrottle on this cpu
3601          */
3602         if (!(ctx->nr_freq || needs_unthr))
3603                 return;
3604
3605         raw_spin_lock(&ctx->lock);
3606         perf_pmu_disable(ctx->pmu);
3607
3608         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3609                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3610                         continue;
3611
3612                 if (!event_filter_match(event))
3613                         continue;
3614
3615                 perf_pmu_disable(event->pmu);
3616
3617                 hwc = &event->hw;
3618
3619                 if (hwc->interrupts == MAX_INTERRUPTS) {
3620                         hwc->interrupts = 0;
3621                         perf_log_throttle(event, 1);
3622                         event->pmu->start(event, 0);
3623                 }
3624
3625                 if (!event->attr.freq || !event->attr.sample_freq)
3626                         goto next;
3627
3628                 /*
3629                  * stop the event and update event->count
3630                  */
3631                 event->pmu->stop(event, PERF_EF_UPDATE);
3632
3633                 now = local64_read(&event->count);
3634                 delta = now - hwc->freq_count_stamp;
3635                 hwc->freq_count_stamp = now;
3636
3637                 /*
3638                  * restart the event
3639                  * reload only if value has changed
3640                  * we have stopped the event so tell that
3641                  * to perf_adjust_period() to avoid stopping it
3642                  * twice.
3643                  */
3644                 if (delta > 0)
3645                         perf_adjust_period(event, period, delta, false);
3646
3647                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3648         next:
3649                 perf_pmu_enable(event->pmu);
3650         }
3651
3652         perf_pmu_enable(ctx->pmu);
3653         raw_spin_unlock(&ctx->lock);
3654 }
3655
3656 /*
3657  * Move @event to the tail of the @ctx's elegible events.
3658  */
3659 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3660 {
3661         /*
3662          * Rotate the first entry last of non-pinned groups. Rotation might be
3663          * disabled by the inheritance code.
3664          */
3665         if (ctx->rotate_disable)
3666                 return;
3667
3668         perf_event_groups_delete(&ctx->flexible_groups, event);
3669         perf_event_groups_insert(&ctx->flexible_groups, event);
3670 }
3671
3672 static inline struct perf_event *
3673 ctx_first_active(struct perf_event_context *ctx)
3674 {
3675         return list_first_entry_or_null(&ctx->flexible_active,
3676                                         struct perf_event, active_list);
3677 }
3678
3679 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3680 {
3681         struct perf_event *cpu_event = NULL, *task_event = NULL;
3682         bool cpu_rotate = false, task_rotate = false;
3683         struct perf_event_context *ctx = NULL;
3684
3685         /*
3686          * Since we run this from IRQ context, nobody can install new
3687          * events, thus the event count values are stable.
3688          */
3689
3690         if (cpuctx->ctx.nr_events) {
3691                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3692                         cpu_rotate = true;
3693         }
3694
3695         ctx = cpuctx->task_ctx;
3696         if (ctx && ctx->nr_events) {
3697                 if (ctx->nr_events != ctx->nr_active)
3698                         task_rotate = true;
3699         }
3700
3701         if (!(cpu_rotate || task_rotate))
3702                 return false;
3703
3704         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3705         perf_pmu_disable(cpuctx->ctx.pmu);
3706
3707         if (task_rotate)
3708                 task_event = ctx_first_active(ctx);
3709         if (cpu_rotate)
3710                 cpu_event = ctx_first_active(&cpuctx->ctx);
3711
3712         /*
3713          * As per the order given at ctx_resched() first 'pop' task flexible
3714          * and then, if needed CPU flexible.
3715          */
3716         if (task_event || (ctx && cpu_event))
3717                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3718         if (cpu_event)
3719                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3720
3721         if (task_event)
3722                 rotate_ctx(ctx, task_event);
3723         if (cpu_event)
3724                 rotate_ctx(&cpuctx->ctx, cpu_event);
3725
3726         perf_event_sched_in(cpuctx, ctx, current);
3727
3728         perf_pmu_enable(cpuctx->ctx.pmu);
3729         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3730
3731         return true;
3732 }
3733
3734 void perf_event_task_tick(void)
3735 {
3736         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3737         struct perf_event_context *ctx, *tmp;
3738         int throttled;
3739
3740         lockdep_assert_irqs_disabled();
3741
3742         __this_cpu_inc(perf_throttled_seq);
3743         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3744         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3745
3746         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3747                 perf_adjust_freq_unthr_context(ctx, throttled);
3748 }
3749
3750 static int event_enable_on_exec(struct perf_event *event,
3751                                 struct perf_event_context *ctx)
3752 {
3753         if (!event->attr.enable_on_exec)
3754                 return 0;
3755
3756         event->attr.enable_on_exec = 0;
3757         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3758                 return 0;
3759
3760         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3761
3762         return 1;
3763 }
3764
3765 /*
3766  * Enable all of a task's events that have been marked enable-on-exec.
3767  * This expects task == current.
3768  */
3769 static void perf_event_enable_on_exec(int ctxn)
3770 {
3771         struct perf_event_context *ctx, *clone_ctx = NULL;
3772         enum event_type_t event_type = 0;
3773         struct perf_cpu_context *cpuctx;
3774         struct perf_event *event;
3775         unsigned long flags;
3776         int enabled = 0;
3777
3778         local_irq_save(flags);
3779         ctx = current->perf_event_ctxp[ctxn];
3780         if (!ctx || !ctx->nr_events)
3781                 goto out;
3782
3783         cpuctx = __get_cpu_context(ctx);
3784         perf_ctx_lock(cpuctx, ctx);
3785         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3786         list_for_each_entry(event, &ctx->event_list, event_entry) {
3787                 enabled |= event_enable_on_exec(event, ctx);
3788                 event_type |= get_event_type(event);
3789         }
3790
3791         /*
3792          * Unclone and reschedule this context if we enabled any event.
3793          */
3794         if (enabled) {
3795                 clone_ctx = unclone_ctx(ctx);
3796                 ctx_resched(cpuctx, ctx, event_type);
3797         } else {
3798                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3799         }
3800         perf_ctx_unlock(cpuctx, ctx);
3801
3802 out:
3803         local_irq_restore(flags);
3804
3805         if (clone_ctx)
3806                 put_ctx(clone_ctx);
3807 }
3808
3809 struct perf_read_data {
3810         struct perf_event *event;
3811         bool group;
3812         int ret;
3813 };
3814
3815 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3816 {
3817         u16 local_pkg, event_pkg;
3818
3819         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3820                 int local_cpu = smp_processor_id();
3821
3822                 event_pkg = topology_physical_package_id(event_cpu);
3823                 local_pkg = topology_physical_package_id(local_cpu);
3824
3825                 if (event_pkg == local_pkg)
3826                         return local_cpu;
3827         }
3828
3829         return event_cpu;
3830 }
3831
3832 /*
3833  * Cross CPU call to read the hardware event
3834  */
3835 static void __perf_event_read(void *info)
3836 {
3837         struct perf_read_data *data = info;
3838         struct perf_event *sub, *event = data->event;
3839         struct perf_event_context *ctx = event->ctx;
3840         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3841         struct pmu *pmu = event->pmu;
3842
3843         /*
3844          * If this is a task context, we need to check whether it is
3845          * the current task context of this cpu.  If not it has been
3846          * scheduled out before the smp call arrived.  In that case
3847          * event->count would have been updated to a recent sample
3848          * when the event was scheduled out.
3849          */
3850         if (ctx->task && cpuctx->task_ctx != ctx)
3851                 return;
3852
3853         raw_spin_lock(&ctx->lock);
3854         if (ctx->is_active & EVENT_TIME) {
3855                 update_context_time(ctx);
3856                 update_cgrp_time_from_event(event);
3857         }
3858
3859         perf_event_update_time(event);
3860         if (data->group)
3861                 perf_event_update_sibling_time(event);
3862
3863         if (event->state != PERF_EVENT_STATE_ACTIVE)
3864                 goto unlock;
3865
3866         if (!data->group) {
3867                 pmu->read(event);
3868                 data->ret = 0;
3869                 goto unlock;
3870         }
3871
3872         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3873
3874         pmu->read(event);
3875
3876         for_each_sibling_event(sub, event) {
3877                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3878                         /*
3879                          * Use sibling's PMU rather than @event's since
3880                          * sibling could be on different (eg: software) PMU.
3881                          */
3882                         sub->pmu->read(sub);
3883                 }
3884         }
3885
3886         data->ret = pmu->commit_txn(pmu);
3887
3888 unlock:
3889         raw_spin_unlock(&ctx->lock);
3890 }
3891
3892 static inline u64 perf_event_count(struct perf_event *event)
3893 {
3894         return local64_read(&event->count) + atomic64_read(&event->child_count);
3895 }
3896
3897 /*
3898  * NMI-safe method to read a local event, that is an event that
3899  * is:
3900  *   - either for the current task, or for this CPU
3901  *   - does not have inherit set, for inherited task events
3902  *     will not be local and we cannot read them atomically
3903  *   - must not have a pmu::count method
3904  */
3905 int perf_event_read_local(struct perf_event *event, u64 *value,
3906                           u64 *enabled, u64 *running)
3907 {
3908         unsigned long flags;
3909         int ret = 0;
3910
3911         /*
3912          * Disabling interrupts avoids all counter scheduling (context
3913          * switches, timer based rotation and IPIs).
3914          */
3915         local_irq_save(flags);
3916
3917         /*
3918          * It must not be an event with inherit set, we cannot read
3919          * all child counters from atomic context.
3920          */
3921         if (event->attr.inherit) {
3922                 ret = -EOPNOTSUPP;
3923                 goto out;
3924         }
3925
3926         /* If this is a per-task event, it must be for current */
3927         if ((event->attach_state & PERF_ATTACH_TASK) &&
3928             event->hw.target != current) {
3929                 ret = -EINVAL;
3930                 goto out;
3931         }
3932
3933         /* If this is a per-CPU event, it must be for this CPU */
3934         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3935             event->cpu != smp_processor_id()) {
3936                 ret = -EINVAL;
3937                 goto out;
3938         }
3939
3940         /* If this is a pinned event it must be running on this CPU */
3941         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3942                 ret = -EBUSY;
3943                 goto out;
3944         }
3945
3946         /*
3947          * If the event is currently on this CPU, its either a per-task event,
3948          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3949          * oncpu == -1).
3950          */
3951         if (event->oncpu == smp_processor_id())
3952                 event->pmu->read(event);
3953
3954         *value = local64_read(&event->count);
3955         if (enabled || running) {
3956                 u64 now = event->shadow_ctx_time + perf_clock();
3957                 u64 __enabled, __running;
3958
3959                 __perf_update_times(event, now, &__enabled, &__running);
3960                 if (enabled)
3961                         *enabled = __enabled;
3962                 if (running)
3963                         *running = __running;
3964         }
3965 out:
3966         local_irq_restore(flags);
3967
3968         return ret;
3969 }
3970
3971 static int perf_event_read(struct perf_event *event, bool group)
3972 {
3973         enum perf_event_state state = READ_ONCE(event->state);
3974         int event_cpu, ret = 0;
3975
3976         /*
3977          * If event is enabled and currently active on a CPU, update the
3978          * value in the event structure:
3979          */
3980 again:
3981         if (state == PERF_EVENT_STATE_ACTIVE) {
3982                 struct perf_read_data data;
3983
3984                 /*
3985                  * Orders the ->state and ->oncpu loads such that if we see
3986                  * ACTIVE we must also see the right ->oncpu.
3987                  *
3988                  * Matches the smp_wmb() from event_sched_in().
3989                  */
3990                 smp_rmb();
3991
3992                 event_cpu = READ_ONCE(event->oncpu);
3993                 if ((unsigned)event_cpu >= nr_cpu_ids)
3994                         return 0;
3995
3996                 data = (struct perf_read_data){
3997                         .event = event,
3998                         .group = group,
3999                         .ret = 0,
4000                 };
4001
4002                 preempt_disable();
4003                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4004
4005                 /*
4006                  * Purposely ignore the smp_call_function_single() return
4007                  * value.
4008                  *
4009                  * If event_cpu isn't a valid CPU it means the event got
4010                  * scheduled out and that will have updated the event count.
4011                  *
4012                  * Therefore, either way, we'll have an up-to-date event count
4013                  * after this.
4014                  */
4015                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4016                 preempt_enable();
4017                 ret = data.ret;
4018
4019         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4020                 struct perf_event_context *ctx = event->ctx;
4021                 unsigned long flags;
4022
4023                 raw_spin_lock_irqsave(&ctx->lock, flags);
4024                 state = event->state;
4025                 if (state != PERF_EVENT_STATE_INACTIVE) {
4026                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4027                         goto again;
4028                 }
4029
4030                 /*
4031                  * May read while context is not active (e.g., thread is
4032                  * blocked), in that case we cannot update context time
4033                  */
4034                 if (ctx->is_active & EVENT_TIME) {
4035                         update_context_time(ctx);
4036                         update_cgrp_time_from_event(event);
4037                 }
4038
4039                 perf_event_update_time(event);
4040                 if (group)
4041                         perf_event_update_sibling_time(event);
4042                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4043         }
4044
4045         return ret;
4046 }
4047
4048 /*
4049  * Initialize the perf_event context in a task_struct:
4050  */
4051 static void __perf_event_init_context(struct perf_event_context *ctx)
4052 {
4053         raw_spin_lock_init(&ctx->lock);
4054         mutex_init(&ctx->mutex);
4055         INIT_LIST_HEAD(&ctx->active_ctx_list);
4056         perf_event_groups_init(&ctx->pinned_groups);
4057         perf_event_groups_init(&ctx->flexible_groups);
4058         INIT_LIST_HEAD(&ctx->event_list);
4059         INIT_LIST_HEAD(&ctx->pinned_active);
4060         INIT_LIST_HEAD(&ctx->flexible_active);
4061         refcount_set(&ctx->refcount, 1);
4062 }
4063
4064 static struct perf_event_context *
4065 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4066 {
4067         struct perf_event_context *ctx;
4068
4069         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4070         if (!ctx)
4071                 return NULL;
4072
4073         __perf_event_init_context(ctx);
4074         if (task) {
4075                 ctx->task = task;
4076                 get_task_struct(task);
4077         }
4078         ctx->pmu = pmu;
4079
4080         return ctx;
4081 }
4082
4083 static struct task_struct *
4084 find_lively_task_by_vpid(pid_t vpid)
4085 {
4086         struct task_struct *task;
4087
4088         rcu_read_lock();
4089         if (!vpid)
4090                 task = current;
4091         else
4092                 task = find_task_by_vpid(vpid);
4093         if (task)
4094                 get_task_struct(task);
4095         rcu_read_unlock();
4096
4097         if (!task)
4098                 return ERR_PTR(-ESRCH);
4099
4100         return task;
4101 }
4102
4103 /*
4104  * Returns a matching context with refcount and pincount.
4105  */
4106 static struct perf_event_context *
4107 find_get_context(struct pmu *pmu, struct task_struct *task,
4108                 struct perf_event *event)
4109 {
4110         struct perf_event_context *ctx, *clone_ctx = NULL;
4111         struct perf_cpu_context *cpuctx;
4112         void *task_ctx_data = NULL;
4113         unsigned long flags;
4114         int ctxn, err;
4115         int cpu = event->cpu;
4116
4117         if (!task) {
4118                 /* Must be root to operate on a CPU event: */
4119                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4120                         return ERR_PTR(-EACCES);
4121
4122                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4123                 ctx = &cpuctx->ctx;
4124                 get_ctx(ctx);
4125                 ++ctx->pin_count;
4126
4127                 return ctx;
4128         }
4129
4130         err = -EINVAL;
4131         ctxn = pmu->task_ctx_nr;
4132         if (ctxn < 0)
4133                 goto errout;
4134
4135         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4136                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4137                 if (!task_ctx_data) {
4138                         err = -ENOMEM;
4139                         goto errout;
4140                 }
4141         }
4142
4143 retry:
4144         ctx = perf_lock_task_context(task, ctxn, &flags);
4145         if (ctx) {
4146                 clone_ctx = unclone_ctx(ctx);
4147                 ++ctx->pin_count;
4148
4149                 if (task_ctx_data && !ctx->task_ctx_data) {
4150                         ctx->task_ctx_data = task_ctx_data;
4151                         task_ctx_data = NULL;
4152                 }
4153                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4154
4155                 if (clone_ctx)
4156                         put_ctx(clone_ctx);
4157         } else {
4158                 ctx = alloc_perf_context(pmu, task);
4159                 err = -ENOMEM;
4160                 if (!ctx)
4161                         goto errout;
4162
4163                 if (task_ctx_data) {
4164                         ctx->task_ctx_data = task_ctx_data;
4165                         task_ctx_data = NULL;
4166                 }
4167
4168                 err = 0;
4169                 mutex_lock(&task->perf_event_mutex);
4170                 /*
4171                  * If it has already passed perf_event_exit_task().
4172                  * we must see PF_EXITING, it takes this mutex too.
4173                  */
4174                 if (task->flags & PF_EXITING)
4175                         err = -ESRCH;
4176                 else if (task->perf_event_ctxp[ctxn])
4177                         err = -EAGAIN;
4178                 else {
4179                         get_ctx(ctx);
4180                         ++ctx->pin_count;
4181                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4182                 }
4183                 mutex_unlock(&task->perf_event_mutex);
4184
4185                 if (unlikely(err)) {
4186                         put_ctx(ctx);
4187
4188                         if (err == -EAGAIN)
4189                                 goto retry;
4190                         goto errout;
4191                 }
4192         }
4193
4194         kfree(task_ctx_data);
4195         return ctx;
4196
4197 errout:
4198         kfree(task_ctx_data);
4199         return ERR_PTR(err);
4200 }
4201
4202 static void perf_event_free_filter(struct perf_event *event);
4203 static void perf_event_free_bpf_prog(struct perf_event *event);
4204
4205 static void free_event_rcu(struct rcu_head *head)
4206 {
4207         struct perf_event *event;
4208
4209         event = container_of(head, struct perf_event, rcu_head);
4210         if (event->ns)
4211                 put_pid_ns(event->ns);
4212         perf_event_free_filter(event);
4213         kfree(event);
4214 }
4215
4216 static void ring_buffer_attach(struct perf_event *event,
4217                                struct ring_buffer *rb);
4218
4219 static void detach_sb_event(struct perf_event *event)
4220 {
4221         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4222
4223         raw_spin_lock(&pel->lock);
4224         list_del_rcu(&event->sb_list);
4225         raw_spin_unlock(&pel->lock);
4226 }
4227
4228 static bool is_sb_event(struct perf_event *event)
4229 {
4230         struct perf_event_attr *attr = &event->attr;
4231
4232         if (event->parent)
4233                 return false;
4234
4235         if (event->attach_state & PERF_ATTACH_TASK)
4236                 return false;
4237
4238         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4239             attr->comm || attr->comm_exec ||
4240             attr->task || attr->ksymbol ||
4241             attr->context_switch ||
4242             attr->bpf_event)
4243                 return true;
4244         return false;
4245 }
4246
4247 static void unaccount_pmu_sb_event(struct perf_event *event)
4248 {
4249         if (is_sb_event(event))
4250                 detach_sb_event(event);
4251 }
4252
4253 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4254 {
4255         if (event->parent)
4256                 return;
4257
4258         if (is_cgroup_event(event))
4259                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4260 }
4261
4262 #ifdef CONFIG_NO_HZ_FULL
4263 static DEFINE_SPINLOCK(nr_freq_lock);
4264 #endif
4265
4266 static void unaccount_freq_event_nohz(void)
4267 {
4268 #ifdef CONFIG_NO_HZ_FULL
4269         spin_lock(&nr_freq_lock);
4270         if (atomic_dec_and_test(&nr_freq_events))
4271                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4272         spin_unlock(&nr_freq_lock);
4273 #endif
4274 }
4275
4276 static void unaccount_freq_event(void)
4277 {
4278         if (tick_nohz_full_enabled())
4279                 unaccount_freq_event_nohz();
4280         else
4281                 atomic_dec(&nr_freq_events);
4282 }
4283
4284 static void unaccount_event(struct perf_event *event)
4285 {
4286         bool dec = false;
4287
4288         if (event->parent)
4289                 return;
4290
4291         if (event->attach_state & PERF_ATTACH_TASK)
4292                 dec = true;
4293         if (event->attr.mmap || event->attr.mmap_data)
4294                 atomic_dec(&nr_mmap_events);
4295         if (event->attr.comm)
4296                 atomic_dec(&nr_comm_events);
4297         if (event->attr.namespaces)
4298                 atomic_dec(&nr_namespaces_events);
4299         if (event->attr.task)
4300                 atomic_dec(&nr_task_events);
4301         if (event->attr.freq)
4302                 unaccount_freq_event();
4303         if (event->attr.context_switch) {
4304                 dec = true;
4305                 atomic_dec(&nr_switch_events);
4306         }
4307         if (is_cgroup_event(event))
4308                 dec = true;
4309         if (has_branch_stack(event))
4310                 dec = true;
4311         if (event->attr.ksymbol)
4312                 atomic_dec(&nr_ksymbol_events);
4313         if (event->attr.bpf_event)
4314                 atomic_dec(&nr_bpf_events);
4315
4316         if (dec) {
4317                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4318                         schedule_delayed_work(&perf_sched_work, HZ);
4319         }
4320
4321         unaccount_event_cpu(event, event->cpu);
4322
4323         unaccount_pmu_sb_event(event);
4324 }
4325
4326 static void perf_sched_delayed(struct work_struct *work)
4327 {
4328         mutex_lock(&perf_sched_mutex);
4329         if (atomic_dec_and_test(&perf_sched_count))
4330                 static_branch_disable(&perf_sched_events);
4331         mutex_unlock(&perf_sched_mutex);
4332 }
4333
4334 /*
4335  * The following implement mutual exclusion of events on "exclusive" pmus
4336  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4337  * at a time, so we disallow creating events that might conflict, namely:
4338  *
4339  *  1) cpu-wide events in the presence of per-task events,
4340  *  2) per-task events in the presence of cpu-wide events,
4341  *  3) two matching events on the same context.
4342  *
4343  * The former two cases are handled in the allocation path (perf_event_alloc(),
4344  * _free_event()), the latter -- before the first perf_install_in_context().
4345  */
4346 static int exclusive_event_init(struct perf_event *event)
4347 {
4348         struct pmu *pmu = event->pmu;
4349
4350         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4351                 return 0;
4352
4353         /*
4354          * Prevent co-existence of per-task and cpu-wide events on the
4355          * same exclusive pmu.
4356          *
4357          * Negative pmu::exclusive_cnt means there are cpu-wide
4358          * events on this "exclusive" pmu, positive means there are
4359          * per-task events.
4360          *
4361          * Since this is called in perf_event_alloc() path, event::ctx
4362          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4363          * to mean "per-task event", because unlike other attach states it
4364          * never gets cleared.
4365          */
4366         if (event->attach_state & PERF_ATTACH_TASK) {
4367                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4368                         return -EBUSY;
4369         } else {
4370                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4371                         return -EBUSY;
4372         }
4373
4374         return 0;
4375 }
4376
4377 static void exclusive_event_destroy(struct perf_event *event)
4378 {
4379         struct pmu *pmu = event->pmu;
4380
4381         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4382                 return;
4383
4384         /* see comment in exclusive_event_init() */
4385         if (event->attach_state & PERF_ATTACH_TASK)
4386                 atomic_dec(&pmu->exclusive_cnt);
4387         else
4388                 atomic_inc(&pmu->exclusive_cnt);
4389 }
4390
4391 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4392 {
4393         if ((e1->pmu == e2->pmu) &&
4394             (e1->cpu == e2->cpu ||
4395              e1->cpu == -1 ||
4396              e2->cpu == -1))
4397                 return true;
4398         return false;
4399 }
4400
4401 /* Called under the same ctx::mutex as perf_install_in_context() */
4402 static bool exclusive_event_installable(struct perf_event *event,
4403                                         struct perf_event_context *ctx)
4404 {
4405         struct perf_event *iter_event;
4406         struct pmu *pmu = event->pmu;
4407
4408         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4409                 return true;
4410
4411         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4412                 if (exclusive_event_match(iter_event, event))
4413                         return false;
4414         }
4415
4416         return true;
4417 }
4418
4419 static void perf_addr_filters_splice(struct perf_event *event,
4420                                        struct list_head *head);
4421
4422 static void _free_event(struct perf_event *event)
4423 {
4424         irq_work_sync(&event->pending);
4425
4426         unaccount_event(event);
4427
4428         if (event->rb) {
4429                 /*
4430                  * Can happen when we close an event with re-directed output.
4431                  *
4432                  * Since we have a 0 refcount, perf_mmap_close() will skip
4433                  * over us; possibly making our ring_buffer_put() the last.
4434                  */
4435                 mutex_lock(&event->mmap_mutex);
4436                 ring_buffer_attach(event, NULL);
4437                 mutex_unlock(&event->mmap_mutex);
4438         }
4439
4440         if (is_cgroup_event(event))
4441                 perf_detach_cgroup(event);
4442
4443         if (!event->parent) {
4444                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4445                         put_callchain_buffers();
4446         }
4447
4448         perf_event_free_bpf_prog(event);
4449         perf_addr_filters_splice(event, NULL);
4450         kfree(event->addr_filter_ranges);
4451
4452         if (event->destroy)
4453                 event->destroy(event);
4454
4455         if (event->ctx)
4456                 put_ctx(event->ctx);
4457
4458         if (event->hw.target)
4459                 put_task_struct(event->hw.target);
4460
4461         exclusive_event_destroy(event);
4462         module_put(event->pmu->module);
4463
4464         call_rcu(&event->rcu_head, free_event_rcu);
4465 }
4466
4467 /*
4468  * Used to free events which have a known refcount of 1, such as in error paths
4469  * where the event isn't exposed yet and inherited events.
4470  */
4471 static void free_event(struct perf_event *event)
4472 {
4473         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4474                                 "unexpected event refcount: %ld; ptr=%p\n",
4475                                 atomic_long_read(&event->refcount), event)) {
4476                 /* leak to avoid use-after-free */
4477                 return;
4478         }
4479
4480         _free_event(event);
4481 }
4482
4483 /*
4484  * Remove user event from the owner task.
4485  */
4486 static void perf_remove_from_owner(struct perf_event *event)
4487 {
4488         struct task_struct *owner;
4489
4490         rcu_read_lock();
4491         /*
4492          * Matches the smp_store_release() in perf_event_exit_task(). If we
4493          * observe !owner it means the list deletion is complete and we can
4494          * indeed free this event, otherwise we need to serialize on
4495          * owner->perf_event_mutex.
4496          */
4497         owner = READ_ONCE(event->owner);
4498         if (owner) {
4499                 /*
4500                  * Since delayed_put_task_struct() also drops the last
4501                  * task reference we can safely take a new reference
4502                  * while holding the rcu_read_lock().
4503                  */
4504                 get_task_struct(owner);
4505         }
4506         rcu_read_unlock();
4507
4508         if (owner) {
4509                 /*
4510                  * If we're here through perf_event_exit_task() we're already
4511                  * holding ctx->mutex which would be an inversion wrt. the
4512                  * normal lock order.
4513                  *
4514                  * However we can safely take this lock because its the child
4515                  * ctx->mutex.
4516                  */
4517                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4518
4519                 /*
4520                  * We have to re-check the event->owner field, if it is cleared
4521                  * we raced with perf_event_exit_task(), acquiring the mutex
4522                  * ensured they're done, and we can proceed with freeing the
4523                  * event.
4524                  */
4525                 if (event->owner) {
4526                         list_del_init(&event->owner_entry);
4527                         smp_store_release(&event->owner, NULL);
4528                 }
4529                 mutex_unlock(&owner->perf_event_mutex);
4530                 put_task_struct(owner);
4531         }
4532 }
4533
4534 static void put_event(struct perf_event *event)
4535 {
4536         if (!atomic_long_dec_and_test(&event->refcount))
4537                 return;
4538
4539         _free_event(event);
4540 }
4541
4542 /*
4543  * Kill an event dead; while event:refcount will preserve the event
4544  * object, it will not preserve its functionality. Once the last 'user'
4545  * gives up the object, we'll destroy the thing.
4546  */
4547 int perf_event_release_kernel(struct perf_event *event)
4548 {
4549         struct perf_event_context *ctx = event->ctx;
4550         struct perf_event *child, *tmp;
4551         LIST_HEAD(free_list);
4552
4553         /*
4554          * If we got here through err_file: fput(event_file); we will not have
4555          * attached to a context yet.
4556          */
4557         if (!ctx) {
4558                 WARN_ON_ONCE(event->attach_state &
4559                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4560                 goto no_ctx;
4561         }
4562
4563         if (!is_kernel_event(event))
4564                 perf_remove_from_owner(event);
4565
4566         ctx = perf_event_ctx_lock(event);
4567         WARN_ON_ONCE(ctx->parent_ctx);
4568         perf_remove_from_context(event, DETACH_GROUP);
4569
4570         raw_spin_lock_irq(&ctx->lock);
4571         /*
4572          * Mark this event as STATE_DEAD, there is no external reference to it
4573          * anymore.
4574          *
4575          * Anybody acquiring event->child_mutex after the below loop _must_
4576          * also see this, most importantly inherit_event() which will avoid
4577          * placing more children on the list.
4578          *
4579          * Thus this guarantees that we will in fact observe and kill _ALL_
4580          * child events.
4581          */
4582         event->state = PERF_EVENT_STATE_DEAD;
4583         raw_spin_unlock_irq(&ctx->lock);
4584
4585         perf_event_ctx_unlock(event, ctx);
4586
4587 again:
4588         mutex_lock(&event->child_mutex);
4589         list_for_each_entry(child, &event->child_list, child_list) {
4590
4591                 /*
4592                  * Cannot change, child events are not migrated, see the
4593                  * comment with perf_event_ctx_lock_nested().
4594                  */
4595                 ctx = READ_ONCE(child->ctx);
4596                 /*
4597                  * Since child_mutex nests inside ctx::mutex, we must jump
4598                  * through hoops. We start by grabbing a reference on the ctx.
4599                  *
4600                  * Since the event cannot get freed while we hold the
4601                  * child_mutex, the context must also exist and have a !0
4602                  * reference count.
4603                  */
4604                 get_ctx(ctx);
4605
4606                 /*
4607                  * Now that we have a ctx ref, we can drop child_mutex, and
4608                  * acquire ctx::mutex without fear of it going away. Then we
4609                  * can re-acquire child_mutex.
4610                  */
4611                 mutex_unlock(&event->child_mutex);
4612                 mutex_lock(&ctx->mutex);
4613                 mutex_lock(&event->child_mutex);
4614
4615                 /*
4616                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4617                  * state, if child is still the first entry, it didn't get freed
4618                  * and we can continue doing so.
4619                  */
4620                 tmp = list_first_entry_or_null(&event->child_list,
4621                                                struct perf_event, child_list);
4622                 if (tmp == child) {
4623                         perf_remove_from_context(child, DETACH_GROUP);
4624                         list_move(&child->child_list, &free_list);
4625                         /*
4626                          * This matches the refcount bump in inherit_event();
4627                          * this can't be the last reference.
