Merge tag 'actions-arm-dt-for-4.15' of ssh://gitolite.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665         if (cgrp == event->cgrp)
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906                         cpuctx->cgrp = event->cgrp;
907         } else {
908                 list_del(cpuctx_entry);
909                 cpuctx->cgrp = NULL;
910         }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918         return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253                                 enum pid_type type)
1254 {
1255         u32 nr;
1256         /*
1257          * only top level events have the pid namespace they were created in
1258          */
1259         if (event->parent)
1260                 event = event->parent;
1261
1262         nr = __task_pid_nr_ns(p, type, event->ns);
1263         /* avoid -1 if it is idle thread or runs in another ns */
1264         if (!nr && !pid_alive(p))
1265                 nr = -1;
1266         return nr;
1267 }
1268
1269 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1270 {
1271         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272 }
1273
1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275 {
1276         return perf_event_pid_type(event, p, PIDTYPE_PID);
1277 }
1278
1279 /*
1280  * If we inherit events we want to return the parent event id
1281  * to userspace.
1282  */
1283 static u64 primary_event_id(struct perf_event *event)
1284 {
1285         u64 id = event->id;
1286
1287         if (event->parent)
1288                 id = event->parent->id;
1289
1290         return id;
1291 }
1292
1293 /*
1294  * Get the perf_event_context for a task and lock it.
1295  *
1296  * This has to cope with with the fact that until it is locked,
1297  * the context could get moved to another task.
1298  */
1299 static struct perf_event_context *
1300 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1301 {
1302         struct perf_event_context *ctx;
1303
1304 retry:
1305         /*
1306          * One of the few rules of preemptible RCU is that one cannot do
1307          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1308          * part of the read side critical section was irqs-enabled -- see
1309          * rcu_read_unlock_special().
1310          *
1311          * Since ctx->lock nests under rq->lock we must ensure the entire read
1312          * side critical section has interrupts disabled.
1313          */
1314         local_irq_save(*flags);
1315         rcu_read_lock();
1316         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1317         if (ctx) {
1318                 /*
1319                  * If this context is a clone of another, it might
1320                  * get swapped for another underneath us by
1321                  * perf_event_task_sched_out, though the
1322                  * rcu_read_lock() protects us from any context
1323                  * getting freed.  Lock the context and check if it
1324                  * got swapped before we could get the lock, and retry
1325                  * if so.  If we locked the right context, then it
1326                  * can't get swapped on us any more.
1327                  */
1328                 raw_spin_lock(&ctx->lock);
1329                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1330                         raw_spin_unlock(&ctx->lock);
1331                         rcu_read_unlock();
1332                         local_irq_restore(*flags);
1333                         goto retry;
1334                 }
1335
1336                 if (ctx->task == TASK_TOMBSTONE ||
1337                     !atomic_inc_not_zero(&ctx->refcount)) {
1338                         raw_spin_unlock(&ctx->lock);
1339                         ctx = NULL;
1340                 } else {
1341                         WARN_ON_ONCE(ctx->task != task);
1342                 }
1343         }
1344         rcu_read_unlock();
1345         if (!ctx)
1346                 local_irq_restore(*flags);
1347         return ctx;
1348 }
1349
1350 /*
1351  * Get the context for a task and increment its pin_count so it
1352  * can't get swapped to another task.  This also increments its
1353  * reference count so that the context can't get freed.
1354  */
1355 static struct perf_event_context *
1356 perf_pin_task_context(struct task_struct *task, int ctxn)
1357 {
1358         struct perf_event_context *ctx;
1359         unsigned long flags;
1360
1361         ctx = perf_lock_task_context(task, ctxn, &flags);
1362         if (ctx) {
1363                 ++ctx->pin_count;
1364                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1365         }
1366         return ctx;
1367 }
1368
1369 static void perf_unpin_context(struct perf_event_context *ctx)
1370 {
1371         unsigned long flags;
1372
1373         raw_spin_lock_irqsave(&ctx->lock, flags);
1374         --ctx->pin_count;
1375         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1376 }
1377
1378 /*
1379  * Update the record of the current time in a context.
1380  */
1381 static void update_context_time(struct perf_event_context *ctx)
1382 {
1383         u64 now = perf_clock();
1384
1385         ctx->time += now - ctx->timestamp;
1386         ctx->timestamp = now;
1387 }
1388
1389 static u64 perf_event_time(struct perf_event *event)
1390 {
1391         struct perf_event_context *ctx = event->ctx;
1392
1393         if (is_cgroup_event(event))
1394                 return perf_cgroup_event_time(event);
1395
1396         return ctx ? ctx->time : 0;
1397 }
1398
1399 /*
1400  * Update the total_time_enabled and total_time_running fields for a event.
1401  */
1402 static void update_event_times(struct perf_event *event)
1403 {
1404         struct perf_event_context *ctx = event->ctx;
1405         u64 run_end;
1406
1407         lockdep_assert_held(&ctx->lock);
1408
1409         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411                 return;
1412
1413         /*
1414          * in cgroup mode, time_enabled represents
1415          * the time the event was enabled AND active
1416          * tasks were in the monitored cgroup. This is
1417          * independent of the activity of the context as
1418          * there may be a mix of cgroup and non-cgroup events.
1419          *
1420          * That is why we treat cgroup events differently
1421          * here.
1422          */
1423         if (is_cgroup_event(event))
1424                 run_end = perf_cgroup_event_time(event);
1425         else if (ctx->is_active)
1426                 run_end = ctx->time;
1427         else
1428                 run_end = event->tstamp_stopped;
1429
1430         event->total_time_enabled = run_end - event->tstamp_enabled;
1431
1432         if (event->state == PERF_EVENT_STATE_INACTIVE)
1433                 run_end = event->tstamp_stopped;
1434         else
1435                 run_end = perf_event_time(event);
1436
1437         event->total_time_running = run_end - event->tstamp_running;
1438
1439 }
1440
1441 /*
1442  * Update total_time_enabled and total_time_running for all events in a group.
1443  */
1444 static void update_group_times(struct perf_event *leader)
1445 {
1446         struct perf_event *event;
1447
1448         update_event_times(leader);
1449         list_for_each_entry(event, &leader->sibling_list, group_entry)
1450                 update_event_times(event);
1451 }
1452
1453 static enum event_type_t get_event_type(struct perf_event *event)
1454 {
1455         struct perf_event_context *ctx = event->ctx;
1456         enum event_type_t event_type;
1457
1458         lockdep_assert_held(&ctx->lock);
1459
1460         /*
1461          * It's 'group type', really, because if our group leader is
1462          * pinned, so are we.
1463          */
1464         if (event->group_leader != event)
1465                 event = event->group_leader;
1466
1467         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468         if (!ctx->task)
1469                 event_type |= EVENT_CPU;
1470
1471         return event_type;
1472 }
1473
1474 static struct list_head *
1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477         if (event->attr.pinned)
1478                 return &ctx->pinned_groups;
1479         else
1480                 return &ctx->flexible_groups;
1481 }
1482
1483 /*
1484  * Add a event from the lists for its context.
1485  * Must be called with ctx->mutex and ctx->lock held.
1486  */
1487 static void
1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1489 {
1490         lockdep_assert_held(&ctx->lock);
1491
1492         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493         event->attach_state |= PERF_ATTACH_CONTEXT;
1494
1495         /*
1496          * If we're a stand alone event or group leader, we go to the context
1497          * list, group events are kept attached to the group so that
1498          * perf_group_detach can, at all times, locate all siblings.
1499          */
1500         if (event->group_leader == event) {
1501                 struct list_head *list;
1502
1503                 event->group_caps = event->event_caps;
1504
1505                 list = ctx_group_list(event, ctx);
1506                 list_add_tail(&event->group_entry, list);
1507         }
1508
1509         list_update_cgroup_event(event, ctx, true);
1510
1511         list_add_rcu(&event->event_entry, &ctx->event_list);
1512         ctx->nr_events++;
1513         if (event->attr.inherit_stat)
1514                 ctx->nr_stat++;
1515
1516         ctx->generation++;
1517 }
1518
1519 /*
1520  * Initialize event state based on the perf_event_attr::disabled.
1521  */
1522 static inline void perf_event__state_init(struct perf_event *event)
1523 {
1524         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525                                               PERF_EVENT_STATE_INACTIVE;
1526 }
1527
1528 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1529 {
1530         int entry = sizeof(u64); /* value */
1531         int size = 0;
1532         int nr = 1;
1533
1534         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535                 size += sizeof(u64);
1536
1537         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538                 size += sizeof(u64);
1539
1540         if (event->attr.read_format & PERF_FORMAT_ID)
1541                 entry += sizeof(u64);
1542
1543         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1544                 nr += nr_siblings;
1545                 size += sizeof(u64);
1546         }
1547
1548         size += entry * nr;
1549         event->read_size = size;
1550 }
1551
1552 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1553 {
1554         struct perf_sample_data *data;
1555         u16 size = 0;
1556
1557         if (sample_type & PERF_SAMPLE_IP)
1558                 size += sizeof(data->ip);
1559
1560         if (sample_type & PERF_SAMPLE_ADDR)
1561                 size += sizeof(data->addr);
1562
1563         if (sample_type & PERF_SAMPLE_PERIOD)
1564                 size += sizeof(data->period);
1565
1566         if (sample_type & PERF_SAMPLE_WEIGHT)
1567                 size += sizeof(data->weight);
1568
1569         if (sample_type & PERF_SAMPLE_READ)
1570                 size += event->read_size;
1571
1572         if (sample_type & PERF_SAMPLE_DATA_SRC)
1573                 size += sizeof(data->data_src.val);
1574
1575         if (sample_type & PERF_SAMPLE_TRANSACTION)
1576                 size += sizeof(data->txn);
1577
1578         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579                 size += sizeof(data->phys_addr);
1580
1581         event->header_size = size;
1582 }
1583
1584 /*
1585  * Called at perf_event creation and when events are attached/detached from a
1586  * group.
1587  */
1588 static void perf_event__header_size(struct perf_event *event)
1589 {
1590         __perf_event_read_size(event,
1591                                event->group_leader->nr_siblings);
1592         __perf_event_header_size(event, event->attr.sample_type);
1593 }
1594
1595 static void perf_event__id_header_size(struct perf_event *event)
1596 {
1597         struct perf_sample_data *data;
1598         u64 sample_type = event->attr.sample_type;
1599         u16 size = 0;
1600
1601         if (sample_type & PERF_SAMPLE_TID)
1602                 size += sizeof(data->tid_entry);
1603
1604         if (sample_type & PERF_SAMPLE_TIME)
1605                 size += sizeof(data->time);
1606
1607         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608                 size += sizeof(data->id);
1609
1610         if (sample_type & PERF_SAMPLE_ID)
1611                 size += sizeof(data->id);
1612
1613         if (sample_type & PERF_SAMPLE_STREAM_ID)
1614                 size += sizeof(data->stream_id);
1615
1616         if (sample_type & PERF_SAMPLE_CPU)
1617                 size += sizeof(data->cpu_entry);
1618
1619         event->id_header_size = size;
1620 }
1621
1622 static bool perf_event_validate_size(struct perf_event *event)
1623 {
1624         /*
1625          * The values computed here will be over-written when we actually
1626          * attach the event.
1627          */
1628         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630         perf_event__id_header_size(event);
1631
1632         /*
1633          * Sum the lot; should not exceed the 64k limit we have on records.
1634          * Conservative limit to allow for callchains and other variable fields.
1635          */
1636         if (event->read_size + event->header_size +
1637             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638                 return false;
1639
1640         return true;
1641 }
1642
1643 static void perf_group_attach(struct perf_event *event)
1644 {
1645         struct perf_event *group_leader = event->group_leader, *pos;
1646
1647         lockdep_assert_held(&event->ctx->lock);
1648
1649         /*
1650          * We can have double attach due to group movement in perf_event_open.
1651          */
1652         if (event->attach_state & PERF_ATTACH_GROUP)
1653                 return;
1654
1655         event->attach_state |= PERF_ATTACH_GROUP;
1656
1657         if (group_leader == event)
1658                 return;
1659
1660         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661
1662         group_leader->group_caps &= event->event_caps;
1663
1664         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665         group_leader->nr_siblings++;
1666
1667         perf_event__header_size(group_leader);
1668
1669         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670                 perf_event__header_size(pos);
1671 }
1672
1673 /*
1674  * Remove a event from the lists for its context.
1675  * Must be called with ctx->mutex and ctx->lock held.
1676  */
1677 static void
1678 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680         WARN_ON_ONCE(event->ctx != ctx);
1681         lockdep_assert_held(&ctx->lock);
1682
1683         /*
1684          * We can have double detach due to exit/hot-unplug + close.
1685          */
1686         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1687                 return;
1688
1689         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690
1691         list_update_cgroup_event(event, ctx, false);
1692
1693         ctx->nr_events--;
1694         if (event->attr.inherit_stat)
1695                 ctx->nr_stat--;
1696
1697         list_del_rcu(&event->event_entry);
1698
1699         if (event->group_leader == event)
1700                 list_del_init(&event->group_entry);
1701
1702         update_group_times(event);
1703
1704         /*
1705          * If event was in error state, then keep it
1706          * that way, otherwise bogus counts will be
1707          * returned on read(). The only way to get out
1708          * of error state is by explicit re-enabling
1709          * of the event
1710          */
1711         if (event->state > PERF_EVENT_STATE_OFF)
1712                 event->state = PERF_EVENT_STATE_OFF;
1713
1714         ctx->generation++;
1715 }
1716
1717 static void perf_group_detach(struct perf_event *event)
1718 {
1719         struct perf_event *sibling, *tmp;
1720         struct list_head *list = NULL;
1721
1722         lockdep_assert_held(&event->ctx->lock);
1723
1724         /*
1725          * We can have double detach due to exit/hot-unplug + close.
1726          */
1727         if (!(event->attach_state & PERF_ATTACH_GROUP))
1728                 return;
1729
1730         event->attach_state &= ~PERF_ATTACH_GROUP;
1731
1732         /*
1733          * If this is a sibling, remove it from its group.
1734          */
1735         if (event->group_leader != event) {
1736                 list_del_init(&event->group_entry);
1737                 event->group_leader->nr_siblings--;
1738                 goto out;
1739         }
1740
1741         if (!list_empty(&event->group_entry))
1742                 list = &event->group_entry;
1743
1744         /*
1745          * If this was a group event with sibling events then
1746          * upgrade the siblings to singleton events by adding them
1747          * to whatever list we are on.
1748          */
1749         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1750                 if (list)
1751                         list_move_tail(&sibling->group_entry, list);
1752                 sibling->group_leader = sibling;
1753
1754                 /* Inherit group flags from the previous leader */
1755                 sibling->group_caps = event->group_caps;
1756
1757                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1758         }
1759
1760 out:
1761         perf_event__header_size(event->group_leader);
1762
1763         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764                 perf_event__header_size(tmp);
1765 }
1766
1767 static bool is_orphaned_event(struct perf_event *event)
1768 {
1769         return event->state == PERF_EVENT_STATE_DEAD;
1770 }
1771
1772 static inline int __pmu_filter_match(struct perf_event *event)
1773 {
1774         struct pmu *pmu = event->pmu;
1775         return pmu->filter_match ? pmu->filter_match(event) : 1;
1776 }
1777
1778 /*
1779  * Check whether we should attempt to schedule an event group based on
1780  * PMU-specific filtering. An event group can consist of HW and SW events,
1781  * potentially with a SW leader, so we must check all the filters, to
1782  * determine whether a group is schedulable:
1783  */
1784 static inline int pmu_filter_match(struct perf_event *event)
1785 {
1786         struct perf_event *child;
1787
1788         if (!__pmu_filter_match(event))
1789                 return 0;
1790
1791         list_for_each_entry(child, &event->sibling_list, group_entry) {
1792                 if (!__pmu_filter_match(child))
1793                         return 0;
1794         }
1795
1796         return 1;
1797 }
1798
1799 static inline int
1800 event_filter_match(struct perf_event *event)
1801 {
1802         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803                perf_cgroup_match(event) && pmu_filter_match(event);
1804 }
1805
1806 static void
1807 event_sched_out(struct perf_event *event,
1808                   struct perf_cpu_context *cpuctx,
1809                   struct perf_event_context *ctx)
1810 {
1811         u64 tstamp = perf_event_time(event);
1812         u64 delta;
1813
1814         WARN_ON_ONCE(event->ctx != ctx);
1815         lockdep_assert_held(&ctx->lock);
1816
1817         /*
1818          * An event which could not be activated because of
1819          * filter mismatch still needs to have its timings
1820          * maintained, otherwise bogus information is return
1821          * via read() for time_enabled, time_running:
1822          */
1823         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824             !event_filter_match(event)) {
1825                 delta = tstamp - event->tstamp_stopped;
1826                 event->tstamp_running += delta;
1827                 event->tstamp_stopped = tstamp;
1828         }
1829
1830         if (event->state != PERF_EVENT_STATE_ACTIVE)
1831                 return;
1832
1833         perf_pmu_disable(event->pmu);
1834
1835         event->tstamp_stopped = tstamp;
1836         event->pmu->del(event, 0);
1837         event->oncpu = -1;
1838         event->state = PERF_EVENT_STATE_INACTIVE;
1839         if (event->pending_disable) {
1840                 event->pending_disable = 0;
1841                 event->state = PERF_EVENT_STATE_OFF;
1842         }
1843
1844         if (!is_software_event(event))
1845                 cpuctx->active_oncpu--;
1846         if (!--ctx->nr_active)
1847                 perf_event_ctx_deactivate(ctx);
1848         if (event->attr.freq && event->attr.sample_freq)
1849                 ctx->nr_freq--;
1850         if (event->attr.exclusive || !cpuctx->active_oncpu)
1851                 cpuctx->exclusive = 0;
1852
1853         perf_pmu_enable(event->pmu);
1854 }
1855
1856 static void
1857 group_sched_out(struct perf_event *group_event,
1858                 struct perf_cpu_context *cpuctx,
1859                 struct perf_event_context *ctx)
1860 {
1861         struct perf_event *event;
1862         int state = group_event->state;
1863
1864         perf_pmu_disable(ctx->pmu);
1865
1866         event_sched_out(group_event, cpuctx, ctx);
1867
1868         /*
1869          * Schedule out siblings (if any):
1870          */
1871         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872                 event_sched_out(event, cpuctx, ctx);
1873
1874         perf_pmu_enable(ctx->pmu);
1875
1876         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1877                 cpuctx->exclusive = 0;
1878 }
1879
1880 #define DETACH_GROUP    0x01UL
1881
1882 /*
1883  * Cross CPU call to remove a performance event
1884  *
1885  * We disable the event on the hardware level first. After that we
1886  * remove it from the context list.
1887  */
1888 static void
1889 __perf_remove_from_context(struct perf_event *event,
1890                            struct perf_cpu_context *cpuctx,
1891                            struct perf_event_context *ctx,
1892                            void *info)
1893 {
1894         unsigned long flags = (unsigned long)info;
1895
1896         event_sched_out(event, cpuctx, ctx);
1897         if (flags & DETACH_GROUP)
1898                 perf_group_detach(event);
1899         list_del_event(event, ctx);
1900
1901         if (!ctx->nr_events && ctx->is_active) {
1902                 ctx->is_active = 0;
1903                 if (ctx->task) {
1904                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905                         cpuctx->task_ctx = NULL;
1906                 }
1907         }
1908 }
1909
1910 /*
1911  * Remove the event from a task's (or a CPU's) list of events.
1912  *
1913  * If event->ctx is a cloned context, callers must make sure that
1914  * every task struct that event->ctx->task could possibly point to
1915  * remains valid.  This is OK when called from perf_release since
1916  * that only calls us on the top-level context, which can't be a clone.
1917  * When called from perf_event_exit_task, it's OK because the
1918  * context has been detached from its task.
1919  */
1920 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1921 {
1922         struct perf_event_context *ctx = event->ctx;
1923
1924         lockdep_assert_held(&ctx->mutex);
1925
1926         event_function_call(event, __perf_remove_from_context, (void *)flags);
1927
1928         /*
1929          * The above event_function_call() can NO-OP when it hits
1930          * TASK_TOMBSTONE. In that case we must already have been detached
1931          * from the context (by perf_event_exit_event()) but the grouping
1932          * might still be in-tact.
1933          */
1934         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935         if ((flags & DETACH_GROUP) &&
1936             (event->attach_state & PERF_ATTACH_GROUP)) {
1937                 /*
1938                  * Since in that case we cannot possibly be scheduled, simply
1939                  * detach now.
1940                  */
1941                 raw_spin_lock_irq(&ctx->lock);
1942                 perf_group_detach(event);
1943                 raw_spin_unlock_irq(&ctx->lock);
1944         }
1945 }
1946
1947 /*
1948  * Cross CPU call to disable a performance event
1949  */
1950 static void __perf_event_disable(struct perf_event *event,
1951                                  struct perf_cpu_context *cpuctx,
1952                                  struct perf_event_context *ctx,
1953                                  void *info)
1954 {
1955         if (event->state < PERF_EVENT_STATE_INACTIVE)
1956                 return;
1957
1958         update_context_time(ctx);
1959         update_cgrp_time_from_event(event);
1960         update_group_times(event);
1961         if (event == event->group_leader)
1962                 group_sched_out(event, cpuctx, ctx);
1963         else
1964                 event_sched_out(event, cpuctx, ctx);
1965         event->state = PERF_EVENT_STATE_OFF;
1966 }
1967
1968 /*
1969  * Disable a event.
1970  *
1971  * If event->ctx is a cloned context, callers must make sure that
1972  * every task struct that event->ctx->task could possibly point to
1973  * remains valid.  This condition is satisifed when called through
1974  * perf_event_for_each_child or perf_event_for_each because they
1975  * hold the top-level event's child_mutex, so any descendant that
1976  * goes to exit will block in perf_event_exit_event().
1977  *
1978  * When called from perf_pending_event it's OK because event->ctx
1979  * is the current context on this CPU and preemption is disabled,
1980  * hence we can't get into perf_event_task_sched_out for this context.
1981  */
1982 static void _perf_event_disable(struct perf_event *event)
1983 {
1984         struct perf_event_context *ctx = event->ctx;
1985
1986         raw_spin_lock_irq(&ctx->lock);
1987         if (event->state <= PERF_EVENT_STATE_OFF) {
1988                 raw_spin_unlock_irq(&ctx->lock);
1989                 return;
1990         }
1991         raw_spin_unlock_irq(&ctx->lock);
1992
1993         event_function_call(event, __perf_event_disable, NULL);
1994 }
1995
1996 void perf_event_disable_local(struct perf_event *event)
1997 {
1998         event_function_local(event, __perf_event_disable, NULL);
1999 }
2000
2001 /*
2002  * Strictly speaking kernel users cannot create groups and therefore this
2003  * interface does not need the perf_event_ctx_lock() magic.
2004  */
2005 void perf_event_disable(struct perf_event *event)
2006 {
2007         struct perf_event_context *ctx;
2008
2009         ctx = perf_event_ctx_lock(event);
2010         _perf_event_disable(event);
2011         perf_event_ctx_unlock(event, ctx);
2012 }
2013 EXPORT_SYMBOL_GPL(perf_event_disable);
2014
2015 void perf_event_disable_inatomic(struct perf_event *event)
2016 {
2017         event->pending_disable = 1;
2018         irq_work_queue(&event->pending);
2019 }
2020
2021 static void perf_set_shadow_time(struct perf_event *event,
2022                                  struct perf_event_context *ctx,
2023                                  u64 tstamp)
2024 {
2025         /*
2026          * use the correct time source for the time snapshot
2027          *
2028          * We could get by without this by leveraging the
2029          * fact that to get to this function, the caller
2030          * has most likely already called update_context_time()
2031          * and update_cgrp_time_xx() and thus both timestamp
2032          * are identical (or very close). Given that tstamp is,
2033          * already adjusted for cgroup, we could say that:
2034          *    tstamp - ctx->timestamp
2035          * is equivalent to
2036          *    tstamp - cgrp->timestamp.
2037          *
2038          * Then, in perf_output_read(), the calculation would
2039          * work with no changes because:
2040          * - event is guaranteed scheduled in
2041          * - no scheduled out in between
2042          * - thus the timestamp would be the same
2043          *
2044          * But this is a bit hairy.
2045          *
2046          * So instead, we have an explicit cgroup call to remain
2047          * within the time time source all along. We believe it
2048          * is cleaner and simpler to understand.
2049          */
2050         if (is_cgroup_event(event))
2051                 perf_cgroup_set_shadow_time(event, tstamp);
2052         else
2053                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2054 }
2055
2056 #define MAX_INTERRUPTS (~0ULL)
2057
2058 static void perf_log_throttle(struct perf_event *event, int enable);
2059 static void perf_log_itrace_start(struct perf_event *event);
2060
2061 static int
2062 event_sched_in(struct perf_event *event,
2063                  struct perf_cpu_context *cpuctx,
2064                  struct perf_event_context *ctx)
2065 {
2066         u64 tstamp = perf_event_time(event);
2067         int ret = 0;
2068
2069         lockdep_assert_held(&ctx->lock);
2070
2071         if (event->state <= PERF_EVENT_STATE_OFF)
2072                 return 0;
2073
2074         WRITE_ONCE(event->oncpu, smp_processor_id());
2075         /*
2076          * Order event::oncpu write to happen before the ACTIVE state
2077          * is visible.
2078          */
2079         smp_wmb();
2080         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2081
2082         /*
2083          * Unthrottle events, since we scheduled we might have missed several
2084          * ticks already, also for a heavily scheduling task there is little
2085          * guarantee it'll get a tick in a timely manner.
2086          */
2087         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088                 perf_log_throttle(event, 1);
2089                 event->hw.interrupts = 0;
2090         }
2091
2092         /*
2093          * The new state must be visible before we turn it on in the hardware:
2094          */
2095         smp_wmb();
2096
2097         perf_pmu_disable(event->pmu);
2098
2099         perf_set_shadow_time(event, ctx, tstamp);
2100
2101         perf_log_itrace_start(event);
2102
2103         if (event->pmu->add(event, PERF_EF_START)) {
2104                 event->state = PERF_EVENT_STATE_INACTIVE;
2105                 event->oncpu = -1;
2106                 ret = -EAGAIN;
2107                 goto out;
2108         }
2109
2110         event->tstamp_running += tstamp - event->tstamp_stopped;
2111
2112         if (!is_software_event(event))
2113                 cpuctx->active_oncpu++;
2114         if (!ctx->nr_active++)
2115                 perf_event_ctx_activate(ctx);
2116         if (event->attr.freq && event->attr.sample_freq)
2117                 ctx->nr_freq++;
2118
2119         if (event->attr.exclusive)
2120                 cpuctx->exclusive = 1;
2121
2122 out:
2123         perf_pmu_enable(event->pmu);
2124
2125         return ret;
2126 }
2127
2128 static int
2129 group_sched_in(struct perf_event *group_event,
2130                struct perf_cpu_context *cpuctx,
2131                struct perf_event_context *ctx)
2132 {
2133         struct perf_event *event, *partial_group = NULL;
2134         struct pmu *pmu = ctx->pmu;
2135         u64 now = ctx->time;
2136         bool simulate = false;
2137
2138         if (group_event->state == PERF_EVENT_STATE_OFF)
2139                 return 0;
2140
2141         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2142
2143         if (event_sched_in(group_event, cpuctx, ctx)) {
2144                 pmu->cancel_txn(pmu);
2145                 perf_mux_hrtimer_restart(cpuctx);
2146                 return -EAGAIN;
2147         }
2148
2149         /*
2150          * Schedule in siblings as one group (if any):
2151          */
2152         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2153                 if (event_sched_in(event, cpuctx, ctx)) {
2154                         partial_group = event;
2155                         goto group_error;
2156                 }
2157         }
2158
2159         if (!pmu->commit_txn(pmu))
2160                 return 0;
2161
2162 group_error:
2163         /*
2164          * Groups can be scheduled in as one unit only, so undo any
2165          * partial group before returning:
2166          * The events up to the failed event are scheduled out normally,
2167          * tstamp_stopped will be updated.
2168          *
2169          * The failed events and the remaining siblings need to have
2170          * their timings updated as if they had gone thru event_sched_in()
2171          * and event_sched_out(). This is required to get consistent timings
2172          * across the group. This also takes care of the case where the group
2173          * could never be scheduled by ensuring tstamp_stopped is set to mark
2174          * the time the event was actually stopped, such that time delta
2175          * calculation in update_event_times() is correct.
2176          */
2177         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178                 if (event == partial_group)
2179                         simulate = true;
2180
2181                 if (simulate) {
2182                         event->tstamp_running += now - event->tstamp_stopped;
2183                         event->tstamp_stopped = now;
2184                 } else {
2185                         event_sched_out(event, cpuctx, ctx);
2186                 }
2187         }
2188         event_sched_out(group_event, cpuctx, ctx);
2189
2190         pmu->cancel_txn(pmu);
2191
2192         perf_mux_hrtimer_restart(cpuctx);
2193
2194         return -EAGAIN;
2195 }
2196
2197 /*
2198  * Work out whether we can put this event group on the CPU now.
2199  */
2200 static int group_can_go_on(struct perf_event *event,
2201                            struct perf_cpu_context *cpuctx,
2202                            int can_add_hw)
2203 {
2204         /*
2205          * Groups consisting entirely of software events can always go on.
2206          */
2207         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2208                 return 1;
2209         /*
2210          * If an exclusive group is already on, no other hardware
2211          * events can go on.
2212          */
2213         if (cpuctx->exclusive)
2214                 return 0;
2215         /*
2216          * If this group is exclusive and there are already
2217          * events on the CPU, it can't go on.
2218          */
2219         if (event->attr.exclusive && cpuctx->active_oncpu)
2220                 return 0;
2221         /*
2222          * Otherwise, try to add it if all previous groups were able
2223          * to go on.
2224          */
2225         return can_add_hw;
2226 }
2227
2228 /*
2229  * Complement to update_event_times(). This computes the tstamp_* values to
2230  * continue 'enabled' state from @now, and effectively discards the time
2231  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232  * just switched (context) time base).
2233  *
2234  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235  * cannot have been scheduled in yet. And going into INACTIVE state means
2236  * '@event->tstamp_stopped = @now'.
2237  *
2238  * Thus given the rules of update_event_times():
2239  *
2240  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2241  *   total_time_running = tstamp_stopped - tstamp_running
2242  *
2243  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244  * tstamp_* values.
2245  */
2246 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2247 {
2248         WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2249
2250         event->tstamp_stopped = now;
2251         event->tstamp_enabled = now - event->total_time_enabled;
2252         event->tstamp_running = now - event->total_time_running;
2253 }
2254
2255 static void add_event_to_ctx(struct perf_event *event,
2256                                struct perf_event_context *ctx)
2257 {
2258         u64 tstamp = perf_event_time(event);
2259
2260         list_add_event(event, ctx);
2261         perf_group_attach(event);
2262         /*
2263          * We can be called with event->state == STATE_OFF when we create with
2264          * .disabled = 1. In that case the IOC_ENABLE will call this function.
2265          */
2266         if (event->state == PERF_EVENT_STATE_INACTIVE)
2267                 __perf_event_enable_time(event, tstamp);
2268 }
2269
2270 static void ctx_sched_out(struct perf_event_context *ctx,
2271                           struct perf_cpu_context *cpuctx,
2272                           enum event_type_t event_type);
2273 static void
2274 ctx_sched_in(struct perf_event_context *ctx,
2275              struct perf_cpu_context *cpuctx,
2276              enum event_type_t event_type,
2277              struct task_struct *task);
2278
2279 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2280                                struct perf_event_context *ctx,
2281                                enum event_type_t event_type)
2282 {
2283         if (!cpuctx->task_ctx)
2284                 return;
2285
2286         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287                 return;
2288
2289         ctx_sched_out(ctx, cpuctx, event_type);
2290 }
2291
2292 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293                                 struct perf_event_context *ctx,
2294                                 struct task_struct *task)
2295 {
2296         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297         if (ctx)
2298                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300         if (ctx)
2301                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2302 }
2303
2304 /*
2305  * We want to maintain the following priority of scheduling:
2306  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307  *  - task pinned (EVENT_PINNED)
2308  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309  *  - task flexible (EVENT_FLEXIBLE).
2310  *
2311  * In order to avoid unscheduling and scheduling back in everything every
2312  * time an event is added, only do it for the groups of equal priority and
2313  * below.
2314  *
2315  * This can be called after a batch operation on task events, in which case
2316  * event_type is a bit mask of the types of events involved. For CPU events,
2317  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2318  */
2319 static void ctx_resched(struct perf_cpu_context *cpuctx,
2320                         struct perf_event_context *task_ctx,
2321                         enum event_type_t event_type)
2322 {
2323         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324         bool cpu_event = !!(event_type & EVENT_CPU);
2325
2326         /*
2327          * If pinned groups are involved, flexible groups also need to be
2328          * scheduled out.
2329          */
2330         if (event_type & EVENT_PINNED)
2331                 event_type |= EVENT_FLEXIBLE;
2332
2333         perf_pmu_disable(cpuctx->ctx.pmu);
2334         if (task_ctx)
2335                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2336
2337         /*
2338          * Decide which cpu ctx groups to schedule out based on the types
2339          * of events that caused rescheduling:
2340          *  - EVENT_CPU: schedule out corresponding groups;
2341          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342          *  - otherwise, do nothing more.
2343          */
2344         if (cpu_event)
2345                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346         else if (ctx_event_type & EVENT_PINNED)
2347                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348
2349         perf_event_sched_in(cpuctx, task_ctx, current);
2350         perf_pmu_enable(cpuctx->ctx.pmu);
2351 }
2352
2353 /*
2354  * Cross CPU call to install and enable a performance event
2355  *
2356  * Very similar to remote_function() + event_function() but cannot assume that
2357  * things like ctx->is_active and cpuctx->task_ctx are set.
2358  */
2359 static int  __perf_install_in_context(void *info)
2360 {
2361         struct perf_event *event = info;
2362         struct perf_event_context *ctx = event->ctx;
2363         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2365         bool reprogram = true;
2366         int ret = 0;
2367
2368         raw_spin_lock(&cpuctx->ctx.lock);
2369         if (ctx->task) {
2370                 raw_spin_lock(&ctx->lock);
2371                 task_ctx = ctx;
2372
2373                 reprogram = (ctx->task == current);
2374
2375                 /*
2376                  * If the task is running, it must be running on this CPU,
2377                  * otherwise we cannot reprogram things.
2378                  *
2379                  * If its not running, we don't care, ctx->lock will
2380                  * serialize against it becoming runnable.
2381                  */
2382                 if (task_curr(ctx->task) && !reprogram) {
2383                         ret = -ESRCH;
2384                         goto unlock;
2385                 }
2386
2387                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2388         } else if (task_ctx) {
2389                 raw_spin_lock(&task_ctx->lock);
2390         }
2391
2392         if (reprogram) {
2393                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394                 add_event_to_ctx(event, ctx);
2395                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2396         } else {
2397                 add_event_to_ctx(event, ctx);
2398         }
2399
2400 unlock:
2401         perf_ctx_unlock(cpuctx, task_ctx);
2402
2403         return ret;
2404 }
2405
2406 /*
2407  * Attach a performance event to a context.
2408  *
2409  * Very similar to event_function_call, see comment there.
2410  */
2411 static void
2412 perf_install_in_context(struct perf_event_context *ctx,
2413                         struct perf_event *event,
2414                         int cpu)
2415 {
2416         struct task_struct *task = READ_ONCE(ctx->task);
2417
2418         lockdep_assert_held(&ctx->mutex);
2419
2420         if (event->cpu != -1)
2421                 event->cpu = cpu;
2422
2423         /*
2424          * Ensures that if we can observe event->ctx, both the event and ctx
2425          * will be 'complete'. See perf_iterate_sb_cpu().
2426          */
2427         smp_store_release(&event->ctx, ctx);
2428
2429         if (!task) {
2430                 cpu_function_call(cpu, __perf_install_in_context, event);
2431                 return;
2432         }
2433
2434         /*
2435          * Should not happen, we validate the ctx is still alive before calling.
2436          */
2437         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438                 return;
2439
2440         /*
2441          * Installing events is tricky because we cannot rely on ctx->is_active
2442          * to be set in case this is the nr_events 0 -> 1 transition.
2443          *
2444          * Instead we use task_curr(), which tells us if the task is running.
2445          * However, since we use task_curr() outside of rq::lock, we can race
2446          * against the actual state. This means the result can be wrong.
2447          *
2448          * If we get a false positive, we retry, this is harmless.
2449          *
2450          * If we get a false negative, things are complicated. If we are after
2451          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452          * value must be correct. If we're before, it doesn't matter since
2453          * perf_event_context_sched_in() will program the counter.
2454          *
2455          * However, this hinges on the remote context switch having observed
2456          * our task->perf_event_ctxp[] store, such that it will in fact take
2457          * ctx::lock in perf_event_context_sched_in().
2458          *
2459          * We do this by task_function_call(), if the IPI fails to hit the task
2460          * we know any future context switch of task must see the
2461          * perf_event_ctpx[] store.
