perf/core: Mark expected switch fall-through
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892         struct perf_event *sibling, *tmp;
1893         struct perf_event_context *ctx = event->ctx;
1894
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_GROUP))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905         /*
1906          * If this is a sibling, remove it from its group.
1907          */
1908         if (event->group_leader != event) {
1909                 list_del_init(&event->sibling_list);
1910                 event->group_leader->nr_siblings--;
1911                 goto out;
1912         }
1913
1914         /*
1915          * If this was a group event with sibling events then
1916          * upgrade the siblings to singleton events by adding them
1917          * to whatever list we are on.
1918          */
1919         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921                 sibling->group_leader = sibling;
1922                 list_del_init(&sibling->sibling_list);
1923
1924                 /* Inherit group flags from the previous leader */
1925                 sibling->group_caps = event->group_caps;
1926
1927                 if (!RB_EMPTY_NODE(&event->group_node)) {
1928                         add_event_to_groups(sibling, event->ctx);
1929
1930                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931                                 struct list_head *list = sibling->attr.pinned ?
1932                                         &ctx->pinned_active : &ctx->flexible_active;
1933
1934                                 list_add_tail(&sibling->active_list, list);
1935                         }
1936                 }
1937
1938                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939         }
1940
1941 out:
1942         perf_event__header_size(event->group_leader);
1943
1944         for_each_sibling_event(tmp, event->group_leader)
1945                 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950         return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955         struct pmu *pmu = event->pmu;
1956         return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967         struct perf_event *sibling;
1968
1969         if (!__pmu_filter_match(event))
1970                 return 0;
1971
1972         for_each_sibling_event(sibling, event) {
1973                 if (!__pmu_filter_match(sibling))
1974                         return 0;
1975         }
1976
1977         return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984                perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989                   struct perf_cpu_context *cpuctx,
1990                   struct perf_event_context *ctx)
1991 {
1992         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         if (event->state != PERF_EVENT_STATE_ACTIVE)
1998                 return;
1999
2000         /*
2001          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002          * we can schedule events _OUT_ individually through things like
2003          * __perf_remove_from_context().
2004          */
2005         list_del_init(&event->active_list);
2006
2007         perf_pmu_disable(event->pmu);
2008
2009         event->pmu->del(event, 0);
2010         event->oncpu = -1;
2011
2012         if (event->pending_disable) {
2013                 event->pending_disable = 0;
2014                 state = PERF_EVENT_STATE_OFF;
2015         }
2016         perf_event_set_state(event, state);
2017
2018         if (!is_software_event(event))
2019                 cpuctx->active_oncpu--;
2020         if (!--ctx->nr_active)
2021                 perf_event_ctx_deactivate(ctx);
2022         if (event->attr.freq && event->attr.sample_freq)
2023                 ctx->nr_freq--;
2024         if (event->attr.exclusive || !cpuctx->active_oncpu)
2025                 cpuctx->exclusive = 0;
2026
2027         perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032                 struct perf_cpu_context *cpuctx,
2033                 struct perf_event_context *ctx)
2034 {
2035         struct perf_event *event;
2036
2037         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         perf_pmu_disable(ctx->pmu);
2041
2042         event_sched_out(group_event, cpuctx, ctx);
2043
2044         /*
2045          * Schedule out siblings (if any):
2046          */
2047         for_each_sibling_event(event, group_event)
2048                 event_sched_out(event, cpuctx, ctx);
2049
2050         perf_pmu_enable(ctx->pmu);
2051
2052         if (group_event->attr.exclusive)
2053                 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP    0x01UL
2057
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066                            struct perf_cpu_context *cpuctx,
2067                            struct perf_event_context *ctx,
2068                            void *info)
2069 {
2070         unsigned long flags = (unsigned long)info;
2071
2072         if (ctx->is_active & EVENT_TIME) {
2073                 update_context_time(ctx);
2074                 update_cgrp_time_from_cpuctx(cpuctx);
2075         }
2076
2077         event_sched_out(event, cpuctx, ctx);
2078         if (flags & DETACH_GROUP)
2079                 perf_group_detach(event);
2080         list_del_event(event, ctx);
2081
2082         if (!ctx->nr_events && ctx->is_active) {
2083                 ctx->is_active = 0;
2084                 if (ctx->task) {
2085                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086                         cpuctx->task_ctx = NULL;
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104
2105         lockdep_assert_held(&ctx->mutex);
2106
2107         event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109         /*
2110          * The above event_function_call() can NO-OP when it hits
2111          * TASK_TOMBSTONE. In that case we must already have been detached
2112          * from the context (by perf_event_exit_event()) but the grouping
2113          * might still be in-tact.
2114          */
2115         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116         if ((flags & DETACH_GROUP) &&
2117             (event->attach_state & PERF_ATTACH_GROUP)) {
2118                 /*
2119                  * Since in that case we cannot possibly be scheduled, simply
2120                  * detach now.
2121                  */
2122                 raw_spin_lock_irq(&ctx->lock);
2123                 perf_group_detach(event);
2124                 raw_spin_unlock_irq(&ctx->lock);
2125         }
2126 }
2127
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132                                  struct perf_cpu_context *cpuctx,
2133                                  struct perf_event_context *ctx,
2134                                  void *info)
2135 {
2136         if (event->state < PERF_EVENT_STATE_INACTIVE)
2137                 return;
2138
2139         if (ctx->is_active & EVENT_TIME) {
2140                 update_context_time(ctx);
2141                 update_cgrp_time_from_event(event);
2142         }
2143
2144         if (event == event->group_leader)
2145                 group_sched_out(event, cpuctx, ctx);
2146         else
2147                 event_sched_out(event, cpuctx, ctx);
2148
2149         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168         struct perf_event_context *ctx = event->ctx;
2169
2170         raw_spin_lock_irq(&ctx->lock);
2171         if (event->state <= PERF_EVENT_STATE_OFF) {
2172                 raw_spin_unlock_irq(&ctx->lock);
2173                 return;
2174         }
2175         raw_spin_unlock_irq(&ctx->lock);
2176
2177         event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182         event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191         struct perf_event_context *ctx;
2192
2193         ctx = perf_event_ctx_lock(event);
2194         _perf_event_disable(event);
2195         perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201         event->pending_disable = 1;
2202         irq_work_queue(&event->pending);
2203 }
2204
2205 static void perf_set_shadow_time(struct perf_event *event,
2206                                  struct perf_event_context *ctx)
2207 {
2208         /*
2209          * use the correct time source for the time snapshot
2210          *
2211          * We could get by without this by leveraging the
2212          * fact that to get to this function, the caller
2213          * has most likely already called update_context_time()
2214          * and update_cgrp_time_xx() and thus both timestamp
2215          * are identical (or very close). Given that tstamp is,
2216          * already adjusted for cgroup, we could say that:
2217          *    tstamp - ctx->timestamp
2218          * is equivalent to
2219          *    tstamp - cgrp->timestamp.
2220          *
2221          * Then, in perf_output_read(), the calculation would
2222          * work with no changes because:
2223          * - event is guaranteed scheduled in
2224          * - no scheduled out in between
2225          * - thus the timestamp would be the same
2226          *
2227          * But this is a bit hairy.
2228          *
2229          * So instead, we have an explicit cgroup call to remain
2230          * within the time time source all along. We believe it
2231          * is cleaner and simpler to understand.
2232          */
2233         if (is_cgroup_event(event))
2234                 perf_cgroup_set_shadow_time(event, event->tstamp);
2235         else
2236                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2237 }
2238
2239 #define MAX_INTERRUPTS (~0ULL)
2240
2241 static void perf_log_throttle(struct perf_event *event, int enable);
2242 static void perf_log_itrace_start(struct perf_event *event);
2243
2244 static int
2245 event_sched_in(struct perf_event *event,
2246                  struct perf_cpu_context *cpuctx,
2247                  struct perf_event_context *ctx)
2248 {
2249         int ret = 0;
2250
2251         lockdep_assert_held(&ctx->lock);
2252
2253         if (event->state <= PERF_EVENT_STATE_OFF)
2254                 return 0;
2255
2256         WRITE_ONCE(event->oncpu, smp_processor_id());
2257         /*
2258          * Order event::oncpu write to happen before the ACTIVE state is
2259          * visible. This allows perf_event_{stop,read}() to observe the correct
2260          * ->oncpu if it sees ACTIVE.
2261          */
2262         smp_wmb();
2263         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2264
2265         /*
2266          * Unthrottle events, since we scheduled we might have missed several
2267          * ticks already, also for a heavily scheduling task there is little
2268          * guarantee it'll get a tick in a timely manner.
2269          */
2270         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2271                 perf_log_throttle(event, 1);
2272                 event->hw.interrupts = 0;
2273         }
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         perf_set_shadow_time(event, ctx);
2278
2279         perf_log_itrace_start(event);
2280
2281         if (event->pmu->add(event, PERF_EF_START)) {
2282                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2283                 event->oncpu = -1;
2284                 ret = -EAGAIN;
2285                 goto out;
2286         }
2287
2288         if (!is_software_event(event))
2289                 cpuctx->active_oncpu++;
2290         if (!ctx->nr_active++)
2291                 perf_event_ctx_activate(ctx);
2292         if (event->attr.freq && event->attr.sample_freq)
2293                 ctx->nr_freq++;
2294
2295         if (event->attr.exclusive)
2296                 cpuctx->exclusive = 1;
2297
2298 out:
2299         perf_pmu_enable(event->pmu);
2300
2301         return ret;
2302 }
2303
2304 static int
2305 group_sched_in(struct perf_event *group_event,
2306                struct perf_cpu_context *cpuctx,
2307                struct perf_event_context *ctx)
2308 {
2309         struct perf_event *event, *partial_group = NULL;
2310         struct pmu *pmu = ctx->pmu;
2311
2312         if (group_event->state == PERF_EVENT_STATE_OFF)
2313                 return 0;
2314
2315         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2316
2317         if (event_sched_in(group_event, cpuctx, ctx)) {
2318                 pmu->cancel_txn(pmu);
2319                 perf_mux_hrtimer_restart(cpuctx);
2320                 return -EAGAIN;
2321         }
2322
2323         /*
2324          * Schedule in siblings as one group (if any):
2325          */
2326         for_each_sibling_event(event, group_event) {
2327                 if (event_sched_in(event, cpuctx, ctx)) {
2328                         partial_group = event;
2329                         goto group_error;
2330                 }
2331         }
2332
2333         if (!pmu->commit_txn(pmu))
2334                 return 0;
2335
2336 group_error:
2337         /*
2338          * Groups can be scheduled in as one unit only, so undo any
2339          * partial group before returning:
2340          * The events up to the failed event are scheduled out normally.
2341          */
2342         for_each_sibling_event(event, group_event) {
2343                 if (event == partial_group)
2344                         break;
2345
2346                 event_sched_out(event, cpuctx, ctx);
2347         }
2348         event_sched_out(group_event, cpuctx, ctx);
2349
2350         pmu->cancel_txn(pmu);
2351
2352         perf_mux_hrtimer_restart(cpuctx);
2353
2354         return -EAGAIN;
2355 }
2356
2357 /*
2358  * Work out whether we can put this event group on the CPU now.
2359  */
2360 static int group_can_go_on(struct perf_event *event,
2361                            struct perf_cpu_context *cpuctx,
2362                            int can_add_hw)
2363 {
2364         /*
2365          * Groups consisting entirely of software events can always go on.
2366          */
2367         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2368                 return 1;
2369         /*
2370          * If an exclusive group is already on, no other hardware
2371          * events can go on.
2372          */
2373         if (cpuctx->exclusive)
2374                 return 0;
2375         /*
2376          * If this group is exclusive and there are already
2377          * events on the CPU, it can't go on.
2378          */
2379         if (event->attr.exclusive && cpuctx->active_oncpu)
2380                 return 0;
2381         /*
2382          * Otherwise, try to add it if all previous groups were able
2383          * to go on.
2384          */
2385         return can_add_hw;
2386 }
2387
2388 static void add_event_to_ctx(struct perf_event *event,
2389                                struct perf_event_context *ctx)
2390 {
2391         list_add_event(event, ctx);
2392         perf_group_attach(event);
2393 }
2394
2395 static void ctx_sched_out(struct perf_event_context *ctx,
2396                           struct perf_cpu_context *cpuctx,
2397                           enum event_type_t event_type);
2398 static void
2399 ctx_sched_in(struct perf_event_context *ctx,
2400              struct perf_cpu_context *cpuctx,
2401              enum event_type_t event_type,
2402              struct task_struct *task);
2403
2404 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2405                                struct perf_event_context *ctx,
2406                                enum event_type_t event_type)
2407 {
2408         if (!cpuctx->task_ctx)
2409                 return;
2410
2411         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412                 return;
2413
2414         ctx_sched_out(ctx, cpuctx, event_type);
2415 }
2416
2417 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2418                                 struct perf_event_context *ctx,
2419                                 struct task_struct *task)
2420 {
2421         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2422         if (ctx)
2423                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2424         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2425         if (ctx)
2426                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2427 }
2428
2429 /*
2430  * We want to maintain the following priority of scheduling:
2431  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432  *  - task pinned (EVENT_PINNED)
2433  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434  *  - task flexible (EVENT_FLEXIBLE).
2435  *
2436  * In order to avoid unscheduling and scheduling back in everything every
2437  * time an event is added, only do it for the groups of equal priority and
2438  * below.
2439  *
2440  * This can be called after a batch operation on task events, in which case
2441  * event_type is a bit mask of the types of events involved. For CPU events,
2442  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2443  */
2444 static void ctx_resched(struct perf_cpu_context *cpuctx,
2445                         struct perf_event_context *task_ctx,
2446                         enum event_type_t event_type)
2447 {
2448         enum event_type_t ctx_event_type;
2449         bool cpu_event = !!(event_type & EVENT_CPU);
2450
2451         /*
2452          * If pinned groups are involved, flexible groups also need to be
2453          * scheduled out.
2454          */
2455         if (event_type & EVENT_PINNED)
2456                 event_type |= EVENT_FLEXIBLE;
2457
2458         ctx_event_type = event_type & EVENT_ALL;
2459
2460         perf_pmu_disable(cpuctx->ctx.pmu);
2461         if (task_ctx)
2462                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463
2464         /*
2465          * Decide which cpu ctx groups to schedule out based on the types
2466          * of events that caused rescheduling:
2467          *  - EVENT_CPU: schedule out corresponding groups;
2468          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469          *  - otherwise, do nothing more.
2470          */
2471         if (cpu_event)
2472                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2473         else if (ctx_event_type & EVENT_PINNED)
2474                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2475
2476         perf_event_sched_in(cpuctx, task_ctx, current);
2477         perf_pmu_enable(cpuctx->ctx.pmu);
2478 }
2479
2480 /*
2481  * Cross CPU call to install and enable a performance event
2482  *
2483  * Very similar to remote_function() + event_function() but cannot assume that
2484  * things like ctx->is_active and cpuctx->task_ctx are set.
2485  */
2486 static int  __perf_install_in_context(void *info)
2487 {
2488         struct perf_event *event = info;
2489         struct perf_event_context *ctx = event->ctx;
2490         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2491         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2492         bool reprogram = true;
2493         int ret = 0;
2494
2495         raw_spin_lock(&cpuctx->ctx.lock);
2496         if (ctx->task) {
2497                 raw_spin_lock(&ctx->lock);
2498                 task_ctx = ctx;
2499
2500                 reprogram = (ctx->task == current);
2501
2502                 /*
2503                  * If the task is running, it must be running on this CPU,
2504                  * otherwise we cannot reprogram things.
2505                  *
2506                  * If its not running, we don't care, ctx->lock will
2507                  * serialize against it becoming runnable.
2508                  */
2509                 if (task_curr(ctx->task) && !reprogram) {
2510                         ret = -ESRCH;
2511                         goto unlock;
2512                 }
2513
2514                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2515         } else if (task_ctx) {
2516                 raw_spin_lock(&task_ctx->lock);
2517         }
2518
2519 #ifdef CONFIG_CGROUP_PERF
2520         if (is_cgroup_event(event)) {
2521                 /*
2522                  * If the current cgroup doesn't match the event's
2523                  * cgroup, we should not try to schedule it.
2524                  */
2525                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2526                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2527                                         event->cgrp->css.cgroup);
2528         }
2529 #endif
2530
2531         if (reprogram) {
2532                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2533                 add_event_to_ctx(event, ctx);
2534                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2535         } else {
2536                 add_event_to_ctx(event, ctx);
2537         }
2538
2539 unlock:
2540         perf_ctx_unlock(cpuctx, task_ctx);
2541
2542         return ret;
2543 }
2544
2545 /*
2546  * Attach a performance event to a context.
2547  *
2548  * Very similar to event_function_call, see comment there.
2549  */
2550 static void
2551 perf_install_in_context(struct perf_event_context *ctx,
2552                         struct perf_event *event,
2553                         int cpu)
2554 {
2555         struct task_struct *task = READ_ONCE(ctx->task);
2556
2557         lockdep_assert_held(&ctx->mutex);
2558
2559         if (event->cpu != -1)
2560                 event->cpu = cpu;
2561
2562         /*
2563          * Ensures that if we can observe event->ctx, both the event and ctx
2564          * will be 'complete'. See perf_iterate_sb_cpu().
2565          */
2566         smp_store_release(&event->ctx, ctx);
2567
2568         if (!task) {
2569                 cpu_function_call(cpu, __perf_install_in_context, event);
2570                 return;
2571         }
2572
2573         /*
2574          * Should not happen, we validate the ctx is still alive before calling.
2575          */
2576         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2577                 return;
2578
2579         /*
2580          * Installing events is tricky because we cannot rely on ctx->is_active
2581          * to be set in case this is the nr_events 0 -> 1 transition.
2582          *
2583          * Instead we use task_curr(), which tells us if the task is running.
2584          * However, since we use task_curr() outside of rq::lock, we can race
2585          * against the actual state. This means the result can be wrong.
2586          *
2587          * If we get a false positive, we retry, this is harmless.
2588          *
2589          * If we get a false negative, things are complicated. If we are after
2590          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2591          * value must be correct. If we're before, it doesn't matter since
2592          * perf_event_context_sched_in() will program the counter.
2593          *
2594          * However, this hinges on the remote context switch having observed
2595          * our task->perf_event_ctxp[] store, such that it will in fact take
2596          * ctx::lock in perf_event_context_sched_in().
2597          *
2598          * We do this by task_function_call(), if the IPI fails to hit the task
2599          * we know any future context switch of task must see the
2600          * perf_event_ctpx[] store.
2601          */
2602
2603         /*
2604          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2605          * task_cpu() load, such that if the IPI then does not find the task
2606          * running, a future context switch of that task must observe the
2607          * store.
2608          */
2609         smp_mb();
2610 again:
2611         if (!task_function_call(task, __perf_install_in_context, event))
2612                 return;
2613
2614         raw_spin_lock_irq(&ctx->lock);
2615         task = ctx->task;
2616         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2617                 /*
2618                  * Cannot happen because we already checked above (which also
2619                  * cannot happen), and we hold ctx->mutex, which serializes us
2620                  * against perf_event_exit_task_context().
2621                  */
2622                 raw_spin_unlock_irq(&ctx->lock);
2623                 return;
2624         }
2625         /*
2626          * If the task is not running, ctx->lock will avoid it becoming so,
2627          * thus we can safely install the event.
2628          */
2629         if (task_curr(task)) {
2630                 raw_spin_unlock_irq(&ctx->lock);
2631                 goto again;
2632         }
2633         add_event_to_ctx(event, ctx);
2634         raw_spin_unlock_irq(&ctx->lock);
2635 }
2636
2637 /*
2638  * Cross CPU call to enable a performance event
2639  */
2640 static void __perf_event_enable(struct perf_event *event,
2641                                 struct perf_cpu_context *cpuctx,
2642                                 struct perf_event_context *ctx,
2643                                 void *info)
2644 {
2645         struct perf_event *leader = event->group_leader;
2646         struct perf_event_context *task_ctx;
2647
2648         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2649             event->state <= PERF_EVENT_STATE_ERROR)
2650                 return;
2651
2652         if (ctx->is_active)
2653                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2654
2655         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2656
2657         if (!ctx->is_active)
2658                 return;
2659
2660         if (!event_filter_match(event)) {
2661                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2662                 return;
2663         }
2664
2665         /*
2666          * If the event is in a group and isn't the group leader,
2667          * then don't put it on unless the group is on.
2668          */
2669         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2670                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2671                 return;
2672         }
2673
2674         task_ctx = cpuctx->task_ctx;
2675         if (ctx->task)
2676                 WARN_ON_ONCE(task_ctx != ctx);
2677
2678         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2679 }
2680
2681 /*
2682  * Enable an event.
2683  *
2684  * If event->ctx is a cloned context, callers must make sure that
2685  * every task struct that event->ctx->task could possibly point to
2686  * remains valid.  This condition is satisfied when called through
2687  * perf_event_for_each_child or perf_event_for_each as described
2688  * for perf_event_disable.
2689  */
2690 static void _perf_event_enable(struct perf_event *event)
2691 {
2692         struct perf_event_context *ctx = event->ctx;
2693
2694         raw_spin_lock_irq(&ctx->lock);
2695         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2696             event->state <  PERF_EVENT_STATE_ERROR) {
2697                 raw_spin_unlock_irq(&ctx->lock);
2698                 return;
2699         }
2700
2701         /*
2702          * If the event is in error state, clear that first.
2703          *
2704          * That way, if we see the event in error state below, we know that it
2705          * has gone back into error state, as distinct from the task having
2706          * been scheduled away before the cross-call arrived.
2707          */
2708         if (event->state == PERF_EVENT_STATE_ERROR)
2709                 event->state = PERF_EVENT_STATE_OFF;
2710         raw_spin_unlock_irq(&ctx->lock);
2711
2712         event_function_call(event, __perf_event_enable, NULL);
2713 }
2714
2715 /*
2716  * See perf_event_disable();
2717  */
2718 void perf_event_enable(struct perf_event *event)
2719 {
2720         struct perf_event_context *ctx;
2721
2722         ctx = perf_event_ctx_lock(event);
2723         _perf_event_enable(event);
2724         perf_event_ctx_unlock(event, ctx);
2725 }
2726 EXPORT_SYMBOL_GPL(perf_event_enable);
2727
2728 struct stop_event_data {
2729         struct perf_event       *event;
2730         unsigned int            restart;
2731 };
2732
2733 static int __perf_event_stop(void *info)
2734 {
2735         struct stop_event_data *sd = info;
2736         struct perf_event *event = sd->event;
2737
2738         /* if it's already INACTIVE, do nothing */
2739         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2740                 return 0;
2741
2742         /* matches smp_wmb() in event_sched_in() */
2743         smp_rmb();
2744
2745         /*
2746          * There is a window with interrupts enabled before we get here,
2747          * so we need to check again lest we try to stop another CPU's event.
2748          */
2749         if (READ_ONCE(event->oncpu) != smp_processor_id())
2750                 return -EAGAIN;
2751
2752         event->pmu->stop(event, PERF_EF_UPDATE);
2753
2754         /*
2755          * May race with the actual stop (through perf_pmu_output_stop()),
2756          * but it is only used for events with AUX ring buffer, and such
2757          * events will refuse to restart because of rb::aux_mmap_count==0,
2758          * see comments in perf_aux_output_begin().
2759          *
2760          * Since this is happening on an event-local CPU, no trace is lost
2761          * while restarting.
2762          */
2763         if (sd->restart)
2764                 event->pmu->start(event, 0);
2765
2766         return 0;
2767 }
2768
2769 static int perf_event_stop(struct perf_event *event, int restart)
2770 {
2771         struct stop_event_data sd = {
2772                 .event          = event,
2773                 .restart        = restart,
2774         };
2775         int ret = 0;
2776
2777         do {
2778                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2779                         return 0;
2780
2781                 /* matches smp_wmb() in event_sched_in() */
2782                 smp_rmb();
2783
2784                 /*
2785                  * We only want to restart ACTIVE events, so if the event goes
2786                  * inactive here (event->oncpu==-1), there's nothing more to do;
2787                  * fall through with ret==-ENXIO.
2788                  */
2789                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2790                                         __perf_event_stop, &sd);
2791         } while (ret == -EAGAIN);
2792
2793         return ret;
2794 }
2795
2796 /*
2797  * In order to contain the amount of racy and tricky in the address filter
2798  * configuration management, it is a two part process:
2799  *
2800  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2801  *      we update the addresses of corresponding vmas in
2802  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2803  * (p2) when an event is scheduled in (pmu::add), it calls
2804  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2805  *      if the generation has changed since the previous call.