4628                          */
4629                         put_event(event);
4630                 }
4631
4632                 mutex_unlock(&event->child_mutex);
4633                 mutex_unlock(&ctx->mutex);
4634                 put_ctx(ctx);
4635                 goto again;
4636         }
4637         mutex_unlock(&event->child_mutex);
4638
4639         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4640                 list_del(&child->child_list);
4641                 free_event(child);
4642         }
4643
4644 no_ctx:
4645         put_event(event); /* Must be the 'last' reference */
4646         return 0;
4647 }
4648 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4649
4650 /*
4651  * Called when the last reference to the file is gone.
4652  */
4653 static int perf_release(struct inode *inode, struct file *file)
4654 {
4655         perf_event_release_kernel(file->private_data);
4656         return 0;
4657 }
4658
4659 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4660 {
4661         struct perf_event *child;
4662         u64 total = 0;
4663
4664         *enabled = 0;
4665         *running = 0;
4666
4667         mutex_lock(&event->child_mutex);
4668
4669         (void)perf_event_read(event, false);
4670         total += perf_event_count(event);
4671
4672         *enabled += event->total_time_enabled +
4673                         atomic64_read(&event->child_total_time_enabled);
4674         *running += event->total_time_running +
4675                         atomic64_read(&event->child_total_time_running);
4676
4677         list_for_each_entry(child, &event->child_list, child_list) {
4678                 (void)perf_event_read(child, false);
4679                 total += perf_event_count(child);
4680                 *enabled += child->total_time_enabled;
4681                 *running += child->total_time_running;
4682         }
4683         mutex_unlock(&event->child_mutex);
4684
4685         return total;
4686 }
4687
4688 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4689 {
4690         struct perf_event_context *ctx;
4691         u64 count;
4692
4693         ctx = perf_event_ctx_lock(event);
4694         count = __perf_event_read_value(event, enabled, running);
4695         perf_event_ctx_unlock(event, ctx);
4696
4697         return count;
4698 }
4699 EXPORT_SYMBOL_GPL(perf_event_read_value);
4700
4701 static int __perf_read_group_add(struct perf_event *leader,
4702                                         u64 read_format, u64 *values)
4703 {
4704         struct perf_event_context *ctx = leader->ctx;
4705         struct perf_event *sub;
4706         unsigned long flags;
4707         int n = 1; /* skip @nr */
4708         int ret;
4709
4710         ret = perf_event_read(leader, true);
4711         if (ret)
4712                 return ret;
4713
4714         raw_spin_lock_irqsave(&ctx->lock, flags);
4715
4716         /*
4717          * Since we co-schedule groups, {enabled,running} times of siblings
4718          * will be identical to those of the leader, so we only publish one
4719          * set.
4720          */
4721         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4722                 values[n++] += leader->total_time_enabled +
4723                         atomic64_read(&leader->child_total_time_enabled);
4724         }
4725
4726         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4727                 values[n++] += leader->total_time_running +
4728                         atomic64_read(&leader->child_total_time_running);
4729         }
4730
4731         /*
4732          * Write {count,id} tuples for every sibling.
4733          */
4734         values[n++] += perf_event_count(leader);
4735         if (read_format & PERF_FORMAT_ID)
4736                 values[n++] = primary_event_id(leader);
4737
4738         for_each_sibling_event(sub, leader) {
4739                 values[n++] += perf_event_count(sub);
4740                 if (read_format & PERF_FORMAT_ID)
4741                         values[n++] = primary_event_id(sub);
4742         }
4743
4744         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4745         return 0;
4746 }
4747
4748 static int perf_read_group(struct perf_event *event,
4749                                    u64 read_format, char __user *buf)
4750 {
4751         struct perf_event *leader = event->group_leader, *child;
4752         struct perf_event_context *ctx = leader->ctx;
4753         int ret;
4754         u64 *values;
4755
4756         lockdep_assert_held(&ctx->mutex);
4757
4758         values = kzalloc(event->read_size, GFP_KERNEL);
4759         if (!values)
4760                 return -ENOMEM;
4761
4762         values[0] = 1 + leader->nr_siblings;
4763
4764         /*
4765          * By locking the child_mutex of the leader we effectively
4766          * lock the child list of all siblings.. XXX explain how.
4767          */
4768         mutex_lock(&leader->child_mutex);
4769
4770         ret = __perf_read_group_add(leader, read_format, values);
4771         if (ret)
4772                 goto unlock;
4773
4774         list_for_each_entry(child, &leader->child_list, child_list) {
4775                 ret = __perf_read_group_add(child, read_format, values);
4776                 if (ret)
4777                         goto unlock;
4778         }
4779
4780         mutex_unlock(&leader->child_mutex);
4781
4782         ret = event->read_size;
4783         if (copy_to_user(buf, values, event->read_size))
4784                 ret = -EFAULT;
4785         goto out;
4786
4787 unlock:
4788         mutex_unlock(&leader->child_mutex);
4789 out:
4790         kfree(values);
4791         return ret;
4792 }
4793
4794 static int perf_read_one(struct perf_event *event,
4795                                  u64 read_format, char __user *buf)
4796 {
4797         u64 enabled, running;
4798         u64 values[4];
4799         int n = 0;
4800
4801         values[n++] = __perf_event_read_value(event, &enabled, &running);
4802         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4803                 values[n++] = enabled;
4804         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4805                 values[n++] = running;
4806         if (read_format & PERF_FORMAT_ID)
4807                 values[n++] = primary_event_id(event);
4808
4809         if (copy_to_user(buf, values, n * sizeof(u64)))
4810                 return -EFAULT;
4811
4812         return n * sizeof(u64);
4813 }
4814
4815 static bool is_event_hup(struct perf_event *event)
4816 {
4817         bool no_children;
4818
4819         if (event->state > PERF_EVENT_STATE_EXIT)
4820                 return false;
4821
4822         mutex_lock(&event->child_mutex);
4823         no_children = list_empty(&event->child_list);
4824         mutex_unlock(&event->child_mutex);
4825         return no_children;
4826 }
4827
4828 /*
4829  * Read the performance event - simple non blocking version for now
4830  */
4831 static ssize_t
4832 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4833 {
4834         u64 read_format = event->attr.read_format;
4835         int ret;
4836
4837         /*
4838          * Return end-of-file for a read on an event that is in
4839          * error state (i.e. because it was pinned but it couldn't be
4840          * scheduled on to the CPU at some point).
4841          */
4842         if (event->state == PERF_EVENT_STATE_ERROR)
4843                 return 0;
4844
4845         if (count < event->read_size)
4846                 return -ENOSPC;
4847
4848         WARN_ON_ONCE(event->ctx->parent_ctx);
4849         if (read_format & PERF_FORMAT_GROUP)
4850                 ret = perf_read_group(event, read_format, buf);
4851         else
4852                 ret = perf_read_one(event, read_format, buf);
4853
4854         return ret;
4855 }
4856
4857 static ssize_t
4858 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4859 {
4860         struct perf_event *event = file->private_data;
4861         struct perf_event_context *ctx;
4862         int ret;
4863
4864         ctx = perf_event_ctx_lock(event);
4865         ret = __perf_read(event, buf, count);
4866         perf_event_ctx_unlock(event, ctx);
4867
4868         return ret;
4869 }
4870
4871 static __poll_t perf_poll(struct file *file, poll_table *wait)
4872 {
4873         struct perf_event *event = file->private_data;
4874         struct ring_buffer *rb;
4875         __poll_t events = EPOLLHUP;
4876
4877         poll_wait(file, &event->waitq, wait);
4878
4879         if (is_event_hup(event))
4880                 return events;
4881
4882         /*
4883          * Pin the event->rb by taking event->mmap_mutex; otherwise
4884          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4885          */
4886         mutex_lock(&event->mmap_mutex);
4887         rb = event->rb;
4888         if (rb)
4889                 events = atomic_xchg(&rb->poll, 0);
4890         mutex_unlock(&event->mmap_mutex);
4891         return events;
4892 }
4893
4894 static void _perf_event_reset(struct perf_event *event)
4895 {
4896         (void)perf_event_read(event, false);
4897         local64_set(&event->count, 0);
4898         perf_event_update_userpage(event);
4899 }
4900
4901 /*
4902  * Holding the top-level event's child_mutex means that any
4903  * descendant process that has inherited this event will block
4904  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4905  * task existence requirements of perf_event_enable/disable.
4906  */
4907 static void perf_event_for_each_child(struct perf_event *event,
4908                                         void (*func)(struct perf_event *))
4909 {
4910         struct perf_event *child;
4911
4912         WARN_ON_ONCE(event->ctx->parent_ctx);
4913
4914         mutex_lock(&event->child_mutex);
4915         func(event);
4916         list_for_each_entry(child, &event->child_list, child_list)
4917                 func(child);
4918         mutex_unlock(&event->child_mutex);
4919 }
4920
4921 static void perf_event_for_each(struct perf_event *event,
4922                                   void (*func)(struct perf_event *))
4923 {
4924         struct perf_event_context *ctx = event->ctx;
4925         struct perf_event *sibling;
4926
4927         lockdep_assert_held(&ctx->mutex);
4928
4929         event = event->group_leader;
4930
4931         perf_event_for_each_child(event, func);
4932         for_each_sibling_event(sibling, event)
4933                 perf_event_for_each_child(sibling, func);
4934 }
4935
4936 static void __perf_event_period(struct perf_event *event,
4937                                 struct perf_cpu_context *cpuctx,
4938                                 struct perf_event_context *ctx,
4939                                 void *info)
4940 {
4941         u64 value = *((u64 *)info);
4942         bool active;
4943
4944         if (event->attr.freq) {
4945                 event->attr.sample_freq = value;
4946         } else {
4947                 event->attr.sample_period = value;
4948                 event->hw.sample_period = value;
4949         }
4950
4951         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4952         if (active) {
4953                 perf_pmu_disable(ctx->pmu);
4954                 /*
4955                  * We could be throttled; unthrottle now to avoid the tick
4956                  * trying to unthrottle while we already re-started the event.
4957                  */
4958                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4959                         event->hw.interrupts = 0;
4960                         perf_log_throttle(event, 1);
4961                 }
4962                 event->pmu->stop(event, PERF_EF_UPDATE);
4963         }
4964
4965         local64_set(&event->hw.period_left, 0);
4966
4967         if (active) {
4968                 event->pmu->start(event, PERF_EF_RELOAD);
4969                 perf_pmu_enable(ctx->pmu);
4970         }
4971 }
4972
4973 static int perf_event_check_period(struct perf_event *event, u64 value)
4974 {
4975         return event->pmu->check_period(event, value);
4976 }
4977
4978 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4979 {
4980         u64 value;
4981
4982         if (!is_sampling_event(event))
4983                 return -EINVAL;
4984
4985         if (copy_from_user(&value, arg, sizeof(value)))
4986                 return -EFAULT;
4987
4988         if (!value)
4989                 return -EINVAL;
4990
4991         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4992                 return -EINVAL;
4993
4994         if (perf_event_check_period(event, value))
4995                 return -EINVAL;
4996
4997         event_function_call(event, __perf_event_period, &value);
4998
4999         return 0;
5000 }
5001
5002 static const struct file_operations perf_fops;
5003
5004 static inline int perf_fget_light(int fd, struct fd *p)
5005 {
5006         struct fd f = fdget(fd);
5007         if (!f.file)
5008                 return -EBADF;
5009
5010         if (f.file->f_op != &perf_fops) {
5011                 fdput(f);
5012                 return -EBADF;
5013         }
5014         *p = f;
5015         return 0;
5016 }
5017
5018 static int perf_event_set_output(struct perf_event *event,
5019                                  struct perf_event *output_event);
5020 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5021 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5022 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5023                           struct perf_event_attr *attr);
5024
5025 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5026 {
5027         void (*func)(struct perf_event *);
5028         u32 flags = arg;
5029
5030         switch (cmd) {
5031         case PERF_EVENT_IOC_ENABLE:
5032                 func = _perf_event_enable;
5033                 break;
5034         case PERF_EVENT_IOC_DISABLE:
5035                 func = _perf_event_disable;
5036                 break;
5037         case PERF_EVENT_IOC_RESET:
5038                 func = _perf_event_reset;
5039                 break;
5040
5041         case PERF_EVENT_IOC_REFRESH:
5042                 return _perf_event_refresh(event, arg);
5043
5044         case PERF_EVENT_IOC_PERIOD:
5045                 return perf_event_period(event, (u64 __user *)arg);
5046
5047         case PERF_EVENT_IOC_ID:
5048         {
5049                 u64 id = primary_event_id(event);
5050
5051                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5052                         return -EFAULT;
5053                 return 0;
5054         }
5055
5056         case PERF_EVENT_IOC_SET_OUTPUT:
5057         {
5058                 int ret;
5059                 if (arg != -1) {
5060                         struct perf_event *output_event;
5061                         struct fd output;
5062                         ret = perf_fget_light(arg, &output);
5063                         if (ret)
5064                                 return ret;
5065                         output_event = output.file->private_data;
5066                         ret = perf_event_set_output(event, output_event);
5067                         fdput(output);
5068                 } else {
5069                         ret = perf_event_set_output(event, NULL);
5070                 }
5071                 return ret;
5072         }
5073
5074         case PERF_EVENT_IOC_SET_FILTER:
5075                 return perf_event_set_filter(event, (void __user *)arg);
5076
5077         case PERF_EVENT_IOC_SET_BPF:
5078                 return perf_event_set_bpf_prog(event, arg);
5079
5080         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5081                 struct ring_buffer *rb;
5082
5083                 rcu_read_lock();
5084                 rb = rcu_dereference(event->rb);
5085                 if (!rb || !rb->nr_pages) {
5086                         rcu_read_unlock();
5087                         return -EINVAL;
5088                 }
5089                 rb_toggle_paused(rb, !!arg);
5090                 rcu_read_unlock();
5091                 return 0;
5092         }
5093
5094         case PERF_EVENT_IOC_QUERY_BPF:
5095                 return perf_event_query_prog_array(event, (void __user *)arg);
5096
5097         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5098                 struct perf_event_attr new_attr;
5099                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5100                                          &new_attr);
5101
5102                 if (err)
5103                         return err;
5104
5105                 return perf_event_modify_attr(event,  &new_attr);
5106         }
5107         default:
5108                 return -ENOTTY;
5109         }
5110
5111         if (flags & PERF_IOC_FLAG_GROUP)
5112                 perf_event_for_each(event, func);
5113         else
5114                 perf_event_for_each_child(event, func);
5115
5116         return 0;
5117 }
5118
5119 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5120 {
5121         struct perf_event *event = file->private_data;
5122         struct perf_event_context *ctx;
5123         long ret;
5124
5125         ctx = perf_event_ctx_lock(event);
5126         ret = _perf_ioctl(event, cmd, arg);
5127         perf_event_ctx_unlock(event, ctx);
5128
5129         return ret;
5130 }
5131
5132 #ifdef CONFIG_COMPAT
5133 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5134                                 unsigned long arg)
5135 {
5136         switch (_IOC_NR(cmd)) {
5137         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5138         case _IOC_NR(PERF_EVENT_IOC_ID):
5139         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5140         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5141                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5142                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5143                         cmd &= ~IOCSIZE_MASK;
5144                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5145                 }
5146                 break;
5147         }
5148         return perf_ioctl(file, cmd, arg);
5149 }
5150 #else
5151 # define perf_compat_ioctl NULL
5152 #endif
5153
5154 int perf_event_task_enable(void)
5155 {
5156         struct perf_event_context *ctx;
5157         struct perf_event *event;
5158
5159         mutex_lock(&current->perf_event_mutex);
5160         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5161                 ctx = perf_event_ctx_lock(event);
5162                 perf_event_for_each_child(event, _perf_event_enable);
5163                 perf_event_ctx_unlock(event, ctx);
5164         }
5165         mutex_unlock(&current->perf_event_mutex);
5166
5167         return 0;
5168 }
5169
5170 int perf_event_task_disable(void)
5171 {
5172         struct perf_event_context *ctx;
5173         struct perf_event *event;
5174
5175         mutex_lock(&current->perf_event_mutex);
5176         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5177                 ctx = perf_event_ctx_lock(event);
5178                 perf_event_for_each_child(event, _perf_event_disable);
5179                 perf_event_ctx_unlock(event, ctx);
5180         }
5181         mutex_unlock(&current->perf_event_mutex);
5182
5183         return 0;
5184 }
5185
5186 static int perf_event_index(struct perf_event *event)
5187 {
5188         if (event->hw.state & PERF_HES_STOPPED)
5189                 return 0;
5190
5191         if (event->state != PERF_EVENT_STATE_ACTIVE)
5192                 return 0;
5193
5194         return event->pmu->event_idx(event);
5195 }
5196
5197 static void calc_timer_values(struct perf_event *event,
5198                                 u64 *now,
5199                                 u64 *enabled,
5200                                 u64 *running)
5201 {
5202         u64 ctx_time;
5203
5204         *now = perf_clock();
5205         ctx_time = event->shadow_ctx_time + *now;
5206         __perf_update_times(event, ctx_time, enabled, running);
5207 }
5208
5209 static void perf_event_init_userpage(struct perf_event *event)
5210 {
5211         struct perf_event_mmap_page *userpg;
5212         struct ring_buffer *rb;
5213
5214         rcu_read_lock();
5215         rb = rcu_dereference(event->rb);
5216         if (!rb)
5217                 goto unlock;
5218
5219         userpg = rb->user_page;
5220
5221         /* Allow new userspace to detect that bit 0 is deprecated */
5222         userpg->cap_bit0_is_deprecated = 1;
5223         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5224         userpg->data_offset = PAGE_SIZE;
5225         userpg->data_size = perf_data_size(rb);
5226
5227 unlock:
5228         rcu_read_unlock();
5229 }
5230
5231 void __weak arch_perf_update_userpage(
5232         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5233 {
5234 }
5235
5236 /*
5237  * Callers need to ensure there can be no nesting of this function, otherwise
5238  * the seqlock logic goes bad. We can not serialize this because the arch
5239  * code calls this from NMI context.
5240  */
5241 void perf_event_update_userpage(struct perf_event *event)
5242 {
5243         struct perf_event_mmap_page *userpg;
5244         struct ring_buffer *rb;
5245         u64 enabled, running, now;
5246
5247         rcu_read_lock();
5248         rb = rcu_dereference(event->rb);
5249         if (!rb)
5250                 goto unlock;
5251
5252         /*
5253          * compute total_time_enabled, total_time_running
5254          * based on snapshot values taken when the event
5255          * was last scheduled in.
5256          *
5257          * we cannot simply called update_context_time()
5258          * because of locking issue as we can be called in
5259          * NMI context
5260          */
5261         calc_timer_values(event, &now, &enabled, &running);
5262
5263         userpg = rb->user_page;
5264         /*
5265          * Disable preemption to guarantee consistent time stamps are stored to
5266          * the user page.
5267          */
5268         preempt_disable();
5269         ++userpg->lock;
5270         barrier();
5271         userpg->index = perf_event_index(event);
5272         userpg->offset = perf_event_count(event);
5273         if (userpg->index)
5274                 userpg->offset -= local64_read(&event->hw.prev_count);
5275
5276         userpg->time_enabled = enabled +
5277                         atomic64_read(&event->child_total_time_enabled);
5278
5279         userpg->time_running = running +
5280                         atomic64_read(&event->child_total_time_running);
5281
5282         arch_perf_update_userpage(event, userpg, now);
5283
5284         barrier();
5285         ++userpg->lock;
5286         preempt_enable();
5287 unlock:
5288         rcu_read_unlock();
5289 }
5290 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5291
5292 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5293 {
5294         struct perf_event *event = vmf->vma->vm_file->private_data;
5295         struct ring_buffer *rb;
5296         vm_fault_t ret = VM_FAULT_SIGBUS;
5297
5298         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5299                 if (vmf->pgoff == 0)
5300                         ret = 0;
5301                 return ret;
5302         }
5303
5304         rcu_read_lock();
5305         rb = rcu_dereference(event->rb);
5306         if (!rb)
5307                 goto unlock;
5308
5309         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5310                 goto unlock;
5311
5312         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5313         if (!vmf->page)
5314                 goto unlock;
5315
5316         get_page(vmf->page);
5317         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5318         vmf->page->index   = vmf->pgoff;
5319
5320         ret = 0;
5321 unlock:
5322         rcu_read_unlock();
5323
5324         return ret;
5325 }
5326
5327 static void ring_buffer_attach(struct perf_event *event,
5328                                struct ring_buffer *rb)
5329 {
5330         struct ring_buffer *old_rb = NULL;
5331         unsigned long flags;
5332
5333         if (event->rb) {
5334                 /*
5335                  * Should be impossible, we set this when removing
5336                  * event->rb_entry and wait/clear when adding event->rb_entry.
5337                  */
5338                 WARN_ON_ONCE(event->rcu_pending);
5339
5340                 old_rb = event->rb;
5341                 spin_lock_irqsave(&old_rb->event_lock, flags);
5342                 list_del_rcu(&event->rb_entry);
5343                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5344
5345                 event->rcu_batches = get_state_synchronize_rcu();
5346                 event->rcu_pending = 1;
5347         }
5348
5349         if (rb) {
5350                 if (event->rcu_pending) {
5351                         cond_synchronize_rcu(event->rcu_batches);
5352                         event->rcu_pending = 0;
5353                 }
5354
5355                 spin_lock_irqsave(&rb->event_lock, flags);
5356                 list_add_rcu(&event->rb_entry, &rb->event_list);
5357                 spin_unlock_irqrestore(&rb->event_lock, flags);
5358         }
5359
5360         /*
5361          * Avoid racing with perf_mmap_close(AUX): stop the event
5362          * before swizzling the event::rb pointer; if it's getting
5363          * unmapped, its aux_mmap_count will be 0 and it won't
5364          * restart. See the comment in __perf_pmu_output_stop().
5365          *
5366          * Data will inevitably be lost when set_output is done in
5367          * mid-air, but then again, whoever does it like this is
5368          * not in for the data anyway.
5369          */
5370         if (has_aux(event))
5371                 perf_event_stop(event, 0);
5372
5373         rcu_assign_pointer(event->rb, rb);
5374
5375         if (old_rb) {
5376                 ring_buffer_put(old_rb);
5377                 /*
5378                  * Since we detached before setting the new rb, so that we
5379                  * could attach the new rb, we could have missed a wakeup.
5380                  * Provide it now.
5381                  */
5382                 wake_up_all(&event->waitq);
5383         }
5384 }
5385
5386 static void ring_buffer_wakeup(struct perf_event *event)
5387 {
5388         struct ring_buffer *rb;
5389
5390         rcu_read_lock();
5391         rb = rcu_dereference(event->rb);
5392         if (rb) {
5393                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5394                         wake_up_all(&event->waitq);
5395         }
5396         rcu_read_unlock();
5397 }
5398
5399 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5400 {
5401         struct ring_buffer *rb;
5402
5403         rcu_read_lock();
5404         rb = rcu_dereference(event->rb);
5405         if (rb) {
5406                 if (!refcount_inc_not_zero(&rb->refcount))
5407                         rb = NULL;
5408         }
5409         rcu_read_unlock();
5410
5411         return rb;
5412 }
5413
5414 void ring_buffer_put(struct ring_buffer *rb)
5415 {
5416         if (!refcount_dec_and_test(&rb->refcount))
5417                 return;
5418
5419         WARN_ON_ONCE(!list_empty(&rb->event_list));
5420
5421         call_rcu(&rb->rcu_head, rb_free_rcu);
5422 }
5423
5424 static void perf_mmap_open(struct vm_area_struct *vma)
5425 {
5426         struct perf_event *event = vma->vm_file->private_data;
5427
5428         atomic_inc(&event->mmap_count);
5429         atomic_inc(&event->rb->mmap_count);
5430
5431         if (vma->vm_pgoff)
5432                 atomic_inc(&event->rb->aux_mmap_count);
5433
5434         if (event->pmu->event_mapped)
5435                 event->pmu->event_mapped(event, vma->vm_mm);
5436 }
5437
5438 static void perf_pmu_output_stop(struct perf_event *event);
5439
5440 /*
5441  * A buffer can be mmap()ed multiple times; either directly through the same
5442  * event, or through other events by use of perf_event_set_output().
5443  *
5444  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5445  * the buffer here, where we still have a VM context. This means we need
5446  * to detach all events redirecting to us.
5447  */
5448 static void perf_mmap_close(struct vm_area_struct *vma)
5449 {
5450         struct perf_event *event = vma->vm_file->private_data;
5451
5452         struct ring_buffer *rb = ring_buffer_get(event);
5453         struct user_struct *mmap_user = rb->mmap_user;
5454         int mmap_locked = rb->mmap_locked;
5455         unsigned long size = perf_data_size(rb);
5456
5457         if (event->pmu->event_unmapped)
5458                 event->pmu->event_unmapped(event, vma->vm_mm);
5459
5460         /*
5461          * rb->aux_mmap_count will always drop before rb->mmap_count and
5462          * event->mmap_count, so it is ok to use event->mmap_mutex to
5463          * serialize with perf_mmap here.
5464          */
5465         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5466             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5467                 /*
5468                  * Stop all AUX events that are writing to this buffer,
5469                  * so that we can free its AUX pages and corresponding PMU
5470                  * data. Note that after rb::aux_mmap_count dropped to zero,
5471                  * they won't start any more (see perf_aux_output_begin()).
5472                  */
5473                 perf_pmu_output_stop(event);
5474
5475                 /* now it's safe to free the pages */
5476                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5477                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5478
5479                 /* this has to be the last one */
5480                 rb_free_aux(rb);
5481                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5482
5483                 mutex_unlock(&event->mmap_mutex);
5484         }
5485
5486         atomic_dec(&rb->mmap_count);
5487
5488         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5489                 goto out_put;
5490
5491         ring_buffer_attach(event, NULL);
5492         mutex_unlock(&event->mmap_mutex);
5493
5494         /* If there's still other mmap()s of this buffer, we're done. */
5495         if (atomic_read(&rb->mmap_count))
5496                 goto out_put;
5497
5498         /*
5499          * No other mmap()s, detach from all other events that might redirect
5500          * into the now unreachable buffer. Somewhat complicated by the
5501          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5502          */
5503 again:
5504         rcu_read_lock();
5505         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5506                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5507                         /*
5508                          * This event is en-route to free_event() which will
5509                          * detach it and remove it from the list.
5510                          */
5511                         continue;
5512                 }
5513                 rcu_read_unlock();
5514
5515                 mutex_lock(&event->mmap_mutex);
5516                 /*
5517                  * Check we didn't race with perf_event_set_output() which can
5518                  * swizzle the rb from under us while we were waiting to
5519                  * acquire mmap_mutex.
5520                  *
5521                  * If we find a different rb; ignore this event, a next
5522                  * iteration will no longer find it on the list. We have to
5523                  * still restart the iteration to make sure we're not now
5524                  * iterating the wrong list.
5525                  */
5526                 if (event->rb == rb)
5527                         ring_buffer_attach(event, NULL);
5528
5529                 mutex_unlock(&event->mmap_mutex);
5530                 put_event(event);
5531
5532                 /*
5533                  * Restart the iteration; either we're on the wrong list or
5534                  * destroyed its integrity by doing a deletion.
5535                  */
5536                 goto again;
5537         }
5538         rcu_read_unlock();
5539
5540         /*
5541          * It could be there's still a few 0-ref events on the list; they'll
5542          * get cleaned up by free_event() -- they'll also still have their
5543          * ref on the rb and will free it whenever they are done with it.
5544          *
5545          * Aside from that, this buffer is 'fully' detached and unmapped,
5546          * undo the VM accounting.
5547          */
5548
5549         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5550         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5551         free_uid(mmap_user);
5552
5553 out_put:
5554         ring_buffer_put(rb); /* could be last */
5555 }
5556
5557 static const struct vm_operations_struct perf_mmap_vmops = {
5558         .open           = perf_mmap_open,
5559         .close          = perf_mmap_close, /* non mergeable */
5560         .fault          = perf_mmap_fault,
5561         .page_mkwrite   = perf_mmap_fault,
5562 };
5563
5564 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5565 {
5566         struct perf_event *event = file->private_data;
5567         unsigned long user_locked, user_lock_limit;
5568         struct user_struct *user = current_user();
5569         unsigned long locked, lock_limit;
5570         struct ring_buffer *rb = NULL;
5571         unsigned long vma_size;
5572         unsigned long nr_pages;
5573         long user_extra = 0, extra = 0;
5574         int ret = 0, flags = 0;
5575
5576         /*
5577          * Don't allow mmap() of inherited per-task counters. This would
5578          * create a performance issue due to all children writing to the
5579          * same rb.
5580          */
5581         if (event->cpu == -1 && event->attr.inherit)
5582                 return -EINVAL;
5583
5584         if (!(vma->vm_flags & VM_SHARED))
5585                 return -EINVAL;
5586
5587         vma_size = vma->vm_end - vma->vm_start;
5588
5589         if (vma->vm_pgoff == 0) {
5590                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5591         } else {
5592                 /*
5593                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5594                  * mapped, all subsequent mappings should have the same size
5595                  * and offset. Must be above the normal perf buffer.
5596                  */
5597                 u64 aux_offset, aux_size;
5598
5599                 if (!event->rb)
5600                         return -EINVAL;
5601
5602                 nr_pages = vma_size / PAGE_SIZE;
5603
5604                 mutex_lock(&event->mmap_mutex);
5605                 ret = -EINVAL;
5606
5607                 rb = event->rb;
5608                 if (!rb)
5609                         goto aux_unlock;
5610
5611                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5612                 aux_size = READ_ONCE(rb->user_page->aux_size);
5613
5614                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5615                         goto aux_unlock;
5616
5617                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5618                         goto aux_unlock;
5619
5620                 /* already mapped with a different offset */
5621                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5622                         goto aux_unlock;
5623
5624                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5625                         goto aux_unlock;
5626
5627                 /* already mapped with a different size */
5628                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5629                         goto aux_unlock;
5630
5631                 if (!is_power_of_2(nr_pages))
5632                         goto aux_unlock;
5633
5634                 if (!atomic_inc_not_zero(&rb->mmap_count))
5635                         goto aux_unlock;
5636
5637                 if (rb_has_aux(rb)) {
5638                         atomic_inc(&rb->aux_mmap_count);
5639                         ret = 0;
5640                         goto unlock;
5641                 }
5642
5643                 atomic_set(&rb->aux_mmap_count, 1);
5644                 user_extra = nr_pages;
5645
5646                 goto accounting;
5647         }
5648
5649         /*
5650          * If we have rb pages ensure they're a power-of-two number, so we
5651          * can do bitmasks instead of modulo.
5652          */
5653         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5654                 return -EINVAL;
5655
5656         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5657                 return -EINVAL;
5658
5659         WARN_ON_ONCE(event->ctx->parent_ctx);
5660 again:
5661         mutex_lock(&event->mmap_mutex);
5662         if (event->rb) {
5663                 if (event->rb->nr_pages != nr_pages) {
5664                         ret = -EINVAL;
5665                         goto unlock;
5666                 }
5667
5668                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5669                         /*
5670                          * Raced against perf_mmap_close() through
5671                          * perf_event_set_output(). Try again, hope for better
5672                          * luck.