2462          */
2463
2464         /*
2465          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466          * task_cpu() load, such that if the IPI then does not find the task
2467          * running, a future context switch of that task must observe the
2468          * store.
2469          */
2470         smp_mb();
2471 again:
2472         if (!task_function_call(task, __perf_install_in_context, event))
2473                 return;
2474
2475         raw_spin_lock_irq(&ctx->lock);
2476         task = ctx->task;
2477         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2478                 /*
2479                  * Cannot happen because we already checked above (which also
2480                  * cannot happen), and we hold ctx->mutex, which serializes us
2481                  * against perf_event_exit_task_context().
2482                  */
2483                 raw_spin_unlock_irq(&ctx->lock);
2484                 return;
2485         }
2486         /*
2487          * If the task is not running, ctx->lock will avoid it becoming so,
2488          * thus we can safely install the event.
2489          */
2490         if (task_curr(task)) {
2491                 raw_spin_unlock_irq(&ctx->lock);
2492                 goto again;
2493         }
2494         add_event_to_ctx(event, ctx);
2495         raw_spin_unlock_irq(&ctx->lock);
2496 }
2497
2498 /*
2499  * Put a event into inactive state and update time fields.
2500  * Enabling the leader of a group effectively enables all
2501  * the group members that aren't explicitly disabled, so we
2502  * have to update their ->tstamp_enabled also.
2503  * Note: this works for group members as well as group leaders
2504  * since the non-leader members' sibling_lists will be empty.
2505  */
2506 static void __perf_event_mark_enabled(struct perf_event *event)
2507 {
2508         struct perf_event *sub;
2509         u64 tstamp = perf_event_time(event);
2510
2511         event->state = PERF_EVENT_STATE_INACTIVE;
2512         __perf_event_enable_time(event, tstamp);
2513         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2514                 /* XXX should not be > INACTIVE if event isn't */
2515                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2516                         __perf_event_enable_time(sub, tstamp);
2517         }
2518 }
2519
2520 /*
2521  * Cross CPU call to enable a performance event
2522  */
2523 static void __perf_event_enable(struct perf_event *event,
2524                                 struct perf_cpu_context *cpuctx,
2525                                 struct perf_event_context *ctx,
2526                                 void *info)
2527 {
2528         struct perf_event *leader = event->group_leader;
2529         struct perf_event_context *task_ctx;
2530
2531         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532             event->state <= PERF_EVENT_STATE_ERROR)
2533                 return;
2534
2535         if (ctx->is_active)
2536                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2537
2538         __perf_event_mark_enabled(event);
2539
2540         if (!ctx->is_active)
2541                 return;
2542
2543         if (!event_filter_match(event)) {
2544                 if (is_cgroup_event(event))
2545                         perf_cgroup_defer_enabled(event);
2546                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2547                 return;
2548         }
2549
2550         /*
2551          * If the event is in a group and isn't the group leader,
2552          * then don't put it on unless the group is on.
2553          */
2554         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2556                 return;
2557         }
2558
2559         task_ctx = cpuctx->task_ctx;
2560         if (ctx->task)
2561                 WARN_ON_ONCE(task_ctx != ctx);
2562
2563         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2564 }
2565
2566 /*
2567  * Enable a event.
2568  *
2569  * If event->ctx is a cloned context, callers must make sure that
2570  * every task struct that event->ctx->task could possibly point to
2571  * remains valid.  This condition is satisfied when called through
2572  * perf_event_for_each_child or perf_event_for_each as described
2573  * for perf_event_disable.
2574  */
2575 static void _perf_event_enable(struct perf_event *event)
2576 {
2577         struct perf_event_context *ctx = event->ctx;
2578
2579         raw_spin_lock_irq(&ctx->lock);
2580         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581             event->state <  PERF_EVENT_STATE_ERROR) {
2582                 raw_spin_unlock_irq(&ctx->lock);
2583                 return;
2584         }
2585
2586         /*
2587          * If the event is in error state, clear that first.
2588          *
2589          * That way, if we see the event in error state below, we know that it
2590          * has gone back into error state, as distinct from the task having
2591          * been scheduled away before the cross-call arrived.
2592          */
2593         if (event->state == PERF_EVENT_STATE_ERROR)
2594                 event->state = PERF_EVENT_STATE_OFF;
2595         raw_spin_unlock_irq(&ctx->lock);
2596
2597         event_function_call(event, __perf_event_enable, NULL);
2598 }
2599
2600 /*
2601  * See perf_event_disable();
2602  */
2603 void perf_event_enable(struct perf_event *event)
2604 {
2605         struct perf_event_context *ctx;
2606
2607         ctx = perf_event_ctx_lock(event);
2608         _perf_event_enable(event);
2609         perf_event_ctx_unlock(event, ctx);
2610 }
2611 EXPORT_SYMBOL_GPL(perf_event_enable);
2612
2613 struct stop_event_data {
2614         struct perf_event       *event;
2615         unsigned int            restart;
2616 };
2617
2618 static int __perf_event_stop(void *info)
2619 {
2620         struct stop_event_data *sd = info;
2621         struct perf_event *event = sd->event;
2622
2623         /* if it's already INACTIVE, do nothing */
2624         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625                 return 0;
2626
2627         /* matches smp_wmb() in event_sched_in() */
2628         smp_rmb();
2629
2630         /*
2631          * There is a window with interrupts enabled before we get here,
2632          * so we need to check again lest we try to stop another CPU's event.
2633          */
2634         if (READ_ONCE(event->oncpu) != smp_processor_id())
2635                 return -EAGAIN;
2636
2637         event->pmu->stop(event, PERF_EF_UPDATE);
2638
2639         /*
2640          * May race with the actual stop (through perf_pmu_output_stop()),
2641          * but it is only used for events with AUX ring buffer, and such
2642          * events will refuse to restart because of rb::aux_mmap_count==0,
2643          * see comments in perf_aux_output_begin().
2644          *
2645          * Since this is happening on a event-local CPU, no trace is lost
2646          * while restarting.
2647          */
2648         if (sd->restart)
2649                 event->pmu->start(event, 0);
2650
2651         return 0;
2652 }
2653
2654 static int perf_event_stop(struct perf_event *event, int restart)
2655 {
2656         struct stop_event_data sd = {
2657                 .event          = event,
2658                 .restart        = restart,
2659         };
2660         int ret = 0;
2661
2662         do {
2663                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664                         return 0;
2665
2666                 /* matches smp_wmb() in event_sched_in() */
2667                 smp_rmb();
2668
2669                 /*
2670                  * We only want to restart ACTIVE events, so if the event goes
2671                  * inactive here (event->oncpu==-1), there's nothing more to do;
2672                  * fall through with ret==-ENXIO.
2673                  */
2674                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2675                                         __perf_event_stop, &sd);
2676         } while (ret == -EAGAIN);
2677
2678         return ret;
2679 }
2680
2681 /*
2682  * In order to contain the amount of racy and tricky in the address filter
2683  * configuration management, it is a two part process:
2684  *
2685  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686  *      we update the addresses of corresponding vmas in
2687  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2688  * (p2) when an event is scheduled in (pmu::add), it calls
2689  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690  *      if the generation has changed since the previous call.
2691  *
2692  * If (p1) happens while the event is active, we restart it to force (p2).
2693  *
2694  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2696  *     ioctl;
2697  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2699  *     for reading;
2700  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701  *     of exec.
2702  */
2703 void perf_event_addr_filters_sync(struct perf_event *event)
2704 {
2705         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2706
2707         if (!has_addr_filter(event))
2708                 return;
2709
2710         raw_spin_lock(&ifh->lock);
2711         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712                 event->pmu->addr_filters_sync(event);
2713                 event->hw.addr_filters_gen = event->addr_filters_gen;
2714         }
2715         raw_spin_unlock(&ifh->lock);
2716 }
2717 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2718
2719 static int _perf_event_refresh(struct perf_event *event, int refresh)
2720 {
2721         /*
2722          * not supported on inherited events
2723          */
2724         if (event->attr.inherit || !is_sampling_event(event))
2725                 return -EINVAL;
2726
2727         atomic_add(refresh, &event->event_limit);
2728         _perf_event_enable(event);
2729
2730         return 0;
2731 }
2732
2733 /*
2734  * See perf_event_disable()
2735  */
2736 int perf_event_refresh(struct perf_event *event, int refresh)
2737 {
2738         struct perf_event_context *ctx;
2739         int ret;
2740
2741         ctx = perf_event_ctx_lock(event);
2742         ret = _perf_event_refresh(event, refresh);
2743         perf_event_ctx_unlock(event, ctx);
2744
2745         return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(perf_event_refresh);
2748
2749 static void ctx_sched_out(struct perf_event_context *ctx,
2750                           struct perf_cpu_context *cpuctx,
2751                           enum event_type_t event_type)
2752 {
2753         int is_active = ctx->is_active;
2754         struct perf_event *event;
2755
2756         lockdep_assert_held(&ctx->lock);
2757
2758         if (likely(!ctx->nr_events)) {
2759                 /*
2760                  * See __perf_remove_from_context().
2761                  */
2762                 WARN_ON_ONCE(ctx->is_active);
2763                 if (ctx->task)
2764                         WARN_ON_ONCE(cpuctx->task_ctx);
2765                 return;
2766         }
2767
2768         ctx->is_active &= ~event_type;
2769         if (!(ctx->is_active & EVENT_ALL))
2770                 ctx->is_active = 0;
2771
2772         if (ctx->task) {
2773                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774                 if (!ctx->is_active)
2775                         cpuctx->task_ctx = NULL;
2776         }
2777
2778         /*
2779          * Always update time if it was set; not only when it changes.
2780          * Otherwise we can 'forget' to update time for any but the last
2781          * context we sched out. For example:
2782          *
2783          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784          *   ctx_sched_out(.event_type = EVENT_PINNED)
2785          *
2786          * would only update time for the pinned events.
2787          */
2788         if (is_active & EVENT_TIME) {
2789                 /* update (and stop) ctx time */
2790                 update_context_time(ctx);
2791                 update_cgrp_time_from_cpuctx(cpuctx);
2792         }
2793
2794         is_active ^= ctx->is_active; /* changed bits */
2795
2796         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2797                 return;
2798
2799         perf_pmu_disable(ctx->pmu);
2800         if (is_active & EVENT_PINNED) {
2801                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802                         group_sched_out(event, cpuctx, ctx);
2803         }
2804
2805         if (is_active & EVENT_FLEXIBLE) {
2806                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2807                         group_sched_out(event, cpuctx, ctx);
2808         }
2809         perf_pmu_enable(ctx->pmu);
2810 }
2811
2812 /*
2813  * Test whether two contexts are equivalent, i.e. whether they have both been
2814  * cloned from the same version of the same context.
2815  *
2816  * Equivalence is measured using a generation number in the context that is
2817  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818  * and list_del_event().
2819  */
2820 static int context_equiv(struct perf_event_context *ctx1,
2821                          struct perf_event_context *ctx2)
2822 {
2823         lockdep_assert_held(&ctx1->lock);
2824         lockdep_assert_held(&ctx2->lock);
2825
2826         /* Pinning disables the swap optimization */
2827         if (ctx1->pin_count || ctx2->pin_count)
2828                 return 0;
2829
2830         /* If ctx1 is the parent of ctx2 */
2831         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832                 return 1;
2833
2834         /* If ctx2 is the parent of ctx1 */
2835         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836                 return 1;
2837
2838         /*
2839          * If ctx1 and ctx2 have the same parent; we flatten the parent
2840          * hierarchy, see perf_event_init_context().
2841          */
2842         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843                         ctx1->parent_gen == ctx2->parent_gen)
2844                 return 1;
2845
2846         /* Unmatched */
2847         return 0;
2848 }
2849
2850 static void __perf_event_sync_stat(struct perf_event *event,
2851                                      struct perf_event *next_event)
2852 {
2853         u64 value;
2854
2855         if (!event->attr.inherit_stat)
2856                 return;
2857
2858         /*
2859          * Update the event value, we cannot use perf_event_read()
2860          * because we're in the middle of a context switch and have IRQs
2861          * disabled, which upsets smp_call_function_single(), however
2862          * we know the event must be on the current CPU, therefore we
2863          * don't need to use it.
2864          */
2865         switch (event->state) {
2866         case PERF_EVENT_STATE_ACTIVE:
2867                 event->pmu->read(event);
2868                 /* fall-through */
2869
2870         case PERF_EVENT_STATE_INACTIVE:
2871                 update_event_times(event);
2872                 break;
2873
2874         default:
2875                 break;
2876         }
2877
2878         /*
2879          * In order to keep per-task stats reliable we need to flip the event
2880          * values when we flip the contexts.
2881          */
2882         value = local64_read(&next_event->count);
2883         value = local64_xchg(&event->count, value);
2884         local64_set(&next_event->count, value);
2885
2886         swap(event->total_time_enabled, next_event->total_time_enabled);
2887         swap(event->total_time_running, next_event->total_time_running);
2888
2889         /*
2890          * Since we swizzled the values, update the user visible data too.
2891          */
2892         perf_event_update_userpage(event);
2893         perf_event_update_userpage(next_event);
2894 }
2895
2896 static void perf_event_sync_stat(struct perf_event_context *ctx,
2897                                    struct perf_event_context *next_ctx)
2898 {
2899         struct perf_event *event, *next_event;
2900
2901         if (!ctx->nr_stat)
2902                 return;
2903
2904         update_context_time(ctx);
2905
2906         event = list_first_entry(&ctx->event_list,
2907                                    struct perf_event, event_entry);
2908
2909         next_event = list_first_entry(&next_ctx->event_list,
2910                                         struct perf_event, event_entry);
2911
2912         while (&event->event_entry != &ctx->event_list &&
2913                &next_event->event_entry != &next_ctx->event_list) {
2914
2915                 __perf_event_sync_stat(event, next_event);
2916
2917                 event = list_next_entry(event, event_entry);
2918                 next_event = list_next_entry(next_event, event_entry);
2919         }
2920 }
2921
2922 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923                                          struct task_struct *next)
2924 {
2925         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2926         struct perf_event_context *next_ctx;
2927         struct perf_event_context *parent, *next_parent;
2928         struct perf_cpu_context *cpuctx;
2929         int do_switch = 1;
2930
2931         if (likely(!ctx))
2932                 return;
2933
2934         cpuctx = __get_cpu_context(ctx);
2935         if (!cpuctx->task_ctx)
2936                 return;
2937
2938         rcu_read_lock();
2939         next_ctx = next->perf_event_ctxp[ctxn];
2940         if (!next_ctx)
2941                 goto unlock;
2942
2943         parent = rcu_dereference(ctx->parent_ctx);
2944         next_parent = rcu_dereference(next_ctx->parent_ctx);
2945
2946         /* If neither context have a parent context; they cannot be clones. */
2947         if (!parent && !next_parent)
2948                 goto unlock;
2949
2950         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2951                 /*
2952                  * Looks like the two contexts are clones, so we might be
2953                  * able to optimize the context switch.  We lock both
2954                  * contexts and check that they are clones under the
2955                  * lock (including re-checking that neither has been
2956                  * uncloned in the meantime).  It doesn't matter which
2957                  * order we take the locks because no other cpu could
2958                  * be trying to lock both of these tasks.
2959                  */
2960                 raw_spin_lock(&ctx->lock);
2961                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2962                 if (context_equiv(ctx, next_ctx)) {
2963                         WRITE_ONCE(ctx->task, next);
2964                         WRITE_ONCE(next_ctx->task, task);
2965
2966                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2967
2968                         /*
2969                          * RCU_INIT_POINTER here is safe because we've not
2970                          * modified the ctx and the above modification of
2971                          * ctx->task and ctx->task_ctx_data are immaterial
2972                          * since those values are always verified under
2973                          * ctx->lock which we're now holding.
2974                          */
2975                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2977
2978                         do_switch = 0;
2979
2980                         perf_event_sync_stat(ctx, next_ctx);
2981                 }
2982                 raw_spin_unlock(&next_ctx->lock);
2983                 raw_spin_unlock(&ctx->lock);
2984         }
2985 unlock:
2986         rcu_read_unlock();
2987
2988         if (do_switch) {
2989                 raw_spin_lock(&ctx->lock);
2990                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2991                 raw_spin_unlock(&ctx->lock);
2992         }
2993 }
2994
2995 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2996
2997 void perf_sched_cb_dec(struct pmu *pmu)
2998 {
2999         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3000
3001         this_cpu_dec(perf_sched_cb_usages);
3002
3003         if (!--cpuctx->sched_cb_usage)
3004                 list_del(&cpuctx->sched_cb_entry);
3005 }
3006
3007
3008 void perf_sched_cb_inc(struct pmu *pmu)
3009 {
3010         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3011
3012         if (!cpuctx->sched_cb_usage++)
3013                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3014
3015         this_cpu_inc(perf_sched_cb_usages);
3016 }
3017
3018 /*
3019  * This function provides the context switch callback to the lower code
3020  * layer. It is invoked ONLY when the context switch callback is enabled.
3021  *
3022  * This callback is relevant even to per-cpu events; for example multi event
3023  * PEBS requires this to provide PID/TID information. This requires we flush
3024  * all queued PEBS records before we context switch to a new task.
3025  */
3026 static void perf_pmu_sched_task(struct task_struct *prev,
3027                                 struct task_struct *next,
3028                                 bool sched_in)
3029 {
3030         struct perf_cpu_context *cpuctx;
3031         struct pmu *pmu;
3032
3033         if (prev == next)
3034                 return;
3035
3036         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3037                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3038
3039                 if (WARN_ON_ONCE(!pmu->sched_task))
3040                         continue;
3041
3042                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043                 perf_pmu_disable(pmu);
3044
3045                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3046
3047                 perf_pmu_enable(pmu);
3048                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049         }
3050 }
3051
3052 static void perf_event_switch(struct task_struct *task,
3053                               struct task_struct *next_prev, bool sched_in);
3054
3055 #define for_each_task_context_nr(ctxn)                                  \
3056         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3057
3058 /*
3059  * Called from scheduler to remove the events of the current task,
3060  * with interrupts disabled.
3061  *
3062  * We stop each event and update the event value in event->count.
3063  *
3064  * This does not protect us against NMI, but disable()
3065  * sets the disabled bit in the control field of event _before_
3066  * accessing the event control register. If a NMI hits, then it will
3067  * not restart the event.
3068  */
3069 void __perf_event_task_sched_out(struct task_struct *task,
3070                                  struct task_struct *next)
3071 {
3072         int ctxn;
3073
3074         if (__this_cpu_read(perf_sched_cb_usages))
3075                 perf_pmu_sched_task(task, next, false);
3076
3077         if (atomic_read(&nr_switch_events))
3078                 perf_event_switch(task, next, false);
3079
3080         for_each_task_context_nr(ctxn)
3081                 perf_event_context_sched_out(task, ctxn, next);
3082
3083         /*
3084          * if cgroup events exist on this CPU, then we need
3085          * to check if we have to switch out PMU state.
3086          * cgroup event are system-wide mode only
3087          */
3088         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3089                 perf_cgroup_sched_out(task, next);
3090 }
3091
3092 /*
3093  * Called with IRQs disabled
3094  */
3095 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096                               enum event_type_t event_type)
3097 {
3098         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3099 }
3100
3101 static void
3102 ctx_pinned_sched_in(struct perf_event_context *ctx,
3103                     struct perf_cpu_context *cpuctx)
3104 {
3105         struct perf_event *event;
3106
3107         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108                 if (event->state <= PERF_EVENT_STATE_OFF)
3109                         continue;
3110                 if (!event_filter_match(event))
3111                         continue;
3112
3113                 /* may need to reset tstamp_enabled */
3114                 if (is_cgroup_event(event))
3115                         perf_cgroup_mark_enabled(event, ctx);
3116
3117                 if (group_can_go_on(event, cpuctx, 1))
3118                         group_sched_in(event, cpuctx, ctx);
3119
3120                 /*
3121                  * If this pinned group hasn't been scheduled,
3122                  * put it in error state.
3123                  */
3124                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125                         update_group_times(event);
3126                         event->state = PERF_EVENT_STATE_ERROR;
3127                 }
3128         }
3129 }
3130
3131 static void
3132 ctx_flexible_sched_in(struct perf_event_context *ctx,
3133                       struct perf_cpu_context *cpuctx)
3134 {
3135         struct perf_event *event;
3136         int can_add_hw = 1;
3137
3138         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139                 /* Ignore events in OFF or ERROR state */
3140                 if (event->state <= PERF_EVENT_STATE_OFF)
3141                         continue;
3142                 /*
3143                  * Listen to the 'cpu' scheduling filter constraint
3144                  * of events:
3145                  */
3146                 if (!event_filter_match(event))
3147                         continue;
3148
3149                 /* may need to reset tstamp_enabled */
3150                 if (is_cgroup_event(event))
3151                         perf_cgroup_mark_enabled(event, ctx);
3152
3153                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3154                         if (group_sched_in(event, cpuctx, ctx))
3155                                 can_add_hw = 0;
3156                 }
3157         }
3158 }
3159
3160 static void
3161 ctx_sched_in(struct perf_event_context *ctx,
3162              struct perf_cpu_context *cpuctx,
3163              enum event_type_t event_type,
3164              struct task_struct *task)
3165 {
3166         int is_active = ctx->is_active;
3167         u64 now;
3168
3169         lockdep_assert_held(&ctx->lock);
3170
3171         if (likely(!ctx->nr_events))
3172                 return;
3173
3174         ctx->is_active |= (event_type | EVENT_TIME);
3175         if (ctx->task) {
3176                 if (!is_active)
3177                         cpuctx->task_ctx = ctx;
3178                 else
3179                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3180         }
3181
3182         is_active ^= ctx->is_active; /* changed bits */
3183
3184         if (is_active & EVENT_TIME) {
3185                 /* start ctx time */
3186                 now = perf_clock();
3187                 ctx->timestamp = now;
3188                 perf_cgroup_set_timestamp(task, ctx);
3189         }
3190
3191         /*
3192          * First go through the list and put on any pinned groups
3193          * in order to give them the best chance of going on.
3194          */
3195         if (is_active & EVENT_PINNED)
3196                 ctx_pinned_sched_in(ctx, cpuctx);
3197
3198         /* Then walk through the lower prio flexible groups */
3199         if (is_active & EVENT_FLEXIBLE)
3200                 ctx_flexible_sched_in(ctx, cpuctx);
3201 }
3202
3203 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3204                              enum event_type_t event_type,
3205                              struct task_struct *task)
3206 {
3207         struct perf_event_context *ctx = &cpuctx->ctx;
3208
3209         ctx_sched_in(ctx, cpuctx, event_type, task);
3210 }
3211
3212 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213                                         struct task_struct *task)
3214 {
3215         struct perf_cpu_context *cpuctx;
3216
3217         cpuctx = __get_cpu_context(ctx);
3218         if (cpuctx->task_ctx == ctx)
3219                 return;
3220
3221         perf_ctx_lock(cpuctx, ctx);
3222         /*
3223          * We must check ctx->nr_events while holding ctx->lock, such
3224          * that we serialize against perf_install_in_context().
3225          */
3226         if (!ctx->nr_events)
3227                 goto unlock;
3228
3229         perf_pmu_disable(ctx->pmu);
3230         /*
3231          * We want to keep the following priority order:
3232          * cpu pinned (that don't need to move), task pinned,
3233          * cpu flexible, task flexible.
3234          *
3235          * However, if task's ctx is not carrying any pinned
3236          * events, no need to flip the cpuctx's events around.
3237          */
3238         if (!list_empty(&ctx->pinned_groups))
3239                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240         perf_event_sched_in(cpuctx, ctx, task);
3241         perf_pmu_enable(ctx->pmu);
3242
3243 unlock:
3244         perf_ctx_unlock(cpuctx, ctx);
3245 }
3246
3247 /*
3248  * Called from scheduler to add the events of the current task
3249  * with interrupts disabled.
3250  *
3251  * We restore the event value and then enable it.
3252  *
3253  * This does not protect us against NMI, but enable()
3254  * sets the enabled bit in the control field of event _before_
3255  * accessing the event control register. If a NMI hits, then it will
3256  * keep the event running.
3257  */
3258 void __perf_event_task_sched_in(struct task_struct *prev,
3259                                 struct task_struct *task)
3260 {
3261         struct perf_event_context *ctx;
3262         int ctxn;
3263
3264         /*
3265          * If cgroup events exist on this CPU, then we need to check if we have
3266          * to switch in PMU state; cgroup event are system-wide mode only.
3267          *
3268          * Since cgroup events are CPU events, we must schedule these in before
3269          * we schedule in the task events.
3270          */
3271         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272                 perf_cgroup_sched_in(prev, task);
3273
3274         for_each_task_context_nr(ctxn) {
3275                 ctx = task->perf_event_ctxp[ctxn];
3276                 if (likely(!ctx))
3277                         continue;
3278
3279                 perf_event_context_sched_in(ctx, task);
3280         }
3281
3282         if (atomic_read(&nr_switch_events))
3283                 perf_event_switch(task, prev, true);
3284
3285         if (__this_cpu_read(perf_sched_cb_usages))
3286                 perf_pmu_sched_task(prev, task, true);
3287 }
3288
3289 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3290 {
3291         u64 frequency = event->attr.sample_freq;
3292         u64 sec = NSEC_PER_SEC;
3293         u64 divisor, dividend;
3294
3295         int count_fls, nsec_fls, frequency_fls, sec_fls;
3296
3297         count_fls = fls64(count);
3298         nsec_fls = fls64(nsec);
3299         frequency_fls = fls64(frequency);
3300         sec_fls = 30;
3301
3302         /*
3303          * We got @count in @nsec, with a target of sample_freq HZ
3304          * the target period becomes:
3305          *
3306          *             @count * 10^9
3307          * period = -------------------
3308          *          @nsec * sample_freq
3309          *
3310          */
3311
3312         /*
3313          * Reduce accuracy by one bit such that @a and @b converge
3314          * to a similar magnitude.
3315          */
3316 #define REDUCE_FLS(a, b)                \
3317 do {                                    \
3318         if (a##_fls > b##_fls) {        \
3319                 a >>= 1;                \
3320                 a##_fls--;              \
3321         } else {                        \
3322                 b >>= 1;                \
3323                 b##_fls--;              \
3324         }                               \
3325 } while (0)
3326
3327         /*
3328          * Reduce accuracy until either term fits in a u64, then proceed with
3329          * the other, so that finally we can do a u64/u64 division.
3330          */
3331         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332                 REDUCE_FLS(nsec, frequency);
3333                 REDUCE_FLS(sec, count);
3334         }
3335
3336         if (count_fls + sec_fls > 64) {
3337                 divisor = nsec * frequency;
3338
3339                 while (count_fls + sec_fls > 64) {
3340                         REDUCE_FLS(count, sec);
3341                         divisor >>= 1;
3342                 }
3343
3344                 dividend = count * sec;
3345         } else {
3346                 dividend = count * sec;
3347
3348                 while (nsec_fls + frequency_fls > 64) {
3349                         REDUCE_FLS(nsec, frequency);
3350                         dividend >>= 1;
3351                 }
3352
3353                 divisor = nsec * frequency;
3354         }
3355
3356         if (!divisor)
3357                 return dividend;
3358
3359         return div64_u64(dividend, divisor);
3360 }
3361
3362 static DEFINE_PER_CPU(int, perf_throttled_count);
3363 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3364
3365 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3366 {
3367         struct hw_perf_event *hwc = &event->hw;
3368         s64 period, sample_period;
3369         s64 delta;
3370
3371         period = perf_calculate_period(event, nsec, count);
3372
3373         delta = (s64)(period - hwc->sample_period);
3374         delta = (delta + 7) / 8; /* low pass filter */
3375
3376         sample_period = hwc->sample_period + delta;
3377
3378         if (!sample_period)
3379                 sample_period = 1;
3380
3381         hwc->sample_period = sample_period;
3382
3383         if (local64_read(&hwc->period_left) > 8*sample_period) {
3384                 if (disable)
3385                         event->pmu->stop(event, PERF_EF_UPDATE);
3386
3387                 local64_set(&hwc->period_left, 0);
3388
3389                 if (disable)
3390                         event->pmu->start(event, PERF_EF_RELOAD);
3391         }
3392 }
3393
3394 /*
3395  * combine freq adjustment with unthrottling to avoid two passes over the
3396  * events. At the same time, make sure, having freq events does not change
3397  * the rate of unthrottling as that would introduce bias.
3398  */
3399 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400                                            int needs_unthr)
3401 {
3402         struct perf_event *event;
3403         struct hw_perf_event *hwc;
3404         u64 now, period = TICK_NSEC;
3405         s64 delta;
3406
3407         /*
3408          * only need to iterate over all events iff:
3409          * - context have events in frequency mode (needs freq adjust)
3410          * - there are events to unthrottle on this cpu
3411          */
3412         if (!(ctx->nr_freq || needs_unthr))
3413                 return;
3414
3415         raw_spin_lock(&ctx->lock);
3416         perf_pmu_disable(ctx->pmu);
3417
3418         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3419                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3420                         continue;
3421
3422                 if (!event_filter_match(event))
3423                         continue;
3424
3425                 perf_pmu_disable(event->pmu);
3426
3427                 hwc = &event->hw;
3428
3429                 if (hwc->interrupts == MAX_INTERRUPTS) {
3430                         hwc->interrupts = 0;
3431                         perf_log_throttle(event, 1);
3432                         event->pmu->start(event, 0);
3433                 }
3434
3435                 if (!event->attr.freq || !event->attr.sample_freq)
3436                         goto next;
3437
3438                 /*
3439                  * stop the event and update event->count
3440                  */
3441                 event->pmu->stop(event, PERF_EF_UPDATE);
3442
3443                 now = local64_read(&event->count);
3444                 delta = now - hwc->freq_count_stamp;
3445                 hwc->freq_count_stamp = now;
3446
3447                 /*
3448                  * restart the event
3449                  * reload only if value has changed
3450                  * we have stopped the event so tell that
3451                  * to perf_adjust_period() to avoid stopping it
3452                  * twice.
3453                  */
3454                 if (delta > 0)
3455                         perf_adjust_period(event, period, delta, false);
3456
3457                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3458         next:
3459                 perf_pmu_enable(event->pmu);
3460         }
3461
3462         perf_pmu_enable(ctx->pmu);
3463         raw_spin_unlock(&ctx->lock);
3464 }
3465
3466 /*
3467  * Round-robin a context's events:
3468  */
3469 static void rotate_ctx(struct perf_event_context *ctx)
3470 {
3471         /*
3472          * Rotate the first entry last of non-pinned groups. Rotation might be
3473          * disabled by the inheritance code.
3474          */
3475         if (!ctx->rotate_disable)
3476                 list_rotate_left(&ctx->flexible_groups);
3477 }
3478
3479 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3480 {
3481         struct perf_event_context *ctx = NULL;
3482         int rotate = 0;
3483
3484         if (cpuctx->ctx.nr_events) {
3485                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486                         rotate = 1;
3487         }
3488
3489         ctx = cpuctx->task_ctx;
3490         if (ctx && ctx->nr_events) {
3491                 if (ctx->nr_events != ctx->nr_active)
3492                         rotate = 1;
3493         }
3494
3495         if (!rotate)
3496                 goto done;
3497
3498         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3499         perf_pmu_disable(cpuctx->ctx.pmu);
3500
3501         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502         if (ctx)
3503                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3504
3505         rotate_ctx(&cpuctx->ctx);
3506         if (ctx)
3507                 rotate_ctx(ctx);
3508
3509         perf_event_sched_in(cpuctx, ctx, current);
3510
3511         perf_pmu_enable(cpuctx->ctx.pmu);
3512         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3513 done:
3514
3515         return rotate;
3516 }
3517
3518 void perf_event_task_tick(void)
3519 {
3520         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521         struct perf_event_context *ctx, *tmp;
3522         int throttled;
3523
3524         WARN_ON(!irqs_disabled());
3525
3526         __this_cpu_inc(perf_throttled_seq);
3527         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3528         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3529
3530         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3531                 perf_adjust_freq_unthr_context(ctx, throttled);
3532 }
3533
3534 static int event_enable_on_exec(struct perf_event *event,
3535                                 struct perf_event_context *ctx)
3536 {
3537         if (!event->attr.enable_on_exec)
3538                 return 0;
3539
3540         event->attr.enable_on_exec = 0;
3541         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542                 return 0;
3543
3544         __perf_event_mark_enabled(event);
3545
3546         return 1;
3547 }
3548
3549 /*
3550  * Enable all of a task's events that have been marked enable-on-exec.
3551  * This expects task == current.
3552  */
3553 static void perf_event_enable_on_exec(int ctxn)
3554 {
3555         struct perf_event_context *ctx, *clone_ctx = NULL;
3556         enum event_type_t event_type = 0;
3557         struct perf_cpu_context *cpuctx;
3558         struct perf_event *event;
3559         unsigned long flags;
3560         int enabled = 0;
3561
3562         local_irq_save(flags);
3563         ctx = current->perf_event_ctxp[ctxn];
3564         if (!ctx || !ctx->nr_events)
3565                 goto out;
3566
3567         cpuctx = __get_cpu_context(ctx);
3568         perf_ctx_lock(cpuctx, ctx);
3569         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3570         list_for_each_entry(event, &ctx->event_list, event_entry) {
3571                 enabled |= event_enable_on_exec(event, ctx);
3572                 event_type |= get_event_type(event);
3573         }
3574
3575         /*
3576          * Unclone and reschedule this context if we enabled any event.
3577          */
3578         if (enabled) {
3579                 clone_ctx = unclone_ctx(ctx);
3580                 ctx_resched(cpuctx, ctx, event_type);
3581         } else {
3582                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3583         }
3584         perf_ctx_unlock(cpuctx, ctx);
3585
3586 out:
3587         local_irq_restore(flags);
3588
3589         if (clone_ctx)
3590                 put_ctx(clone_ctx);
3591 }
3592
3593 struct perf_read_data {
3594         struct perf_event *event;
3595         bool group;
3596         int ret;
3597 };
3598
3599 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3600 {
3601         u16 local_pkg, event_pkg;
3602
3603         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3604                 int local_cpu = smp_processor_id();
3605
3606                 event_pkg = topology_physical_package_id(event_cpu);
3607                 local_pkg = topology_physical_package_id(local_cpu);
3608
3609                 if (event_pkg == local_pkg)
3610                         return local_cpu;
3611         }
3612
3613         return event_cpu;
3614 }
3615
3616 /*
3617  * Cross CPU call to read the hardware event
3618  */
3619 static void __perf_event_read(void *info)
3620 {
3621         struct perf_read_data *data = info;
3622         struct perf_event *sub, *event = data->event;
3623         struct perf_event_context *ctx = event->ctx;
3624         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3625         struct pmu *pmu = event->pmu;
3626
3627         /*
3628          * If this is a task context, we need to check whether it is
3629          * the current task context of this cpu.  If not it has been
3630          * scheduled out before the smp call arrived.  In that case
3631          * event->count would have been updated to a recent sample
3632          * when the event was scheduled out.
3633          */
3634         if (ctx->task && cpuctx->task_ctx != ctx)
3635                 return;
3636
3637         raw_spin_lock(&ctx->lock);
3638         if (ctx->is_active) {
3639                 update_context_time(ctx);
3640                 update_cgrp_time_from_event(event);
3641         }
3642
3643         update_event_times(event);
3644         if (event->state != PERF_EVENT_STATE_ACTIVE)
3645                 goto unlock;
3646
3647         if (!data->group) {
3648                 pmu->read(event);
3649                 data->ret = 0;
3650                 goto unlock;
3651         }
3652
3653         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3654
3655         pmu->read(event);
3656
3657         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658                 update_event_times(sub);
3659                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3660                         /*
3661                          * Use sibling's PMU rather than @event's since
3662                          * sibling could be on different (eg: software) PMU.
3663                          */
3664                         sub->pmu->read(sub);
3665                 }
3666         }
3667
3668         data->ret = pmu->commit_txn(pmu);
3669
3670 unlock:
3671         raw_spin_unlock(&ctx->lock);
3672 }
3673
3674 static inline u64 perf_event_count(struct perf_event *event)
3675 {
3676         return local64_read(&event->count) + atomic64_read(&event->child_count);
3677 }
3678
3679 /*
3680  * NMI-safe method to read a local event, that is an event that
3681  * is:
3682  *   - either for the current task, or for this CPU
3683  *   - does not have inherit set, for inherited task events
3684  *     will not be local and we cannot read them atomically
3685  *   - must not have a pmu::count method
3686  */
3687 int perf_event_read_local(struct perf_event *event, u64 *value)
3688 {
3689         unsigned long flags;
3690         int ret = 0;
3691
3692         /*
3693          * Disabling interrupts avoids all counter scheduling (context
3694          * switches, timer based rotation and IPIs).
3695          */
3696         local_irq_save(flags);
3697
3698         /*
3699          * It must not be an event with inherit set, we cannot read
3700          * all child counters from atomic context.