2806  *
2807  * If (p1) happens while the event is active, we restart it to force (p2).
2808  *
2809  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2810  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2811  *     ioctl;
2812  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2813  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2814  *     for reading;
2815  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816  *     of exec.
2817  */
2818 void perf_event_addr_filters_sync(struct perf_event *event)
2819 {
2820         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2821
2822         if (!has_addr_filter(event))
2823                 return;
2824
2825         raw_spin_lock(&ifh->lock);
2826         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2827                 event->pmu->addr_filters_sync(event);
2828                 event->hw.addr_filters_gen = event->addr_filters_gen;
2829         }
2830         raw_spin_unlock(&ifh->lock);
2831 }
2832 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2833
2834 static int _perf_event_refresh(struct perf_event *event, int refresh)
2835 {
2836         /*
2837          * not supported on inherited events
2838          */
2839         if (event->attr.inherit || !is_sampling_event(event))
2840                 return -EINVAL;
2841
2842         atomic_add(refresh, &event->event_limit);
2843         _perf_event_enable(event);
2844
2845         return 0;
2846 }
2847
2848 /*
2849  * See perf_event_disable()
2850  */
2851 int perf_event_refresh(struct perf_event *event, int refresh)
2852 {
2853         struct perf_event_context *ctx;
2854         int ret;
2855
2856         ctx = perf_event_ctx_lock(event);
2857         ret = _perf_event_refresh(event, refresh);
2858         perf_event_ctx_unlock(event, ctx);
2859
2860         return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(perf_event_refresh);
2863
2864 static int perf_event_modify_breakpoint(struct perf_event *bp,
2865                                          struct perf_event_attr *attr)
2866 {
2867         int err;
2868
2869         _perf_event_disable(bp);
2870
2871         err = modify_user_hw_breakpoint_check(bp, attr, true);
2872
2873         if (!bp->attr.disabled)
2874                 _perf_event_enable(bp);
2875
2876         return err;
2877 }
2878
2879 static int perf_event_modify_attr(struct perf_event *event,
2880                                   struct perf_event_attr *attr)
2881 {
2882         if (event->attr.type != attr->type)
2883                 return -EINVAL;
2884
2885         switch (event->attr.type) {
2886         case PERF_TYPE_BREAKPOINT:
2887                 return perf_event_modify_breakpoint(event, attr);
2888         default:
2889                 /* Place holder for future additions. */
2890                 return -EOPNOTSUPP;
2891         }
2892 }
2893
2894 static void ctx_sched_out(struct perf_event_context *ctx,
2895                           struct perf_cpu_context *cpuctx,
2896                           enum event_type_t event_type)
2897 {
2898         struct perf_event *event, *tmp;
2899         int is_active = ctx->is_active;
2900
2901         lockdep_assert_held(&ctx->lock);
2902
2903         if (likely(!ctx->nr_events)) {
2904                 /*
2905                  * See __perf_remove_from_context().
2906                  */
2907                 WARN_ON_ONCE(ctx->is_active);
2908                 if (ctx->task)
2909                         WARN_ON_ONCE(cpuctx->task_ctx);
2910                 return;
2911         }
2912
2913         ctx->is_active &= ~event_type;
2914         if (!(ctx->is_active & EVENT_ALL))
2915                 ctx->is_active = 0;
2916
2917         if (ctx->task) {
2918                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2919                 if (!ctx->is_active)
2920                         cpuctx->task_ctx = NULL;
2921         }
2922
2923         /*
2924          * Always update time if it was set; not only when it changes.
2925          * Otherwise we can 'forget' to update time for any but the last
2926          * context we sched out. For example:
2927          *
2928          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2929          *   ctx_sched_out(.event_type = EVENT_PINNED)
2930          *
2931          * would only update time for the pinned events.
2932          */
2933         if (is_active & EVENT_TIME) {
2934                 /* update (and stop) ctx time */
2935                 update_context_time(ctx);
2936                 update_cgrp_time_from_cpuctx(cpuctx);
2937         }
2938
2939         is_active ^= ctx->is_active; /* changed bits */
2940
2941         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2942                 return;
2943
2944         perf_pmu_disable(ctx->pmu);
2945         if (is_active & EVENT_PINNED) {
2946                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2947                         group_sched_out(event, cpuctx, ctx);
2948         }
2949
2950         if (is_active & EVENT_FLEXIBLE) {
2951                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2952                         group_sched_out(event, cpuctx, ctx);
2953         }
2954         perf_pmu_enable(ctx->pmu);
2955 }
2956
2957 /*
2958  * Test whether two contexts are equivalent, i.e. whether they have both been
2959  * cloned from the same version of the same context.
2960  *
2961  * Equivalence is measured using a generation number in the context that is
2962  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2963  * and list_del_event().
2964  */
2965 static int context_equiv(struct perf_event_context *ctx1,
2966                          struct perf_event_context *ctx2)
2967 {
2968         lockdep_assert_held(&ctx1->lock);
2969         lockdep_assert_held(&ctx2->lock);
2970
2971         /* Pinning disables the swap optimization */
2972         if (ctx1->pin_count || ctx2->pin_count)
2973                 return 0;
2974
2975         /* If ctx1 is the parent of ctx2 */
2976         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2977                 return 1;
2978
2979         /* If ctx2 is the parent of ctx1 */
2980         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2981                 return 1;
2982
2983         /*
2984          * If ctx1 and ctx2 have the same parent; we flatten the parent
2985          * hierarchy, see perf_event_init_context().
2986          */
2987         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2988                         ctx1->parent_gen == ctx2->parent_gen)
2989                 return 1;
2990
2991         /* Unmatched */
2992         return 0;
2993 }
2994
2995 static void __perf_event_sync_stat(struct perf_event *event,
2996                                      struct perf_event *next_event)
2997 {
2998         u64 value;
2999
3000         if (!event->attr.inherit_stat)
3001                 return;
3002
3003         /*
3004          * Update the event value, we cannot use perf_event_read()
3005          * because we're in the middle of a context switch and have IRQs
3006          * disabled, which upsets smp_call_function_single(), however
3007          * we know the event must be on the current CPU, therefore we
3008          * don't need to use it.
3009          */
3010         if (event->state == PERF_EVENT_STATE_ACTIVE)
3011                 event->pmu->read(event);
3012
3013         perf_event_update_time(event);
3014
3015         /*
3016          * In order to keep per-task stats reliable we need to flip the event
3017          * values when we flip the contexts.
3018          */
3019         value = local64_read(&next_event->count);
3020         value = local64_xchg(&event->count, value);
3021         local64_set(&next_event->count, value);
3022
3023         swap(event->total_time_enabled, next_event->total_time_enabled);
3024         swap(event->total_time_running, next_event->total_time_running);
3025
3026         /*
3027          * Since we swizzled the values, update the user visible data too.
3028          */
3029         perf_event_update_userpage(event);
3030         perf_event_update_userpage(next_event);
3031 }
3032
3033 static void perf_event_sync_stat(struct perf_event_context *ctx,
3034                                    struct perf_event_context *next_ctx)
3035 {
3036         struct perf_event *event, *next_event;
3037
3038         if (!ctx->nr_stat)
3039                 return;
3040
3041         update_context_time(ctx);
3042
3043         event = list_first_entry(&ctx->event_list,
3044                                    struct perf_event, event_entry);
3045
3046         next_event = list_first_entry(&next_ctx->event_list,
3047                                         struct perf_event, event_entry);
3048
3049         while (&event->event_entry != &ctx->event_list &&
3050                &next_event->event_entry != &next_ctx->event_list) {
3051
3052                 __perf_event_sync_stat(event, next_event);
3053
3054                 event = list_next_entry(event, event_entry);
3055                 next_event = list_next_entry(next_event, event_entry);
3056         }
3057 }
3058
3059 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3060                                          struct task_struct *next)
3061 {
3062         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3063         struct perf_event_context *next_ctx;
3064         struct perf_event_context *parent, *next_parent;
3065         struct perf_cpu_context *cpuctx;
3066         int do_switch = 1;
3067
3068         if (likely(!ctx))
3069                 return;
3070
3071         cpuctx = __get_cpu_context(ctx);
3072         if (!cpuctx->task_ctx)
3073                 return;
3074
3075         rcu_read_lock();
3076         next_ctx = next->perf_event_ctxp[ctxn];
3077         if (!next_ctx)
3078                 goto unlock;
3079
3080         parent = rcu_dereference(ctx->parent_ctx);
3081         next_parent = rcu_dereference(next_ctx->parent_ctx);
3082
3083         /* If neither context have a parent context; they cannot be clones. */
3084         if (!parent && !next_parent)
3085                 goto unlock;
3086
3087         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3088                 /*
3089                  * Looks like the two contexts are clones, so we might be
3090                  * able to optimize the context switch.  We lock both
3091                  * contexts and check that they are clones under the
3092                  * lock (including re-checking that neither has been
3093                  * uncloned in the meantime).  It doesn't matter which
3094                  * order we take the locks because no other cpu could
3095                  * be trying to lock both of these tasks.
3096                  */
3097                 raw_spin_lock(&ctx->lock);
3098                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3099                 if (context_equiv(ctx, next_ctx)) {
3100                         WRITE_ONCE(ctx->task, next);
3101                         WRITE_ONCE(next_ctx->task, task);
3102
3103                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3104
3105                         /*
3106                          * RCU_INIT_POINTER here is safe because we've not
3107                          * modified the ctx and the above modification of
3108                          * ctx->task and ctx->task_ctx_data are immaterial
3109                          * since those values are always verified under
3110                          * ctx->lock which we're now holding.
3111                          */
3112                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3113                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3114
3115                         do_switch = 0;
3116
3117                         perf_event_sync_stat(ctx, next_ctx);
3118                 }
3119                 raw_spin_unlock(&next_ctx->lock);
3120                 raw_spin_unlock(&ctx->lock);
3121         }
3122 unlock:
3123         rcu_read_unlock();
3124
3125         if (do_switch) {
3126                 raw_spin_lock(&ctx->lock);
3127                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3128                 raw_spin_unlock(&ctx->lock);
3129         }
3130 }
3131
3132 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3133
3134 void perf_sched_cb_dec(struct pmu *pmu)
3135 {
3136         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3137
3138         this_cpu_dec(perf_sched_cb_usages);
3139
3140         if (!--cpuctx->sched_cb_usage)
3141                 list_del(&cpuctx->sched_cb_entry);
3142 }
3143
3144
3145 void perf_sched_cb_inc(struct pmu *pmu)
3146 {
3147         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148
3149         if (!cpuctx->sched_cb_usage++)
3150                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3151
3152         this_cpu_inc(perf_sched_cb_usages);
3153 }
3154
3155 /*
3156  * This function provides the context switch callback to the lower code
3157  * layer. It is invoked ONLY when the context switch callback is enabled.
3158  *
3159  * This callback is relevant even to per-cpu events; for example multi event
3160  * PEBS requires this to provide PID/TID information. This requires we flush
3161  * all queued PEBS records before we context switch to a new task.
3162  */
3163 static void perf_pmu_sched_task(struct task_struct *prev,
3164                                 struct task_struct *next,
3165                                 bool sched_in)
3166 {
3167         struct perf_cpu_context *cpuctx;
3168         struct pmu *pmu;
3169
3170         if (prev == next)
3171                 return;
3172
3173         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3174                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3175
3176                 if (WARN_ON_ONCE(!pmu->sched_task))
3177                         continue;
3178
3179                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3180                 perf_pmu_disable(pmu);
3181
3182                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3183
3184                 perf_pmu_enable(pmu);
3185                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3186         }
3187 }
3188
3189 static void perf_event_switch(struct task_struct *task,
3190                               struct task_struct *next_prev, bool sched_in);
3191
3192 #define for_each_task_context_nr(ctxn)                                  \
3193         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3194
3195 /*
3196  * Called from scheduler to remove the events of the current task,
3197  * with interrupts disabled.
3198  *
3199  * We stop each event and update the event value in event->count.
3200  *
3201  * This does not protect us against NMI, but disable()
3202  * sets the disabled bit in the control field of event _before_
3203  * accessing the event control register. If a NMI hits, then it will
3204  * not restart the event.
3205  */
3206 void __perf_event_task_sched_out(struct task_struct *task,
3207                                  struct task_struct *next)
3208 {
3209         int ctxn;
3210
3211         if (__this_cpu_read(perf_sched_cb_usages))
3212                 perf_pmu_sched_task(task, next, false);
3213
3214         if (atomic_read(&nr_switch_events))
3215                 perf_event_switch(task, next, false);
3216
3217         for_each_task_context_nr(ctxn)
3218                 perf_event_context_sched_out(task, ctxn, next);
3219
3220         /*
3221          * if cgroup events exist on this CPU, then we need
3222          * to check if we have to switch out PMU state.
3223          * cgroup event are system-wide mode only
3224          */
3225         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3226                 perf_cgroup_sched_out(task, next);
3227 }
3228
3229 /*
3230  * Called with IRQs disabled
3231  */
3232 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3233                               enum event_type_t event_type)
3234 {
3235         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3236 }
3237
3238 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3239                               int (*func)(struct perf_event *, void *), void *data)
3240 {
3241         struct perf_event **evt, *evt1, *evt2;
3242         int ret;
3243
3244         evt1 = perf_event_groups_first(groups, -1);
3245         evt2 = perf_event_groups_first(groups, cpu);
3246
3247         while (evt1 || evt2) {
3248                 if (evt1 && evt2) {
3249                         if (evt1->group_index < evt2->group_index)
3250                                 evt = &evt1;
3251                         else
3252                                 evt = &evt2;
3253                 } else if (evt1) {
3254                         evt = &evt1;
3255                 } else {
3256                         evt = &evt2;
3257                 }
3258
3259                 ret = func(*evt, data);
3260                 if (ret)
3261                         return ret;
3262
3263                 *evt = perf_event_groups_next(*evt);
3264         }
3265
3266         return 0;
3267 }
3268
3269 struct sched_in_data {
3270         struct perf_event_context *ctx;
3271         struct perf_cpu_context *cpuctx;
3272         int can_add_hw;
3273 };
3274
3275 static int pinned_sched_in(struct perf_event *event, void *data)
3276 {
3277         struct sched_in_data *sid = data;
3278
3279         if (event->state <= PERF_EVENT_STATE_OFF)
3280                 return 0;
3281
3282         if (!event_filter_match(event))
3283                 return 0;
3284
3285         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3286                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3287                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3288         }
3289
3290         /*
3291          * If this pinned group hasn't been scheduled,
3292          * put it in error state.
3293          */
3294         if (event->state == PERF_EVENT_STATE_INACTIVE)
3295                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3296
3297         return 0;
3298 }
3299
3300 static int flexible_sched_in(struct perf_event *event, void *data)
3301 {
3302         struct sched_in_data *sid = data;
3303
3304         if (event->state <= PERF_EVENT_STATE_OFF)
3305                 return 0;
3306
3307         if (!event_filter_match(event))
3308                 return 0;
3309
3310         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3311                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3312                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3313                 else
3314                         sid->can_add_hw = 0;
3315         }
3316
3317         return 0;
3318 }
3319
3320 static void
3321 ctx_pinned_sched_in(struct perf_event_context *ctx,
3322                     struct perf_cpu_context *cpuctx)
3323 {
3324         struct sched_in_data sid = {
3325                 .ctx = ctx,
3326                 .cpuctx = cpuctx,
3327                 .can_add_hw = 1,
3328         };
3329
3330         visit_groups_merge(&ctx->pinned_groups,
3331                            smp_processor_id(),
3332                            pinned_sched_in, &sid);
3333 }
3334
3335 static void
3336 ctx_flexible_sched_in(struct perf_event_context *ctx,
3337                       struct perf_cpu_context *cpuctx)
3338 {
3339         struct sched_in_data sid = {
3340                 .ctx = ctx,
3341                 .cpuctx = cpuctx,
3342                 .can_add_hw = 1,
3343         };
3344
3345         visit_groups_merge(&ctx->flexible_groups,
3346                            smp_processor_id(),
3347                            flexible_sched_in, &sid);
3348 }
3349
3350 static void
3351 ctx_sched_in(struct perf_event_context *ctx,
3352              struct perf_cpu_context *cpuctx,
3353              enum event_type_t event_type,
3354              struct task_struct *task)
3355 {
3356         int is_active = ctx->is_active;
3357         u64 now;
3358
3359         lockdep_assert_held(&ctx->lock);
3360
3361         if (likely(!ctx->nr_events))
3362                 return;
3363
3364         ctx->is_active |= (event_type | EVENT_TIME);
3365         if (ctx->task) {
3366                 if (!is_active)
3367                         cpuctx->task_ctx = ctx;
3368                 else
3369                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3370         }
3371
3372         is_active ^= ctx->is_active; /* changed bits */
3373
3374         if (is_active & EVENT_TIME) {
3375                 /* start ctx time */
3376                 now = perf_clock();
3377                 ctx->timestamp = now;
3378                 perf_cgroup_set_timestamp(task, ctx);
3379         }
3380
3381         /*
3382          * First go through the list and put on any pinned groups
3383          * in order to give them the best chance of going on.
3384          */
3385         if (is_active & EVENT_PINNED)
3386                 ctx_pinned_sched_in(ctx, cpuctx);
3387
3388         /* Then walk through the lower prio flexible groups */
3389         if (is_active & EVENT_FLEXIBLE)
3390                 ctx_flexible_sched_in(ctx, cpuctx);
3391 }
3392
3393 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3394                              enum event_type_t event_type,
3395                              struct task_struct *task)
3396 {
3397         struct perf_event_context *ctx = &cpuctx->ctx;
3398
3399         ctx_sched_in(ctx, cpuctx, event_type, task);
3400 }
3401
3402 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3403                                         struct task_struct *task)
3404 {
3405         struct perf_cpu_context *cpuctx;
3406
3407         cpuctx = __get_cpu_context(ctx);
3408         if (cpuctx->task_ctx == ctx)
3409                 return;
3410
3411         perf_ctx_lock(cpuctx, ctx);
3412         /*
3413          * We must check ctx->nr_events while holding ctx->lock, such
3414          * that we serialize against perf_install_in_context().
3415          */
3416         if (!ctx->nr_events)
3417                 goto unlock;
3418
3419         perf_pmu_disable(ctx->pmu);
3420         /*
3421          * We want to keep the following priority order:
3422          * cpu pinned (that don't need to move), task pinned,
3423          * cpu flexible, task flexible.
3424          *
3425          * However, if task's ctx is not carrying any pinned
3426          * events, no need to flip the cpuctx's events around.
3427          */
3428         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3429                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3430         perf_event_sched_in(cpuctx, ctx, task);
3431         perf_pmu_enable(ctx->pmu);
3432
3433 unlock:
3434         perf_ctx_unlock(cpuctx, ctx);
3435 }
3436
3437 /*
3438  * Called from scheduler to add the events of the current task
3439  * with interrupts disabled.
3440  *
3441  * We restore the event value and then enable it.
3442  *
3443  * This does not protect us against NMI, but enable()
3444  * sets the enabled bit in the control field of event _before_
3445  * accessing the event control register. If a NMI hits, then it will
3446  * keep the event running.
3447  */
3448 void __perf_event_task_sched_in(struct task_struct *prev,
3449                                 struct task_struct *task)
3450 {
3451         struct perf_event_context *ctx;
3452         int ctxn;
3453
3454         /*
3455          * If cgroup events exist on this CPU, then we need to check if we have
3456          * to switch in PMU state; cgroup event are system-wide mode only.
3457          *
3458          * Since cgroup events are CPU events, we must schedule these in before
3459          * we schedule in the task events.
3460          */
3461         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3462                 perf_cgroup_sched_in(prev, task);
3463
3464         for_each_task_context_nr(ctxn) {
3465                 ctx = task->perf_event_ctxp[ctxn];
3466                 if (likely(!ctx))
3467                         continue;
3468
3469                 perf_event_context_sched_in(ctx, task);
3470         }
3471
3472         if (atomic_read(&nr_switch_events))
3473                 perf_event_switch(task, prev, true);
3474
3475         if (__this_cpu_read(perf_sched_cb_usages))
3476                 perf_pmu_sched_task(prev, task, true);
3477 }
3478
3479 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3480 {
3481         u64 frequency = event->attr.sample_freq;
3482         u64 sec = NSEC_PER_SEC;
3483         u64 divisor, dividend;
3484
3485         int count_fls, nsec_fls, frequency_fls, sec_fls;
3486
3487         count_fls = fls64(count);
3488         nsec_fls = fls64(nsec);
3489         frequency_fls = fls64(frequency);
3490         sec_fls = 30;
3491
3492         /*
3493          * We got @count in @nsec, with a target of sample_freq HZ
3494          * the target period becomes:
3495          *
3496          *             @count * 10^9
3497          * period = -------------------
3498          *          @nsec * sample_freq
3499          *
3500          */
3501
3502         /*
3503          * Reduce accuracy by one bit such that @a and @b converge
3504          * to a similar magnitude.
3505          */
3506 #define REDUCE_FLS(a, b)                \
3507 do {                                    \
3508         if (a##_fls > b##_fls) {        \
3509                 a >>= 1;                \
3510                 a##_fls--;              \
3511         } else {                        \
3512                 b >>= 1;                \
3513                 b##_fls--;              \
3514         }                               \
3515 } while (0)
3516
3517         /*
3518          * Reduce accuracy until either term fits in a u64, then proceed with
3519          * the other, so that finally we can do a u64/u64 division.
3520          */
3521         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3522                 REDUCE_FLS(nsec, frequency);
3523                 REDUCE_FLS(sec, count);
3524         }
3525
3526         if (count_fls + sec_fls > 64) {
3527                 divisor = nsec * frequency;
3528
3529                 while (count_fls + sec_fls > 64) {
3530                         REDUCE_FLS(count, sec);
3531                         divisor >>= 1;
3532                 }
3533
3534                 dividend = count * sec;
3535         } else {
3536                 dividend = count * sec;
3537
3538                 while (nsec_fls + frequency_fls > 64) {
3539                         REDUCE_FLS(nsec, frequency);
3540                         dividend >>= 1;
3541                 }
3542
3543                 divisor = nsec * frequency;
3544         }
3545
3546         if (!divisor)
3547                 return dividend;
3548
3549         return div64_u64(dividend, divisor);
3550 }
3551
3552 static DEFINE_PER_CPU(int, perf_throttled_count);
3553 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3554
3555 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3556 {
3557         struct hw_perf_event *hwc = &event->hw;
3558         s64 period, sample_period;
3559         s64 delta;
3560
3561         period = perf_calculate_period(event, nsec, count);
3562
3563         delta = (s64)(period - hwc->sample_period);
3564         delta = (delta + 7) / 8; /* low pass filter */
3565
3566         sample_period = hwc->sample_period + delta;
3567
3568         if (!sample_period)
3569                 sample_period = 1;
3570
3571         hwc->sample_period = sample_period;
3572
3573         if (local64_read(&hwc->period_left) > 8*sample_period) {
3574                 if (disable)
3575                         event->pmu->stop(event, PERF_EF_UPDATE);
3576
3577                 local64_set(&hwc->period_left, 0);
3578
3579                 if (disable)
3580                         event->pmu->start(event, PERF_EF_RELOAD);
3581         }
3582 }
3583
3584 /*
3585  * combine freq adjustment with unthrottling to avoid two passes over the
3586  * events. At the same time, make sure, having freq events does not change
3587  * the rate of unthrottling as that would introduce bias.
3588  */
3589 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3590                                            int needs_unthr)
3591 {
3592         struct perf_event *event;
3593         struct hw_perf_event *hwc;
3594         u64 now, period = TICK_NSEC;
3595         s64 delta;
3596
3597         /*
3598          * only need to iterate over all events iff:
3599          * - context have events in frequency mode (needs freq adjust)
3600          * - there are events to unthrottle on this cpu
3601          */
3602         if (!(ctx->nr_freq || needs_unthr))
3603                 return;
3604
3605         raw_spin_lock(&ctx->lock);
3606         perf_pmu_disable(ctx->pmu);
3607
3608         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3609                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3610                         continue;
3611
3612                 if (!event_filter_match(event))
3613                         continue;
3614
3615                 perf_pmu_disable(event->pmu);
3616
3617                 hwc = &event->hw;
3618
3619                 if (hwc->interrupts == MAX_INTERRUPTS) {
3620                         hwc->interrupts = 0;
3621                         perf_log_throttle(event, 1);
3622                         event->pmu->start(event, 0);
3623                 }
3624
3625                 if (!event->attr.freq || !event->attr.sample_freq)
3626                         goto next;
3627
3628                 /*
3629                  * stop the event and update event->count
3630                  */
3631                 event->pmu->stop(event, PERF_EF_UPDATE);
3632
3633                 now = local64_read(&event->count);
3634                 delta = now - hwc->freq_count_stamp;
3635                 hwc->freq_count_stamp = now;
3636
3637                 /*
3638                  * restart the event
3639                  * reload only if value has changed
3640                  * we have stopped the event so tell that
3641                  * to perf_adjust_period() to avoid stopping it
3642                  * twice.