5673                          */
5674                         mutex_unlock(&event->mmap_mutex);
5675                         goto again;
5676                 }
5677
5678                 goto unlock;
5679         }
5680
5681         user_extra = nr_pages + 1;
5682
5683 accounting:
5684         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5685
5686         /*
5687          * Increase the limit linearly with more CPUs:
5688          */
5689         user_lock_limit *= num_online_cpus();
5690
5691         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5692
5693         if (user_locked > user_lock_limit)
5694                 extra = user_locked - user_lock_limit;
5695
5696         lock_limit = rlimit(RLIMIT_MEMLOCK);
5697         lock_limit >>= PAGE_SHIFT;
5698         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5699
5700         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5701                 !capable(CAP_IPC_LOCK)) {
5702                 ret = -EPERM;
5703                 goto unlock;
5704         }
5705
5706         WARN_ON(!rb && event->rb);
5707
5708         if (vma->vm_flags & VM_WRITE)
5709                 flags |= RING_BUFFER_WRITABLE;
5710
5711         if (!rb) {
5712                 rb = rb_alloc(nr_pages,
5713                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5714                               event->cpu, flags);
5715
5716                 if (!rb) {
5717                         ret = -ENOMEM;
5718                         goto unlock;
5719                 }
5720
5721                 atomic_set(&rb->mmap_count, 1);
5722                 rb->mmap_user = get_current_user();
5723                 rb->mmap_locked = extra;
5724
5725                 ring_buffer_attach(event, rb);
5726
5727                 perf_event_init_userpage(event);
5728                 perf_event_update_userpage(event);
5729         } else {
5730                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5731                                    event->attr.aux_watermark, flags);
5732                 if (!ret)
5733                         rb->aux_mmap_locked = extra;
5734         }
5735
5736 unlock:
5737         if (!ret) {
5738                 atomic_long_add(user_extra, &user->locked_vm);
5739                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5740
5741                 atomic_inc(&event->mmap_count);
5742         } else if (rb) {
5743                 atomic_dec(&rb->mmap_count);
5744         }
5745 aux_unlock:
5746         mutex_unlock(&event->mmap_mutex);
5747
5748         /*
5749          * Since pinned accounting is per vm we cannot allow fork() to copy our
5750          * vma.
5751          */
5752         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5753         vma->vm_ops = &perf_mmap_vmops;
5754
5755         if (event->pmu->event_mapped)
5756                 event->pmu->event_mapped(event, vma->vm_mm);
5757
5758         return ret;
5759 }
5760
5761 static int perf_fasync(int fd, struct file *filp, int on)
5762 {
5763         struct inode *inode = file_inode(filp);
5764         struct perf_event *event = filp->private_data;
5765         int retval;
5766
5767         inode_lock(inode);
5768         retval = fasync_helper(fd, filp, on, &event->fasync);
5769         inode_unlock(inode);
5770
5771         if (retval < 0)
5772                 return retval;
5773
5774         return 0;
5775 }
5776
5777 static const struct file_operations perf_fops = {
5778         .llseek                 = no_llseek,
5779         .release                = perf_release,
5780         .read                   = perf_read,
5781         .poll                   = perf_poll,
5782         .unlocked_ioctl         = perf_ioctl,
5783         .compat_ioctl           = perf_compat_ioctl,
5784         .mmap                   = perf_mmap,
5785         .fasync                 = perf_fasync,
5786 };
5787
5788 /*
5789  * Perf event wakeup
5790  *
5791  * If there's data, ensure we set the poll() state and publish everything
5792  * to user-space before waking everybody up.
5793  */
5794
5795 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5796 {
5797         /* only the parent has fasync state */
5798         if (event->parent)
5799                 event = event->parent;
5800         return &event->fasync;
5801 }
5802
5803 void perf_event_wakeup(struct perf_event *event)
5804 {
5805         ring_buffer_wakeup(event);
5806
5807         if (event->pending_kill) {
5808                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5809                 event->pending_kill = 0;
5810         }
5811 }
5812
5813 static void perf_pending_event(struct irq_work *entry)
5814 {
5815         struct perf_event *event = container_of(entry,
5816                         struct perf_event, pending);
5817         int rctx;
5818
5819         rctx = perf_swevent_get_recursion_context();
5820         /*
5821          * If we 'fail' here, that's OK, it means recursion is already disabled
5822          * and we won't recurse 'further'.
5823          */
5824
5825         if (event->pending_disable) {
5826                 event->pending_disable = 0;
5827                 perf_event_disable_local(event);
5828         }
5829
5830         if (event->pending_wakeup) {
5831                 event->pending_wakeup = 0;
5832                 perf_event_wakeup(event);
5833         }
5834
5835         if (rctx >= 0)
5836                 perf_swevent_put_recursion_context(rctx);
5837 }
5838
5839 /*
5840  * We assume there is only KVM supporting the callbacks.
5841  * Later on, we might change it to a list if there is
5842  * another virtualization implementation supporting the callbacks.
5843  */
5844 struct perf_guest_info_callbacks *perf_guest_cbs;
5845
5846 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5847 {
5848         perf_guest_cbs = cbs;
5849         return 0;
5850 }
5851 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5852
5853 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5854 {
5855         perf_guest_cbs = NULL;
5856         return 0;
5857 }
5858 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5859
5860 static void
5861 perf_output_sample_regs(struct perf_output_handle *handle,
5862                         struct pt_regs *regs, u64 mask)
5863 {
5864         int bit;
5865         DECLARE_BITMAP(_mask, 64);
5866
5867         bitmap_from_u64(_mask, mask);
5868         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5869                 u64 val;
5870
5871                 val = perf_reg_value(regs, bit);
5872                 perf_output_put(handle, val);
5873         }
5874 }
5875
5876 static void perf_sample_regs_user(struct perf_regs *regs_user,
5877                                   struct pt_regs *regs,
5878                                   struct pt_regs *regs_user_copy)
5879 {
5880         if (user_mode(regs)) {
5881                 regs_user->abi = perf_reg_abi(current);
5882                 regs_user->regs = regs;
5883         } else if (current->mm) {
5884                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5885         } else {
5886                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5887                 regs_user->regs = NULL;
5888         }
5889 }
5890
5891 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5892                                   struct pt_regs *regs)
5893 {
5894         regs_intr->regs = regs;
5895         regs_intr->abi  = perf_reg_abi(current);
5896 }
5897
5898
5899 /*
5900  * Get remaining task size from user stack pointer.
5901  *
5902  * It'd be better to take stack vma map and limit this more
5903  * precisly, but there's no way to get it safely under interrupt,
5904  * so using TASK_SIZE as limit.
5905  */
5906 static u64 perf_ustack_task_size(struct pt_regs *regs)
5907 {
5908         unsigned long addr = perf_user_stack_pointer(regs);
5909
5910         if (!addr || addr >= TASK_SIZE)
5911                 return 0;
5912
5913         return TASK_SIZE - addr;
5914 }
5915
5916 static u16
5917 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5918                         struct pt_regs *regs)
5919 {
5920         u64 task_size;
5921
5922         /* No regs, no stack pointer, no dump. */
5923         if (!regs)
5924                 return 0;
5925
5926         /*
5927          * Check if we fit in with the requested stack size into the:
5928          * - TASK_SIZE
5929          *   If we don't, we limit the size to the TASK_SIZE.
5930          *
5931          * - remaining sample size
5932          *   If we don't, we customize the stack size to
5933          *   fit in to the remaining sample size.
5934          */
5935
5936         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5937         stack_size = min(stack_size, (u16) task_size);
5938
5939         /* Current header size plus static size and dynamic size. */
5940         header_size += 2 * sizeof(u64);
5941
5942         /* Do we fit in with the current stack dump size? */
5943         if ((u16) (header_size + stack_size) < header_size) {
5944                 /*
5945                  * If we overflow the maximum size for the sample,
5946                  * we customize the stack dump size to fit in.
5947                  */
5948                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5949                 stack_size = round_up(stack_size, sizeof(u64));
5950         }
5951
5952         return stack_size;
5953 }
5954
5955 static void
5956 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5957                           struct pt_regs *regs)
5958 {
5959         /* Case of a kernel thread, nothing to dump */
5960         if (!regs) {
5961                 u64 size = 0;
5962                 perf_output_put(handle, size);
5963         } else {
5964                 unsigned long sp;
5965                 unsigned int rem;
5966                 u64 dyn_size;
5967                 mm_segment_t fs;
5968
5969                 /*
5970                  * We dump:
5971                  * static size
5972                  *   - the size requested by user or the best one we can fit
5973                  *     in to the sample max size
5974                  * data
5975                  *   - user stack dump data
5976                  * dynamic size
5977                  *   - the actual dumped size
5978                  */
5979
5980                 /* Static size. */
5981                 perf_output_put(handle, dump_size);
5982
5983                 /* Data. */
5984                 sp = perf_user_stack_pointer(regs);
5985                 fs = get_fs();
5986                 set_fs(USER_DS);
5987                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5988                 set_fs(fs);
5989                 dyn_size = dump_size - rem;
5990
5991                 perf_output_skip(handle, rem);
5992
5993                 /* Dynamic size. */
5994                 perf_output_put(handle, dyn_size);
5995         }
5996 }
5997
5998 static void __perf_event_header__init_id(struct perf_event_header *header,
5999                                          struct perf_sample_data *data,
6000                                          struct perf_event *event)
6001 {
6002         u64 sample_type = event->attr.sample_type;
6003
6004         data->type = sample_type;
6005         header->size += event->id_header_size;
6006
6007         if (sample_type & PERF_SAMPLE_TID) {
6008                 /* namespace issues */
6009                 data->tid_entry.pid = perf_event_pid(event, current);
6010                 data->tid_entry.tid = perf_event_tid(event, current);
6011         }
6012
6013         if (sample_type & PERF_SAMPLE_TIME)
6014                 data->time = perf_event_clock(event);
6015
6016         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6017                 data->id = primary_event_id(event);
6018
6019         if (sample_type & PERF_SAMPLE_STREAM_ID)
6020                 data->stream_id = event->id;
6021
6022         if (sample_type & PERF_SAMPLE_CPU) {
6023                 data->cpu_entry.cpu      = raw_smp_processor_id();
6024                 data->cpu_entry.reserved = 0;
6025         }
6026 }
6027
6028 void perf_event_header__init_id(struct perf_event_header *header,
6029                                 struct perf_sample_data *data,
6030                                 struct perf_event *event)
6031 {
6032         if (event->attr.sample_id_all)
6033                 __perf_event_header__init_id(header, data, event);
6034 }
6035
6036 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6037                                            struct perf_sample_data *data)
6038 {
6039         u64 sample_type = data->type;
6040
6041         if (sample_type & PERF_SAMPLE_TID)
6042                 perf_output_put(handle, data->tid_entry);
6043
6044         if (sample_type & PERF_SAMPLE_TIME)
6045                 perf_output_put(handle, data->time);
6046
6047         if (sample_type & PERF_SAMPLE_ID)
6048                 perf_output_put(handle, data->id);
6049
6050         if (sample_type & PERF_SAMPLE_STREAM_ID)
6051                 perf_output_put(handle, data->stream_id);
6052
6053         if (sample_type & PERF_SAMPLE_CPU)
6054                 perf_output_put(handle, data->cpu_entry);
6055
6056         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6057                 perf_output_put(handle, data->id);
6058 }
6059
6060 void perf_event__output_id_sample(struct perf_event *event,
6061                                   struct perf_output_handle *handle,
6062                                   struct perf_sample_data *sample)
6063 {
6064         if (event->attr.sample_id_all)
6065                 __perf_event__output_id_sample(handle, sample);
6066 }
6067
6068 static void perf_output_read_one(struct perf_output_handle *handle,
6069                                  struct perf_event *event,
6070                                  u64 enabled, u64 running)
6071 {
6072         u64 read_format = event->attr.read_format;
6073         u64 values[4];
6074         int n = 0;
6075
6076         values[n++] = perf_event_count(event);
6077         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6078                 values[n++] = enabled +
6079                         atomic64_read(&event->child_total_time_enabled);
6080         }
6081         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6082                 values[n++] = running +
6083                         atomic64_read(&event->child_total_time_running);
6084         }
6085         if (read_format & PERF_FORMAT_ID)
6086                 values[n++] = primary_event_id(event);
6087
6088         __output_copy(handle, values, n * sizeof(u64));
6089 }
6090
6091 static void perf_output_read_group(struct perf_output_handle *handle,
6092                             struct perf_event *event,
6093                             u64 enabled, u64 running)
6094 {
6095         struct perf_event *leader = event->group_leader, *sub;
6096         u64 read_format = event->attr.read_format;
6097         u64 values[5];
6098         int n = 0;
6099
6100         values[n++] = 1 + leader->nr_siblings;
6101
6102         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6103                 values[n++] = enabled;
6104
6105         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6106                 values[n++] = running;
6107
6108         if ((leader != event) &&
6109             (leader->state == PERF_EVENT_STATE_ACTIVE))
6110                 leader->pmu->read(leader);
6111
6112         values[n++] = perf_event_count(leader);
6113         if (read_format & PERF_FORMAT_ID)
6114                 values[n++] = primary_event_id(leader);
6115
6116         __output_copy(handle, values, n * sizeof(u64));
6117
6118         for_each_sibling_event(sub, leader) {
6119                 n = 0;
6120
6121                 if ((sub != event) &&
6122                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6123                         sub->pmu->read(sub);
6124
6125                 values[n++] = perf_event_count(sub);
6126                 if (read_format & PERF_FORMAT_ID)
6127                         values[n++] = primary_event_id(sub);
6128
6129                 __output_copy(handle, values, n * sizeof(u64));
6130         }
6131 }
6132
6133 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6134                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6135
6136 /*
6137  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6138  *
6139  * The problem is that its both hard and excessively expensive to iterate the
6140  * child list, not to mention that its impossible to IPI the children running
6141  * on another CPU, from interrupt/NMI context.
6142  */
6143 static void perf_output_read(struct perf_output_handle *handle,
6144                              struct perf_event *event)
6145 {
6146         u64 enabled = 0, running = 0, now;
6147         u64 read_format = event->attr.read_format;
6148
6149         /*
6150          * compute total_time_enabled, total_time_running
6151          * based on snapshot values taken when the event
6152          * was last scheduled in.
6153          *
6154          * we cannot simply called update_context_time()
6155          * because of locking issue as we are called in
6156          * NMI context
6157          */
6158         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6159                 calc_timer_values(event, &now, &enabled, &running);
6160
6161         if (event->attr.read_format & PERF_FORMAT_GROUP)
6162                 perf_output_read_group(handle, event, enabled, running);
6163         else
6164                 perf_output_read_one(handle, event, enabled, running);
6165 }
6166
6167 void perf_output_sample(struct perf_output_handle *handle,
6168                         struct perf_event_header *header,
6169                         struct perf_sample_data *data,
6170                         struct perf_event *event)
6171 {
6172         u64 sample_type = data->type;
6173
6174         perf_output_put(handle, *header);
6175
6176         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6177                 perf_output_put(handle, data->id);
6178
6179         if (sample_type & PERF_SAMPLE_IP)
6180                 perf_output_put(handle, data->ip);
6181
6182         if (sample_type & PERF_SAMPLE_TID)
6183                 perf_output_put(handle, data->tid_entry);
6184
6185         if (sample_type & PERF_SAMPLE_TIME)
6186                 perf_output_put(handle, data->time);
6187
6188         if (sample_type & PERF_SAMPLE_ADDR)
6189                 perf_output_put(handle, data->addr);
6190
6191         if (sample_type & PERF_SAMPLE_ID)
6192                 perf_output_put(handle, data->id);
6193
6194         if (sample_type & PERF_SAMPLE_STREAM_ID)
6195                 perf_output_put(handle, data->stream_id);
6196
6197         if (sample_type & PERF_SAMPLE_CPU)
6198                 perf_output_put(handle, data->cpu_entry);
6199
6200         if (sample_type & PERF_SAMPLE_PERIOD)
6201                 perf_output_put(handle, data->period);
6202
6203         if (sample_type & PERF_SAMPLE_READ)
6204                 perf_output_read(handle, event);
6205
6206         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6207                 int size = 1;
6208
6209                 size += data->callchain->nr;
6210                 size *= sizeof(u64);
6211                 __output_copy(handle, data->callchain, size);
6212         }
6213
6214         if (sample_type & PERF_SAMPLE_RAW) {
6215                 struct perf_raw_record *raw = data->raw;
6216
6217                 if (raw) {
6218                         struct perf_raw_frag *frag = &raw->frag;
6219
6220                         perf_output_put(handle, raw->size);
6221                         do {
6222                                 if (frag->copy) {
6223                                         __output_custom(handle, frag->copy,
6224                                                         frag->data, frag->size);
6225                                 } else {
6226                                         __output_copy(handle, frag->data,
6227                                                       frag->size);
6228                                 }
6229                                 if (perf_raw_frag_last(frag))
6230                                         break;
6231                                 frag = frag->next;
6232                         } while (1);
6233                         if (frag->pad)
6234                                 __output_skip(handle, NULL, frag->pad);
6235                 } else {
6236                         struct {
6237                                 u32     size;
6238                                 u32     data;
6239                         } raw = {
6240                                 .size = sizeof(u32),
6241                                 .data = 0,
6242                         };
6243                         perf_output_put(handle, raw);
6244                 }
6245         }
6246
6247         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6248                 if (data->br_stack) {
6249                         size_t size;
6250
6251                         size = data->br_stack->nr
6252                              * sizeof(struct perf_branch_entry);
6253
6254                         perf_output_put(handle, data->br_stack->nr);
6255                         perf_output_copy(handle, data->br_stack->entries, size);
6256                 } else {
6257                         /*
6258                          * we always store at least the value of nr
6259                          */
6260                         u64 nr = 0;
6261                         perf_output_put(handle, nr);
6262                 }
6263         }
6264
6265         if (sample_type & PERF_SAMPLE_REGS_USER) {
6266                 u64 abi = data->regs_user.abi;
6267
6268                 /*
6269                  * If there are no regs to dump, notice it through
6270                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6271                  */
6272                 perf_output_put(handle, abi);
6273
6274                 if (abi) {
6275                         u64 mask = event->attr.sample_regs_user;
6276                         perf_output_sample_regs(handle,
6277                                                 data->regs_user.regs,
6278                                                 mask);
6279                 }
6280         }
6281
6282         if (sample_type & PERF_SAMPLE_STACK_USER) {
6283                 perf_output_sample_ustack(handle,
6284                                           data->stack_user_size,
6285                                           data->regs_user.regs);
6286         }
6287
6288         if (sample_type & PERF_SAMPLE_WEIGHT)
6289                 perf_output_put(handle, data->weight);
6290
6291         if (sample_type & PERF_SAMPLE_DATA_SRC)
6292                 perf_output_put(handle, data->data_src.val);
6293
6294         if (sample_type & PERF_SAMPLE_TRANSACTION)
6295                 perf_output_put(handle, data->txn);
6296
6297         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6298                 u64 abi = data->regs_intr.abi;
6299                 /*
6300                  * If there are no regs to dump, notice it through
6301                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6302                  */
6303                 perf_output_put(handle, abi);
6304
6305                 if (abi) {
6306                         u64 mask = event->attr.sample_regs_intr;
6307
6308                         perf_output_sample_regs(handle,
6309                                                 data->regs_intr.regs,
6310                                                 mask);
6311                 }
6312         }
6313
6314         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6315                 perf_output_put(handle, data->phys_addr);
6316
6317         if (!event->attr.watermark) {
6318                 int wakeup_events = event->attr.wakeup_events;
6319
6320                 if (wakeup_events) {
6321                         struct ring_buffer *rb = handle->rb;
6322                         int events = local_inc_return(&rb->events);
6323
6324                         if (events >= wakeup_events) {
6325                                 local_sub(wakeup_events, &rb->events);
6326                                 local_inc(&rb->wakeup);
6327                         }
6328                 }
6329         }
6330 }
6331
6332 static u64 perf_virt_to_phys(u64 virt)
6333 {
6334         u64 phys_addr = 0;
6335         struct page *p = NULL;
6336
6337         if (!virt)
6338                 return 0;
6339
6340         if (virt >= TASK_SIZE) {
6341                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6342                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6343                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6344                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6345         } else {
6346                 /*
6347                  * Walking the pages tables for user address.
6348                  * Interrupts are disabled, so it prevents any tear down
6349                  * of the page tables.
6350                  * Try IRQ-safe __get_user_pages_fast first.
6351                  * If failed, leave phys_addr as 0.
6352                  */
6353                 if ((current->mm != NULL) &&
6354                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6355                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6356
6357                 if (p)
6358                         put_page(p);
6359         }
6360
6361         return phys_addr;
6362 }
6363
6364 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6365
6366 struct perf_callchain_entry *
6367 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6368 {
6369         bool kernel = !event->attr.exclude_callchain_kernel;
6370         bool user   = !event->attr.exclude_callchain_user;
6371         /* Disallow cross-task user callchains. */
6372         bool crosstask = event->ctx->task && event->ctx->task != current;
6373         const u32 max_stack = event->attr.sample_max_stack;
6374         struct perf_callchain_entry *callchain;
6375
6376         if (!kernel && !user)
6377                 return &__empty_callchain;
6378
6379         callchain = get_perf_callchain(regs, 0, kernel, user,
6380                                        max_stack, crosstask, true);
6381         return callchain ?: &__empty_callchain;
6382 }
6383
6384 void perf_prepare_sample(struct perf_event_header *header,
6385                          struct perf_sample_data *data,
6386                          struct perf_event *event,
6387                          struct pt_regs *regs)
6388 {
6389         u64 sample_type = event->attr.sample_type;
6390
6391         header->type = PERF_RECORD_SAMPLE;
6392         header->size = sizeof(*header) + event->header_size;
6393
6394         header->misc = 0;
6395         header->misc |= perf_misc_flags(regs);
6396
6397         __perf_event_header__init_id(header, data, event);
6398
6399         if (sample_type & PERF_SAMPLE_IP)
6400                 data->ip = perf_instruction_pointer(regs);
6401
6402         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6403                 int size = 1;
6404
6405                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6406                         data->callchain = perf_callchain(event, regs);
6407
6408                 size += data->callchain->nr;
6409
6410                 header->size += size * sizeof(u64);
6411         }
6412
6413         if (sample_type & PERF_SAMPLE_RAW) {
6414                 struct perf_raw_record *raw = data->raw;
6415                 int size;
6416
6417                 if (raw) {
6418                         struct perf_raw_frag *frag = &raw->frag;
6419                         u32 sum = 0;
6420
6421                         do {
6422                                 sum += frag->size;
6423                                 if (perf_raw_frag_last(frag))
6424                                         break;
6425                                 frag = frag->next;
6426                         } while (1);
6427
6428                         size = round_up(sum + sizeof(u32), sizeof(u64));
6429                         raw->size = size - sizeof(u32);
6430                         frag->pad = raw->size - sum;
6431                 } else {
6432                         size = sizeof(u64);
6433                 }
6434
6435                 header->size += size;
6436         }
6437
6438         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6439                 int size = sizeof(u64); /* nr */
6440                 if (data->br_stack) {
6441                         size += data->br_stack->nr
6442                               * sizeof(struct perf_branch_entry);
6443                 }
6444                 header->size += size;
6445         }
6446
6447         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6448                 perf_sample_regs_user(&data->regs_user, regs,
6449                                       &data->regs_user_copy);
6450
6451         if (sample_type & PERF_SAMPLE_REGS_USER) {
6452                 /* regs dump ABI info */
6453                 int size = sizeof(u64);
6454
6455                 if (data->regs_user.regs) {
6456                         u64 mask = event->attr.sample_regs_user;
6457                         size += hweight64(mask) * sizeof(u64);
6458                 }
6459
6460                 header->size += size;
6461         }
6462
6463         if (sample_type & PERF_SAMPLE_STACK_USER) {
6464                 /*
6465                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6466                  * processed as the last one or have additional check added
6467                  * in case new sample type is added, because we could eat
6468                  * up the rest of the sample size.
6469                  */
6470                 u16 stack_size = event->attr.sample_stack_user;
6471                 u16 size = sizeof(u64);
6472
6473                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6474                                                      data->regs_user.regs);
6475
6476                 /*
6477                  * If there is something to dump, add space for the dump
6478                  * itself and for the field that tells the dynamic size,
6479                  * which is how many have been actually dumped.
6480                  */
6481                 if (stack_size)
6482                         size += sizeof(u64) + stack_size;
6483
6484                 data->stack_user_size = stack_size;
6485                 header->size += size;
6486         }
6487
6488         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6489                 /* regs dump ABI info */
6490                 int size = sizeof(u64);
6491
6492                 perf_sample_regs_intr(&data->regs_intr, regs);
6493
6494                 if (data->regs_intr.regs) {
6495                         u64 mask = event->attr.sample_regs_intr;
6496
6497                         size += hweight64(mask) * sizeof(u64);
6498                 }
6499
6500                 header->size += size;
6501         }
6502
6503         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6504                 data->phys_addr = perf_virt_to_phys(data->addr);
6505 }
6506
6507 static __always_inline int
6508 __perf_event_output(struct perf_event *event,
6509                     struct perf_sample_data *data,
6510                     struct pt_regs *regs,
6511                     int (*output_begin)(struct perf_output_handle *,
6512                                         struct perf_event *,
6513                                         unsigned int))
6514 {
6515         struct perf_output_handle handle;
6516         struct perf_event_header header;
6517         int err;
6518
6519         /* protect the callchain buffers */
6520         rcu_read_lock();
6521
6522         perf_prepare_sample(&header, data, event, regs);
6523
6524         err = output_begin(&handle, event, header.size);
6525         if (err)
6526                 goto exit;
6527
6528         perf_output_sample(&handle, &header, data, event);
6529
6530         perf_output_end(&handle);
6531
6532 exit:
6533         rcu_read_unlock();
6534         return err;
6535 }
6536
6537 void
6538 perf_event_output_forward(struct perf_event *event,
6539                          struct perf_sample_data *data,
6540                          struct pt_regs *regs)
6541 {
6542         __perf_event_output(event, data, regs, perf_output_begin_forward);
6543 }
6544
6545 void
6546 perf_event_output_backward(struct perf_event *event,
6547                            struct perf_sample_data *data,
6548                            struct pt_regs *regs)
6549 {
6550         __perf_event_output(event, data, regs, perf_output_begin_backward);
6551 }
6552
6553 int
6554 perf_event_output(struct perf_event *event,
6555                   struct perf_sample_data *data,
6556                   struct pt_regs *regs)
6557 {
6558         return __perf_event_output(event, data, regs, perf_output_begin);
6559 }
6560
6561 /*
6562  * read event_id
6563  */
6564
6565 struct perf_read_event {
6566         struct perf_event_header        header;
6567
6568         u32                             pid;
6569         u32                             tid;
6570 };
6571
6572 static void
6573 perf_event_read_event(struct perf_event *event,
6574                         struct task_struct *task)
6575 {
6576         struct perf_output_handle handle;
6577         struct perf_sample_data sample;
6578         struct perf_read_event read_event = {
6579                 .header = {
6580                         .type = PERF_RECORD_READ,
6581                         .misc = 0,
6582                         .size = sizeof(read_event) + event->read_size,
6583                 },
6584                 .pid = perf_event_pid(event, task),
6585                 .tid = perf_event_tid(event, task),
6586         };
6587         int ret;
6588
6589         perf_event_header__init_id(&read_event.header, &sample, event);
6590         ret = perf_output_begin(&handle, event, read_event.header.size);
6591         if (ret)
6592                 return;
6593
6594         perf_output_put(&handle, read_event);
6595         perf_output_read(&handle, event);
6596         perf_event__output_id_sample(event, &handle, &sample);
6597
6598         perf_output_end(&handle);
6599 }
6600
6601 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6602
6603 static void
6604 perf_iterate_ctx(struct perf_event_context *ctx,
6605                    perf_iterate_f output,
6606                    void *data, bool all)
6607 {
6608         struct perf_event *event;
6609
6610         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6611                 if (!all) {
6612                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6613                                 continue;
6614                         if (!event_filter_match(event))
6615                                 continue;
6616                 }
6617
6618                 output(event, data);
6619         }
6620 }
6621
6622 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6623 {
6624         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6625         struct perf_event *event;
6626
6627         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6628                 /*
6629                  * Skip events that are not fully formed yet; ensure that
6630                  * if we observe event->ctx, both event and ctx will be
6631                  * complete enough. See perf_install_in_context().
6632                  */
6633                 if (!smp_load_acquire(&event->ctx))
6634                         continue;
6635
6636                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6637                         continue;
6638                 if (!event_filter_match(event))
6639                         continue;
6640                 output(event, data);
6641         }
6642 }
6643
6644 /*
6645  * Iterate all events that need to receive side-band events.
6646  *
6647  * For new callers; ensure that account_pmu_sb_event() includes
6648  * your event, otherwise it might not get delivered.
6649  */
6650 static void
6651 perf_iterate_sb(perf_iterate_f output, void *data,
6652                struct perf_event_context *task_ctx)
6653 {
6654         struct perf_event_context *ctx;
6655         int ctxn;
6656
6657         rcu_read_lock();
6658         preempt_disable();
6659
6660         /*
6661          * If we have task_ctx != NULL we only notify the task context itself.
6662          * The task_ctx is set only for EXIT events before releasing task
6663          * context.
6664          */
6665         if (task_ctx) {
6666                 perf_iterate_ctx(task_ctx, output, data, false);
6667                 goto done;
6668         }
6669
6670         perf_iterate_sb_cpu(output, data);
6671
6672         for_each_task_context_nr(ctxn) {
6673                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6674                 if (ctx)
6675                         perf_iterate_ctx(ctx, output, data, false);
6676         }
6677 done:
6678         preempt_enable();
6679         rcu_read_unlock();
6680 }
6681
6682 /*
6683  * Clear all file-based filters at exec, they'll have to be
6684  * re-instated when/if these objects are mmapped again.
6685  */
6686 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6687 {
6688         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6689         struct perf_addr_filter *filter;
6690         unsigned int restart = 0, count = 0;
6691         unsigned long flags;
6692
6693         if (!has_addr_filter(event))
6694                 return;
6695
6696         raw_spin_lock_irqsave(&ifh->lock, flags);
6697         list_for_each_entry(filter, &ifh->list, entry) {
6698                 if (filter->path.dentry) {
6699                         event->addr_filter_ranges[count].start = 0;
6700                         event->addr_filter_ranges[count].size = 0;
6701                         restart++;
6702                 }
6703
6704                 count++;
6705         }
6706
6707         if (restart)
6708                 event->addr_filters_gen++;
6709         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6710
6711         if (restart)
6712                 perf_event_stop(event, 1);
6713 }
6714
6715 void perf_event_exec(void)
6716 {
6717         struct perf_event_context *ctx;
6718         int ctxn;
6719
6720         rcu_read_lock();
6721         for_each_task_context_nr(ctxn) {
6722                 ctx = current->perf_event_ctxp[ctxn];
6723                 if (!ctx)
6724                         continue;
6725
6726                 perf_event_enable_on_exec(ctxn);
6727
6728                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6729                                    true);
6730         }
6731         rcu_read_unlock();
6732 }
6733
6734 struct remote_output {
6735         struct ring_buffer      *rb;
6736         int                     err;
6737 };
6738
6739 static void __perf_event_output_stop(struct perf_event *event, void *data)
6740 {
6741         struct perf_event *parent = event->parent;
6742         struct remote_output *ro = data;
6743         struct ring_buffer *rb = ro->rb;
6744         struct stop_event_data sd = {
6745                 .event  = event,
6746         };
6747
6748         if (!has_aux(event))
6749                 return;
6750
6751         if (!parent)
6752                 parent = event;
6753
6754         /*
6755          * In case of inheritance, it will be the parent that links to the
6756          * ring-buffer, but it will be the child that's actually using it.