3701          */
3702         if (event->attr.inherit) {
3703                 ret = -EOPNOTSUPP;
3704                 goto out;
3705         }
3706
3707         /* If this is a per-task event, it must be for current */
3708         if ((event->attach_state & PERF_ATTACH_TASK) &&
3709             event->hw.target != current) {
3710                 ret = -EINVAL;
3711                 goto out;
3712         }
3713
3714         /* If this is a per-CPU event, it must be for this CPU */
3715         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3716             event->cpu != smp_processor_id()) {
3717                 ret = -EINVAL;
3718                 goto out;
3719         }
3720
3721         /*
3722          * If the event is currently on this CPU, its either a per-task event,
3723          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3724          * oncpu == -1).
3725          */
3726         if (event->oncpu == smp_processor_id())
3727                 event->pmu->read(event);
3728
3729         *value = local64_read(&event->count);
3730 out:
3731         local_irq_restore(flags);
3732
3733         return ret;
3734 }
3735
3736 static int perf_event_read(struct perf_event *event, bool group)
3737 {
3738         int event_cpu, ret = 0;
3739
3740         /*
3741          * If event is enabled and currently active on a CPU, update the
3742          * value in the event structure:
3743          */
3744         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3745                 struct perf_read_data data = {
3746                         .event = event,
3747                         .group = group,
3748                         .ret = 0,
3749                 };
3750
3751                 event_cpu = READ_ONCE(event->oncpu);
3752                 if ((unsigned)event_cpu >= nr_cpu_ids)
3753                         return 0;
3754
3755                 preempt_disable();
3756                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3757
3758                 /*
3759                  * Purposely ignore the smp_call_function_single() return
3760                  * value.
3761                  *
3762                  * If event_cpu isn't a valid CPU it means the event got
3763                  * scheduled out and that will have updated the event count.
3764                  *
3765                  * Therefore, either way, we'll have an up-to-date event count
3766                  * after this.
3767                  */
3768                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3769                 preempt_enable();
3770                 ret = data.ret;
3771         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3772                 struct perf_event_context *ctx = event->ctx;
3773                 unsigned long flags;
3774
3775                 raw_spin_lock_irqsave(&ctx->lock, flags);
3776                 /*
3777                  * may read while context is not active
3778                  * (e.g., thread is blocked), in that case
3779                  * we cannot update context time
3780                  */
3781                 if (ctx->is_active) {
3782                         update_context_time(ctx);
3783                         update_cgrp_time_from_event(event);
3784                 }
3785                 if (group)
3786                         update_group_times(event);
3787                 else
3788                         update_event_times(event);
3789                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3790         }
3791
3792         return ret;
3793 }
3794
3795 /*
3796  * Initialize the perf_event context in a task_struct:
3797  */
3798 static void __perf_event_init_context(struct perf_event_context *ctx)
3799 {
3800         raw_spin_lock_init(&ctx->lock);
3801         mutex_init(&ctx->mutex);
3802         INIT_LIST_HEAD(&ctx->active_ctx_list);
3803         INIT_LIST_HEAD(&ctx->pinned_groups);
3804         INIT_LIST_HEAD(&ctx->flexible_groups);
3805         INIT_LIST_HEAD(&ctx->event_list);
3806         atomic_set(&ctx->refcount, 1);
3807 }
3808
3809 static struct perf_event_context *
3810 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3811 {
3812         struct perf_event_context *ctx;
3813
3814         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3815         if (!ctx)
3816                 return NULL;
3817
3818         __perf_event_init_context(ctx);
3819         if (task) {
3820                 ctx->task = task;
3821                 get_task_struct(task);
3822         }
3823         ctx->pmu = pmu;
3824
3825         return ctx;
3826 }
3827
3828 static struct task_struct *
3829 find_lively_task_by_vpid(pid_t vpid)
3830 {
3831         struct task_struct *task;
3832
3833         rcu_read_lock();
3834         if (!vpid)
3835                 task = current;
3836         else
3837                 task = find_task_by_vpid(vpid);
3838         if (task)
3839                 get_task_struct(task);
3840         rcu_read_unlock();
3841
3842         if (!task)
3843                 return ERR_PTR(-ESRCH);
3844
3845         return task;
3846 }
3847
3848 /*
3849  * Returns a matching context with refcount and pincount.
3850  */
3851 static struct perf_event_context *
3852 find_get_context(struct pmu *pmu, struct task_struct *task,
3853                 struct perf_event *event)
3854 {
3855         struct perf_event_context *ctx, *clone_ctx = NULL;
3856         struct perf_cpu_context *cpuctx;
3857         void *task_ctx_data = NULL;
3858         unsigned long flags;
3859         int ctxn, err;
3860         int cpu = event->cpu;
3861
3862         if (!task) {
3863                 /* Must be root to operate on a CPU event: */
3864                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3865                         return ERR_PTR(-EACCES);
3866
3867                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3868                 ctx = &cpuctx->ctx;
3869                 get_ctx(ctx);
3870                 ++ctx->pin_count;
3871
3872                 return ctx;
3873         }
3874
3875         err = -EINVAL;
3876         ctxn = pmu->task_ctx_nr;
3877         if (ctxn < 0)
3878                 goto errout;
3879
3880         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3881                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3882                 if (!task_ctx_data) {
3883                         err = -ENOMEM;
3884                         goto errout;
3885                 }
3886         }
3887
3888 retry:
3889         ctx = perf_lock_task_context(task, ctxn, &flags);
3890         if (ctx) {
3891                 clone_ctx = unclone_ctx(ctx);
3892                 ++ctx->pin_count;
3893
3894                 if (task_ctx_data && !ctx->task_ctx_data) {
3895                         ctx->task_ctx_data = task_ctx_data;
3896                         task_ctx_data = NULL;
3897                 }
3898                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3899
3900                 if (clone_ctx)
3901                         put_ctx(clone_ctx);
3902         } else {
3903                 ctx = alloc_perf_context(pmu, task);
3904                 err = -ENOMEM;
3905                 if (!ctx)
3906                         goto errout;
3907
3908                 if (task_ctx_data) {
3909                         ctx->task_ctx_data = task_ctx_data;
3910                         task_ctx_data = NULL;
3911                 }
3912
3913                 err = 0;
3914                 mutex_lock(&task->perf_event_mutex);
3915                 /*
3916                  * If it has already passed perf_event_exit_task().
3917                  * we must see PF_EXITING, it takes this mutex too.
3918                  */
3919                 if (task->flags & PF_EXITING)
3920                         err = -ESRCH;
3921                 else if (task->perf_event_ctxp[ctxn])
3922                         err = -EAGAIN;
3923                 else {
3924                         get_ctx(ctx);
3925                         ++ctx->pin_count;
3926                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3927                 }
3928                 mutex_unlock(&task->perf_event_mutex);
3929
3930                 if (unlikely(err)) {
3931                         put_ctx(ctx);
3932
3933                         if (err == -EAGAIN)
3934                                 goto retry;
3935                         goto errout;
3936                 }
3937         }
3938
3939         kfree(task_ctx_data);
3940         return ctx;
3941
3942 errout:
3943         kfree(task_ctx_data);
3944         return ERR_PTR(err);
3945 }
3946
3947 static void perf_event_free_filter(struct perf_event *event);
3948 static void perf_event_free_bpf_prog(struct perf_event *event);
3949
3950 static void free_event_rcu(struct rcu_head *head)
3951 {
3952         struct perf_event *event;
3953
3954         event = container_of(head, struct perf_event, rcu_head);
3955         if (event->ns)
3956                 put_pid_ns(event->ns);
3957         perf_event_free_filter(event);
3958         kfree(event);
3959 }
3960
3961 static void ring_buffer_attach(struct perf_event *event,
3962                                struct ring_buffer *rb);
3963
3964 static void detach_sb_event(struct perf_event *event)
3965 {
3966         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3967
3968         raw_spin_lock(&pel->lock);
3969         list_del_rcu(&event->sb_list);
3970         raw_spin_unlock(&pel->lock);
3971 }
3972
3973 static bool is_sb_event(struct perf_event *event)
3974 {
3975         struct perf_event_attr *attr = &event->attr;
3976
3977         if (event->parent)
3978                 return false;
3979
3980         if (event->attach_state & PERF_ATTACH_TASK)
3981                 return false;
3982
3983         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3984             attr->comm || attr->comm_exec ||
3985             attr->task ||
3986             attr->context_switch)
3987                 return true;
3988         return false;
3989 }
3990
3991 static void unaccount_pmu_sb_event(struct perf_event *event)
3992 {
3993         if (is_sb_event(event))
3994                 detach_sb_event(event);
3995 }
3996
3997 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3998 {
3999         if (event->parent)
4000                 return;
4001
4002         if (is_cgroup_event(event))
4003                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4004 }
4005
4006 #ifdef CONFIG_NO_HZ_FULL
4007 static DEFINE_SPINLOCK(nr_freq_lock);
4008 #endif
4009
4010 static void unaccount_freq_event_nohz(void)
4011 {
4012 #ifdef CONFIG_NO_HZ_FULL
4013         spin_lock(&nr_freq_lock);
4014         if (atomic_dec_and_test(&nr_freq_events))
4015                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4016         spin_unlock(&nr_freq_lock);
4017 #endif
4018 }
4019
4020 static void unaccount_freq_event(void)
4021 {
4022         if (tick_nohz_full_enabled())
4023                 unaccount_freq_event_nohz();
4024         else
4025                 atomic_dec(&nr_freq_events);
4026 }
4027
4028 static void unaccount_event(struct perf_event *event)
4029 {
4030         bool dec = false;
4031
4032         if (event->parent)
4033                 return;
4034
4035         if (event->attach_state & PERF_ATTACH_TASK)
4036                 dec = true;
4037         if (event->attr.mmap || event->attr.mmap_data)
4038                 atomic_dec(&nr_mmap_events);
4039         if (event->attr.comm)
4040                 atomic_dec(&nr_comm_events);
4041         if (event->attr.namespaces)
4042                 atomic_dec(&nr_namespaces_events);
4043         if (event->attr.task)
4044                 atomic_dec(&nr_task_events);
4045         if (event->attr.freq)
4046                 unaccount_freq_event();
4047         if (event->attr.context_switch) {
4048                 dec = true;
4049                 atomic_dec(&nr_switch_events);
4050         }
4051         if (is_cgroup_event(event))
4052                 dec = true;
4053         if (has_branch_stack(event))
4054                 dec = true;
4055
4056         if (dec) {
4057                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4058                         schedule_delayed_work(&perf_sched_work, HZ);
4059         }
4060
4061         unaccount_event_cpu(event, event->cpu);
4062
4063         unaccount_pmu_sb_event(event);
4064 }
4065
4066 static void perf_sched_delayed(struct work_struct *work)
4067 {
4068         mutex_lock(&perf_sched_mutex);
4069         if (atomic_dec_and_test(&perf_sched_count))
4070                 static_branch_disable(&perf_sched_events);
4071         mutex_unlock(&perf_sched_mutex);
4072 }
4073
4074 /*
4075  * The following implement mutual exclusion of events on "exclusive" pmus
4076  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4077  * at a time, so we disallow creating events that might conflict, namely:
4078  *
4079  *  1) cpu-wide events in the presence of per-task events,
4080  *  2) per-task events in the presence of cpu-wide events,
4081  *  3) two matching events on the same context.
4082  *
4083  * The former two cases are handled in the allocation path (perf_event_alloc(),
4084  * _free_event()), the latter -- before the first perf_install_in_context().
4085  */
4086 static int exclusive_event_init(struct perf_event *event)
4087 {
4088         struct pmu *pmu = event->pmu;
4089
4090         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4091                 return 0;
4092
4093         /*
4094          * Prevent co-existence of per-task and cpu-wide events on the
4095          * same exclusive pmu.
4096          *
4097          * Negative pmu::exclusive_cnt means there are cpu-wide
4098          * events on this "exclusive" pmu, positive means there are
4099          * per-task events.
4100          *
4101          * Since this is called in perf_event_alloc() path, event::ctx
4102          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4103          * to mean "per-task event", because unlike other attach states it
4104          * never gets cleared.
4105          */
4106         if (event->attach_state & PERF_ATTACH_TASK) {
4107                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4108                         return -EBUSY;
4109         } else {
4110                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4111                         return -EBUSY;
4112         }
4113
4114         return 0;
4115 }
4116
4117 static void exclusive_event_destroy(struct perf_event *event)
4118 {
4119         struct pmu *pmu = event->pmu;
4120
4121         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4122                 return;
4123
4124         /* see comment in exclusive_event_init() */
4125         if (event->attach_state & PERF_ATTACH_TASK)
4126                 atomic_dec(&pmu->exclusive_cnt);
4127         else
4128                 atomic_inc(&pmu->exclusive_cnt);
4129 }
4130
4131 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4132 {
4133         if ((e1->pmu == e2->pmu) &&
4134             (e1->cpu == e2->cpu ||
4135              e1->cpu == -1 ||
4136              e2->cpu == -1))
4137                 return true;
4138         return false;
4139 }
4140
4141 /* Called under the same ctx::mutex as perf_install_in_context() */
4142 static bool exclusive_event_installable(struct perf_event *event,
4143                                         struct perf_event_context *ctx)
4144 {
4145         struct perf_event *iter_event;
4146         struct pmu *pmu = event->pmu;
4147
4148         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4149                 return true;
4150
4151         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4152                 if (exclusive_event_match(iter_event, event))
4153                         return false;
4154         }
4155
4156         return true;
4157 }
4158
4159 static void perf_addr_filters_splice(struct perf_event *event,
4160                                        struct list_head *head);
4161
4162 static void _free_event(struct perf_event *event)
4163 {
4164         irq_work_sync(&event->pending);
4165
4166         unaccount_event(event);
4167
4168         if (event->rb) {
4169                 /*
4170                  * Can happen when we close an event with re-directed output.
4171                  *
4172                  * Since we have a 0 refcount, perf_mmap_close() will skip
4173                  * over us; possibly making our ring_buffer_put() the last.
4174                  */
4175                 mutex_lock(&event->mmap_mutex);
4176                 ring_buffer_attach(event, NULL);
4177                 mutex_unlock(&event->mmap_mutex);
4178         }
4179
4180         if (is_cgroup_event(event))
4181                 perf_detach_cgroup(event);
4182
4183         if (!event->parent) {
4184                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4185                         put_callchain_buffers();
4186         }
4187
4188         perf_event_free_bpf_prog(event);
4189         perf_addr_filters_splice(event, NULL);
4190         kfree(event->addr_filters_offs);
4191
4192         if (event->destroy)
4193                 event->destroy(event);
4194
4195         if (event->ctx)
4196                 put_ctx(event->ctx);
4197
4198         exclusive_event_destroy(event);
4199         module_put(event->pmu->module);
4200
4201         call_rcu(&event->rcu_head, free_event_rcu);
4202 }
4203
4204 /*
4205  * Used to free events which have a known refcount of 1, such as in error paths
4206  * where the event isn't exposed yet and inherited events.
4207  */
4208 static void free_event(struct perf_event *event)
4209 {
4210         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4211                                 "unexpected event refcount: %ld; ptr=%p\n",
4212                                 atomic_long_read(&event->refcount), event)) {
4213                 /* leak to avoid use-after-free */
4214                 return;
4215         }
4216
4217         _free_event(event);
4218 }
4219
4220 /*
4221  * Remove user event from the owner task.
4222  */
4223 static void perf_remove_from_owner(struct perf_event *event)
4224 {
4225         struct task_struct *owner;
4226
4227         rcu_read_lock();
4228         /*
4229          * Matches the smp_store_release() in perf_event_exit_task(). If we
4230          * observe !owner it means the list deletion is complete and we can
4231          * indeed free this event, otherwise we need to serialize on
4232          * owner->perf_event_mutex.
4233          */
4234         owner = lockless_dereference(event->owner);
4235         if (owner) {
4236                 /*
4237                  * Since delayed_put_task_struct() also drops the last
4238                  * task reference we can safely take a new reference
4239                  * while holding the rcu_read_lock().
4240                  */
4241                 get_task_struct(owner);
4242         }
4243         rcu_read_unlock();
4244
4245         if (owner) {
4246                 /*
4247                  * If we're here through perf_event_exit_task() we're already
4248                  * holding ctx->mutex which would be an inversion wrt. the
4249                  * normal lock order.
4250                  *
4251                  * However we can safely take this lock because its the child
4252                  * ctx->mutex.
4253                  */
4254                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4255
4256                 /*
4257                  * We have to re-check the event->owner field, if it is cleared
4258                  * we raced with perf_event_exit_task(), acquiring the mutex
4259                  * ensured they're done, and we can proceed with freeing the
4260                  * event.
4261                  */
4262                 if (event->owner) {
4263                         list_del_init(&event->owner_entry);
4264                         smp_store_release(&event->owner, NULL);
4265                 }
4266                 mutex_unlock(&owner->perf_event_mutex);
4267                 put_task_struct(owner);
4268         }
4269 }
4270
4271 static void put_event(struct perf_event *event)
4272 {
4273         if (!atomic_long_dec_and_test(&event->refcount))
4274                 return;
4275
4276         _free_event(event);
4277 }
4278
4279 /*
4280  * Kill an event dead; while event:refcount will preserve the event
4281  * object, it will not preserve its functionality. Once the last 'user'
4282  * gives up the object, we'll destroy the thing.
4283  */
4284 int perf_event_release_kernel(struct perf_event *event)
4285 {
4286         struct perf_event_context *ctx = event->ctx;
4287         struct perf_event *child, *tmp;
4288
4289         /*
4290          * If we got here through err_file: fput(event_file); we will not have
4291          * attached to a context yet.
4292          */
4293         if (!ctx) {
4294                 WARN_ON_ONCE(event->attach_state &
4295                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4296                 goto no_ctx;
4297         }
4298
4299         if (!is_kernel_event(event))
4300                 perf_remove_from_owner(event);
4301
4302         ctx = perf_event_ctx_lock(event);
4303         WARN_ON_ONCE(ctx->parent_ctx);
4304         perf_remove_from_context(event, DETACH_GROUP);
4305
4306         raw_spin_lock_irq(&ctx->lock);
4307         /*
4308          * Mark this event as STATE_DEAD, there is no external reference to it
4309          * anymore.
4310          *
4311          * Anybody acquiring event->child_mutex after the below loop _must_
4312          * also see this, most importantly inherit_event() which will avoid
4313          * placing more children on the list.
4314          *
4315          * Thus this guarantees that we will in fact observe and kill _ALL_
4316          * child events.
4317          */
4318         event->state = PERF_EVENT_STATE_DEAD;
4319         raw_spin_unlock_irq(&ctx->lock);
4320
4321         perf_event_ctx_unlock(event, ctx);
4322
4323 again:
4324         mutex_lock(&event->child_mutex);
4325         list_for_each_entry(child, &event->child_list, child_list) {
4326
4327                 /*
4328                  * Cannot change, child events are not migrated, see the
4329                  * comment with perf_event_ctx_lock_nested().
4330                  */
4331                 ctx = lockless_dereference(child->ctx);
4332                 /*
4333                  * Since child_mutex nests inside ctx::mutex, we must jump
4334                  * through hoops. We start by grabbing a reference on the ctx.
4335                  *
4336                  * Since the event cannot get freed while we hold the
4337                  * child_mutex, the context must also exist and have a !0
4338                  * reference count.
4339                  */
4340                 get_ctx(ctx);
4341
4342                 /*
4343                  * Now that we have a ctx ref, we can drop child_mutex, and
4344                  * acquire ctx::mutex without fear of it going away. Then we
4345                  * can re-acquire child_mutex.
4346                  */
4347                 mutex_unlock(&event->child_mutex);
4348                 mutex_lock(&ctx->mutex);
4349                 mutex_lock(&event->child_mutex);
4350
4351                 /*
4352                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4353                  * state, if child is still the first entry, it didn't get freed
4354                  * and we can continue doing so.
4355                  */
4356                 tmp = list_first_entry_or_null(&event->child_list,
4357                                                struct perf_event, child_list);
4358                 if (tmp == child) {
4359                         perf_remove_from_context(child, DETACH_GROUP);
4360                         list_del(&child->child_list);
4361                         free_event(child);
4362                         /*
4363                          * This matches the refcount bump in inherit_event();
4364                          * this can't be the last reference.
4365                          */
4366                         put_event(event);
4367                 }
4368
4369                 mutex_unlock(&event->child_mutex);
4370                 mutex_unlock(&ctx->mutex);
4371                 put_ctx(ctx);
4372                 goto again;
4373         }
4374         mutex_unlock(&event->child_mutex);
4375
4376 no_ctx:
4377         put_event(event); /* Must be the 'last' reference */
4378         return 0;
4379 }
4380 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4381
4382 /*
4383  * Called when the last reference to the file is gone.
4384  */
4385 static int perf_release(struct inode *inode, struct file *file)
4386 {
4387         perf_event_release_kernel(file->private_data);
4388         return 0;
4389 }
4390
4391 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4392 {
4393         struct perf_event *child;
4394         u64 total = 0;
4395
4396         *enabled = 0;
4397         *running = 0;
4398
4399         mutex_lock(&event->child_mutex);
4400
4401         (void)perf_event_read(event, false);
4402         total += perf_event_count(event);
4403
4404         *enabled += event->total_time_enabled +
4405                         atomic64_read(&event->child_total_time_enabled);
4406         *running += event->total_time_running +
4407                         atomic64_read(&event->child_total_time_running);
4408
4409         list_for_each_entry(child, &event->child_list, child_list) {
4410                 (void)perf_event_read(child, false);
4411                 total += perf_event_count(child);
4412                 *enabled += child->total_time_enabled;
4413                 *running += child->total_time_running;
4414         }
4415         mutex_unlock(&event->child_mutex);
4416
4417         return total;
4418 }
4419 EXPORT_SYMBOL_GPL(perf_event_read_value);
4420
4421 static int __perf_read_group_add(struct perf_event *leader,
4422                                         u64 read_format, u64 *values)
4423 {
4424         struct perf_event_context *ctx = leader->ctx;
4425         struct perf_event *sub;
4426         unsigned long flags;
4427         int n = 1; /* skip @nr */
4428         int ret;
4429
4430         ret = perf_event_read(leader, true);
4431         if (ret)
4432                 return ret;
4433
4434         /*
4435          * Since we co-schedule groups, {enabled,running} times of siblings
4436          * will be identical to those of the leader, so we only publish one
4437          * set.
4438          */
4439         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4440                 values[n++] += leader->total_time_enabled +
4441                         atomic64_read(&leader->child_total_time_enabled);
4442         }
4443
4444         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4445                 values[n++] += leader->total_time_running +
4446                         atomic64_read(&leader->child_total_time_running);
4447         }
4448
4449         /*
4450          * Write {count,id} tuples for every sibling.
4451          */
4452         values[n++] += perf_event_count(leader);
4453         if (read_format & PERF_FORMAT_ID)
4454                 values[n++] = primary_event_id(leader);
4455
4456         raw_spin_lock_irqsave(&ctx->lock, flags);
4457
4458         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4459                 values[n++] += perf_event_count(sub);
4460                 if (read_format & PERF_FORMAT_ID)
4461                         values[n++] = primary_event_id(sub);
4462         }
4463
4464         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4465         return 0;
4466 }
4467
4468 static int perf_read_group(struct perf_event *event,
4469                                    u64 read_format, char __user *buf)
4470 {
4471         struct perf_event *leader = event->group_leader, *child;
4472         struct perf_event_context *ctx = leader->ctx;
4473         int ret;
4474         u64 *values;
4475
4476         lockdep_assert_held(&ctx->mutex);
4477
4478         values = kzalloc(event->read_size, GFP_KERNEL);
4479         if (!values)
4480                 return -ENOMEM;
4481
4482         values[0] = 1 + leader->nr_siblings;
4483
4484         /*
4485          * By locking the child_mutex of the leader we effectively
4486          * lock the child list of all siblings.. XXX explain how.
4487          */
4488         mutex_lock(&leader->child_mutex);
4489
4490         ret = __perf_read_group_add(leader, read_format, values);
4491         if (ret)
4492                 goto unlock;
4493
4494         list_for_each_entry(child, &leader->child_list, child_list) {
4495                 ret = __perf_read_group_add(child, read_format, values);
4496                 if (ret)
4497                         goto unlock;
4498         }
4499
4500         mutex_unlock(&leader->child_mutex);
4501
4502         ret = event->read_size;
4503         if (copy_to_user(buf, values, event->read_size))
4504                 ret = -EFAULT;
4505         goto out;
4506
4507 unlock:
4508         mutex_unlock(&leader->child_mutex);
4509 out:
4510         kfree(values);
4511         return ret;
4512 }
4513
4514 static int perf_read_one(struct perf_event *event,
4515                                  u64 read_format, char __user *buf)
4516 {
4517         u64 enabled, running;
4518         u64 values[4];
4519         int n = 0;
4520
4521         values[n++] = perf_event_read_value(event, &enabled, &running);
4522         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4523                 values[n++] = enabled;
4524         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4525                 values[n++] = running;
4526         if (read_format & PERF_FORMAT_ID)
4527                 values[n++] = primary_event_id(event);
4528
4529         if (copy_to_user(buf, values, n * sizeof(u64)))
4530                 return -EFAULT;
4531
4532         return n * sizeof(u64);
4533 }
4534
4535 static bool is_event_hup(struct perf_event *event)
4536 {
4537         bool no_children;
4538
4539         if (event->state > PERF_EVENT_STATE_EXIT)
4540                 return false;
4541
4542         mutex_lock(&event->child_mutex);
4543         no_children = list_empty(&event->child_list);
4544         mutex_unlock(&event->child_mutex);
4545         return no_children;
4546 }
4547
4548 /*
4549  * Read the performance event - simple non blocking version for now
4550  */
4551 static ssize_t
4552 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4553 {
4554         u64 read_format = event->attr.read_format;
4555         int ret;
4556
4557         /*
4558          * Return end-of-file for a read on a event that is in
4559          * error state (i.e. because it was pinned but it couldn't be
4560          * scheduled on to the CPU at some point).
4561          */
4562         if (event->state == PERF_EVENT_STATE_ERROR)
4563                 return 0;
4564
4565         if (count < event->read_size)
4566                 return -ENOSPC;
4567
4568         WARN_ON_ONCE(event->ctx->parent_ctx);
4569         if (read_format & PERF_FORMAT_GROUP)
4570                 ret = perf_read_group(event, read_format, buf);
4571         else
4572                 ret = perf_read_one(event, read_format, buf);
4573
4574         return ret;
4575 }
4576
4577 static ssize_t
4578 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4579 {
4580         struct perf_event *event = file->private_data;
4581         struct perf_event_context *ctx;
4582         int ret;
4583
4584         ctx = perf_event_ctx_lock(event);
4585         ret = __perf_read(event, buf, count);
4586         perf_event_ctx_unlock(event, ctx);
4587
4588         return ret;
4589 }
4590
4591 static unsigned int perf_poll(struct file *file, poll_table *wait)
4592 {
4593         struct perf_event *event = file->private_data;
4594         struct ring_buffer *rb;
4595         unsigned int events = POLLHUP;
4596
4597         poll_wait(file, &event->waitq, wait);
4598
4599         if (is_event_hup(event))
4600                 return events;
4601
4602         /*
4603          * Pin the event->rb by taking event->mmap_mutex; otherwise
4604          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4605          */
4606         mutex_lock(&event->mmap_mutex);
4607         rb = event->rb;
4608         if (rb)
4609                 events = atomic_xchg(&rb->poll, 0);
4610         mutex_unlock(&event->mmap_mutex);
4611         return events;
4612 }
4613
4614 static void _perf_event_reset(struct perf_event *event)
4615 {
4616         (void)perf_event_read(event, false);
4617         local64_set(&event->count, 0);
4618         perf_event_update_userpage(event);
4619 }
4620
4621 /*
4622  * Holding the top-level event's child_mutex means that any
4623  * descendant process that has inherited this event will block
4624  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4625  * task existence requirements of perf_event_enable/disable.
4626  */
4627 static void perf_event_for_each_child(struct perf_event *event,
4628                                         void (*func)(struct perf_event *))
4629 {
4630         struct perf_event *child;
4631
4632         WARN_ON_ONCE(event->ctx->parent_ctx);
4633
4634         mutex_lock(&event->child_mutex);
4635         func(event);
4636         list_for_each_entry(child, &event->child_list, child_list)
4637                 func(child);
4638         mutex_unlock(&event->child_mutex);
4639 }
4640
4641 static void perf_event_for_each(struct perf_event *event,
4642                                   void (*func)(struct perf_event *))
4643 {
4644         struct perf_event_context *ctx = event->ctx;
4645         struct perf_event *sibling;
4646
4647         lockdep_assert_held(&ctx->mutex);
4648
4649         event = event->group_leader;
4650
4651         perf_event_for_each_child(event, func);
4652         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4653                 perf_event_for_each_child(sibling, func);
4654 }
4655
4656 static void __perf_event_period(struct perf_event *event,
4657                                 struct perf_cpu_context *cpuctx,
4658                                 struct perf_event_context *ctx,
4659                                 void *info)
4660 {
4661         u64 value = *((u64 *)info);
4662         bool active;
4663
4664         if (event->attr.freq) {
4665                 event->attr.sample_freq = value;
4666         } else {
4667                 event->attr.sample_period = value;
4668                 event->hw.sample_period = value;
4669         }
4670
4671         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4672         if (active) {
4673                 perf_pmu_disable(ctx->pmu);
4674                 /*
4675                  * We could be throttled; unthrottle now to avoid the tick
4676                  * trying to unthrottle while we already re-started the event.
4677                  */
4678                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4679                         event->hw.interrupts = 0;
4680                         perf_log_throttle(event, 1);
4681                 }
4682                 event->pmu->stop(event, PERF_EF_UPDATE);
4683         }
4684
4685         local64_set(&event->hw.period_left, 0);
4686
4687         if (active) {
4688                 event->pmu->start(event, PERF_EF_RELOAD);
4689                 perf_pmu_enable(ctx->pmu);
4690         }
4691 }
4692
4693 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4694 {
4695         u64 value;
4696
4697         if (!is_sampling_event(event))
4698                 return -EINVAL;
4699
4700         if (copy_from_user(&value, arg, sizeof(value)))
4701                 return -EFAULT;
4702
4703         if (!value)
4704                 return -EINVAL;
4705
4706         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4707                 return -EINVAL;
4708
4709         event_function_call(event, __perf_event_period, &value);
4710
4711         return 0;
4712 }
4713
4714 static const struct file_operations perf_fops;
4715
4716 static inline int perf_fget_light(int fd, struct fd *p)
4717 {
4718         struct fd f = fdget(fd);
4719         if (!f.file)
4720                 return -EBADF;
4721
4722         if (f.file->f_op != &perf_fops) {
4723                 fdput(f);
4724                 return -EBADF;
4725         }
4726         *p = f;
4727         return 0;
4728 }
4729
4730 static int perf_event_set_output(struct perf_event *event,
4731                                  struct perf_event *output_event);
4732 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4733 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4734
4735 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4736 {
4737         void (*func)(struct perf_event *);
4738         u32 flags = arg;
4739
4740         switch (cmd) {
4741         case PERF_EVENT_IOC_ENABLE:
4742                 func = _perf_event_enable;
4743                 break;
4744         case PERF_EVENT_IOC_DISABLE:
4745                 func = _perf_event_disable;
4746                 break;
4747         case PERF_EVENT_IOC_RESET:
4748                 func = _perf_event_reset;
4749                 break;
4750
4751         case PERF_EVENT_IOC_REFRESH:
4752                 return _perf_event_refresh(event, arg);
4753
4754         case PERF_EVENT_IOC_PERIOD:
4755                 return perf_event_period(event, (u64 __user *)arg);
4756
4757         case PERF_EVENT_IOC_ID:
4758         {
4759                 u64 id = primary_event_id(event);
4760
4761                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4762                         return -EFAULT;
4763                 return 0;
4764         }
4765
4766         case PERF_EVENT_IOC_SET_OUTPUT:
4767         {
4768                 int ret;
4769                 if (arg != -1) {
4770                         struct perf_event *output_event;
4771                         struct fd output;
4772                         ret = perf_fget_light(arg, &output);
4773                         if (ret)
4774                                 return ret;
4775                         output_event = output.file->private_data;
4776                         ret = perf_event_set_output(event, output_event);
4777                         fdput(output);
4778                 } else {
4779                         ret = perf_event_set_output(event, NULL);
4780                 }
4781                 return ret;
4782         }
4783
4784         case PERF_EVENT_IOC_SET_FILTER:
4785                 return perf_event_set_filter(event, (void __user *)arg);
4786
4787         case PERF_EVENT_IOC_SET_BPF:
4788                 return perf_event_set_bpf_prog(event, arg);
4789
4790         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4791                 struct ring_buffer *rb;
4792
4793                 rcu_read_lock();
4794                 rb = rcu_dereference(event->rb);
4795                 if (!rb || !rb->nr_pages) {
4796                         rcu_read_unlock();
4797                         return -EINVAL;
4798                 }
4799                 rb_toggle_paused(rb, !!arg);
4800                 rcu_read_unlock();
4801                 return 0;
4802         }
4803         default:
4804                 return -ENOTTY;
4805         }
4806
4807         if (flags & PERF_IOC_FLAG_GROUP)
4808                 perf_event_for_each(event, func);
4809         else
4810                 perf_event_for_each_child(event, func);
4811
4812         return 0;
4813 }
4814
4815 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4816 {
4817         struct perf_event *event = file->private_data;
4818         struct perf_event_context *ctx;
4819         long ret;
4820
4821         ctx = perf_event_ctx_lock(event);
4822         ret = _perf_ioctl(event, cmd, arg);
4823         perf_event_ctx_unlock(event, ctx);
4824
4825         return ret;
4826 }
4827
4828 #ifdef CONFIG_COMPAT
4829 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4830                                 unsigned long arg)
4831 {
4832         switch (_IOC_NR(cmd)) {
4833         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4834         case _IOC_NR(PERF_EVENT_IOC_ID):
4835                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4836                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4837                         cmd &= ~IOCSIZE_MASK;
4838                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4839                 }
4840                 break;
4841         }
4842         return perf_ioctl(file, cmd, arg);
4843 }
4844 #else
4845 # define perf_compat_ioctl NULL
4846 #endif
4847
4848 int perf_event_task_enable(void)
4849 {
4850         struct perf_event_context *ctx;
4851         struct perf_event *event;
4852
4853         mutex_lock(&current->perf_event_mutex);
4854         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4855                 ctx = perf_event_ctx_lock(event);
4856                 perf_event_for_each_child(event, _perf_event_enable);
4857                 perf_event_ctx_unlock(event, ctx);
4858         }
4859         mutex_unlock(&current->perf_event_mutex);
4860
4861         return 0;
4862 }
4863
4864 int perf_event_task_disable(void)
4865 {
4866         struct perf_event_context *ctx;
4867         struct perf_event *event;
4868
4869         mutex_lock(&current->perf_event_mutex);
4870         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4871                 ctx = perf_event_ctx_lock(event);
4872                 perf_event_for_each_child(event, _perf_event_disable);
4873                 perf_event_ctx_unlock(event, ctx);
4874         }
4875         mutex_unlock(&current->perf_event_mutex);
4876
4877         return 0;
4878 }
4879
4880 static int perf_event_index(struct perf_event *event)
4881 {
4882         if (event->hw.state & PERF_HES_STOPPED)
4883                 return 0;
4884
4885         if (event->state != PERF_EVENT_STATE_ACTIVE)
4886                 return 0;
4887
4888         return event->pmu->event_idx(event);
4889 }
4890
4891 static void calc_timer_values(struct perf_event *event,
4892                                 u64 *now,
4893                                 u64 *enabled,
4894                                 u64 *running)
4895 {
4896         u64 ctx_time;
4897
4898         *now = perf_clock();
4899         ctx_time = event->shadow_ctx_time + *now;
4900         *enabled = ctx_time - event->tstamp_enabled;
4901         *running = ctx_time - event->tstamp_running;
4902 }
4903
4904 static void perf_event_init_userpage(struct perf_event *event)
4905 {
4906         struct perf_event_mmap_page *userpg;
4907         struct ring_buffer *rb;
4908
4909         rcu_read_lock();
4910         rb = rcu_dereference(event->rb);
4911         if (!rb)
4912                 goto unlock;
4913
4914         userpg = rb->user_page;
4915
4916         /* Allow new userspace to detect that bit 0 is deprecated */
4917         userpg->cap_bit0_is_deprecated = 1;
4918         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4919         userpg->data_offset = PAGE_SIZE;
4920         userpg->data_size = perf_data_size(rb);
4921
4922 unlock:
4923         rcu_read_unlock();
4924 }
4925
4926 void __weak arch_perf_update_userpage(
4927         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4928 {
4929 }
4930
4931 /*
4932  * Callers need to ensure there can be no nesting of this function, otherwise
4933  * the seqlock logic goes bad. We can not serialize this because the arch
4934  * code calls this from NMI context.