3643                  */
3644                 if (delta > 0)
3645                         perf_adjust_period(event, period, delta, false);
3646
3647                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3648         next:
3649                 perf_pmu_enable(event->pmu);
3650         }
3651
3652         perf_pmu_enable(ctx->pmu);
3653         raw_spin_unlock(&ctx->lock);
3654 }
3655
3656 /*
3657  * Move @event to the tail of the @ctx's elegible events.
3658  */
3659 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3660 {
3661         /*
3662          * Rotate the first entry last of non-pinned groups. Rotation might be
3663          * disabled by the inheritance code.
3664          */
3665         if (ctx->rotate_disable)
3666                 return;
3667
3668         perf_event_groups_delete(&ctx->flexible_groups, event);
3669         perf_event_groups_insert(&ctx->flexible_groups, event);
3670 }
3671
3672 static inline struct perf_event *
3673 ctx_first_active(struct perf_event_context *ctx)
3674 {
3675         return list_first_entry_or_null(&ctx->flexible_active,
3676                                         struct perf_event, active_list);
3677 }
3678
3679 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3680 {
3681         struct perf_event *cpu_event = NULL, *task_event = NULL;
3682         bool cpu_rotate = false, task_rotate = false;
3683         struct perf_event_context *ctx = NULL;
3684
3685         /*
3686          * Since we run this from IRQ context, nobody can install new
3687          * events, thus the event count values are stable.
3688          */
3689
3690         if (cpuctx->ctx.nr_events) {
3691                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3692                         cpu_rotate = true;
3693         }
3694
3695         ctx = cpuctx->task_ctx;
3696         if (ctx && ctx->nr_events) {
3697                 if (ctx->nr_events != ctx->nr_active)
3698                         task_rotate = true;
3699         }
3700
3701         if (!(cpu_rotate || task_rotate))
3702                 return false;
3703
3704         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3705         perf_pmu_disable(cpuctx->ctx.pmu);
3706
3707         if (task_rotate)
3708                 task_event = ctx_first_active(ctx);
3709         if (cpu_rotate)
3710                 cpu_event = ctx_first_active(&cpuctx->ctx);
3711
3712         /*
3713          * As per the order given at ctx_resched() first 'pop' task flexible
3714          * and then, if needed CPU flexible.
3715          */
3716         if (task_event || (ctx && cpu_event))
3717                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3718         if (cpu_event)
3719                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3720
3721         if (task_event)
3722                 rotate_ctx(ctx, task_event);
3723         if (cpu_event)
3724                 rotate_ctx(&cpuctx->ctx, cpu_event);
3725
3726         perf_event_sched_in(cpuctx, ctx, current);
3727
3728         perf_pmu_enable(cpuctx->ctx.pmu);
3729         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3730
3731         return true;
3732 }
3733
3734 void perf_event_task_tick(void)
3735 {
3736         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3737         struct perf_event_context *ctx, *tmp;
3738         int throttled;
3739
3740         lockdep_assert_irqs_disabled();
3741
3742         __this_cpu_inc(perf_throttled_seq);
3743         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3744         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3745
3746         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3747                 perf_adjust_freq_unthr_context(ctx, throttled);
3748 }
3749
3750 static int event_enable_on_exec(struct perf_event *event,
3751                                 struct perf_event_context *ctx)
3752 {
3753         if (!event->attr.enable_on_exec)
3754                 return 0;
3755
3756         event->attr.enable_on_exec = 0;
3757         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3758                 return 0;
3759
3760         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3761
3762         return 1;
3763 }
3764
3765 /*
3766  * Enable all of a task's events that have been marked enable-on-exec.
3767  * This expects task == current.
3768  */
3769 static void perf_event_enable_on_exec(int ctxn)
3770 {
3771         struct perf_event_context *ctx, *clone_ctx = NULL;
3772         enum event_type_t event_type = 0;
3773         struct perf_cpu_context *cpuctx;
3774         struct perf_event *event;
3775         unsigned long flags;
3776         int enabled = 0;
3777
3778         local_irq_save(flags);
3779         ctx = current->perf_event_ctxp[ctxn];
3780         if (!ctx || !ctx->nr_events)
3781                 goto out;
3782
3783         cpuctx = __get_cpu_context(ctx);
3784         perf_ctx_lock(cpuctx, ctx);
3785         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3786         list_for_each_entry(event, &ctx->event_list, event_entry) {
3787                 enabled |= event_enable_on_exec(event, ctx);
3788                 event_type |= get_event_type(event);
3789         }
3790
3791         /*
3792          * Unclone and reschedule this context if we enabled any event.
3793          */
3794         if (enabled) {
3795                 clone_ctx = unclone_ctx(ctx);
3796                 ctx_resched(cpuctx, ctx, event_type);
3797         } else {
3798                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3799         }
3800         perf_ctx_unlock(cpuctx, ctx);
3801
3802 out:
3803         local_irq_restore(flags);
3804
3805         if (clone_ctx)
3806                 put_ctx(clone_ctx);
3807 }
3808
3809 struct perf_read_data {
3810         struct perf_event *event;
3811         bool group;
3812         int ret;
3813 };
3814
3815 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3816 {
3817         u16 local_pkg, event_pkg;
3818
3819         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3820                 int local_cpu = smp_processor_id();
3821
3822                 event_pkg = topology_physical_package_id(event_cpu);
3823                 local_pkg = topology_physical_package_id(local_cpu);
3824
3825                 if (event_pkg == local_pkg)
3826                         return local_cpu;
3827         }
3828
3829         return event_cpu;
3830 }
3831
3832 /*
3833  * Cross CPU call to read the hardware event
3834  */
3835 static void __perf_event_read(void *info)
3836 {
3837         struct perf_read_data *data = info;
3838         struct perf_event *sub, *event = data->event;
3839         struct perf_event_context *ctx = event->ctx;
3840         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3841         struct pmu *pmu = event->pmu;
3842
3843         /*
3844          * If this is a task context, we need to check whether it is
3845          * the current task context of this cpu.  If not it has been
3846          * scheduled out before the smp call arrived.  In that case
3847          * event->count would have been updated to a recent sample
3848          * when the event was scheduled out.
3849          */
3850         if (ctx->task && cpuctx->task_ctx != ctx)
3851                 return;
3852
3853         raw_spin_lock(&ctx->lock);
3854         if (ctx->is_active & EVENT_TIME) {
3855                 update_context_time(ctx);
3856                 update_cgrp_time_from_event(event);
3857         }
3858
3859         perf_event_update_time(event);
3860         if (data->group)
3861                 perf_event_update_sibling_time(event);
3862
3863         if (event->state != PERF_EVENT_STATE_ACTIVE)
3864                 goto unlock;
3865
3866         if (!data->group) {
3867                 pmu->read(event);
3868                 data->ret = 0;
3869                 goto unlock;
3870         }
3871
3872         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3873
3874         pmu->read(event);
3875
3876         for_each_sibling_event(sub, event) {
3877                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3878                         /*
3879                          * Use sibling's PMU rather than @event's since
3880                          * sibling could be on different (eg: software) PMU.
3881                          */
3882                         sub->pmu->read(sub);
3883                 }
3884         }
3885
3886         data->ret = pmu->commit_txn(pmu);
3887
3888 unlock:
3889         raw_spin_unlock(&ctx->lock);
3890 }
3891
3892 static inline u64 perf_event_count(struct perf_event *event)
3893 {
3894         return local64_read(&event->count) + atomic64_read(&event->child_count);
3895 }
3896
3897 /*
3898  * NMI-safe method to read a local event, that is an event that
3899  * is:
3900  *   - either for the current task, or for this CPU
3901  *   - does not have inherit set, for inherited task events
3902  *     will not be local and we cannot read them atomically
3903  *   - must not have a pmu::count method
3904  */
3905 int perf_event_read_local(struct perf_event *event, u64 *value,
3906                           u64 *enabled, u64 *running)
3907 {
3908         unsigned long flags;
3909         int ret = 0;
3910
3911         /*
3912          * Disabling interrupts avoids all counter scheduling (context
3913          * switches, timer based rotation and IPIs).
3914          */
3915         local_irq_save(flags);
3916
3917         /*
3918          * It must not be an event with inherit set, we cannot read
3919          * all child counters from atomic context.
3920          */
3921         if (event->attr.inherit) {
3922                 ret = -EOPNOTSUPP;
3923                 goto out;
3924         }
3925
3926         /* If this is a per-task event, it must be for current */
3927         if ((event->attach_state & PERF_ATTACH_TASK) &&
3928             event->hw.target != current) {
3929                 ret = -EINVAL;
3930                 goto out;
3931         }
3932
3933         /* If this is a per-CPU event, it must be for this CPU */
3934         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3935             event->cpu != smp_processor_id()) {
3936                 ret = -EINVAL;
3937                 goto out;
3938         }
3939
3940         /* If this is a pinned event it must be running on this CPU */
3941         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3942                 ret = -EBUSY;
3943                 goto out;
3944         }
3945
3946         /*
3947          * If the event is currently on this CPU, its either a per-task event,
3948          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3949          * oncpu == -1).
3950          */
3951         if (event->oncpu == smp_processor_id())
3952                 event->pmu->read(event);
3953
3954         *value = local64_read(&event->count);
3955         if (enabled || running) {
3956                 u64 now = event->shadow_ctx_time + perf_clock();
3957                 u64 __enabled, __running;
3958
3959                 __perf_update_times(event, now, &__enabled, &__running);
3960                 if (enabled)
3961                         *enabled = __enabled;
3962                 if (running)
3963                         *running = __running;
3964         }
3965 out:
3966         local_irq_restore(flags);
3967
3968         return ret;
3969 }
3970
3971 static int perf_event_read(struct perf_event *event, bool group)
3972 {
3973         enum perf_event_state state = READ_ONCE(event->state);
3974         int event_cpu, ret = 0;
3975
3976         /*
3977          * If event is enabled and currently active on a CPU, update the
3978          * value in the event structure:
3979          */
3980 again:
3981         if (state == PERF_EVENT_STATE_ACTIVE) {
3982                 struct perf_read_data data;
3983
3984                 /*
3985                  * Orders the ->state and ->oncpu loads such that if we see
3986                  * ACTIVE we must also see the right ->oncpu.
3987                  *
3988                  * Matches the smp_wmb() from event_sched_in().
3989                  */
3990                 smp_rmb();
3991
3992                 event_cpu = READ_ONCE(event->oncpu);
3993                 if ((unsigned)event_cpu >= nr_cpu_ids)
3994                         return 0;
3995
3996                 data = (struct perf_read_data){
3997                         .event = event,
3998                         .group = group,
3999                         .ret = 0,
4000                 };
4001
4002                 preempt_disable();
4003                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4004
4005                 /*
4006                  * Purposely ignore the smp_call_function_single() return
4007                  * value.
4008                  *
4009                  * If event_cpu isn't a valid CPU it means the event got
4010                  * scheduled out and that will have updated the event count.
4011                  *
4012                  * Therefore, either way, we'll have an up-to-date event count
4013                  * after this.
4014                  */
4015                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4016                 preempt_enable();
4017                 ret = data.ret;
4018
4019         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4020                 struct perf_event_context *ctx = event->ctx;
4021                 unsigned long flags;
4022
4023                 raw_spin_lock_irqsave(&ctx->lock, flags);
4024                 state = event->state;
4025                 if (state != PERF_EVENT_STATE_INACTIVE) {
4026                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4027                         goto again;
4028                 }
4029
4030                 /*
4031                  * May read while context is not active (e.g., thread is
4032                  * blocked), in that case we cannot update context time
4033                  */
4034                 if (ctx->is_active & EVENT_TIME) {
4035                         update_context_time(ctx);
4036                         update_cgrp_time_from_event(event);
4037                 }
4038
4039                 perf_event_update_time(event);
4040                 if (group)
4041                         perf_event_update_sibling_time(event);
4042                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4043         }
4044
4045         return ret;
4046 }
4047
4048 /*
4049  * Initialize the perf_event context in a task_struct:
4050  */
4051 static void __perf_event_init_context(struct perf_event_context *ctx)
4052 {
4053         raw_spin_lock_init(&ctx->lock);
4054         mutex_init(&ctx->mutex);
4055         INIT_LIST_HEAD(&ctx->active_ctx_list);
4056         perf_event_groups_init(&ctx->pinned_groups);
4057         perf_event_groups_init(&ctx->flexible_groups);
4058         INIT_LIST_HEAD(&ctx->event_list);
4059         INIT_LIST_HEAD(&ctx->pinned_active);
4060         INIT_LIST_HEAD(&ctx->flexible_active);
4061         refcount_set(&ctx->refcount, 1);
4062 }
4063
4064 static struct perf_event_context *
4065 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4066 {
4067         struct perf_event_context *ctx;
4068
4069         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4070         if (!ctx)
4071                 return NULL;
4072
4073         __perf_event_init_context(ctx);
4074         if (task) {
4075                 ctx->task = task;
4076                 get_task_struct(task);
4077         }
4078         ctx->pmu = pmu;
4079
4080         return ctx;
4081 }
4082
4083 static struct task_struct *
4084 find_lively_task_by_vpid(pid_t vpid)
4085 {
4086         struct task_struct *task;
4087
4088         rcu_read_lock();
4089         if (!vpid)
4090                 task = current;
4091         else
4092                 task = find_task_by_vpid(vpid);
4093         if (task)
4094                 get_task_struct(task);
4095         rcu_read_unlock();
4096
4097         if (!task)
4098                 return ERR_PTR(-ESRCH);
4099
4100         return task;
4101 }
4102
4103 /*
4104  * Returns a matching context with refcount and pincount.
4105  */
4106 static struct perf_event_context *
4107 find_get_context(struct pmu *pmu, struct task_struct *task,
4108                 struct perf_event *event)
4109 {
4110         struct perf_event_context *ctx, *clone_ctx = NULL;
4111         struct perf_cpu_context *cpuctx;
4112         void *task_ctx_data = NULL;
4113         unsigned long flags;
4114         int ctxn, err;
4115         int cpu = event->cpu;
4116
4117         if (!task) {
4118                 /* Must be root to operate on a CPU event: */
4119                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4120                         return ERR_PTR(-EACCES);
4121
4122                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4123                 ctx = &cpuctx->ctx;
4124                 get_ctx(ctx);
4125                 ++ctx->pin_count;
4126
4127                 return ctx;
4128         }
4129
4130         err = -EINVAL;
4131         ctxn = pmu->task_ctx_nr;
4132         if (ctxn < 0)
4133                 goto errout;
4134
4135         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4136                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4137                 if (!task_ctx_data) {
4138                         err = -ENOMEM;
4139                         goto errout;
4140                 }
4141         }
4142
4143 retry:
4144         ctx = perf_lock_task_context(task, ctxn, &flags);
4145         if (ctx) {
4146                 clone_ctx = unclone_ctx(ctx);
4147                 ++ctx->pin_count;
4148
4149                 if (task_ctx_data && !ctx->task_ctx_data) {
4150                         ctx->task_ctx_data = task_ctx_data;
4151                         task_ctx_data = NULL;
4152                 }
4153                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4154
4155                 if (clone_ctx)
4156                         put_ctx(clone_ctx);
4157         } else {
4158                 ctx = alloc_perf_context(pmu, task);
4159                 err = -ENOMEM;
4160                 if (!ctx)
4161                         goto errout;
4162
4163                 if (task_ctx_data) {
4164                         ctx->task_ctx_data = task_ctx_data;
4165                         task_ctx_data = NULL;
4166                 }
4167
4168                 err = 0;
4169                 mutex_lock(&task->perf_event_mutex);
4170                 /*
4171                  * If it has already passed perf_event_exit_task().
4172                  * we must see PF_EXITING, it takes this mutex too.
4173                  */
4174                 if (task->flags & PF_EXITING)
4175                         err = -ESRCH;
4176                 else if (task->perf_event_ctxp[ctxn])
4177                         err = -EAGAIN;
4178                 else {
4179                         get_ctx(ctx);
4180                         ++ctx->pin_count;
4181                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4182                 }
4183                 mutex_unlock(&task->perf_event_mutex);
4184
4185                 if (unlikely(err)) {
4186                         put_ctx(ctx);
4187
4188                         if (err == -EAGAIN)
4189                                 goto retry;
4190                         goto errout;
4191                 }
4192         }
4193
4194         kfree(task_ctx_data);
4195         return ctx;
4196
4197 errout:
4198         kfree(task_ctx_data);
4199         return ERR_PTR(err);
4200 }
4201
4202 static void perf_event_free_filter(struct perf_event *event);
4203 static void perf_event_free_bpf_prog(struct perf_event *event);
4204
4205 static void free_event_rcu(struct rcu_head *head)
4206 {
4207         struct perf_event *event;
4208
4209         event = container_of(head, struct perf_event, rcu_head);
4210         if (event->ns)
4211                 put_pid_ns(event->ns);
4212         perf_event_free_filter(event);
4213         kfree(event);
4214 }
4215
4216 static void ring_buffer_attach(struct perf_event *event,
4217                                struct ring_buffer *rb);
4218
4219 static void detach_sb_event(struct perf_event *event)
4220 {
4221         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4222
4223         raw_spin_lock(&pel->lock);
4224         list_del_rcu(&event->sb_list);
4225         raw_spin_unlock(&pel->lock);
4226 }
4227
4228 static bool is_sb_event(struct perf_event *event)
4229 {
4230         struct perf_event_attr *attr = &event->attr;
4231
4232         if (event->parent)
4233                 return false;
4234
4235         if (event->attach_state & PERF_ATTACH_TASK)
4236                 return false;
4237
4238         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4239             attr->comm || attr->comm_exec ||
4240             attr->task || attr->ksymbol ||
4241             attr->context_switch)
4242                 return true;
4243         return false;
4244 }
4245
4246 static void unaccount_pmu_sb_event(struct perf_event *event)
4247 {
4248         if (is_sb_event(event))
4249                 detach_sb_event(event);
4250 }
4251
4252 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4253 {
4254         if (event->parent)
4255                 return;
4256
4257         if (is_cgroup_event(event))
4258                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4259 }
4260
4261 #ifdef CONFIG_NO_HZ_FULL
4262 static DEFINE_SPINLOCK(nr_freq_lock);
4263 #endif
4264
4265 static void unaccount_freq_event_nohz(void)
4266 {
4267 #ifdef CONFIG_NO_HZ_FULL
4268         spin_lock(&nr_freq_lock);
4269         if (atomic_dec_and_test(&nr_freq_events))
4270                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4271         spin_unlock(&nr_freq_lock);
4272 #endif
4273 }
4274
4275 static void unaccount_freq_event(void)
4276 {
4277         if (tick_nohz_full_enabled())
4278                 unaccount_freq_event_nohz();
4279         else
4280                 atomic_dec(&nr_freq_events);
4281 }
4282
4283 static void unaccount_event(struct perf_event *event)
4284 {
4285         bool dec = false;
4286
4287         if (event->parent)
4288                 return;
4289
4290         if (event->attach_state & PERF_ATTACH_TASK)
4291                 dec = true;
4292         if (event->attr.mmap || event->attr.mmap_data)
4293                 atomic_dec(&nr_mmap_events);
4294         if (event->attr.comm)
4295                 atomic_dec(&nr_comm_events);
4296         if (event->attr.namespaces)
4297                 atomic_dec(&nr_namespaces_events);
4298         if (event->attr.task)
4299                 atomic_dec(&nr_task_events);
4300         if (event->attr.freq)
4301                 unaccount_freq_event();
4302         if (event->attr.context_switch) {
4303                 dec = true;
4304                 atomic_dec(&nr_switch_events);
4305         }
4306         if (is_cgroup_event(event))
4307                 dec = true;
4308         if (has_branch_stack(event))
4309                 dec = true;
4310         if (event->attr.ksymbol)
4311                 atomic_dec(&nr_ksymbol_events);
4312         if (event->attr.bpf_event)
4313                 atomic_dec(&nr_bpf_events);
4314
4315         if (dec) {
4316                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4317                         schedule_delayed_work(&perf_sched_work, HZ);
4318         }
4319
4320         unaccount_event_cpu(event, event->cpu);
4321
4322         unaccount_pmu_sb_event(event);
4323 }
4324
4325 static void perf_sched_delayed(struct work_struct *work)
4326 {
4327         mutex_lock(&perf_sched_mutex);
4328         if (atomic_dec_and_test(&perf_sched_count))
4329                 static_branch_disable(&perf_sched_events);
4330         mutex_unlock(&perf_sched_mutex);
4331 }
4332
4333 /*
4334  * The following implement mutual exclusion of events on "exclusive" pmus
4335  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4336  * at a time, so we disallow creating events that might conflict, namely:
4337  *
4338  *  1) cpu-wide events in the presence of per-task events,
4339  *  2) per-task events in the presence of cpu-wide events,
4340  *  3) two matching events on the same context.
4341  *
4342  * The former two cases are handled in the allocation path (perf_event_alloc(),
4343  * _free_event()), the latter -- before the first perf_install_in_context().
4344  */
4345 static int exclusive_event_init(struct perf_event *event)
4346 {
4347         struct pmu *pmu = event->pmu;
4348
4349         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4350                 return 0;
4351
4352         /*
4353          * Prevent co-existence of per-task and cpu-wide events on the
4354          * same exclusive pmu.
4355          *
4356          * Negative pmu::exclusive_cnt means there are cpu-wide
4357          * events on this "exclusive" pmu, positive means there are
4358          * per-task events.
4359          *
4360          * Since this is called in perf_event_alloc() path, event::ctx
4361          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4362          * to mean "per-task event", because unlike other attach states it
4363          * never gets cleared.
4364          */
4365         if (event->attach_state & PERF_ATTACH_TASK) {
4366                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4367                         return -EBUSY;
4368         } else {
4369                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4370                         return -EBUSY;
4371         }
4372
4373         return 0;
4374 }
4375
4376 static void exclusive_event_destroy(struct perf_event *event)
4377 {
4378         struct pmu *pmu = event->pmu;
4379
4380         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4381                 return;
4382
4383         /* see comment in exclusive_event_init() */
4384         if (event->attach_state & PERF_ATTACH_TASK)
4385                 atomic_dec(&pmu->exclusive_cnt);
4386         else
4387                 atomic_inc(&pmu->exclusive_cnt);
4388 }
4389
4390 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4391 {
4392         if ((e1->pmu == e2->pmu) &&
4393             (e1->cpu == e2->cpu ||
4394              e1->cpu == -1 ||
4395              e2->cpu == -1))
4396                 return true;
4397         return false;
4398 }
4399
4400 /* Called under the same ctx::mutex as perf_install_in_context() */
4401 static bool exclusive_event_installable(struct perf_event *event,
4402                                         struct perf_event_context *ctx)
4403 {
4404         struct perf_event *iter_event;
4405         struct pmu *pmu = event->pmu;
4406
4407         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4408                 return true;
4409
4410         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4411                 if (exclusive_event_match(iter_event, event))
4412                         return false;
4413         }
4414
4415         return true;
4416 }
4417
4418 static void perf_addr_filters_splice(struct perf_event *event,
4419                                        struct list_head *head);
4420
4421 static void _free_event(struct perf_event *event)
4422 {
4423         irq_work_sync(&event->pending);
4424
4425         unaccount_event(event);
4426
4427         if (event->rb) {
4428                 /*
4429                  * Can happen when we close an event with re-directed output.
4430                  *
4431                  * Since we have a 0 refcount, perf_mmap_close() will skip
4432                  * over us; possibly making our ring_buffer_put() the last.