6757          *
6758          * We are using event::rb to determine if the event should be stopped,
6759          * however this may race with ring_buffer_attach() (through set_output),
6760          * which will make us skip the event that actually needs to be stopped.
6761          * So ring_buffer_attach() has to stop an aux event before re-assigning
6762          * its rb pointer.
6763          */
6764         if (rcu_dereference(parent->rb) == rb)
6765                 ro->err = __perf_event_stop(&sd);
6766 }
6767
6768 static int __perf_pmu_output_stop(void *info)
6769 {
6770         struct perf_event *event = info;
6771         struct pmu *pmu = event->pmu;
6772         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6773         struct remote_output ro = {
6774                 .rb     = event->rb,
6775         };
6776
6777         rcu_read_lock();
6778         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6779         if (cpuctx->task_ctx)
6780                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6781                                    &ro, false);
6782         rcu_read_unlock();
6783
6784         return ro.err;
6785 }
6786
6787 static void perf_pmu_output_stop(struct perf_event *event)
6788 {
6789         struct perf_event *iter;
6790         int err, cpu;
6791
6792 restart:
6793         rcu_read_lock();
6794         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6795                 /*
6796                  * For per-CPU events, we need to make sure that neither they
6797                  * nor their children are running; for cpu==-1 events it's
6798                  * sufficient to stop the event itself if it's active, since
6799                  * it can't have children.
6800                  */
6801                 cpu = iter->cpu;
6802                 if (cpu == -1)
6803                         cpu = READ_ONCE(iter->oncpu);
6804
6805                 if (cpu == -1)
6806                         continue;
6807
6808                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6809                 if (err == -EAGAIN) {
6810                         rcu_read_unlock();
6811                         goto restart;
6812                 }
6813         }
6814         rcu_read_unlock();
6815 }
6816
6817 /*
6818  * task tracking -- fork/exit
6819  *
6820  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6821  */
6822
6823 struct perf_task_event {
6824         struct task_struct              *task;
6825         struct perf_event_context       *task_ctx;
6826
6827         struct {
6828                 struct perf_event_header        header;
6829
6830                 u32                             pid;
6831                 u32                             ppid;
6832                 u32                             tid;
6833                 u32                             ptid;
6834                 u64                             time;
6835         } event_id;
6836 };
6837
6838 static int perf_event_task_match(struct perf_event *event)
6839 {
6840         return event->attr.comm  || event->attr.mmap ||
6841                event->attr.mmap2 || event->attr.mmap_data ||
6842                event->attr.task;
6843 }
6844
6845 static void perf_event_task_output(struct perf_event *event,
6846                                    void *data)
6847 {
6848         struct perf_task_event *task_event = data;
6849         struct perf_output_handle handle;
6850         struct perf_sample_data sample;
6851         struct task_struct *task = task_event->task;
6852         int ret, size = task_event->event_id.header.size;
6853
6854         if (!perf_event_task_match(event))
6855                 return;
6856
6857         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6858
6859         ret = perf_output_begin(&handle, event,
6860                                 task_event->event_id.header.size);
6861         if (ret)
6862                 goto out;
6863
6864         task_event->event_id.pid = perf_event_pid(event, task);
6865         task_event->event_id.ppid = perf_event_pid(event, current);
6866
6867         task_event->event_id.tid = perf_event_tid(event, task);
6868         task_event->event_id.ptid = perf_event_tid(event, current);
6869
6870         task_event->event_id.time = perf_event_clock(event);
6871
6872         perf_output_put(&handle, task_event->event_id);
6873
6874         perf_event__output_id_sample(event, &handle, &sample);
6875
6876         perf_output_end(&handle);
6877 out:
6878         task_event->event_id.header.size = size;
6879 }
6880
6881 static void perf_event_task(struct task_struct *task,
6882                               struct perf_event_context *task_ctx,
6883                               int new)
6884 {
6885         struct perf_task_event task_event;
6886
6887         if (!atomic_read(&nr_comm_events) &&
6888             !atomic_read(&nr_mmap_events) &&
6889             !atomic_read(&nr_task_events))
6890                 return;
6891
6892         task_event = (struct perf_task_event){
6893                 .task     = task,
6894                 .task_ctx = task_ctx,
6895                 .event_id    = {
6896                         .header = {
6897                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6898                                 .misc = 0,
6899                                 .size = sizeof(task_event.event_id),
6900                         },
6901                         /* .pid  */
6902                         /* .ppid */
6903                         /* .tid  */
6904                         /* .ptid */
6905                         /* .time */
6906                 },
6907         };
6908
6909         perf_iterate_sb(perf_event_task_output,
6910                        &task_event,
6911                        task_ctx);
6912 }
6913
6914 void perf_event_fork(struct task_struct *task)
6915 {
6916         perf_event_task(task, NULL, 1);
6917         perf_event_namespaces(task);
6918 }
6919
6920 /*
6921  * comm tracking
6922  */
6923
6924 struct perf_comm_event {
6925         struct task_struct      *task;
6926         char                    *comm;
6927         int                     comm_size;
6928
6929         struct {
6930                 struct perf_event_header        header;
6931
6932                 u32                             pid;
6933                 u32                             tid;
6934         } event_id;
6935 };
6936
6937 static int perf_event_comm_match(struct perf_event *event)
6938 {
6939         return event->attr.comm;
6940 }
6941
6942 static void perf_event_comm_output(struct perf_event *event,
6943                                    void *data)
6944 {
6945         struct perf_comm_event *comm_event = data;
6946         struct perf_output_handle handle;
6947         struct perf_sample_data sample;
6948         int size = comm_event->event_id.header.size;
6949         int ret;
6950
6951         if (!perf_event_comm_match(event))
6952                 return;
6953
6954         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6955         ret = perf_output_begin(&handle, event,
6956                                 comm_event->event_id.header.size);
6957
6958         if (ret)
6959                 goto out;
6960
6961         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6962         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6963
6964         perf_output_put(&handle, comm_event->event_id);
6965         __output_copy(&handle, comm_event->comm,
6966                                    comm_event->comm_size);
6967
6968         perf_event__output_id_sample(event, &handle, &sample);
6969
6970         perf_output_end(&handle);
6971 out:
6972         comm_event->event_id.header.size = size;
6973 }
6974
6975 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6976 {
6977         char comm[TASK_COMM_LEN];
6978         unsigned int size;
6979
6980         memset(comm, 0, sizeof(comm));
6981         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6982         size = ALIGN(strlen(comm)+1, sizeof(u64));
6983
6984         comm_event->comm = comm;
6985         comm_event->comm_size = size;
6986
6987         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6988
6989         perf_iterate_sb(perf_event_comm_output,
6990                        comm_event,
6991                        NULL);
6992 }
6993
6994 void perf_event_comm(struct task_struct *task, bool exec)
6995 {
6996         struct perf_comm_event comm_event;
6997
6998         if (!atomic_read(&nr_comm_events))
6999                 return;
7000
7001         comm_event = (struct perf_comm_event){
7002                 .task   = task,
7003                 /* .comm      */
7004                 /* .comm_size */
7005                 .event_id  = {
7006                         .header = {
7007                                 .type = PERF_RECORD_COMM,
7008                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7009                                 /* .size */
7010                         },
7011                         /* .pid */
7012                         /* .tid */
7013                 },
7014         };
7015
7016         perf_event_comm_event(&comm_event);
7017 }
7018
7019 /*
7020  * namespaces tracking
7021  */
7022
7023 struct perf_namespaces_event {
7024         struct task_struct              *task;
7025
7026         struct {
7027                 struct perf_event_header        header;
7028
7029                 u32                             pid;
7030                 u32                             tid;
7031                 u64                             nr_namespaces;
7032                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7033         } event_id;
7034 };
7035
7036 static int perf_event_namespaces_match(struct perf_event *event)
7037 {
7038         return event->attr.namespaces;
7039 }
7040
7041 static void perf_event_namespaces_output(struct perf_event *event,
7042                                          void *data)
7043 {
7044         struct perf_namespaces_event *namespaces_event = data;
7045         struct perf_output_handle handle;
7046         struct perf_sample_data sample;
7047         u16 header_size = namespaces_event->event_id.header.size;
7048         int ret;
7049
7050         if (!perf_event_namespaces_match(event))
7051                 return;
7052
7053         perf_event_header__init_id(&namespaces_event->event_id.header,
7054                                    &sample, event);
7055         ret = perf_output_begin(&handle, event,
7056                                 namespaces_event->event_id.header.size);
7057         if (ret)
7058                 goto out;
7059
7060         namespaces_event->event_id.pid = perf_event_pid(event,
7061                                                         namespaces_event->task);
7062         namespaces_event->event_id.tid = perf_event_tid(event,
7063                                                         namespaces_event->task);
7064
7065         perf_output_put(&handle, namespaces_event->event_id);
7066
7067         perf_event__output_id_sample(event, &handle, &sample);
7068
7069         perf_output_end(&handle);
7070 out:
7071         namespaces_event->event_id.header.size = header_size;
7072 }
7073
7074 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7075                                    struct task_struct *task,
7076                                    const struct proc_ns_operations *ns_ops)
7077 {
7078         struct path ns_path;
7079         struct inode *ns_inode;
7080         void *error;
7081
7082         error = ns_get_path(&ns_path, task, ns_ops);
7083         if (!error) {
7084                 ns_inode = ns_path.dentry->d_inode;
7085                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7086                 ns_link_info->ino = ns_inode->i_ino;
7087                 path_put(&ns_path);
7088         }
7089 }
7090
7091 void perf_event_namespaces(struct task_struct *task)
7092 {
7093         struct perf_namespaces_event namespaces_event;
7094         struct perf_ns_link_info *ns_link_info;
7095
7096         if (!atomic_read(&nr_namespaces_events))
7097                 return;
7098
7099         namespaces_event = (struct perf_namespaces_event){
7100                 .task   = task,
7101                 .event_id  = {
7102                         .header = {
7103                                 .type = PERF_RECORD_NAMESPACES,
7104                                 .misc = 0,
7105                                 .size = sizeof(namespaces_event.event_id),
7106                         },
7107                         /* .pid */
7108                         /* .tid */
7109                         .nr_namespaces = NR_NAMESPACES,
7110                         /* .link_info[NR_NAMESPACES] */
7111                 },
7112         };
7113
7114         ns_link_info = namespaces_event.event_id.link_info;
7115
7116         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7117                                task, &mntns_operations);
7118
7119 #ifdef CONFIG_USER_NS
7120         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7121                                task, &userns_operations);
7122 #endif
7123 #ifdef CONFIG_NET_NS
7124         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7125                                task, &netns_operations);
7126 #endif
7127 #ifdef CONFIG_UTS_NS
7128         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7129                                task, &utsns_operations);
7130 #endif
7131 #ifdef CONFIG_IPC_NS
7132         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7133                                task, &ipcns_operations);
7134 #endif
7135 #ifdef CONFIG_PID_NS
7136         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7137                                task, &pidns_operations);
7138 #endif
7139 #ifdef CONFIG_CGROUPS
7140         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7141                                task, &cgroupns_operations);
7142 #endif
7143
7144         perf_iterate_sb(perf_event_namespaces_output,
7145                         &namespaces_event,
7146                         NULL);
7147 }
7148
7149 /*
7150  * mmap tracking
7151  */
7152
7153 struct perf_mmap_event {
7154         struct vm_area_struct   *vma;
7155
7156         const char              *file_name;
7157         int                     file_size;
7158         int                     maj, min;
7159         u64                     ino;
7160         u64                     ino_generation;
7161         u32                     prot, flags;
7162
7163         struct {
7164                 struct perf_event_header        header;
7165
7166                 u32                             pid;
7167                 u32                             tid;
7168                 u64                             start;
7169                 u64                             len;
7170                 u64                             pgoff;
7171         } event_id;
7172 };
7173
7174 static int perf_event_mmap_match(struct perf_event *event,
7175                                  void *data)
7176 {
7177         struct perf_mmap_event *mmap_event = data;
7178         struct vm_area_struct *vma = mmap_event->vma;
7179         int executable = vma->vm_flags & VM_EXEC;
7180
7181         return (!executable && event->attr.mmap_data) ||
7182                (executable && (event->attr.mmap || event->attr.mmap2));
7183 }
7184
7185 static void perf_event_mmap_output(struct perf_event *event,
7186                                    void *data)
7187 {
7188         struct perf_mmap_event *mmap_event = data;
7189         struct perf_output_handle handle;
7190         struct perf_sample_data sample;
7191         int size = mmap_event->event_id.header.size;
7192         u32 type = mmap_event->event_id.header.type;
7193         int ret;
7194
7195         if (!perf_event_mmap_match(event, data))
7196                 return;
7197
7198         if (event->attr.mmap2) {
7199                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7200                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7201                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7202                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7203                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7204                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7205                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7206         }
7207
7208         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7209         ret = perf_output_begin(&handle, event,
7210                                 mmap_event->event_id.header.size);
7211         if (ret)
7212                 goto out;
7213
7214         mmap_event->event_id.pid = perf_event_pid(event, current);
7215         mmap_event->event_id.tid = perf_event_tid(event, current);
7216
7217         perf_output_put(&handle, mmap_event->event_id);
7218
7219         if (event->attr.mmap2) {
7220                 perf_output_put(&handle, mmap_event->maj);
7221                 perf_output_put(&handle, mmap_event->min);
7222                 perf_output_put(&handle, mmap_event->ino);
7223                 perf_output_put(&handle, mmap_event->ino_generation);
7224                 perf_output_put(&handle, mmap_event->prot);
7225                 perf_output_put(&handle, mmap_event->flags);
7226         }
7227
7228         __output_copy(&handle, mmap_event->file_name,
7229                                    mmap_event->file_size);
7230
7231         perf_event__output_id_sample(event, &handle, &sample);
7232
7233         perf_output_end(&handle);
7234 out:
7235         mmap_event->event_id.header.size = size;
7236         mmap_event->event_id.header.type = type;
7237 }
7238
7239 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7240 {
7241         struct vm_area_struct *vma = mmap_event->vma;
7242         struct file *file = vma->vm_file;
7243         int maj = 0, min = 0;
7244         u64 ino = 0, gen = 0;
7245         u32 prot = 0, flags = 0;
7246         unsigned int size;
7247         char tmp[16];
7248         char *buf = NULL;
7249         char *name;
7250
7251         if (vma->vm_flags & VM_READ)
7252                 prot |= PROT_READ;
7253         if (vma->vm_flags & VM_WRITE)
7254                 prot |= PROT_WRITE;
7255         if (vma->vm_flags & VM_EXEC)
7256                 prot |= PROT_EXEC;
7257
7258         if (vma->vm_flags & VM_MAYSHARE)
7259                 flags = MAP_SHARED;
7260         else
7261                 flags = MAP_PRIVATE;
7262
7263         if (vma->vm_flags & VM_DENYWRITE)
7264                 flags |= MAP_DENYWRITE;
7265         if (vma->vm_flags & VM_MAYEXEC)
7266                 flags |= MAP_EXECUTABLE;
7267         if (vma->vm_flags & VM_LOCKED)
7268                 flags |= MAP_LOCKED;
7269         if (vma->vm_flags & VM_HUGETLB)
7270                 flags |= MAP_HUGETLB;
7271
7272         if (file) {
7273                 struct inode *inode;
7274                 dev_t dev;
7275
7276                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7277                 if (!buf) {
7278                         name = "//enomem";
7279                         goto cpy_name;
7280                 }
7281                 /*
7282                  * d_path() works from the end of the rb backwards, so we
7283                  * need to add enough zero bytes after the string to handle
7284                  * the 64bit alignment we do later.
7285                  */
7286                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7287                 if (IS_ERR(name)) {
7288                         name = "//toolong";
7289                         goto cpy_name;
7290                 }
7291                 inode = file_inode(vma->vm_file);
7292                 dev = inode->i_sb->s_dev;
7293                 ino = inode->i_ino;
7294                 gen = inode->i_generation;
7295                 maj = MAJOR(dev);
7296                 min = MINOR(dev);
7297
7298                 goto got_name;
7299         } else {
7300                 if (vma->vm_ops && vma->vm_ops->name) {
7301                         name = (char *) vma->vm_ops->name(vma);
7302                         if (name)
7303                                 goto cpy_name;
7304                 }
7305
7306                 name = (char *)arch_vma_name(vma);
7307                 if (name)
7308                         goto cpy_name;
7309
7310                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7311                                 vma->vm_end >= vma->vm_mm->brk) {
7312                         name = "[heap]";
7313                         goto cpy_name;
7314                 }
7315                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7316                                 vma->vm_end >= vma->vm_mm->start_stack) {
7317                         name = "[stack]";
7318                         goto cpy_name;
7319                 }
7320
7321                 name = "//anon";
7322                 goto cpy_name;
7323         }
7324
7325 cpy_name:
7326         strlcpy(tmp, name, sizeof(tmp));
7327         name = tmp;
7328 got_name:
7329         /*
7330          * Since our buffer works in 8 byte units we need to align our string
7331          * size to a multiple of 8. However, we must guarantee the tail end is
7332          * zero'd out to avoid leaking random bits to userspace.
7333          */
7334         size = strlen(name)+1;
7335         while (!IS_ALIGNED(size, sizeof(u64)))
7336                 name[size++] = '\0';
7337
7338         mmap_event->file_name = name;
7339         mmap_event->file_size = size;
7340         mmap_event->maj = maj;
7341         mmap_event->min = min;
7342         mmap_event->ino = ino;
7343         mmap_event->ino_generation = gen;
7344         mmap_event->prot = prot;
7345         mmap_event->flags = flags;
7346
7347         if (!(vma->vm_flags & VM_EXEC))
7348                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7349
7350         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7351
7352         perf_iterate_sb(perf_event_mmap_output,
7353                        mmap_event,
7354                        NULL);
7355
7356         kfree(buf);
7357 }
7358
7359 /*
7360  * Check whether inode and address range match filter criteria.
7361  */
7362 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7363                                      struct file *file, unsigned long offset,
7364                                      unsigned long size)
7365 {
7366         /* d_inode(NULL) won't be equal to any mapped user-space file */
7367         if (!filter->path.dentry)
7368                 return false;
7369
7370         if (d_inode(filter->path.dentry) != file_inode(file))
7371                 return false;
7372
7373         if (filter->offset > offset + size)
7374                 return false;
7375
7376         if (filter->offset + filter->size < offset)
7377                 return false;
7378
7379         return true;
7380 }
7381
7382 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7383                                         struct vm_area_struct *vma,
7384                                         struct perf_addr_filter_range *fr)
7385 {
7386         unsigned long vma_size = vma->vm_end - vma->vm_start;
7387         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7388         struct file *file = vma->vm_file;
7389
7390         if (!perf_addr_filter_match(filter, file, off, vma_size))
7391                 return false;
7392
7393         if (filter->offset < off) {
7394                 fr->start = vma->vm_start;
7395                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7396         } else {
7397                 fr->start = vma->vm_start + filter->offset - off;
7398                 fr->size = min(vma->vm_end - fr->start, filter->size);
7399         }
7400
7401         return true;
7402 }
7403
7404 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7405 {
7406         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7407         struct vm_area_struct *vma = data;
7408         struct perf_addr_filter *filter;
7409         unsigned int restart = 0, count = 0;
7410         unsigned long flags;
7411
7412         if (!has_addr_filter(event))
7413                 return;
7414
7415         if (!vma->vm_file)
7416                 return;
7417
7418         raw_spin_lock_irqsave(&ifh->lock, flags);
7419         list_for_each_entry(filter, &ifh->list, entry) {
7420                 if (perf_addr_filter_vma_adjust(filter, vma,
7421                                                 &event->addr_filter_ranges[count]))
7422                         restart++;
7423
7424                 count++;
7425         }
7426
7427         if (restart)
7428                 event->addr_filters_gen++;
7429         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7430
7431         if (restart)
7432                 perf_event_stop(event, 1);
7433 }
7434
7435 /*
7436  * Adjust all task's events' filters to the new vma
7437  */
7438 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7439 {
7440         struct perf_event_context *ctx;
7441         int ctxn;
7442
7443         /*
7444          * Data tracing isn't supported yet and as such there is no need
7445          * to keep track of anything that isn't related to executable code:
7446          */
7447         if (!(vma->vm_flags & VM_EXEC))
7448                 return;
7449
7450         rcu_read_lock();
7451         for_each_task_context_nr(ctxn) {
7452                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7453                 if (!ctx)
7454                         continue;
7455
7456                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7457         }
7458         rcu_read_unlock();
7459 }
7460
7461 void perf_event_mmap(struct vm_area_struct *vma)
7462 {
7463         struct perf_mmap_event mmap_event;
7464
7465         if (!atomic_read(&nr_mmap_events))
7466                 return;
7467
7468         mmap_event = (struct perf_mmap_event){
7469                 .vma    = vma,
7470                 /* .file_name */
7471                 /* .file_size */
7472                 .event_id  = {
7473                         .header = {
7474                                 .type = PERF_RECORD_MMAP,
7475                                 .misc = PERF_RECORD_MISC_USER,
7476                                 /* .size */
7477                         },
7478                         /* .pid */
7479                         /* .tid */
7480                         .start  = vma->vm_start,
7481                         .len    = vma->vm_end - vma->vm_start,
7482                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7483                 },
7484                 /* .maj (attr_mmap2 only) */
7485                 /* .min (attr_mmap2 only) */
7486                 /* .ino (attr_mmap2 only) */
7487                 /* .ino_generation (attr_mmap2 only) */
7488                 /* .prot (attr_mmap2 only) */
7489                 /* .flags (attr_mmap2 only) */
7490         };
7491
7492         perf_addr_filters_adjust(vma);
7493         perf_event_mmap_event(&mmap_event);
7494 }
7495
7496 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7497                           unsigned long size, u64 flags)
7498 {
7499         struct perf_output_handle handle;
7500         struct perf_sample_data sample;
7501         struct perf_aux_event {
7502                 struct perf_event_header        header;
7503                 u64                             offset;
7504                 u64                             size;
7505                 u64                             flags;
7506         } rec = {
7507                 .header = {
7508                         .type = PERF_RECORD_AUX,
7509                         .misc = 0,
7510                         .size = sizeof(rec),
7511                 },
7512                 .offset         = head,
7513                 .size           = size,
7514                 .flags          = flags,
7515         };
7516         int ret;
7517
7518         perf_event_header__init_id(&rec.header, &sample, event);
7519         ret = perf_output_begin(&handle, event, rec.header.size);
7520
7521         if (ret)
7522                 return;
7523
7524         perf_output_put(&handle, rec);
7525         perf_event__output_id_sample(event, &handle, &sample);
7526
7527         perf_output_end(&handle);
7528 }
7529
7530 /*
7531  * Lost/dropped samples logging
7532  */
7533 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7534 {
7535         struct perf_output_handle handle;
7536         struct perf_sample_data sample;
7537         int ret;
7538
7539         struct {
7540                 struct perf_event_header        header;
7541                 u64                             lost;
7542         } lost_samples_event = {
7543                 .header = {
7544                         .type = PERF_RECORD_LOST_SAMPLES,
7545                         .misc = 0,
7546                         .size = sizeof(lost_samples_event),
7547                 },
7548                 .lost           = lost,
7549         };
7550
7551         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7552
7553         ret = perf_output_begin(&handle, event,
7554                                 lost_samples_event.header.size);
7555         if (ret)
7556                 return;
7557
7558         perf_output_put(&handle, lost_samples_event);
7559         perf_event__output_id_sample(event, &handle, &sample);
7560         perf_output_end(&handle);
7561 }
7562
7563 /*
7564  * context_switch tracking
7565  */
7566
7567 struct perf_switch_event {
7568         struct task_struct      *task;
7569         struct task_struct      *next_prev;
7570
7571         struct {
7572                 struct perf_event_header        header;
7573                 u32                             next_prev_pid;
7574                 u32                             next_prev_tid;
7575         } event_id;
7576 };
7577
7578 static int perf_event_switch_match(struct perf_event *event)
7579 {
7580         return event->attr.context_switch;
7581 }
7582
7583 static void perf_event_switch_output(struct perf_event *event, void *data)
7584 {
7585         struct perf_switch_event *se = data;
7586         struct perf_output_handle handle;
7587         struct perf_sample_data sample;
7588         int ret;
7589
7590         if (!perf_event_switch_match(event))
7591                 return;
7592
7593         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7594         if (event->ctx->task) {
7595                 se->event_id.header.type = PERF_RECORD_SWITCH;
7596                 se->event_id.header.size = sizeof(se->event_id.header);
7597         } else {
7598                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7599                 se->event_id.header.size = sizeof(se->event_id);
7600                 se->event_id.next_prev_pid =
7601                                         perf_event_pid(event, se->next_prev);
7602                 se->event_id.next_prev_tid =
7603                                         perf_event_tid(event, se->next_prev);
7604         }
7605
7606         perf_event_header__init_id(&se->event_id.header, &sample, event);
7607
7608         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7609         if (ret)
7610                 return;
7611
7612         if (event->ctx->task)
7613                 perf_output_put(&handle, se->event_id.header);
7614         else
7615                 perf_output_put(&handle, se->event_id);
7616
7617         perf_event__output_id_sample(event, &handle, &sample);
7618
7619         perf_output_end(&handle);
7620 }
7621
7622 static void perf_event_switch(struct task_struct *task,
7623                               struct task_struct *next_prev, bool sched_in)
7624 {
7625         struct perf_switch_event switch_event;
7626
7627         /* N.B. caller checks nr_switch_events != 0 */
7628
7629         switch_event = (struct perf_switch_event){
7630                 .task           = task,
7631                 .next_prev      = next_prev,
7632                 .event_id       = {
7633                         .header = {
7634                                 /* .type */
7635                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7636                                 /* .size */
7637                         },
7638                         /* .next_prev_pid */
7639                         /* .next_prev_tid */
7640                 },
7641         };
7642
7643         if (!sched_in && task->state == TASK_RUNNING)
7644                 switch_event.event_id.header.misc |=
7645                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7646
7647         perf_iterate_sb(perf_event_switch_output,
7648                        &switch_event,
7649                        NULL);
7650 }
7651
7652 /*
7653  * IRQ throttle logging
7654  */
7655
7656 static void perf_log_throttle(struct perf_event *event, int enable)
7657 {
7658         struct perf_output_handle handle;
7659         struct perf_sample_data sample;
7660         int ret;
7661
7662         struct {
7663                 struct perf_event_header        header;
7664                 u64                             time;
7665                 u64                             id;
7666                 u64                             stream_id;
7667         } throttle_event = {
7668                 .header = {
7669                         .type = PERF_RECORD_THROTTLE,
7670                         .misc = 0,
7671                         .size = sizeof(throttle_event),
7672                 },
7673                 .time           = perf_event_clock(event),
7674                 .id             = primary_event_id(event),
7675                 .stream_id      = event->id,
7676         };
7677
7678         if (enable)
7679                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7680
7681         perf_event_header__init_id(&throttle_event.header, &sample, event);
7682
7683         ret = perf_output_begin(&handle, event,
7684                                 throttle_event.header.size);
7685         if (ret)
7686                 return;
7687
7688         perf_output_put(&handle, throttle_event);
7689         perf_event__output_id_sample(event, &handle, &sample);
7690         perf_output_end(&handle);
7691 }
7692
7693 /*
7694  * ksymbol register/unregister tracking
7695  */
7696
7697 struct perf_ksymbol_event {
7698         const char      *name;
7699         int             name_len;
7700         struct {
7701                 struct perf_event_header        header;
7702                 u64                             addr;
7703                 u32                             len;
7704                 u16                             ksym_type;
7705                 u16                             flags;
7706         } event_id;
7707 };
7708
7709 static int perf_event_ksymbol_match(struct perf_event *event)
7710 {
7711         return event->attr.ksymbol;
7712 }
7713
7714 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7715 {
7716         struct perf_ksymbol_event *ksymbol_event = data;
7717         struct perf_output_handle handle;
7718         struct perf_sample_data sample;
7719         int ret;
7720
7721         if (!perf_event_ksymbol_match(event))
7722                 return;
7723
7724         perf_event_header__init_id(&ksymbol_event->event_id.header,
7725                                    &sample, event);
7726         ret = perf_output_begin(&handle, event,
7727                                 ksymbol_event->event_id.header.size);
7728         if (ret)
7729                 return;
7730
7731         perf_output_put(&handle, ksymbol_event->event_id);
7732         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7733         perf_event__output_id_sample(event, &handle, &sample);
7734
7735         perf_output_end(&handle);
7736 }
7737
7738 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7739                         const char *sym)
7740 {
7741         struct perf_ksymbol_event ksymbol_event;
7742         char name[KSYM_NAME_LEN];
7743         u16 flags = 0;
7744         int name_len;
7745
7746         if (!atomic_read(&nr_ksymbol_events))
7747                 return;
7748
7749         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7750             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7751                 goto err;
7752
7753         strlcpy(name, sym, KSYM_NAME_LEN);
7754         name_len = strlen(name) + 1;
7755         while (!IS_ALIGNED(name_len, sizeof(u64)))
7756                 name[name_len++] = '\0';
7757         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7758
7759         if (unregister)
7760                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7761
7762         ksymbol_event = (struct perf_ksymbol_event){
7763                 .name = name,
7764                 .name_len = name_len,
7765                 .event_id = {
7766                         .header = {
7767                                 .type = PERF_RECORD_KSYMBOL,
7768                                 .size = sizeof(ksymbol_event.event_id) +
7769                                         name_len,
7770                         },
7771                         .addr = addr,
7772                         .len = len,
7773                         .ksym_type = ksym_type,
7774                         .flags = flags,
7775                 },
7776         };
7777
7778         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7779         return;
7780 err:
7781         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7782 }
7783
7784 /*
7785  * bpf program load/unload tracking
7786  */
7787
7788 struct perf_bpf_event {
7789         struct bpf_prog *prog;
7790         struct {
7791                 struct perf_event_header        header;
7792                 u16                             type;
7793                 u16                             flags;
7794                 u32                             id;
7795                 u8                              tag[BPF_TAG_SIZE];
7796         } event_id;
7797 };
7798
7799 static int perf_event_bpf_match(struct perf_event *event)
7800 {
7801         return event->attr.bpf_event;
7802 }
7803
7804 static void perf_event_bpf_output(struct perf_event *event, void *data)
7805 {
7806         struct perf_bpf_event *bpf_event = data;
7807         struct perf_output_handle handle;
7808         struct perf_sample_data sample;
7809         int ret;
7810
7811         if (!perf_event_bpf_match(event))
7812                 return;
7813
7814         perf_event_header__init_id(&bpf_event->event_id.header,
7815                                    &sample, event);
7816         ret = perf_output_begin(&handle, event,
7817                                 bpf_event->event_id.header.size);
7818         if (ret)
7819                 return;
7820
7821         perf_output_put(&handle, bpf_event->event_id);
7822         perf_event__output_id_sample(event, &handle, &sample);
7823
7824         perf_output_end(&handle);
7825 }
7826
7827 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7828                                          enum perf_bpf_event_type type)
7829 {
7830         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7831         char sym[KSYM_NAME_LEN];
7832         int i;
7833
7834         if (prog->aux->func_cnt == 0) {
7835                 bpf_get_prog_name(prog, sym);
7836                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7837                                    (u64)(unsigned long)prog->bpf_func,
7838                                    prog->jited_len, unregister, sym);
7839         } else {
7840                 for (i = 0; i < prog->aux->func_cnt; i++) {
7841                         struct bpf_prog *subprog = prog->aux->func[i];
7842
7843                         bpf_get_prog_name(subprog, sym);
7844                         perf_event_ksymbol(
7845                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
7846                                 (u64)(unsigned long)subprog->bpf_func,
7847                                 subprog->jited_len, unregister, sym);
7848                 }
7849         }
7850 }
7851
7852 void perf_event_bpf_event(struct bpf_prog *prog,
7853                           enum perf_bpf_event_type type,
7854                           u16 flags)
7855 {
7856         struct perf_bpf_event bpf_event;
7857
7858         if (type <= PERF_BPF_EVENT_UNKNOWN ||
7859             type >= PERF_BPF_EVENT_MAX)
7860                 return;
7861
7862         switch (type) {
7863         case PERF_BPF_EVENT_PROG_LOAD:
7864         case PERF_BPF_EVENT_PROG_UNLOAD:
7865                 if (atomic_read(&nr_ksymbol_events))
7866                         perf_event_bpf_emit_ksymbols(prog, type);
7867                 break;
7868         default:
7869                 break;
7870         }
7871
7872         if (!atomic_read(&nr_bpf_events))
7873                 return;
7874
7875         bpf_event = (struct perf_bpf_event){
7876                 .prog = prog,
7877                 .event_id = {
7878                         .header = {
7879                                 .type = PERF_RECORD_BPF_EVENT,
7880                                 .size = sizeof(bpf_event.event_id),
7881                         },
7882                         .type = type,
7883                         .flags = flags,
7884                         .id = prog->aux->id,
7885                 },
7886         };
7887
7888         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7889
7890         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7891         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7892 }
7893
7894 void perf_event_itrace_started(struct perf_event *event)
7895 {
7896         event->attach_state |= PERF_ATTACH_ITRACE;
7897 }
7898
7899 static void perf_log_itrace_start(struct perf_event *event)
7900 {
7901         struct perf_output_handle handle;
7902         struct perf_sample_data sample;
7903         struct perf_aux_event {
7904                 struct perf_event_header        header;
7905                 u32                             pid;
7906                 u32                             tid;
7907         } rec;
7908         int ret;
7909
7910         if (event->parent)
7911                 event = event->parent;
7912
7913         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7914             event->attach_state & PERF_ATTACH_ITRACE)
7915                 return;
7916
7917         rec.header.type = PERF_RECORD_ITRACE_START;
7918         rec.header.misc = 0;
7919         rec.header.size = sizeof(rec);
7920         rec.pid = perf_event_pid(event, current);
7921         rec.tid = perf_event_tid(event, current);
7922
7923         perf_event_header__init_id(&rec.header, &sample, event);
7924         ret = perf_output_begin(&handle, event, rec.header.size);
7925
7926         if (ret)
7927                 return;
7928
7929         perf_output_put(&handle, rec);
7930         perf_event__output_id_sample(event, &handle, &sample);
7931
7932         perf_output_end(&handle);
7933 }
7934
7935 static int
7936 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7937 {
7938         struct hw_perf_event *hwc = &event->hw;
7939         int ret = 0;
7940         u64 seq;
7941
7942         seq = __this_cpu_read(perf_throttled_seq);
7943         if (seq != hwc->interrupts_seq) {
7944                 hwc->interrupts_seq = seq;
7945                 hwc->interrupts = 1;
7946         } else {
7947                 hwc->interrupts++;
7948                 if (unlikely(throttle
7949                              && hwc->interrupts >= max_samples_per_tick)) {
7950                         __this_cpu_inc(perf_throttled_count);
7951                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7952                         hwc->interrupts = MAX_INTERRUPTS;
7953                         perf_log_throttle(event, 0);
7954                         ret = 1;
7955                 }
7956         }
7957
7958         if (event->attr.freq) {
7959                 u64 now = perf_clock();
7960                 s64 delta = now - hwc->freq_time_stamp;
7961
7962                 hwc->freq_time_stamp = now;
7963
7964                 if (delta > 0 && delta < 2*TICK_NSEC)
7965                         perf_adjust_period(event, delta, hwc->last_period, true);
7966         }
7967
7968         return ret;
7969 }
7970
7971 int perf_event_account_interrupt(struct perf_event *event)
7972 {
7973         return __perf_event_account_interrupt(event, 1);
7974 }
7975
7976 /*
7977  * Generic event overflow handling, sampling.