4935  */
4936 void perf_event_update_userpage(struct perf_event *event)
4937 {
4938         struct perf_event_mmap_page *userpg;
4939         struct ring_buffer *rb;
4940         u64 enabled, running, now;
4941
4942         rcu_read_lock();
4943         rb = rcu_dereference(event->rb);
4944         if (!rb)
4945                 goto unlock;
4946
4947         /*
4948          * compute total_time_enabled, total_time_running
4949          * based on snapshot values taken when the event
4950          * was last scheduled in.
4951          *
4952          * we cannot simply called update_context_time()
4953          * because of locking issue as we can be called in
4954          * NMI context
4955          */
4956         calc_timer_values(event, &now, &enabled, &running);
4957
4958         userpg = rb->user_page;
4959         /*
4960          * Disable preemption so as to not let the corresponding user-space
4961          * spin too long if we get preempted.
4962          */
4963         preempt_disable();
4964         ++userpg->lock;
4965         barrier();
4966         userpg->index = perf_event_index(event);
4967         userpg->offset = perf_event_count(event);
4968         if (userpg->index)
4969                 userpg->offset -= local64_read(&event->hw.prev_count);
4970
4971         userpg->time_enabled = enabled +
4972                         atomic64_read(&event->child_total_time_enabled);
4973
4974         userpg->time_running = running +
4975                         atomic64_read(&event->child_total_time_running);
4976
4977         arch_perf_update_userpage(event, userpg, now);
4978
4979         barrier();
4980         ++userpg->lock;
4981         preempt_enable();
4982 unlock:
4983         rcu_read_unlock();
4984 }
4985
4986 static int perf_mmap_fault(struct vm_fault *vmf)
4987 {
4988         struct perf_event *event = vmf->vma->vm_file->private_data;
4989         struct ring_buffer *rb;
4990         int ret = VM_FAULT_SIGBUS;
4991
4992         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4993                 if (vmf->pgoff == 0)
4994                         ret = 0;
4995                 return ret;
4996         }
4997
4998         rcu_read_lock();
4999         rb = rcu_dereference(event->rb);
5000         if (!rb)
5001                 goto unlock;
5002
5003         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5004                 goto unlock;
5005
5006         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5007         if (!vmf->page)
5008                 goto unlock;
5009
5010         get_page(vmf->page);
5011         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5012         vmf->page->index   = vmf->pgoff;
5013
5014         ret = 0;
5015 unlock:
5016         rcu_read_unlock();
5017
5018         return ret;
5019 }
5020
5021 static void ring_buffer_attach(struct perf_event *event,
5022                                struct ring_buffer *rb)
5023 {
5024         struct ring_buffer *old_rb = NULL;
5025         unsigned long flags;
5026
5027         if (event->rb) {
5028                 /*
5029                  * Should be impossible, we set this when removing
5030                  * event->rb_entry and wait/clear when adding event->rb_entry.
5031                  */
5032                 WARN_ON_ONCE(event->rcu_pending);
5033
5034                 old_rb = event->rb;
5035                 spin_lock_irqsave(&old_rb->event_lock, flags);
5036                 list_del_rcu(&event->rb_entry);
5037                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5038
5039                 event->rcu_batches = get_state_synchronize_rcu();
5040                 event->rcu_pending = 1;
5041         }
5042
5043         if (rb) {
5044                 if (event->rcu_pending) {
5045                         cond_synchronize_rcu(event->rcu_batches);
5046                         event->rcu_pending = 0;
5047                 }
5048
5049                 spin_lock_irqsave(&rb->event_lock, flags);
5050                 list_add_rcu(&event->rb_entry, &rb->event_list);
5051                 spin_unlock_irqrestore(&rb->event_lock, flags);
5052         }
5053
5054         /*
5055          * Avoid racing with perf_mmap_close(AUX): stop the event
5056          * before swizzling the event::rb pointer; if it's getting
5057          * unmapped, its aux_mmap_count will be 0 and it won't
5058          * restart. See the comment in __perf_pmu_output_stop().
5059          *
5060          * Data will inevitably be lost when set_output is done in
5061          * mid-air, but then again, whoever does it like this is
5062          * not in for the data anyway.
5063          */
5064         if (has_aux(event))
5065                 perf_event_stop(event, 0);
5066
5067         rcu_assign_pointer(event->rb, rb);
5068
5069         if (old_rb) {
5070                 ring_buffer_put(old_rb);
5071                 /*
5072                  * Since we detached before setting the new rb, so that we
5073                  * could attach the new rb, we could have missed a wakeup.
5074                  * Provide it now.
5075                  */
5076                 wake_up_all(&event->waitq);
5077         }
5078 }
5079
5080 static void ring_buffer_wakeup(struct perf_event *event)
5081 {
5082         struct ring_buffer *rb;
5083
5084         rcu_read_lock();
5085         rb = rcu_dereference(event->rb);
5086         if (rb) {
5087                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5088                         wake_up_all(&event->waitq);
5089         }
5090         rcu_read_unlock();
5091 }
5092
5093 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5094 {
5095         struct ring_buffer *rb;
5096
5097         rcu_read_lock();
5098         rb = rcu_dereference(event->rb);
5099         if (rb) {
5100                 if (!atomic_inc_not_zero(&rb->refcount))
5101                         rb = NULL;
5102         }
5103         rcu_read_unlock();
5104
5105         return rb;
5106 }
5107
5108 void ring_buffer_put(struct ring_buffer *rb)
5109 {
5110         if (!atomic_dec_and_test(&rb->refcount))
5111                 return;
5112
5113         WARN_ON_ONCE(!list_empty(&rb->event_list));
5114
5115         call_rcu(&rb->rcu_head, rb_free_rcu);
5116 }
5117
5118 static void perf_mmap_open(struct vm_area_struct *vma)
5119 {
5120         struct perf_event *event = vma->vm_file->private_data;
5121
5122         atomic_inc(&event->mmap_count);
5123         atomic_inc(&event->rb->mmap_count);
5124
5125         if (vma->vm_pgoff)
5126                 atomic_inc(&event->rb->aux_mmap_count);
5127
5128         if (event->pmu->event_mapped)
5129                 event->pmu->event_mapped(event, vma->vm_mm);
5130 }
5131
5132 static void perf_pmu_output_stop(struct perf_event *event);
5133
5134 /*
5135  * A buffer can be mmap()ed multiple times; either directly through the same
5136  * event, or through other events by use of perf_event_set_output().
5137  *
5138  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5139  * the buffer here, where we still have a VM context. This means we need
5140  * to detach all events redirecting to us.
5141  */
5142 static void perf_mmap_close(struct vm_area_struct *vma)
5143 {
5144         struct perf_event *event = vma->vm_file->private_data;
5145
5146         struct ring_buffer *rb = ring_buffer_get(event);
5147         struct user_struct *mmap_user = rb->mmap_user;
5148         int mmap_locked = rb->mmap_locked;
5149         unsigned long size = perf_data_size(rb);
5150
5151         if (event->pmu->event_unmapped)
5152                 event->pmu->event_unmapped(event, vma->vm_mm);
5153
5154         /*
5155          * rb->aux_mmap_count will always drop before rb->mmap_count and
5156          * event->mmap_count, so it is ok to use event->mmap_mutex to
5157          * serialize with perf_mmap here.
5158          */
5159         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5160             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5161                 /*
5162                  * Stop all AUX events that are writing to this buffer,
5163                  * so that we can free its AUX pages and corresponding PMU
5164                  * data. Note that after rb::aux_mmap_count dropped to zero,
5165                  * they won't start any more (see perf_aux_output_begin()).
5166                  */
5167                 perf_pmu_output_stop(event);
5168
5169                 /* now it's safe to free the pages */
5170                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5171                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5172
5173                 /* this has to be the last one */
5174                 rb_free_aux(rb);
5175                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5176
5177                 mutex_unlock(&event->mmap_mutex);
5178         }
5179
5180         atomic_dec(&rb->mmap_count);
5181
5182         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5183                 goto out_put;
5184
5185         ring_buffer_attach(event, NULL);
5186         mutex_unlock(&event->mmap_mutex);
5187
5188         /* If there's still other mmap()s of this buffer, we're done. */
5189         if (atomic_read(&rb->mmap_count))
5190                 goto out_put;
5191
5192         /*
5193          * No other mmap()s, detach from all other events that might redirect
5194          * into the now unreachable buffer. Somewhat complicated by the
5195          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5196          */
5197 again:
5198         rcu_read_lock();
5199         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5200                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5201                         /*
5202                          * This event is en-route to free_event() which will
5203                          * detach it and remove it from the list.
5204                          */
5205                         continue;
5206                 }
5207                 rcu_read_unlock();
5208
5209                 mutex_lock(&event->mmap_mutex);
5210                 /*
5211                  * Check we didn't race with perf_event_set_output() which can
5212                  * swizzle the rb from under us while we were waiting to
5213                  * acquire mmap_mutex.
5214                  *
5215                  * If we find a different rb; ignore this event, a next
5216                  * iteration will no longer find it on the list. We have to
5217                  * still restart the iteration to make sure we're not now
5218                  * iterating the wrong list.
5219                  */
5220                 if (event->rb == rb)
5221                         ring_buffer_attach(event, NULL);
5222
5223                 mutex_unlock(&event->mmap_mutex);
5224                 put_event(event);
5225
5226                 /*
5227                  * Restart the iteration; either we're on the wrong list or
5228                  * destroyed its integrity by doing a deletion.
5229                  */
5230                 goto again;
5231         }
5232         rcu_read_unlock();
5233
5234         /*
5235          * It could be there's still a few 0-ref events on the list; they'll
5236          * get cleaned up by free_event() -- they'll also still have their
5237          * ref on the rb and will free it whenever they are done with it.
5238          *
5239          * Aside from that, this buffer is 'fully' detached and unmapped,
5240          * undo the VM accounting.
5241          */
5242
5243         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5244         vma->vm_mm->pinned_vm -= mmap_locked;
5245         free_uid(mmap_user);
5246
5247 out_put:
5248         ring_buffer_put(rb); /* could be last */
5249 }
5250
5251 static const struct vm_operations_struct perf_mmap_vmops = {
5252         .open           = perf_mmap_open,
5253         .close          = perf_mmap_close, /* non mergable */
5254         .fault          = perf_mmap_fault,
5255         .page_mkwrite   = perf_mmap_fault,
5256 };
5257
5258 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5259 {
5260         struct perf_event *event = file->private_data;
5261         unsigned long user_locked, user_lock_limit;
5262         struct user_struct *user = current_user();
5263         unsigned long locked, lock_limit;
5264         struct ring_buffer *rb = NULL;
5265         unsigned long vma_size;
5266         unsigned long nr_pages;
5267         long user_extra = 0, extra = 0;
5268         int ret = 0, flags = 0;
5269
5270         /*
5271          * Don't allow mmap() of inherited per-task counters. This would
5272          * create a performance issue due to all children writing to the
5273          * same rb.
5274          */
5275         if (event->cpu == -1 && event->attr.inherit)
5276                 return -EINVAL;
5277
5278         if (!(vma->vm_flags & VM_SHARED))
5279                 return -EINVAL;
5280
5281         vma_size = vma->vm_end - vma->vm_start;
5282
5283         if (vma->vm_pgoff == 0) {
5284                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5285         } else {
5286                 /*
5287                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5288                  * mapped, all subsequent mappings should have the same size
5289                  * and offset. Must be above the normal perf buffer.
5290                  */
5291                 u64 aux_offset, aux_size;
5292
5293                 if (!event->rb)
5294                         return -EINVAL;
5295
5296                 nr_pages = vma_size / PAGE_SIZE;
5297
5298                 mutex_lock(&event->mmap_mutex);
5299                 ret = -EINVAL;
5300
5301                 rb = event->rb;
5302                 if (!rb)
5303                         goto aux_unlock;
5304
5305                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5306                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5307
5308                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5309                         goto aux_unlock;
5310
5311                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5312                         goto aux_unlock;
5313
5314                 /* already mapped with a different offset */
5315                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5316                         goto aux_unlock;
5317
5318                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5319                         goto aux_unlock;
5320
5321                 /* already mapped with a different size */
5322                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5323                         goto aux_unlock;
5324
5325                 if (!is_power_of_2(nr_pages))
5326                         goto aux_unlock;
5327
5328                 if (!atomic_inc_not_zero(&rb->mmap_count))
5329                         goto aux_unlock;
5330
5331                 if (rb_has_aux(rb)) {
5332                         atomic_inc(&rb->aux_mmap_count);
5333                         ret = 0;
5334                         goto unlock;
5335                 }
5336
5337                 atomic_set(&rb->aux_mmap_count, 1);
5338                 user_extra = nr_pages;
5339
5340                 goto accounting;
5341         }
5342
5343         /*
5344          * If we have rb pages ensure they're a power-of-two number, so we
5345          * can do bitmasks instead of modulo.
5346          */
5347         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5348                 return -EINVAL;
5349
5350         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5351                 return -EINVAL;
5352
5353         WARN_ON_ONCE(event->ctx->parent_ctx);
5354 again:
5355         mutex_lock(&event->mmap_mutex);
5356         if (event->rb) {
5357                 if (event->rb->nr_pages != nr_pages) {
5358                         ret = -EINVAL;
5359                         goto unlock;
5360                 }
5361
5362                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5363                         /*
5364                          * Raced against perf_mmap_close() through
5365                          * perf_event_set_output(). Try again, hope for better
5366                          * luck.
5367                          */
5368                         mutex_unlock(&event->mmap_mutex);
5369                         goto again;
5370                 }
5371
5372                 goto unlock;
5373         }
5374
5375         user_extra = nr_pages + 1;
5376
5377 accounting:
5378         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5379
5380         /*
5381          * Increase the limit linearly with more CPUs:
5382          */
5383         user_lock_limit *= num_online_cpus();
5384
5385         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5386
5387         if (user_locked > user_lock_limit)
5388                 extra = user_locked - user_lock_limit;
5389
5390         lock_limit = rlimit(RLIMIT_MEMLOCK);
5391         lock_limit >>= PAGE_SHIFT;
5392         locked = vma->vm_mm->pinned_vm + extra;
5393
5394         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5395                 !capable(CAP_IPC_LOCK)) {
5396                 ret = -EPERM;
5397                 goto unlock;
5398         }
5399
5400         WARN_ON(!rb && event->rb);
5401
5402         if (vma->vm_flags & VM_WRITE)
5403                 flags |= RING_BUFFER_WRITABLE;
5404
5405         if (!rb) {
5406                 rb = rb_alloc(nr_pages,
5407                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5408                               event->cpu, flags);
5409
5410                 if (!rb) {
5411                         ret = -ENOMEM;
5412                         goto unlock;
5413                 }
5414
5415                 atomic_set(&rb->mmap_count, 1);
5416                 rb->mmap_user = get_current_user();
5417                 rb->mmap_locked = extra;
5418
5419                 ring_buffer_attach(event, rb);
5420
5421                 perf_event_init_userpage(event);
5422                 perf_event_update_userpage(event);
5423         } else {
5424                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5425                                    event->attr.aux_watermark, flags);
5426                 if (!ret)
5427                         rb->aux_mmap_locked = extra;
5428         }
5429
5430 unlock:
5431         if (!ret) {
5432                 atomic_long_add(user_extra, &user->locked_vm);
5433                 vma->vm_mm->pinned_vm += extra;
5434
5435                 atomic_inc(&event->mmap_count);
5436         } else if (rb) {
5437                 atomic_dec(&rb->mmap_count);
5438         }
5439 aux_unlock:
5440         mutex_unlock(&event->mmap_mutex);
5441
5442         /*
5443          * Since pinned accounting is per vm we cannot allow fork() to copy our
5444          * vma.
5445          */
5446         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5447         vma->vm_ops = &perf_mmap_vmops;
5448
5449         if (event->pmu->event_mapped)
5450                 event->pmu->event_mapped(event, vma->vm_mm);
5451
5452         return ret;
5453 }
5454
5455 static int perf_fasync(int fd, struct file *filp, int on)
5456 {
5457         struct inode *inode = file_inode(filp);
5458         struct perf_event *event = filp->private_data;
5459         int retval;
5460
5461         inode_lock(inode);
5462         retval = fasync_helper(fd, filp, on, &event->fasync);
5463         inode_unlock(inode);
5464
5465         if (retval < 0)
5466                 return retval;
5467
5468         return 0;
5469 }
5470
5471 static const struct file_operations perf_fops = {
5472         .llseek                 = no_llseek,
5473         .release                = perf_release,
5474         .read                   = perf_read,
5475         .poll                   = perf_poll,
5476         .unlocked_ioctl         = perf_ioctl,
5477         .compat_ioctl           = perf_compat_ioctl,
5478         .mmap                   = perf_mmap,
5479         .fasync                 = perf_fasync,
5480 };
5481
5482 /*
5483  * Perf event wakeup
5484  *
5485  * If there's data, ensure we set the poll() state and publish everything
5486  * to user-space before waking everybody up.
5487  */
5488
5489 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5490 {
5491         /* only the parent has fasync state */
5492         if (event->parent)
5493                 event = event->parent;
5494         return &event->fasync;
5495 }
5496
5497 void perf_event_wakeup(struct perf_event *event)
5498 {
5499         ring_buffer_wakeup(event);
5500
5501         if (event->pending_kill) {
5502                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5503                 event->pending_kill = 0;
5504         }
5505 }
5506
5507 static void perf_pending_event(struct irq_work *entry)
5508 {
5509         struct perf_event *event = container_of(entry,
5510                         struct perf_event, pending);
5511         int rctx;
5512
5513         rctx = perf_swevent_get_recursion_context();
5514         /*
5515          * If we 'fail' here, that's OK, it means recursion is already disabled
5516          * and we won't recurse 'further'.
5517          */
5518
5519         if (event->pending_disable) {
5520                 event->pending_disable = 0;
5521                 perf_event_disable_local(event);
5522         }
5523
5524         if (event->pending_wakeup) {
5525                 event->pending_wakeup = 0;
5526                 perf_event_wakeup(event);
5527         }
5528
5529         if (rctx >= 0)
5530                 perf_swevent_put_recursion_context(rctx);
5531 }
5532
5533 /*
5534  * We assume there is only KVM supporting the callbacks.
5535  * Later on, we might change it to a list if there is
5536  * another virtualization implementation supporting the callbacks.
5537  */
5538 struct perf_guest_info_callbacks *perf_guest_cbs;
5539
5540 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5541 {
5542         perf_guest_cbs = cbs;
5543         return 0;
5544 }
5545 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5546
5547 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5548 {
5549         perf_guest_cbs = NULL;
5550         return 0;
5551 }
5552 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5553
5554 static void
5555 perf_output_sample_regs(struct perf_output_handle *handle,
5556                         struct pt_regs *regs, u64 mask)
5557 {
5558         int bit;
5559         DECLARE_BITMAP(_mask, 64);
5560
5561         bitmap_from_u64(_mask, mask);
5562         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5563                 u64 val;
5564
5565                 val = perf_reg_value(regs, bit);
5566                 perf_output_put(handle, val);
5567         }
5568 }
5569
5570 static void perf_sample_regs_user(struct perf_regs *regs_user,
5571                                   struct pt_regs *regs,
5572                                   struct pt_regs *regs_user_copy)
5573 {
5574         if (user_mode(regs)) {
5575                 regs_user->abi = perf_reg_abi(current);
5576                 regs_user->regs = regs;
5577         } else if (current->mm) {
5578                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5579         } else {
5580                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5581                 regs_user->regs = NULL;
5582         }
5583 }
5584
5585 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5586                                   struct pt_regs *regs)
5587 {
5588         regs_intr->regs = regs;
5589         regs_intr->abi  = perf_reg_abi(current);
5590 }
5591
5592
5593 /*
5594  * Get remaining task size from user stack pointer.
5595  *
5596  * It'd be better to take stack vma map and limit this more
5597  * precisly, but there's no way to get it safely under interrupt,
5598  * so using TASK_SIZE as limit.
5599  */
5600 static u64 perf_ustack_task_size(struct pt_regs *regs)
5601 {
5602         unsigned long addr = perf_user_stack_pointer(regs);
5603
5604         if (!addr || addr >= TASK_SIZE)
5605                 return 0;
5606
5607         return TASK_SIZE - addr;
5608 }
5609
5610 static u16
5611 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5612                         struct pt_regs *regs)
5613 {
5614         u64 task_size;
5615
5616         /* No regs, no stack pointer, no dump. */
5617         if (!regs)
5618                 return 0;
5619
5620         /*
5621          * Check if we fit in with the requested stack size into the:
5622          * - TASK_SIZE
5623          *   If we don't, we limit the size to the TASK_SIZE.
5624          *
5625          * - remaining sample size
5626          *   If we don't, we customize the stack size to
5627          *   fit in to the remaining sample size.
5628          */
5629
5630         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5631         stack_size = min(stack_size, (u16) task_size);
5632
5633         /* Current header size plus static size and dynamic size. */
5634         header_size += 2 * sizeof(u64);
5635
5636         /* Do we fit in with the current stack dump size? */
5637         if ((u16) (header_size + stack_size) < header_size) {
5638                 /*
5639                  * If we overflow the maximum size for the sample,
5640                  * we customize the stack dump size to fit in.
5641                  */
5642                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5643                 stack_size = round_up(stack_size, sizeof(u64));
5644         }
5645
5646         return stack_size;
5647 }
5648
5649 static void
5650 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5651                           struct pt_regs *regs)
5652 {
5653         /* Case of a kernel thread, nothing to dump */
5654         if (!regs) {
5655                 u64 size = 0;
5656                 perf_output_put(handle, size);
5657         } else {
5658                 unsigned long sp;
5659                 unsigned int rem;
5660                 u64 dyn_size;
5661
5662                 /*
5663                  * We dump:
5664                  * static size
5665                  *   - the size requested by user or the best one we can fit
5666                  *     in to the sample max size
5667                  * data
5668                  *   - user stack dump data
5669                  * dynamic size
5670                  *   - the actual dumped size
5671                  */
5672
5673                 /* Static size. */
5674                 perf_output_put(handle, dump_size);
5675
5676                 /* Data. */
5677                 sp = perf_user_stack_pointer(regs);
5678                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5679                 dyn_size = dump_size - rem;
5680
5681                 perf_output_skip(handle, rem);
5682
5683                 /* Dynamic size. */
5684                 perf_output_put(handle, dyn_size);
5685         }
5686 }
5687
5688 static void __perf_event_header__init_id(struct perf_event_header *header,
5689                                          struct perf_sample_data *data,
5690                                          struct perf_event *event)
5691 {
5692         u64 sample_type = event->attr.sample_type;
5693
5694         data->type = sample_type;
5695         header->size += event->id_header_size;
5696
5697         if (sample_type & PERF_SAMPLE_TID) {
5698                 /* namespace issues */
5699                 data->tid_entry.pid = perf_event_pid(event, current);
5700                 data->tid_entry.tid = perf_event_tid(event, current);
5701         }
5702
5703         if (sample_type & PERF_SAMPLE_TIME)
5704                 data->time = perf_event_clock(event);
5705
5706         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5707                 data->id = primary_event_id(event);
5708
5709         if (sample_type & PERF_SAMPLE_STREAM_ID)
5710                 data->stream_id = event->id;
5711
5712         if (sample_type & PERF_SAMPLE_CPU) {
5713                 data->cpu_entry.cpu      = raw_smp_processor_id();
5714                 data->cpu_entry.reserved = 0;
5715         }
5716 }
5717
5718 void perf_event_header__init_id(struct perf_event_header *header,
5719                                 struct perf_sample_data *data,
5720                                 struct perf_event *event)
5721 {
5722         if (event->attr.sample_id_all)
5723                 __perf_event_header__init_id(header, data, event);
5724 }
5725
5726 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5727                                            struct perf_sample_data *data)
5728 {
5729         u64 sample_type = data->type;
5730
5731         if (sample_type & PERF_SAMPLE_TID)
5732                 perf_output_put(handle, data->tid_entry);
5733
5734         if (sample_type & PERF_SAMPLE_TIME)
5735                 perf_output_put(handle, data->time);
5736
5737         if (sample_type & PERF_SAMPLE_ID)
5738                 perf_output_put(handle, data->id);
5739
5740         if (sample_type & PERF_SAMPLE_STREAM_ID)
5741                 perf_output_put(handle, data->stream_id);
5742
5743         if (sample_type & PERF_SAMPLE_CPU)
5744                 perf_output_put(handle, data->cpu_entry);
5745
5746         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5747                 perf_output_put(handle, data->id);
5748 }
5749
5750 void perf_event__output_id_sample(struct perf_event *event,
5751                                   struct perf_output_handle *handle,
5752                                   struct perf_sample_data *sample)
5753 {
5754         if (event->attr.sample_id_all)
5755                 __perf_event__output_id_sample(handle, sample);
5756 }
5757
5758 static void perf_output_read_one(struct perf_output_handle *handle,
5759                                  struct perf_event *event,
5760                                  u64 enabled, u64 running)
5761 {
5762         u64 read_format = event->attr.read_format;
5763         u64 values[4];
5764         int n = 0;
5765
5766         values[n++] = perf_event_count(event);
5767         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5768                 values[n++] = enabled +
5769                         atomic64_read(&event->child_total_time_enabled);
5770         }
5771         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5772                 values[n++] = running +
5773                         atomic64_read(&event->child_total_time_running);
5774         }
5775         if (read_format & PERF_FORMAT_ID)
5776                 values[n++] = primary_event_id(event);
5777
5778         __output_copy(handle, values, n * sizeof(u64));
5779 }
5780
5781 static void perf_output_read_group(struct perf_output_handle *handle,
5782                             struct perf_event *event,
5783                             u64 enabled, u64 running)
5784 {
5785         struct perf_event *leader = event->group_leader, *sub;
5786         u64 read_format = event->attr.read_format;
5787         u64 values[5];
5788         int n = 0;
5789
5790         values[n++] = 1 + leader->nr_siblings;
5791
5792         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5793                 values[n++] = enabled;
5794
5795         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5796                 values[n++] = running;
5797
5798         if (leader != event)
5799                 leader->pmu->read(leader);
5800
5801         values[n++] = perf_event_count(leader);
5802         if (read_format & PERF_FORMAT_ID)
5803                 values[n++] = primary_event_id(leader);
5804
5805         __output_copy(handle, values, n * sizeof(u64));
5806
5807         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5808                 n = 0;
5809
5810                 if ((sub != event) &&
5811                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5812                         sub->pmu->read(sub);
5813
5814                 values[n++] = perf_event_count(sub);
5815                 if (read_format & PERF_FORMAT_ID)
5816                         values[n++] = primary_event_id(sub);
5817
5818                 __output_copy(handle, values, n * sizeof(u64));
5819         }
5820 }
5821
5822 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5823                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5824
5825 /*
5826  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5827  *
5828  * The problem is that its both hard and excessively expensive to iterate the
5829  * child list, not to mention that its impossible to IPI the children running
5830  * on another CPU, from interrupt/NMI context.
5831  */
5832 static void perf_output_read(struct perf_output_handle *handle,
5833                              struct perf_event *event)
5834 {
5835         u64 enabled = 0, running = 0, now;
5836         u64 read_format = event->attr.read_format;
5837
5838         /*
5839          * compute total_time_enabled, total_time_running
5840          * based on snapshot values taken when the event
5841          * was last scheduled in.
5842          *
5843          * we cannot simply called update_context_time()
5844          * because of locking issue as we are called in
5845          * NMI context
5846          */
5847         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5848                 calc_timer_values(event, &now, &enabled, &running);
5849
5850         if (event->attr.read_format & PERF_FORMAT_GROUP)
5851                 perf_output_read_group(handle, event, enabled, running);
5852         else
5853                 perf_output_read_one(handle, event, enabled, running);
5854 }
5855
5856 void perf_output_sample(struct perf_output_handle *handle,
5857                         struct perf_event_header *header,
5858                         struct perf_sample_data *data,
5859                         struct perf_event *event)
5860 {
5861         u64 sample_type = data->type;
5862
5863         perf_output_put(handle, *header);
5864
5865         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5866                 perf_output_put(handle, data->id);
5867
5868         if (sample_type & PERF_SAMPLE_IP)
5869                 perf_output_put(handle, data->ip);
5870
5871         if (sample_type & PERF_SAMPLE_TID)
5872                 perf_output_put(handle, data->tid_entry);
5873
5874         if (sample_type & PERF_SAMPLE_TIME)
5875                 perf_output_put(handle, data->time);
5876
5877         if (sample_type & PERF_SAMPLE_ADDR)
5878                 perf_output_put(handle, data->addr);
5879
5880         if (sample_type & PERF_SAMPLE_ID)
5881                 perf_output_put(handle, data->id);
5882
5883         if (sample_type & PERF_SAMPLE_STREAM_ID)
5884                 perf_output_put(handle, data->stream_id);
5885
5886         if (sample_type & PERF_SAMPLE_CPU)
5887                 perf_output_put(handle, data->cpu_entry);
5888
5889         if (sample_type & PERF_SAMPLE_PERIOD)
5890                 perf_output_put(handle, data->period);
5891
5892         if (sample_type & PERF_SAMPLE_READ)
5893                 perf_output_read(handle, event);
5894
5895         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5896                 if (data->callchain) {
5897                         int size = 1;
5898
5899                         if (data->callchain)
5900                                 size += data->callchain->nr;
5901
5902                         size *= sizeof(u64);
5903
5904                         __output_copy(handle, data->callchain, size);
5905                 } else {
5906                         u64 nr = 0;
5907                         perf_output_put(handle, nr);
5908                 }
5909         }
5910
5911         if (sample_type & PERF_SAMPLE_RAW) {
5912                 struct perf_raw_record *raw = data->raw;
5913
5914                 if (raw) {
5915                         struct perf_raw_frag *frag = &raw->frag;
5916
5917                         perf_output_put(handle, raw->size);
5918                         do {
5919                                 if (frag->copy) {
5920                                         __output_custom(handle, frag->copy,
5921                                                         frag->data, frag->size);
5922                                 } else {
5923                                         __output_copy(handle, frag->data,
5924                                                       frag->size);
5925                                 }
5926                                 if (perf_raw_frag_last(frag))
5927                                         break;
5928                                 frag = frag->next;
5929                         } while (1);
5930                         if (frag->pad)
5931                                 __output_skip(handle, NULL, frag->pad);
5932                 } else {
5933                         struct {
5934                                 u32     size;
5935                                 u32     data;
5936                         } raw = {
5937                                 .size = sizeof(u32),
5938                                 .data = 0,
5939                         };
5940                         perf_output_put(handle, raw);
5941                 }
5942         }
5943
5944         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5945                 if (data->br_stack) {
5946                         size_t size;
5947
5948                         size = data->br_stack->nr
5949                              * sizeof(struct perf_branch_entry);
5950
5951                         perf_output_put(handle, data->br_stack->nr);
5952                         perf_output_copy(handle, data->br_stack->entries, size);
5953                 } else {
5954                         /*
5955                          * we always store at least the value of nr
5956                          */
5957                         u64 nr = 0;
5958                         perf_output_put(handle, nr);
5959                 }
5960         }
5961
5962         if (sample_type & PERF_SAMPLE_REGS_USER) {
5963                 u64 abi = data->regs_user.abi;
5964
5965                 /*
5966                  * If there are no regs to dump, notice it through
5967                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5968                  */
5969                 perf_output_put(handle, abi);
5970
5971                 if (abi) {
5972                         u64 mask = event->attr.sample_regs_user;
5973                         perf_output_sample_regs(handle,
5974                                                 data->regs_user.regs,
5975                                                 mask);
5976                 }
5977         }
5978
5979         if (sample_type & PERF_SAMPLE_STACK_USER) {
5980                 perf_output_sample_ustack(handle,
5981                                           data->stack_user_size,
5982                                           data->regs_user.regs);
5983         }
5984
5985         if (sample_type & PERF_SAMPLE_WEIGHT)
5986                 perf_output_put(handle, data->weight);
5987
5988         if (sample_type & PERF_SAMPLE_DATA_SRC)
5989                 perf_output_put(handle, data->data_src.val);
5990
5991         if (sample_type & PERF_SAMPLE_TRANSACTION)
5992                 perf_output_put(handle, data->txn);
5993
5994         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5995                 u64 abi = data->regs_intr.abi;
5996                 /*
5997                  * If there are no regs to dump, notice it through
5998                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5999                  */
6000                 perf_output_put(handle, abi);
6001
6002                 if (abi) {
6003                         u64 mask = event->attr.sample_regs_intr;
6004
6005                         perf_output_sample_regs(handle,
6006                                                 data->regs_intr.regs,
6007                                                 mask);
6008                 }
6009         }
6010
6011         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6012                 perf_output_put(handle, data->phys_addr);
6013
6014         if (!event->attr.watermark) {
6015                 int wakeup_events = event->attr.wakeup_events;
6016
6017                 if (wakeup_events) {
6018                         struct ring_buffer *rb = handle->rb;
6019                         int events = local_inc_return(&rb->events);
6020
6021                         if (events >= wakeup_events) {
6022                                 local_sub(wakeup_events, &rb->events);
6023                                 local_inc(&rb->wakeup);
6024                         }
6025                 }
6026         }
6027 }
6028
6029 static u64 perf_virt_to_phys(u64 virt)
6030 {
6031         u64 phys_addr = 0;
6032         struct page *p = NULL;
6033
6034         if (!virt)
6035                 return 0;
6036
6037         if (virt >= TASK_SIZE) {
6038                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6039                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6040                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6041                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6042         } else {
6043                 /*
6044                  * Walking the pages tables for user address.
6045                  * Interrupts are disabled, so it prevents any tear down
6046                  * of the page tables.
6047                  * Try IRQ-safe __get_user_pages_fast first.
6048                  * If failed, leave phys_addr as 0.
6049                  */
6050                 if ((current->mm != NULL) &&
6051                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6052                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6053
6054                 if (p)
6055                         put_page(p);
6056         }
6057
6058         return phys_addr;
6059 }
6060
6061 void perf_prepare_sample(struct perf_event_header *header,
6062                          struct perf_sample_data *data,
6063                          struct perf_event *event,
6064                          struct pt_regs *regs)
6065 {
6066         u64 sample_type = event->attr.sample_type;
6067
6068         header->type = PERF_RECORD_SAMPLE;
6069         header->size = sizeof(*header) + event->header_size;
6070
6071         header->misc = 0;
6072         header->misc |= perf_misc_flags(regs);
6073
6074         __perf_event_header__init_id(header, data, event);
6075
6076         if (sample_type & PERF_SAMPLE_IP)
6077                 data->ip = perf_instruction_pointer(regs);
6078
6079         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6080                 int size = 1;
6081
6082                 data->callchain = perf_callchain(event, regs);
6083
6084                 if (data->callchain)
6085                         size += data->callchain->nr;
6086
6087                 header->size += size * sizeof(u64);
6088         }
6089
6090         if (sample_type & PERF_SAMPLE_RAW) {
6091                 struct perf_raw_record *raw = data->raw;
6092                 int size;
6093
6094                 if (raw) {
6095                         struct perf_raw_frag *frag = &raw->frag;
6096                         u32 sum = 0;
6097
6098                         do {
6099                                 sum += frag->size;
6100                                 if (perf_raw_frag_last(frag))
6101                                         break;
6102                                 frag = frag->next;
6103                         } while (1);
6104
6105                         size = round_up(sum + sizeof(u32), sizeof(u64));
6106                         raw->size = size - sizeof(u32);
6107                         frag->pad = raw->size - sum;
6108                 } else {
6109                         size = sizeof(u64);
6110                 }
6111
6112                 header->size += size;
6113         }
6114
6115         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6116                 int size = sizeof(u64); /* nr */
6117                 if (data->br_stack) {
6118                         size += data->br_stack->nr
6119                               * sizeof(struct perf_branch_entry);
6120                 }
6121                 header->size += size;
6122         }
6123
6124         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6125                 perf_sample_regs_user(&data->regs_user, regs,
6126                                       &data->regs_user_copy);
6127
6128         if (sample_type & PERF_SAMPLE_REGS_USER) {
6129                 /* regs dump ABI info */
6130                 int size = sizeof(u64);
6131
6132                 if (data->regs_user.regs) {
6133                         u64 mask = event->attr.sample_regs_user;
6134                         size += hweight64(mask) * sizeof(u64);
6135                 }
6136
6137                 header->size += size;
6138         }
6139
6140         if (sample_type & PERF_SAMPLE_STACK_USER) {
6141                 /*
6142                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6143                  * processed as the last one or have additional check added
6144                  * in case new sample type is added, because we could eat
6145                  * up the rest of the sample size.
6146                  */
6147                 u16 stack_size = event->attr.sample_stack_user;
6148                 u16 size = sizeof(u64);
6149
6150                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6151                                                      data->regs_user.regs);
6152
6153                 /*
6154                  * If there is something to dump, add space for the dump
6155                  * itself and for the field that tells the dynamic size,
6156                  * which is how many have been actually dumped.