4433                  */
4434                 mutex_lock(&event->mmap_mutex);
4435                 ring_buffer_attach(event, NULL);
4436                 mutex_unlock(&event->mmap_mutex);
4437         }
4438
4439         if (is_cgroup_event(event))
4440                 perf_detach_cgroup(event);
4441
4442         if (!event->parent) {
4443                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4444                         put_callchain_buffers();
4445         }
4446
4447         perf_event_free_bpf_prog(event);
4448         perf_addr_filters_splice(event, NULL);
4449         kfree(event->addr_filter_ranges);
4450
4451         if (event->destroy)
4452                 event->destroy(event);
4453
4454         if (event->ctx)
4455                 put_ctx(event->ctx);
4456
4457         if (event->hw.target)
4458                 put_task_struct(event->hw.target);
4459
4460         exclusive_event_destroy(event);
4461         module_put(event->pmu->module);
4462
4463         call_rcu(&event->rcu_head, free_event_rcu);
4464 }
4465
4466 /*
4467  * Used to free events which have a known refcount of 1, such as in error paths
4468  * where the event isn't exposed yet and inherited events.
4469  */
4470 static void free_event(struct perf_event *event)
4471 {
4472         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4473                                 "unexpected event refcount: %ld; ptr=%p\n",
4474                                 atomic_long_read(&event->refcount), event)) {
4475                 /* leak to avoid use-after-free */
4476                 return;
4477         }
4478
4479         _free_event(event);
4480 }
4481
4482 /*
4483  * Remove user event from the owner task.
4484  */
4485 static void perf_remove_from_owner(struct perf_event *event)
4486 {
4487         struct task_struct *owner;
4488
4489         rcu_read_lock();
4490         /*
4491          * Matches the smp_store_release() in perf_event_exit_task(). If we
4492          * observe !owner it means the list deletion is complete and we can
4493          * indeed free this event, otherwise we need to serialize on
4494          * owner->perf_event_mutex.
4495          */
4496         owner = READ_ONCE(event->owner);
4497         if (owner) {
4498                 /*
4499                  * Since delayed_put_task_struct() also drops the last
4500                  * task reference we can safely take a new reference
4501                  * while holding the rcu_read_lock().
4502                  */
4503                 get_task_struct(owner);
4504         }
4505         rcu_read_unlock();
4506
4507         if (owner) {
4508                 /*
4509                  * If we're here through perf_event_exit_task() we're already
4510                  * holding ctx->mutex which would be an inversion wrt. the
4511                  * normal lock order.
4512                  *
4513                  * However we can safely take this lock because its the child
4514                  * ctx->mutex.
4515                  */
4516                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4517
4518                 /*
4519                  * We have to re-check the event->owner field, if it is cleared
4520                  * we raced with perf_event_exit_task(), acquiring the mutex
4521                  * ensured they're done, and we can proceed with freeing the
4522                  * event.
4523                  */
4524                 if (event->owner) {
4525                         list_del_init(&event->owner_entry);
4526                         smp_store_release(&event->owner, NULL);
4527                 }
4528                 mutex_unlock(&owner->perf_event_mutex);
4529                 put_task_struct(owner);
4530         }
4531 }
4532
4533 static void put_event(struct perf_event *event)
4534 {
4535         if (!atomic_long_dec_and_test(&event->refcount))
4536                 return;
4537
4538         _free_event(event);
4539 }
4540
4541 /*
4542  * Kill an event dead; while event:refcount will preserve the event
4543  * object, it will not preserve its functionality. Once the last 'user'
4544  * gives up the object, we'll destroy the thing.
4545  */
4546 int perf_event_release_kernel(struct perf_event *event)
4547 {
4548         struct perf_event_context *ctx = event->ctx;
4549         struct perf_event *child, *tmp;
4550         LIST_HEAD(free_list);
4551
4552         /*
4553          * If we got here through err_file: fput(event_file); we will not have
4554          * attached to a context yet.
4555          */
4556         if (!ctx) {
4557                 WARN_ON_ONCE(event->attach_state &
4558                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4559                 goto no_ctx;
4560         }
4561
4562         if (!is_kernel_event(event))
4563                 perf_remove_from_owner(event);
4564
4565         ctx = perf_event_ctx_lock(event);
4566         WARN_ON_ONCE(ctx->parent_ctx);
4567         perf_remove_from_context(event, DETACH_GROUP);
4568
4569         raw_spin_lock_irq(&ctx->lock);
4570         /*
4571          * Mark this event as STATE_DEAD, there is no external reference to it
4572          * anymore.
4573          *
4574          * Anybody acquiring event->child_mutex after the below loop _must_
4575          * also see this, most importantly inherit_event() which will avoid
4576          * placing more children on the list.
4577          *
4578          * Thus this guarantees that we will in fact observe and kill _ALL_
4579          * child events.
4580          */
4581         event->state = PERF_EVENT_STATE_DEAD;
4582         raw_spin_unlock_irq(&ctx->lock);
4583
4584         perf_event_ctx_unlock(event, ctx);
4585
4586 again:
4587         mutex_lock(&event->child_mutex);
4588         list_for_each_entry(child, &event->child_list, child_list) {
4589
4590                 /*
4591                  * Cannot change, child events are not migrated, see the
4592                  * comment with perf_event_ctx_lock_nested().
4593                  */
4594                 ctx = READ_ONCE(child->ctx);
4595                 /*
4596                  * Since child_mutex nests inside ctx::mutex, we must jump
4597                  * through hoops. We start by grabbing a reference on the ctx.
4598                  *
4599                  * Since the event cannot get freed while we hold the
4600                  * child_mutex, the context must also exist and have a !0
4601                  * reference count.
4602                  */
4603                 get_ctx(ctx);
4604
4605                 /*
4606                  * Now that we have a ctx ref, we can drop child_mutex, and
4607                  * acquire ctx::mutex without fear of it going away. Then we
4608                  * can re-acquire child_mutex.
4609                  */
4610                 mutex_unlock(&event->child_mutex);
4611                 mutex_lock(&ctx->mutex);
4612                 mutex_lock(&event->child_mutex);
4613
4614                 /*
4615                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4616                  * state, if child is still the first entry, it didn't get freed
4617                  * and we can continue doing so.
4618                  */
4619                 tmp = list_first_entry_or_null(&event->child_list,
4620                                                struct perf_event, child_list);
4621                 if (tmp == child) {
4622                         perf_remove_from_context(child, DETACH_GROUP);
4623                         list_move(&child->child_list, &free_list);
4624                         /*
4625                          * This matches the refcount bump in inherit_event();
4626                          * this can't be the last reference.
4627                          */
4628                         put_event(event);
4629                 }
4630
4631                 mutex_unlock(&event->child_mutex);
4632                 mutex_unlock(&ctx->mutex);
4633                 put_ctx(ctx);
4634                 goto again;
4635         }
4636         mutex_unlock(&event->child_mutex);
4637
4638         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4639                 list_del(&child->child_list);
4640                 free_event(child);
4641         }
4642
4643 no_ctx:
4644         put_event(event); /* Must be the 'last' reference */
4645         return 0;
4646 }
4647 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4648
4649 /*
4650  * Called when the last reference to the file is gone.
4651  */
4652 static int perf_release(struct inode *inode, struct file *file)
4653 {
4654         perf_event_release_kernel(file->private_data);
4655         return 0;
4656 }
4657
4658 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4659 {
4660         struct perf_event *child;
4661         u64 total = 0;
4662
4663         *enabled = 0;
4664         *running = 0;
4665
4666         mutex_lock(&event->child_mutex);
4667
4668         (void)perf_event_read(event, false);
4669         total += perf_event_count(event);
4670
4671         *enabled += event->total_time_enabled +
4672                         atomic64_read(&event->child_total_time_enabled);
4673         *running += event->total_time_running +
4674                         atomic64_read(&event->child_total_time_running);
4675
4676         list_for_each_entry(child, &event->child_list, child_list) {
4677                 (void)perf_event_read(child, false);
4678                 total += perf_event_count(child);
4679                 *enabled += child->total_time_enabled;
4680                 *running += child->total_time_running;
4681         }
4682         mutex_unlock(&event->child_mutex);
4683
4684         return total;
4685 }
4686
4687 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4688 {
4689         struct perf_event_context *ctx;
4690         u64 count;
4691
4692         ctx = perf_event_ctx_lock(event);
4693         count = __perf_event_read_value(event, enabled, running);
4694         perf_event_ctx_unlock(event, ctx);
4695
4696         return count;
4697 }
4698 EXPORT_SYMBOL_GPL(perf_event_read_value);
4699
4700 static int __perf_read_group_add(struct perf_event *leader,
4701                                         u64 read_format, u64 *values)
4702 {
4703         struct perf_event_context *ctx = leader->ctx;
4704         struct perf_event *sub;
4705         unsigned long flags;
4706         int n = 1; /* skip @nr */
4707         int ret;
4708
4709         ret = perf_event_read(leader, true);
4710         if (ret)
4711                 return ret;
4712
4713         raw_spin_lock_irqsave(&ctx->lock, flags);
4714
4715         /*
4716          * Since we co-schedule groups, {enabled,running} times of siblings
4717          * will be identical to those of the leader, so we only publish one
4718          * set.
4719          */
4720         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4721                 values[n++] += leader->total_time_enabled +
4722                         atomic64_read(&leader->child_total_time_enabled);
4723         }
4724
4725         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4726                 values[n++] += leader->total_time_running +
4727                         atomic64_read(&leader->child_total_time_running);
4728         }
4729
4730         /*
4731          * Write {count,id} tuples for every sibling.
4732          */
4733         values[n++] += perf_event_count(leader);
4734         if (read_format & PERF_FORMAT_ID)
4735                 values[n++] = primary_event_id(leader);
4736
4737         for_each_sibling_event(sub, leader) {
4738                 values[n++] += perf_event_count(sub);
4739                 if (read_format & PERF_FORMAT_ID)
4740                         values[n++] = primary_event_id(sub);
4741         }
4742
4743         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4744         return 0;
4745 }
4746
4747 static int perf_read_group(struct perf_event *event,
4748                                    u64 read_format, char __user *buf)
4749 {
4750         struct perf_event *leader = event->group_leader, *child;
4751         struct perf_event_context *ctx = leader->ctx;
4752         int ret;
4753         u64 *values;
4754
4755         lockdep_assert_held(&ctx->mutex);
4756
4757         values = kzalloc(event->read_size, GFP_KERNEL);
4758         if (!values)
4759                 return -ENOMEM;
4760
4761         values[0] = 1 + leader->nr_siblings;
4762
4763         /*
4764          * By locking the child_mutex of the leader we effectively
4765          * lock the child list of all siblings.. XXX explain how.
4766          */
4767         mutex_lock(&leader->child_mutex);
4768
4769         ret = __perf_read_group_add(leader, read_format, values);
4770         if (ret)
4771                 goto unlock;
4772
4773         list_for_each_entry(child, &leader->child_list, child_list) {
4774                 ret = __perf_read_group_add(child, read_format, values);
4775                 if (ret)
4776                         goto unlock;
4777         }
4778
4779         mutex_unlock(&leader->child_mutex);
4780
4781         ret = event->read_size;
4782         if (copy_to_user(buf, values, event->read_size))
4783                 ret = -EFAULT;
4784         goto out;
4785
4786 unlock:
4787         mutex_unlock(&leader->child_mutex);
4788 out:
4789         kfree(values);
4790         return ret;
4791 }
4792
4793 static int perf_read_one(struct perf_event *event,
4794                                  u64 read_format, char __user *buf)
4795 {
4796         u64 enabled, running;
4797         u64 values[4];
4798         int n = 0;
4799
4800         values[n++] = __perf_event_read_value(event, &enabled, &running);
4801         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4802                 values[n++] = enabled;
4803         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4804                 values[n++] = running;
4805         if (read_format & PERF_FORMAT_ID)
4806                 values[n++] = primary_event_id(event);
4807
4808         if (copy_to_user(buf, values, n * sizeof(u64)))
4809                 return -EFAULT;
4810
4811         return n * sizeof(u64);
4812 }
4813
4814 static bool is_event_hup(struct perf_event *event)
4815 {
4816         bool no_children;
4817
4818         if (event->state > PERF_EVENT_STATE_EXIT)
4819                 return false;
4820
4821         mutex_lock(&event->child_mutex);
4822         no_children = list_empty(&event->child_list);
4823         mutex_unlock(&event->child_mutex);
4824         return no_children;
4825 }
4826
4827 /*
4828  * Read the performance event - simple non blocking version for now
4829  */
4830 static ssize_t
4831 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4832 {
4833         u64 read_format = event->attr.read_format;
4834         int ret;
4835
4836         /*
4837          * Return end-of-file for a read on an event that is in
4838          * error state (i.e. because it was pinned but it couldn't be
4839          * scheduled on to the CPU at some point).
4840          */
4841         if (event->state == PERF_EVENT_STATE_ERROR)
4842                 return 0;
4843
4844         if (count < event->read_size)
4845                 return -ENOSPC;
4846
4847         WARN_ON_ONCE(event->ctx->parent_ctx);
4848         if (read_format & PERF_FORMAT_GROUP)
4849                 ret = perf_read_group(event, read_format, buf);
4850         else
4851                 ret = perf_read_one(event, read_format, buf);
4852
4853         return ret;
4854 }
4855
4856 static ssize_t
4857 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4858 {
4859         struct perf_event *event = file->private_data;
4860         struct perf_event_context *ctx;
4861         int ret;
4862
4863         ctx = perf_event_ctx_lock(event);
4864         ret = __perf_read(event, buf, count);
4865         perf_event_ctx_unlock(event, ctx);
4866
4867         return ret;
4868 }
4869
4870 static __poll_t perf_poll(struct file *file, poll_table *wait)
4871 {
4872         struct perf_event *event = file->private_data;
4873         struct ring_buffer *rb;
4874         __poll_t events = EPOLLHUP;
4875
4876         poll_wait(file, &event->waitq, wait);
4877
4878         if (is_event_hup(event))
4879                 return events;
4880
4881         /*
4882          * Pin the event->rb by taking event->mmap_mutex; otherwise
4883          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4884          */
4885         mutex_lock(&event->mmap_mutex);
4886         rb = event->rb;
4887         if (rb)
4888                 events = atomic_xchg(&rb->poll, 0);
4889         mutex_unlock(&event->mmap_mutex);
4890         return events;
4891 }
4892
4893 static void _perf_event_reset(struct perf_event *event)
4894 {
4895         (void)perf_event_read(event, false);
4896         local64_set(&event->count, 0);
4897         perf_event_update_userpage(event);
4898 }
4899
4900 /*
4901  * Holding the top-level event's child_mutex means that any
4902  * descendant process that has inherited this event will block
4903  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4904  * task existence requirements of perf_event_enable/disable.
4905  */
4906 static void perf_event_for_each_child(struct perf_event *event,
4907                                         void (*func)(struct perf_event *))
4908 {
4909         struct perf_event *child;
4910
4911         WARN_ON_ONCE(event->ctx->parent_ctx);
4912
4913         mutex_lock(&event->child_mutex);
4914         func(event);
4915         list_for_each_entry(child, &event->child_list, child_list)
4916                 func(child);
4917         mutex_unlock(&event->child_mutex);
4918 }
4919
4920 static void perf_event_for_each(struct perf_event *event,
4921                                   void (*func)(struct perf_event *))
4922 {
4923         struct perf_event_context *ctx = event->ctx;
4924         struct perf_event *sibling;
4925
4926         lockdep_assert_held(&ctx->mutex);
4927
4928         event = event->group_leader;
4929
4930         perf_event_for_each_child(event, func);
4931         for_each_sibling_event(sibling, event)
4932                 perf_event_for_each_child(sibling, func);
4933 }
4934
4935 static void __perf_event_period(struct perf_event *event,
4936                                 struct perf_cpu_context *cpuctx,
4937                                 struct perf_event_context *ctx,
4938                                 void *info)
4939 {
4940         u64 value = *((u64 *)info);
4941         bool active;
4942
4943         if (event->attr.freq) {
4944                 event->attr.sample_freq = value;
4945         } else {
4946                 event->attr.sample_period = value;
4947                 event->hw.sample_period = value;
4948         }
4949
4950         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4951         if (active) {
4952                 perf_pmu_disable(ctx->pmu);
4953                 /*
4954                  * We could be throttled; unthrottle now to avoid the tick
4955                  * trying to unthrottle while we already re-started the event.
4956                  */
4957                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4958                         event->hw.interrupts = 0;
4959                         perf_log_throttle(event, 1);
4960                 }
4961                 event->pmu->stop(event, PERF_EF_UPDATE);
4962         }
4963
4964         local64_set(&event->hw.period_left, 0);
4965
4966         if (active) {
4967                 event->pmu->start(event, PERF_EF_RELOAD);
4968                 perf_pmu_enable(ctx->pmu);
4969         }
4970 }
4971
4972 static int perf_event_check_period(struct perf_event *event, u64 value)
4973 {
4974         return event->pmu->check_period(event, value);
4975 }
4976
4977 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4978 {
4979         u64 value;
4980
4981         if (!is_sampling_event(event))
4982                 return -EINVAL;
4983
4984         if (copy_from_user(&value, arg, sizeof(value)))
4985                 return -EFAULT;
4986
4987         if (!value)
4988                 return -EINVAL;
4989
4990         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4991                 return -EINVAL;
4992
4993         if (perf_event_check_period(event, value))
4994                 return -EINVAL;
4995
4996         event_function_call(event, __perf_event_period, &value);
4997
4998         return 0;
4999 }
5000
5001 static const struct file_operations perf_fops;
5002
5003 static inline int perf_fget_light(int fd, struct fd *p)
5004 {
5005         struct fd f = fdget(fd);
5006         if (!f.file)
5007                 return -EBADF;
5008
5009         if (f.file->f_op != &perf_fops) {
5010                 fdput(f);
5011                 return -EBADF;
5012         }
5013         *p = f;
5014         return 0;
5015 }
5016
5017 static int perf_event_set_output(struct perf_event *event,
5018                                  struct perf_event *output_event);
5019 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5020 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5021 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5022                           struct perf_event_attr *attr);
5023
5024 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5025 {
5026         void (*func)(struct perf_event *);
5027         u32 flags = arg;
5028
5029         switch (cmd) {
5030         case PERF_EVENT_IOC_ENABLE:
5031                 func = _perf_event_enable;
5032                 break;
5033         case PERF_EVENT_IOC_DISABLE:
5034                 func = _perf_event_disable;
5035                 break;
5036         case PERF_EVENT_IOC_RESET:
5037                 func = _perf_event_reset;
5038                 break;
5039
5040         case PERF_EVENT_IOC_REFRESH:
5041                 return _perf_event_refresh(event, arg);
5042
5043         case PERF_EVENT_IOC_PERIOD:
5044                 return perf_event_period(event, (u64 __user *)arg);
5045
5046         case PERF_EVENT_IOC_ID:
5047         {
5048                 u64 id = primary_event_id(event);
5049
5050                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5051                         return -EFAULT;
5052                 return 0;
5053         }
5054
5055         case PERF_EVENT_IOC_SET_OUTPUT:
5056         {
5057                 int ret;
5058                 if (arg != -1) {
5059                         struct perf_event *output_event;
5060                         struct fd output;
5061                         ret = perf_fget_light(arg, &output);
5062                         if (ret)
5063                                 return ret;
5064                         output_event = output.file->private_data;
5065                         ret = perf_event_set_output(event, output_event);
5066                         fdput(output);
5067                 } else {
5068                         ret = perf_event_set_output(event, NULL);
5069                 }
5070                 return ret;
5071         }
5072
5073         case PERF_EVENT_IOC_SET_FILTER:
5074                 return perf_event_set_filter(event, (void __user *)arg);
5075
5076         case PERF_EVENT_IOC_SET_BPF:
5077                 return perf_event_set_bpf_prog(event, arg);
5078
5079         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5080                 struct ring_buffer *rb;
5081
5082                 rcu_read_lock();
5083                 rb = rcu_dereference(event->rb);
5084                 if (!rb || !rb->nr_pages) {
5085                         rcu_read_unlock();
5086                         return -EINVAL;
5087                 }
5088                 rb_toggle_paused(rb, !!arg);
5089                 rcu_read_unlock();
5090                 return 0;
5091         }
5092
5093         case PERF_EVENT_IOC_QUERY_BPF:
5094                 return perf_event_query_prog_array(event, (void __user *)arg);
5095
5096         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5097                 struct perf_event_attr new_attr;
5098                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5099                                          &new_attr);
5100
5101                 if (err)
5102                         return err;
5103
5104                 return perf_event_modify_attr(event,  &new_attr);
5105         }
5106         default:
5107                 return -ENOTTY;
5108         }
5109
5110         if (flags & PERF_IOC_FLAG_GROUP)
5111                 perf_event_for_each(event, func);
5112         else
5113                 perf_event_for_each_child(event, func);
5114
5115         return 0;
5116 }
5117
5118 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5119 {
5120         struct perf_event *event = file->private_data;
5121         struct perf_event_context *ctx;
5122         long ret;
5123
5124         ctx = perf_event_ctx_lock(event);
5125         ret = _perf_ioctl(event, cmd, arg);
5126         perf_event_ctx_unlock(event, ctx);
5127
5128         return ret;
5129 }
5130
5131 #ifdef CONFIG_COMPAT
5132 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5133                                 unsigned long arg)
5134 {
5135         switch (_IOC_NR(cmd)) {
5136         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5137         case _IOC_NR(PERF_EVENT_IOC_ID):
5138         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5139         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5140                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5141                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5142                         cmd &= ~IOCSIZE_MASK;
5143                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5144                 }
5145                 break;
5146         }
5147         return perf_ioctl(file, cmd, arg);
5148 }
5149 #else
5150 # define perf_compat_ioctl NULL
5151 #endif
5152
5153 int perf_event_task_enable(void)
5154 {
5155         struct perf_event_context *ctx;
5156         struct perf_event *event;
5157
5158         mutex_lock(&current->perf_event_mutex);
5159         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5160                 ctx = perf_event_ctx_lock(event);
5161                 perf_event_for_each_child(event, _perf_event_enable);
5162                 perf_event_ctx_unlock(event, ctx);
5163         }
5164         mutex_unlock(&current->perf_event_mutex);
5165
5166         return 0;
5167 }
5168
5169 int perf_event_task_disable(void)
5170 {
5171         struct perf_event_context *ctx;
5172         struct perf_event *event;
5173
5174         mutex_lock(&current->perf_event_mutex);
5175         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5176                 ctx = perf_event_ctx_lock(event);
5177                 perf_event_for_each_child(event, _perf_event_disable);
5178                 perf_event_ctx_unlock(event, ctx);
5179         }
5180         mutex_unlock(&current->perf_event_mutex);
5181
5182         return 0;
5183 }
5184
5185 static int perf_event_index(struct perf_event *event)
5186 {
5187         if (event->hw.state & PERF_HES_STOPPED)
5188                 return 0;
5189
5190         if (event->state != PERF_EVENT_STATE_ACTIVE)
5191                 return 0;
5192
5193         return event->pmu->event_idx(event);
5194 }
5195
5196 static void calc_timer_values(struct perf_event *event,
5197                                 u64 *now,
5198                                 u64 *enabled,
5199                                 u64 *running)
5200 {
5201         u64 ctx_time;
5202
5203         *now = perf_clock();
5204         ctx_time = event->shadow_ctx_time + *now;
5205         __perf_update_times(event, ctx_time, enabled, running);
5206 }
5207
5208 static void perf_event_init_userpage(struct perf_event *event)
5209 {
5210         struct perf_event_mmap_page *userpg;
5211         struct ring_buffer *rb;
5212
5213         rcu_read_lock();
5214         rb = rcu_dereference(event->rb);
5215         if (!rb)
5216                 goto unlock;
5217
5218         userpg = rb->user_page;
5219
5220         /* Allow new userspace to detect that bit 0 is deprecated */
5221         userpg->cap_bit0_is_deprecated = 1;
5222         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5223         userpg->data_offset = PAGE_SIZE;
5224         userpg->data_size = perf_data_size(rb);
5225
5226 unlock:
5227         rcu_read_unlock();
5228 }
5229
5230 void __weak arch_perf_update_userpage(
5231         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5232 {
5233 }
5234
5235 /*
5236  * Callers need to ensure there can be no nesting of this function, otherwise
5237  * the seqlock logic goes bad. We can not serialize this because the arch
5238  * code calls this from NMI context.
5239  */
5240 void perf_event_update_userpage(struct perf_event *event)
5241 {
5242         struct perf_event_mmap_page *userpg;
5243         struct ring_buffer *rb;
5244         u64 enabled, running, now;
5245
5246         rcu_read_lock();
5247         rb = rcu_dereference(event->rb);
5248         if (!rb)
5249                 goto unlock;
5250
5251         /*
5252          * compute total_time_enabled, total_time_running
5253          * based on snapshot values taken when the event
5254          * was last scheduled in.