7978  */
7979
7980 static int __perf_event_overflow(struct perf_event *event,
7981                                    int throttle, struct perf_sample_data *data,
7982                                    struct pt_regs *regs)
7983 {
7984         int events = atomic_read(&event->event_limit);
7985         int ret = 0;
7986
7987         /*
7988          * Non-sampling counters might still use the PMI to fold short
7989          * hardware counters, ignore those.
7990          */
7991         if (unlikely(!is_sampling_event(event)))
7992                 return 0;
7993
7994         ret = __perf_event_account_interrupt(event, throttle);
7995
7996         /*
7997          * XXX event_limit might not quite work as expected on inherited
7998          * events
7999          */
8000
8001         event->pending_kill = POLL_IN;
8002         if (events && atomic_dec_and_test(&event->event_limit)) {
8003                 ret = 1;
8004                 event->pending_kill = POLL_HUP;
8005
8006                 perf_event_disable_inatomic(event);
8007         }
8008
8009         READ_ONCE(event->overflow_handler)(event, data, regs);
8010
8011         if (*perf_event_fasync(event) && event->pending_kill) {
8012                 event->pending_wakeup = 1;
8013                 irq_work_queue(&event->pending);
8014         }
8015
8016         return ret;
8017 }
8018
8019 int perf_event_overflow(struct perf_event *event,
8020                           struct perf_sample_data *data,
8021                           struct pt_regs *regs)
8022 {
8023         return __perf_event_overflow(event, 1, data, regs);
8024 }
8025
8026 /*
8027  * Generic software event infrastructure
8028  */
8029
8030 struct swevent_htable {
8031         struct swevent_hlist            *swevent_hlist;
8032         struct mutex                    hlist_mutex;
8033         int                             hlist_refcount;
8034
8035         /* Recursion avoidance in each contexts */
8036         int                             recursion[PERF_NR_CONTEXTS];
8037 };
8038
8039 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8040
8041 /*
8042  * We directly increment event->count and keep a second value in
8043  * event->hw.period_left to count intervals. This period event
8044  * is kept in the range [-sample_period, 0] so that we can use the
8045  * sign as trigger.
8046  */
8047
8048 u64 perf_swevent_set_period(struct perf_event *event)
8049 {
8050         struct hw_perf_event *hwc = &event->hw;
8051         u64 period = hwc->last_period;
8052         u64 nr, offset;
8053         s64 old, val;
8054
8055         hwc->last_period = hwc->sample_period;
8056
8057 again:
8058         old = val = local64_read(&hwc->period_left);
8059         if (val < 0)
8060                 return 0;
8061
8062         nr = div64_u64(period + val, period);
8063         offset = nr * period;
8064         val -= offset;
8065         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8066                 goto again;
8067
8068         return nr;
8069 }
8070
8071 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8072                                     struct perf_sample_data *data,
8073                                     struct pt_regs *regs)
8074 {
8075         struct hw_perf_event *hwc = &event->hw;
8076         int throttle = 0;
8077
8078         if (!overflow)
8079                 overflow = perf_swevent_set_period(event);
8080
8081         if (hwc->interrupts == MAX_INTERRUPTS)
8082                 return;
8083
8084         for (; overflow; overflow--) {
8085                 if (__perf_event_overflow(event, throttle,
8086                                             data, regs)) {
8087                         /*
8088                          * We inhibit the overflow from happening when
8089                          * hwc->interrupts == MAX_INTERRUPTS.
8090                          */
8091                         break;
8092                 }
8093                 throttle = 1;
8094         }
8095 }
8096
8097 static void perf_swevent_event(struct perf_event *event, u64 nr,
8098                                struct perf_sample_data *data,
8099                                struct pt_regs *regs)
8100 {
8101         struct hw_perf_event *hwc = &event->hw;
8102
8103         local64_add(nr, &event->count);
8104
8105         if (!regs)
8106                 return;
8107
8108         if (!is_sampling_event(event))
8109                 return;
8110
8111         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8112                 data->period = nr;
8113                 return perf_swevent_overflow(event, 1, data, regs);
8114         } else
8115                 data->period = event->hw.last_period;
8116
8117         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8118                 return perf_swevent_overflow(event, 1, data, regs);
8119
8120         if (local64_add_negative(nr, &hwc->period_left))
8121                 return;
8122
8123         perf_swevent_overflow(event, 0, data, regs);
8124 }
8125
8126 static int perf_exclude_event(struct perf_event *event,
8127                               struct pt_regs *regs)
8128 {
8129         if (event->hw.state & PERF_HES_STOPPED)
8130                 return 1;
8131
8132         if (regs) {
8133                 if (event->attr.exclude_user && user_mode(regs))
8134                         return 1;
8135
8136                 if (event->attr.exclude_kernel && !user_mode(regs))
8137                         return 1;
8138         }
8139
8140         return 0;
8141 }
8142
8143 static int perf_swevent_match(struct perf_event *event,
8144                                 enum perf_type_id type,
8145                                 u32 event_id,
8146                                 struct perf_sample_data *data,
8147                                 struct pt_regs *regs)
8148 {
8149         if (event->attr.type != type)
8150                 return 0;
8151
8152         if (event->attr.config != event_id)
8153                 return 0;
8154
8155         if (perf_exclude_event(event, regs))
8156                 return 0;
8157
8158         return 1;
8159 }
8160
8161 static inline u64 swevent_hash(u64 type, u32 event_id)
8162 {
8163         u64 val = event_id | (type << 32);
8164
8165         return hash_64(val, SWEVENT_HLIST_BITS);
8166 }
8167
8168 static inline struct hlist_head *
8169 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8170 {
8171         u64 hash = swevent_hash(type, event_id);
8172
8173         return &hlist->heads[hash];
8174 }
8175
8176 /* For the read side: events when they trigger */
8177 static inline struct hlist_head *
8178 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8179 {
8180         struct swevent_hlist *hlist;
8181
8182         hlist = rcu_dereference(swhash->swevent_hlist);
8183         if (!hlist)
8184                 return NULL;
8185
8186         return __find_swevent_head(hlist, type, event_id);
8187 }
8188
8189 /* For the event head insertion and removal in the hlist */
8190 static inline struct hlist_head *
8191 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8192 {
8193         struct swevent_hlist *hlist;
8194         u32 event_id = event->attr.config;
8195         u64 type = event->attr.type;
8196
8197         /*
8198          * Event scheduling is always serialized against hlist allocation
8199          * and release. Which makes the protected version suitable here.
8200          * The context lock guarantees that.
8201          */
8202         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8203                                           lockdep_is_held(&event->ctx->lock));
8204         if (!hlist)
8205                 return NULL;
8206
8207         return __find_swevent_head(hlist, type, event_id);
8208 }
8209
8210 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8211                                     u64 nr,
8212                                     struct perf_sample_data *data,
8213                                     struct pt_regs *regs)
8214 {
8215         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8216         struct perf_event *event;
8217         struct hlist_head *head;
8218
8219         rcu_read_lock();
8220         head = find_swevent_head_rcu(swhash, type, event_id);
8221         if (!head)
8222                 goto end;
8223
8224         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8225                 if (perf_swevent_match(event, type, event_id, data, regs))
8226                         perf_swevent_event(event, nr, data, regs);
8227         }
8228 end:
8229         rcu_read_unlock();
8230 }
8231
8232 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8233
8234 int perf_swevent_get_recursion_context(void)
8235 {
8236         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8237
8238         return get_recursion_context(swhash->recursion);
8239 }
8240 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8241
8242 void perf_swevent_put_recursion_context(int rctx)
8243 {
8244         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8245
8246         put_recursion_context(swhash->recursion, rctx);
8247 }
8248
8249 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8250 {
8251         struct perf_sample_data data;
8252
8253         if (WARN_ON_ONCE(!regs))
8254                 return;
8255
8256         perf_sample_data_init(&data, addr, 0);
8257         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8258 }
8259
8260 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8261 {
8262         int rctx;
8263
8264         preempt_disable_notrace();
8265         rctx = perf_swevent_get_recursion_context();
8266         if (unlikely(rctx < 0))
8267                 goto fail;
8268
8269         ___perf_sw_event(event_id, nr, regs, addr);
8270
8271         perf_swevent_put_recursion_context(rctx);
8272 fail:
8273         preempt_enable_notrace();
8274 }
8275
8276 static void perf_swevent_read(struct perf_event *event)
8277 {
8278 }
8279
8280 static int perf_swevent_add(struct perf_event *event, int flags)
8281 {
8282         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8283         struct hw_perf_event *hwc = &event->hw;
8284         struct hlist_head *head;
8285
8286         if (is_sampling_event(event)) {
8287                 hwc->last_period = hwc->sample_period;
8288                 perf_swevent_set_period(event);
8289         }
8290
8291         hwc->state = !(flags & PERF_EF_START);
8292
8293         head = find_swevent_head(swhash, event);
8294         if (WARN_ON_ONCE(!head))
8295                 return -EINVAL;
8296
8297         hlist_add_head_rcu(&event->hlist_entry, head);
8298         perf_event_update_userpage(event);
8299
8300         return 0;
8301 }
8302
8303 static void perf_swevent_del(struct perf_event *event, int flags)
8304 {
8305         hlist_del_rcu(&event->hlist_entry);
8306 }
8307
8308 static void perf_swevent_start(struct perf_event *event, int flags)
8309 {
8310         event->hw.state = 0;
8311 }
8312
8313 static void perf_swevent_stop(struct perf_event *event, int flags)
8314 {
8315         event->hw.state = PERF_HES_STOPPED;
8316 }
8317
8318 /* Deref the hlist from the update side */
8319 static inline struct swevent_hlist *
8320 swevent_hlist_deref(struct swevent_htable *swhash)
8321 {
8322         return rcu_dereference_protected(swhash->swevent_hlist,
8323                                          lockdep_is_held(&swhash->hlist_mutex));
8324 }
8325
8326 static void swevent_hlist_release(struct swevent_htable *swhash)
8327 {
8328         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8329
8330         if (!hlist)
8331                 return;
8332
8333         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8334         kfree_rcu(hlist, rcu_head);
8335 }
8336
8337 static void swevent_hlist_put_cpu(int cpu)
8338 {
8339         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8340
8341         mutex_lock(&swhash->hlist_mutex);
8342
8343         if (!--swhash->hlist_refcount)
8344                 swevent_hlist_release(swhash);
8345
8346         mutex_unlock(&swhash->hlist_mutex);
8347 }
8348
8349 static void swevent_hlist_put(void)
8350 {
8351         int cpu;
8352
8353         for_each_possible_cpu(cpu)
8354                 swevent_hlist_put_cpu(cpu);
8355 }
8356
8357 static int swevent_hlist_get_cpu(int cpu)
8358 {
8359         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8360         int err = 0;
8361
8362         mutex_lock(&swhash->hlist_mutex);
8363         if (!swevent_hlist_deref(swhash) &&
8364             cpumask_test_cpu(cpu, perf_online_mask)) {
8365                 struct swevent_hlist *hlist;
8366
8367                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8368                 if (!hlist) {
8369                         err = -ENOMEM;
8370                         goto exit;
8371                 }
8372                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8373         }
8374         swhash->hlist_refcount++;
8375 exit:
8376         mutex_unlock(&swhash->hlist_mutex);
8377
8378         return err;
8379 }
8380
8381 static int swevent_hlist_get(void)
8382 {
8383         int err, cpu, failed_cpu;
8384
8385         mutex_lock(&pmus_lock);
8386         for_each_possible_cpu(cpu) {
8387                 err = swevent_hlist_get_cpu(cpu);
8388                 if (err) {
8389                         failed_cpu = cpu;
8390                         goto fail;
8391                 }
8392         }
8393         mutex_unlock(&pmus_lock);
8394         return 0;
8395 fail:
8396         for_each_possible_cpu(cpu) {
8397                 if (cpu == failed_cpu)
8398                         break;
8399                 swevent_hlist_put_cpu(cpu);
8400         }
8401         mutex_unlock(&pmus_lock);
8402         return err;
8403 }
8404
8405 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8406
8407 static void sw_perf_event_destroy(struct perf_event *event)
8408 {
8409         u64 event_id = event->attr.config;
8410
8411         WARN_ON(event->parent);
8412
8413         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8414         swevent_hlist_put();
8415 }
8416
8417 static int perf_swevent_init(struct perf_event *event)
8418 {
8419         u64 event_id = event->attr.config;
8420
8421         if (event->attr.type != PERF_TYPE_SOFTWARE)
8422                 return -ENOENT;
8423
8424         /*
8425          * no branch sampling for software events
8426          */
8427         if (has_branch_stack(event))
8428                 return -EOPNOTSUPP;
8429
8430         switch (event_id) {
8431         case PERF_COUNT_SW_CPU_CLOCK:
8432         case PERF_COUNT_SW_TASK_CLOCK:
8433                 return -ENOENT;
8434
8435         default:
8436                 break;
8437         }
8438
8439         if (event_id >= PERF_COUNT_SW_MAX)
8440                 return -ENOENT;
8441
8442         if (!event->parent) {
8443                 int err;
8444
8445                 err = swevent_hlist_get();
8446                 if (err)
8447                         return err;
8448
8449                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8450                 event->destroy = sw_perf_event_destroy;
8451         }
8452
8453         return 0;
8454 }
8455
8456 static struct pmu perf_swevent = {
8457         .task_ctx_nr    = perf_sw_context,
8458
8459         .capabilities   = PERF_PMU_CAP_NO_NMI,
8460
8461         .event_init     = perf_swevent_init,
8462         .add            = perf_swevent_add,
8463         .del            = perf_swevent_del,
8464         .start          = perf_swevent_start,
8465         .stop           = perf_swevent_stop,
8466         .read           = perf_swevent_read,
8467 };
8468
8469 #ifdef CONFIG_EVENT_TRACING
8470
8471 static int perf_tp_filter_match(struct perf_event *event,
8472                                 struct perf_sample_data *data)
8473 {
8474         void *record = data->raw->frag.data;
8475
8476         /* only top level events have filters set */
8477         if (event->parent)
8478                 event = event->parent;
8479
8480         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8481                 return 1;
8482         return 0;
8483 }
8484
8485 static int perf_tp_event_match(struct perf_event *event,
8486                                 struct perf_sample_data *data,
8487                                 struct pt_regs *regs)
8488 {
8489         if (event->hw.state & PERF_HES_STOPPED)
8490                 return 0;
8491         /*
8492          * All tracepoints are from kernel-space.
8493          */
8494         if (event->attr.exclude_kernel)
8495                 return 0;
8496
8497         if (!perf_tp_filter_match(event, data))
8498                 return 0;
8499
8500         return 1;
8501 }
8502
8503 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8504                                struct trace_event_call *call, u64 count,
8505                                struct pt_regs *regs, struct hlist_head *head,
8506                                struct task_struct *task)
8507 {
8508         if (bpf_prog_array_valid(call)) {
8509                 *(struct pt_regs **)raw_data = regs;
8510                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8511                         perf_swevent_put_recursion_context(rctx);
8512                         return;
8513                 }
8514         }
8515         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8516                       rctx, task);
8517 }
8518 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8519
8520 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8521                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8522                    struct task_struct *task)
8523 {
8524         struct perf_sample_data data;
8525         struct perf_event *event;
8526
8527         struct perf_raw_record raw = {
8528                 .frag = {
8529                         .size = entry_size,
8530                         .data = record,
8531                 },
8532         };
8533
8534         perf_sample_data_init(&data, 0, 0);
8535         data.raw = &raw;
8536
8537         perf_trace_buf_update(record, event_type);
8538
8539         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8540                 if (perf_tp_event_match(event, &data, regs))
8541                         perf_swevent_event(event, count, &data, regs);
8542         }
8543
8544         /*
8545          * If we got specified a target task, also iterate its context and
8546          * deliver this event there too.
8547          */
8548         if (task && task != current) {
8549                 struct perf_event_context *ctx;
8550                 struct trace_entry *entry = record;
8551
8552                 rcu_read_lock();
8553                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8554                 if (!ctx)
8555                         goto unlock;
8556
8557                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8558                         if (event->cpu != smp_processor_id())
8559                                 continue;
8560                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8561                                 continue;
8562                         if (event->attr.config != entry->type)
8563                                 continue;
8564                         if (perf_tp_event_match(event, &data, regs))
8565                                 perf_swevent_event(event, count, &data, regs);
8566                 }
8567 unlock:
8568                 rcu_read_unlock();
8569         }
8570
8571         perf_swevent_put_recursion_context(rctx);
8572 }
8573 EXPORT_SYMBOL_GPL(perf_tp_event);
8574
8575 static void tp_perf_event_destroy(struct perf_event *event)
8576 {
8577         perf_trace_destroy(event);
8578 }
8579
8580 static int perf_tp_event_init(struct perf_event *event)
8581 {
8582         int err;
8583
8584         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8585                 return -ENOENT;
8586
8587         /*
8588          * no branch sampling for tracepoint events
8589          */
8590         if (has_branch_stack(event))
8591                 return -EOPNOTSUPP;
8592
8593         err = perf_trace_init(event);
8594         if (err)
8595                 return err;
8596
8597         event->destroy = tp_perf_event_destroy;
8598
8599         return 0;
8600 }
8601
8602 static struct pmu perf_tracepoint = {
8603         .task_ctx_nr    = perf_sw_context,
8604
8605         .event_init     = perf_tp_event_init,
8606         .add            = perf_trace_add,
8607         .del            = perf_trace_del,
8608         .start          = perf_swevent_start,
8609         .stop           = perf_swevent_stop,
8610         .read           = perf_swevent_read,
8611 };
8612
8613 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8614 /*
8615  * Flags in config, used by dynamic PMU kprobe and uprobe
8616  * The flags should match following PMU_FORMAT_ATTR().
8617  *
8618  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8619  *                               if not set, create kprobe/uprobe
8620  *
8621  * The following values specify a reference counter (or semaphore in the
8622  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8623  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8624  *
8625  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8626  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8627  */
8628 enum perf_probe_config {
8629         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8630         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8631         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8632 };
8633
8634 PMU_FORMAT_ATTR(retprobe, "config:0");
8635 #endif
8636
8637 #ifdef CONFIG_KPROBE_EVENTS
8638 static struct attribute *kprobe_attrs[] = {
8639         &format_attr_retprobe.attr,
8640         NULL,
8641 };
8642
8643 static struct attribute_group kprobe_format_group = {
8644         .name = "format",
8645         .attrs = kprobe_attrs,
8646 };
8647
8648 static const struct attribute_group *kprobe_attr_groups[] = {
8649         &kprobe_format_group,
8650         NULL,
8651 };
8652
8653 static int perf_kprobe_event_init(struct perf_event *event);
8654 static struct pmu perf_kprobe = {
8655         .task_ctx_nr    = perf_sw_context,
8656         .event_init     = perf_kprobe_event_init,
8657         .add            = perf_trace_add,
8658         .del            = perf_trace_del,
8659         .start          = perf_swevent_start,
8660         .stop           = perf_swevent_stop,
8661         .read           = perf_swevent_read,
8662         .attr_groups    = kprobe_attr_groups,
8663 };
8664
8665 static int perf_kprobe_event_init(struct perf_event *event)
8666 {
8667         int err;
8668         bool is_retprobe;
8669
8670         if (event->attr.type != perf_kprobe.type)
8671                 return -ENOENT;
8672
8673         if (!capable(CAP_SYS_ADMIN))
8674                 return -EACCES;
8675
8676         /*
8677          * no branch sampling for probe events
8678          */
8679         if (has_branch_stack(event))
8680                 return -EOPNOTSUPP;
8681
8682         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8683         err = perf_kprobe_init(event, is_retprobe);
8684         if (err)
8685                 return err;
8686
8687         event->destroy = perf_kprobe_destroy;
8688
8689         return 0;
8690 }
8691 #endif /* CONFIG_KPROBE_EVENTS */
8692
8693 #ifdef CONFIG_UPROBE_EVENTS
8694 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8695
8696 static struct attribute *uprobe_attrs[] = {
8697         &format_attr_retprobe.attr,
8698         &format_attr_ref_ctr_offset.attr,
8699         NULL,
8700 };
8701
8702 static struct attribute_group uprobe_format_group = {
8703         .name = "format",
8704         .attrs = uprobe_attrs,
8705 };
8706
8707 static const struct attribute_group *uprobe_attr_groups[] = {
8708         &uprobe_format_group,
8709         NULL,
8710 };
8711
8712 static int perf_uprobe_event_init(struct perf_event *event);
8713 static struct pmu perf_uprobe = {
8714         .task_ctx_nr    = perf_sw_context,
8715         .event_init     = perf_uprobe_event_init,
8716         .add            = perf_trace_add,
8717         .del            = perf_trace_del,
8718         .start          = perf_swevent_start,
8719         .stop           = perf_swevent_stop,
8720         .read           = perf_swevent_read,
8721         .attr_groups    = uprobe_attr_groups,
8722 };
8723
8724 static int perf_uprobe_event_init(struct perf_event *event)
8725 {
8726         int err;
8727         unsigned long ref_ctr_offset;
8728         bool is_retprobe;
8729
8730         if (event->attr.type != perf_uprobe.type)
8731                 return -ENOENT;
8732
8733         if (!capable(CAP_SYS_ADMIN))
8734                 return -EACCES;
8735
8736         /*
8737          * no branch sampling for probe events
8738          */
8739         if (has_branch_stack(event))
8740                 return -EOPNOTSUPP;
8741
8742         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8743         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8744         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8745         if (err)
8746                 return err;
8747
8748         event->destroy = perf_uprobe_destroy;
8749
8750         return 0;
8751 }
8752 #endif /* CONFIG_UPROBE_EVENTS */
8753
8754 static inline void perf_tp_register(void)
8755 {
8756         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8757 #ifdef CONFIG_KPROBE_EVENTS
8758         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8759 #endif
8760 #ifdef CONFIG_UPROBE_EVENTS
8761         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8762 #endif
8763 }
8764
8765 static void perf_event_free_filter(struct perf_event *event)
8766 {
8767         ftrace_profile_free_filter(event);
8768 }
8769
8770 #ifdef CONFIG_BPF_SYSCALL
8771 static void bpf_overflow_handler(struct perf_event *event,
8772                                  struct perf_sample_data *data,
8773                                  struct pt_regs *regs)
8774 {
8775         struct bpf_perf_event_data_kern ctx = {
8776                 .data = data,
8777                 .event = event,
8778         };
8779         int ret = 0;
8780
8781         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8782         preempt_disable();
8783         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8784                 goto out;
8785         rcu_read_lock();
8786         ret = BPF_PROG_RUN(event->prog, &ctx);
8787         rcu_read_unlock();
8788 out:
8789         __this_cpu_dec(bpf_prog_active);
8790         preempt_enable();
8791         if (!ret)
8792                 return;
8793
8794         event->orig_overflow_handler(event, data, regs);
8795 }
8796
8797 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8798 {
8799         struct bpf_prog *prog;
8800
8801         if (event->overflow_handler_context)
8802                 /* hw breakpoint or kernel counter */
8803                 return -EINVAL;
8804
8805         if (event->prog)
8806                 return -EEXIST;
8807
8808         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8809         if (IS_ERR(prog))
8810                 return PTR_ERR(prog);
8811
8812         event->prog = prog;
8813         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8814         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8815         return 0;
8816 }
8817
8818 static void perf_event_free_bpf_handler(struct perf_event *event)
8819 {
8820         struct bpf_prog *prog = event->prog;
8821
8822         if (!prog)
8823                 return;
8824
8825         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8826         event->prog = NULL;
8827         bpf_prog_put(prog);
8828 }
8829 #else
8830 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8831 {
8832         return -EOPNOTSUPP;
8833 }
8834 static void perf_event_free_bpf_handler(struct perf_event *event)
8835 {
8836 }
8837 #endif
8838
8839 /*
8840  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8841  * with perf_event_open()
8842  */
8843 static inline bool perf_event_is_tracing(struct perf_event *event)
8844 {
8845         if (event->pmu == &perf_tracepoint)
8846                 return true;
8847 #ifdef CONFIG_KPROBE_EVENTS
8848         if (event->pmu == &perf_kprobe)
8849                 return true;
8850 #endif
8851 #ifdef CONFIG_UPROBE_EVENTS
8852         if (event->pmu == &perf_uprobe)
8853                 return true;
8854 #endif
8855         return false;
8856 }
8857
8858 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8859 {
8860         bool is_kprobe, is_tracepoint, is_syscall_tp;
8861         struct bpf_prog *prog;
8862         int ret;
8863
8864         if (!perf_event_is_tracing(event))
8865                 return perf_event_set_bpf_handler(event, prog_fd);
8866
8867         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8868         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8869         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8870         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8871                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8872                 return -EINVAL;
8873
8874         prog = bpf_prog_get(prog_fd);
8875         if (IS_ERR(prog))
8876                 return PTR_ERR(prog);
8877
8878         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8879             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8880             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8881                 /* valid fd, but invalid bpf program type */
8882                 bpf_prog_put(prog);
8883                 return -EINVAL;
8884         }
8885
8886         /* Kprobe override only works for kprobes, not uprobes. */
8887         if (prog->kprobe_override &&
8888             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8889                 bpf_prog_put(prog);
8890                 return -EINVAL;
8891         }
8892
8893         if (is_tracepoint || is_syscall_tp) {
8894                 int off = trace_event_get_offsets(event->tp_event);
8895
8896                 if (prog->aux->max_ctx_offset > off) {
8897                         bpf_prog_put(prog);
8898                         return -EACCES;
8899                 }
8900         }
8901
8902         ret = perf_event_attach_bpf_prog(event, prog);
8903         if (ret)
8904                 bpf_prog_put(prog);
8905         return ret;
8906 }
8907
8908 static void perf_event_free_bpf_prog(struct perf_event *event)
8909 {
8910         if (!perf_event_is_tracing(event)) {
8911                 perf_event_free_bpf_handler(event);
8912                 return;
8913         }
8914         perf_event_detach_bpf_prog(event);
8915 }
8916
8917 #else
8918
8919 static inline void perf_tp_register(void)
8920 {
8921 }
8922
8923 static void perf_event_free_filter(struct perf_event *event)
8924 {
8925 }
8926
8927 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8928 {
8929         return -ENOENT;
8930 }
8931
8932 static void perf_event_free_bpf_prog(struct perf_event *event)
8933 {
8934 }
8935 #endif /* CONFIG_EVENT_TRACING */
8936
8937 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8938 void perf_bp_event(struct perf_event *bp, void *data)
8939 {
8940         struct perf_sample_data sample;
8941         struct pt_regs *regs = data;
8942
8943         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8944
8945         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8946                 perf_swevent_event(bp, 1, &sample, regs);
8947 }
8948 #endif
8949
8950 /*
8951  * Allocate a new address filter
8952  */
8953 static struct perf_addr_filter *
8954 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8955 {
8956         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8957         struct perf_addr_filter *filter;
8958
8959         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8960         if (!filter)
8961                 return NULL;
8962
8963         INIT_LIST_HEAD(&filter->entry);
8964         list_add_tail(&filter->entry, filters);
8965
8966         return filter;
8967 }
8968
8969 static void free_filters_list(struct list_head *filters)
8970 {
8971         struct perf_addr_filter *filter, *iter;
8972
8973         list_for_each_entry_safe(filter, iter, filters, entry) {
8974                 path_put(&filter->path);
8975                 list_del(&filter->entry);
8976                 kfree(filter);
8977         }
8978 }
8979
8980 /*
8981  * Free existing address filters and optionally install new ones
8982  */
8983 static void perf_addr_filters_splice(struct perf_event *event,
8984                                      struct list_head *head)
8985 {
8986         unsigned long flags;
8987         LIST_HEAD(list);
8988
8989         if (!has_addr_filter(event))
8990                 return;
8991
8992         /* don't bother with children, they don't have their own filters */
8993         if (event->parent)
8994                 return;
8995
8996         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8997
8998         list_splice_init(&event->addr_filters.list, &list);
8999         if (head)
9000                 list_splice(head, &event->addr_filters.list);
9001
9002         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9003
9004         free_filters_list(&list);
9005 }
9006
9007 /*
9008  * Scan through mm's vmas and see if one of them matches the
9009  * @filter; if so, adjust filter's address range.