6157                  */
6158                 if (stack_size)
6159                         size += sizeof(u64) + stack_size;
6160
6161                 data->stack_user_size = stack_size;
6162                 header->size += size;
6163         }
6164
6165         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6166                 /* regs dump ABI info */
6167                 int size = sizeof(u64);
6168
6169                 perf_sample_regs_intr(&data->regs_intr, regs);
6170
6171                 if (data->regs_intr.regs) {
6172                         u64 mask = event->attr.sample_regs_intr;
6173
6174                         size += hweight64(mask) * sizeof(u64);
6175                 }
6176
6177                 header->size += size;
6178         }
6179
6180         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6181                 data->phys_addr = perf_virt_to_phys(data->addr);
6182 }
6183
6184 static void __always_inline
6185 __perf_event_output(struct perf_event *event,
6186                     struct perf_sample_data *data,
6187                     struct pt_regs *regs,
6188                     int (*output_begin)(struct perf_output_handle *,
6189                                         struct perf_event *,
6190                                         unsigned int))
6191 {
6192         struct perf_output_handle handle;
6193         struct perf_event_header header;
6194
6195         /* protect the callchain buffers */
6196         rcu_read_lock();
6197
6198         perf_prepare_sample(&header, data, event, regs);
6199
6200         if (output_begin(&handle, event, header.size))
6201                 goto exit;
6202
6203         perf_output_sample(&handle, &header, data, event);
6204
6205         perf_output_end(&handle);
6206
6207 exit:
6208         rcu_read_unlock();
6209 }
6210
6211 void
6212 perf_event_output_forward(struct perf_event *event,
6213                          struct perf_sample_data *data,
6214                          struct pt_regs *regs)
6215 {
6216         __perf_event_output(event, data, regs, perf_output_begin_forward);
6217 }
6218
6219 void
6220 perf_event_output_backward(struct perf_event *event,
6221                            struct perf_sample_data *data,
6222                            struct pt_regs *regs)
6223 {
6224         __perf_event_output(event, data, regs, perf_output_begin_backward);
6225 }
6226
6227 void
6228 perf_event_output(struct perf_event *event,
6229                   struct perf_sample_data *data,
6230                   struct pt_regs *regs)
6231 {
6232         __perf_event_output(event, data, regs, perf_output_begin);
6233 }
6234
6235 /*
6236  * read event_id
6237  */
6238
6239 struct perf_read_event {
6240         struct perf_event_header        header;
6241
6242         u32                             pid;
6243         u32                             tid;
6244 };
6245
6246 static void
6247 perf_event_read_event(struct perf_event *event,
6248                         struct task_struct *task)
6249 {
6250         struct perf_output_handle handle;
6251         struct perf_sample_data sample;
6252         struct perf_read_event read_event = {
6253                 .header = {
6254                         .type = PERF_RECORD_READ,
6255                         .misc = 0,
6256                         .size = sizeof(read_event) + event->read_size,
6257                 },
6258                 .pid = perf_event_pid(event, task),
6259                 .tid = perf_event_tid(event, task),
6260         };
6261         int ret;
6262
6263         perf_event_header__init_id(&read_event.header, &sample, event);
6264         ret = perf_output_begin(&handle, event, read_event.header.size);
6265         if (ret)
6266                 return;
6267
6268         perf_output_put(&handle, read_event);
6269         perf_output_read(&handle, event);
6270         perf_event__output_id_sample(event, &handle, &sample);
6271
6272         perf_output_end(&handle);
6273 }
6274
6275 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6276
6277 static void
6278 perf_iterate_ctx(struct perf_event_context *ctx,
6279                    perf_iterate_f output,
6280                    void *data, bool all)
6281 {
6282         struct perf_event *event;
6283
6284         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6285                 if (!all) {
6286                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6287                                 continue;
6288                         if (!event_filter_match(event))
6289                                 continue;
6290                 }
6291
6292                 output(event, data);
6293         }
6294 }
6295
6296 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6297 {
6298         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6299         struct perf_event *event;
6300
6301         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6302                 /*
6303                  * Skip events that are not fully formed yet; ensure that
6304                  * if we observe event->ctx, both event and ctx will be
6305                  * complete enough. See perf_install_in_context().
6306                  */
6307                 if (!smp_load_acquire(&event->ctx))
6308                         continue;
6309
6310                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6311                         continue;
6312                 if (!event_filter_match(event))
6313                         continue;
6314                 output(event, data);
6315         }
6316 }
6317
6318 /*
6319  * Iterate all events that need to receive side-band events.
6320  *
6321  * For new callers; ensure that account_pmu_sb_event() includes
6322  * your event, otherwise it might not get delivered.
6323  */
6324 static void
6325 perf_iterate_sb(perf_iterate_f output, void *data,
6326                struct perf_event_context *task_ctx)
6327 {
6328         struct perf_event_context *ctx;
6329         int ctxn;
6330
6331         rcu_read_lock();
6332         preempt_disable();
6333
6334         /*
6335          * If we have task_ctx != NULL we only notify the task context itself.
6336          * The task_ctx is set only for EXIT events before releasing task
6337          * context.
6338          */
6339         if (task_ctx) {
6340                 perf_iterate_ctx(task_ctx, output, data, false);
6341                 goto done;
6342         }
6343
6344         perf_iterate_sb_cpu(output, data);
6345
6346         for_each_task_context_nr(ctxn) {
6347                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6348                 if (ctx)
6349                         perf_iterate_ctx(ctx, output, data, false);
6350         }
6351 done:
6352         preempt_enable();
6353         rcu_read_unlock();
6354 }
6355
6356 /*
6357  * Clear all file-based filters at exec, they'll have to be
6358  * re-instated when/if these objects are mmapped again.
6359  */
6360 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6361 {
6362         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6363         struct perf_addr_filter *filter;
6364         unsigned int restart = 0, count = 0;
6365         unsigned long flags;
6366
6367         if (!has_addr_filter(event))
6368                 return;
6369
6370         raw_spin_lock_irqsave(&ifh->lock, flags);
6371         list_for_each_entry(filter, &ifh->list, entry) {
6372                 if (filter->inode) {
6373                         event->addr_filters_offs[count] = 0;
6374                         restart++;
6375                 }
6376
6377                 count++;
6378         }
6379
6380         if (restart)
6381                 event->addr_filters_gen++;
6382         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6383
6384         if (restart)
6385                 perf_event_stop(event, 1);
6386 }
6387
6388 void perf_event_exec(void)
6389 {
6390         struct perf_event_context *ctx;
6391         int ctxn;
6392
6393         rcu_read_lock();
6394         for_each_task_context_nr(ctxn) {
6395                 ctx = current->perf_event_ctxp[ctxn];
6396                 if (!ctx)
6397                         continue;
6398
6399                 perf_event_enable_on_exec(ctxn);
6400
6401                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6402                                    true);
6403         }
6404         rcu_read_unlock();
6405 }
6406
6407 struct remote_output {
6408         struct ring_buffer      *rb;
6409         int                     err;
6410 };
6411
6412 static void __perf_event_output_stop(struct perf_event *event, void *data)
6413 {
6414         struct perf_event *parent = event->parent;
6415         struct remote_output *ro = data;
6416         struct ring_buffer *rb = ro->rb;
6417         struct stop_event_data sd = {
6418                 .event  = event,
6419         };
6420
6421         if (!has_aux(event))
6422                 return;
6423
6424         if (!parent)
6425                 parent = event;
6426
6427         /*
6428          * In case of inheritance, it will be the parent that links to the
6429          * ring-buffer, but it will be the child that's actually using it.
6430          *
6431          * We are using event::rb to determine if the event should be stopped,
6432          * however this may race with ring_buffer_attach() (through set_output),
6433          * which will make us skip the event that actually needs to be stopped.
6434          * So ring_buffer_attach() has to stop an aux event before re-assigning
6435          * its rb pointer.
6436          */
6437         if (rcu_dereference(parent->rb) == rb)
6438                 ro->err = __perf_event_stop(&sd);
6439 }
6440
6441 static int __perf_pmu_output_stop(void *info)
6442 {
6443         struct perf_event *event = info;
6444         struct pmu *pmu = event->pmu;
6445         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6446         struct remote_output ro = {
6447                 .rb     = event->rb,
6448         };
6449
6450         rcu_read_lock();
6451         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6452         if (cpuctx->task_ctx)
6453                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6454                                    &ro, false);
6455         rcu_read_unlock();
6456
6457         return ro.err;
6458 }
6459
6460 static void perf_pmu_output_stop(struct perf_event *event)
6461 {
6462         struct perf_event *iter;
6463         int err, cpu;
6464
6465 restart:
6466         rcu_read_lock();
6467         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6468                 /*
6469                  * For per-CPU events, we need to make sure that neither they
6470                  * nor their children are running; for cpu==-1 events it's
6471                  * sufficient to stop the event itself if it's active, since
6472                  * it can't have children.
6473                  */
6474                 cpu = iter->cpu;
6475                 if (cpu == -1)
6476                         cpu = READ_ONCE(iter->oncpu);
6477
6478                 if (cpu == -1)
6479                         continue;
6480
6481                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6482                 if (err == -EAGAIN) {
6483                         rcu_read_unlock();
6484                         goto restart;
6485                 }
6486         }
6487         rcu_read_unlock();
6488 }
6489
6490 /*
6491  * task tracking -- fork/exit
6492  *
6493  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6494  */
6495
6496 struct perf_task_event {
6497         struct task_struct              *task;
6498         struct perf_event_context       *task_ctx;
6499
6500         struct {
6501                 struct perf_event_header        header;
6502
6503                 u32                             pid;
6504                 u32                             ppid;
6505                 u32                             tid;
6506                 u32                             ptid;
6507                 u64                             time;
6508         } event_id;
6509 };
6510
6511 static int perf_event_task_match(struct perf_event *event)
6512 {
6513         return event->attr.comm  || event->attr.mmap ||
6514                event->attr.mmap2 || event->attr.mmap_data ||
6515                event->attr.task;
6516 }
6517
6518 static void perf_event_task_output(struct perf_event *event,
6519                                    void *data)
6520 {
6521         struct perf_task_event *task_event = data;
6522         struct perf_output_handle handle;
6523         struct perf_sample_data sample;
6524         struct task_struct *task = task_event->task;
6525         int ret, size = task_event->event_id.header.size;
6526
6527         if (!perf_event_task_match(event))
6528                 return;
6529
6530         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6531
6532         ret = perf_output_begin(&handle, event,
6533                                 task_event->event_id.header.size);
6534         if (ret)
6535                 goto out;
6536
6537         task_event->event_id.pid = perf_event_pid(event, task);
6538         task_event->event_id.ppid = perf_event_pid(event, current);
6539
6540         task_event->event_id.tid = perf_event_tid(event, task);
6541         task_event->event_id.ptid = perf_event_tid(event, current);
6542
6543         task_event->event_id.time = perf_event_clock(event);
6544
6545         perf_output_put(&handle, task_event->event_id);
6546
6547         perf_event__output_id_sample(event, &handle, &sample);
6548
6549         perf_output_end(&handle);
6550 out:
6551         task_event->event_id.header.size = size;
6552 }
6553
6554 static void perf_event_task(struct task_struct *task,
6555                               struct perf_event_context *task_ctx,
6556                               int new)
6557 {
6558         struct perf_task_event task_event;
6559
6560         if (!atomic_read(&nr_comm_events) &&
6561             !atomic_read(&nr_mmap_events) &&
6562             !atomic_read(&nr_task_events))
6563                 return;
6564
6565         task_event = (struct perf_task_event){
6566                 .task     = task,
6567                 .task_ctx = task_ctx,
6568                 .event_id    = {
6569                         .header = {
6570                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6571                                 .misc = 0,
6572                                 .size = sizeof(task_event.event_id),
6573                         },
6574                         /* .pid  */
6575                         /* .ppid */
6576                         /* .tid  */
6577                         /* .ptid */
6578                         /* .time */
6579                 },
6580         };
6581
6582         perf_iterate_sb(perf_event_task_output,
6583                        &task_event,
6584                        task_ctx);
6585 }
6586
6587 void perf_event_fork(struct task_struct *task)
6588 {
6589         perf_event_task(task, NULL, 1);
6590         perf_event_namespaces(task);
6591 }
6592
6593 /*
6594  * comm tracking
6595  */
6596
6597 struct perf_comm_event {
6598         struct task_struct      *task;
6599         char                    *comm;
6600         int                     comm_size;
6601
6602         struct {
6603                 struct perf_event_header        header;
6604
6605                 u32                             pid;
6606                 u32                             tid;
6607         } event_id;
6608 };
6609
6610 static int perf_event_comm_match(struct perf_event *event)
6611 {
6612         return event->attr.comm;
6613 }
6614
6615 static void perf_event_comm_output(struct perf_event *event,
6616                                    void *data)
6617 {
6618         struct perf_comm_event *comm_event = data;
6619         struct perf_output_handle handle;
6620         struct perf_sample_data sample;
6621         int size = comm_event->event_id.header.size;
6622         int ret;
6623
6624         if (!perf_event_comm_match(event))
6625                 return;
6626
6627         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6628         ret = perf_output_begin(&handle, event,
6629                                 comm_event->event_id.header.size);
6630
6631         if (ret)
6632                 goto out;
6633
6634         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6635         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6636
6637         perf_output_put(&handle, comm_event->event_id);
6638         __output_copy(&handle, comm_event->comm,
6639                                    comm_event->comm_size);
6640
6641         perf_event__output_id_sample(event, &handle, &sample);
6642
6643         perf_output_end(&handle);
6644 out:
6645         comm_event->event_id.header.size = size;
6646 }
6647
6648 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6649 {
6650         char comm[TASK_COMM_LEN];
6651         unsigned int size;
6652
6653         memset(comm, 0, sizeof(comm));
6654         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6655         size = ALIGN(strlen(comm)+1, sizeof(u64));
6656
6657         comm_event->comm = comm;
6658         comm_event->comm_size = size;
6659
6660         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6661
6662         perf_iterate_sb(perf_event_comm_output,
6663                        comm_event,
6664                        NULL);
6665 }
6666
6667 void perf_event_comm(struct task_struct *task, bool exec)
6668 {
6669         struct perf_comm_event comm_event;
6670
6671         if (!atomic_read(&nr_comm_events))
6672                 return;
6673
6674         comm_event = (struct perf_comm_event){
6675                 .task   = task,
6676                 /* .comm      */
6677                 /* .comm_size */
6678                 .event_id  = {
6679                         .header = {
6680                                 .type = PERF_RECORD_COMM,
6681                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6682                                 /* .size */
6683                         },
6684                         /* .pid */
6685                         /* .tid */
6686                 },
6687         };
6688
6689         perf_event_comm_event(&comm_event);
6690 }
6691
6692 /*
6693  * namespaces tracking
6694  */
6695
6696 struct perf_namespaces_event {
6697         struct task_struct              *task;
6698
6699         struct {
6700                 struct perf_event_header        header;
6701
6702                 u32                             pid;
6703                 u32                             tid;
6704                 u64                             nr_namespaces;
6705                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6706         } event_id;
6707 };
6708
6709 static int perf_event_namespaces_match(struct perf_event *event)
6710 {
6711         return event->attr.namespaces;
6712 }
6713
6714 static void perf_event_namespaces_output(struct perf_event *event,
6715                                          void *data)
6716 {
6717         struct perf_namespaces_event *namespaces_event = data;
6718         struct perf_output_handle handle;
6719         struct perf_sample_data sample;
6720         int ret;
6721
6722         if (!perf_event_namespaces_match(event))
6723                 return;
6724
6725         perf_event_header__init_id(&namespaces_event->event_id.header,
6726                                    &sample, event);
6727         ret = perf_output_begin(&handle, event,
6728                                 namespaces_event->event_id.header.size);
6729         if (ret)
6730                 return;
6731
6732         namespaces_event->event_id.pid = perf_event_pid(event,
6733                                                         namespaces_event->task);
6734         namespaces_event->event_id.tid = perf_event_tid(event,
6735                                                         namespaces_event->task);
6736
6737         perf_output_put(&handle, namespaces_event->event_id);
6738
6739         perf_event__output_id_sample(event, &handle, &sample);
6740
6741         perf_output_end(&handle);
6742 }
6743
6744 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6745                                    struct task_struct *task,
6746                                    const struct proc_ns_operations *ns_ops)
6747 {
6748         struct path ns_path;
6749         struct inode *ns_inode;
6750         void *error;
6751
6752         error = ns_get_path(&ns_path, task, ns_ops);
6753         if (!error) {
6754                 ns_inode = ns_path.dentry->d_inode;
6755                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6756                 ns_link_info->ino = ns_inode->i_ino;
6757         }
6758 }
6759
6760 void perf_event_namespaces(struct task_struct *task)
6761 {
6762         struct perf_namespaces_event namespaces_event;
6763         struct perf_ns_link_info *ns_link_info;
6764
6765         if (!atomic_read(&nr_namespaces_events))
6766                 return;
6767
6768         namespaces_event = (struct perf_namespaces_event){
6769                 .task   = task,
6770                 .event_id  = {
6771                         .header = {
6772                                 .type = PERF_RECORD_NAMESPACES,
6773                                 .misc = 0,
6774                                 .size = sizeof(namespaces_event.event_id),
6775                         },
6776                         /* .pid */
6777                         /* .tid */
6778                         .nr_namespaces = NR_NAMESPACES,
6779                         /* .link_info[NR_NAMESPACES] */
6780                 },
6781         };
6782
6783         ns_link_info = namespaces_event.event_id.link_info;
6784
6785         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6786                                task, &mntns_operations);
6787
6788 #ifdef CONFIG_USER_NS
6789         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6790                                task, &userns_operations);
6791 #endif
6792 #ifdef CONFIG_NET_NS
6793         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6794                                task, &netns_operations);
6795 #endif
6796 #ifdef CONFIG_UTS_NS
6797         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6798                                task, &utsns_operations);
6799 #endif
6800 #ifdef CONFIG_IPC_NS
6801         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6802                                task, &ipcns_operations);
6803 #endif
6804 #ifdef CONFIG_PID_NS
6805         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6806                                task, &pidns_operations);
6807 #endif
6808 #ifdef CONFIG_CGROUPS
6809         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6810                                task, &cgroupns_operations);
6811 #endif
6812
6813         perf_iterate_sb(perf_event_namespaces_output,
6814                         &namespaces_event,
6815                         NULL);
6816 }
6817
6818 /*
6819  * mmap tracking
6820  */
6821
6822 struct perf_mmap_event {
6823         struct vm_area_struct   *vma;
6824
6825         const char              *file_name;
6826         int                     file_size;
6827         int                     maj, min;
6828         u64                     ino;
6829         u64                     ino_generation;
6830         u32                     prot, flags;
6831
6832         struct {
6833                 struct perf_event_header        header;
6834
6835                 u32                             pid;
6836                 u32                             tid;
6837                 u64                             start;
6838                 u64                             len;
6839                 u64                             pgoff;
6840         } event_id;
6841 };
6842
6843 static int perf_event_mmap_match(struct perf_event *event,
6844                                  void *data)
6845 {
6846         struct perf_mmap_event *mmap_event = data;
6847         struct vm_area_struct *vma = mmap_event->vma;
6848         int executable = vma->vm_flags & VM_EXEC;
6849
6850         return (!executable && event->attr.mmap_data) ||
6851                (executable && (event->attr.mmap || event->attr.mmap2));
6852 }
6853
6854 static void perf_event_mmap_output(struct perf_event *event,
6855                                    void *data)
6856 {
6857         struct perf_mmap_event *mmap_event = data;
6858         struct perf_output_handle handle;
6859         struct perf_sample_data sample;
6860         int size = mmap_event->event_id.header.size;
6861         int ret;
6862
6863         if (!perf_event_mmap_match(event, data))
6864                 return;
6865
6866         if (event->attr.mmap2) {
6867                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6868                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6869                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6870                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6871                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6872                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6873                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6874         }
6875
6876         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6877         ret = perf_output_begin(&handle, event,
6878                                 mmap_event->event_id.header.size);
6879         if (ret)
6880                 goto out;
6881
6882         mmap_event->event_id.pid = perf_event_pid(event, current);
6883         mmap_event->event_id.tid = perf_event_tid(event, current);
6884
6885         perf_output_put(&handle, mmap_event->event_id);
6886
6887         if (event->attr.mmap2) {
6888                 perf_output_put(&handle, mmap_event->maj);
6889                 perf_output_put(&handle, mmap_event->min);
6890                 perf_output_put(&handle, mmap_event->ino);
6891                 perf_output_put(&handle, mmap_event->ino_generation);
6892                 perf_output_put(&handle, mmap_event->prot);
6893                 perf_output_put(&handle, mmap_event->flags);
6894         }
6895
6896         __output_copy(&handle, mmap_event->file_name,
6897                                    mmap_event->file_size);
6898
6899         perf_event__output_id_sample(event, &handle, &sample);
6900
6901         perf_output_end(&handle);
6902 out:
6903         mmap_event->event_id.header.size = size;
6904 }
6905
6906 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6907 {
6908         struct vm_area_struct *vma = mmap_event->vma;
6909         struct file *file = vma->vm_file;
6910         int maj = 0, min = 0;
6911         u64 ino = 0, gen = 0;
6912         u32 prot = 0, flags = 0;
6913         unsigned int size;
6914         char tmp[16];
6915         char *buf = NULL;
6916         char *name;
6917
6918         if (vma->vm_flags & VM_READ)
6919                 prot |= PROT_READ;
6920         if (vma->vm_flags & VM_WRITE)
6921                 prot |= PROT_WRITE;
6922         if (vma->vm_flags & VM_EXEC)
6923                 prot |= PROT_EXEC;
6924
6925         if (vma->vm_flags & VM_MAYSHARE)
6926                 flags = MAP_SHARED;
6927         else
6928                 flags = MAP_PRIVATE;
6929
6930         if (vma->vm_flags & VM_DENYWRITE)
6931                 flags |= MAP_DENYWRITE;
6932         if (vma->vm_flags & VM_MAYEXEC)
6933                 flags |= MAP_EXECUTABLE;
6934         if (vma->vm_flags & VM_LOCKED)
6935                 flags |= MAP_LOCKED;
6936         if (vma->vm_flags & VM_HUGETLB)
6937                 flags |= MAP_HUGETLB;
6938
6939         if (file) {
6940                 struct inode *inode;
6941                 dev_t dev;
6942
6943                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6944                 if (!buf) {
6945                         name = "//enomem";
6946                         goto cpy_name;
6947                 }
6948                 /*
6949                  * d_path() works from the end of the rb backwards, so we
6950                  * need to add enough zero bytes after the string to handle
6951                  * the 64bit alignment we do later.
6952                  */
6953                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6954                 if (IS_ERR(name)) {
6955                         name = "//toolong";
6956                         goto cpy_name;
6957                 }
6958                 inode = file_inode(vma->vm_file);
6959                 dev = inode->i_sb->s_dev;
6960                 ino = inode->i_ino;
6961                 gen = inode->i_generation;
6962                 maj = MAJOR(dev);
6963                 min = MINOR(dev);
6964
6965                 goto got_name;
6966         } else {
6967                 if (vma->vm_ops && vma->vm_ops->name) {
6968                         name = (char *) vma->vm_ops->name(vma);
6969                         if (name)
6970                                 goto cpy_name;
6971                 }
6972
6973                 name = (char *)arch_vma_name(vma);
6974                 if (name)
6975                         goto cpy_name;
6976
6977                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6978                                 vma->vm_end >= vma->vm_mm->brk) {
6979                         name = "[heap]";
6980                         goto cpy_name;
6981                 }
6982                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6983                                 vma->vm_end >= vma->vm_mm->start_stack) {
6984                         name = "[stack]";
6985                         goto cpy_name;
6986                 }
6987
6988                 name = "//anon";
6989                 goto cpy_name;
6990         }
6991
6992 cpy_name:
6993         strlcpy(tmp, name, sizeof(tmp));
6994         name = tmp;
6995 got_name:
6996         /*
6997          * Since our buffer works in 8 byte units we need to align our string
6998          * size to a multiple of 8. However, we must guarantee the tail end is
6999          * zero'd out to avoid leaking random bits to userspace.
7000          */
7001         size = strlen(name)+1;
7002         while (!IS_ALIGNED(size, sizeof(u64)))
7003                 name[size++] = '\0';
7004
7005         mmap_event->file_name = name;
7006         mmap_event->file_size = size;
7007         mmap_event->maj = maj;
7008         mmap_event->min = min;
7009         mmap_event->ino = ino;
7010         mmap_event->ino_generation = gen;
7011         mmap_event->prot = prot;
7012         mmap_event->flags = flags;
7013
7014         if (!(vma->vm_flags & VM_EXEC))
7015                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7016
7017         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7018
7019         perf_iterate_sb(perf_event_mmap_output,
7020                        mmap_event,
7021                        NULL);
7022
7023         kfree(buf);
7024 }
7025
7026 /*
7027  * Check whether inode and address range match filter criteria.
7028  */
7029 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7030                                      struct file *file, unsigned long offset,
7031                                      unsigned long size)
7032 {
7033         if (filter->inode != file_inode(file))
7034                 return false;
7035
7036         if (filter->offset > offset + size)
7037                 return false;
7038
7039         if (filter->offset + filter->size < offset)
7040                 return false;
7041
7042         return true;
7043 }
7044
7045 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7046 {
7047         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7048         struct vm_area_struct *vma = data;
7049         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7050         struct file *file = vma->vm_file;
7051         struct perf_addr_filter *filter;
7052         unsigned int restart = 0, count = 0;
7053
7054         if (!has_addr_filter(event))
7055                 return;
7056
7057         if (!file)
7058                 return;
7059
7060         raw_spin_lock_irqsave(&ifh->lock, flags);
7061         list_for_each_entry(filter, &ifh->list, entry) {
7062                 if (perf_addr_filter_match(filter, file, off,
7063                                              vma->vm_end - vma->vm_start)) {
7064                         event->addr_filters_offs[count] = vma->vm_start;
7065                         restart++;
7066                 }
7067
7068                 count++;
7069         }
7070
7071         if (restart)
7072                 event->addr_filters_gen++;
7073         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7074
7075         if (restart)
7076                 perf_event_stop(event, 1);
7077 }
7078
7079 /*
7080  * Adjust all task's events' filters to the new vma
7081  */
7082 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7083 {
7084         struct perf_event_context *ctx;
7085         int ctxn;
7086
7087         /*
7088          * Data tracing isn't supported yet and as such there is no need
7089          * to keep track of anything that isn't related to executable code:
7090          */
7091         if (!(vma->vm_flags & VM_EXEC))
7092                 return;
7093
7094         rcu_read_lock();
7095         for_each_task_context_nr(ctxn) {
7096                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7097                 if (!ctx)
7098                         continue;
7099
7100                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7101         }
7102         rcu_read_unlock();
7103 }
7104
7105 void perf_event_mmap(struct vm_area_struct *vma)
7106 {
7107         struct perf_mmap_event mmap_event;
7108
7109         if (!atomic_read(&nr_mmap_events))
7110                 return;
7111
7112         mmap_event = (struct perf_mmap_event){
7113                 .vma    = vma,
7114                 /* .file_name */
7115                 /* .file_size */
7116                 .event_id  = {
7117                         .header = {
7118                                 .type = PERF_RECORD_MMAP,
7119                                 .misc = PERF_RECORD_MISC_USER,
7120                                 /* .size */
7121                         },
7122                         /* .pid */
7123                         /* .tid */
7124                         .start  = vma->vm_start,
7125                         .len    = vma->vm_end - vma->vm_start,
7126                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7127                 },
7128                 /* .maj (attr_mmap2 only) */
7129                 /* .min (attr_mmap2 only) */
7130                 /* .ino (attr_mmap2 only) */
7131                 /* .ino_generation (attr_mmap2 only) */
7132                 /* .prot (attr_mmap2 only) */
7133                 /* .flags (attr_mmap2 only) */
7134         };
7135
7136         perf_addr_filters_adjust(vma);
7137         perf_event_mmap_event(&mmap_event);
7138 }
7139
7140 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7141                           unsigned long size, u64 flags)
7142 {
7143         struct perf_output_handle handle;
7144         struct perf_sample_data sample;
7145         struct perf_aux_event {
7146                 struct perf_event_header        header;
7147                 u64                             offset;
7148                 u64                             size;
7149                 u64                             flags;
7150         } rec = {
7151                 .header = {
7152                         .type = PERF_RECORD_AUX,
7153                         .misc = 0,
7154                         .size = sizeof(rec),
7155                 },
7156                 .offset         = head,
7157                 .size           = size,
7158                 .flags          = flags,
7159         };
7160         int ret;
7161
7162         perf_event_header__init_id(&rec.header, &sample, event);
7163         ret = perf_output_begin(&handle, event, rec.header.size);
7164
7165         if (ret)
7166                 return;
7167
7168         perf_output_put(&handle, rec);
7169         perf_event__output_id_sample(event, &handle, &sample);
7170
7171         perf_output_end(&handle);
7172 }
7173
7174 /*
7175  * Lost/dropped samples logging
7176  */
7177 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7178 {
7179         struct perf_output_handle handle;
7180         struct perf_sample_data sample;
7181         int ret;
7182
7183         struct {
7184                 struct perf_event_header        header;
7185                 u64                             lost;
7186         } lost_samples_event = {
7187                 .header = {
7188                         .type = PERF_RECORD_LOST_SAMPLES,
7189                         .misc = 0,
7190                         .size = sizeof(lost_samples_event),
7191                 },
7192                 .lost           = lost,
7193         };
7194
7195         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7196
7197         ret = perf_output_begin(&handle, event,
7198                                 lost_samples_event.header.size);
7199         if (ret)
7200                 return;
7201
7202         perf_output_put(&handle, lost_samples_event);
7203         perf_event__output_id_sample(event, &handle, &sample);
7204         perf_output_end(&handle);
7205 }
7206
7207 /*
7208  * context_switch tracking
7209  */
7210
7211 struct perf_switch_event {
7212         struct task_struct      *task;
7213         struct task_struct      *next_prev;
7214
7215         struct {
7216                 struct perf_event_header        header;
7217                 u32                             next_prev_pid;
7218                 u32                             next_prev_tid;
7219         } event_id;
7220 };
7221
7222 static int perf_event_switch_match(struct perf_event *event)
7223 {
7224         return event->attr.context_switch;
7225 }
7226
7227 static void perf_event_switch_output(struct perf_event *event, void *data)
7228 {
7229         struct perf_switch_event *se = data;
7230         struct perf_output_handle handle;
7231         struct perf_sample_data sample;
7232         int ret;
7233
7234         if (!perf_event_switch_match(event))
7235                 return;
7236
7237         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7238         if (event->ctx->task) {
7239                 se->event_id.header.type = PERF_RECORD_SWITCH;
7240                 se->event_id.header.size = sizeof(se->event_id.header);
7241         } else {
7242                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7243                 se->event_id.header.size = sizeof(se->event_id);
7244                 se->event_id.next_prev_pid =
7245                                         perf_event_pid(event, se->next_prev);
7246                 se->event_id.next_prev_tid =
7247                                         perf_event_tid(event, se->next_prev);
7248         }
7249
7250         perf_event_header__init_id(&se->event_id.header, &sample, event);
7251
7252         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7253         if (ret)
7254                 return;
7255
7256         if (event->ctx->task)
7257                 perf_output_put(&handle, se->event_id.header);
7258         else
7259                 perf_output_put(&handle, se->event_id);
7260
7261         perf_event__output_id_sample(event, &handle, &sample);
7262
7263         perf_output_end(&handle);
7264 }
7265
7266 static void perf_event_switch(struct task_struct *task,
7267                               struct task_struct *next_prev, bool sched_in)
7268 {
7269         struct perf_switch_event switch_event;
7270
7271         /* N.B. caller checks nr_switch_events != 0 */
7272
7273         switch_event = (struct perf_switch_event){
7274                 .task           = task,
7275                 .next_prev      = next_prev,
7276                 .event_id       = {
7277                         .header = {
7278                                 /* .type */
7279                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7280                                 /* .size */
7281                         },
7282                         /* .next_prev_pid */
7283                         /* .next_prev_tid */
7284                 },
7285         };
7286
7287         perf_iterate_sb(perf_event_switch_output,
7288                        &switch_event,
7289                        NULL);
7290 }
7291
7292 /*
7293  * IRQ throttle logging
7294  */
7295
7296 static void perf_log_throttle(struct perf_event *event, int enable)
7297 {
7298         struct perf_output_handle handle;
7299         struct perf_sample_data sample;
7300         int ret;
7301
7302         struct {
7303                 struct perf_event_header        header;
7304                 u64                             time;
7305                 u64                             id;
7306                 u64                             stream_id;
7307         } throttle_event = {
7308                 .header = {
7309                         .type = PERF_RECORD_THROTTLE,
7310                         .misc = 0,
7311                         .size = sizeof(throttle_event),
7312                 },
7313                 .time           = perf_event_clock(event),
7314                 .id             = primary_event_id(event),
7315                 .stream_id      = event->id,
7316         };
7317
7318         if (enable)
7319                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7320
7321         perf_event_header__init_id(&throttle_event.header, &sample, event);
7322
7323         ret = perf_output_begin(&handle, event,
7324                                 throttle_event.header.size);
7325         if (ret)
7326                 return;
7327
7328         perf_output_put(&handle, throttle_event);
7329         perf_event__output_id_sample(event, &handle, &sample);
7330         perf_output_end(&handle);
7331 }
7332
7333 void perf_event_itrace_started(struct perf_event *event)
7334 {
7335         event->attach_state |= PERF_ATTACH_ITRACE;
7336 }
7337
7338 static void perf_log_itrace_start(struct perf_event *event)
7339 {
7340         struct perf_output_handle handle;
7341         struct perf_sample_data sample;
7342         struct perf_aux_event {
7343                 struct perf_event_header        header;
7344                 u32                             pid;
7345                 u32                             tid;
7346         } rec;
7347         int ret;
7348
7349         if (event->parent)
7350                 event = event->parent;
7351
7352         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7353             event->attach_state & PERF_ATTACH_ITRACE)
7354                 return;
7355
7356         rec.header.type = PERF_RECORD_ITRACE_START;
7357         rec.header.misc = 0;
7358         rec.header.size = sizeof(rec);
7359         rec.pid = perf_event_pid(event, current);
7360         rec.tid = perf_event_tid(event, current);
7361
7362         perf_event_header__init_id(&rec.header, &sample, event);
7363         ret = perf_output_begin(&handle, event, rec.header.size);
7364
7365         if (ret)
7366                 return;
7367
7368         perf_output_put(&handle, rec);
7369         perf_event__output_id_sample(event, &handle, &sample);
7370
7371         perf_output_end(&handle);
7372 }
7373
7374 static int
7375 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7376 {
7377         struct hw_perf_event *hwc = &event->hw;
7378         int ret = 0;
7379         u64 seq;
7380
7381         seq = __this_cpu_read(perf_throttled_seq);
7382         if (seq != hwc->interrupts_seq) {
7383                 hwc->interrupts_seq = seq;
7384                 hwc->interrupts = 1;
7385         } else {
7386                 hwc->interrupts++;
7387                 if (unlikely(throttle
7388                              && hwc->interrupts >= max_samples_per_tick)) {
7389                         __this_cpu_inc(perf_throttled_count);
7390                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7391                         hwc->interrupts = MAX_INTERRUPTS;
7392                         perf_log_throttle(event, 0);
7393                         ret = 1;
7394                 }
7395         }
7396
7397         if (event->attr.freq) {
7398                 u64 now = perf_clock();
7399                 s64 delta = now - hwc->freq_time_stamp;
7400
7401                 hwc->freq_time_stamp = now;
7402
7403                 if (delta > 0 && delta < 2*TICK_NSEC)
7404                         perf_adjust_period(event, delta, hwc->last_period, true);
7405         }
7406
7407         return ret;
7408 }
7409
7410 int perf_event_account_interrupt(struct perf_event *event)
7411 {
7412         return __perf_event_account_interrupt(event, 1);
7413 }
7414
7415 /*
7416  * Generic event overflow handling, sampling.
7417  */
7418
7419 static int __perf_event_overflow(struct perf_event *event,
7420                                    int throttle, struct perf_sample_data *data,
7421                                    struct pt_regs *regs)
7422 {
7423         int events = atomic_read(&event->event_limit);
7424         int ret = 0;
7425
7426         /*
7427          * Non-sampling counters might still use the PMI to fold short
7428          * hardware counters, ignore those.