5255          *
5256          * we cannot simply called update_context_time()
5257          * because of locking issue as we can be called in
5258          * NMI context
5259          */
5260         calc_timer_values(event, &now, &enabled, &running);
5261
5262         userpg = rb->user_page;
5263         /*
5264          * Disable preemption to guarantee consistent time stamps are stored to
5265          * the user page.
5266          */
5267         preempt_disable();
5268         ++userpg->lock;
5269         barrier();
5270         userpg->index = perf_event_index(event);
5271         userpg->offset = perf_event_count(event);
5272         if (userpg->index)
5273                 userpg->offset -= local64_read(&event->hw.prev_count);
5274
5275         userpg->time_enabled = enabled +
5276                         atomic64_read(&event->child_total_time_enabled);
5277
5278         userpg->time_running = running +
5279                         atomic64_read(&event->child_total_time_running);
5280
5281         arch_perf_update_userpage(event, userpg, now);
5282
5283         barrier();
5284         ++userpg->lock;
5285         preempt_enable();
5286 unlock:
5287         rcu_read_unlock();
5288 }
5289 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5290
5291 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5292 {
5293         struct perf_event *event = vmf->vma->vm_file->private_data;
5294         struct ring_buffer *rb;
5295         vm_fault_t ret = VM_FAULT_SIGBUS;
5296
5297         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5298                 if (vmf->pgoff == 0)
5299                         ret = 0;
5300                 return ret;
5301         }
5302
5303         rcu_read_lock();
5304         rb = rcu_dereference(event->rb);
5305         if (!rb)
5306                 goto unlock;
5307
5308         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5309                 goto unlock;
5310
5311         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5312         if (!vmf->page)
5313                 goto unlock;
5314
5315         get_page(vmf->page);
5316         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5317         vmf->page->index   = vmf->pgoff;
5318
5319         ret = 0;
5320 unlock:
5321         rcu_read_unlock();
5322
5323         return ret;
5324 }
5325
5326 static void ring_buffer_attach(struct perf_event *event,
5327                                struct ring_buffer *rb)
5328 {
5329         struct ring_buffer *old_rb = NULL;
5330         unsigned long flags;
5331
5332         if (event->rb) {
5333                 /*
5334                  * Should be impossible, we set this when removing
5335                  * event->rb_entry and wait/clear when adding event->rb_entry.
5336                  */
5337                 WARN_ON_ONCE(event->rcu_pending);
5338
5339                 old_rb = event->rb;
5340                 spin_lock_irqsave(&old_rb->event_lock, flags);
5341                 list_del_rcu(&event->rb_entry);
5342                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5343
5344                 event->rcu_batches = get_state_synchronize_rcu();
5345                 event->rcu_pending = 1;
5346         }
5347
5348         if (rb) {
5349                 if (event->rcu_pending) {
5350                         cond_synchronize_rcu(event->rcu_batches);
5351                         event->rcu_pending = 0;
5352                 }
5353
5354                 spin_lock_irqsave(&rb->event_lock, flags);
5355                 list_add_rcu(&event->rb_entry, &rb->event_list);
5356                 spin_unlock_irqrestore(&rb->event_lock, flags);
5357         }
5358
5359         /*
5360          * Avoid racing with perf_mmap_close(AUX): stop the event
5361          * before swizzling the event::rb pointer; if it's getting
5362          * unmapped, its aux_mmap_count will be 0 and it won't
5363          * restart. See the comment in __perf_pmu_output_stop().
5364          *
5365          * Data will inevitably be lost when set_output is done in
5366          * mid-air, but then again, whoever does it like this is
5367          * not in for the data anyway.
5368          */
5369         if (has_aux(event))
5370                 perf_event_stop(event, 0);
5371
5372         rcu_assign_pointer(event->rb, rb);
5373
5374         if (old_rb) {
5375                 ring_buffer_put(old_rb);
5376                 /*
5377                  * Since we detached before setting the new rb, so that we
5378                  * could attach the new rb, we could have missed a wakeup.
5379                  * Provide it now.
5380                  */
5381                 wake_up_all(&event->waitq);
5382         }
5383 }
5384
5385 static void ring_buffer_wakeup(struct perf_event *event)
5386 {
5387         struct ring_buffer *rb;
5388
5389         rcu_read_lock();
5390         rb = rcu_dereference(event->rb);
5391         if (rb) {
5392                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5393                         wake_up_all(&event->waitq);
5394         }
5395         rcu_read_unlock();
5396 }
5397
5398 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5399 {
5400         struct ring_buffer *rb;
5401
5402         rcu_read_lock();
5403         rb = rcu_dereference(event->rb);
5404         if (rb) {
5405                 if (!refcount_inc_not_zero(&rb->refcount))
5406                         rb = NULL;
5407         }
5408         rcu_read_unlock();
5409
5410         return rb;
5411 }
5412
5413 void ring_buffer_put(struct ring_buffer *rb)
5414 {
5415         if (!refcount_dec_and_test(&rb->refcount))
5416                 return;
5417
5418         WARN_ON_ONCE(!list_empty(&rb->event_list));
5419
5420         call_rcu(&rb->rcu_head, rb_free_rcu);
5421 }
5422
5423 static void perf_mmap_open(struct vm_area_struct *vma)
5424 {
5425         struct perf_event *event = vma->vm_file->private_data;
5426
5427         atomic_inc(&event->mmap_count);
5428         atomic_inc(&event->rb->mmap_count);
5429
5430         if (vma->vm_pgoff)
5431                 atomic_inc(&event->rb->aux_mmap_count);
5432
5433         if (event->pmu->event_mapped)
5434                 event->pmu->event_mapped(event, vma->vm_mm);
5435 }
5436
5437 static void perf_pmu_output_stop(struct perf_event *event);
5438
5439 /*
5440  * A buffer can be mmap()ed multiple times; either directly through the same
5441  * event, or through other events by use of perf_event_set_output().
5442  *
5443  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5444  * the buffer here, where we still have a VM context. This means we need
5445  * to detach all events redirecting to us.
5446  */
5447 static void perf_mmap_close(struct vm_area_struct *vma)
5448 {
5449         struct perf_event *event = vma->vm_file->private_data;
5450
5451         struct ring_buffer *rb = ring_buffer_get(event);
5452         struct user_struct *mmap_user = rb->mmap_user;
5453         int mmap_locked = rb->mmap_locked;
5454         unsigned long size = perf_data_size(rb);
5455
5456         if (event->pmu->event_unmapped)
5457                 event->pmu->event_unmapped(event, vma->vm_mm);
5458
5459         /*
5460          * rb->aux_mmap_count will always drop before rb->mmap_count and
5461          * event->mmap_count, so it is ok to use event->mmap_mutex to
5462          * serialize with perf_mmap here.
5463          */
5464         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5465             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5466                 /*
5467                  * Stop all AUX events that are writing to this buffer,
5468                  * so that we can free its AUX pages and corresponding PMU
5469                  * data. Note that after rb::aux_mmap_count dropped to zero,
5470                  * they won't start any more (see perf_aux_output_begin()).
5471                  */
5472                 perf_pmu_output_stop(event);
5473
5474                 /* now it's safe to free the pages */
5475                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5476                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5477
5478                 /* this has to be the last one */
5479                 rb_free_aux(rb);
5480                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5481
5482                 mutex_unlock(&event->mmap_mutex);
5483         }
5484
5485         atomic_dec(&rb->mmap_count);
5486
5487         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5488                 goto out_put;
5489
5490         ring_buffer_attach(event, NULL);
5491         mutex_unlock(&event->mmap_mutex);
5492
5493         /* If there's still other mmap()s of this buffer, we're done. */
5494         if (atomic_read(&rb->mmap_count))
5495                 goto out_put;
5496
5497         /*
5498          * No other mmap()s, detach from all other events that might redirect
5499          * into the now unreachable buffer. Somewhat complicated by the
5500          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5501          */
5502 again:
5503         rcu_read_lock();
5504         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5505                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5506                         /*
5507                          * This event is en-route to free_event() which will
5508                          * detach it and remove it from the list.
5509                          */
5510                         continue;
5511                 }
5512                 rcu_read_unlock();
5513
5514                 mutex_lock(&event->mmap_mutex);
5515                 /*
5516                  * Check we didn't race with perf_event_set_output() which can
5517                  * swizzle the rb from under us while we were waiting to
5518                  * acquire mmap_mutex.
5519                  *
5520                  * If we find a different rb; ignore this event, a next
5521                  * iteration will no longer find it on the list. We have to
5522                  * still restart the iteration to make sure we're not now
5523                  * iterating the wrong list.
5524                  */
5525                 if (event->rb == rb)
5526                         ring_buffer_attach(event, NULL);
5527
5528                 mutex_unlock(&event->mmap_mutex);
5529                 put_event(event);
5530
5531                 /*
5532                  * Restart the iteration; either we're on the wrong list or
5533                  * destroyed its integrity by doing a deletion.
5534                  */
5535                 goto again;
5536         }
5537         rcu_read_unlock();
5538
5539         /*
5540          * It could be there's still a few 0-ref events on the list; they'll
5541          * get cleaned up by free_event() -- they'll also still have their
5542          * ref on the rb and will free it whenever they are done with it.
5543          *
5544          * Aside from that, this buffer is 'fully' detached and unmapped,
5545          * undo the VM accounting.
5546          */
5547
5548         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5549         vma->vm_mm->pinned_vm -= mmap_locked;
5550         free_uid(mmap_user);
5551
5552 out_put:
5553         ring_buffer_put(rb); /* could be last */
5554 }
5555
5556 static const struct vm_operations_struct perf_mmap_vmops = {
5557         .open           = perf_mmap_open,
5558         .close          = perf_mmap_close, /* non mergeable */
5559         .fault          = perf_mmap_fault,
5560         .page_mkwrite   = perf_mmap_fault,
5561 };
5562
5563 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5564 {
5565         struct perf_event *event = file->private_data;
5566         unsigned long user_locked, user_lock_limit;
5567         struct user_struct *user = current_user();
5568         unsigned long locked, lock_limit;
5569         struct ring_buffer *rb = NULL;
5570         unsigned long vma_size;
5571         unsigned long nr_pages;
5572         long user_extra = 0, extra = 0;
5573         int ret = 0, flags = 0;
5574
5575         /*
5576          * Don't allow mmap() of inherited per-task counters. This would
5577          * create a performance issue due to all children writing to the
5578          * same rb.
5579          */
5580         if (event->cpu == -1 && event->attr.inherit)
5581                 return -EINVAL;
5582
5583         if (!(vma->vm_flags & VM_SHARED))
5584                 return -EINVAL;
5585
5586         vma_size = vma->vm_end - vma->vm_start;
5587
5588         if (vma->vm_pgoff == 0) {
5589                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5590         } else {
5591                 /*
5592                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5593                  * mapped, all subsequent mappings should have the same size
5594                  * and offset. Must be above the normal perf buffer.
5595                  */
5596                 u64 aux_offset, aux_size;
5597
5598                 if (!event->rb)
5599                         return -EINVAL;
5600
5601                 nr_pages = vma_size / PAGE_SIZE;
5602
5603                 mutex_lock(&event->mmap_mutex);
5604                 ret = -EINVAL;
5605
5606                 rb = event->rb;
5607                 if (!rb)
5608                         goto aux_unlock;
5609
5610                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5611                 aux_size = READ_ONCE(rb->user_page->aux_size);
5612
5613                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5614                         goto aux_unlock;
5615
5616                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5617                         goto aux_unlock;
5618
5619                 /* already mapped with a different offset */
5620                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5621                         goto aux_unlock;
5622
5623                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5624                         goto aux_unlock;
5625
5626                 /* already mapped with a different size */
5627                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5628                         goto aux_unlock;
5629
5630                 if (!is_power_of_2(nr_pages))
5631                         goto aux_unlock;
5632
5633                 if (!atomic_inc_not_zero(&rb->mmap_count))
5634                         goto aux_unlock;
5635
5636                 if (rb_has_aux(rb)) {
5637                         atomic_inc(&rb->aux_mmap_count);
5638                         ret = 0;
5639                         goto unlock;
5640                 }
5641
5642                 atomic_set(&rb->aux_mmap_count, 1);
5643                 user_extra = nr_pages;
5644
5645                 goto accounting;
5646         }
5647
5648         /*
5649          * If we have rb pages ensure they're a power-of-two number, so we
5650          * can do bitmasks instead of modulo.
5651          */
5652         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5653                 return -EINVAL;
5654
5655         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5656                 return -EINVAL;
5657
5658         WARN_ON_ONCE(event->ctx->parent_ctx);
5659 again:
5660         mutex_lock(&event->mmap_mutex);
5661         if (event->rb) {
5662                 if (event->rb->nr_pages != nr_pages) {
5663                         ret = -EINVAL;
5664                         goto unlock;
5665                 }
5666
5667                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5668                         /*
5669                          * Raced against perf_mmap_close() through
5670                          * perf_event_set_output(). Try again, hope for better
5671                          * luck.
5672                          */
5673                         mutex_unlock(&event->mmap_mutex);
5674                         goto again;
5675                 }
5676
5677                 goto unlock;
5678         }
5679
5680         user_extra = nr_pages + 1;
5681
5682 accounting:
5683         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5684
5685         /*
5686          * Increase the limit linearly with more CPUs:
5687          */
5688         user_lock_limit *= num_online_cpus();
5689
5690         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5691
5692         if (user_locked > user_lock_limit)
5693                 extra = user_locked - user_lock_limit;
5694
5695         lock_limit = rlimit(RLIMIT_MEMLOCK);
5696         lock_limit >>= PAGE_SHIFT;
5697         locked = vma->vm_mm->pinned_vm + extra;
5698
5699         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5700                 !capable(CAP_IPC_LOCK)) {
5701                 ret = -EPERM;
5702                 goto unlock;
5703         }
5704
5705         WARN_ON(!rb && event->rb);
5706
5707         if (vma->vm_flags & VM_WRITE)
5708                 flags |= RING_BUFFER_WRITABLE;
5709
5710         if (!rb) {
5711                 rb = rb_alloc(nr_pages,
5712                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5713                               event->cpu, flags);
5714
5715                 if (!rb) {
5716                         ret = -ENOMEM;
5717                         goto unlock;
5718                 }
5719
5720                 atomic_set(&rb->mmap_count, 1);
5721                 rb->mmap_user = get_current_user();
5722                 rb->mmap_locked = extra;
5723
5724                 ring_buffer_attach(event, rb);
5725
5726                 perf_event_init_userpage(event);
5727                 perf_event_update_userpage(event);
5728         } else {
5729                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5730                                    event->attr.aux_watermark, flags);
5731                 if (!ret)
5732                         rb->aux_mmap_locked = extra;
5733         }
5734
5735 unlock:
5736         if (!ret) {
5737                 atomic_long_add(user_extra, &user->locked_vm);
5738                 vma->vm_mm->pinned_vm += extra;
5739
5740                 atomic_inc(&event->mmap_count);
5741         } else if (rb) {
5742                 atomic_dec(&rb->mmap_count);
5743         }
5744 aux_unlock:
5745         mutex_unlock(&event->mmap_mutex);
5746
5747         /*
5748          * Since pinned accounting is per vm we cannot allow fork() to copy our
5749          * vma.
5750          */
5751         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5752         vma->vm_ops = &perf_mmap_vmops;
5753
5754         if (event->pmu->event_mapped)
5755                 event->pmu->event_mapped(event, vma->vm_mm);
5756
5757         return ret;
5758 }
5759
5760 static int perf_fasync(int fd, struct file *filp, int on)
5761 {
5762         struct inode *inode = file_inode(filp);
5763         struct perf_event *event = filp->private_data;
5764         int retval;
5765
5766         inode_lock(inode);
5767         retval = fasync_helper(fd, filp, on, &event->fasync);
5768         inode_unlock(inode);
5769
5770         if (retval < 0)
5771                 return retval;
5772
5773         return 0;
5774 }
5775
5776 static const struct file_operations perf_fops = {
5777         .llseek                 = no_llseek,
5778         .release                = perf_release,
5779         .read                   = perf_read,
5780         .poll                   = perf_poll,
5781         .unlocked_ioctl         = perf_ioctl,
5782         .compat_ioctl           = perf_compat_ioctl,
5783         .mmap                   = perf_mmap,
5784         .fasync                 = perf_fasync,
5785 };
5786
5787 /*
5788  * Perf event wakeup
5789  *
5790  * If there's data, ensure we set the poll() state and publish everything
5791  * to user-space before waking everybody up.
5792  */
5793
5794 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5795 {
5796         /* only the parent has fasync state */
5797         if (event->parent)
5798                 event = event->parent;
5799         return &event->fasync;
5800 }
5801
5802 void perf_event_wakeup(struct perf_event *event)
5803 {
5804         ring_buffer_wakeup(event);
5805
5806         if (event->pending_kill) {
5807                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5808                 event->pending_kill = 0;
5809         }
5810 }
5811
5812 static void perf_pending_event(struct irq_work *entry)
5813 {
5814         struct perf_event *event = container_of(entry,
5815                         struct perf_event, pending);
5816         int rctx;
5817
5818         rctx = perf_swevent_get_recursion_context();
5819         /*
5820          * If we 'fail' here, that's OK, it means recursion is already disabled
5821          * and we won't recurse 'further'.
5822          */
5823
5824         if (event->pending_disable) {
5825                 event->pending_disable = 0;
5826                 perf_event_disable_local(event);
5827         }
5828
5829         if (event->pending_wakeup) {
5830                 event->pending_wakeup = 0;
5831                 perf_event_wakeup(event);
5832         }
5833
5834         if (rctx >= 0)
5835                 perf_swevent_put_recursion_context(rctx);
5836 }
5837
5838 /*
5839  * We assume there is only KVM supporting the callbacks.
5840  * Later on, we might change it to a list if there is
5841  * another virtualization implementation supporting the callbacks.
5842  */
5843 struct perf_guest_info_callbacks *perf_guest_cbs;
5844
5845 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5846 {
5847         perf_guest_cbs = cbs;
5848         return 0;
5849 }
5850 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5851
5852 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5853 {
5854         perf_guest_cbs = NULL;
5855         return 0;
5856 }
5857 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5858
5859 static void
5860 perf_output_sample_regs(struct perf_output_handle *handle,
5861                         struct pt_regs *regs, u64 mask)
5862 {
5863         int bit;
5864         DECLARE_BITMAP(_mask, 64);
5865
5866         bitmap_from_u64(_mask, mask);
5867         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5868                 u64 val;
5869
5870                 val = perf_reg_value(regs, bit);
5871                 perf_output_put(handle, val);
5872         }
5873 }
5874
5875 static void perf_sample_regs_user(struct perf_regs *regs_user,
5876                                   struct pt_regs *regs,
5877                                   struct pt_regs *regs_user_copy)
5878 {
5879         if (user_mode(regs)) {
5880                 regs_user->abi = perf_reg_abi(current);
5881                 regs_user->regs = regs;
5882         } else if (current->mm) {
5883                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5884         } else {
5885                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5886                 regs_user->regs = NULL;
5887         }
5888 }
5889
5890 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5891                                   struct pt_regs *regs)
5892 {
5893         regs_intr->regs = regs;
5894         regs_intr->abi  = perf_reg_abi(current);
5895 }
5896
5897
5898 /*
5899  * Get remaining task size from user stack pointer.
5900  *
5901  * It'd be better to take stack vma map and limit this more
5902  * precisly, but there's no way to get it safely under interrupt,
5903  * so using TASK_SIZE as limit.
5904  */
5905 static u64 perf_ustack_task_size(struct pt_regs *regs)
5906 {
5907         unsigned long addr = perf_user_stack_pointer(regs);
5908
5909         if (!addr || addr >= TASK_SIZE)
5910                 return 0;
5911
5912         return TASK_SIZE - addr;
5913 }
5914
5915 static u16
5916 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5917                         struct pt_regs *regs)
5918 {
5919         u64 task_size;
5920
5921         /* No regs, no stack pointer, no dump. */
5922         if (!regs)
5923                 return 0;
5924
5925         /*
5926          * Check if we fit in with the requested stack size into the:
5927          * - TASK_SIZE
5928          *   If we don't, we limit the size to the TASK_SIZE.
5929          *
5930          * - remaining sample size
5931          *   If we don't, we customize the stack size to
5932          *   fit in to the remaining sample size.
5933          */
5934
5935         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5936         stack_size = min(stack_size, (u16) task_size);
5937
5938         /* Current header size plus static size and dynamic size. */
5939         header_size += 2 * sizeof(u64);
5940
5941         /* Do we fit in with the current stack dump size? */
5942         if ((u16) (header_size + stack_size) < header_size) {
5943                 /*
5944                  * If we overflow the maximum size for the sample,
5945                  * we customize the stack dump size to fit in.
5946                  */
5947                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5948                 stack_size = round_up(stack_size, sizeof(u64));
5949         }
5950
5951         return stack_size;
5952 }
5953
5954 static void
5955 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5956                           struct pt_regs *regs)
5957 {
5958         /* Case of a kernel thread, nothing to dump */
5959         if (!regs) {
5960                 u64 size = 0;
5961                 perf_output_put(handle, size);
5962         } else {
5963                 unsigned long sp;
5964                 unsigned int rem;
5965                 u64 dyn_size;
5966                 mm_segment_t fs;
5967
5968                 /*
5969                  * We dump:
5970                  * static size
5971                  *   - the size requested by user or the best one we can fit
5972                  *     in to the sample max size
5973                  * data
5974                  *   - user stack dump data
5975                  * dynamic size
5976                  *   - the actual dumped size
5977                  */
5978
5979                 /* Static size. */
5980                 perf_output_put(handle, dump_size);
5981
5982                 /* Data. */
5983                 sp = perf_user_stack_pointer(regs);
5984                 fs = get_fs();
5985                 set_fs(USER_DS);
5986                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5987                 set_fs(fs);
5988                 dyn_size = dump_size - rem;
5989
5990                 perf_output_skip(handle, rem);
5991
5992                 /* Dynamic size. */
5993                 perf_output_put(handle, dyn_size);
5994         }
5995 }
5996
5997 static void __perf_event_header__init_id(struct perf_event_header *header,
5998                                          struct perf_sample_data *data,
5999                                          struct perf_event *event)
6000 {
6001         u64 sample_type = event->attr.sample_type;
6002
6003         data->type = sample_type;
6004         header->size += event->id_header_size;
6005
6006         if (sample_type & PERF_SAMPLE_TID) {
6007                 /* namespace issues */
6008                 data->tid_entry.pid = perf_event_pid(event, current);
6009                 data->tid_entry.tid = perf_event_tid(event, current);
6010         }
6011
6012         if (sample_type & PERF_SAMPLE_TIME)
6013                 data->time = perf_event_clock(event);
6014
6015         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6016                 data->id = primary_event_id(event);
6017
6018         if (sample_type & PERF_SAMPLE_STREAM_ID)
6019                 data->stream_id = event->id;
6020
6021         if (sample_type & PERF_SAMPLE_CPU) {
6022                 data->cpu_entry.cpu      = raw_smp_processor_id();
6023                 data->cpu_entry.reserved = 0;
6024         }
6025 }
6026
6027 void perf_event_header__init_id(struct perf_event_header *header,
6028                                 struct perf_sample_data *data,
6029                                 struct perf_event *event)
6030 {
6031         if (event->attr.sample_id_all)
6032                 __perf_event_header__init_id(header, data, event);
6033 }
6034
6035 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6036                                            struct perf_sample_data *data)
6037 {
6038         u64 sample_type = data->type;
6039
6040         if (sample_type & PERF_SAMPLE_TID)
6041                 perf_output_put(handle, data->tid_entry);
6042
6043         if (sample_type & PERF_SAMPLE_TIME)
6044                 perf_output_put(handle, data->time);
6045
6046         if (sample_type & PERF_SAMPLE_ID)
6047                 perf_output_put(handle, data->id);
6048
6049         if (sample_type & PERF_SAMPLE_STREAM_ID)
6050                 perf_output_put(handle, data->stream_id);
6051
6052         if (sample_type & PERF_SAMPLE_CPU)
6053                 perf_output_put(handle, data->cpu_entry);
6054
6055         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6056                 perf_output_put(handle, data->id);
6057 }
6058
6059 void perf_event__output_id_sample(struct perf_event *event,
6060                                   struct perf_output_handle *handle,
6061                                   struct perf_sample_data *sample)
6062 {
6063         if (event->attr.sample_id_all)
6064                 __perf_event__output_id_sample(handle, sample);
6065 }
6066
6067 static void perf_output_read_one(struct perf_output_handle *handle,
6068                                  struct perf_event *event,
6069                                  u64 enabled, u64 running)
6070 {
6071         u64 read_format = event->attr.read_format;
6072         u64 values[4];
6073         int n = 0;
6074
6075         values[n++] = perf_event_count(event);
6076         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6077                 values[n++] = enabled +
6078                         atomic64_read(&event->child_total_time_enabled);
6079         }
6080         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6081                 values[n++] = running +
6082                         atomic64_read(&event->child_total_time_running);
6083         }
6084         if (read_format & PERF_FORMAT_ID)
6085                 values[n++] = primary_event_id(event);
6086
6087         __output_copy(handle, values, n * sizeof(u64));
6088 }
6089
6090 static void perf_output_read_group(struct perf_output_handle *handle,
6091                             struct perf_event *event,
6092                             u64 enabled, u64 running)
6093 {
6094         struct perf_event *leader = event->group_leader, *sub;
6095         u64 read_format = event->attr.read_format;
6096         u64 values[5];
6097         int n = 0;
6098
6099         values[n++] = 1 + leader->nr_siblings;
6100
6101         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6102                 values[n++] = enabled;
6103
6104         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6105                 values[n++] = running;
6106
6107         if ((leader != event) &&
6108             (leader->state == PERF_EVENT_STATE_ACTIVE))
6109                 leader->pmu->read(leader);
6110
6111         values[n++] = perf_event_count(leader);
6112         if (read_format & PERF_FORMAT_ID)
6113                 values[n++] = primary_event_id(leader);
6114
6115         __output_copy(handle, values, n * sizeof(u64));
6116
6117         for_each_sibling_event(sub, leader) {
6118                 n = 0;
6119
6120                 if ((sub != event) &&
6121                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6122                         sub->pmu->read(sub);
6123
6124                 values[n++] = perf_event_count(sub);
6125                 if (read_format & PERF_FORMAT_ID)
6126                         values[n++] = primary_event_id(sub);
6127
6128                 __output_copy(handle, values, n * sizeof(u64));
6129         }
6130 }
6131
6132 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6133                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6134
6135 /*
6136  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6137  *
6138  * The problem is that its both hard and excessively expensive to iterate the
6139  * child list, not to mention that its impossible to IPI the children running
6140  * on another CPU, from interrupt/NMI context.