9010  * Called with mm::mmap_sem down for reading.
9011  */
9012 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9013                                    struct mm_struct *mm,
9014                                    struct perf_addr_filter_range *fr)
9015 {
9016         struct vm_area_struct *vma;
9017
9018         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9019                 if (!vma->vm_file)
9020                         continue;
9021
9022                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9023                         return;
9024         }
9025 }
9026
9027 /*
9028  * Update event's address range filters based on the
9029  * task's existing mappings, if any.
9030  */
9031 static void perf_event_addr_filters_apply(struct perf_event *event)
9032 {
9033         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9034         struct task_struct *task = READ_ONCE(event->ctx->task);
9035         struct perf_addr_filter *filter;
9036         struct mm_struct *mm = NULL;
9037         unsigned int count = 0;
9038         unsigned long flags;
9039
9040         /*
9041          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9042          * will stop on the parent's child_mutex that our caller is also holding
9043          */
9044         if (task == TASK_TOMBSTONE)
9045                 return;
9046
9047         if (!ifh->nr_file_filters)
9048                 return;
9049
9050         mm = get_task_mm(event->ctx->task);
9051         if (!mm)
9052                 goto restart;
9053
9054         down_read(&mm->mmap_sem);
9055
9056         raw_spin_lock_irqsave(&ifh->lock, flags);
9057         list_for_each_entry(filter, &ifh->list, entry) {
9058                 event->addr_filter_ranges[count].start = 0;
9059                 event->addr_filter_ranges[count].size = 0;
9060
9061                 /*
9062                  * Adjust base offset if the filter is associated to a binary
9063                  * that needs to be mapped:
9064                  */
9065                 if (filter->path.dentry)
9066                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9067
9068                 count++;
9069         }
9070
9071         event->addr_filters_gen++;
9072         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9073
9074         up_read(&mm->mmap_sem);
9075
9076         mmput(mm);
9077
9078 restart:
9079         perf_event_stop(event, 1);
9080 }
9081
9082 /*
9083  * Address range filtering: limiting the data to certain
9084  * instruction address ranges. Filters are ioctl()ed to us from
9085  * userspace as ascii strings.
9086  *
9087  * Filter string format:
9088  *
9089  * ACTION RANGE_SPEC
9090  * where ACTION is one of the
9091  *  * "filter": limit the trace to this region
9092  *  * "start": start tracing from this address
9093  *  * "stop": stop tracing at this address/region;
9094  * RANGE_SPEC is
9095  *  * for kernel addresses: <start address>[/<size>]
9096  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9097  *
9098  * if <size> is not specified or is zero, the range is treated as a single
9099  * address; not valid for ACTION=="filter".
9100  */
9101 enum {
9102         IF_ACT_NONE = -1,
9103         IF_ACT_FILTER,
9104         IF_ACT_START,
9105         IF_ACT_STOP,
9106         IF_SRC_FILE,
9107         IF_SRC_KERNEL,
9108         IF_SRC_FILEADDR,
9109         IF_SRC_KERNELADDR,
9110 };
9111
9112 enum {
9113         IF_STATE_ACTION = 0,
9114         IF_STATE_SOURCE,
9115         IF_STATE_END,
9116 };
9117
9118 static const match_table_t if_tokens = {
9119         { IF_ACT_FILTER,        "filter" },
9120         { IF_ACT_START,         "start" },
9121         { IF_ACT_STOP,          "stop" },
9122         { IF_SRC_FILE,          "%u/%u@%s" },
9123         { IF_SRC_KERNEL,        "%u/%u" },
9124         { IF_SRC_FILEADDR,      "%u@%s" },
9125         { IF_SRC_KERNELADDR,    "%u" },
9126         { IF_ACT_NONE,          NULL },
9127 };
9128
9129 /*
9130  * Address filter string parser
9131  */
9132 static int
9133 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9134                              struct list_head *filters)
9135 {
9136         struct perf_addr_filter *filter = NULL;
9137         char *start, *orig, *filename = NULL;
9138         substring_t args[MAX_OPT_ARGS];
9139         int state = IF_STATE_ACTION, token;
9140         unsigned int kernel = 0;
9141         int ret = -EINVAL;
9142
9143         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9144         if (!fstr)
9145                 return -ENOMEM;
9146
9147         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9148                 static const enum perf_addr_filter_action_t actions[] = {
9149                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9150                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9151                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9152                 };
9153                 ret = -EINVAL;
9154
9155                 if (!*start)
9156                         continue;
9157
9158                 /* filter definition begins */
9159                 if (state == IF_STATE_ACTION) {
9160                         filter = perf_addr_filter_new(event, filters);
9161                         if (!filter)
9162                                 goto fail;
9163                 }
9164
9165                 token = match_token(start, if_tokens, args);
9166                 switch (token) {
9167                 case IF_ACT_FILTER:
9168                 case IF_ACT_START:
9169                 case IF_ACT_STOP:
9170                         if (state != IF_STATE_ACTION)
9171                                 goto fail;
9172
9173                         filter->action = actions[token];
9174                         state = IF_STATE_SOURCE;
9175                         break;
9176
9177                 case IF_SRC_KERNELADDR:
9178                 case IF_SRC_KERNEL:
9179                         kernel = 1;
9180                         /* fall through */
9181
9182                 case IF_SRC_FILEADDR:
9183                 case IF_SRC_FILE:
9184                         if (state != IF_STATE_SOURCE)
9185                                 goto fail;
9186
9187                         *args[0].to = 0;
9188                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9189                         if (ret)
9190                                 goto fail;
9191
9192                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9193                                 *args[1].to = 0;
9194                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9195                                 if (ret)
9196                                         goto fail;
9197                         }
9198
9199                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9200                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9201
9202                                 filename = match_strdup(&args[fpos]);
9203                                 if (!filename) {
9204                                         ret = -ENOMEM;
9205                                         goto fail;
9206                                 }
9207                         }
9208
9209                         state = IF_STATE_END;
9210                         break;
9211
9212                 default:
9213                         goto fail;
9214                 }
9215
9216                 /*
9217                  * Filter definition is fully parsed, validate and install it.
9218                  * Make sure that it doesn't contradict itself or the event's
9219                  * attribute.
9220                  */
9221                 if (state == IF_STATE_END) {
9222                         ret = -EINVAL;
9223                         if (kernel && event->attr.exclude_kernel)
9224                                 goto fail;
9225
9226                         /*
9227                          * ACTION "filter" must have a non-zero length region
9228                          * specified.
9229                          */
9230                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9231                             !filter->size)
9232                                 goto fail;
9233
9234                         if (!kernel) {
9235                                 if (!filename)
9236                                         goto fail;
9237
9238                                 /*
9239                                  * For now, we only support file-based filters
9240                                  * in per-task events; doing so for CPU-wide
9241                                  * events requires additional context switching
9242                                  * trickery, since same object code will be
9243                                  * mapped at different virtual addresses in
9244                                  * different processes.
9245                                  */
9246                                 ret = -EOPNOTSUPP;
9247                                 if (!event->ctx->task)
9248                                         goto fail_free_name;
9249
9250                                 /* look up the path and grab its inode */
9251                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9252                                                 &filter->path);
9253                                 if (ret)
9254                                         goto fail_free_name;
9255
9256                                 kfree(filename);
9257                                 filename = NULL;
9258
9259                                 ret = -EINVAL;
9260                                 if (!filter->path.dentry ||
9261                                     !S_ISREG(d_inode(filter->path.dentry)
9262                                              ->i_mode))
9263                                         goto fail;
9264
9265                                 event->addr_filters.nr_file_filters++;
9266                         }
9267
9268                         /* ready to consume more filters */
9269                         state = IF_STATE_ACTION;
9270                         filter = NULL;
9271                 }
9272         }
9273
9274         if (state != IF_STATE_ACTION)
9275                 goto fail;
9276
9277         kfree(orig);
9278
9279         return 0;
9280
9281 fail_free_name:
9282         kfree(filename);
9283 fail:
9284         free_filters_list(filters);
9285         kfree(orig);
9286
9287         return ret;
9288 }
9289
9290 static int
9291 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9292 {
9293         LIST_HEAD(filters);
9294         int ret;
9295
9296         /*
9297          * Since this is called in perf_ioctl() path, we're already holding
9298          * ctx::mutex.
9299          */
9300         lockdep_assert_held(&event->ctx->mutex);
9301
9302         if (WARN_ON_ONCE(event->parent))
9303                 return -EINVAL;
9304
9305         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9306         if (ret)
9307                 goto fail_clear_files;
9308
9309         ret = event->pmu->addr_filters_validate(&filters);
9310         if (ret)
9311                 goto fail_free_filters;
9312
9313         /* remove existing filters, if any */
9314         perf_addr_filters_splice(event, &filters);
9315
9316         /* install new filters */
9317         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9318
9319         return ret;
9320
9321 fail_free_filters:
9322         free_filters_list(&filters);
9323
9324 fail_clear_files:
9325         event->addr_filters.nr_file_filters = 0;
9326
9327         return ret;
9328 }
9329
9330 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9331 {
9332         int ret = -EINVAL;
9333         char *filter_str;
9334
9335         filter_str = strndup_user(arg, PAGE_SIZE);
9336         if (IS_ERR(filter_str))
9337                 return PTR_ERR(filter_str);
9338
9339 #ifdef CONFIG_EVENT_TRACING
9340         if (perf_event_is_tracing(event)) {
9341                 struct perf_event_context *ctx = event->ctx;
9342
9343                 /*
9344                  * Beware, here be dragons!!
9345                  *
9346                  * the tracepoint muck will deadlock against ctx->mutex, but
9347                  * the tracepoint stuff does not actually need it. So
9348                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9349                  * already have a reference on ctx.
9350                  *
9351                  * This can result in event getting moved to a different ctx,
9352                  * but that does not affect the tracepoint state.
9353                  */
9354                 mutex_unlock(&ctx->mutex);
9355                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9356                 mutex_lock(&ctx->mutex);
9357         } else
9358 #endif
9359         if (has_addr_filter(event))
9360                 ret = perf_event_set_addr_filter(event, filter_str);
9361
9362         kfree(filter_str);
9363         return ret;
9364 }
9365
9366 /*
9367  * hrtimer based swevent callback
9368  */
9369
9370 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9371 {
9372         enum hrtimer_restart ret = HRTIMER_RESTART;
9373         struct perf_sample_data data;
9374         struct pt_regs *regs;
9375         struct perf_event *event;
9376         u64 period;
9377
9378         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9379
9380         if (event->state != PERF_EVENT_STATE_ACTIVE)
9381                 return HRTIMER_NORESTART;
9382
9383         event->pmu->read(event);
9384
9385         perf_sample_data_init(&data, 0, event->hw.last_period);
9386         regs = get_irq_regs();
9387
9388         if (regs && !perf_exclude_event(event, regs)) {
9389                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9390                         if (__perf_event_overflow(event, 1, &data, regs))
9391                                 ret = HRTIMER_NORESTART;
9392         }
9393
9394         period = max_t(u64, 10000, event->hw.sample_period);
9395         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9396
9397         return ret;
9398 }
9399
9400 static void perf_swevent_start_hrtimer(struct perf_event *event)
9401 {
9402         struct hw_perf_event *hwc = &event->hw;
9403         s64 period;
9404
9405         if (!is_sampling_event(event))
9406                 return;
9407
9408         period = local64_read(&hwc->period_left);
9409         if (period) {
9410                 if (period < 0)
9411                         period = 10000;
9412
9413                 local64_set(&hwc->period_left, 0);
9414         } else {
9415                 period = max_t(u64, 10000, hwc->sample_period);
9416         }
9417         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9418                       HRTIMER_MODE_REL_PINNED);
9419 }
9420
9421 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9422 {
9423         struct hw_perf_event *hwc = &event->hw;
9424
9425         if (is_sampling_event(event)) {
9426                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9427                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9428
9429                 hrtimer_cancel(&hwc->hrtimer);
9430         }
9431 }
9432
9433 static void perf_swevent_init_hrtimer(struct perf_event *event)
9434 {
9435         struct hw_perf_event *hwc = &event->hw;
9436
9437         if (!is_sampling_event(event))
9438                 return;
9439
9440         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9441         hwc->hrtimer.function = perf_swevent_hrtimer;
9442
9443         /*
9444          * Since hrtimers have a fixed rate, we can do a static freq->period
9445          * mapping and avoid the whole period adjust feedback stuff.
9446          */
9447         if (event->attr.freq) {
9448                 long freq = event->attr.sample_freq;
9449
9450                 event->attr.sample_period = NSEC_PER_SEC / freq;
9451                 hwc->sample_period = event->attr.sample_period;
9452                 local64_set(&hwc->period_left, hwc->sample_period);
9453                 hwc->last_period = hwc->sample_period;
9454                 event->attr.freq = 0;
9455         }
9456 }
9457
9458 /*
9459  * Software event: cpu wall time clock
9460  */
9461
9462 static void cpu_clock_event_update(struct perf_event *event)
9463 {
9464         s64 prev;
9465         u64 now;
9466
9467         now = local_clock();
9468         prev = local64_xchg(&event->hw.prev_count, now);
9469         local64_add(now - prev, &event->count);
9470 }
9471
9472 static void cpu_clock_event_start(struct perf_event *event, int flags)
9473 {
9474         local64_set(&event->hw.prev_count, local_clock());
9475         perf_swevent_start_hrtimer(event);
9476 }
9477
9478 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9479 {
9480         perf_swevent_cancel_hrtimer(event);
9481         cpu_clock_event_update(event);
9482 }
9483
9484 static int cpu_clock_event_add(struct perf_event *event, int flags)
9485 {
9486         if (flags & PERF_EF_START)
9487                 cpu_clock_event_start(event, flags);
9488         perf_event_update_userpage(event);
9489
9490         return 0;
9491 }
9492
9493 static void cpu_clock_event_del(struct perf_event *event, int flags)
9494 {
9495         cpu_clock_event_stop(event, flags);
9496 }
9497
9498 static void cpu_clock_event_read(struct perf_event *event)
9499 {
9500         cpu_clock_event_update(event);
9501 }
9502
9503 static int cpu_clock_event_init(struct perf_event *event)
9504 {
9505         if (event->attr.type != PERF_TYPE_SOFTWARE)
9506                 return -ENOENT;
9507
9508         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9509                 return -ENOENT;
9510
9511         /*
9512          * no branch sampling for software events
9513          */
9514         if (has_branch_stack(event))
9515                 return -EOPNOTSUPP;
9516
9517         perf_swevent_init_hrtimer(event);
9518
9519         return 0;
9520 }
9521
9522 static struct pmu perf_cpu_clock = {
9523         .task_ctx_nr    = perf_sw_context,
9524
9525         .capabilities   = PERF_PMU_CAP_NO_NMI,
9526
9527         .event_init     = cpu_clock_event_init,
9528         .add            = cpu_clock_event_add,
9529         .del            = cpu_clock_event_del,
9530         .start          = cpu_clock_event_start,
9531         .stop           = cpu_clock_event_stop,
9532         .read           = cpu_clock_event_read,
9533 };
9534
9535 /*
9536  * Software event: task time clock
9537  */
9538
9539 static void task_clock_event_update(struct perf_event *event, u64 now)
9540 {
9541         u64 prev;
9542         s64 delta;
9543
9544         prev = local64_xchg(&event->hw.prev_count, now);
9545         delta = now - prev;
9546         local64_add(delta, &event->count);
9547 }
9548
9549 static void task_clock_event_start(struct perf_event *event, int flags)
9550 {
9551         local64_set(&event->hw.prev_count, event->ctx->time);
9552         perf_swevent_start_hrtimer(event);
9553 }
9554
9555 static void task_clock_event_stop(struct perf_event *event, int flags)
9556 {
9557         perf_swevent_cancel_hrtimer(event);
9558         task_clock_event_update(event, event->ctx->time);
9559 }
9560
9561 static int task_clock_event_add(struct perf_event *event, int flags)
9562 {
9563         if (flags & PERF_EF_START)
9564                 task_clock_event_start(event, flags);
9565         perf_event_update_userpage(event);
9566
9567         return 0;
9568 }
9569
9570 static void task_clock_event_del(struct perf_event *event, int flags)
9571 {
9572         task_clock_event_stop(event, PERF_EF_UPDATE);
9573 }
9574
9575 static void task_clock_event_read(struct perf_event *event)
9576 {
9577         u64 now = perf_clock();
9578         u64 delta = now - event->ctx->timestamp;
9579         u64 time = event->ctx->time + delta;
9580
9581         task_clock_event_update(event, time);
9582 }
9583
9584 static int task_clock_event_init(struct perf_event *event)
9585 {
9586         if (event->attr.type != PERF_TYPE_SOFTWARE)
9587                 return -ENOENT;
9588
9589         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9590                 return -ENOENT;
9591
9592         /*
9593          * no branch sampling for software events
9594          */
9595         if (has_branch_stack(event))
9596                 return -EOPNOTSUPP;
9597
9598         perf_swevent_init_hrtimer(event);
9599
9600         return 0;
9601 }
9602
9603 static struct pmu perf_task_clock = {
9604         .task_ctx_nr    = perf_sw_context,
9605
9606         .capabilities   = PERF_PMU_CAP_NO_NMI,
9607
9608         .event_init     = task_clock_event_init,
9609         .add            = task_clock_event_add,
9610         .del            = task_clock_event_del,
9611         .start          = task_clock_event_start,
9612         .stop           = task_clock_event_stop,
9613         .read           = task_clock_event_read,
9614 };
9615
9616 static void perf_pmu_nop_void(struct pmu *pmu)
9617 {
9618 }
9619
9620 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9621 {
9622 }
9623
9624 static int perf_pmu_nop_int(struct pmu *pmu)
9625 {
9626         return 0;
9627 }
9628
9629 static int perf_event_nop_int(struct perf_event *event, u64 value)
9630 {
9631         return 0;
9632 }
9633
9634 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9635
9636 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9637 {
9638         __this_cpu_write(nop_txn_flags, flags);
9639
9640         if (flags & ~PERF_PMU_TXN_ADD)
9641                 return;
9642
9643         perf_pmu_disable(pmu);
9644 }
9645
9646 static int perf_pmu_commit_txn(struct pmu *pmu)
9647 {
9648         unsigned int flags = __this_cpu_read(nop_txn_flags);
9649
9650         __this_cpu_write(nop_txn_flags, 0);
9651
9652         if (flags & ~PERF_PMU_TXN_ADD)
9653                 return 0;
9654
9655         perf_pmu_enable(pmu);
9656         return 0;
9657 }
9658
9659 static void perf_pmu_cancel_txn(struct pmu *pmu)
9660 {
9661         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9662
9663         __this_cpu_write(nop_txn_flags, 0);
9664
9665         if (flags & ~PERF_PMU_TXN_ADD)
9666                 return;
9667
9668         perf_pmu_enable(pmu);
9669 }
9670
9671 static int perf_event_idx_default(struct perf_event *event)
9672 {
9673         return 0;
9674 }
9675
9676 /*
9677  * Ensures all contexts with the same task_ctx_nr have the same
9678  * pmu_cpu_context too.
9679  */
9680 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9681 {
9682         struct pmu *pmu;
9683
9684         if (ctxn < 0)
9685                 return NULL;
9686
9687         list_for_each_entry(pmu, &pmus, entry) {
9688                 if (pmu->task_ctx_nr == ctxn)
9689                         return pmu->pmu_cpu_context;
9690         }
9691
9692         return NULL;
9693 }
9694
9695 static void free_pmu_context(struct pmu *pmu)
9696 {
9697         /*
9698          * Static contexts such as perf_sw_context have a global lifetime
9699          * and may be shared between different PMUs. Avoid freeing them
9700          * when a single PMU is going away.
9701          */
9702         if (pmu->task_ctx_nr > perf_invalid_context)
9703                 return;
9704
9705         free_percpu(pmu->pmu_cpu_context);
9706 }
9707
9708 /*
9709  * Let userspace know that this PMU supports address range filtering:
9710  */
9711 static ssize_t nr_addr_filters_show(struct device *dev,
9712                                     struct device_attribute *attr,
9713                                     char *page)
9714 {
9715         struct pmu *pmu = dev_get_drvdata(dev);
9716
9717         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9718 }
9719 DEVICE_ATTR_RO(nr_addr_filters);
9720
9721 static struct idr pmu_idr;
9722
9723 static ssize_t
9724 type_show(struct device *dev, struct device_attribute *attr, char *page)
9725 {
9726         struct pmu *pmu = dev_get_drvdata(dev);
9727
9728         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9729 }
9730 static DEVICE_ATTR_RO(type);
9731
9732 static ssize_t
9733 perf_event_mux_interval_ms_show(struct device *dev,
9734                                 struct device_attribute *attr,
9735                                 char *page)
9736 {
9737         struct pmu *pmu = dev_get_drvdata(dev);
9738
9739         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9740 }
9741
9742 static DEFINE_MUTEX(mux_interval_mutex);
9743
9744 static ssize_t
9745 perf_event_mux_interval_ms_store(struct device *dev,
9746                                  struct device_attribute *attr,
9747                                  const char *buf, size_t count)
9748 {
9749         struct pmu *pmu = dev_get_drvdata(dev);
9750         int timer, cpu, ret;
9751
9752         ret = kstrtoint(buf, 0, &timer);
9753         if (ret)
9754                 return ret;
9755
9756         if (timer < 1)
9757                 return -EINVAL;
9758
9759         /* same value, noting to do */
9760         if (timer == pmu->hrtimer_interval_ms)
9761                 return count;
9762
9763         mutex_lock(&mux_interval_mutex);
9764         pmu->hrtimer_interval_ms = timer;
9765
9766         /* update all cpuctx for this PMU */
9767         cpus_read_lock();
9768         for_each_online_cpu(cpu) {
9769                 struct perf_cpu_context *cpuctx;
9770                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9771                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9772
9773                 cpu_function_call(cpu,
9774                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9775         }
9776         cpus_read_unlock();
9777         mutex_unlock(&mux_interval_mutex);
9778
9779         return count;
9780 }
9781 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9782
9783 static struct attribute *pmu_dev_attrs[] = {
9784         &dev_attr_type.attr,
9785         &dev_attr_perf_event_mux_interval_ms.attr,
9786         NULL,
9787 };
9788 ATTRIBUTE_GROUPS(pmu_dev);
9789
9790 static int pmu_bus_running;
9791 static struct bus_type pmu_bus = {
9792         .name           = "event_source",
9793         .dev_groups     = pmu_dev_groups,
9794 };
9795
9796 static void pmu_dev_release(struct device *dev)
9797 {
9798         kfree(dev);
9799 }
9800
9801 static int pmu_dev_alloc(struct pmu *pmu)
9802 {
9803         int ret = -ENOMEM;
9804
9805         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9806         if (!pmu->dev)
9807                 goto out;
9808
9809         pmu->dev->groups = pmu->attr_groups;
9810         device_initialize(pmu->dev);
9811         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9812         if (ret)
9813                 goto free_dev;
9814
9815         dev_set_drvdata(pmu->dev, pmu);
9816         pmu->dev->bus = &pmu_bus;
9817         pmu->dev->release = pmu_dev_release;
9818         ret = device_add(pmu->dev);
9819         if (ret)
9820                 goto free_dev;
9821
9822         /* For PMUs with address filters, throw in an extra attribute: */
9823         if (pmu->nr_addr_filters)
9824                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9825
9826         if (ret)
9827                 goto del_dev;
9828
9829 out:
9830         return ret;
9831
9832 del_dev:
9833         device_del(pmu->dev);
9834
9835 free_dev:
9836         put_device(pmu->dev);
9837         goto out;
9838 }
9839
9840 static struct lock_class_key cpuctx_mutex;
9841 static struct lock_class_key cpuctx_lock;
9842
9843 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9844 {
9845         int cpu, ret;
9846
9847         mutex_lock(&pmus_lock);
9848         ret = -ENOMEM;
9849         pmu->pmu_disable_count = alloc_percpu(int);
9850         if (!pmu->pmu_disable_count)
9851                 goto unlock;
9852
9853         pmu->type = -1;
9854         if (!name)
9855                 goto skip_type;
9856         pmu->name = name;
9857
9858         if (type < 0) {
9859                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9860                 if (type < 0) {
9861                         ret = type;
9862                         goto free_pdc;
9863                 }
9864         }
9865         pmu->type = type;
9866
9867         if (pmu_bus_running) {
9868                 ret = pmu_dev_alloc(pmu);
9869                 if (ret)
9870                         goto free_idr;
9871         }
9872
9873 skip_type:
9874         if (pmu->task_ctx_nr == perf_hw_context) {
9875                 static int hw_context_taken = 0;
9876
9877                 /*
9878                  * Other than systems with heterogeneous CPUs, it never makes
9879                  * sense for two PMUs to share perf_hw_context. PMUs which are
9880                  * uncore must use perf_invalid_context.
9881                  */
9882                 if (WARN_ON_ONCE(hw_context_taken &&
9883                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9884                         pmu->task_ctx_nr = perf_invalid_context;
9885
9886                 hw_context_taken = 1;
9887         }
9888
9889         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9890         if (pmu->pmu_cpu_context)
9891                 goto got_cpu_context;
9892
9893         ret = -ENOMEM;
9894         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9895         if (!pmu->pmu_cpu_context)
9896                 goto free_dev;
9897
9898         for_each_possible_cpu(cpu) {
9899                 struct perf_cpu_context *cpuctx;
9900
9901                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9902                 __perf_event_init_context(&cpuctx->ctx);
9903                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9904                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9905                 cpuctx->ctx.pmu = pmu;
9906                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9907
9908                 __perf_mux_hrtimer_init(cpuctx, cpu);
9909         }
9910
9911 got_cpu_context:
9912         if (!pmu->start_txn) {
9913                 if (pmu->pmu_enable) {
9914                         /*
9915                          * If we have pmu_enable/pmu_disable calls, install
9916                          * transaction stubs that use that to try and batch
9917                          * hardware accesses.
9918                          */
9919                         pmu->start_txn  = perf_pmu_start_txn;
9920                         pmu->commit_txn = perf_pmu_commit_txn;
9921                         pmu->cancel_txn = perf_pmu_cancel_txn;
9922                 } else {
9923                         pmu->start_txn  = perf_pmu_nop_txn;
9924                         pmu->commit_txn = perf_pmu_nop_int;
9925                         pmu->cancel_txn = perf_pmu_nop_void;
9926                 }
9927         }
9928
9929         if (!pmu->pmu_enable) {
9930                 pmu->pmu_enable  = perf_pmu_nop_void;
9931                 pmu->pmu_disable = perf_pmu_nop_void;
9932         }
9933
9934         if (!pmu->check_period)
9935                 pmu->check_period = perf_event_nop_int;
9936
9937         if (!pmu->event_idx)
9938                 pmu->event_idx = perf_event_idx_default;
9939
9940         list_add_rcu(&pmu->entry, &pmus);
9941         atomic_set(&pmu->exclusive_cnt, 0);
9942         ret = 0;
9943 unlock:
9944         mutex_unlock(&pmus_lock);
9945
9946         return ret;
9947
9948 free_dev:
9949         device_del(pmu->dev);
9950         put_device(pmu->dev);
9951
9952 free_idr:
9953         if (pmu->type >= PERF_TYPE_MAX)
9954                 idr_remove(&pmu_idr, pmu->type);
9955
9956 free_pdc:
9957         free_percpu(pmu->pmu_disable_count);
9958         goto unlock;
9959 }
9960 EXPORT_SYMBOL_GPL(perf_pmu_register);
9961
9962 void perf_pmu_unregister(struct pmu *pmu)
9963 {
9964         mutex_lock(&pmus_lock);
9965         list_del_rcu(&pmu->entry);
9966
9967         /*
9968          * We dereference the pmu list under both SRCU and regular RCU, so
9969          * synchronize against both of those.
9970          */
9971         synchronize_srcu(&pmus_srcu);
9972         synchronize_rcu();
9973
9974         free_percpu(pmu->pmu_disable_count);
9975         if (pmu->type >= PERF_TYPE_MAX)
9976                 idr_remove(&pmu_idr, pmu->type);
9977         if (pmu_bus_running) {
9978                 if (pmu->nr_addr_filters)
9979                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9980                 device_del(pmu->dev);
9981                 put_device(pmu->dev);
9982         }
9983         free_pmu_context(pmu);
9984         mutex_unlock(&pmus_lock);
9985 }
9986 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9987
9988 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9989 {
9990         struct perf_event_context *ctx = NULL;
9991         int ret;
9992
9993         if (!try_module_get(pmu->module))
9994                 return -ENODEV;
9995
9996         /*
9997          * A number of pmu->event_init() methods iterate the sibling_list to,
9998          * for example, validate if the group fits on the PMU. Therefore,
9999          * if this is a sibling event, acquire the ctx->mutex to protect
10000          * the sibling_list.