7429          */
7430         if (unlikely(!is_sampling_event(event)))
7431                 return 0;
7432
7433         ret = __perf_event_account_interrupt(event, throttle);
7434
7435         /*
7436          * XXX event_limit might not quite work as expected on inherited
7437          * events
7438          */
7439
7440         event->pending_kill = POLL_IN;
7441         if (events && atomic_dec_and_test(&event->event_limit)) {
7442                 ret = 1;
7443                 event->pending_kill = POLL_HUP;
7444
7445                 perf_event_disable_inatomic(event);
7446         }
7447
7448         READ_ONCE(event->overflow_handler)(event, data, regs);
7449
7450         if (*perf_event_fasync(event) && event->pending_kill) {
7451                 event->pending_wakeup = 1;
7452                 irq_work_queue(&event->pending);
7453         }
7454
7455         return ret;
7456 }
7457
7458 int perf_event_overflow(struct perf_event *event,
7459                           struct perf_sample_data *data,
7460                           struct pt_regs *regs)
7461 {
7462         return __perf_event_overflow(event, 1, data, regs);
7463 }
7464
7465 /*
7466  * Generic software event infrastructure
7467  */
7468
7469 struct swevent_htable {
7470         struct swevent_hlist            *swevent_hlist;
7471         struct mutex                    hlist_mutex;
7472         int                             hlist_refcount;
7473
7474         /* Recursion avoidance in each contexts */
7475         int                             recursion[PERF_NR_CONTEXTS];
7476 };
7477
7478 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7479
7480 /*
7481  * We directly increment event->count and keep a second value in
7482  * event->hw.period_left to count intervals. This period event
7483  * is kept in the range [-sample_period, 0] so that we can use the
7484  * sign as trigger.
7485  */
7486
7487 u64 perf_swevent_set_period(struct perf_event *event)
7488 {
7489         struct hw_perf_event *hwc = &event->hw;
7490         u64 period = hwc->last_period;
7491         u64 nr, offset;
7492         s64 old, val;
7493
7494         hwc->last_period = hwc->sample_period;
7495
7496 again:
7497         old = val = local64_read(&hwc->period_left);
7498         if (val < 0)
7499                 return 0;
7500
7501         nr = div64_u64(period + val, period);
7502         offset = nr * period;
7503         val -= offset;
7504         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7505                 goto again;
7506
7507         return nr;
7508 }
7509
7510 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7511                                     struct perf_sample_data *data,
7512                                     struct pt_regs *regs)
7513 {
7514         struct hw_perf_event *hwc = &event->hw;
7515         int throttle = 0;
7516
7517         if (!overflow)
7518                 overflow = perf_swevent_set_period(event);
7519
7520         if (hwc->interrupts == MAX_INTERRUPTS)
7521                 return;
7522
7523         for (; overflow; overflow--) {
7524                 if (__perf_event_overflow(event, throttle,
7525                                             data, regs)) {
7526                         /*
7527                          * We inhibit the overflow from happening when
7528                          * hwc->interrupts == MAX_INTERRUPTS.
7529                          */
7530                         break;
7531                 }
7532                 throttle = 1;
7533         }
7534 }
7535
7536 static void perf_swevent_event(struct perf_event *event, u64 nr,
7537                                struct perf_sample_data *data,
7538                                struct pt_regs *regs)
7539 {
7540         struct hw_perf_event *hwc = &event->hw;
7541
7542         local64_add(nr, &event->count);
7543
7544         if (!regs)
7545                 return;
7546
7547         if (!is_sampling_event(event))
7548                 return;
7549
7550         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7551                 data->period = nr;
7552                 return perf_swevent_overflow(event, 1, data, regs);
7553         } else
7554                 data->period = event->hw.last_period;
7555
7556         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7557                 return perf_swevent_overflow(event, 1, data, regs);
7558
7559         if (local64_add_negative(nr, &hwc->period_left))
7560                 return;
7561
7562         perf_swevent_overflow(event, 0, data, regs);
7563 }
7564
7565 static int perf_exclude_event(struct perf_event *event,
7566                               struct pt_regs *regs)
7567 {
7568         if (event->hw.state & PERF_HES_STOPPED)
7569                 return 1;
7570
7571         if (regs) {
7572                 if (event->attr.exclude_user && user_mode(regs))
7573                         return 1;
7574
7575                 if (event->attr.exclude_kernel && !user_mode(regs))
7576                         return 1;
7577         }
7578
7579         return 0;
7580 }
7581
7582 static int perf_swevent_match(struct perf_event *event,
7583                                 enum perf_type_id type,
7584                                 u32 event_id,
7585                                 struct perf_sample_data *data,
7586                                 struct pt_regs *regs)
7587 {
7588         if (event->attr.type != type)
7589                 return 0;
7590
7591         if (event->attr.config != event_id)
7592                 return 0;
7593
7594         if (perf_exclude_event(event, regs))
7595                 return 0;
7596
7597         return 1;
7598 }
7599
7600 static inline u64 swevent_hash(u64 type, u32 event_id)
7601 {
7602         u64 val = event_id | (type << 32);
7603
7604         return hash_64(val, SWEVENT_HLIST_BITS);
7605 }
7606
7607 static inline struct hlist_head *
7608 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7609 {
7610         u64 hash = swevent_hash(type, event_id);
7611
7612         return &hlist->heads[hash];
7613 }
7614
7615 /* For the read side: events when they trigger */
7616 static inline struct hlist_head *
7617 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7618 {
7619         struct swevent_hlist *hlist;
7620
7621         hlist = rcu_dereference(swhash->swevent_hlist);
7622         if (!hlist)
7623                 return NULL;
7624
7625         return __find_swevent_head(hlist, type, event_id);
7626 }
7627
7628 /* For the event head insertion and removal in the hlist */
7629 static inline struct hlist_head *
7630 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7631 {
7632         struct swevent_hlist *hlist;
7633         u32 event_id = event->attr.config;
7634         u64 type = event->attr.type;
7635
7636         /*
7637          * Event scheduling is always serialized against hlist allocation
7638          * and release. Which makes the protected version suitable here.
7639          * The context lock guarantees that.
7640          */
7641         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7642                                           lockdep_is_held(&event->ctx->lock));
7643         if (!hlist)
7644                 return NULL;
7645
7646         return __find_swevent_head(hlist, type, event_id);
7647 }
7648
7649 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7650                                     u64 nr,
7651                                     struct perf_sample_data *data,
7652                                     struct pt_regs *regs)
7653 {
7654         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7655         struct perf_event *event;
7656         struct hlist_head *head;
7657
7658         rcu_read_lock();
7659         head = find_swevent_head_rcu(swhash, type, event_id);
7660         if (!head)
7661                 goto end;
7662
7663         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7664                 if (perf_swevent_match(event, type, event_id, data, regs))
7665                         perf_swevent_event(event, nr, data, regs);
7666         }
7667 end:
7668         rcu_read_unlock();
7669 }
7670
7671 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7672
7673 int perf_swevent_get_recursion_context(void)
7674 {
7675         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7676
7677         return get_recursion_context(swhash->recursion);
7678 }
7679 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7680
7681 void perf_swevent_put_recursion_context(int rctx)
7682 {
7683         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7684
7685         put_recursion_context(swhash->recursion, rctx);
7686 }
7687
7688 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7689 {
7690         struct perf_sample_data data;
7691
7692         if (WARN_ON_ONCE(!regs))
7693                 return;
7694
7695         perf_sample_data_init(&data, addr, 0);
7696         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7697 }
7698
7699 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7700 {
7701         int rctx;
7702
7703         preempt_disable_notrace();
7704         rctx = perf_swevent_get_recursion_context();
7705         if (unlikely(rctx < 0))
7706                 goto fail;
7707
7708         ___perf_sw_event(event_id, nr, regs, addr);
7709
7710         perf_swevent_put_recursion_context(rctx);
7711 fail:
7712         preempt_enable_notrace();
7713 }
7714
7715 static void perf_swevent_read(struct perf_event *event)
7716 {
7717 }
7718
7719 static int perf_swevent_add(struct perf_event *event, int flags)
7720 {
7721         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7722         struct hw_perf_event *hwc = &event->hw;
7723         struct hlist_head *head;
7724
7725         if (is_sampling_event(event)) {
7726                 hwc->last_period = hwc->sample_period;
7727                 perf_swevent_set_period(event);
7728         }
7729
7730         hwc->state = !(flags & PERF_EF_START);
7731
7732         head = find_swevent_head(swhash, event);
7733         if (WARN_ON_ONCE(!head))
7734                 return -EINVAL;
7735
7736         hlist_add_head_rcu(&event->hlist_entry, head);
7737         perf_event_update_userpage(event);
7738
7739         return 0;
7740 }
7741
7742 static void perf_swevent_del(struct perf_event *event, int flags)
7743 {
7744         hlist_del_rcu(&event->hlist_entry);
7745 }
7746
7747 static void perf_swevent_start(struct perf_event *event, int flags)
7748 {
7749         event->hw.state = 0;
7750 }
7751
7752 static void perf_swevent_stop(struct perf_event *event, int flags)
7753 {
7754         event->hw.state = PERF_HES_STOPPED;
7755 }
7756
7757 /* Deref the hlist from the update side */
7758 static inline struct swevent_hlist *
7759 swevent_hlist_deref(struct swevent_htable *swhash)
7760 {
7761         return rcu_dereference_protected(swhash->swevent_hlist,
7762                                          lockdep_is_held(&swhash->hlist_mutex));
7763 }
7764
7765 static void swevent_hlist_release(struct swevent_htable *swhash)
7766 {
7767         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7768
7769         if (!hlist)
7770                 return;
7771
7772         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7773         kfree_rcu(hlist, rcu_head);
7774 }
7775
7776 static void swevent_hlist_put_cpu(int cpu)
7777 {
7778         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7779
7780         mutex_lock(&swhash->hlist_mutex);
7781
7782         if (!--swhash->hlist_refcount)
7783                 swevent_hlist_release(swhash);
7784
7785         mutex_unlock(&swhash->hlist_mutex);
7786 }
7787
7788 static void swevent_hlist_put(void)
7789 {
7790         int cpu;
7791
7792         for_each_possible_cpu(cpu)
7793                 swevent_hlist_put_cpu(cpu);
7794 }
7795
7796 static int swevent_hlist_get_cpu(int cpu)
7797 {
7798         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7799         int err = 0;
7800
7801         mutex_lock(&swhash->hlist_mutex);
7802         if (!swevent_hlist_deref(swhash) &&
7803             cpumask_test_cpu(cpu, perf_online_mask)) {
7804                 struct swevent_hlist *hlist;
7805
7806                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7807                 if (!hlist) {
7808                         err = -ENOMEM;
7809                         goto exit;
7810                 }
7811                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7812         }
7813         swhash->hlist_refcount++;
7814 exit:
7815         mutex_unlock(&swhash->hlist_mutex);
7816
7817         return err;
7818 }
7819
7820 static int swevent_hlist_get(void)
7821 {
7822         int err, cpu, failed_cpu;
7823
7824         mutex_lock(&pmus_lock);
7825         for_each_possible_cpu(cpu) {
7826                 err = swevent_hlist_get_cpu(cpu);
7827                 if (err) {
7828                         failed_cpu = cpu;
7829                         goto fail;
7830                 }
7831         }
7832         mutex_unlock(&pmus_lock);
7833         return 0;
7834 fail:
7835         for_each_possible_cpu(cpu) {
7836                 if (cpu == failed_cpu)
7837                         break;
7838                 swevent_hlist_put_cpu(cpu);
7839         }
7840         mutex_unlock(&pmus_lock);
7841         return err;
7842 }
7843
7844 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7845
7846 static void sw_perf_event_destroy(struct perf_event *event)
7847 {
7848         u64 event_id = event->attr.config;
7849
7850         WARN_ON(event->parent);
7851
7852         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7853         swevent_hlist_put();
7854 }
7855
7856 static int perf_swevent_init(struct perf_event *event)
7857 {
7858         u64 event_id = event->attr.config;
7859
7860         if (event->attr.type != PERF_TYPE_SOFTWARE)
7861                 return -ENOENT;
7862
7863         /*
7864          * no branch sampling for software events
7865          */
7866         if (has_branch_stack(event))
7867                 return -EOPNOTSUPP;
7868
7869         switch (event_id) {
7870         case PERF_COUNT_SW_CPU_CLOCK:
7871         case PERF_COUNT_SW_TASK_CLOCK:
7872                 return -ENOENT;
7873
7874         default:
7875                 break;
7876         }
7877
7878         if (event_id >= PERF_COUNT_SW_MAX)
7879                 return -ENOENT;
7880
7881         if (!event->parent) {
7882                 int err;
7883
7884                 err = swevent_hlist_get();
7885                 if (err)
7886                         return err;
7887
7888                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7889                 event->destroy = sw_perf_event_destroy;
7890         }
7891
7892         return 0;
7893 }
7894
7895 static struct pmu perf_swevent = {
7896         .task_ctx_nr    = perf_sw_context,
7897
7898         .capabilities   = PERF_PMU_CAP_NO_NMI,
7899
7900         .event_init     = perf_swevent_init,
7901         .add            = perf_swevent_add,
7902         .del            = perf_swevent_del,
7903         .start          = perf_swevent_start,
7904         .stop           = perf_swevent_stop,
7905         .read           = perf_swevent_read,
7906 };
7907
7908 #ifdef CONFIG_EVENT_TRACING
7909
7910 static int perf_tp_filter_match(struct perf_event *event,
7911                                 struct perf_sample_data *data)
7912 {
7913         void *record = data->raw->frag.data;
7914
7915         /* only top level events have filters set */
7916         if (event->parent)
7917                 event = event->parent;
7918
7919         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7920                 return 1;
7921         return 0;
7922 }
7923
7924 static int perf_tp_event_match(struct perf_event *event,
7925                                 struct perf_sample_data *data,
7926                                 struct pt_regs *regs)
7927 {
7928         if (event->hw.state & PERF_HES_STOPPED)
7929                 return 0;
7930         /*
7931          * All tracepoints are from kernel-space.
7932          */
7933         if (event->attr.exclude_kernel)
7934                 return 0;
7935
7936         if (!perf_tp_filter_match(event, data))
7937                 return 0;
7938
7939         return 1;
7940 }
7941
7942 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7943                                struct trace_event_call *call, u64 count,
7944                                struct pt_regs *regs, struct hlist_head *head,
7945                                struct task_struct *task)
7946 {
7947         struct bpf_prog *prog = call->prog;
7948
7949         if (prog) {
7950                 *(struct pt_regs **)raw_data = regs;
7951                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7952                         perf_swevent_put_recursion_context(rctx);
7953                         return;
7954                 }
7955         }
7956         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7957                       rctx, task, NULL);
7958 }
7959 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7960
7961 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7962                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7963                    struct task_struct *task, struct perf_event *event)
7964 {
7965         struct perf_sample_data data;
7966
7967         struct perf_raw_record raw = {
7968                 .frag = {
7969                         .size = entry_size,
7970                         .data = record,
7971                 },
7972         };
7973
7974         perf_sample_data_init(&data, 0, 0);
7975         data.raw = &raw;
7976
7977         perf_trace_buf_update(record, event_type);
7978
7979         /* Use the given event instead of the hlist */
7980         if (event) {
7981                 if (perf_tp_event_match(event, &data, regs))
7982                         perf_swevent_event(event, count, &data, regs);
7983         } else {
7984                 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7985                         if (perf_tp_event_match(event, &data, regs))
7986                                 perf_swevent_event(event, count, &data, regs);
7987                 }
7988         }
7989
7990         /*
7991          * If we got specified a target task, also iterate its context and
7992          * deliver this event there too.
7993          */
7994         if (task && task != current) {
7995                 struct perf_event_context *ctx;
7996                 struct trace_entry *entry = record;
7997
7998                 rcu_read_lock();
7999                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8000                 if (!ctx)
8001                         goto unlock;
8002
8003                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8004                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8005                                 continue;
8006                         if (event->attr.config != entry->type)
8007                                 continue;
8008                         if (perf_tp_event_match(event, &data, regs))
8009                                 perf_swevent_event(event, count, &data, regs);
8010                 }
8011 unlock:
8012                 rcu_read_unlock();
8013         }
8014
8015         perf_swevent_put_recursion_context(rctx);
8016 }
8017 EXPORT_SYMBOL_GPL(perf_tp_event);
8018
8019 static void tp_perf_event_destroy(struct perf_event *event)
8020 {
8021         perf_trace_destroy(event);
8022 }
8023
8024 static int perf_tp_event_init(struct perf_event *event)
8025 {
8026         int err;
8027
8028         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8029                 return -ENOENT;
8030
8031         /*
8032          * no branch sampling for tracepoint events
8033          */
8034         if (has_branch_stack(event))
8035                 return -EOPNOTSUPP;
8036
8037         err = perf_trace_init(event);
8038         if (err)
8039                 return err;
8040
8041         event->destroy = tp_perf_event_destroy;
8042
8043         return 0;
8044 }
8045
8046 static struct pmu perf_tracepoint = {
8047         .task_ctx_nr    = perf_sw_context,
8048
8049         .event_init     = perf_tp_event_init,
8050         .add            = perf_trace_add,
8051         .del            = perf_trace_del,
8052         .start          = perf_swevent_start,
8053         .stop           = perf_swevent_stop,
8054         .read           = perf_swevent_read,
8055 };
8056
8057 static inline void perf_tp_register(void)
8058 {
8059         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8060 }
8061
8062 static void perf_event_free_filter(struct perf_event *event)
8063 {
8064         ftrace_profile_free_filter(event);
8065 }
8066
8067 #ifdef CONFIG_BPF_SYSCALL
8068 static void bpf_overflow_handler(struct perf_event *event,
8069                                  struct perf_sample_data *data,
8070                                  struct pt_regs *regs)
8071 {
8072         struct bpf_perf_event_data_kern ctx = {
8073                 .data = data,
8074                 .regs = regs,
8075         };
8076         int ret = 0;
8077
8078         preempt_disable();
8079         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8080                 goto out;
8081         rcu_read_lock();
8082         ret = BPF_PROG_RUN(event->prog, &ctx);
8083         rcu_read_unlock();
8084 out:
8085         __this_cpu_dec(bpf_prog_active);
8086         preempt_enable();
8087         if (!ret)
8088                 return;
8089
8090         event->orig_overflow_handler(event, data, regs);
8091 }
8092
8093 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8094 {
8095         struct bpf_prog *prog;
8096
8097         if (event->overflow_handler_context)
8098                 /* hw breakpoint or kernel counter */
8099                 return -EINVAL;
8100
8101         if (event->prog)
8102                 return -EEXIST;
8103
8104         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8105         if (IS_ERR(prog))
8106                 return PTR_ERR(prog);
8107
8108         event->prog = prog;
8109         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8110         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8111         return 0;
8112 }
8113
8114 static void perf_event_free_bpf_handler(struct perf_event *event)
8115 {
8116         struct bpf_prog *prog = event->prog;
8117
8118         if (!prog)
8119                 return;
8120
8121         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8122         event->prog = NULL;
8123         bpf_prog_put(prog);
8124 }
8125 #else
8126 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8127 {
8128         return -EOPNOTSUPP;
8129 }
8130 static void perf_event_free_bpf_handler(struct perf_event *event)
8131 {
8132 }
8133 #endif
8134
8135 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8136 {
8137         bool is_kprobe, is_tracepoint, is_syscall_tp;
8138         struct bpf_prog *prog;
8139
8140         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8141                 return perf_event_set_bpf_handler(event, prog_fd);
8142
8143         if (event->tp_event->prog)
8144                 return -EEXIST;
8145
8146         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8147         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8148         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8149         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8150                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8151                 return -EINVAL;
8152
8153         prog = bpf_prog_get(prog_fd);
8154         if (IS_ERR(prog))
8155                 return PTR_ERR(prog);
8156
8157         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8158             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8159             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8160                 /* valid fd, but invalid bpf program type */
8161                 bpf_prog_put(prog);
8162                 return -EINVAL;
8163         }
8164
8165         if (is_tracepoint || is_syscall_tp) {
8166                 int off = trace_event_get_offsets(event->tp_event);
8167
8168                 if (prog->aux->max_ctx_offset > off) {
8169                         bpf_prog_put(prog);
8170                         return -EACCES;
8171                 }
8172         }
8173         event->tp_event->prog = prog;
8174         event->tp_event->bpf_prog_owner = event;
8175
8176         return 0;
8177 }
8178
8179 static void perf_event_free_bpf_prog(struct perf_event *event)
8180 {
8181         struct bpf_prog *prog;
8182
8183         perf_event_free_bpf_handler(event);
8184
8185         if (!event->tp_event)
8186                 return;
8187
8188         prog = event->tp_event->prog;
8189         if (prog && event->tp_event->bpf_prog_owner == event) {
8190                 event->tp_event->prog = NULL;
8191                 bpf_prog_put(prog);
8192         }
8193 }
8194
8195 #else
8196
8197 static inline void perf_tp_register(void)
8198 {
8199 }
8200
8201 static void perf_event_free_filter(struct perf_event *event)
8202 {
8203 }
8204
8205 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8206 {
8207         return -ENOENT;
8208 }
8209
8210 static void perf_event_free_bpf_prog(struct perf_event *event)
8211 {
8212 }
8213 #endif /* CONFIG_EVENT_TRACING */
8214
8215 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8216 void perf_bp_event(struct perf_event *bp, void *data)
8217 {
8218         struct perf_sample_data sample;
8219         struct pt_regs *regs = data;
8220
8221         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8222
8223         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8224                 perf_swevent_event(bp, 1, &sample, regs);
8225 }
8226 #endif
8227
8228 /*
8229  * Allocate a new address filter
8230  */
8231 static struct perf_addr_filter *
8232 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8233 {
8234         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8235         struct perf_addr_filter *filter;
8236
8237         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8238         if (!filter)
8239                 return NULL;
8240
8241         INIT_LIST_HEAD(&filter->entry);
8242         list_add_tail(&filter->entry, filters);
8243
8244         return filter;
8245 }
8246
8247 static void free_filters_list(struct list_head *filters)
8248 {
8249         struct perf_addr_filter *filter, *iter;
8250
8251         list_for_each_entry_safe(filter, iter, filters, entry) {
8252                 if (filter->inode)
8253                         iput(filter->inode);
8254                 list_del(&filter->entry);
8255                 kfree(filter);
8256         }
8257 }
8258
8259 /*
8260  * Free existing address filters and optionally install new ones
8261  */
8262 static void perf_addr_filters_splice(struct perf_event *event,
8263                                      struct list_head *head)
8264 {
8265         unsigned long flags;
8266         LIST_HEAD(list);
8267
8268         if (!has_addr_filter(event))
8269                 return;
8270
8271         /* don't bother with children, they don't have their own filters */
8272         if (event->parent)
8273                 return;
8274
8275         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8276
8277         list_splice_init(&event->addr_filters.list, &list);
8278         if (head)
8279                 list_splice(head, &event->addr_filters.list);
8280
8281         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8282
8283         free_filters_list(&list);
8284 }
8285
8286 /*
8287  * Scan through mm's vmas and see if one of them matches the
8288  * @filter; if so, adjust filter's address range.
8289  * Called with mm::mmap_sem down for reading.
8290  */
8291 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8292                                             struct mm_struct *mm)
8293 {
8294         struct vm_area_struct *vma;
8295
8296         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8297                 struct file *file = vma->vm_file;
8298                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8299                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8300
8301                 if (!file)
8302                         continue;
8303
8304                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8305                         continue;
8306
8307                 return vma->vm_start;
8308         }
8309
8310         return 0;
8311 }
8312
8313 /*
8314  * Update event's address range filters based on the
8315  * task's existing mappings, if any.
8316  */
8317 static void perf_event_addr_filters_apply(struct perf_event *event)
8318 {
8319         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8320         struct task_struct *task = READ_ONCE(event->ctx->task);
8321         struct perf_addr_filter *filter;
8322         struct mm_struct *mm = NULL;
8323         unsigned int count = 0;
8324         unsigned long flags;
8325
8326         /*
8327          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8328          * will stop on the parent's child_mutex that our caller is also holding
8329          */
8330         if (task == TASK_TOMBSTONE)
8331                 return;
8332
8333         if (!ifh->nr_file_filters)
8334                 return;
8335
8336         mm = get_task_mm(event->ctx->task);
8337         if (!mm)
8338                 goto restart;
8339
8340         down_read(&mm->mmap_sem);
8341
8342         raw_spin_lock_irqsave(&ifh->lock, flags);
8343         list_for_each_entry(filter, &ifh->list, entry) {
8344                 event->addr_filters_offs[count] = 0;
8345
8346                 /*
8347                  * Adjust base offset if the filter is associated to a binary
8348                  * that needs to be mapped:
8349                  */
8350                 if (filter->inode)
8351                         event->addr_filters_offs[count] =
8352                                 perf_addr_filter_apply(filter, mm);
8353
8354                 count++;
8355         }
8356
8357         event->addr_filters_gen++;
8358         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8359
8360         up_read(&mm->mmap_sem);
8361
8362         mmput(mm);
8363
8364 restart:
8365         perf_event_stop(event, 1);
8366 }
8367
8368 /*
8369  * Address range filtering: limiting the data to certain
8370  * instruction address ranges. Filters are ioctl()ed to us from
8371  * userspace as ascii strings.
8372  *
8373  * Filter string format:
8374  *
8375  * ACTION RANGE_SPEC
8376  * where ACTION is one of the
8377  *  * "filter": limit the trace to this region
8378  *  * "start": start tracing from this address
8379  *  * "stop": stop tracing at this address/region;
8380  * RANGE_SPEC is
8381  *  * for kernel addresses: <start address>[/<size>]
8382  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8383  *
8384  * if <size> is not specified, the range is treated as a single address.
8385  */
8386 enum {
8387         IF_ACT_NONE = -1,
8388         IF_ACT_FILTER,
8389         IF_ACT_START,
8390         IF_ACT_STOP,
8391         IF_SRC_FILE,
8392         IF_SRC_KERNEL,
8393         IF_SRC_FILEADDR,
8394         IF_SRC_KERNELADDR,
8395 };
8396
8397 enum {
8398         IF_STATE_ACTION = 0,
8399         IF_STATE_SOURCE,
8400         IF_STATE_END,
8401 };
8402
8403 static const match_table_t if_tokens = {
8404         { IF_ACT_FILTER,        "filter" },
8405         { IF_ACT_START,         "start" },
8406         { IF_ACT_STOP,          "stop" },
8407         { IF_SRC_FILE,          "%u/%u@%s" },
8408         { IF_SRC_KERNEL,        "%u/%u" },
8409         { IF_SRC_FILEADDR,      "%u@%s" },
8410         { IF_SRC_KERNELADDR,    "%u" },
8411         { IF_ACT_NONE,          NULL },
8412 };
8413
8414 /*
8415  * Address filter string parser
8416  */
8417 static int
8418 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8419                              struct list_head *filters)
8420 {
8421         struct perf_addr_filter *filter = NULL;
8422         char *start, *orig, *filename = NULL;
8423         struct path path;
8424         substring_t args[MAX_OPT_ARGS];
8425         int state = IF_STATE_ACTION, token;
8426         unsigned int kernel = 0;
8427         int ret = -EINVAL;
8428
8429         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8430         if (!fstr)
8431                 return -ENOMEM;
8432
8433         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8434                 ret = -EINVAL;
8435
8436                 if (!*start)
8437                         continue;
8438
8439                 /* filter definition begins */
8440                 if (state == IF_STATE_ACTION) {
8441                         filter = perf_addr_filter_new(event, filters);
8442                         if (!filter)
8443                                 goto fail;
8444                 }
8445
8446                 token = match_token(start, if_tokens, args);
8447                 switch (token) {
8448                 case IF_ACT_FILTER:
8449                 case IF_ACT_START:
8450                         filter->filter = 1;
8451
8452                 case IF_ACT_STOP:
8453                         if (state != IF_STATE_ACTION)
8454                                 goto fail;
8455
8456                         state = IF_STATE_SOURCE;
8457                         break;
8458
8459                 case IF_SRC_KERNELADDR:
8460                 case IF_SRC_KERNEL:
8461                         kernel = 1;
8462
8463                 case IF_SRC_FILEADDR:
8464                 case IF_SRC_FILE:
8465                         if (state != IF_STATE_SOURCE)
8466                                 goto fail;
8467
8468                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8469                                 filter->range = 1;
8470
8471                         *args[0].to = 0;
8472                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8473                         if (ret)
8474                                 goto fail;
8475
8476                         if (filter->range) {
8477                                 *args[1].to = 0;
8478                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8479                                 if (ret)
8480                                         goto fail;
8481                         }
8482
8483                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8484                                 int fpos = filter->range ? 2 : 1;
8485
8486                                 filename = match_strdup(&args[fpos]);
8487                                 if (!filename) {
8488                                         ret = -ENOMEM;
8489                                         goto fail;
8490                                 }
8491                         }
8492
8493                         state = IF_STATE_END;
8494                         break;
8495
8496                 default:
8497                         goto fail;
8498                 }
8499
8500                 /*
8501                  * Filter definition is fully parsed, validate and install it.
8502                  * Make sure that it doesn't contradict itself or the event's
8503                  * attribute.
8504                  */
8505                 if (state == IF_STATE_END) {
8506                         ret = -EINVAL;
8507                         if (kernel && event->attr.exclude_kernel)
8508                                 goto fail;
8509
8510                         if (!kernel) {
8511                                 if (!filename)
8512                                         goto fail;
8513
8514                                 /*
8515                                  * For now, we only support file-based filters
8516                                  * in per-task events; doing so for CPU-wide
8517                                  * events requires additional context switching
8518                                  * trickery, since same object code will be
8519                                  * mapped at different virtual addresses in
8520                                  * different processes.
8521                                  */
8522                                 ret = -EOPNOTSUPP;
8523                                 if (!event->ctx->task)
8524                                         goto fail_free_name;
8525
8526                                 /* look up the path and grab its inode */
8527                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8528                                 if (ret)
8529                                         goto fail_free_name;
8530
8531                                 filter->inode = igrab(d_inode(path.dentry));
8532                                 path_put(&path);
8533                                 kfree(filename);
8534                                 filename = NULL;
8535
8536                                 ret = -EINVAL;
8537                                 if (!filter->inode ||
8538                                     !S_ISREG(filter->inode->i_mode))
8539                                         /* free_filters_list() will iput() */
8540                                         goto fail;
8541
8542                                 event->addr_filters.nr_file_filters++;
8543                         }
8544
8545                         /* ready to consume more filters */
8546                         state = IF_STATE_ACTION;
8547                         filter = NULL;
8548                 }
8549         }
8550
8551         if (state != IF_STATE_ACTION)
8552                 goto fail;
8553
8554         kfree(orig);
8555
8556         return 0;
8557
8558 fail_free_name:
8559         kfree(filename);
8560 fail:
8561         free_filters_list(filters);
8562         kfree(orig);
8563
8564         return ret;
8565 }
8566
8567 static int
8568 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8569 {
8570         LIST_HEAD(filters);
8571         int ret;
8572
8573         /*
8574          * Since this is called in perf_ioctl() path, we're already holding
8575          * ctx::mutex.
8576          */
8577         lockdep_assert_held(&event->ctx->mutex);
8578
8579         if (WARN_ON_ONCE(event->parent))
8580                 return -EINVAL;
8581
8582         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8583         if (ret)
8584                 goto fail_clear_files;
8585
8586         ret = event->pmu->addr_filters_validate(&filters);
8587         if (ret)
8588                 goto fail_free_filters;
8589
8590         /* remove existing filters, if any */
8591         perf_addr_filters_splice(event, &filters);
8592
8593         /* install new filters */
8594         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8595
8596         return ret;
8597
8598 fail_free_filters:
8599         free_filters_list(&filters);
8600
8601 fail_clear_files:
8602         event->addr_filters.nr_file_filters = 0;
8603
8604         return ret;
8605 }
8606
8607 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8608 {
8609         char *filter_str;
8610         int ret = -EINVAL;
8611
8612         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8613             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8614             !has_addr_filter(event))
8615                 return -EINVAL;
8616
8617         filter_str = strndup_user(arg, PAGE_SIZE);
8618         if (IS_ERR(filter_str))
8619                 return PTR_ERR(filter_str);
8620
8621         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8622             event->attr.type == PERF_TYPE_TRACEPOINT)
8623                 ret = ftrace_profile_set_filter(event, event->attr.config,
8624                                                 filter_str);
8625         else if (has_addr_filter(event))
8626                 ret = perf_event_set_addr_filter(event, filter_str);
8627
8628         kfree(filter_str);
8629         return ret;
8630 }
8631
8632 /*
8633  * hrtimer based swevent callback
8634  */
8635
8636 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8637 {
8638         enum hrtimer_restart ret = HRTIMER_RESTART;
8639         struct perf_sample_data data;
8640         struct pt_regs *regs;
8641         struct perf_event *event;
8642         u64 period;
8643
8644         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8645
8646         if (event->state != PERF_EVENT_STATE_ACTIVE)
8647                 return HRTIMER_NORESTART;
8648
8649         event->pmu->read(event);
8650
8651         perf_sample_data_init(&data, 0, event->hw.last_period);
8652         regs = get_irq_regs();
8653
8654         if (regs && !perf_exclude_event(event, regs)) {
8655                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8656                         if (__perf_event_overflow(event, 1, &data, regs))
8657                                 ret = HRTIMER_NORESTART;
8658         }
8659
8660         period = max_t(u64, 10000, event->hw.sample_period);
8661         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8662
8663         return ret;
8664 }
8665
8666 static void perf_swevent_start_hrtimer(struct perf_event *event)
8667 {
8668         struct hw_perf_event *hwc = &event->hw;
8669         s64 period;
8670
8671         if (!is_sampling_event(event))
8672                 return;
8673
8674         period = local64_read(&hwc->period_left);
8675         if (period) {
8676                 if (period < 0)
8677                         period = 10000;
8678
8679                 local64_set(&hwc->period_left, 0);
8680         } else {
8681                 period = max_t(u64, 10000, hwc->sample_period);
8682         }
8683         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8684                       HRTIMER_MODE_REL_PINNED);
8685 }
8686
8687 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8688 {
8689         struct hw_perf_event *hwc = &event->hw;
8690
8691         if (is_sampling_event(event)) {
8692                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8693                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8694
8695                 hrtimer_cancel(&hwc->hrtimer);
8696         }
8697 }
8698
8699 static void perf_swevent_init_hrtimer(struct perf_event *event)
8700 {
8701         struct hw_perf_event *hwc = &event->hw;
8702
8703         if (!is_sampling_event(event))
8704                 return;
8705
8706         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8707         hwc->hrtimer.function = perf_swevent_hrtimer;
8708
8709         /*
8710          * Since hrtimers have a fixed rate, we can do a static freq->period
8711          * mapping and avoid the whole period adjust feedback stuff.