6141  */
6142 static void perf_output_read(struct perf_output_handle *handle,
6143                              struct perf_event *event)
6144 {
6145         u64 enabled = 0, running = 0, now;
6146         u64 read_format = event->attr.read_format;
6147
6148         /*
6149          * compute total_time_enabled, total_time_running
6150          * based on snapshot values taken when the event
6151          * was last scheduled in.
6152          *
6153          * we cannot simply called update_context_time()
6154          * because of locking issue as we are called in
6155          * NMI context
6156          */
6157         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6158                 calc_timer_values(event, &now, &enabled, &running);
6159
6160         if (event->attr.read_format & PERF_FORMAT_GROUP)
6161                 perf_output_read_group(handle, event, enabled, running);
6162         else
6163                 perf_output_read_one(handle, event, enabled, running);
6164 }
6165
6166 void perf_output_sample(struct perf_output_handle *handle,
6167                         struct perf_event_header *header,
6168                         struct perf_sample_data *data,
6169                         struct perf_event *event)
6170 {
6171         u64 sample_type = data->type;
6172
6173         perf_output_put(handle, *header);
6174
6175         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6176                 perf_output_put(handle, data->id);
6177
6178         if (sample_type & PERF_SAMPLE_IP)
6179                 perf_output_put(handle, data->ip);
6180
6181         if (sample_type & PERF_SAMPLE_TID)
6182                 perf_output_put(handle, data->tid_entry);
6183
6184         if (sample_type & PERF_SAMPLE_TIME)
6185                 perf_output_put(handle, data->time);
6186
6187         if (sample_type & PERF_SAMPLE_ADDR)
6188                 perf_output_put(handle, data->addr);
6189
6190         if (sample_type & PERF_SAMPLE_ID)
6191                 perf_output_put(handle, data->id);
6192
6193         if (sample_type & PERF_SAMPLE_STREAM_ID)
6194                 perf_output_put(handle, data->stream_id);
6195
6196         if (sample_type & PERF_SAMPLE_CPU)
6197                 perf_output_put(handle, data->cpu_entry);
6198
6199         if (sample_type & PERF_SAMPLE_PERIOD)
6200                 perf_output_put(handle, data->period);
6201
6202         if (sample_type & PERF_SAMPLE_READ)
6203                 perf_output_read(handle, event);
6204
6205         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6206                 int size = 1;
6207
6208                 size += data->callchain->nr;
6209                 size *= sizeof(u64);
6210                 __output_copy(handle, data->callchain, size);
6211         }
6212
6213         if (sample_type & PERF_SAMPLE_RAW) {
6214                 struct perf_raw_record *raw = data->raw;
6215
6216                 if (raw) {
6217                         struct perf_raw_frag *frag = &raw->frag;
6218
6219                         perf_output_put(handle, raw->size);
6220                         do {
6221                                 if (frag->copy) {
6222                                         __output_custom(handle, frag->copy,
6223                                                         frag->data, frag->size);
6224                                 } else {
6225                                         __output_copy(handle, frag->data,
6226                                                       frag->size);
6227                                 }
6228                                 if (perf_raw_frag_last(frag))
6229                                         break;
6230                                 frag = frag->next;
6231                         } while (1);
6232                         if (frag->pad)
6233                                 __output_skip(handle, NULL, frag->pad);
6234                 } else {
6235                         struct {
6236                                 u32     size;
6237                                 u32     data;
6238                         } raw = {
6239                                 .size = sizeof(u32),
6240                                 .data = 0,
6241                         };
6242                         perf_output_put(handle, raw);
6243                 }
6244         }
6245
6246         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6247                 if (data->br_stack) {
6248                         size_t size;
6249
6250                         size = data->br_stack->nr
6251                              * sizeof(struct perf_branch_entry);
6252
6253                         perf_output_put(handle, data->br_stack->nr);
6254                         perf_output_copy(handle, data->br_stack->entries, size);
6255                 } else {
6256                         /*
6257                          * we always store at least the value of nr
6258                          */
6259                         u64 nr = 0;
6260                         perf_output_put(handle, nr);
6261                 }
6262         }
6263
6264         if (sample_type & PERF_SAMPLE_REGS_USER) {
6265                 u64 abi = data->regs_user.abi;
6266
6267                 /*
6268                  * If there are no regs to dump, notice it through
6269                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6270                  */
6271                 perf_output_put(handle, abi);
6272
6273                 if (abi) {
6274                         u64 mask = event->attr.sample_regs_user;
6275                         perf_output_sample_regs(handle,
6276                                                 data->regs_user.regs,
6277                                                 mask);
6278                 }
6279         }
6280
6281         if (sample_type & PERF_SAMPLE_STACK_USER) {
6282                 perf_output_sample_ustack(handle,
6283                                           data->stack_user_size,
6284                                           data->regs_user.regs);
6285         }
6286
6287         if (sample_type & PERF_SAMPLE_WEIGHT)
6288                 perf_output_put(handle, data->weight);
6289
6290         if (sample_type & PERF_SAMPLE_DATA_SRC)
6291                 perf_output_put(handle, data->data_src.val);
6292
6293         if (sample_type & PERF_SAMPLE_TRANSACTION)
6294                 perf_output_put(handle, data->txn);
6295
6296         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6297                 u64 abi = data->regs_intr.abi;
6298                 /*
6299                  * If there are no regs to dump, notice it through
6300                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6301                  */
6302                 perf_output_put(handle, abi);
6303
6304                 if (abi) {
6305                         u64 mask = event->attr.sample_regs_intr;
6306
6307                         perf_output_sample_regs(handle,
6308                                                 data->regs_intr.regs,
6309                                                 mask);
6310                 }
6311         }
6312
6313         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6314                 perf_output_put(handle, data->phys_addr);
6315
6316         if (!event->attr.watermark) {
6317                 int wakeup_events = event->attr.wakeup_events;
6318
6319                 if (wakeup_events) {
6320                         struct ring_buffer *rb = handle->rb;
6321                         int events = local_inc_return(&rb->events);
6322
6323                         if (events >= wakeup_events) {
6324                                 local_sub(wakeup_events, &rb->events);
6325                                 local_inc(&rb->wakeup);
6326                         }
6327                 }
6328         }
6329 }
6330
6331 static u64 perf_virt_to_phys(u64 virt)
6332 {
6333         u64 phys_addr = 0;
6334         struct page *p = NULL;
6335
6336         if (!virt)
6337                 return 0;
6338
6339         if (virt >= TASK_SIZE) {
6340                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6341                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6342                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6343                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6344         } else {
6345                 /*
6346                  * Walking the pages tables for user address.
6347                  * Interrupts are disabled, so it prevents any tear down
6348                  * of the page tables.
6349                  * Try IRQ-safe __get_user_pages_fast first.
6350                  * If failed, leave phys_addr as 0.
6351                  */
6352                 if ((current->mm != NULL) &&
6353                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6354                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6355
6356                 if (p)
6357                         put_page(p);
6358         }
6359
6360         return phys_addr;
6361 }
6362
6363 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6364
6365 struct perf_callchain_entry *
6366 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6367 {
6368         bool kernel = !event->attr.exclude_callchain_kernel;
6369         bool user   = !event->attr.exclude_callchain_user;
6370         /* Disallow cross-task user callchains. */
6371         bool crosstask = event->ctx->task && event->ctx->task != current;
6372         const u32 max_stack = event->attr.sample_max_stack;
6373         struct perf_callchain_entry *callchain;
6374
6375         if (!kernel && !user)
6376                 return &__empty_callchain;
6377
6378         callchain = get_perf_callchain(regs, 0, kernel, user,
6379                                        max_stack, crosstask, true);
6380         return callchain ?: &__empty_callchain;
6381 }
6382
6383 void perf_prepare_sample(struct perf_event_header *header,
6384                          struct perf_sample_data *data,
6385                          struct perf_event *event,
6386                          struct pt_regs *regs)
6387 {
6388         u64 sample_type = event->attr.sample_type;
6389
6390         header->type = PERF_RECORD_SAMPLE;
6391         header->size = sizeof(*header) + event->header_size;
6392
6393         header->misc = 0;
6394         header->misc |= perf_misc_flags(regs);
6395
6396         __perf_event_header__init_id(header, data, event);
6397
6398         if (sample_type & PERF_SAMPLE_IP)
6399                 data->ip = perf_instruction_pointer(regs);
6400
6401         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6402                 int size = 1;
6403
6404                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6405                         data->callchain = perf_callchain(event, regs);
6406
6407                 size += data->callchain->nr;
6408
6409                 header->size += size * sizeof(u64);
6410         }
6411
6412         if (sample_type & PERF_SAMPLE_RAW) {
6413                 struct perf_raw_record *raw = data->raw;
6414                 int size;
6415
6416                 if (raw) {
6417                         struct perf_raw_frag *frag = &raw->frag;
6418                         u32 sum = 0;
6419
6420                         do {
6421                                 sum += frag->size;
6422                                 if (perf_raw_frag_last(frag))
6423                                         break;
6424                                 frag = frag->next;
6425                         } while (1);
6426
6427                         size = round_up(sum + sizeof(u32), sizeof(u64));
6428                         raw->size = size - sizeof(u32);
6429                         frag->pad = raw->size - sum;
6430                 } else {
6431                         size = sizeof(u64);
6432                 }
6433
6434                 header->size += size;
6435         }
6436
6437         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6438                 int size = sizeof(u64); /* nr */
6439                 if (data->br_stack) {
6440                         size += data->br_stack->nr
6441                               * sizeof(struct perf_branch_entry);
6442                 }
6443                 header->size += size;
6444         }
6445
6446         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6447                 perf_sample_regs_user(&data->regs_user, regs,
6448                                       &data->regs_user_copy);
6449
6450         if (sample_type & PERF_SAMPLE_REGS_USER) {
6451                 /* regs dump ABI info */
6452                 int size = sizeof(u64);
6453
6454                 if (data->regs_user.regs) {
6455                         u64 mask = event->attr.sample_regs_user;
6456                         size += hweight64(mask) * sizeof(u64);
6457                 }
6458
6459                 header->size += size;
6460         }
6461
6462         if (sample_type & PERF_SAMPLE_STACK_USER) {
6463                 /*
6464                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6465                  * processed as the last one or have additional check added
6466                  * in case new sample type is added, because we could eat
6467                  * up the rest of the sample size.
6468                  */
6469                 u16 stack_size = event->attr.sample_stack_user;
6470                 u16 size = sizeof(u64);
6471
6472                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6473                                                      data->regs_user.regs);
6474
6475                 /*
6476                  * If there is something to dump, add space for the dump
6477                  * itself and for the field that tells the dynamic size,
6478                  * which is how many have been actually dumped.
6479                  */
6480                 if (stack_size)
6481                         size += sizeof(u64) + stack_size;
6482
6483                 data->stack_user_size = stack_size;
6484                 header->size += size;
6485         }
6486
6487         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6488                 /* regs dump ABI info */
6489                 int size = sizeof(u64);
6490
6491                 perf_sample_regs_intr(&data->regs_intr, regs);
6492
6493                 if (data->regs_intr.regs) {
6494                         u64 mask = event->attr.sample_regs_intr;
6495
6496                         size += hweight64(mask) * sizeof(u64);
6497                 }
6498
6499                 header->size += size;
6500         }
6501
6502         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6503                 data->phys_addr = perf_virt_to_phys(data->addr);
6504 }
6505
6506 static __always_inline int
6507 __perf_event_output(struct perf_event *event,
6508                     struct perf_sample_data *data,
6509                     struct pt_regs *regs,
6510                     int (*output_begin)(struct perf_output_handle *,
6511                                         struct perf_event *,
6512                                         unsigned int))
6513 {
6514         struct perf_output_handle handle;
6515         struct perf_event_header header;
6516         int err;
6517
6518         /* protect the callchain buffers */
6519         rcu_read_lock();
6520
6521         perf_prepare_sample(&header, data, event, regs);
6522
6523         err = output_begin(&handle, event, header.size);
6524         if (err)
6525                 goto exit;
6526
6527         perf_output_sample(&handle, &header, data, event);
6528
6529         perf_output_end(&handle);
6530
6531 exit:
6532         rcu_read_unlock();
6533         return err;
6534 }
6535
6536 void
6537 perf_event_output_forward(struct perf_event *event,
6538                          struct perf_sample_data *data,
6539                          struct pt_regs *regs)
6540 {
6541         __perf_event_output(event, data, regs, perf_output_begin_forward);
6542 }
6543
6544 void
6545 perf_event_output_backward(struct perf_event *event,
6546                            struct perf_sample_data *data,
6547                            struct pt_regs *regs)
6548 {
6549         __perf_event_output(event, data, regs, perf_output_begin_backward);
6550 }
6551
6552 int
6553 perf_event_output(struct perf_event *event,
6554                   struct perf_sample_data *data,
6555                   struct pt_regs *regs)
6556 {
6557         return __perf_event_output(event, data, regs, perf_output_begin);
6558 }
6559
6560 /*
6561  * read event_id
6562  */
6563
6564 struct perf_read_event {
6565         struct perf_event_header        header;
6566
6567         u32                             pid;
6568         u32                             tid;
6569 };
6570
6571 static void
6572 perf_event_read_event(struct perf_event *event,
6573                         struct task_struct *task)
6574 {
6575         struct perf_output_handle handle;
6576         struct perf_sample_data sample;
6577         struct perf_read_event read_event = {
6578                 .header = {
6579                         .type = PERF_RECORD_READ,
6580                         .misc = 0,
6581                         .size = sizeof(read_event) + event->read_size,
6582                 },
6583                 .pid = perf_event_pid(event, task),
6584                 .tid = perf_event_tid(event, task),
6585         };
6586         int ret;
6587
6588         perf_event_header__init_id(&read_event.header, &sample, event);
6589         ret = perf_output_begin(&handle, event, read_event.header.size);
6590         if (ret)
6591                 return;
6592
6593         perf_output_put(&handle, read_event);
6594         perf_output_read(&handle, event);
6595         perf_event__output_id_sample(event, &handle, &sample);
6596
6597         perf_output_end(&handle);
6598 }
6599
6600 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6601
6602 static void
6603 perf_iterate_ctx(struct perf_event_context *ctx,
6604                    perf_iterate_f output,
6605                    void *data, bool all)
6606 {
6607         struct perf_event *event;
6608
6609         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6610                 if (!all) {
6611                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6612                                 continue;
6613                         if (!event_filter_match(event))
6614                                 continue;
6615                 }
6616
6617                 output(event, data);
6618         }
6619 }
6620
6621 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6622 {
6623         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6624         struct perf_event *event;
6625
6626         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6627                 /*
6628                  * Skip events that are not fully formed yet; ensure that
6629                  * if we observe event->ctx, both event and ctx will be
6630                  * complete enough. See perf_install_in_context().
6631                  */
6632                 if (!smp_load_acquire(&event->ctx))
6633                         continue;
6634
6635                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6636                         continue;
6637                 if (!event_filter_match(event))
6638                         continue;
6639                 output(event, data);
6640         }
6641 }
6642
6643 /*
6644  * Iterate all events that need to receive side-band events.
6645  *
6646  * For new callers; ensure that account_pmu_sb_event() includes
6647  * your event, otherwise it might not get delivered.
6648  */
6649 static void
6650 perf_iterate_sb(perf_iterate_f output, void *data,
6651                struct perf_event_context *task_ctx)
6652 {
6653         struct perf_event_context *ctx;
6654         int ctxn;
6655
6656         rcu_read_lock();
6657         preempt_disable();
6658
6659         /*
6660          * If we have task_ctx != NULL we only notify the task context itself.
6661          * The task_ctx is set only for EXIT events before releasing task
6662          * context.
6663          */
6664         if (task_ctx) {
6665                 perf_iterate_ctx(task_ctx, output, data, false);
6666                 goto done;
6667         }
6668
6669         perf_iterate_sb_cpu(output, data);
6670
6671         for_each_task_context_nr(ctxn) {
6672                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6673                 if (ctx)
6674                         perf_iterate_ctx(ctx, output, data, false);
6675         }
6676 done:
6677         preempt_enable();
6678         rcu_read_unlock();
6679 }
6680
6681 /*
6682  * Clear all file-based filters at exec, they'll have to be
6683  * re-instated when/if these objects are mmapped again.
6684  */
6685 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6686 {
6687         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6688         struct perf_addr_filter *filter;
6689         unsigned int restart = 0, count = 0;
6690         unsigned long flags;
6691
6692         if (!has_addr_filter(event))
6693                 return;
6694
6695         raw_spin_lock_irqsave(&ifh->lock, flags);
6696         list_for_each_entry(filter, &ifh->list, entry) {
6697                 if (filter->path.dentry) {
6698                         event->addr_filter_ranges[count].start = 0;
6699                         event->addr_filter_ranges[count].size = 0;
6700                         restart++;
6701                 }
6702
6703                 count++;
6704         }
6705
6706         if (restart)
6707                 event->addr_filters_gen++;
6708         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6709
6710         if (restart)
6711                 perf_event_stop(event, 1);
6712 }
6713
6714 void perf_event_exec(void)
6715 {
6716         struct perf_event_context *ctx;
6717         int ctxn;
6718
6719         rcu_read_lock();
6720         for_each_task_context_nr(ctxn) {
6721                 ctx = current->perf_event_ctxp[ctxn];
6722                 if (!ctx)
6723                         continue;
6724
6725                 perf_event_enable_on_exec(ctxn);
6726
6727                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6728                                    true);
6729         }
6730         rcu_read_unlock();
6731 }
6732
6733 struct remote_output {
6734         struct ring_buffer      *rb;
6735         int                     err;
6736 };
6737
6738 static void __perf_event_output_stop(struct perf_event *event, void *data)
6739 {
6740         struct perf_event *parent = event->parent;
6741         struct remote_output *ro = data;
6742         struct ring_buffer *rb = ro->rb;
6743         struct stop_event_data sd = {
6744                 .event  = event,
6745         };
6746
6747         if (!has_aux(event))
6748                 return;
6749
6750         if (!parent)
6751                 parent = event;
6752
6753         /*
6754          * In case of inheritance, it will be the parent that links to the
6755          * ring-buffer, but it will be the child that's actually using it.
6756          *
6757          * We are using event::rb to determine if the event should be stopped,
6758          * however this may race with ring_buffer_attach() (through set_output),
6759          * which will make us skip the event that actually needs to be stopped.
6760          * So ring_buffer_attach() has to stop an aux event before re-assigning
6761          * its rb pointer.
6762          */
6763         if (rcu_dereference(parent->rb) == rb)
6764                 ro->err = __perf_event_stop(&sd);
6765 }
6766
6767 static int __perf_pmu_output_stop(void *info)
6768 {
6769         struct perf_event *event = info;
6770         struct pmu *pmu = event->pmu;
6771         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6772         struct remote_output ro = {
6773                 .rb     = event->rb,
6774         };
6775
6776         rcu_read_lock();
6777         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6778         if (cpuctx->task_ctx)
6779                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6780                                    &ro, false);
6781         rcu_read_unlock();
6782
6783         return ro.err;
6784 }
6785
6786 static void perf_pmu_output_stop(struct perf_event *event)
6787 {
6788         struct perf_event *iter;
6789         int err, cpu;
6790
6791 restart:
6792         rcu_read_lock();
6793         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6794                 /*
6795                  * For per-CPU events, we need to make sure that neither they
6796                  * nor their children are running; for cpu==-1 events it's
6797                  * sufficient to stop the event itself if it's active, since
6798                  * it can't have children.