10001          */
10002         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10003                 /*
10004                  * This ctx->mutex can nest when we're called through
10005                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10006                  */
10007                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10008                                                  SINGLE_DEPTH_NESTING);
10009                 BUG_ON(!ctx);
10010         }
10011
10012         event->pmu = pmu;
10013         ret = pmu->event_init(event);
10014
10015         if (ctx)
10016                 perf_event_ctx_unlock(event->group_leader, ctx);
10017
10018         if (!ret) {
10019                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10020                                 event_has_any_exclude_flag(event)) {
10021                         if (event->destroy)
10022                                 event->destroy(event);
10023                         ret = -EINVAL;
10024                 }
10025         }
10026
10027         if (ret)
10028                 module_put(pmu->module);
10029
10030         return ret;
10031 }
10032
10033 static struct pmu *perf_init_event(struct perf_event *event)
10034 {
10035         struct pmu *pmu;
10036         int idx;
10037         int ret;
10038
10039         idx = srcu_read_lock(&pmus_srcu);
10040
10041         /* Try parent's PMU first: */
10042         if (event->parent && event->parent->pmu) {
10043                 pmu = event->parent->pmu;
10044                 ret = perf_try_init_event(pmu, event);
10045                 if (!ret)
10046                         goto unlock;
10047         }
10048
10049         rcu_read_lock();
10050         pmu = idr_find(&pmu_idr, event->attr.type);
10051         rcu_read_unlock();
10052         if (pmu) {
10053                 ret = perf_try_init_event(pmu, event);
10054                 if (ret)
10055                         pmu = ERR_PTR(ret);
10056                 goto unlock;
10057         }
10058
10059         list_for_each_entry_rcu(pmu, &pmus, entry) {
10060                 ret = perf_try_init_event(pmu, event);
10061                 if (!ret)
10062                         goto unlock;
10063
10064                 if (ret != -ENOENT) {
10065                         pmu = ERR_PTR(ret);
10066                         goto unlock;
10067                 }
10068         }
10069         pmu = ERR_PTR(-ENOENT);
10070 unlock:
10071         srcu_read_unlock(&pmus_srcu, idx);
10072
10073         return pmu;
10074 }
10075
10076 static void attach_sb_event(struct perf_event *event)
10077 {
10078         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10079
10080         raw_spin_lock(&pel->lock);
10081         list_add_rcu(&event->sb_list, &pel->list);
10082         raw_spin_unlock(&pel->lock);
10083 }
10084
10085 /*
10086  * We keep a list of all !task (and therefore per-cpu) events
10087  * that need to receive side-band records.
10088  *
10089  * This avoids having to scan all the various PMU per-cpu contexts
10090  * looking for them.
10091  */
10092 static void account_pmu_sb_event(struct perf_event *event)
10093 {
10094         if (is_sb_event(event))
10095                 attach_sb_event(event);
10096 }
10097
10098 static void account_event_cpu(struct perf_event *event, int cpu)
10099 {
10100         if (event->parent)
10101                 return;
10102
10103         if (is_cgroup_event(event))
10104                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10105 }
10106
10107 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10108 static void account_freq_event_nohz(void)
10109 {
10110 #ifdef CONFIG_NO_HZ_FULL
10111         /* Lock so we don't race with concurrent unaccount */
10112         spin_lock(&nr_freq_lock);
10113         if (atomic_inc_return(&nr_freq_events) == 1)
10114                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10115         spin_unlock(&nr_freq_lock);
10116 #endif
10117 }
10118
10119 static void account_freq_event(void)
10120 {
10121         if (tick_nohz_full_enabled())
10122                 account_freq_event_nohz();
10123         else
10124                 atomic_inc(&nr_freq_events);
10125 }
10126
10127
10128 static void account_event(struct perf_event *event)
10129 {
10130         bool inc = false;
10131
10132         if (event->parent)
10133                 return;
10134
10135         if (event->attach_state & PERF_ATTACH_TASK)
10136                 inc = true;
10137         if (event->attr.mmap || event->attr.mmap_data)
10138                 atomic_inc(&nr_mmap_events);
10139         if (event->attr.comm)
10140                 atomic_inc(&nr_comm_events);
10141         if (event->attr.namespaces)
10142                 atomic_inc(&nr_namespaces_events);
10143         if (event->attr.task)
10144                 atomic_inc(&nr_task_events);
10145         if (event->attr.freq)
10146                 account_freq_event();
10147         if (event->attr.context_switch) {
10148                 atomic_inc(&nr_switch_events);
10149                 inc = true;
10150         }
10151         if (has_branch_stack(event))
10152                 inc = true;
10153         if (is_cgroup_event(event))
10154                 inc = true;
10155         if (event->attr.ksymbol)
10156                 atomic_inc(&nr_ksymbol_events);
10157         if (event->attr.bpf_event)
10158                 atomic_inc(&nr_bpf_events);
10159
10160         if (inc) {
10161                 /*
10162                  * We need the mutex here because static_branch_enable()
10163                  * must complete *before* the perf_sched_count increment
10164                  * becomes visible.
10165                  */
10166                 if (atomic_inc_not_zero(&perf_sched_count))
10167                         goto enabled;
10168
10169                 mutex_lock(&perf_sched_mutex);
10170                 if (!atomic_read(&perf_sched_count)) {
10171                         static_branch_enable(&perf_sched_events);
10172                         /*
10173                          * Guarantee that all CPUs observe they key change and
10174                          * call the perf scheduling hooks before proceeding to
10175                          * install events that need them.
10176                          */
10177                         synchronize_rcu();
10178                 }
10179                 /*
10180                  * Now that we have waited for the sync_sched(), allow further
10181                  * increments to by-pass the mutex.
10182                  */
10183                 atomic_inc(&perf_sched_count);
10184                 mutex_unlock(&perf_sched_mutex);
10185         }
10186 enabled:
10187
10188         account_event_cpu(event, event->cpu);
10189
10190         account_pmu_sb_event(event);
10191 }
10192
10193 /*
10194  * Allocate and initialize an event structure
10195  */
10196 static struct perf_event *
10197 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10198                  struct task_struct *task,
10199                  struct perf_event *group_leader,
10200                  struct perf_event *parent_event,
10201                  perf_overflow_handler_t overflow_handler,
10202                  void *context, int cgroup_fd)
10203 {
10204         struct pmu *pmu;
10205         struct perf_event *event;
10206         struct hw_perf_event *hwc;
10207         long err = -EINVAL;
10208
10209         if ((unsigned)cpu >= nr_cpu_ids) {
10210                 if (!task || cpu != -1)
10211                         return ERR_PTR(-EINVAL);
10212         }
10213
10214         event = kzalloc(sizeof(*event), GFP_KERNEL);
10215         if (!event)
10216                 return ERR_PTR(-ENOMEM);
10217
10218         /*
10219          * Single events are their own group leaders, with an
10220          * empty sibling list:
10221          */
10222         if (!group_leader)
10223                 group_leader = event;
10224
10225         mutex_init(&event->child_mutex);
10226         INIT_LIST_HEAD(&event->child_list);
10227
10228         INIT_LIST_HEAD(&event->event_entry);
10229         INIT_LIST_HEAD(&event->sibling_list);
10230         INIT_LIST_HEAD(&event->active_list);
10231         init_event_group(event);
10232         INIT_LIST_HEAD(&event->rb_entry);
10233         INIT_LIST_HEAD(&event->active_entry);
10234         INIT_LIST_HEAD(&event->addr_filters.list);
10235         INIT_HLIST_NODE(&event->hlist_entry);
10236
10237
10238         init_waitqueue_head(&event->waitq);
10239         init_irq_work(&event->pending, perf_pending_event);
10240
10241         mutex_init(&event->mmap_mutex);
10242         raw_spin_lock_init(&event->addr_filters.lock);
10243
10244         atomic_long_set(&event->refcount, 1);
10245         event->cpu              = cpu;
10246         event->attr             = *attr;
10247         event->group_leader     = group_leader;
10248         event->pmu              = NULL;
10249         event->oncpu            = -1;
10250
10251         event->parent           = parent_event;
10252
10253         event->ns               = get_pid_ns(task_active_pid_ns(current));
10254         event->id               = atomic64_inc_return(&perf_event_id);
10255
10256         event->state            = PERF_EVENT_STATE_INACTIVE;
10257
10258         if (task) {
10259                 event->attach_state = PERF_ATTACH_TASK;
10260                 /*
10261                  * XXX pmu::event_init needs to know what task to account to
10262                  * and we cannot use the ctx information because we need the
10263                  * pmu before we get a ctx.
10264                  */
10265                 get_task_struct(task);
10266                 event->hw.target = task;
10267         }
10268
10269         event->clock = &local_clock;
10270         if (parent_event)
10271                 event->clock = parent_event->clock;
10272
10273         if (!overflow_handler && parent_event) {
10274                 overflow_handler = parent_event->overflow_handler;
10275                 context = parent_event->overflow_handler_context;
10276 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10277                 if (overflow_handler == bpf_overflow_handler) {
10278                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10279
10280                         if (IS_ERR(prog)) {
10281                                 err = PTR_ERR(prog);
10282                                 goto err_ns;
10283                         }
10284                         event->prog = prog;
10285                         event->orig_overflow_handler =
10286                                 parent_event->orig_overflow_handler;
10287                 }
10288 #endif
10289         }
10290
10291         if (overflow_handler) {
10292                 event->overflow_handler = overflow_handler;
10293                 event->overflow_handler_context = context;
10294         } else if (is_write_backward(event)){
10295                 event->overflow_handler = perf_event_output_backward;
10296                 event->overflow_handler_context = NULL;
10297         } else {
10298                 event->overflow_handler = perf_event_output_forward;
10299                 event->overflow_handler_context = NULL;
10300         }
10301
10302         perf_event__state_init(event);
10303
10304         pmu = NULL;
10305
10306         hwc = &event->hw;
10307         hwc->sample_period = attr->sample_period;
10308         if (attr->freq && attr->sample_freq)
10309                 hwc->sample_period = 1;
10310         hwc->last_period = hwc->sample_period;
10311
10312         local64_set(&hwc->period_left, hwc->sample_period);
10313
10314         /*
10315          * We currently do not support PERF_SAMPLE_READ on inherited events.
10316          * See perf_output_read().
10317          */
10318         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10319                 goto err_ns;
10320
10321         if (!has_branch_stack(event))
10322                 event->attr.branch_sample_type = 0;
10323
10324         if (cgroup_fd != -1) {
10325                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10326                 if (err)
10327                         goto err_ns;
10328         }
10329
10330         pmu = perf_init_event(event);
10331         if (IS_ERR(pmu)) {
10332                 err = PTR_ERR(pmu);
10333                 goto err_ns;
10334         }
10335
10336         err = exclusive_event_init(event);
10337         if (err)
10338                 goto err_pmu;
10339
10340         if (has_addr_filter(event)) {
10341                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10342                                                     sizeof(struct perf_addr_filter_range),
10343                                                     GFP_KERNEL);
10344                 if (!event->addr_filter_ranges) {
10345                         err = -ENOMEM;
10346                         goto err_per_task;
10347                 }
10348
10349                 /*
10350                  * Clone the parent's vma offsets: they are valid until exec()
10351                  * even if the mm is not shared with the parent.
10352                  */
10353                 if (event->parent) {
10354                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10355
10356                         raw_spin_lock_irq(&ifh->lock);
10357                         memcpy(event->addr_filter_ranges,
10358                                event->parent->addr_filter_ranges,
10359                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10360                         raw_spin_unlock_irq(&ifh->lock);
10361                 }
10362
10363                 /* force hw sync on the address filters */
10364                 event->addr_filters_gen = 1;
10365         }
10366
10367         if (!event->parent) {
10368                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10369                         err = get_callchain_buffers(attr->sample_max_stack);
10370                         if (err)
10371                                 goto err_addr_filters;
10372                 }
10373         }
10374
10375         /* symmetric to unaccount_event() in _free_event() */
10376         account_event(event);
10377
10378         return event;
10379
10380 err_addr_filters:
10381         kfree(event->addr_filter_ranges);
10382
10383 err_per_task:
10384         exclusive_event_destroy(event);
10385
10386 err_pmu:
10387         if (event->destroy)
10388                 event->destroy(event);
10389         module_put(pmu->module);
10390 err_ns:
10391         if (is_cgroup_event(event))
10392                 perf_detach_cgroup(event);
10393         if (event->ns)
10394                 put_pid_ns(event->ns);
10395         if (event->hw.target)
10396                 put_task_struct(event->hw.target);
10397         kfree(event);
10398
10399         return ERR_PTR(err);
10400 }
10401
10402 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10403                           struct perf_event_attr *attr)
10404 {
10405         u32 size;
10406         int ret;
10407
10408         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10409                 return -EFAULT;
10410
10411         /*
10412          * zero the full structure, so that a short copy will be nice.
10413          */
10414         memset(attr, 0, sizeof(*attr));
10415
10416         ret = get_user(size, &uattr->size);
10417         if (ret)
10418                 return ret;
10419
10420         if (size > PAGE_SIZE)   /* silly large */
10421                 goto err_size;
10422
10423         if (!size)              /* abi compat */
10424                 size = PERF_ATTR_SIZE_VER0;
10425
10426         if (size < PERF_ATTR_SIZE_VER0)
10427                 goto err_size;
10428
10429         /*
10430          * If we're handed a bigger struct than we know of,
10431          * ensure all the unknown bits are 0 - i.e. new
10432          * user-space does not rely on any kernel feature
10433          * extensions we dont know about yet.
10434          */
10435         if (size > sizeof(*attr)) {
10436                 unsigned char __user *addr;
10437                 unsigned char __user *end;
10438                 unsigned char val;
10439
10440                 addr = (void __user *)uattr + sizeof(*attr);
10441                 end  = (void __user *)uattr + size;
10442
10443                 for (; addr < end; addr++) {
10444                         ret = get_user(val, addr);
10445                         if (ret)
10446                                 return ret;
10447                         if (val)
10448                                 goto err_size;
10449                 }
10450                 size = sizeof(*attr);
10451         }
10452
10453         ret = copy_from_user(attr, uattr, size);
10454         if (ret)
10455                 return -EFAULT;
10456
10457         attr->size = size;
10458
10459         if (attr->__reserved_1)
10460                 return -EINVAL;
10461
10462         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10463                 return -EINVAL;
10464
10465         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10466                 return -EINVAL;
10467
10468         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10469                 u64 mask = attr->branch_sample_type;
10470
10471                 /* only using defined bits */
10472                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10473                         return -EINVAL;
10474
10475                 /* at least one branch bit must be set */
10476                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10477                         return -EINVAL;
10478
10479                 /* propagate priv level, when not set for branch */
10480                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10481
10482                         /* exclude_kernel checked on syscall entry */
10483                         if (!attr->exclude_kernel)
10484                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10485
10486                         if (!attr->exclude_user)
10487                                 mask |= PERF_SAMPLE_BRANCH_USER;
10488
10489                         if (!attr->exclude_hv)
10490                                 mask |= PERF_SAMPLE_BRANCH_HV;
10491                         /*
10492                          * adjust user setting (for HW filter setup)
10493                          */
10494                         attr->branch_sample_type = mask;
10495                 }
10496                 /* privileged levels capture (kernel, hv): check permissions */
10497                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10498                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10499                         return -EACCES;
10500         }
10501
10502         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10503                 ret = perf_reg_validate(attr->sample_regs_user);
10504                 if (ret)
10505                         return ret;
10506         }
10507
10508         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10509                 if (!arch_perf_have_user_stack_dump())
10510                         return -ENOSYS;
10511
10512                 /*
10513                  * We have __u32 type for the size, but so far
10514                  * we can only use __u16 as maximum due to the
10515                  * __u16 sample size limit.
10516                  */
10517                 if (attr->sample_stack_user >= USHRT_MAX)
10518                         return -EINVAL;
10519                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10520                         return -EINVAL;
10521         }
10522
10523         if (!attr->sample_max_stack)
10524                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10525
10526         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10527                 ret = perf_reg_validate(attr->sample_regs_intr);
10528 out:
10529         return ret;
10530
10531 err_size:
10532         put_user(sizeof(*attr), &uattr->size);
10533         ret = -E2BIG;
10534         goto out;
10535 }
10536
10537 static int
10538 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10539 {
10540         struct ring_buffer *rb = NULL;
10541         int ret = -EINVAL;
10542
10543         if (!output_event)
10544                 goto set;
10545
10546         /* don't allow circular references */
10547         if (event == output_event)
10548                 goto out;
10549
10550         /*
10551          * Don't allow cross-cpu buffers
10552          */
10553         if (output_event->cpu != event->cpu)
10554                 goto out;
10555
10556         /*
10557          * If its not a per-cpu rb, it must be the same task.
10558          */
10559         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10560                 goto out;
10561
10562         /*
10563          * Mixing clocks in the same buffer is trouble you don't need.
10564          */
10565         if (output_event->clock != event->clock)
10566                 goto out;
10567
10568         /*
10569          * Either writing ring buffer from beginning or from end.
10570          * Mixing is not allowed.
10571          */
10572         if (is_write_backward(output_event) != is_write_backward(event))
10573                 goto out;
10574
10575         /*
10576          * If both events generate aux data, they must be on the same PMU
10577          */
10578         if (has_aux(event) && has_aux(output_event) &&
10579             event->pmu != output_event->pmu)
10580                 goto out;
10581
10582 set:
10583         mutex_lock(&event->mmap_mutex);
10584         /* Can't redirect output if we've got an active mmap() */
10585         if (atomic_read(&event->mmap_count))
10586                 goto unlock;
10587
10588         if (output_event) {
10589                 /* get the rb we want to redirect to */
10590                 rb = ring_buffer_get(output_event);
10591                 if (!rb)
10592                         goto unlock;
10593         }
10594
10595         ring_buffer_attach(event, rb);
10596
10597         ret = 0;
10598 unlock:
10599         mutex_unlock(&event->mmap_mutex);
10600
10601 out:
10602         return ret;
10603 }
10604
10605 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10606 {
10607         if (b < a)
10608                 swap(a, b);
10609
10610         mutex_lock(a);
10611         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10612 }
10613
10614 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10615 {
10616         bool nmi_safe = false;
10617
10618         switch (clk_id) {
10619         case CLOCK_MONOTONIC:
10620                 event->clock = &ktime_get_mono_fast_ns;
10621                 nmi_safe = true;
10622                 break;
10623
10624         case CLOCK_MONOTONIC_RAW:
10625                 event->clock = &ktime_get_raw_fast_ns;
10626                 nmi_safe = true;
10627                 break;
10628
10629         case CLOCK_REALTIME:
10630                 event->clock = &ktime_get_real_ns;
10631                 break;
10632
10633         case CLOCK_BOOTTIME:
10634                 event->clock = &ktime_get_boot_ns;
10635                 break;
10636
10637         case CLOCK_TAI:
10638                 event->clock = &ktime_get_tai_ns;
10639                 break;
10640
10641         default:
10642                 return -EINVAL;
10643         }
10644
10645         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10646                 return -EINVAL;
10647
10648         return 0;
10649 }
10650
10651 /*
10652  * Variation on perf_event_ctx_lock_nested(), except we take two context
10653  * mutexes.
10654  */
10655 static struct perf_event_context *
10656 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10657                              struct perf_event_context *ctx)
10658 {
10659         struct perf_event_context *gctx;
10660
10661 again:
10662         rcu_read_lock();
10663         gctx = READ_ONCE(group_leader->ctx);
10664         if (!refcount_inc_not_zero(&gctx->refcount)) {
10665                 rcu_read_unlock();
10666                 goto again;
10667         }
10668         rcu_read_unlock();
10669
10670         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10671
10672         if (group_leader->ctx != gctx) {
10673                 mutex_unlock(&ctx->mutex);
10674                 mutex_unlock(&gctx->mutex);
10675                 put_ctx(gctx);
10676                 goto again;
10677         }
10678
10679         return gctx;
10680 }
10681
10682 /**
10683  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10684  *
10685  * @attr_uptr:  event_id type attributes for monitoring/sampling
10686  * @pid:                target pid
10687  * @cpu:                target cpu
10688  * @group_fd:           group leader event fd
10689  */
10690 SYSCALL_DEFINE5(perf_event_open,
10691                 struct perf_event_attr __user *, attr_uptr,
10692                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10693 {
10694         struct perf_event *group_leader = NULL, *output_event = NULL;
10695         struct perf_event *event, *sibling;
10696         struct perf_event_attr attr;
10697         struct perf_event_context *ctx, *uninitialized_var(gctx);
10698         struct file *event_file = NULL;
10699         struct fd group = {NULL, 0};
10700         struct task_struct *task = NULL;
10701         struct pmu *pmu;
10702         int event_fd;
10703         int move_group = 0;
10704         int err;
10705         int f_flags = O_RDWR;
10706         int cgroup_fd = -1;
10707
10708         /* for future expandability... */
10709         if (flags & ~PERF_FLAG_ALL)
10710                 return -EINVAL;
10711
10712         err = perf_copy_attr(attr_uptr, &attr);
10713         if (err)
10714                 return err;
10715
10716         if (!attr.exclude_kernel) {
10717                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10718                         return -EACCES;
10719         }
10720
10721         if (attr.namespaces) {
10722                 if (!capable(CAP_SYS_ADMIN))
10723                         return -EACCES;
10724         }
10725
10726         if (attr.freq) {
10727                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10728                         return -EINVAL;
10729         } else {
10730                 if (attr.sample_period & (1ULL << 63))
10731                         return -EINVAL;
10732         }
10733
10734         /* Only privileged users can get physical addresses */
10735         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10736             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10737                 return -EACCES;
10738
10739         /*
10740          * In cgroup mode, the pid argument is used to pass the fd
10741          * opened to the cgroup directory in cgroupfs. The cpu argument
10742          * designates the cpu on which to monitor threads from that
10743          * cgroup.
10744          */
10745         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10746                 return -EINVAL;
10747
10748         if (flags & PERF_FLAG_FD_CLOEXEC)
10749                 f_flags |= O_CLOEXEC;
10750
10751         event_fd = get_unused_fd_flags(f_flags);
10752         if (event_fd < 0)
10753                 return event_fd;
10754
10755         if (group_fd != -1) {
10756                 err = perf_fget_light(group_fd, &group);
10757                 if (err)
10758                         goto err_fd;
10759                 group_leader = group.file->private_data;
10760                 if (flags & PERF_FLAG_FD_OUTPUT)
10761                         output_event = group_leader;
10762                 if (flags & PERF_FLAG_FD_NO_GROUP)
10763                         group_leader = NULL;
10764         }
10765
10766         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10767                 task = find_lively_task_by_vpid(pid);
10768                 if (IS_ERR(task)) {
10769                         err = PTR_ERR(task);
10770                         goto err_group_fd;
10771                 }
10772         }
10773
10774         if (task && group_leader &&
10775             group_leader->attr.inherit != attr.inherit) {
10776                 err = -EINVAL;
10777                 goto err_task;
10778         }
10779
10780         if (task) {
10781                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10782                 if (err)
10783                         goto err_task;
10784
10785                 /*
10786                  * Reuse ptrace permission checks for now.
10787                  *
10788                  * We must hold cred_guard_mutex across this and any potential
10789                  * perf_install_in_context() call for this new event to
10790                  * serialize against exec() altering our credentials (and the
10791                  * perf_event_exit_task() that could imply).
10792                  */
10793                 err = -EACCES;
10794                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10795                         goto err_cred;
10796         }
10797
10798         if (flags & PERF_FLAG_PID_CGROUP)
10799                 cgroup_fd = pid;
10800
10801         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10802                                  NULL, NULL, cgroup_fd);
10803         if (IS_ERR(event)) {
10804                 err = PTR_ERR(event);
10805                 goto err_cred;
10806         }
10807
10808         if (is_sampling_event(event)) {
10809                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10810                         err = -EOPNOTSUPP;
10811                         goto err_alloc;
10812                 }
10813         }
10814
10815         /*
10816          * Special case software events and allow them to be part of
10817          * any hardware group.
10818          */
10819         pmu = event->pmu;
10820
10821         if (attr.use_clockid) {
10822                 err = perf_event_set_clock(event, attr.clockid);
10823                 if (err)
10824                         goto err_alloc;
10825         }
10826
10827         if (pmu->task_ctx_nr == perf_sw_context)
10828                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10829
10830         if (group_leader) {
10831                 if (is_software_event(event) &&
10832                     !in_software_context(group_leader)) {
10833                         /*
10834                          * If the event is a sw event, but the group_leader
10835                          * is on hw context.
10836                          *
10837                          * Allow the addition of software events to hw
10838                          * groups, this is safe because software events
10839                          * never fail to schedule.
10840                          */
10841                         pmu = group_leader->ctx->pmu;
10842                 } else if (!is_software_event(event) &&
10843                            is_software_event(group_leader) &&
10844                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10845                         /*
10846                          * In case the group is a pure software group, and we
10847                          * try to add a hardware event, move the whole group to
10848                          * the hardware context.
10849                          */
10850                         move_group = 1;
10851                 }
10852         }
10853
10854         /*
10855          * Get the target context (task or percpu):
10856          */
10857         ctx = find_get_context(pmu, task, event);
10858         if (IS_ERR(ctx)) {
10859                 err = PTR_ERR(ctx);
10860                 goto err_alloc;
10861         }
10862
10863         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10864                 err = -EBUSY;
10865                 goto err_context;
10866         }
10867
10868         /*
10869          * Look up the group leader (we will attach this event to it):
10870          */
10871         if (group_leader) {
10872                 err = -EINVAL;
10873
10874                 /*
10875                  * Do not allow a recursive hierarchy (this new sibling
10876                  * becoming part of another group-sibling):
10877                  */
10878                 if (group_leader->group_leader != group_leader)
10879                         goto err_context;
10880
10881                 /* All events in a group should have the same clock */
10882                 if (group_leader->clock != event->clock)
10883                         goto err_context;
10884
10885                 /*
10886                  * Make sure we're both events for the same CPU;
10887                  * grouping events for different CPUs is broken; since
10888                  * you can never concurrently schedule them anyhow.
10889                  */
10890                 if (group_leader->cpu != event->cpu)
10891                         goto err_context;
10892
10893                 /*
10894                  * Make sure we're both on the same task, or both
10895                  * per-CPU events.
10896                  */
10897                 if (group_leader->ctx->task != ctx->task)
10898                         goto err_context;
10899
10900                 /*
10901                  * Do not allow to attach to a group in a different task
10902                  * or CPU context. If we're moving SW events, we'll fix
10903                  * this up later, so allow that.
10904                  */
10905                 if (!move_group && group_leader->ctx != ctx)
10906                         goto err_context;
10907
10908                 /*
10909                  * Only a group leader can be exclusive or pinned
10910                  */
10911                 if (attr.exclusive || attr.pinned)
10912                         goto err_context;
10913         }
10914
10915         if (output_event) {
10916                 err = perf_event_set_output(event, output_event);
10917                 if (err)
10918                         goto err_context;
10919         }
10920
10921         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10922                                         f_flags);
10923         if (IS_ERR(event_file)) {
10924                 err = PTR_ERR(event_file);
10925                 event_file = NULL;
10926                 goto err_context;
10927         }
10928
10929         if (move_group) {
10930                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10931
10932                 if (gctx->task == TASK_TOMBSTONE) {
10933                         err = -ESRCH;
10934                         goto err_locked;
10935                 }
10936
10937                 /*
10938                  * Check if we raced against another sys_perf_event_open() call
10939                  * moving the software group underneath us.
10940                  */
10941                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10942                         /*
10943                          * If someone moved the group out from under us, check
10944                          * if this new event wound up on the same ctx, if so
10945                          * its the regular !move_group case, otherwise fail.
10946                          */
10947                         if (gctx != ctx) {
10948                                 err = -EINVAL;
10949                                 goto err_locked;
10950                         } else {
10951                                 perf_event_ctx_unlock(group_leader, gctx);
10952                                 move_group = 0;
10953                         }
10954                 }
10955         } else {
10956                 mutex_lock(&ctx->mutex);
10957         }
10958
10959         if (ctx->task == TASK_TOMBSTONE) {
10960                 err = -ESRCH;
10961                 goto err_locked;
10962         }
10963
10964         if (!perf_event_validate_size(event)) {
10965                 err = -E2BIG;
10966                 goto err_locked;
10967         }
10968
10969         if (!task) {
10970                 /*
10971                  * Check if the @cpu we're creating an event for is online.
10972                  *
10973                  * We use the perf_cpu_context::ctx::mutex to serialize against
10974                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10975                  */
10976                 struct perf_cpu_context *cpuctx =
10977                         container_of(ctx, struct perf_cpu_context, ctx);
10978
10979                 if (!cpuctx->online) {
10980                         err = -ENODEV;
10981                         goto err_locked;
10982                 }
10983         }
10984
10985
10986         /*
10987          * Must be under the same ctx::mutex as perf_install_in_context(),
10988          * because we need to serialize with concurrent event creation.
10989          */
10990         if (!exclusive_event_installable(event, ctx)) {
10991                 /* exclusive and group stuff are assumed mutually exclusive */
10992                 WARN_ON_ONCE(move_group);
10993
10994                 err = -EBUSY;
10995                 goto err_locked;
10996         }
10997
10998         WARN_ON_ONCE(ctx->parent_ctx);
10999
11000         /*
11001          * This is the point on no return; we cannot fail hereafter. This is
11002          * where we start modifying current state.
11003          */
11004
11005         if (move_group) {
11006                 /*
11007                  * See perf_event_ctx_lock() for comments on the details
11008                  * of swizzling perf_event::ctx.
11009                  */
11010                 perf_remove_from_context(group_leader, 0);
11011                 put_ctx(gctx);
11012
11013                 for_each_sibling_event(sibling, group_leader) {
11014                         perf_remove_from_context(sibling, 0);
11015                         put_ctx(gctx);
11016                 }
11017
11018                 /*
11019                  * Wait for everybody to stop referencing the events through
11020                  * the old lists, before installing it on new lists.
11021                  */
11022                 synchronize_rcu();
11023
11024                 /*
11025                  * Install the group siblings before the group leader.
11026                  *
11027                  * Because a group leader will try and install the entire group
11028                  * (through the sibling list, which is still in-tact), we can
11029                  * end up with siblings installed in the wrong context.
11030                  *
11031                  * By installing siblings first we NO-OP because they're not
11032                  * reachable through the group lists.
11033                  */
11034                 for_each_sibling_event(sibling, group_leader) {
11035                         perf_event__state_init(sibling);
11036                         perf_install_in_context(ctx, sibling, sibling->cpu);
11037                         get_ctx(ctx);
11038                 }
11039
11040                 /*
11041                  * Removing from the context ends up with disabled
11042                  * event. What we want here is event in the initial
11043                  * startup state, ready to be add into new context.
11044                  */
11045                 perf_event__state_init(group_leader);
11046                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11047                 get_ctx(ctx);
11048         }
11049
11050         /*
11051          * Precalculate sample_data sizes; do while holding ctx::mutex such
11052          * that we're serialized against further additions and before
11053          * perf_install_in_context() which is the point the event is active and
11054          * can use these values.
11055          */
11056         perf_event__header_size(event);
11057         perf_event__id_header_size(event);
11058
11059         event->owner = current;
11060
11061         perf_install_in_context(ctx, event, event->cpu);
11062         perf_unpin_context(ctx);
11063
11064         if (move_group)
11065                 perf_event_ctx_unlock(group_leader, gctx);
11066         mutex_unlock(&ctx->mutex);
11067
11068         if (task) {
11069                 mutex_unlock(&task->signal->cred_guard_mutex);
11070                 put_task_struct(task);
11071         }
11072
11073         mutex_lock(&current->perf_event_mutex);
11074         list_add_tail(&event->owner_entry, &current->perf_event_list);
11075         mutex_unlock(&current->perf_event_mutex);
11076
11077         /*
11078          * Drop the reference on the group_event after placing the
11079          * new event on the sibling_list. This ensures destruction
11080          * of the group leader will find the pointer to itself in
11081          * perf_group_detach().