8712          */
8713         if (event->attr.freq) {
8714                 long freq = event->attr.sample_freq;
8715
8716                 event->attr.sample_period = NSEC_PER_SEC / freq;
8717                 hwc->sample_period = event->attr.sample_period;
8718                 local64_set(&hwc->period_left, hwc->sample_period);
8719                 hwc->last_period = hwc->sample_period;
8720                 event->attr.freq = 0;
8721         }
8722 }
8723
8724 /*
8725  * Software event: cpu wall time clock
8726  */
8727
8728 static void cpu_clock_event_update(struct perf_event *event)
8729 {
8730         s64 prev;
8731         u64 now;
8732
8733         now = local_clock();
8734         prev = local64_xchg(&event->hw.prev_count, now);
8735         local64_add(now - prev, &event->count);
8736 }
8737
8738 static void cpu_clock_event_start(struct perf_event *event, int flags)
8739 {
8740         local64_set(&event->hw.prev_count, local_clock());
8741         perf_swevent_start_hrtimer(event);
8742 }
8743
8744 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8745 {
8746         perf_swevent_cancel_hrtimer(event);
8747         cpu_clock_event_update(event);
8748 }
8749
8750 static int cpu_clock_event_add(struct perf_event *event, int flags)
8751 {
8752         if (flags & PERF_EF_START)
8753                 cpu_clock_event_start(event, flags);
8754         perf_event_update_userpage(event);
8755
8756         return 0;
8757 }
8758
8759 static void cpu_clock_event_del(struct perf_event *event, int flags)
8760 {
8761         cpu_clock_event_stop(event, flags);
8762 }
8763
8764 static void cpu_clock_event_read(struct perf_event *event)
8765 {
8766         cpu_clock_event_update(event);
8767 }
8768
8769 static int cpu_clock_event_init(struct perf_event *event)
8770 {
8771         if (event->attr.type != PERF_TYPE_SOFTWARE)
8772                 return -ENOENT;
8773
8774         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8775                 return -ENOENT;
8776
8777         /*
8778          * no branch sampling for software events
8779          */
8780         if (has_branch_stack(event))
8781                 return -EOPNOTSUPP;
8782
8783         perf_swevent_init_hrtimer(event);
8784
8785         return 0;
8786 }
8787
8788 static struct pmu perf_cpu_clock = {
8789         .task_ctx_nr    = perf_sw_context,
8790
8791         .capabilities   = PERF_PMU_CAP_NO_NMI,
8792
8793         .event_init     = cpu_clock_event_init,
8794         .add            = cpu_clock_event_add,
8795         .del            = cpu_clock_event_del,
8796         .start          = cpu_clock_event_start,
8797         .stop           = cpu_clock_event_stop,
8798         .read           = cpu_clock_event_read,
8799 };
8800
8801 /*
8802  * Software event: task time clock
8803  */
8804
8805 static void task_clock_event_update(struct perf_event *event, u64 now)
8806 {
8807         u64 prev;
8808         s64 delta;
8809
8810         prev = local64_xchg(&event->hw.prev_count, now);
8811         delta = now - prev;
8812         local64_add(delta, &event->count);
8813 }
8814
8815 static void task_clock_event_start(struct perf_event *event, int flags)
8816 {
8817         local64_set(&event->hw.prev_count, event->ctx->time);
8818         perf_swevent_start_hrtimer(event);
8819 }
8820
8821 static void task_clock_event_stop(struct perf_event *event, int flags)
8822 {
8823         perf_swevent_cancel_hrtimer(event);
8824         task_clock_event_update(event, event->ctx->time);
8825 }
8826
8827 static int task_clock_event_add(struct perf_event *event, int flags)
8828 {
8829         if (flags & PERF_EF_START)
8830                 task_clock_event_start(event, flags);
8831         perf_event_update_userpage(event);
8832
8833         return 0;
8834 }
8835
8836 static void task_clock_event_del(struct perf_event *event, int flags)
8837 {
8838         task_clock_event_stop(event, PERF_EF_UPDATE);
8839 }
8840
8841 static void task_clock_event_read(struct perf_event *event)
8842 {
8843         u64 now = perf_clock();
8844         u64 delta = now - event->ctx->timestamp;
8845         u64 time = event->ctx->time + delta;
8846
8847         task_clock_event_update(event, time);
8848 }
8849
8850 static int task_clock_event_init(struct perf_event *event)
8851 {
8852         if (event->attr.type != PERF_TYPE_SOFTWARE)
8853                 return -ENOENT;
8854
8855         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8856                 return -ENOENT;
8857
8858         /*
8859          * no branch sampling for software events
8860          */
8861         if (has_branch_stack(event))
8862                 return -EOPNOTSUPP;
8863
8864         perf_swevent_init_hrtimer(event);
8865
8866         return 0;
8867 }
8868
8869 static struct pmu perf_task_clock = {
8870         .task_ctx_nr    = perf_sw_context,
8871
8872         .capabilities   = PERF_PMU_CAP_NO_NMI,
8873
8874         .event_init     = task_clock_event_init,
8875         .add            = task_clock_event_add,
8876         .del            = task_clock_event_del,
8877         .start          = task_clock_event_start,
8878         .stop           = task_clock_event_stop,
8879         .read           = task_clock_event_read,
8880 };
8881
8882 static void perf_pmu_nop_void(struct pmu *pmu)
8883 {
8884 }
8885
8886 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8887 {
8888 }
8889
8890 static int perf_pmu_nop_int(struct pmu *pmu)
8891 {
8892         return 0;
8893 }
8894
8895 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8896
8897 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8898 {
8899         __this_cpu_write(nop_txn_flags, flags);
8900
8901         if (flags & ~PERF_PMU_TXN_ADD)
8902                 return;
8903
8904         perf_pmu_disable(pmu);
8905 }
8906
8907 static int perf_pmu_commit_txn(struct pmu *pmu)
8908 {
8909         unsigned int flags = __this_cpu_read(nop_txn_flags);
8910
8911         __this_cpu_write(nop_txn_flags, 0);
8912
8913         if (flags & ~PERF_PMU_TXN_ADD)
8914                 return 0;
8915
8916         perf_pmu_enable(pmu);
8917         return 0;
8918 }
8919
8920 static void perf_pmu_cancel_txn(struct pmu *pmu)
8921 {
8922         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8923
8924         __this_cpu_write(nop_txn_flags, 0);
8925
8926         if (flags & ~PERF_PMU_TXN_ADD)
8927                 return;
8928
8929         perf_pmu_enable(pmu);
8930 }
8931
8932 static int perf_event_idx_default(struct perf_event *event)
8933 {
8934         return 0;
8935 }
8936
8937 /*
8938  * Ensures all contexts with the same task_ctx_nr have the same
8939  * pmu_cpu_context too.
8940  */
8941 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8942 {
8943         struct pmu *pmu;
8944
8945         if (ctxn < 0)
8946                 return NULL;
8947
8948         list_for_each_entry(pmu, &pmus, entry) {
8949                 if (pmu->task_ctx_nr == ctxn)
8950                         return pmu->pmu_cpu_context;
8951         }
8952
8953         return NULL;
8954 }
8955
8956 static void free_pmu_context(struct pmu *pmu)
8957 {
8958         mutex_lock(&pmus_lock);
8959         free_percpu(pmu->pmu_cpu_context);
8960         mutex_unlock(&pmus_lock);
8961 }
8962
8963 /*
8964  * Let userspace know that this PMU supports address range filtering:
8965  */
8966 static ssize_t nr_addr_filters_show(struct device *dev,
8967                                     struct device_attribute *attr,
8968                                     char *page)
8969 {
8970         struct pmu *pmu = dev_get_drvdata(dev);
8971
8972         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8973 }
8974 DEVICE_ATTR_RO(nr_addr_filters);
8975
8976 static struct idr pmu_idr;
8977
8978 static ssize_t
8979 type_show(struct device *dev, struct device_attribute *attr, char *page)
8980 {
8981         struct pmu *pmu = dev_get_drvdata(dev);
8982
8983         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8984 }
8985 static DEVICE_ATTR_RO(type);
8986
8987 static ssize_t
8988 perf_event_mux_interval_ms_show(struct device *dev,
8989                                 struct device_attribute *attr,
8990                                 char *page)
8991 {
8992         struct pmu *pmu = dev_get_drvdata(dev);
8993
8994         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8995 }
8996
8997 static DEFINE_MUTEX(mux_interval_mutex);
8998
8999 static ssize_t
9000 perf_event_mux_interval_ms_store(struct device *dev,
9001                                  struct device_attribute *attr,
9002                                  const char *buf, size_t count)
9003 {
9004         struct pmu *pmu = dev_get_drvdata(dev);
9005         int timer, cpu, ret;
9006
9007         ret = kstrtoint(buf, 0, &timer);
9008         if (ret)
9009                 return ret;
9010
9011         if (timer < 1)
9012                 return -EINVAL;
9013
9014         /* same value, noting to do */
9015         if (timer == pmu->hrtimer_interval_ms)
9016                 return count;
9017
9018         mutex_lock(&mux_interval_mutex);
9019         pmu->hrtimer_interval_ms = timer;
9020
9021         /* update all cpuctx for this PMU */
9022         cpus_read_lock();
9023         for_each_online_cpu(cpu) {
9024                 struct perf_cpu_context *cpuctx;
9025                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9026                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9027
9028                 cpu_function_call(cpu,
9029                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9030         }
9031         cpus_read_unlock();
9032         mutex_unlock(&mux_interval_mutex);
9033
9034         return count;
9035 }
9036 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9037
9038 static struct attribute *pmu_dev_attrs[] = {
9039         &dev_attr_type.attr,
9040         &dev_attr_perf_event_mux_interval_ms.attr,
9041         NULL,
9042 };
9043 ATTRIBUTE_GROUPS(pmu_dev);
9044
9045 static int pmu_bus_running;
9046 static struct bus_type pmu_bus = {
9047         .name           = "event_source",
9048         .dev_groups     = pmu_dev_groups,
9049 };
9050
9051 static void pmu_dev_release(struct device *dev)
9052 {
9053         kfree(dev);
9054 }
9055
9056 static int pmu_dev_alloc(struct pmu *pmu)
9057 {
9058         int ret = -ENOMEM;
9059
9060         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9061         if (!pmu->dev)
9062                 goto out;
9063
9064         pmu->dev->groups = pmu->attr_groups;
9065         device_initialize(pmu->dev);
9066         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9067         if (ret)
9068                 goto free_dev;
9069
9070         dev_set_drvdata(pmu->dev, pmu);
9071         pmu->dev->bus = &pmu_bus;
9072         pmu->dev->release = pmu_dev_release;
9073         ret = device_add(pmu->dev);
9074         if (ret)
9075                 goto free_dev;
9076
9077         /* For PMUs with address filters, throw in an extra attribute: */
9078         if (pmu->nr_addr_filters)
9079                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9080
9081         if (ret)
9082                 goto del_dev;
9083
9084 out:
9085         return ret;
9086
9087 del_dev:
9088         device_del(pmu->dev);
9089
9090 free_dev:
9091         put_device(pmu->dev);
9092         goto out;
9093 }
9094
9095 static struct lock_class_key cpuctx_mutex;
9096 static struct lock_class_key cpuctx_lock;
9097
9098 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9099 {
9100         int cpu, ret;
9101
9102         mutex_lock(&pmus_lock);
9103         ret = -ENOMEM;
9104         pmu->pmu_disable_count = alloc_percpu(int);
9105         if (!pmu->pmu_disable_count)
9106                 goto unlock;
9107
9108         pmu->type = -1;
9109         if (!name)
9110                 goto skip_type;
9111         pmu->name = name;
9112
9113         if (type < 0) {
9114                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9115                 if (type < 0) {
9116                         ret = type;
9117                         goto free_pdc;
9118                 }
9119         }
9120         pmu->type = type;
9121
9122         if (pmu_bus_running) {
9123                 ret = pmu_dev_alloc(pmu);
9124                 if (ret)
9125                         goto free_idr;
9126         }
9127
9128 skip_type:
9129         if (pmu->task_ctx_nr == perf_hw_context) {
9130                 static int hw_context_taken = 0;
9131
9132                 /*
9133                  * Other than systems with heterogeneous CPUs, it never makes
9134                  * sense for two PMUs to share perf_hw_context. PMUs which are
9135                  * uncore must use perf_invalid_context.
9136                  */
9137                 if (WARN_ON_ONCE(hw_context_taken &&
9138                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9139                         pmu->task_ctx_nr = perf_invalid_context;
9140
9141                 hw_context_taken = 1;
9142         }
9143
9144         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9145         if (pmu->pmu_cpu_context)
9146                 goto got_cpu_context;
9147
9148         ret = -ENOMEM;
9149         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9150         if (!pmu->pmu_cpu_context)
9151                 goto free_dev;
9152
9153         for_each_possible_cpu(cpu) {
9154                 struct perf_cpu_context *cpuctx;
9155
9156                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9157                 __perf_event_init_context(&cpuctx->ctx);
9158                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9159                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9160                 cpuctx->ctx.pmu = pmu;
9161                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9162
9163                 __perf_mux_hrtimer_init(cpuctx, cpu);
9164         }
9165
9166 got_cpu_context:
9167         if (!pmu->start_txn) {
9168                 if (pmu->pmu_enable) {
9169                         /*
9170                          * If we have pmu_enable/pmu_disable calls, install
9171                          * transaction stubs that use that to try and batch
9172                          * hardware accesses.
9173                          */
9174                         pmu->start_txn  = perf_pmu_start_txn;
9175                         pmu->commit_txn = perf_pmu_commit_txn;
9176                         pmu->cancel_txn = perf_pmu_cancel_txn;
9177                 } else {
9178                         pmu->start_txn  = perf_pmu_nop_txn;
9179                         pmu->commit_txn = perf_pmu_nop_int;
9180                         pmu->cancel_txn = perf_pmu_nop_void;
9181                 }
9182         }
9183
9184         if (!pmu->pmu_enable) {
9185                 pmu->pmu_enable  = perf_pmu_nop_void;
9186                 pmu->pmu_disable = perf_pmu_nop_void;
9187         }
9188
9189         if (!pmu->event_idx)
9190                 pmu->event_idx = perf_event_idx_default;
9191
9192         list_add_rcu(&pmu->entry, &pmus);
9193         atomic_set(&pmu->exclusive_cnt, 0);
9194         ret = 0;
9195 unlock:
9196         mutex_unlock(&pmus_lock);
9197
9198         return ret;
9199
9200 free_dev:
9201         device_del(pmu->dev);
9202         put_device(pmu->dev);
9203
9204 free_idr:
9205         if (pmu->type >= PERF_TYPE_MAX)
9206                 idr_remove(&pmu_idr, pmu->type);
9207
9208 free_pdc:
9209         free_percpu(pmu->pmu_disable_count);
9210         goto unlock;
9211 }
9212 EXPORT_SYMBOL_GPL(perf_pmu_register);
9213
9214 void perf_pmu_unregister(struct pmu *pmu)
9215 {
9216         int remove_device;
9217
9218         mutex_lock(&pmus_lock);
9219         remove_device = pmu_bus_running;
9220         list_del_rcu(&pmu->entry);
9221         mutex_unlock(&pmus_lock);
9222
9223         /*
9224          * We dereference the pmu list under both SRCU and regular RCU, so
9225          * synchronize against both of those.
9226          */
9227         synchronize_srcu(&pmus_srcu);
9228         synchronize_rcu();
9229
9230         free_percpu(pmu->pmu_disable_count);
9231         if (pmu->type >= PERF_TYPE_MAX)
9232                 idr_remove(&pmu_idr, pmu->type);
9233         if (remove_device) {
9234                 if (pmu->nr_addr_filters)
9235                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9236                 device_del(pmu->dev);
9237                 put_device(pmu->dev);
9238         }
9239         free_pmu_context(pmu);
9240 }
9241 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9242
9243 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9244 {
9245         struct perf_event_context *ctx = NULL;
9246         int ret;
9247
9248         if (!try_module_get(pmu->module))
9249                 return -ENODEV;
9250
9251         if (event->group_leader != event) {
9252                 /*
9253                  * This ctx->mutex can nest when we're called through
9254                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9255                  */
9256                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9257                                                  SINGLE_DEPTH_NESTING);
9258                 BUG_ON(!ctx);
9259         }
9260
9261         event->pmu = pmu;
9262         ret = pmu->event_init(event);
9263
9264         if (ctx)
9265                 perf_event_ctx_unlock(event->group_leader, ctx);
9266
9267         if (ret)
9268                 module_put(pmu->module);
9269
9270         return ret;
9271 }
9272
9273 static struct pmu *perf_init_event(struct perf_event *event)
9274 {
9275         struct pmu *pmu;
9276         int idx;
9277         int ret;
9278
9279         idx = srcu_read_lock(&pmus_srcu);
9280
9281         /* Try parent's PMU first: */
9282         if (event->parent && event->parent->pmu) {
9283                 pmu = event->parent->pmu;
9284                 ret = perf_try_init_event(pmu, event);
9285                 if (!ret)
9286                         goto unlock;
9287         }
9288
9289         rcu_read_lock();
9290         pmu = idr_find(&pmu_idr, event->attr.type);
9291         rcu_read_unlock();
9292         if (pmu) {
9293                 ret = perf_try_init_event(pmu, event);
9294                 if (ret)
9295                         pmu = ERR_PTR(ret);
9296                 goto unlock;
9297         }
9298
9299         list_for_each_entry_rcu(pmu, &pmus, entry) {
9300                 ret = perf_try_init_event(pmu, event);
9301                 if (!ret)
9302                         goto unlock;
9303
9304                 if (ret != -ENOENT) {
9305                         pmu = ERR_PTR(ret);
9306                         goto unlock;
9307                 }
9308         }
9309         pmu = ERR_PTR(-ENOENT);
9310 unlock:
9311         srcu_read_unlock(&pmus_srcu, idx);
9312
9313         return pmu;
9314 }
9315
9316 static void attach_sb_event(struct perf_event *event)
9317 {
9318         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9319
9320         raw_spin_lock(&pel->lock);
9321         list_add_rcu(&event->sb_list, &pel->list);
9322         raw_spin_unlock(&pel->lock);
9323 }
9324
9325 /*
9326  * We keep a list of all !task (and therefore per-cpu) events
9327  * that need to receive side-band records.
9328  *
9329  * This avoids having to scan all the various PMU per-cpu contexts
9330  * looking for them.
9331  */
9332 static void account_pmu_sb_event(struct perf_event *event)
9333 {
9334         if (is_sb_event(event))
9335                 attach_sb_event(event);
9336 }
9337
9338 static void account_event_cpu(struct perf_event *event, int cpu)
9339 {
9340         if (event->parent)
9341                 return;
9342
9343         if (is_cgroup_event(event))
9344                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9345 }
9346
9347 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9348 static void account_freq_event_nohz(void)
9349 {
9350 #ifdef CONFIG_NO_HZ_FULL
9351         /* Lock so we don't race with concurrent unaccount */
9352         spin_lock(&nr_freq_lock);
9353         if (atomic_inc_return(&nr_freq_events) == 1)
9354                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9355         spin_unlock(&nr_freq_lock);
9356 #endif
9357 }
9358
9359 static void account_freq_event(void)
9360 {
9361         if (tick_nohz_full_enabled())
9362                 account_freq_event_nohz();
9363         else
9364                 atomic_inc(&nr_freq_events);
9365 }
9366
9367
9368 static void account_event(struct perf_event *event)
9369 {
9370         bool inc = false;
9371
9372         if (event->parent)
9373                 return;
9374
9375         if (event->attach_state & PERF_ATTACH_TASK)
9376                 inc = true;
9377         if (event->attr.mmap || event->attr.mmap_data)
9378                 atomic_inc(&nr_mmap_events);
9379         if (event->attr.comm)
9380                 atomic_inc(&nr_comm_events);
9381         if (event->attr.namespaces)
9382                 atomic_inc(&nr_namespaces_events);
9383         if (event->attr.task)
9384                 atomic_inc(&nr_task_events);
9385         if (event->attr.freq)
9386                 account_freq_event();
9387         if (event->attr.context_switch) {
9388                 atomic_inc(&nr_switch_events);
9389                 inc = true;
9390         }
9391         if (has_branch_stack(event))
9392                 inc = true;
9393         if (is_cgroup_event(event))
9394                 inc = true;
9395
9396         if (inc) {
9397                 if (atomic_inc_not_zero(&perf_sched_count))
9398                         goto enabled;
9399
9400                 mutex_lock(&perf_sched_mutex);
9401                 if (!atomic_read(&perf_sched_count)) {
9402                         static_branch_enable(&perf_sched_events);
9403                         /*
9404                          * Guarantee that all CPUs observe they key change and
9405                          * call the perf scheduling hooks before proceeding to
9406                          * install events that need them.
9407                          */
9408                         synchronize_sched();
9409                 }
9410                 /*
9411                  * Now that we have waited for the sync_sched(), allow further
9412                  * increments to by-pass the mutex.
9413                  */
9414                 atomic_inc(&perf_sched_count);
9415                 mutex_unlock(&perf_sched_mutex);
9416         }
9417 enabled:
9418
9419         account_event_cpu(event, event->cpu);
9420
9421         account_pmu_sb_event(event);
9422 }
9423
9424 /*
9425  * Allocate and initialize a event structure
9426  */
9427 static struct perf_event *
9428 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9429                  struct task_struct *task,
9430                  struct perf_event *group_leader,
9431                  struct perf_event *parent_event,
9432                  perf_overflow_handler_t overflow_handler,
9433                  void *context, int cgroup_fd)
9434 {
9435         struct pmu *pmu;
9436         struct perf_event *event;
9437         struct hw_perf_event *hwc;
9438         long err = -EINVAL;
9439
9440         if ((unsigned)cpu >= nr_cpu_ids) {
9441                 if (!task || cpu != -1)
9442                         return ERR_PTR(-EINVAL);
9443         }
9444
9445         event = kzalloc(sizeof(*event), GFP_KERNEL);
9446         if (!event)
9447                 return ERR_PTR(-ENOMEM);
9448
9449         /*
9450          * Single events are their own group leaders, with an
9451          * empty sibling list:
9452          */
9453         if (!group_leader)
9454                 group_leader = event;
9455
9456         mutex_init(&event->child_mutex);
9457         INIT_LIST_HEAD(&event->child_list);
9458
9459         INIT_LIST_HEAD(&event->group_entry);
9460         INIT_LIST_HEAD(&event->event_entry);
9461         INIT_LIST_HEAD(&event->sibling_list);
9462         INIT_LIST_HEAD(&event->rb_entry);
9463         INIT_LIST_HEAD(&event->active_entry);
9464         INIT_LIST_HEAD(&event->addr_filters.list);
9465         INIT_HLIST_NODE(&event->hlist_entry);
9466
9467
9468         init_waitqueue_head(&event->waitq);
9469         init_irq_work(&event->pending, perf_pending_event);
9470
9471         mutex_init(&event->mmap_mutex);
9472         raw_spin_lock_init(&event->addr_filters.lock);
9473
9474         atomic_long_set(&event->refcount, 1);
9475         event->cpu              = cpu;
9476         event->attr             = *attr;
9477         event->group_leader     = group_leader;
9478         event->pmu              = NULL;
9479         event->oncpu            = -1;
9480
9481         event->parent           = parent_event;
9482
9483         event->ns               = get_pid_ns(task_active_pid_ns(current));
9484         event->id               = atomic64_inc_return(&perf_event_id);
9485
9486         event->state            = PERF_EVENT_STATE_INACTIVE;
9487
9488         if (task) {
9489                 event->attach_state = PERF_ATTACH_TASK;
9490                 /*
9491                  * XXX pmu::event_init needs to know what task to account to
9492                  * and we cannot use the ctx information because we need the
9493                  * pmu before we get a ctx.
9494                  */
9495                 event->hw.target = task;
9496         }
9497
9498         event->clock = &local_clock;
9499         if (parent_event)
9500                 event->clock = parent_event->clock;
9501
9502         if (!overflow_handler && parent_event) {
9503                 overflow_handler = parent_event->overflow_handler;
9504                 context = parent_event->overflow_handler_context;
9505 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9506                 if (overflow_handler == bpf_overflow_handler) {
9507                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9508
9509                         if (IS_ERR(prog)) {
9510                                 err = PTR_ERR(prog);
9511                                 goto err_ns;
9512                         }
9513                         event->prog = prog;
9514                         event->orig_overflow_handler =
9515                                 parent_event->orig_overflow_handler;
9516                 }
9517 #endif
9518         }
9519
9520         if (overflow_handler) {
9521                 event->overflow_handler = overflow_handler;
9522                 event->overflow_handler_context = context;
9523         } else if (is_write_backward(event)){
9524                 event->overflow_handler = perf_event_output_backward;
9525                 event->overflow_handler_context = NULL;
9526         } else {
9527                 event->overflow_handler = perf_event_output_forward;
9528                 event->overflow_handler_context = NULL;
9529         }
9530
9531         perf_event__state_init(event);
9532
9533         pmu = NULL;
9534
9535         hwc = &event->hw;
9536         hwc->sample_period = attr->sample_period;
9537         if (attr->freq && attr->sample_freq)
9538                 hwc->sample_period = 1;
9539         hwc->last_period = hwc->sample_period;
9540
9541         local64_set(&hwc->period_left, hwc->sample_period);
9542
9543         /*
9544          * We currently do not support PERF_SAMPLE_READ on inherited events.
9545          * See perf_output_read().
9546          */
9547         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9548                 goto err_ns;
9549
9550         if (!has_branch_stack(event))
9551                 event->attr.branch_sample_type = 0;
9552
9553         if (cgroup_fd != -1) {
9554                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9555                 if (err)
9556                         goto err_ns;
9557         }
9558
9559         pmu = perf_init_event(event);
9560         if (IS_ERR(pmu)) {
9561                 err = PTR_ERR(pmu);
9562                 goto err_ns;
9563         }
9564
9565         err = exclusive_event_init(event);
9566         if (err)
9567                 goto err_pmu;
9568
9569         if (has_addr_filter(event)) {
9570                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9571                                                    sizeof(unsigned long),
9572                                                    GFP_KERNEL);
9573                 if (!event->addr_filters_offs) {
9574                         err = -ENOMEM;
9575                         goto err_per_task;
9576                 }
9577
9578                 /* force hw sync on the address filters */
9579                 event->addr_filters_gen = 1;
9580         }
9581
9582         if (!event->parent) {
9583                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9584                         err = get_callchain_buffers(attr->sample_max_stack);
9585                         if (err)
9586                                 goto err_addr_filters;
9587                 }
9588         }
9589
9590         /* symmetric to unaccount_event() in _free_event() */
9591         account_event(event);
9592
9593         return event;
9594
9595 err_addr_filters:
9596         kfree(event->addr_filters_offs);
9597
9598 err_per_task:
9599         exclusive_event_destroy(event);
9600
9601 err_pmu:
9602         if (event->destroy)
9603                 event->destroy(event);
9604         module_put(pmu->module);
9605 err_ns:
9606         if (is_cgroup_event(event))
9607                 perf_detach_cgroup(event);
9608         if (event->ns)
9609                 put_pid_ns(event->ns);
9610         kfree(event);
9611
9612         return ERR_PTR(err);
9613 }
9614
9615 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9616                           struct perf_event_attr *attr)
9617 {
9618         u32 size;
9619         int ret;
9620
9621         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9622                 return -EFAULT;
9623
9624         /*
9625          * zero the full structure, so that a short copy will be nice.
9626          */
9627         memset(attr, 0, sizeof(*attr));
9628
9629         ret = get_user(size, &uattr->size);
9630         if (ret)
9631                 return ret;
9632
9633         if (size > PAGE_SIZE)   /* silly large */
9634                 goto err_size;
9635
9636         if (!size)              /* abi compat */
9637                 size = PERF_ATTR_SIZE_VER0;
9638
9639         if (size < PERF_ATTR_SIZE_VER0)
9640                 goto err_size;
9641
9642         /*
9643          * If we're handed a bigger struct than we know of,
9644          * ensure all the unknown bits are 0 - i.e. new
9645          * user-space does not rely on any kernel feature
9646          * extensions we dont know about yet.
9647          */
9648         if (size > sizeof(*attr)) {
9649                 unsigned char __user *addr;
9650                 unsigned char __user *end;
9651                 unsigned char val;
9652
9653                 addr = (void __user *)uattr + sizeof(*attr);
9654                 end  = (void __user *)uattr + size;
9655
9656                 for (; addr < end; addr++) {
9657                         ret = get_user(val, addr);
9658                         if (ret)
9659                                 return ret;
9660                         if (val)
9661                                 goto err_size;
9662                 }
9663                 size = sizeof(*attr);
9664         }
9665
9666         ret = copy_from_user(attr, uattr, size);
9667         if (ret)
9668                 return -EFAULT;
9669
9670         attr->size = size;
9671
9672         if (attr->__reserved_1)
9673                 return -EINVAL;
9674
9675         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9676                 return -EINVAL;
9677
9678         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9679                 return -EINVAL;
9680
9681         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9682                 u64 mask = attr->branch_sample_type;
9683
9684                 /* only using defined bits */
9685                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9686                         return -EINVAL;
9687
9688                 /* at least one branch bit must be set */
9689                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9690                         return -EINVAL;
9691
9692                 /* propagate priv level, when not set for branch */
9693                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9694
9695                         /* exclude_kernel checked on syscall entry */
9696                         if (!attr->exclude_kernel)
9697                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9698
9699                         if (!attr->exclude_user)
9700                                 mask |= PERF_SAMPLE_BRANCH_USER;
9701
9702                         if (!attr->exclude_hv)
9703                                 mask |= PERF_SAMPLE_BRANCH_HV;
9704                         /*
9705                          * adjust user setting (for HW filter setup)
9706                          */
9707                         attr->branch_sample_type = mask;
9708                 }
9709                 /* privileged levels capture (kernel, hv): check permissions */
9710                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9711                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9712                         return -EACCES;
9713         }
9714
9715         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9716                 ret = perf_reg_validate(attr->sample_regs_user);
9717                 if (ret)
9718                         return ret;
9719         }
9720
9721         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9722                 if (!arch_perf_have_user_stack_dump())
9723                         return -ENOSYS;
9724
9725                 /*
9726                  * We have __u32 type for the size, but so far
9727                  * we can only use __u16 as maximum due to the
9728                  * __u16 sample size limit.
9729                  */
9730                 if (attr->sample_stack_user >= USHRT_MAX)
9731                         ret = -EINVAL;
9732                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9733                         ret = -EINVAL;
9734         }
9735
9736         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9737                 ret = perf_reg_validate(attr->sample_regs_intr);
9738 out:
9739         return ret;
9740
9741 err_size:
9742         put_user(sizeof(*attr), &uattr->size);
9743         ret = -E2BIG;
9744         goto out;
9745 }
9746
9747 static int
9748 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9749 {
9750         struct ring_buffer *rb = NULL;
9751         int ret = -EINVAL;
9752
9753         if (!output_event)
9754                 goto set;
9755
9756         /* don't allow circular references */
9757         if (event == output_event)
9758                 goto out;
9759
9760         /*
9761          * Don't allow cross-cpu buffers
9762          */
9763         if (output_event->cpu != event->cpu)
9764                 goto out;
9765
9766         /*
9767          * If its not a per-cpu rb, it must be the same task.
9768          */
9769         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9770                 goto out;
9771
9772         /*
9773          * Mixing clocks in the same buffer is trouble you don't need.
9774          */
9775         if (output_event->clock != event->clock)
9776                 goto out;
9777
9778         /*
9779          * Either writing ring buffer from beginning or from end.
9780          * Mixing is not allowed.
9781          */
9782         if (is_write_backward(output_event) != is_write_backward(event))
9783                 goto out;
9784
9785         /*
9786          * If both events generate aux data, they must be on the same PMU
9787          */
9788         if (has_aux(event) && has_aux(output_event) &&
9789             event->pmu != output_event->pmu)
9790                 goto out;
9791
9792 set:
9793         mutex_lock(&event->mmap_mutex);
9794         /* Can't redirect output if we've got an active mmap() */
9795         if (atomic_read(&event->mmap_count))
9796                 goto unlock;
9797
9798         if (output_event) {
9799                 /* get the rb we want to redirect to */
9800                 rb = ring_buffer_get(output_event);
9801                 if (!rb)
9802                         goto unlock;
9803         }
9804
9805         ring_buffer_attach(event, rb);
9806
9807         ret = 0;
9808 unlock:
9809         mutex_unlock(&event->mmap_mutex);
9810
9811 out:
9812         return ret;
9813 }
9814
9815 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9816 {
9817         if (b < a)
9818                 swap(a, b);
9819
9820         mutex_lock(a);
9821         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9822 }
9823
9824 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9825 {
9826         bool nmi_safe = false;
9827
9828         switch (clk_id) {
9829         case CLOCK_MONOTONIC:
9830                 event->clock = &ktime_get_mono_fast_ns;
9831                 nmi_safe = true;
9832                 break;
9833
9834         case CLOCK_MONOTONIC_RAW:
9835                 event->clock = &ktime_get_raw_fast_ns;
9836                 nmi_safe = true;
9837                 break;
9838
9839         case CLOCK_REALTIME:
9840                 event->clock = &ktime_get_real_ns;
9841                 break;
9842
9843         case CLOCK_BOOTTIME:
9844                 event->clock = &ktime_get_boot_ns;
9845                 break;
9846
9847         case CLOCK_TAI:
9848                 event->clock = &ktime_get_tai_ns;
9849                 break;
9850
9851         default:
9852                 return -EINVAL;
9853         }
9854
9855         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9856                 return -EINVAL;
9857
9858         return 0;
9859 }
9860
9861 /*
9862  * Variation on perf_event_ctx_lock_nested(), except we take two context
9863  * mutexes.
9864  */
9865 static struct perf_event_context *
9866 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9867                              struct perf_event_context *ctx)
9868 {
9869         struct perf_event_context *gctx;
9870
9871 again:
9872         rcu_read_lock();
9873         gctx = READ_ONCE(group_leader->ctx);
9874         if (!atomic_inc_not_zero(&gctx->refcount)) {
9875                 rcu_read_unlock();
9876                 goto again;
9877         }
9878         rcu_read_unlock();
9879
9880         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9881
9882         if (group_leader->ctx != gctx) {
9883                 mutex_unlock(&ctx->mutex);
9884                 mutex_unlock(&gctx->mutex);
9885                 put_ctx(gctx);
9886                 goto again;
9887         }
9888
9889         return gctx;
9890 }
9891
9892 /**
9893  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9894  *
9895  * @attr_uptr:  event_id type attributes for monitoring/sampling
9896  * @pid:                target pid
9897  * @cpu:                target cpu
9898  * @group_fd:           group leader event fd
9899  */
9900 SYSCALL_DEFINE5(perf_event_open,
9901                 struct perf_event_attr __user *, attr_uptr,
9902                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9903 {
9904         struct perf_event *group_leader = NULL, *output_event = NULL;
9905         struct perf_event *event, *sibling;
9906         struct perf_event_attr attr;
9907         struct perf_event_context *ctx, *uninitialized_var(gctx);
9908         struct file *event_file = NULL;
9909         struct fd group = {NULL, 0};
9910         struct task_struct *task = NULL;
9911         struct pmu *pmu;
9912         int event_fd;
9913         int move_group = 0;
9914         int err;
9915         int f_flags = O_RDWR;
9916         int cgroup_fd = -1;
9917
9918         /* for future expandability... */
9919         if (flags & ~PERF_FLAG_ALL)
9920                 return -EINVAL;
9921
9922         err = perf_copy_attr(attr_uptr, &attr);
9923         if (err)
9924                 return err;
9925
9926         if (!attr.exclude_kernel) {
9927                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9928                         return -EACCES;
9929         }
9930
9931         if (attr.namespaces) {
9932                 if (!capable(CAP_SYS_ADMIN))
9933                         return -EACCES;
9934         }
9935
9936         if (attr.freq) {
9937                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9938                         return -EINVAL;
9939         } else {
9940                 if (attr.sample_period & (1ULL << 63))
9941                         return -EINVAL;
9942         }
9943
9944         /* Only privileged users can get physical addresses */
9945         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9946             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9947                 return -EACCES;
9948
9949         if (!attr.sample_max_stack)
9950                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9951
9952         /*
9953          * In cgroup mode, the pid argument is used to pass the fd
9954          * opened to the cgroup directory in cgroupfs. The cpu argument
9955          * designates the cpu on which to monitor threads from that
9956          * cgroup.
9957          */
9958         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9959                 return -EINVAL;
9960
9961         if (flags & PERF_FLAG_FD_CLOEXEC)
9962                 f_flags |= O_CLOEXEC;
9963
9964         event_fd = get_unused_fd_flags(f_flags);
9965         if (event_fd < 0)
9966                 return event_fd;
9967
9968         if (group_fd != -1) {
9969                 err = perf_fget_light(group_fd, &group);
9970                 if (err)
9971                         goto err_fd;
9972                 group_leader = group.file->private_data;
9973                 if (flags & PERF_FLAG_FD_OUTPUT)
9974                         output_event = group_leader;
9975                 if (flags & PERF_FLAG_FD_NO_GROUP)
9976                         group_leader = NULL;
9977         }
9978
9979         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9980                 task = find_lively_task_by_vpid(pid);
9981                 if (IS_ERR(task)) {
9982                         err = PTR_ERR(task);
9983                         goto err_group_fd;
9984                 }
9985         }
9986
9987         if (task && group_leader &&
9988             group_leader->attr.inherit != attr.inherit) {
9989                 err = -EINVAL;
9990                 goto err_task;
9991         }
9992
9993         if (task) {
9994                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9995                 if (err)
9996                         goto err_task;
9997
9998                 /*
9999                  * Reuse ptrace permission checks for now.
10000                  *
10001                  * We must hold cred_guard_mutex across this and any potential
10002                  * perf_install_in_context() call for this new event to
10003                  * serialize against exec() altering our credentials (and the
10004                  * perf_event_exit_task() that could imply).
10005                  */
10006                 err = -EACCES;
10007                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10008                         goto err_cred;
10009         }
10010
10011         if (flags & PERF_FLAG_PID_CGROUP)
10012                 cgroup_fd = pid;
10013
10014         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10015                                  NULL, NULL, cgroup_fd);
10016         if (IS_ERR(event)) {
10017                 err = PTR_ERR(event);
10018                 goto err_cred;
10019         }
10020
10021         if (is_sampling_event(event)) {
10022                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10023                         err = -EOPNOTSUPP;
10024                         goto err_alloc;
10025                 }
10026         }
10027
10028         /*
10029          * Special case software events and allow them to be part of
10030          * any hardware group.
10031          */
10032         pmu = event->pmu;
10033
10034         if (attr.use_clockid) {
10035                 err = perf_event_set_clock(event, attr.clockid);
10036                 if (err)
10037                         goto err_alloc;
10038         }
10039
10040         if (pmu->task_ctx_nr == perf_sw_context)
10041                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10042
10043         if (group_leader &&
10044             (is_software_event(event) != is_software_event(group_leader))) {
10045                 if (is_software_event(event)) {
10046                         /*
10047                          * If event and group_leader are not both a software
10048                          * event, and event is, then group leader is not.
10049                          *
10050                          * Allow the addition of software events to !software
10051                          * groups, this is safe because software events never
10052                          * fail to schedule.
10053                          */
10054                         pmu = group_leader->pmu;
10055                 } else if (is_software_event(group_leader) &&
10056                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10057                         /*
10058                          * In case the group is a pure software group, and we
10059                          * try to add a hardware event, move the whole group to
10060                          * the hardware context.