6799                  */
6800                 cpu = iter->cpu;
6801                 if (cpu == -1)
6802                         cpu = READ_ONCE(iter->oncpu);
6803
6804                 if (cpu == -1)
6805                         continue;
6806
6807                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6808                 if (err == -EAGAIN) {
6809                         rcu_read_unlock();
6810                         goto restart;
6811                 }
6812         }
6813         rcu_read_unlock();
6814 }
6815
6816 /*
6817  * task tracking -- fork/exit
6818  *
6819  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6820  */
6821
6822 struct perf_task_event {
6823         struct task_struct              *task;
6824         struct perf_event_context       *task_ctx;
6825
6826         struct {
6827                 struct perf_event_header        header;
6828
6829                 u32                             pid;
6830                 u32                             ppid;
6831                 u32                             tid;
6832                 u32                             ptid;
6833                 u64                             time;
6834         } event_id;
6835 };
6836
6837 static int perf_event_task_match(struct perf_event *event)
6838 {
6839         return event->attr.comm  || event->attr.mmap ||
6840                event->attr.mmap2 || event->attr.mmap_data ||
6841                event->attr.task;
6842 }
6843
6844 static void perf_event_task_output(struct perf_event *event,
6845                                    void *data)
6846 {
6847         struct perf_task_event *task_event = data;
6848         struct perf_output_handle handle;
6849         struct perf_sample_data sample;
6850         struct task_struct *task = task_event->task;
6851         int ret, size = task_event->event_id.header.size;
6852
6853         if (!perf_event_task_match(event))
6854                 return;
6855
6856         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6857
6858         ret = perf_output_begin(&handle, event,
6859                                 task_event->event_id.header.size);
6860         if (ret)
6861                 goto out;
6862
6863         task_event->event_id.pid = perf_event_pid(event, task);
6864         task_event->event_id.ppid = perf_event_pid(event, current);
6865
6866         task_event->event_id.tid = perf_event_tid(event, task);
6867         task_event->event_id.ptid = perf_event_tid(event, current);
6868
6869         task_event->event_id.time = perf_event_clock(event);
6870
6871         perf_output_put(&handle, task_event->event_id);
6872
6873         perf_event__output_id_sample(event, &handle, &sample);
6874
6875         perf_output_end(&handle);
6876 out:
6877         task_event->event_id.header.size = size;
6878 }
6879
6880 static void perf_event_task(struct task_struct *task,
6881                               struct perf_event_context *task_ctx,
6882                               int new)
6883 {
6884         struct perf_task_event task_event;
6885
6886         if (!atomic_read(&nr_comm_events) &&
6887             !atomic_read(&nr_mmap_events) &&
6888             !atomic_read(&nr_task_events))
6889                 return;
6890
6891         task_event = (struct perf_task_event){
6892                 .task     = task,
6893                 .task_ctx = task_ctx,
6894                 .event_id    = {
6895                         .header = {
6896                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6897                                 .misc = 0,
6898                                 .size = sizeof(task_event.event_id),
6899                         },
6900                         /* .pid  */
6901                         /* .ppid */
6902                         /* .tid  */
6903                         /* .ptid */
6904                         /* .time */
6905                 },
6906         };
6907
6908         perf_iterate_sb(perf_event_task_output,
6909                        &task_event,
6910                        task_ctx);
6911 }
6912
6913 void perf_event_fork(struct task_struct *task)
6914 {
6915         perf_event_task(task, NULL, 1);
6916         perf_event_namespaces(task);
6917 }
6918
6919 /*
6920  * comm tracking
6921  */
6922
6923 struct perf_comm_event {
6924         struct task_struct      *task;
6925         char                    *comm;
6926         int                     comm_size;
6927
6928         struct {
6929                 struct perf_event_header        header;
6930
6931                 u32                             pid;
6932                 u32                             tid;
6933         } event_id;
6934 };
6935
6936 static int perf_event_comm_match(struct perf_event *event)
6937 {
6938         return event->attr.comm;
6939 }
6940
6941 static void perf_event_comm_output(struct perf_event *event,
6942                                    void *data)
6943 {
6944         struct perf_comm_event *comm_event = data;
6945         struct perf_output_handle handle;
6946         struct perf_sample_data sample;
6947         int size = comm_event->event_id.header.size;
6948         int ret;
6949
6950         if (!perf_event_comm_match(event))
6951                 return;
6952
6953         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6954         ret = perf_output_begin(&handle, event,
6955                                 comm_event->event_id.header.size);
6956
6957         if (ret)
6958                 goto out;
6959
6960         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6961         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6962
6963         perf_output_put(&handle, comm_event->event_id);
6964         __output_copy(&handle, comm_event->comm,
6965                                    comm_event->comm_size);
6966
6967         perf_event__output_id_sample(event, &handle, &sample);
6968
6969         perf_output_end(&handle);
6970 out:
6971         comm_event->event_id.header.size = size;
6972 }
6973
6974 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6975 {
6976         char comm[TASK_COMM_LEN];
6977         unsigned int size;
6978
6979         memset(comm, 0, sizeof(comm));
6980         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6981         size = ALIGN(strlen(comm)+1, sizeof(u64));
6982
6983         comm_event->comm = comm;
6984         comm_event->comm_size = size;
6985
6986         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6987
6988         perf_iterate_sb(perf_event_comm_output,
6989                        comm_event,
6990                        NULL);
6991 }
6992
6993 void perf_event_comm(struct task_struct *task, bool exec)
6994 {
6995         struct perf_comm_event comm_event;
6996
6997         if (!atomic_read(&nr_comm_events))
6998                 return;
6999
7000         comm_event = (struct perf_comm_event){
7001                 .task   = task,
7002                 /* .comm      */
7003                 /* .comm_size */
7004                 .event_id  = {
7005                         .header = {
7006                                 .type = PERF_RECORD_COMM,
7007                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7008                                 /* .size */
7009                         },
7010                         /* .pid */
7011                         /* .tid */
7012                 },
7013         };
7014
7015         perf_event_comm_event(&comm_event);
7016 }
7017
7018 /*
7019  * namespaces tracking
7020  */
7021
7022 struct perf_namespaces_event {
7023         struct task_struct              *task;
7024
7025         struct {
7026                 struct perf_event_header        header;
7027
7028                 u32                             pid;
7029                 u32                             tid;
7030                 u64                             nr_namespaces;
7031                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7032         } event_id;
7033 };
7034
7035 static int perf_event_namespaces_match(struct perf_event *event)
7036 {
7037         return event->attr.namespaces;
7038 }
7039
7040 static void perf_event_namespaces_output(struct perf_event *event,
7041                                          void *data)
7042 {
7043         struct perf_namespaces_event *namespaces_event = data;
7044         struct perf_output_handle handle;
7045         struct perf_sample_data sample;
7046         u16 header_size = namespaces_event->event_id.header.size;
7047         int ret;
7048
7049         if (!perf_event_namespaces_match(event))
7050                 return;
7051
7052         perf_event_header__init_id(&namespaces_event->event_id.header,
7053                                    &sample, event);
7054         ret = perf_output_begin(&handle, event,
7055                                 namespaces_event->event_id.header.size);
7056         if (ret)
7057                 goto out;
7058
7059         namespaces_event->event_id.pid = perf_event_pid(event,
7060                                                         namespaces_event->task);
7061         namespaces_event->event_id.tid = perf_event_tid(event,
7062                                                         namespaces_event->task);
7063
7064         perf_output_put(&handle, namespaces_event->event_id);
7065
7066         perf_event__output_id_sample(event, &handle, &sample);
7067
7068         perf_output_end(&handle);
7069 out:
7070         namespaces_event->event_id.header.size = header_size;
7071 }
7072
7073 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7074                                    struct task_struct *task,
7075                                    const struct proc_ns_operations *ns_ops)
7076 {
7077         struct path ns_path;
7078         struct inode *ns_inode;
7079         void *error;
7080
7081         error = ns_get_path(&ns_path, task, ns_ops);
7082         if (!error) {
7083                 ns_inode = ns_path.dentry->d_inode;
7084                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7085                 ns_link_info->ino = ns_inode->i_ino;
7086                 path_put(&ns_path);
7087         }
7088 }
7089
7090 void perf_event_namespaces(struct task_struct *task)
7091 {
7092         struct perf_namespaces_event namespaces_event;
7093         struct perf_ns_link_info *ns_link_info;
7094
7095         if (!atomic_read(&nr_namespaces_events))
7096                 return;
7097
7098         namespaces_event = (struct perf_namespaces_event){
7099                 .task   = task,
7100                 .event_id  = {
7101                         .header = {
7102                                 .type = PERF_RECORD_NAMESPACES,
7103                                 .misc = 0,
7104                                 .size = sizeof(namespaces_event.event_id),
7105                         },
7106                         /* .pid */
7107                         /* .tid */
7108                         .nr_namespaces = NR_NAMESPACES,
7109                         /* .link_info[NR_NAMESPACES] */
7110                 },
7111         };
7112
7113         ns_link_info = namespaces_event.event_id.link_info;
7114
7115         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7116                                task, &mntns_operations);
7117
7118 #ifdef CONFIG_USER_NS
7119         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7120                                task, &userns_operations);
7121 #endif
7122 #ifdef CONFIG_NET_NS
7123         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7124                                task, &netns_operations);
7125 #endif
7126 #ifdef CONFIG_UTS_NS
7127         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7128                                task, &utsns_operations);
7129 #endif
7130 #ifdef CONFIG_IPC_NS
7131         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7132                                task, &ipcns_operations);
7133 #endif
7134 #ifdef CONFIG_PID_NS
7135         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7136                                task, &pidns_operations);
7137 #endif
7138 #ifdef CONFIG_CGROUPS
7139         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7140                                task, &cgroupns_operations);
7141 #endif
7142
7143         perf_iterate_sb(perf_event_namespaces_output,
7144                         &namespaces_event,
7145                         NULL);
7146 }
7147
7148 /*
7149  * mmap tracking
7150  */
7151
7152 struct perf_mmap_event {
7153         struct vm_area_struct   *vma;
7154
7155         const char              *file_name;
7156         int                     file_size;
7157         int                     maj, min;
7158         u64                     ino;
7159         u64                     ino_generation;
7160         u32                     prot, flags;
7161
7162         struct {
7163                 struct perf_event_header        header;
7164
7165                 u32                             pid;
7166                 u32                             tid;
7167                 u64                             start;
7168                 u64                             len;
7169                 u64                             pgoff;
7170         } event_id;
7171 };
7172
7173 static int perf_event_mmap_match(struct perf_event *event,
7174                                  void *data)
7175 {
7176         struct perf_mmap_event *mmap_event = data;
7177         struct vm_area_struct *vma = mmap_event->vma;
7178         int executable = vma->vm_flags & VM_EXEC;
7179
7180         return (!executable && event->attr.mmap_data) ||
7181                (executable && (event->attr.mmap || event->attr.mmap2));
7182 }
7183
7184 static void perf_event_mmap_output(struct perf_event *event,
7185                                    void *data)
7186 {
7187         struct perf_mmap_event *mmap_event = data;
7188         struct perf_output_handle handle;
7189         struct perf_sample_data sample;
7190         int size = mmap_event->event_id.header.size;
7191         int ret;
7192
7193         if (!perf_event_mmap_match(event, data))
7194                 return;
7195
7196         if (event->attr.mmap2) {
7197                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7198                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7199                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7200                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7201                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7202                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7203                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7204         }
7205
7206         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7207         ret = perf_output_begin(&handle, event,
7208                                 mmap_event->event_id.header.size);
7209         if (ret)
7210                 goto out;
7211
7212         mmap_event->event_id.pid = perf_event_pid(event, current);
7213         mmap_event->event_id.tid = perf_event_tid(event, current);
7214
7215         perf_output_put(&handle, mmap_event->event_id);
7216
7217         if (event->attr.mmap2) {
7218                 perf_output_put(&handle, mmap_event->maj);
7219                 perf_output_put(&handle, mmap_event->min);
7220                 perf_output_put(&handle, mmap_event->ino);
7221                 perf_output_put(&handle, mmap_event->ino_generation);
7222                 perf_output_put(&handle, mmap_event->prot);
7223                 perf_output_put(&handle, mmap_event->flags);
7224         }
7225
7226         __output_copy(&handle, mmap_event->file_name,
7227                                    mmap_event->file_size);
7228
7229         perf_event__output_id_sample(event, &handle, &sample);
7230
7231         perf_output_end(&handle);
7232 out:
7233         mmap_event->event_id.header.size = size;
7234 }
7235
7236 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7237 {
7238         struct vm_area_struct *vma = mmap_event->vma;
7239         struct file *file = vma->vm_file;
7240         int maj = 0, min = 0;
7241         u64 ino = 0, gen = 0;
7242         u32 prot = 0, flags = 0;
7243         unsigned int size;
7244         char tmp[16];
7245         char *buf = NULL;
7246         char *name;
7247
7248         if (vma->vm_flags & VM_READ)
7249                 prot |= PROT_READ;
7250         if (vma->vm_flags & VM_WRITE)
7251                 prot |= PROT_WRITE;
7252         if (vma->vm_flags & VM_EXEC)
7253                 prot |= PROT_EXEC;
7254
7255         if (vma->vm_flags & VM_MAYSHARE)
7256                 flags = MAP_SHARED;
7257         else
7258                 flags = MAP_PRIVATE;
7259
7260         if (vma->vm_flags & VM_DENYWRITE)
7261                 flags |= MAP_DENYWRITE;
7262         if (vma->vm_flags & VM_MAYEXEC)
7263                 flags |= MAP_EXECUTABLE;
7264         if (vma->vm_flags & VM_LOCKED)
7265                 flags |= MAP_LOCKED;
7266         if (vma->vm_flags & VM_HUGETLB)
7267                 flags |= MAP_HUGETLB;
7268
7269         if (file) {
7270                 struct inode *inode;
7271                 dev_t dev;
7272
7273                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7274                 if (!buf) {
7275                         name = "//enomem";
7276                         goto cpy_name;
7277                 }
7278                 /*
7279                  * d_path() works from the end of the rb backwards, so we
7280                  * need to add enough zero bytes after the string to handle
7281                  * the 64bit alignment we do later.
7282                  */
7283                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7284                 if (IS_ERR(name)) {
7285                         name = "//toolong";
7286                         goto cpy_name;
7287                 }
7288                 inode = file_inode(vma->vm_file);
7289                 dev = inode->i_sb->s_dev;
7290                 ino = inode->i_ino;
7291                 gen = inode->i_generation;
7292                 maj = MAJOR(dev);
7293                 min = MINOR(dev);
7294
7295                 goto got_name;
7296         } else {
7297                 if (vma->vm_ops && vma->vm_ops->name) {
7298                         name = (char *) vma->vm_ops->name(vma);
7299                         if (name)
7300                                 goto cpy_name;
7301                 }
7302
7303                 name = (char *)arch_vma_name(vma);
7304                 if (name)
7305                         goto cpy_name;
7306
7307                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7308                                 vma->vm_end >= vma->vm_mm->brk) {
7309                         name = "[heap]";
7310                         goto cpy_name;
7311                 }
7312                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7313                                 vma->vm_end >= vma->vm_mm->start_stack) {
7314                         name = "[stack]";
7315                         goto cpy_name;
7316                 }
7317
7318                 name = "//anon";
7319                 goto cpy_name;
7320         }
7321
7322 cpy_name:
7323         strlcpy(tmp, name, sizeof(tmp));
7324         name = tmp;
7325 got_name:
7326         /*
7327          * Since our buffer works in 8 byte units we need to align our string
7328          * size to a multiple of 8. However, we must guarantee the tail end is
7329          * zero'd out to avoid leaking random bits to userspace.
7330          */
7331         size = strlen(name)+1;
7332         while (!IS_ALIGNED(size, sizeof(u64)))
7333                 name[size++] = '\0';
7334
7335         mmap_event->file_name = name;
7336         mmap_event->file_size = size;
7337         mmap_event->maj = maj;
7338         mmap_event->min = min;
7339         mmap_event->ino = ino;
7340         mmap_event->ino_generation = gen;
7341         mmap_event->prot = prot;
7342         mmap_event->flags = flags;
7343
7344         if (!(vma->vm_flags & VM_EXEC))
7345                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7346
7347         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7348
7349         perf_iterate_sb(perf_event_mmap_output,
7350                        mmap_event,
7351                        NULL);
7352
7353         kfree(buf);
7354 }
7355
7356 /*
7357  * Check whether inode and address range match filter criteria.
7358  */
7359 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7360                                      struct file *file, unsigned long offset,
7361                                      unsigned long size)
7362 {
7363         /* d_inode(NULL) won't be equal to any mapped user-space file */
7364         if (!filter->path.dentry)
7365                 return false;
7366
7367         if (d_inode(filter->path.dentry) != file_inode(file))
7368                 return false;
7369
7370         if (filter->offset > offset + size)
7371                 return false;
7372
7373         if (filter->offset + filter->size < offset)
7374                 return false;
7375
7376         return true;
7377 }
7378
7379 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7380                                         struct vm_area_struct *vma,
7381                                         struct perf_addr_filter_range *fr)
7382 {
7383         unsigned long vma_size = vma->vm_end - vma->vm_start;
7384         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7385         struct file *file = vma->vm_file;
7386
7387         if (!perf_addr_filter_match(filter, file, off, vma_size))
7388                 return false;
7389
7390         if (filter->offset < off) {
7391                 fr->start = vma->vm_start;
7392                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7393         } else {
7394                 fr->start = vma->vm_start + filter->offset - off;
7395                 fr->size = min(vma->vm_end - fr->start, filter->size);
7396         }
7397
7398         return true;
7399 }
7400
7401 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7402 {
7403         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7404         struct vm_area_struct *vma = data;
7405         struct perf_addr_filter *filter;
7406         unsigned int restart = 0, count = 0;
7407         unsigned long flags;
7408
7409         if (!has_addr_filter(event))
7410                 return;
7411
7412         if (!vma->vm_file)
7413                 return;
7414
7415         raw_spin_lock_irqsave(&ifh->lock, flags);
7416         list_for_each_entry(filter, &ifh->list, entry) {
7417                 if (perf_addr_filter_vma_adjust(filter, vma,
7418                                                 &event->addr_filter_ranges[count]))
7419                         restart++;
7420
7421                 count++;
7422         }
7423
7424         if (restart)
7425                 event->addr_filters_gen++;
7426         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7427
7428         if (restart)
7429                 perf_event_stop(event, 1);
7430 }
7431
7432 /*
7433  * Adjust all task's events' filters to the new vma
7434  */
7435 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7436 {
7437         struct perf_event_context *ctx;
7438         int ctxn;
7439
7440         /*
7441          * Data tracing isn't supported yet and as such there is no need
7442          * to keep track of anything that isn't related to executable code:
7443          */
7444         if (!(vma->vm_flags & VM_EXEC))
7445                 return;
7446
7447         rcu_read_lock();
7448         for_each_task_context_nr(ctxn) {
7449                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7450                 if (!ctx)
7451                         continue;
7452
7453                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7454         }
7455         rcu_read_unlock();
7456 }
7457
7458 void perf_event_mmap(struct vm_area_struct *vma)
7459 {
7460         struct perf_mmap_event mmap_event;
7461
7462         if (!atomic_read(&nr_mmap_events))
7463                 return;
7464
7465         mmap_event = (struct perf_mmap_event){
7466                 .vma    = vma,
7467                 /* .file_name */
7468                 /* .file_size */
7469                 .event_id  = {
7470                         .header = {
7471                                 .type = PERF_RECORD_MMAP,
7472                                 .misc = PERF_RECORD_MISC_USER,
7473                                 /* .size */
7474                         },
7475                         /* .pid */
7476                         /* .tid */
7477                         .start  = vma->vm_start,
7478                         .len    = vma->vm_end - vma->vm_start,
7479                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7480                 },
7481                 /* .maj (attr_mmap2 only) */
7482                 /* .min (attr_mmap2 only) */
7483                 /* .ino (attr_mmap2 only) */
7484                 /* .ino_generation (attr_mmap2 only) */
7485                 /* .prot (attr_mmap2 only) */
7486                 /* .flags (attr_mmap2 only) */
7487         };
7488
7489         perf_addr_filters_adjust(vma);
7490         perf_event_mmap_event(&mmap_event);
7491 }
7492
7493 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7494                           unsigned long size, u64 flags)
7495 {
7496         struct perf_output_handle handle;
7497         struct perf_sample_data sample;
7498         struct perf_aux_event {
7499                 struct perf_event_header        header;
7500                 u64                             offset;
7501                 u64                             size;
7502                 u64                             flags;
7503         } rec = {
7504                 .header = {
7505                         .type = PERF_RECORD_AUX,
7506                         .misc = 0,
7507                         .size = sizeof(rec),
7508                 },
7509                 .offset         = head,
7510                 .size           = size,
7511                 .flags          = flags,
7512         };
7513         int ret;
7514
7515         perf_event_header__init_id(&rec.header, &sample, event);
7516         ret = perf_output_begin(&handle, event, rec.header.size);
7517
7518         if (ret)
7519                 return;
7520
7521         perf_output_put(&handle, rec);
7522         perf_event__output_id_sample(event, &handle, &sample);
7523
7524         perf_output_end(&handle);
7525 }
7526
7527 /*
7528  * Lost/dropped samples logging
7529  */
7530 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7531 {
7532         struct perf_output_handle handle;
7533         struct perf_sample_data sample;
7534         int ret;
7535
7536         struct {
7537                 struct perf_event_header        header;
7538                 u64                             lost;
7539         } lost_samples_event = {
7540                 .header = {
7541                         .type = PERF_RECORD_LOST_SAMPLES,
7542                         .misc = 0,
7543                         .size = sizeof(lost_samples_event),
7544                 },
7545                 .lost           = lost,
7546         };
7547
7548         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7549
7550         ret = perf_output_begin(&handle, event,
7551                                 lost_samples_event.header.size);
7552         if (ret)
7553                 return;
7554
7555         perf_output_put(&handle, lost_samples_event);
7556         perf_event__output_id_sample(event, &handle, &sample);
7557         perf_output_end(&handle);
7558 }
7559
7560 /*
7561  * context_switch tracking
7562  */
7563
7564 struct perf_switch_event {
7565         struct task_struct      *task;
7566         struct task_struct      *next_prev;
7567
7568         struct {
7569                 struct perf_event_header        header;
7570                 u32                             next_prev_pid;
7571                 u32                             next_prev_tid;
7572         } event_id;
7573 };
7574
7575 static int perf_event_switch_match(struct perf_event *event)
7576 {
7577         return event->attr.context_switch;
7578 }
7579
7580 static void perf_event_switch_output(struct perf_event *event, void *data)
7581 {
7582         struct perf_switch_event *se = data;
7583         struct perf_output_handle handle;
7584         struct perf_sample_data sample;
7585         int ret;
7586
7587         if (!perf_event_switch_match(event))
7588                 return;
7589
7590         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7591         if (event->ctx->task) {
7592                 se->event_id.header.type = PERF_RECORD_SWITCH;
7593                 se->event_id.header.size = sizeof(se->event_id.header);
7594         } else {
7595                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7596                 se->event_id.header.size = sizeof(se->event_id);
7597                 se->event_id.next_prev_pid =
7598                                         perf_event_pid(event, se->next_prev);
7599                 se->event_id.next_prev_tid =
7600                                         perf_event_tid(event, se->next_prev);
7601         }
7602
7603         perf_event_header__init_id(&se->event_id.header, &sample, event);
7604
7605         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7606         if (ret)
7607                 return;
7608
7609         if (event->ctx->task)
7610                 perf_output_put(&handle, se->event_id.header);
7611         else
7612                 perf_output_put(&handle, se->event_id);
7613
7614         perf_event__output_id_sample(event, &handle, &sample);
7615
7616         perf_output_end(&handle);
7617 }
7618
7619 static void perf_event_switch(struct task_struct *task,
7620                               struct task_struct *next_prev, bool sched_in)
7621 {
7622         struct perf_switch_event switch_event;
7623
7624         /* N.B. caller checks nr_switch_events != 0 */
7625
7626         switch_event = (struct perf_switch_event){
7627                 .task           = task,
7628                 .next_prev      = next_prev,
7629                 .event_id       = {
7630                         .header = {
7631                                 /* .type */
7632                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7633                                 /* .size */
7634                         },
7635                         /* .next_prev_pid */
7636                         /* .next_prev_tid */
7637                 },
7638         };
7639
7640         if (!sched_in && task->state == TASK_RUNNING)
7641                 switch_event.event_id.header.misc |=
7642                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7643
7644         perf_iterate_sb(perf_event_switch_output,
7645                        &switch_event,
7646                        NULL);
7647 }
7648
7649 /*
7650  * IRQ throttle logging
7651  */
7652
7653 static void perf_log_throttle(struct perf_event *event, int enable)
7654 {
7655         struct perf_output_handle handle;
7656         struct perf_sample_data sample;
7657         int ret;
7658
7659         struct {
7660                 struct perf_event_header        header;
7661                 u64                             time;
7662                 u64                             id;
7663                 u64                             stream_id;
7664         } throttle_event = {
7665                 .header = {
7666                         .type = PERF_RECORD_THROTTLE,
7667                         .misc = 0,
7668                         .size = sizeof(throttle_event),
7669                 },
7670                 .time           = perf_event_clock(event),
7671                 .id             = primary_event_id(event),
7672                 .stream_id      = event->id,
7673         };
7674
7675         if (enable)
7676                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7677
7678         perf_event_header__init_id(&throttle_event.header, &sample, event);
7679
7680         ret = perf_output_begin(&handle, event,
7681                                 throttle_event.header.size);
7682         if (ret)
7683                 return;
7684
7685         perf_output_put(&handle, throttle_event);
7686         perf_event__output_id_sample(event, &handle, &sample);
7687         perf_output_end(&handle);
7688 }
7689
7690 /*
7691  * ksymbol register/unregister tracking
7692  */
7693
7694 struct perf_ksymbol_event {
7695         const char      *name;
7696         int             name_len;
7697         struct {
7698                 struct perf_event_header        header;
7699                 u64                             addr;
7700                 u32                             len;
7701                 u16                             ksym_type;
7702                 u16                             flags;
7703         } event_id;
7704 };
7705
7706 static int perf_event_ksymbol_match(struct perf_event *event)
7707 {
7708         return event->attr.ksymbol;
7709 }
7710
7711 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7712 {
7713         struct perf_ksymbol_event *ksymbol_event = data;
7714         struct perf_output_handle handle;
7715         struct perf_sample_data sample;
7716         int ret;
7717
7718         if (!perf_event_ksymbol_match(event))
7719                 return;
7720
7721         perf_event_header__init_id(&ksymbol_event->event_id.header,
7722                                    &sample, event);
7723         ret = perf_output_begin(&handle, event,
7724                                 ksymbol_event->event_id.header.size);
7725         if (ret)
7726                 return;
7727
7728         perf_output_put(&handle, ksymbol_event->event_id);
7729         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7730         perf_event__output_id_sample(event, &handle, &sample);
7731
7732         perf_output_end(&handle);
7733 }
7734
7735 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7736                         const char *sym)
7737 {
7738         struct perf_ksymbol_event ksymbol_event;
7739         char name[KSYM_NAME_LEN];
7740         u16 flags = 0;
7741         int name_len;
7742
7743         if (!atomic_read(&nr_ksymbol_events))
7744                 return;
7745
7746         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7747             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7748                 goto err;
7749
7750         strlcpy(name, sym, KSYM_NAME_LEN);
7751         name_len = strlen(name) + 1;
7752         while (!IS_ALIGNED(name_len, sizeof(u64)))
7753                 name[name_len++] = '\0';
7754         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7755
7756         if (unregister)
7757                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7758
7759         ksymbol_event = (struct perf_ksymbol_event){
7760                 .name = name,
7761                 .name_len = name_len,
7762                 .event_id = {
7763                         .header = {
7764                                 .type = PERF_RECORD_KSYMBOL,
7765                                 .size = sizeof(ksymbol_event.event_id) +
7766                                         name_len,
7767                         },
7768                         .addr = addr,
7769                         .len = len,
7770                         .ksym_type = ksym_type,
7771                         .flags = flags,
7772                 },
7773         };
7774
7775         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7776         return;
7777 err:
7778         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7779 }
7780
7781 /*
7782  * bpf program load/unload tracking
7783  */
7784
7785 struct perf_bpf_event {
7786         struct bpf_prog *prog;
7787         struct {
7788                 struct perf_event_header        header;
7789                 u16                             type;
7790                 u16                             flags;
7791                 u32                             id;
7792                 u8                              tag[BPF_TAG_SIZE];
7793         } event_id;
7794 };
7795
7796 static int perf_event_bpf_match(struct perf_event *event)
7797 {
7798         return event->attr.bpf_event;
7799 }
7800
7801 static void perf_event_bpf_output(struct perf_event *event, void *data)
7802 {
7803         struct perf_bpf_event *bpf_event = data;
7804         struct perf_output_handle handle;
7805         struct perf_sample_data sample;
7806         int ret;
7807
7808         if (!perf_event_bpf_match(event))
7809                 return;
7810
7811         perf_event_header__init_id(&bpf_event->event_id.header,
7812                                    &sample, event);
7813         ret = perf_output_begin(&handle, event,
7814                                 bpf_event->event_id.header.size);
7815         if (ret)
7816                 return;
7817
7818         perf_output_put(&handle, bpf_event->event_id);
7819         perf_event__output_id_sample(event, &handle, &sample);
7820
7821         perf_output_end(&handle);
7822 }
7823
7824 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7825                                          enum perf_bpf_event_type type)
7826 {
7827         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7828         char sym[KSYM_NAME_LEN];
7829         int i;
7830
7831         if (prog->aux->func_cnt == 0) {
7832                 bpf_get_prog_name(prog, sym);
7833                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7834                                    (u64)(unsigned long)prog->bpf_func,
7835                                    prog->jited_len, unregister, sym);
7836         } else {
7837                 for (i = 0; i < prog->aux->func_cnt; i++) {
7838                         struct bpf_prog *subprog = prog->aux->func[i];
7839
7840                         bpf_get_prog_name(subprog, sym);
7841                         perf_event_ksymbol(
7842                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
7843                                 (u64)(unsigned long)subprog->bpf_func,
7844                                 subprog->jited_len, unregister, sym);
7845                 }
7846         }
7847 }
7848
7849 void perf_event_bpf_event(struct bpf_prog *prog,
7850                           enum perf_bpf_event_type type,
7851                           u16 flags)
7852 {
7853         struct perf_bpf_event bpf_event;
7854
7855         if (type <= PERF_BPF_EVENT_UNKNOWN ||
7856             type >= PERF_BPF_EVENT_MAX)
7857                 return;
7858
7859         switch (type) {
7860         case PERF_BPF_EVENT_PROG_LOAD:
7861         case PERF_BPF_EVENT_PROG_UNLOAD:
7862                 if (atomic_read(&nr_ksymbol_events))
7863                         perf_event_bpf_emit_ksymbols(prog, type);
7864                 break;
7865         default:
7866                 break;
7867         }
7868
7869         if (!atomic_read(&nr_bpf_events))
7870                 return;
7871
7872         bpf_event = (struct perf_bpf_event){
7873                 .prog = prog,
7874                 .event_id = {
7875                         .header = {
7876                                 .type = PERF_RECORD_BPF_EVENT,
7877                                 .size = sizeof(bpf_event.event_id),
7878                         },
7879                         .type = type,
7880                         .flags = flags,
7881                         .id = prog->aux->id,
7882                 },
7883         };
7884
7885         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7886
7887         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7888         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7889 }
7890
7891 void perf_event_itrace_started(struct perf_event *event)
7892 {
7893         event->attach_state |= PERF_ATTACH_ITRACE;
7894 }
7895
7896 static void perf_log_itrace_start(struct perf_event *event)
7897 {
7898         struct perf_output_handle handle;
7899         struct perf_sample_data sample;
7900         struct perf_aux_event {
7901                 struct perf_event_header        header;
7902                 u32                             pid;
7903                 u32                             tid;
7904         } rec;
7905         int ret;
7906
7907         if (event->parent)
7908                 event = event->parent;
7909
7910         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7911             event->attach_state & PERF_ATTACH_ITRACE)
7912                 return;
7913
7914         rec.header.type = PERF_RECORD_ITRACE_START;
7915         rec.header.misc = 0;
7916         rec.header.size = sizeof(rec);
7917         rec.pid = perf_event_pid(event, current);
7918         rec.tid = perf_event_tid(event, current);
7919
7920         perf_event_header__init_id(&rec.header, &sample, event);
7921         ret = perf_output_begin(&handle, event, rec.header.size);
7922
7923         if (ret)
7924                 return;
7925
7926         perf_output_put(&handle, rec);
7927         perf_event__output_id_sample(event, &handle, &sample);
7928
7929         perf_output_end(&handle);
7930 }
7931
7932 static int
7933 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7934 {
7935         struct hw_perf_event *hwc = &event->hw;
7936         int ret = 0;
7937         u64 seq;
7938
7939         seq = __this_cpu_read(perf_throttled_seq);
7940         if (seq != hwc->interrupts_seq) {
7941                 hwc->interrupts_seq = seq;
7942                 hwc->interrupts = 1;
7943         } else {
7944                 hwc->interrupts++;
7945                 if (unlikely(throttle
7946                              && hwc->interrupts >= max_samples_per_tick)) {
7947                         __this_cpu_inc(perf_throttled_count);
7948                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7949                         hwc->interrupts = MAX_INTERRUPTS;
7950                         perf_log_throttle(event, 0);
7951                         ret = 1;
7952                 }
7953         }
7954
7955         if (event->attr.freq) {
7956                 u64 now = perf_clock();
7957                 s64 delta = now - hwc->freq_time_stamp;
7958
7959                 hwc->freq_time_stamp = now;
7960
7961                 if (delta > 0 && delta < 2*TICK_NSEC)
7962                         perf_adjust_period(event, delta, hwc->last_period, true);
7963         }
7964
7965         return ret;
7966 }
7967
7968 int perf_event_account_interrupt(struct perf_event *event)
7969 {
7970         return __perf_event_account_interrupt(event, 1);
7971 }
7972
7973 /*
7974  * Generic event overflow handling, sampling.