11082          */
11083         fdput(group);
11084         fd_install(event_fd, event_file);
11085         return event_fd;
11086
11087 err_locked:
11088         if (move_group)
11089                 perf_event_ctx_unlock(group_leader, gctx);
11090         mutex_unlock(&ctx->mutex);
11091 /* err_file: */
11092         fput(event_file);
11093 err_context:
11094         perf_unpin_context(ctx);
11095         put_ctx(ctx);
11096 err_alloc:
11097         /*
11098          * If event_file is set, the fput() above will have called ->release()
11099          * and that will take care of freeing the event.
11100          */
11101         if (!event_file)
11102                 free_event(event);
11103 err_cred:
11104         if (task)
11105                 mutex_unlock(&task->signal->cred_guard_mutex);
11106 err_task:
11107         if (task)
11108                 put_task_struct(task);
11109 err_group_fd:
11110         fdput(group);
11111 err_fd:
11112         put_unused_fd(event_fd);
11113         return err;
11114 }
11115
11116 /**
11117  * perf_event_create_kernel_counter
11118  *
11119  * @attr: attributes of the counter to create
11120  * @cpu: cpu in which the counter is bound
11121  * @task: task to profile (NULL for percpu)
11122  */
11123 struct perf_event *
11124 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11125                                  struct task_struct *task,
11126                                  perf_overflow_handler_t overflow_handler,
11127                                  void *context)
11128 {
11129         struct perf_event_context *ctx;
11130         struct perf_event *event;
11131         int err;
11132
11133         /*
11134          * Get the target context (task or percpu):
11135          */
11136
11137         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11138                                  overflow_handler, context, -1);
11139         if (IS_ERR(event)) {
11140                 err = PTR_ERR(event);
11141                 goto err;
11142         }
11143
11144         /* Mark owner so we could distinguish it from user events. */
11145         event->owner = TASK_TOMBSTONE;
11146
11147         ctx = find_get_context(event->pmu, task, event);
11148         if (IS_ERR(ctx)) {
11149                 err = PTR_ERR(ctx);
11150                 goto err_free;
11151         }
11152
11153         WARN_ON_ONCE(ctx->parent_ctx);
11154         mutex_lock(&ctx->mutex);
11155         if (ctx->task == TASK_TOMBSTONE) {
11156                 err = -ESRCH;
11157                 goto err_unlock;
11158         }
11159
11160         if (!task) {
11161                 /*
11162                  * Check if the @cpu we're creating an event for is online.
11163                  *
11164                  * We use the perf_cpu_context::ctx::mutex to serialize against
11165                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11166                  */
11167                 struct perf_cpu_context *cpuctx =
11168                         container_of(ctx, struct perf_cpu_context, ctx);
11169                 if (!cpuctx->online) {
11170                         err = -ENODEV;
11171                         goto err_unlock;
11172                 }
11173         }
11174
11175         if (!exclusive_event_installable(event, ctx)) {
11176                 err = -EBUSY;
11177                 goto err_unlock;
11178         }
11179
11180         perf_install_in_context(ctx, event, cpu);
11181         perf_unpin_context(ctx);
11182         mutex_unlock(&ctx->mutex);
11183
11184         return event;
11185
11186 err_unlock:
11187         mutex_unlock(&ctx->mutex);
11188         perf_unpin_context(ctx);
11189         put_ctx(ctx);
11190 err_free:
11191         free_event(event);
11192 err:
11193         return ERR_PTR(err);
11194 }
11195 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11196
11197 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11198 {
11199         struct perf_event_context *src_ctx;
11200         struct perf_event_context *dst_ctx;
11201         struct perf_event *event, *tmp;
11202         LIST_HEAD(events);
11203
11204         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11205         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11206
11207         /*
11208          * See perf_event_ctx_lock() for comments on the details
11209          * of swizzling perf_event::ctx.
11210          */
11211         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11212         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11213                                  event_entry) {
11214                 perf_remove_from_context(event, 0);
11215                 unaccount_event_cpu(event, src_cpu);
11216                 put_ctx(src_ctx);
11217                 list_add(&event->migrate_entry, &events);
11218         }
11219
11220         /*
11221          * Wait for the events to quiesce before re-instating them.
11222          */
11223         synchronize_rcu();
11224
11225         /*
11226          * Re-instate events in 2 passes.
11227          *
11228          * Skip over group leaders and only install siblings on this first
11229          * pass, siblings will not get enabled without a leader, however a
11230          * leader will enable its siblings, even if those are still on the old
11231          * context.
11232          */
11233         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11234                 if (event->group_leader == event)
11235                         continue;
11236
11237                 list_del(&event->migrate_entry);
11238                 if (event->state >= PERF_EVENT_STATE_OFF)
11239                         event->state = PERF_EVENT_STATE_INACTIVE;
11240                 account_event_cpu(event, dst_cpu);
11241                 perf_install_in_context(dst_ctx, event, dst_cpu);
11242                 get_ctx(dst_ctx);
11243         }
11244
11245         /*
11246          * Once all the siblings are setup properly, install the group leaders
11247          * to make it go.
11248          */
11249         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11250                 list_del(&event->migrate_entry);
11251                 if (event->state >= PERF_EVENT_STATE_OFF)
11252                         event->state = PERF_EVENT_STATE_INACTIVE;
11253                 account_event_cpu(event, dst_cpu);
11254                 perf_install_in_context(dst_ctx, event, dst_cpu);
11255                 get_ctx(dst_ctx);
11256         }
11257         mutex_unlock(&dst_ctx->mutex);
11258         mutex_unlock(&src_ctx->mutex);
11259 }
11260 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11261
11262 static void sync_child_event(struct perf_event *child_event,
11263                                struct task_struct *child)
11264 {
11265         struct perf_event *parent_event = child_event->parent;
11266         u64 child_val;
11267
11268         if (child_event->attr.inherit_stat)
11269                 perf_event_read_event(child_event, child);
11270
11271         child_val = perf_event_count(child_event);
11272
11273         /*
11274          * Add back the child's count to the parent's count:
11275          */
11276         atomic64_add(child_val, &parent_event->child_count);
11277         atomic64_add(child_event->total_time_enabled,
11278                      &parent_event->child_total_time_enabled);
11279         atomic64_add(child_event->total_time_running,
11280                      &parent_event->child_total_time_running);
11281 }
11282
11283 static void
11284 perf_event_exit_event(struct perf_event *child_event,
11285                       struct perf_event_context *child_ctx,
11286                       struct task_struct *child)
11287 {
11288         struct perf_event *parent_event = child_event->parent;
11289
11290         /*
11291          * Do not destroy the 'original' grouping; because of the context
11292          * switch optimization the original events could've ended up in a
11293          * random child task.
11294          *
11295          * If we were to destroy the original group, all group related
11296          * operations would cease to function properly after this random
11297          * child dies.
11298          *
11299          * Do destroy all inherited groups, we don't care about those
11300          * and being thorough is better.
11301          */
11302         raw_spin_lock_irq(&child_ctx->lock);
11303         WARN_ON_ONCE(child_ctx->is_active);
11304
11305         if (parent_event)
11306                 perf_group_detach(child_event);
11307         list_del_event(child_event, child_ctx);
11308         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11309         raw_spin_unlock_irq(&child_ctx->lock);
11310
11311         /*
11312          * Parent events are governed by their filedesc, retain them.
11313          */
11314         if (!parent_event) {
11315                 perf_event_wakeup(child_event);
11316                 return;
11317         }
11318         /*
11319          * Child events can be cleaned up.
11320          */
11321
11322         sync_child_event(child_event, child);
11323
11324         /*
11325          * Remove this event from the parent's list
11326          */
11327         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11328         mutex_lock(&parent_event->child_mutex);
11329         list_del_init(&child_event->child_list);
11330         mutex_unlock(&parent_event->child_mutex);
11331
11332         /*
11333          * Kick perf_poll() for is_event_hup().
11334          */
11335         perf_event_wakeup(parent_event);
11336         free_event(child_event);
11337         put_event(parent_event);
11338 }
11339
11340 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11341 {
11342         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11343         struct perf_event *child_event, *next;
11344
11345         WARN_ON_ONCE(child != current);
11346
11347         child_ctx = perf_pin_task_context(child, ctxn);
11348         if (!child_ctx)
11349                 return;
11350
11351         /*
11352          * In order to reduce the amount of tricky in ctx tear-down, we hold
11353          * ctx::mutex over the entire thing. This serializes against almost
11354          * everything that wants to access the ctx.
11355          *
11356          * The exception is sys_perf_event_open() /
11357          * perf_event_create_kernel_count() which does find_get_context()
11358          * without ctx::mutex (it cannot because of the move_group double mutex
11359          * lock thing). See the comments in perf_install_in_context().
11360          */
11361         mutex_lock(&child_ctx->mutex);
11362
11363         /*
11364          * In a single ctx::lock section, de-schedule the events and detach the
11365          * context from the task such that we cannot ever get it scheduled back
11366          * in.
11367          */
11368         raw_spin_lock_irq(&child_ctx->lock);
11369         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11370
11371         /*
11372          * Now that the context is inactive, destroy the task <-> ctx relation
11373          * and mark the context dead.
11374          */
11375         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11376         put_ctx(child_ctx); /* cannot be last */
11377         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11378         put_task_struct(current); /* cannot be last */
11379
11380         clone_ctx = unclone_ctx(child_ctx);
11381         raw_spin_unlock_irq(&child_ctx->lock);
11382
11383         if (clone_ctx)
11384                 put_ctx(clone_ctx);
11385
11386         /*
11387          * Report the task dead after unscheduling the events so that we
11388          * won't get any samples after PERF_RECORD_EXIT. We can however still
11389          * get a few PERF_RECORD_READ events.
11390          */
11391         perf_event_task(child, child_ctx, 0);
11392
11393         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11394                 perf_event_exit_event(child_event, child_ctx, child);
11395
11396         mutex_unlock(&child_ctx->mutex);
11397
11398         put_ctx(child_ctx);
11399 }
11400
11401 /*
11402  * When a child task exits, feed back event values to parent events.
11403  *
11404  * Can be called with cred_guard_mutex held when called from
11405  * install_exec_creds().
11406  */
11407 void perf_event_exit_task(struct task_struct *child)
11408 {
11409         struct perf_event *event, *tmp;
11410         int ctxn;
11411
11412         mutex_lock(&child->perf_event_mutex);
11413         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11414                                  owner_entry) {
11415                 list_del_init(&event->owner_entry);
11416
11417                 /*
11418                  * Ensure the list deletion is visible before we clear
11419                  * the owner, closes a race against perf_release() where
11420                  * we need to serialize on the owner->perf_event_mutex.
11421                  */
11422                 smp_store_release(&event->owner, NULL);
11423         }
11424         mutex_unlock(&child->perf_event_mutex);
11425
11426         for_each_task_context_nr(ctxn)
11427                 perf_event_exit_task_context(child, ctxn);
11428
11429         /*
11430          * The perf_event_exit_task_context calls perf_event_task
11431          * with child's task_ctx, which generates EXIT events for
11432          * child contexts and sets child->perf_event_ctxp[] to NULL.
11433          * At this point we need to send EXIT events to cpu contexts.
11434          */
11435         perf_event_task(child, NULL, 0);
11436 }
11437
11438 static void perf_free_event(struct perf_event *event,
11439                             struct perf_event_context *ctx)
11440 {
11441         struct perf_event *parent = event->parent;
11442
11443         if (WARN_ON_ONCE(!parent))
11444                 return;
11445
11446         mutex_lock(&parent->child_mutex);
11447         list_del_init(&event->child_list);
11448         mutex_unlock(&parent->child_mutex);
11449
11450         put_event(parent);
11451
11452         raw_spin_lock_irq(&ctx->lock);
11453         perf_group_detach(event);
11454         list_del_event(event, ctx);
11455         raw_spin_unlock_irq(&ctx->lock);
11456         free_event(event);
11457 }
11458
11459 /*
11460  * Free an unexposed, unused context as created by inheritance by
11461  * perf_event_init_task below, used by fork() in case of fail.
11462  *
11463  * Not all locks are strictly required, but take them anyway to be nice and
11464  * help out with the lockdep assertions.
11465  */
11466 void perf_event_free_task(struct task_struct *task)
11467 {
11468         struct perf_event_context *ctx;
11469         struct perf_event *event, *tmp;
11470         int ctxn;
11471
11472         for_each_task_context_nr(ctxn) {
11473                 ctx = task->perf_event_ctxp[ctxn];
11474                 if (!ctx)
11475                         continue;
11476
11477                 mutex_lock(&ctx->mutex);
11478                 raw_spin_lock_irq(&ctx->lock);
11479                 /*
11480                  * Destroy the task <-> ctx relation and mark the context dead.
11481                  *
11482                  * This is important because even though the task hasn't been
11483                  * exposed yet the context has been (through child_list).
11484                  */
11485                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11486                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11487                 put_task_struct(task); /* cannot be last */
11488                 raw_spin_unlock_irq(&ctx->lock);
11489
11490                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11491                         perf_free_event(event, ctx);
11492
11493                 mutex_unlock(&ctx->mutex);
11494                 put_ctx(ctx);
11495         }
11496 }
11497
11498 void perf_event_delayed_put(struct task_struct *task)
11499 {
11500         int ctxn;
11501
11502         for_each_task_context_nr(ctxn)
11503                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11504 }
11505
11506 struct file *perf_event_get(unsigned int fd)
11507 {
11508         struct file *file;
11509
11510         file = fget_raw(fd);
11511         if (!file)
11512                 return ERR_PTR(-EBADF);
11513
11514         if (file->f_op != &perf_fops) {
11515                 fput(file);
11516                 return ERR_PTR(-EBADF);
11517         }
11518
11519         return file;
11520 }
11521
11522 const struct perf_event *perf_get_event(struct file *file)
11523 {
11524         if (file->f_op != &perf_fops)
11525                 return ERR_PTR(-EINVAL);
11526
11527         return file->private_data;
11528 }
11529
11530 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11531 {
11532         if (!event)
11533                 return ERR_PTR(-EINVAL);
11534
11535         return &event->attr;
11536 }
11537
11538 /*
11539  * Inherit an event from parent task to child task.
11540  *
11541  * Returns:
11542  *  - valid pointer on success
11543  *  - NULL for orphaned events
11544  *  - IS_ERR() on error
11545  */
11546 static struct perf_event *
11547 inherit_event(struct perf_event *parent_event,
11548               struct task_struct *parent,
11549               struct perf_event_context *parent_ctx,
11550               struct task_struct *child,
11551               struct perf_event *group_leader,
11552               struct perf_event_context *child_ctx)
11553 {
11554         enum perf_event_state parent_state = parent_event->state;
11555         struct perf_event *child_event;
11556         unsigned long flags;
11557
11558         /*
11559          * Instead of creating recursive hierarchies of events,
11560          * we link inherited events back to the original parent,
11561          * which has a filp for sure, which we use as the reference
11562          * count:
11563          */
11564         if (parent_event->parent)
11565                 parent_event = parent_event->parent;
11566
11567         child_event = perf_event_alloc(&parent_event->attr,
11568                                            parent_event->cpu,
11569                                            child,
11570                                            group_leader, parent_event,
11571                                            NULL, NULL, -1);
11572         if (IS_ERR(child_event))
11573                 return child_event;
11574
11575
11576         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11577             !child_ctx->task_ctx_data) {
11578                 struct pmu *pmu = child_event->pmu;
11579
11580                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11581                                                    GFP_KERNEL);
11582                 if (!child_ctx->task_ctx_data) {
11583                         free_event(child_event);
11584                         return NULL;
11585                 }
11586         }
11587
11588         /*
11589          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11590          * must be under the same lock in order to serialize against
11591          * perf_event_release_kernel(), such that either we must observe
11592          * is_orphaned_event() or they will observe us on the child_list.
11593          */
11594         mutex_lock(&parent_event->child_mutex);
11595         if (is_orphaned_event(parent_event) ||
11596             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11597                 mutex_unlock(&parent_event->child_mutex);
11598                 /* task_ctx_data is freed with child_ctx */
11599                 free_event(child_event);
11600                 return NULL;
11601         }
11602
11603         get_ctx(child_ctx);
11604
11605         /*
11606          * Make the child state follow the state of the parent event,
11607          * not its attr.disabled bit.  We hold the parent's mutex,
11608          * so we won't race with perf_event_{en, dis}able_family.
11609          */
11610         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11611                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11612         else
11613                 child_event->state = PERF_EVENT_STATE_OFF;
11614
11615         if (parent_event->attr.freq) {
11616                 u64 sample_period = parent_event->hw.sample_period;
11617                 struct hw_perf_event *hwc = &child_event->hw;
11618
11619                 hwc->sample_period = sample_period;
11620                 hwc->last_period   = sample_period;
11621
11622                 local64_set(&hwc->period_left, sample_period);
11623         }
11624
11625         child_event->ctx = child_ctx;
11626         child_event->overflow_handler = parent_event->overflow_handler;
11627         child_event->overflow_handler_context
11628                 = parent_event->overflow_handler_context;
11629
11630         /*
11631          * Precalculate sample_data sizes
11632          */
11633         perf_event__header_size(child_event);
11634         perf_event__id_header_size(child_event);
11635
11636         /*
11637          * Link it up in the child's context:
11638          */
11639         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11640         add_event_to_ctx(child_event, child_ctx);
11641         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11642
11643         /*
11644          * Link this into the parent event's child list
11645          */
11646         list_add_tail(&child_event->child_list, &parent_event->child_list);
11647         mutex_unlock(&parent_event->child_mutex);
11648
11649         return child_event;
11650 }
11651
11652 /*
11653  * Inherits an event group.
11654  *
11655  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11656  * This matches with perf_event_release_kernel() removing all child events.
11657  *
11658  * Returns:
11659  *  - 0 on success
11660  *  - <0 on error
11661  */
11662 static int inherit_group(struct perf_event *parent_event,
11663               struct task_struct *parent,
11664               struct perf_event_context *parent_ctx,
11665               struct task_struct *child,
11666               struct perf_event_context *child_ctx)
11667 {
11668         struct perf_event *leader;
11669         struct perf_event *sub;
11670         struct perf_event *child_ctr;
11671
11672         leader = inherit_event(parent_event, parent, parent_ctx,
11673                                  child, NULL, child_ctx);
11674         if (IS_ERR(leader))
11675                 return PTR_ERR(leader);
11676         /*
11677          * @leader can be NULL here because of is_orphaned_event(). In this
11678          * case inherit_event() will create individual events, similar to what
11679          * perf_group_detach() would do anyway.
11680          */
11681         for_each_sibling_event(sub, parent_event) {
11682                 child_ctr = inherit_event(sub, parent, parent_ctx,
11683                                             child, leader, child_ctx);
11684                 if (IS_ERR(child_ctr))
11685                         return PTR_ERR(child_ctr);
11686         }
11687         return 0;
11688 }
11689
11690 /*
11691  * Creates the child task context and tries to inherit the event-group.
11692  *
11693  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11694  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11695  * consistent with perf_event_release_kernel() removing all child events.
11696  *
11697  * Returns:
11698  *  - 0 on success
11699  *  - <0 on error
11700  */
11701 static int
11702 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11703                    struct perf_event_context *parent_ctx,
11704                    struct task_struct *child, int ctxn,
11705                    int *inherited_all)
11706 {
11707         int ret;
11708         struct perf_event_context *child_ctx;
11709
11710         if (!event->attr.inherit) {
11711                 *inherited_all = 0;
11712                 return 0;
11713         }
11714
11715         child_ctx = child->perf_event_ctxp[ctxn];
11716         if (!child_ctx) {
11717                 /*
11718                  * This is executed from the parent task context, so
11719                  * inherit events that have been marked for cloning.
11720                  * First allocate and initialize a context for the
11721                  * child.
11722                  */
11723                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11724                 if (!child_ctx)
11725                         return -ENOMEM;
11726
11727                 child->perf_event_ctxp[ctxn] = child_ctx;
11728         }
11729
11730         ret = inherit_group(event, parent, parent_ctx,
11731                             child, child_ctx);
11732
11733         if (ret)
11734                 *inherited_all = 0;
11735
11736         return ret;
11737 }
11738
11739 /*
11740  * Initialize the perf_event context in task_struct
11741  */
11742 static int perf_event_init_context(struct task_struct *child, int ctxn)
11743 {
11744         struct perf_event_context *child_ctx, *parent_ctx;
11745         struct perf_event_context *cloned_ctx;
11746         struct perf_event *event;
11747         struct task_struct *parent = current;
11748         int inherited_all = 1;
11749         unsigned long flags;
11750         int ret = 0;
11751
11752         if (likely(!parent->perf_event_ctxp[ctxn]))
11753                 return 0;
11754
11755         /*
11756          * If the parent's context is a clone, pin it so it won't get
11757          * swapped under us.
11758          */
11759         parent_ctx = perf_pin_task_context(parent, ctxn);
11760         if (!parent_ctx)
11761                 return 0;
11762
11763         /*
11764          * No need to check if parent_ctx != NULL here; since we saw
11765          * it non-NULL earlier, the only reason for it to become NULL
11766          * is if we exit, and since we're currently in the middle of
11767          * a fork we can't be exiting at the same time.
11768          */
11769
11770         /*
11771          * Lock the parent list. No need to lock the child - not PID
11772          * hashed yet and not running, so nobody can access it.
11773          */
11774         mutex_lock(&parent_ctx->mutex);
11775
11776         /*
11777          * We dont have to disable NMIs - we are only looking at
11778          * the list, not manipulating it:
11779          */
11780         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11781                 ret = inherit_task_group(event, parent, parent_ctx,
11782                                          child, ctxn, &inherited_all);
11783                 if (ret)
11784                         goto out_unlock;
11785         }
11786
11787         /*
11788          * We can't hold ctx->lock when iterating the ->flexible_group list due
11789          * to allocations, but we need to prevent rotation because
11790          * rotate_ctx() will change the list from interrupt context.
11791          */
11792         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11793         parent_ctx->rotate_disable = 1;
11794         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11795
11796         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11797                 ret = inherit_task_group(event, parent, parent_ctx,
11798                                          child, ctxn, &inherited_all);
11799                 if (ret)
11800                         goto out_unlock;
11801         }
11802
11803         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11804         parent_ctx->rotate_disable = 0;
11805
11806         child_ctx = child->perf_event_ctxp[ctxn];
11807
11808         if (child_ctx && inherited_all) {
11809                 /*
11810                  * Mark the child context as a clone of the parent
11811                  * context, or of whatever the parent is a clone of.
11812                  *
11813                  * Note that if the parent is a clone, the holding of
11814                  * parent_ctx->lock avoids it from being uncloned.
11815                  */
11816                 cloned_ctx = parent_ctx->parent_ctx;
11817                 if (cloned_ctx) {
11818                         child_ctx->parent_ctx = cloned_ctx;
11819                         child_ctx->parent_gen = parent_ctx->parent_gen;
11820                 } else {
11821                         child_ctx->parent_ctx = parent_ctx;
11822                         child_ctx->parent_gen = parent_ctx->generation;
11823                 }
11824                 get_ctx(child_ctx->parent_ctx);
11825         }
11826
11827         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11828 out_unlock:
11829         mutex_unlock(&parent_ctx->mutex);
11830
11831         perf_unpin_context(parent_ctx);
11832         put_ctx(parent_ctx);
11833
11834         return ret;
11835 }
11836
11837 /*
11838  * Initialize the perf_event context in task_struct
11839  */
11840 int perf_event_init_task(struct task_struct *child)
11841 {
11842         int ctxn, ret;
11843
11844         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11845         mutex_init(&child->perf_event_mutex);
11846         INIT_LIST_HEAD(&child->perf_event_list);
11847
11848         for_each_task_context_nr(ctxn) {
11849                 ret = perf_event_init_context(child, ctxn);
11850                 if (ret) {
11851                         perf_event_free_task(child);
11852                         return ret;
11853                 }
11854         }
11855
11856         return 0;
11857 }
11858
11859 static void __init perf_event_init_all_cpus(void)
11860 {
11861         struct swevent_htable *swhash;
11862         int cpu;
11863
11864         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11865
11866         for_each_possible_cpu(cpu) {
11867                 swhash = &per_cpu(swevent_htable, cpu);
11868                 mutex_init(&swhash->hlist_mutex);
11869                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11870
11871                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11872                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11873
11874 #ifdef CONFIG_CGROUP_PERF
11875                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11876 #endif
11877                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11878         }
11879 }
11880
11881 void perf_swevent_init_cpu(unsigned int cpu)
11882 {
11883         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11884
11885         mutex_lock(&swhash->hlist_mutex);
11886         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11887                 struct swevent_hlist *hlist;
11888
11889                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11890                 WARN_ON(!hlist);
11891                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11892         }
11893         mutex_unlock(&swhash->hlist_mutex);
11894 }
11895
11896 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11897 static void __perf_event_exit_context(void *__info)
11898 {
11899         struct perf_event_context *ctx = __info;
11900         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11901         struct perf_event *event;
11902
11903         raw_spin_lock(&ctx->lock);
11904         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11905         list_for_each_entry(event, &ctx->event_list, event_entry)
11906                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11907         raw_spin_unlock(&ctx->lock);
11908 }
11909
11910 static void perf_event_exit_cpu_context(int cpu)
11911 {
11912         struct perf_cpu_context *cpuctx;
11913         struct perf_event_context *ctx;
11914         struct pmu *pmu;
11915
11916         mutex_lock(&pmus_lock);
11917         list_for_each_entry(pmu, &pmus, entry) {
11918                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11919                 ctx = &cpuctx->ctx;
11920
11921                 mutex_lock(&ctx->mutex);
11922                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11923                 cpuctx->online = 0;
11924                 mutex_unlock(&ctx->mutex);
11925         }
11926         cpumask_clear_cpu(cpu, perf_online_mask);
11927         mutex_unlock(&pmus_lock);
11928 }
11929 #else
11930
11931 static void perf_event_exit_cpu_context(int cpu) { }
11932
11933 #endif
11934
11935 int perf_event_init_cpu(unsigned int cpu)
11936 {
11937         struct perf_cpu_context *cpuctx;
11938         struct perf_event_context *ctx;
11939         struct pmu *pmu;
11940
11941         perf_swevent_init_cpu(cpu);
11942
11943         mutex_lock(&pmus_lock);
11944         cpumask_set_cpu(cpu, perf_online_mask);
11945         list_for_each_entry(pmu, &pmus, entry) {
11946                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11947                 ctx = &cpuctx->ctx;
11948
11949                 mutex_lock(&ctx->mutex);
11950                 cpuctx->online = 1;
11951                 mutex_unlock(&ctx->mutex);
11952         }
11953         mutex_unlock(&pmus_lock);
11954
11955         return 0;
11956 }
11957
11958 int perf_event_exit_cpu(unsigned int cpu)
11959 {
11960         perf_event_exit_cpu_context(cpu);
11961         return 0;
11962 }
11963
11964 static int
11965 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11966 {
11967         int cpu;
11968
11969         for_each_online_cpu(cpu)
11970                 perf_event_exit_cpu(cpu);
11971
11972         return NOTIFY_OK;
11973 }
11974
11975 /*
11976  * Run the perf reboot notifier at the very last possible moment so that
11977  * the generic watchdog code runs as long as possible.
11978  */
11979 static struct notifier_block perf_reboot_notifier = {
11980         .notifier_call = perf_reboot,
11981         .priority = INT_MIN,
11982 };
11983
11984 void __init perf_event_init(void)
11985 {
11986         int ret;
11987
11988         idr_init(&pmu_idr);
11989
11990         perf_event_init_all_cpus();
11991         init_srcu_struct(&pmus_srcu);
11992         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11993         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11994         perf_pmu_register(&perf_task_clock, NULL, -1);
11995         perf_tp_register();
11996         perf_event_init_cpu(smp_processor_id());
11997         register_reboot_notifier(&perf_reboot_notifier);
11998
11999         ret = init_hw_breakpoint();
12000         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12001
12002         /*
12003          * Build time assertion that we keep the data_head at the intended
12004          * location.  IOW, validation we got the __reserved[] size right.
12005          */
12006         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12007                      != 1024);
12008 }
12009
12010 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12011                               char *page)
12012 {
12013         struct perf_pmu_events_attr *pmu_attr =
12014                 container_of(attr, struct perf_pmu_events_attr, attr);
12015
12016         if (pmu_attr->event_str)
12017                 return sprintf(page, "%s\n", pmu_attr->event_str);
12018
12019         return 0;
12020 }
12021 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12022
12023 static int __init perf_event_sysfs_init(void)
12024 {
12025         struct pmu *pmu;
12026         int ret;
12027
12028         mutex_lock(&pmus_lock);
12029
12030         ret = bus_register(&pmu_bus);
12031         if (ret)
12032                 goto unlock;
12033
12034         list_for_each_entry(pmu, &pmus, entry) {
12035                 if (!pmu->name || pmu->type < 0)
12036                         continue;
12037
12038                 ret = pmu_dev_alloc(pmu);
12039                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12040         }
12041         pmu_bus_running = 1;
12042         ret = 0;
12043
12044 unlock:
12045         mutex_unlock(&pmus_lock);
12046
12047         return ret;
12048 }
12049 device_initcall(perf_event_sysfs_init);
12050
12051 #ifdef CONFIG_CGROUP_PERF
12052 static struct cgroup_subsys_state *
12053 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12054 {
12055         struct perf_cgroup *jc;
12056
12057         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12058         if (!jc)
12059                 return ERR_PTR(-ENOMEM);
12060
12061         jc->info = alloc_percpu(struct perf_cgroup_info);
12062         if (!jc->info) {
12063                 kfree(jc);
12064                 return ERR_PTR(-ENOMEM);
12065         }
12066
12067         return &jc->css;
12068 }
12069
12070 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12071 {
12072         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12073
12074         free_percpu(jc->info);
12075         kfree(jc);
12076 }
12077
12078 static int __perf_cgroup_move(void *info)
12079 {
12080         struct task_struct *task = info;
12081         rcu_read_lock();
12082         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12083         rcu_read_unlock();
12084         return 0;
12085 }
12086
12087 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12088 {
12089         struct task_struct *task;
12090         struct cgroup_subsys_state *css;
12091
12092         cgroup_taskset_for_each(task, css, tset)
12093                 task_function_call(task, __perf_cgroup_move, task);
12094 }
12095
12096 struct cgroup_subsys perf_event_cgrp_subsys = {
12097         .css_alloc      = perf_cgroup_css_alloc,
12098         .css_free       = perf_cgroup_css_free,
12099         .attach         = perf_cgroup_attach,
12100         /*
12101          * Implicitly enable on dfl hierarchy so that perf events can
12102          * always be filtered by cgroup2 path as long as perf_event
12103          * controller is not mounted on a legacy hierarchy.
12104          */
12105         .implicit_on_dfl = true,
12106         .threaded       = true,
12107 };
12108 #endif /* CONFIG_CGROUP_PERF */