10061                          */
10062                         move_group = 1;
10063                 }
10064         }
10065
10066         /*
10067          * Get the target context (task or percpu):
10068          */
10069         ctx = find_get_context(pmu, task, event);
10070         if (IS_ERR(ctx)) {
10071                 err = PTR_ERR(ctx);
10072                 goto err_alloc;
10073         }
10074
10075         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10076                 err = -EBUSY;
10077                 goto err_context;
10078         }
10079
10080         /*
10081          * Look up the group leader (we will attach this event to it):
10082          */
10083         if (group_leader) {
10084                 err = -EINVAL;
10085
10086                 /*
10087                  * Do not allow a recursive hierarchy (this new sibling
10088                  * becoming part of another group-sibling):
10089                  */
10090                 if (group_leader->group_leader != group_leader)
10091                         goto err_context;
10092
10093                 /* All events in a group should have the same clock */
10094                 if (group_leader->clock != event->clock)
10095                         goto err_context;
10096
10097                 /*
10098                  * Make sure we're both events for the same CPU;
10099                  * grouping events for different CPUs is broken; since
10100                  * you can never concurrently schedule them anyhow.
10101                  */
10102                 if (group_leader->cpu != event->cpu)
10103                         goto err_context;
10104
10105                 /*
10106                  * Make sure we're both on the same task, or both
10107                  * per-CPU events.
10108                  */
10109                 if (group_leader->ctx->task != ctx->task)
10110                         goto err_context;
10111
10112                 /*
10113                  * Do not allow to attach to a group in a different task
10114                  * or CPU context. If we're moving SW events, we'll fix
10115                  * this up later, so allow that.
10116                  */
10117                 if (!move_group && group_leader->ctx != ctx)
10118                         goto err_context;
10119
10120                 /*
10121                  * Only a group leader can be exclusive or pinned
10122                  */
10123                 if (attr.exclusive || attr.pinned)
10124                         goto err_context;
10125         }
10126
10127         if (output_event) {
10128                 err = perf_event_set_output(event, output_event);
10129                 if (err)
10130                         goto err_context;
10131         }
10132
10133         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10134                                         f_flags);
10135         if (IS_ERR(event_file)) {
10136                 err = PTR_ERR(event_file);
10137                 event_file = NULL;
10138                 goto err_context;
10139         }
10140
10141         if (move_group) {
10142                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10143
10144                 if (gctx->task == TASK_TOMBSTONE) {
10145                         err = -ESRCH;
10146                         goto err_locked;
10147                 }
10148
10149                 /*
10150                  * Check if we raced against another sys_perf_event_open() call
10151                  * moving the software group underneath us.
10152                  */
10153                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10154                         /*
10155                          * If someone moved the group out from under us, check
10156                          * if this new event wound up on the same ctx, if so
10157                          * its the regular !move_group case, otherwise fail.
10158                          */
10159                         if (gctx != ctx) {
10160                                 err = -EINVAL;
10161                                 goto err_locked;
10162                         } else {
10163                                 perf_event_ctx_unlock(group_leader, gctx);
10164                                 move_group = 0;
10165                         }
10166                 }
10167         } else {
10168                 mutex_lock(&ctx->mutex);
10169         }
10170
10171         if (ctx->task == TASK_TOMBSTONE) {
10172                 err = -ESRCH;
10173                 goto err_locked;
10174         }
10175
10176         if (!perf_event_validate_size(event)) {
10177                 err = -E2BIG;
10178                 goto err_locked;
10179         }
10180
10181         if (!task) {
10182                 /*
10183                  * Check if the @cpu we're creating an event for is online.
10184                  *
10185                  * We use the perf_cpu_context::ctx::mutex to serialize against
10186                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10187                  */
10188                 struct perf_cpu_context *cpuctx =
10189                         container_of(ctx, struct perf_cpu_context, ctx);
10190
10191                 if (!cpuctx->online) {
10192                         err = -ENODEV;
10193                         goto err_locked;
10194                 }
10195         }
10196
10197
10198         /*
10199          * Must be under the same ctx::mutex as perf_install_in_context(),
10200          * because we need to serialize with concurrent event creation.
10201          */
10202         if (!exclusive_event_installable(event, ctx)) {
10203                 /* exclusive and group stuff are assumed mutually exclusive */
10204                 WARN_ON_ONCE(move_group);
10205
10206                 err = -EBUSY;
10207                 goto err_locked;
10208         }
10209
10210         WARN_ON_ONCE(ctx->parent_ctx);
10211
10212         /*
10213          * This is the point on no return; we cannot fail hereafter. This is
10214          * where we start modifying current state.
10215          */
10216
10217         if (move_group) {
10218                 /*
10219                  * See perf_event_ctx_lock() for comments on the details
10220                  * of swizzling perf_event::ctx.
10221                  */
10222                 perf_remove_from_context(group_leader, 0);
10223                 put_ctx(gctx);
10224
10225                 list_for_each_entry(sibling, &group_leader->sibling_list,
10226                                     group_entry) {
10227                         perf_remove_from_context(sibling, 0);
10228                         put_ctx(gctx);
10229                 }
10230
10231                 /*
10232                  * Wait for everybody to stop referencing the events through
10233                  * the old lists, before installing it on new lists.
10234                  */
10235                 synchronize_rcu();
10236
10237                 /*
10238                  * Install the group siblings before the group leader.
10239                  *
10240                  * Because a group leader will try and install the entire group
10241                  * (through the sibling list, which is still in-tact), we can
10242                  * end up with siblings installed in the wrong context.
10243                  *
10244                  * By installing siblings first we NO-OP because they're not
10245                  * reachable through the group lists.
10246                  */
10247                 list_for_each_entry(sibling, &group_leader->sibling_list,
10248                                     group_entry) {
10249                         perf_event__state_init(sibling);
10250                         perf_install_in_context(ctx, sibling, sibling->cpu);
10251                         get_ctx(ctx);
10252                 }
10253
10254                 /*
10255                  * Removing from the context ends up with disabled
10256                  * event. What we want here is event in the initial
10257                  * startup state, ready to be add into new context.
10258                  */
10259                 perf_event__state_init(group_leader);
10260                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10261                 get_ctx(ctx);
10262         }
10263
10264         /*
10265          * Precalculate sample_data sizes; do while holding ctx::mutex such
10266          * that we're serialized against further additions and before
10267          * perf_install_in_context() which is the point the event is active and
10268          * can use these values.
10269          */
10270         perf_event__header_size(event);
10271         perf_event__id_header_size(event);
10272
10273         event->owner = current;
10274
10275         perf_install_in_context(ctx, event, event->cpu);
10276         perf_unpin_context(ctx);
10277
10278         if (move_group)
10279                 perf_event_ctx_unlock(group_leader, gctx);
10280         mutex_unlock(&ctx->mutex);
10281
10282         if (task) {
10283                 mutex_unlock(&task->signal->cred_guard_mutex);
10284                 put_task_struct(task);
10285         }
10286
10287         mutex_lock(&current->perf_event_mutex);
10288         list_add_tail(&event->owner_entry, &current->perf_event_list);
10289         mutex_unlock(&current->perf_event_mutex);
10290
10291         /*
10292          * Drop the reference on the group_event after placing the
10293          * new event on the sibling_list. This ensures destruction
10294          * of the group leader will find the pointer to itself in
10295          * perf_group_detach().
10296          */
10297         fdput(group);
10298         fd_install(event_fd, event_file);
10299         return event_fd;
10300
10301 err_locked:
10302         if (move_group)
10303                 perf_event_ctx_unlock(group_leader, gctx);
10304         mutex_unlock(&ctx->mutex);
10305 /* err_file: */
10306         fput(event_file);
10307 err_context:
10308         perf_unpin_context(ctx);
10309         put_ctx(ctx);
10310 err_alloc:
10311         /*
10312          * If event_file is set, the fput() above will have called ->release()
10313          * and that will take care of freeing the event.
10314          */
10315         if (!event_file)
10316                 free_event(event);
10317 err_cred:
10318         if (task)
10319                 mutex_unlock(&task->signal->cred_guard_mutex);
10320 err_task:
10321         if (task)
10322                 put_task_struct(task);
10323 err_group_fd:
10324         fdput(group);
10325 err_fd:
10326         put_unused_fd(event_fd);
10327         return err;
10328 }
10329
10330 /**
10331  * perf_event_create_kernel_counter
10332  *
10333  * @attr: attributes of the counter to create
10334  * @cpu: cpu in which the counter is bound
10335  * @task: task to profile (NULL for percpu)
10336  */
10337 struct perf_event *
10338 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10339                                  struct task_struct *task,
10340                                  perf_overflow_handler_t overflow_handler,
10341                                  void *context)
10342 {
10343         struct perf_event_context *ctx;
10344         struct perf_event *event;
10345         int err;
10346
10347         /*
10348          * Get the target context (task or percpu):
10349          */
10350
10351         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10352                                  overflow_handler, context, -1);
10353         if (IS_ERR(event)) {
10354                 err = PTR_ERR(event);
10355                 goto err;
10356         }
10357
10358         /* Mark owner so we could distinguish it from user events. */
10359         event->owner = TASK_TOMBSTONE;
10360
10361         ctx = find_get_context(event->pmu, task, event);
10362         if (IS_ERR(ctx)) {
10363                 err = PTR_ERR(ctx);
10364                 goto err_free;
10365         }
10366
10367         WARN_ON_ONCE(ctx->parent_ctx);
10368         mutex_lock(&ctx->mutex);
10369         if (ctx->task == TASK_TOMBSTONE) {
10370                 err = -ESRCH;
10371                 goto err_unlock;
10372         }
10373
10374         if (!task) {
10375                 /*
10376                  * Check if the @cpu we're creating an event for is online.
10377                  *
10378                  * We use the perf_cpu_context::ctx::mutex to serialize against
10379                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10380                  */
10381                 struct perf_cpu_context *cpuctx =
10382                         container_of(ctx, struct perf_cpu_context, ctx);
10383                 if (!cpuctx->online) {
10384                         err = -ENODEV;
10385                         goto err_unlock;
10386                 }
10387         }
10388
10389         if (!exclusive_event_installable(event, ctx)) {
10390                 err = -EBUSY;
10391                 goto err_unlock;
10392         }
10393
10394         perf_install_in_context(ctx, event, cpu);
10395         perf_unpin_context(ctx);
10396         mutex_unlock(&ctx->mutex);
10397
10398         return event;
10399
10400 err_unlock:
10401         mutex_unlock(&ctx->mutex);
10402         perf_unpin_context(ctx);
10403         put_ctx(ctx);
10404 err_free:
10405         free_event(event);
10406 err:
10407         return ERR_PTR(err);
10408 }
10409 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10410
10411 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10412 {
10413         struct perf_event_context *src_ctx;
10414         struct perf_event_context *dst_ctx;
10415         struct perf_event *event, *tmp;
10416         LIST_HEAD(events);
10417
10418         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10419         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10420
10421         /*
10422          * See perf_event_ctx_lock() for comments on the details
10423          * of swizzling perf_event::ctx.
10424          */
10425         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10426         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10427                                  event_entry) {
10428                 perf_remove_from_context(event, 0);
10429                 unaccount_event_cpu(event, src_cpu);
10430                 put_ctx(src_ctx);
10431                 list_add(&event->migrate_entry, &events);
10432         }
10433
10434         /*
10435          * Wait for the events to quiesce before re-instating them.
10436          */
10437         synchronize_rcu();
10438
10439         /*
10440          * Re-instate events in 2 passes.
10441          *
10442          * Skip over group leaders and only install siblings on this first
10443          * pass, siblings will not get enabled without a leader, however a
10444          * leader will enable its siblings, even if those are still on the old
10445          * context.
10446          */
10447         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10448                 if (event->group_leader == event)
10449                         continue;
10450
10451                 list_del(&event->migrate_entry);
10452                 if (event->state >= PERF_EVENT_STATE_OFF)
10453                         event->state = PERF_EVENT_STATE_INACTIVE;
10454                 account_event_cpu(event, dst_cpu);
10455                 perf_install_in_context(dst_ctx, event, dst_cpu);
10456                 get_ctx(dst_ctx);
10457         }
10458
10459         /*
10460          * Once all the siblings are setup properly, install the group leaders
10461          * to make it go.
10462          */
10463         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10464                 list_del(&event->migrate_entry);
10465                 if (event->state >= PERF_EVENT_STATE_OFF)
10466                         event->state = PERF_EVENT_STATE_INACTIVE;
10467                 account_event_cpu(event, dst_cpu);
10468                 perf_install_in_context(dst_ctx, event, dst_cpu);
10469                 get_ctx(dst_ctx);
10470         }
10471         mutex_unlock(&dst_ctx->mutex);
10472         mutex_unlock(&src_ctx->mutex);
10473 }
10474 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10475
10476 static void sync_child_event(struct perf_event *child_event,
10477                                struct task_struct *child)
10478 {
10479         struct perf_event *parent_event = child_event->parent;
10480         u64 child_val;
10481
10482         if (child_event->attr.inherit_stat)
10483                 perf_event_read_event(child_event, child);
10484
10485         child_val = perf_event_count(child_event);
10486
10487         /*
10488          * Add back the child's count to the parent's count:
10489          */
10490         atomic64_add(child_val, &parent_event->child_count);
10491         atomic64_add(child_event->total_time_enabled,
10492                      &parent_event->child_total_time_enabled);
10493         atomic64_add(child_event->total_time_running,
10494                      &parent_event->child_total_time_running);
10495 }
10496
10497 static void
10498 perf_event_exit_event(struct perf_event *child_event,
10499                       struct perf_event_context *child_ctx,
10500                       struct task_struct *child)
10501 {
10502         struct perf_event *parent_event = child_event->parent;
10503
10504         /*
10505          * Do not destroy the 'original' grouping; because of the context
10506          * switch optimization the original events could've ended up in a
10507          * random child task.
10508          *
10509          * If we were to destroy the original group, all group related
10510          * operations would cease to function properly after this random
10511          * child dies.
10512          *
10513          * Do destroy all inherited groups, we don't care about those
10514          * and being thorough is better.
10515          */
10516         raw_spin_lock_irq(&child_ctx->lock);
10517         WARN_ON_ONCE(child_ctx->is_active);
10518
10519         if (parent_event)
10520                 perf_group_detach(child_event);
10521         list_del_event(child_event, child_ctx);
10522         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10523         raw_spin_unlock_irq(&child_ctx->lock);
10524
10525         /*
10526          * Parent events are governed by their filedesc, retain them.
10527          */
10528         if (!parent_event) {
10529                 perf_event_wakeup(child_event);
10530                 return;
10531         }
10532         /*
10533          * Child events can be cleaned up.
10534          */
10535
10536         sync_child_event(child_event, child);
10537
10538         /*
10539          * Remove this event from the parent's list
10540          */
10541         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10542         mutex_lock(&parent_event->child_mutex);
10543         list_del_init(&child_event->child_list);
10544         mutex_unlock(&parent_event->child_mutex);
10545
10546         /*
10547          * Kick perf_poll() for is_event_hup().
10548          */
10549         perf_event_wakeup(parent_event);
10550         free_event(child_event);
10551         put_event(parent_event);
10552 }
10553
10554 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10555 {
10556         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10557         struct perf_event *child_event, *next;
10558
10559         WARN_ON_ONCE(child != current);
10560
10561         child_ctx = perf_pin_task_context(child, ctxn);
10562         if (!child_ctx)
10563                 return;
10564
10565         /*
10566          * In order to reduce the amount of tricky in ctx tear-down, we hold
10567          * ctx::mutex over the entire thing. This serializes against almost
10568          * everything that wants to access the ctx.
10569          *
10570          * The exception is sys_perf_event_open() /
10571          * perf_event_create_kernel_count() which does find_get_context()
10572          * without ctx::mutex (it cannot because of the move_group double mutex
10573          * lock thing). See the comments in perf_install_in_context().
10574          */
10575         mutex_lock(&child_ctx->mutex);
10576
10577         /*
10578          * In a single ctx::lock section, de-schedule the events and detach the
10579          * context from the task such that we cannot ever get it scheduled back
10580          * in.
10581          */
10582         raw_spin_lock_irq(&child_ctx->lock);
10583         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10584
10585         /*
10586          * Now that the context is inactive, destroy the task <-> ctx relation
10587          * and mark the context dead.
10588          */
10589         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10590         put_ctx(child_ctx); /* cannot be last */
10591         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10592         put_task_struct(current); /* cannot be last */
10593
10594         clone_ctx = unclone_ctx(child_ctx);
10595         raw_spin_unlock_irq(&child_ctx->lock);
10596
10597         if (clone_ctx)
10598                 put_ctx(clone_ctx);
10599
10600         /*
10601          * Report the task dead after unscheduling the events so that we
10602          * won't get any samples after PERF_RECORD_EXIT. We can however still
10603          * get a few PERF_RECORD_READ events.
10604          */
10605         perf_event_task(child, child_ctx, 0);
10606
10607         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10608                 perf_event_exit_event(child_event, child_ctx, child);
10609
10610         mutex_unlock(&child_ctx->mutex);
10611
10612         put_ctx(child_ctx);
10613 }
10614
10615 /*
10616  * When a child task exits, feed back event values to parent events.
10617  *
10618  * Can be called with cred_guard_mutex held when called from
10619  * install_exec_creds().
10620  */
10621 void perf_event_exit_task(struct task_struct *child)
10622 {
10623         struct perf_event *event, *tmp;
10624         int ctxn;
10625
10626         mutex_lock(&child->perf_event_mutex);
10627         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10628                                  owner_entry) {
10629                 list_del_init(&event->owner_entry);
10630
10631                 /*
10632                  * Ensure the list deletion is visible before we clear
10633                  * the owner, closes a race against perf_release() where
10634                  * we need to serialize on the owner->perf_event_mutex.
10635                  */
10636                 smp_store_release(&event->owner, NULL);
10637         }
10638         mutex_unlock(&child->perf_event_mutex);
10639
10640         for_each_task_context_nr(ctxn)
10641                 perf_event_exit_task_context(child, ctxn);
10642
10643         /*
10644          * The perf_event_exit_task_context calls perf_event_task
10645          * with child's task_ctx, which generates EXIT events for
10646          * child contexts and sets child->perf_event_ctxp[] to NULL.
10647          * At this point we need to send EXIT events to cpu contexts.
10648          */
10649         perf_event_task(child, NULL, 0);
10650 }
10651
10652 static void perf_free_event(struct perf_event *event,
10653                             struct perf_event_context *ctx)
10654 {
10655         struct perf_event *parent = event->parent;
10656
10657         if (WARN_ON_ONCE(!parent))
10658                 return;
10659
10660         mutex_lock(&parent->child_mutex);
10661         list_del_init(&event->child_list);
10662         mutex_unlock(&parent->child_mutex);
10663
10664         put_event(parent);
10665
10666         raw_spin_lock_irq(&ctx->lock);
10667         perf_group_detach(event);
10668         list_del_event(event, ctx);
10669         raw_spin_unlock_irq(&ctx->lock);
10670         free_event(event);
10671 }
10672
10673 /*
10674  * Free an unexposed, unused context as created by inheritance by
10675  * perf_event_init_task below, used by fork() in case of fail.
10676  *
10677  * Not all locks are strictly required, but take them anyway to be nice and
10678  * help out with the lockdep assertions.
10679  */
10680 void perf_event_free_task(struct task_struct *task)
10681 {
10682         struct perf_event_context *ctx;
10683         struct perf_event *event, *tmp;
10684         int ctxn;
10685
10686         for_each_task_context_nr(ctxn) {
10687                 ctx = task->perf_event_ctxp[ctxn];
10688                 if (!ctx)
10689                         continue;
10690
10691                 mutex_lock(&ctx->mutex);
10692                 raw_spin_lock_irq(&ctx->lock);
10693                 /*
10694                  * Destroy the task <-> ctx relation and mark the context dead.
10695                  *
10696                  * This is important because even though the task hasn't been
10697                  * exposed yet the context has been (through child_list).
10698                  */
10699                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10700                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10701                 put_task_struct(task); /* cannot be last */
10702                 raw_spin_unlock_irq(&ctx->lock);
10703
10704                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10705                         perf_free_event(event, ctx);
10706
10707                 mutex_unlock(&ctx->mutex);
10708                 put_ctx(ctx);
10709         }
10710 }
10711
10712 void perf_event_delayed_put(struct task_struct *task)
10713 {
10714         int ctxn;
10715
10716         for_each_task_context_nr(ctxn)
10717                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10718 }
10719
10720 struct file *perf_event_get(unsigned int fd)
10721 {
10722         struct file *file;
10723
10724         file = fget_raw(fd);
10725         if (!file)
10726                 return ERR_PTR(-EBADF);
10727
10728         if (file->f_op != &perf_fops) {
10729                 fput(file);
10730                 return ERR_PTR(-EBADF);
10731         }
10732
10733         return file;
10734 }
10735
10736 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10737 {
10738         if (!event)
10739                 return ERR_PTR(-EINVAL);
10740
10741         return &event->attr;
10742 }
10743
10744 /*
10745  * Inherit a event from parent task to child task.
10746  *
10747  * Returns:
10748  *  - valid pointer on success
10749  *  - NULL for orphaned events
10750  *  - IS_ERR() on error
10751  */
10752 static struct perf_event *
10753 inherit_event(struct perf_event *parent_event,
10754               struct task_struct *parent,
10755               struct perf_event_context *parent_ctx,
10756               struct task_struct *child,
10757               struct perf_event *group_leader,
10758               struct perf_event_context *child_ctx)
10759 {
10760         enum perf_event_active_state parent_state = parent_event->state;
10761         struct perf_event *child_event;
10762         unsigned long flags;
10763
10764         /*
10765          * Instead of creating recursive hierarchies of events,
10766          * we link inherited events back to the original parent,
10767          * which has a filp for sure, which we use as the reference
10768          * count:
10769          */
10770         if (parent_event->parent)
10771                 parent_event = parent_event->parent;
10772
10773         child_event = perf_event_alloc(&parent_event->attr,
10774                                            parent_event->cpu,
10775                                            child,
10776                                            group_leader, parent_event,
10777                                            NULL, NULL, -1);
10778         if (IS_ERR(child_event))
10779                 return child_event;
10780
10781         /*
10782          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10783          * must be under the same lock in order to serialize against
10784          * perf_event_release_kernel(), such that either we must observe
10785          * is_orphaned_event() or they will observe us on the child_list.
10786          */
10787         mutex_lock(&parent_event->child_mutex);
10788         if (is_orphaned_event(parent_event) ||
10789             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10790                 mutex_unlock(&parent_event->child_mutex);
10791                 free_event(child_event);
10792                 return NULL;
10793         }
10794
10795         get_ctx(child_ctx);
10796
10797         /*
10798          * Make the child state follow the state of the parent event,
10799          * not its attr.disabled bit.  We hold the parent's mutex,
10800          * so we won't race with perf_event_{en, dis}able_family.
10801          */
10802         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10803                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10804         else
10805                 child_event->state = PERF_EVENT_STATE_OFF;
10806
10807         if (parent_event->attr.freq) {
10808                 u64 sample_period = parent_event->hw.sample_period;
10809                 struct hw_perf_event *hwc = &child_event->hw;
10810
10811                 hwc->sample_period = sample_period;
10812                 hwc->last_period   = sample_period;
10813
10814                 local64_set(&hwc->period_left, sample_period);
10815         }
10816
10817         child_event->ctx = child_ctx;
10818         child_event->overflow_handler = parent_event->overflow_handler;
10819         child_event->overflow_handler_context
10820                 = parent_event->overflow_handler_context;
10821
10822         /*
10823          * Precalculate sample_data sizes
10824          */
10825         perf_event__header_size(child_event);
10826         perf_event__id_header_size(child_event);
10827
10828         /*
10829          * Link it up in the child's context:
10830          */
10831         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10832         add_event_to_ctx(child_event, child_ctx);
10833         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10834
10835         /*
10836          * Link this into the parent event's child list
10837          */
10838         list_add_tail(&child_event->child_list, &parent_event->child_list);
10839         mutex_unlock(&parent_event->child_mutex);
10840
10841         return child_event;
10842 }
10843
10844 /*
10845  * Inherits an event group.
10846  *
10847  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10848  * This matches with perf_event_release_kernel() removing all child events.
10849  *
10850  * Returns:
10851  *  - 0 on success
10852  *  - <0 on error
10853  */
10854 static int inherit_group(struct perf_event *parent_event,
10855               struct task_struct *parent,
10856               struct perf_event_context *parent_ctx,
10857               struct task_struct *child,
10858               struct perf_event_context *child_ctx)
10859 {
10860         struct perf_event *leader;
10861         struct perf_event *sub;
10862         struct perf_event *child_ctr;
10863
10864         leader = inherit_event(parent_event, parent, parent_ctx,
10865                                  child, NULL, child_ctx);
10866         if (IS_ERR(leader))
10867                 return PTR_ERR(leader);
10868         /*
10869          * @leader can be NULL here because of is_orphaned_event(). In this
10870          * case inherit_event() will create individual events, similar to what
10871          * perf_group_detach() would do anyway.
10872          */
10873         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10874                 child_ctr = inherit_event(sub, parent, parent_ctx,
10875                                             child, leader, child_ctx);
10876                 if (IS_ERR(child_ctr))
10877                         return PTR_ERR(child_ctr);
10878         }
10879         return 0;
10880 }
10881
10882 /*
10883  * Creates the child task context and tries to inherit the event-group.
10884  *
10885  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10886  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10887  * consistent with perf_event_release_kernel() removing all child events.
10888  *
10889  * Returns:
10890  *  - 0 on success
10891  *  - <0 on error
10892  */
10893 static int
10894 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10895                    struct perf_event_context *parent_ctx,
10896                    struct task_struct *child, int ctxn,
10897                    int *inherited_all)
10898 {
10899         int ret;
10900         struct perf_event_context *child_ctx;
10901
10902         if (!event->attr.inherit) {
10903                 *inherited_all = 0;
10904                 return 0;
10905         }
10906
10907         child_ctx = child->perf_event_ctxp[ctxn];
10908         if (!child_ctx) {
10909                 /*
10910                  * This is executed from the parent task context, so
10911                  * inherit events that have been marked for cloning.
10912                  * First allocate and initialize a context for the
10913                  * child.
10914                  */
10915                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10916                 if (!child_ctx)
10917                         return -ENOMEM;
10918
10919                 child->perf_event_ctxp[ctxn] = child_ctx;
10920         }
10921
10922         ret = inherit_group(event, parent, parent_ctx,
10923                             child, child_ctx);
10924
10925         if (ret)
10926                 *inherited_all = 0;
10927
10928         return ret;
10929 }
10930
10931 /*
10932  * Initialize the perf_event context in task_struct
10933  */
10934 static int perf_event_init_context(struct task_struct *child, int ctxn)
10935 {
10936         struct perf_event_context *child_ctx, *parent_ctx;
10937         struct perf_event_context *cloned_ctx;
10938         struct perf_event *event;
10939         struct task_struct *parent = current;
10940         int inherited_all = 1;
10941         unsigned long flags;
10942         int ret = 0;
10943
10944         if (likely(!parent->perf_event_ctxp[ctxn]))
10945                 return 0;
10946
10947         /*
10948          * If the parent's context is a clone, pin it so it won't get
10949          * swapped under us.
10950          */
10951         parent_ctx = perf_pin_task_context(parent, ctxn);
10952         if (!parent_ctx)
10953                 return 0;
10954
10955         /*
10956          * No need to check if parent_ctx != NULL here; since we saw
10957          * it non-NULL earlier, the only reason for it to become NULL
10958          * is if we exit, and since we're currently in the middle of
10959          * a fork we can't be exiting at the same time.
10960          */
10961
10962         /*
10963          * Lock the parent list. No need to lock the child - not PID
10964          * hashed yet and not running, so nobody can access it.
10965          */
10966         mutex_lock(&parent_ctx->mutex);
10967
10968         /*
10969          * We dont have to disable NMIs - we are only looking at
10970          * the list, not manipulating it:
10971          */
10972         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10973                 ret = inherit_task_group(event, parent, parent_ctx,
10974                                          child, ctxn, &inherited_all);
10975                 if (ret)
10976                         goto out_unlock;
10977         }
10978
10979         /*
10980          * We can't hold ctx->lock when iterating the ->flexible_group list due
10981          * to allocations, but we need to prevent rotation because
10982          * rotate_ctx() will change the list from interrupt context.
10983          */
10984         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10985         parent_ctx->rotate_disable = 1;
10986         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10987
10988         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10989                 ret = inherit_task_group(event, parent, parent_ctx,
10990                                          child, ctxn, &inherited_all);
10991                 if (ret)
10992                         goto out_unlock;
10993         }
10994
10995         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10996         parent_ctx->rotate_disable = 0;
10997
10998         child_ctx = child->perf_event_ctxp[ctxn];
10999
11000         if (child_ctx && inherited_all) {
11001                 /*
11002                  * Mark the child context as a clone of the parent
11003                  * context, or of whatever the parent is a clone of.
11004                  *
11005                  * Note that if the parent is a clone, the holding of
11006                  * parent_ctx->lock avoids it from being uncloned.
11007                  */
11008                 cloned_ctx = parent_ctx->parent_ctx;
11009                 if (cloned_ctx) {
11010                         child_ctx->parent_ctx = cloned_ctx;
11011                         child_ctx->parent_gen = parent_ctx->parent_gen;
11012                 } else {
11013                         child_ctx->parent_ctx = parent_ctx;
11014                         child_ctx->parent_gen = parent_ctx->generation;
11015                 }
11016                 get_ctx(child_ctx->parent_ctx);
11017         }
11018
11019         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11020 out_unlock:
11021         mutex_unlock(&parent_ctx->mutex);
11022
11023         perf_unpin_context(parent_ctx);
11024         put_ctx(parent_ctx);
11025
11026         return ret;
11027 }
11028
11029 /*
11030  * Initialize the perf_event context in task_struct
11031  */
11032 int perf_event_init_task(struct task_struct *child)
11033 {
11034         int ctxn, ret;
11035
11036         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11037         mutex_init(&child->perf_event_mutex);
11038         INIT_LIST_HEAD(&child->perf_event_list);
11039
11040         for_each_task_context_nr(ctxn) {
11041                 ret = perf_event_init_context(child, ctxn);
11042                 if (ret) {
11043                         perf_event_free_task(child);
11044                         return ret;
11045                 }
11046         }
11047
11048         return 0;
11049 }
11050
11051 static void __init perf_event_init_all_cpus(void)
11052 {
11053         struct swevent_htable *swhash;
11054         int cpu;
11055
11056         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11057
11058         for_each_possible_cpu(cpu) {
11059                 swhash = &per_cpu(swevent_htable, cpu);
11060                 mutex_init(&swhash->hlist_mutex);
11061                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11062
11063                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11064                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11065
11066 #ifdef CONFIG_CGROUP_PERF
11067                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11068 #endif
11069                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11070         }
11071 }
11072
11073 void perf_swevent_init_cpu(unsigned int cpu)
11074 {
11075         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11076
11077         mutex_lock(&swhash->hlist_mutex);
11078         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11079                 struct swevent_hlist *hlist;
11080
11081                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11082                 WARN_ON(!hlist);
11083                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11084         }
11085         mutex_unlock(&swhash->hlist_mutex);
11086 }
11087
11088 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11089 static void __perf_event_exit_context(void *__info)
11090 {
11091         struct perf_event_context *ctx = __info;
11092         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11093         struct perf_event *event;
11094
11095         raw_spin_lock(&ctx->lock);
11096         list_for_each_entry(event, &ctx->event_list, event_entry)
11097                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11098         raw_spin_unlock(&ctx->lock);
11099 }
11100
11101 static void perf_event_exit_cpu_context(int cpu)
11102 {
11103         struct perf_cpu_context *cpuctx;
11104         struct perf_event_context *ctx;
11105         struct pmu *pmu;
11106
11107         mutex_lock(&pmus_lock);
11108         list_for_each_entry(pmu, &pmus, entry) {
11109                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11110                 ctx = &cpuctx->ctx;
11111
11112                 mutex_lock(&ctx->mutex);
11113                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11114                 cpuctx->online = 0;
11115                 mutex_unlock(&ctx->mutex);
11116         }
11117         cpumask_clear_cpu(cpu, perf_online_mask);
11118         mutex_unlock(&pmus_lock);
11119 }
11120 #else
11121
11122 static void perf_event_exit_cpu_context(int cpu) { }
11123
11124 #endif
11125
11126 int perf_event_init_cpu(unsigned int cpu)
11127 {
11128         struct perf_cpu_context *cpuctx;
11129         struct perf_event_context *ctx;
11130         struct pmu *pmu;
11131
11132         perf_swevent_init_cpu(cpu);
11133
11134         mutex_lock(&pmus_lock);
11135         cpumask_set_cpu(cpu, perf_online_mask);
11136         list_for_each_entry(pmu, &pmus, entry) {
11137                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11138                 ctx = &cpuctx->ctx;
11139
11140                 mutex_lock(&ctx->mutex);
11141                 cpuctx->online = 1;
11142                 mutex_unlock(&ctx->mutex);
11143         }
11144         mutex_unlock(&pmus_lock);
11145
11146         return 0;
11147 }
11148
11149 int perf_event_exit_cpu(unsigned int cpu)
11150 {
11151         perf_event_exit_cpu_context(cpu);
11152         return 0;
11153 }
11154
11155 static int
11156 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11157 {
11158         int cpu;
11159
11160         for_each_online_cpu(cpu)
11161                 perf_event_exit_cpu(cpu);
11162
11163         return NOTIFY_OK;
11164 }
11165
11166 /*
11167  * Run the perf reboot notifier at the very last possible moment so that
11168  * the generic watchdog code runs as long as possible.
11169  */
11170 static struct notifier_block perf_reboot_notifier = {
11171         .notifier_call = perf_reboot,
11172         .priority = INT_MIN,
11173 };
11174
11175 void __init perf_event_init(void)
11176 {
11177         int ret;
11178
11179         idr_init(&pmu_idr);
11180
11181         perf_event_init_all_cpus();
11182         init_srcu_struct(&pmus_srcu);
11183         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11184         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11185         perf_pmu_register(&perf_task_clock, NULL, -1);
11186         perf_tp_register();
11187         perf_event_init_cpu(smp_processor_id());
11188         register_reboot_notifier(&perf_reboot_notifier);
11189
11190         ret = init_hw_breakpoint();
11191         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11192
11193         /*
11194          * Build time assertion that we keep the data_head at the intended
11195          * location.  IOW, validation we got the __reserved[] size right.
11196          */
11197         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11198                      != 1024);
11199 }
11200
11201 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11202                               char *page)
11203 {
11204         struct perf_pmu_events_attr *pmu_attr =
11205                 container_of(attr, struct perf_pmu_events_attr, attr);
11206
11207         if (pmu_attr->event_str)
11208                 return sprintf(page, "%s\n", pmu_attr->event_str);
11209
11210         return 0;
11211 }
11212 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11213
11214 static int __init perf_event_sysfs_init(void)
11215 {
11216         struct pmu *pmu;
11217         int ret;
11218
11219         mutex_lock(&pmus_lock);
11220
11221         ret = bus_register(&pmu_bus);
11222         if (ret)
11223                 goto unlock;
11224
11225         list_for_each_entry(pmu, &pmus, entry) {
11226                 if (!pmu->name || pmu->type < 0)
11227                         continue;
11228
11229                 ret = pmu_dev_alloc(pmu);
11230                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11231         }
11232         pmu_bus_running = 1;
11233         ret = 0;
11234
11235 unlock:
11236         mutex_unlock(&pmus_lock);
11237
11238         return ret;
11239 }
11240 device_initcall(perf_event_sysfs_init);
11241
11242 #ifdef CONFIG_CGROUP_PERF
11243 static struct cgroup_subsys_state *
11244 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11245 {
11246         struct perf_cgroup *jc;
11247
11248         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11249         if (!jc)
11250                 return ERR_PTR(-ENOMEM);
11251
11252         jc->info = alloc_percpu(struct perf_cgroup_info);
11253         if (!jc->info) {
11254                 kfree(jc);
11255                 return ERR_PTR(-ENOMEM);
11256         }
11257
11258         return &jc->css;
11259 }
11260
11261 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11262 {
11263         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11264
11265         free_percpu(jc->info);
11266         kfree(jc);
11267 }
11268
11269 static int __perf_cgroup_move(void *info)
11270 {
11271         struct task_struct *task = info;
11272         rcu_read_lock();
11273         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11274         rcu_read_unlock();
11275         return 0;
11276 }
11277
11278 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11279 {
11280         struct task_struct *task;
11281         struct cgroup_subsys_state *css;
11282
11283         cgroup_taskset_for_each(task, css, tset)
11284                 task_function_call(task, __perf_cgroup_move, task);
11285 }
11286
11287 struct cgroup_subsys perf_event_cgrp_subsys = {
11288         .css_alloc      = perf_cgroup_css_alloc,
11289         .css_free       = perf_cgroup_css_free,
11290         .attach         = perf_cgroup_attach,
11291         /*
11292          * Implicitly enable on dfl hierarchy so that perf events can
11293          * always be filtered by cgroup2 path as long as perf_event
11294          * controller is not mounted on a legacy hierarchy.
11295          */
11296         .implicit_on_dfl = true,
11297         .threaded       = true,
11298 };
11299 #endif /* CONFIG_CGROUP_PERF */