7975  */
7976
7977 static int __perf_event_overflow(struct perf_event *event,
7978                                    int throttle, struct perf_sample_data *data,
7979                                    struct pt_regs *regs)
7980 {
7981         int events = atomic_read(&event->event_limit);
7982         int ret = 0;
7983
7984         /*
7985          * Non-sampling counters might still use the PMI to fold short
7986          * hardware counters, ignore those.
7987          */
7988         if (unlikely(!is_sampling_event(event)))
7989                 return 0;
7990
7991         ret = __perf_event_account_interrupt(event, throttle);
7992
7993         /*
7994          * XXX event_limit might not quite work as expected on inherited
7995          * events
7996          */
7997
7998         event->pending_kill = POLL_IN;
7999         if (events && atomic_dec_and_test(&event->event_limit)) {
8000                 ret = 1;
8001                 event->pending_kill = POLL_HUP;
8002
8003                 perf_event_disable_inatomic(event);
8004         }
8005
8006         READ_ONCE(event->overflow_handler)(event, data, regs);
8007
8008         if (*perf_event_fasync(event) && event->pending_kill) {
8009                 event->pending_wakeup = 1;
8010                 irq_work_queue(&event->pending);
8011         }
8012
8013         return ret;
8014 }
8015
8016 int perf_event_overflow(struct perf_event *event,
8017                           struct perf_sample_data *data,
8018                           struct pt_regs *regs)
8019 {
8020         return __perf_event_overflow(event, 1, data, regs);
8021 }
8022
8023 /*
8024  * Generic software event infrastructure
8025  */
8026
8027 struct swevent_htable {
8028         struct swevent_hlist            *swevent_hlist;
8029         struct mutex                    hlist_mutex;
8030         int                             hlist_refcount;
8031
8032         /* Recursion avoidance in each contexts */
8033         int                             recursion[PERF_NR_CONTEXTS];
8034 };
8035
8036 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8037
8038 /*
8039  * We directly increment event->count and keep a second value in
8040  * event->hw.period_left to count intervals. This period event
8041  * is kept in the range [-sample_period, 0] so that we can use the
8042  * sign as trigger.
8043  */
8044
8045 u64 perf_swevent_set_period(struct perf_event *event)
8046 {
8047         struct hw_perf_event *hwc = &event->hw;
8048         u64 period = hwc->last_period;
8049         u64 nr, offset;
8050         s64 old, val;
8051
8052         hwc->last_period = hwc->sample_period;
8053
8054 again:
8055         old = val = local64_read(&hwc->period_left);
8056         if (val < 0)
8057                 return 0;
8058
8059         nr = div64_u64(period + val, period);
8060         offset = nr * period;
8061         val -= offset;
8062         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8063                 goto again;
8064
8065         return nr;
8066 }
8067
8068 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8069                                     struct perf_sample_data *data,
8070                                     struct pt_regs *regs)
8071 {
8072         struct hw_perf_event *hwc = &event->hw;
8073         int throttle = 0;
8074
8075         if (!overflow)
8076                 overflow = perf_swevent_set_period(event);
8077
8078         if (hwc->interrupts == MAX_INTERRUPTS)
8079                 return;
8080
8081         for (; overflow; overflow--) {
8082                 if (__perf_event_overflow(event, throttle,
8083                                             data, regs)) {
8084                         /*
8085                          * We inhibit the overflow from happening when
8086                          * hwc->interrupts == MAX_INTERRUPTS.
8087                          */
8088                         break;
8089                 }
8090                 throttle = 1;
8091         }
8092 }
8093
8094 static void perf_swevent_event(struct perf_event *event, u64 nr,
8095                                struct perf_sample_data *data,
8096                                struct pt_regs *regs)
8097 {
8098         struct hw_perf_event *hwc = &event->hw;
8099
8100         local64_add(nr, &event->count);
8101
8102         if (!regs)
8103                 return;
8104
8105         if (!is_sampling_event(event))
8106                 return;
8107
8108         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8109                 data->period = nr;
8110                 return perf_swevent_overflow(event, 1, data, regs);
8111         } else
8112                 data->period = event->hw.last_period;
8113
8114         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8115                 return perf_swevent_overflow(event, 1, data, regs);
8116
8117         if (local64_add_negative(nr, &hwc->period_left))
8118                 return;
8119
8120         perf_swevent_overflow(event, 0, data, regs);
8121 }
8122
8123 static int perf_exclude_event(struct perf_event *event,
8124                               struct pt_regs *regs)
8125 {
8126         if (event->hw.state & PERF_HES_STOPPED)
8127                 return 1;
8128
8129         if (regs) {
8130                 if (event->attr.exclude_user && user_mode(regs))
8131                         return 1;
8132
8133                 if (event->attr.exclude_kernel && !user_mode(regs))
8134                         return 1;
8135         }
8136
8137         return 0;
8138 }
8139
8140 static int perf_swevent_match(struct perf_event *event,
8141                                 enum perf_type_id type,
8142                                 u32 event_id,
8143                                 struct perf_sample_data *data,
8144                                 struct pt_regs *regs)
8145 {
8146         if (event->attr.type != type)
8147                 return 0;
8148
8149         if (event->attr.config != event_id)
8150                 return 0;
8151
8152         if (perf_exclude_event(event, regs))
8153                 return 0;
8154
8155         return 1;
8156 }
8157
8158 static inline u64 swevent_hash(u64 type, u32 event_id)
8159 {
8160         u64 val = event_id | (type << 32);
8161
8162         return hash_64(val, SWEVENT_HLIST_BITS);
8163 }
8164
8165 static inline struct hlist_head *
8166 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8167 {
8168         u64 hash = swevent_hash(type, event_id);
8169
8170         return &hlist->heads[hash];
8171 }
8172
8173 /* For the read side: events when they trigger */
8174 static inline struct hlist_head *
8175 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8176 {
8177         struct swevent_hlist *hlist;
8178
8179         hlist = rcu_dereference(swhash->swevent_hlist);
8180         if (!hlist)
8181                 return NULL;
8182
8183         return __find_swevent_head(hlist, type, event_id);
8184 }
8185
8186 /* For the event head insertion and removal in the hlist */
8187 static inline struct hlist_head *
8188 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8189 {
8190         struct swevent_hlist *hlist;
8191         u32 event_id = event->attr.config;
8192         u64 type = event->attr.type;
8193
8194         /*
8195          * Event scheduling is always serialized against hlist allocation
8196          * and release. Which makes the protected version suitable here.
8197          * The context lock guarantees that.
8198          */
8199         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8200                                           lockdep_is_held(&event->ctx->lock));
8201         if (!hlist)
8202                 return NULL;
8203
8204         return __find_swevent_head(hlist, type, event_id);
8205 }
8206
8207 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8208                                     u64 nr,
8209                                     struct perf_sample_data *data,
8210                                     struct pt_regs *regs)
8211 {
8212         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8213         struct perf_event *event;
8214         struct hlist_head *head;
8215
8216         rcu_read_lock();
8217         head = find_swevent_head_rcu(swhash, type, event_id);
8218         if (!head)
8219                 goto end;
8220
8221         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8222                 if (perf_swevent_match(event, type, event_id, data, regs))
8223                         perf_swevent_event(event, nr, data, regs);
8224         }
8225 end:
8226         rcu_read_unlock();
8227 }
8228
8229 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8230
8231 int perf_swevent_get_recursion_context(void)
8232 {
8233         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8234
8235         return get_recursion_context(swhash->recursion);
8236 }
8237 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8238
8239 void perf_swevent_put_recursion_context(int rctx)
8240 {
8241         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8242
8243         put_recursion_context(swhash->recursion, rctx);
8244 }
8245
8246 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8247 {
8248         struct perf_sample_data data;
8249
8250         if (WARN_ON_ONCE(!regs))
8251                 return;
8252
8253         perf_sample_data_init(&data, addr, 0);
8254         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8255 }
8256
8257 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8258 {
8259         int rctx;
8260
8261         preempt_disable_notrace();
8262         rctx = perf_swevent_get_recursion_context();
8263         if (unlikely(rctx < 0))
8264                 goto fail;
8265
8266         ___perf_sw_event(event_id, nr, regs, addr);
8267
8268         perf_swevent_put_recursion_context(rctx);
8269 fail:
8270         preempt_enable_notrace();
8271 }
8272
8273 static void perf_swevent_read(struct perf_event *event)
8274 {
8275 }
8276
8277 static int perf_swevent_add(struct perf_event *event, int flags)
8278 {
8279         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8280         struct hw_perf_event *hwc = &event->hw;
8281         struct hlist_head *head;
8282
8283         if (is_sampling_event(event)) {
8284                 hwc->last_period = hwc->sample_period;
8285                 perf_swevent_set_period(event);
8286         }
8287
8288         hwc->state = !(flags & PERF_EF_START);
8289
8290         head = find_swevent_head(swhash, event);
8291         if (WARN_ON_ONCE(!head))
8292                 return -EINVAL;
8293
8294         hlist_add_head_rcu(&event->hlist_entry, head);
8295         perf_event_update_userpage(event);
8296
8297         return 0;
8298 }
8299
8300 static void perf_swevent_del(struct perf_event *event, int flags)
8301 {
8302         hlist_del_rcu(&event->hlist_entry);
8303 }
8304
8305 static void perf_swevent_start(struct perf_event *event, int flags)
8306 {
8307         event->hw.state = 0;
8308 }
8309
8310 static void perf_swevent_stop(struct perf_event *event, int flags)
8311 {
8312         event->hw.state = PERF_HES_STOPPED;
8313 }
8314
8315 /* Deref the hlist from the update side */
8316 static inline struct swevent_hlist *
8317 swevent_hlist_deref(struct swevent_htable *swhash)
8318 {
8319         return rcu_dereference_protected(swhash->swevent_hlist,
8320                                          lockdep_is_held(&swhash->hlist_mutex));
8321 }
8322
8323 static void swevent_hlist_release(struct swevent_htable *swhash)
8324 {
8325         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8326
8327         if (!hlist)
8328                 return;
8329
8330         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8331         kfree_rcu(hlist, rcu_head);
8332 }
8333
8334 static void swevent_hlist_put_cpu(int cpu)
8335 {
8336         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8337
8338         mutex_lock(&swhash->hlist_mutex);
8339
8340         if (!--swhash->hlist_refcount)
8341                 swevent_hlist_release(swhash);
8342
8343         mutex_unlock(&swhash->hlist_mutex);
8344 }
8345
8346 static void swevent_hlist_put(void)
8347 {
8348         int cpu;
8349
8350         for_each_possible_cpu(cpu)
8351                 swevent_hlist_put_cpu(cpu);
8352 }
8353
8354 static int swevent_hlist_get_cpu(int cpu)
8355 {
8356         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8357         int err = 0;
8358
8359         mutex_lock(&swhash->hlist_mutex);
8360         if (!swevent_hlist_deref(swhash) &&
8361             cpumask_test_cpu(cpu, perf_online_mask)) {
8362                 struct swevent_hlist *hlist;
8363
8364                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8365                 if (!hlist) {
8366                         err = -ENOMEM;
8367                         goto exit;
8368                 }
8369                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8370         }
8371         swhash->hlist_refcount++;
8372 exit:
8373         mutex_unlock(&swhash->hlist_mutex);
8374
8375         return err;
8376 }
8377
8378 static int swevent_hlist_get(void)
8379 {
8380         int err, cpu, failed_cpu;
8381
8382         mutex_lock(&pmus_lock);
8383         for_each_possible_cpu(cpu) {
8384                 err = swevent_hlist_get_cpu(cpu);
8385                 if (err) {
8386                         failed_cpu = cpu;
8387                         goto fail;
8388                 }
8389         }
8390         mutex_unlock(&pmus_lock);
8391         return 0;
8392 fail:
8393         for_each_possible_cpu(cpu) {
8394                 if (cpu == failed_cpu)
8395                         break;
8396                 swevent_hlist_put_cpu(cpu);
8397         }
8398         mutex_unlock(&pmus_lock);
8399         return err;
8400 }
8401
8402 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8403
8404 static void sw_perf_event_destroy(struct perf_event *event)
8405 {
8406         u64 event_id = event->attr.config;
8407
8408         WARN_ON(event->parent);
8409
8410         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8411         swevent_hlist_put();
8412 }
8413
8414 static int perf_swevent_init(struct perf_event *event)
8415 {
8416         u64 event_id = event->attr.config;
8417
8418         if (event->attr.type != PERF_TYPE_SOFTWARE)
8419                 return -ENOENT;
8420
8421         /*
8422          * no branch sampling for software events
8423          */
8424         if (has_branch_stack(event))
8425                 return -EOPNOTSUPP;
8426
8427         switch (event_id) {
8428         case PERF_COUNT_SW_CPU_CLOCK:
8429         case PERF_COUNT_SW_TASK_CLOCK:
8430                 return -ENOENT;
8431
8432         default:
8433                 break;
8434         }
8435
8436         if (event_id >= PERF_COUNT_SW_MAX)
8437                 return -ENOENT;
8438
8439         if (!event->parent) {
8440                 int err;
8441
8442                 err = swevent_hlist_get();
8443                 if (err)
8444                         return err;
8445
8446                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8447                 event->destroy = sw_perf_event_destroy;
8448         }
8449
8450         return 0;
8451 }
8452
8453 static struct pmu perf_swevent = {
8454         .task_ctx_nr    = perf_sw_context,
8455
8456         .capabilities   = PERF_PMU_CAP_NO_NMI,
8457
8458         .event_init     = perf_swevent_init,
8459         .add            = perf_swevent_add,
8460         .del            = perf_swevent_del,
8461         .start          = perf_swevent_start,
8462         .stop           = perf_swevent_stop,
8463         .read           = perf_swevent_read,
8464 };
8465
8466 #ifdef CONFIG_EVENT_TRACING
8467
8468 static int perf_tp_filter_match(struct perf_event *event,
8469                                 struct perf_sample_data *data)
8470 {
8471         void *record = data->raw->frag.data;
8472
8473         /* only top level events have filters set */
8474         if (event->parent)
8475                 event = event->parent;
8476
8477         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8478                 return 1;
8479         return 0;
8480 }
8481
8482 static int perf_tp_event_match(struct perf_event *event,
8483                                 struct perf_sample_data *data,
8484                                 struct pt_regs *regs)
8485 {
8486         if (event->hw.state & PERF_HES_STOPPED)
8487                 return 0;
8488         /*
8489          * All tracepoints are from kernel-space.
8490          */
8491         if (event->attr.exclude_kernel)
8492                 return 0;
8493
8494         if (!perf_tp_filter_match(event, data))
8495                 return 0;
8496
8497         return 1;
8498 }
8499
8500 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8501                                struct trace_event_call *call, u64 count,
8502                                struct pt_regs *regs, struct hlist_head *head,
8503                                struct task_struct *task)
8504 {
8505         if (bpf_prog_array_valid(call)) {
8506                 *(struct pt_regs **)raw_data = regs;
8507                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8508                         perf_swevent_put_recursion_context(rctx);
8509                         return;
8510                 }
8511         }
8512         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8513                       rctx, task);
8514 }
8515 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8516
8517 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8518                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8519                    struct task_struct *task)
8520 {
8521         struct perf_sample_data data;
8522         struct perf_event *event;
8523
8524         struct perf_raw_record raw = {
8525                 .frag = {
8526                         .size = entry_size,
8527                         .data = record,
8528                 },
8529         };
8530
8531         perf_sample_data_init(&data, 0, 0);
8532         data.raw = &raw;
8533
8534         perf_trace_buf_update(record, event_type);
8535
8536         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8537                 if (perf_tp_event_match(event, &data, regs))
8538                         perf_swevent_event(event, count, &data, regs);
8539         }
8540
8541         /*
8542          * If we got specified a target task, also iterate its context and
8543          * deliver this event there too.
8544          */
8545         if (task && task != current) {
8546                 struct perf_event_context *ctx;
8547                 struct trace_entry *entry = record;
8548
8549                 rcu_read_lock();
8550                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8551                 if (!ctx)
8552                         goto unlock;
8553
8554                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8555                         if (event->cpu != smp_processor_id())
8556                                 continue;
8557                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8558                                 continue;
8559                         if (event->attr.config != entry->type)
8560                                 continue;
8561                         if (perf_tp_event_match(event, &data, regs))
8562                                 perf_swevent_event(event, count, &data, regs);
8563                 }
8564 unlock:
8565                 rcu_read_unlock();
8566         }
8567
8568         perf_swevent_put_recursion_context(rctx);
8569 }
8570 EXPORT_SYMBOL_GPL(perf_tp_event);
8571
8572 static void tp_perf_event_destroy(struct perf_event *event)
8573 {
8574         perf_trace_destroy(event);
8575 }
8576
8577 static int perf_tp_event_init(struct perf_event *event)
8578 {
8579         int err;
8580
8581         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8582                 return -ENOENT;
8583
8584         /*
8585          * no branch sampling for tracepoint events
8586          */
8587         if (has_branch_stack(event))
8588                 return -EOPNOTSUPP;
8589
8590         err = perf_trace_init(event);
8591         if (err)
8592                 return err;
8593
8594         event->destroy = tp_perf_event_destroy;
8595
8596         return 0;
8597 }
8598
8599 static struct pmu perf_tracepoint = {
8600         .task_ctx_nr    = perf_sw_context,
8601
8602         .event_init     = perf_tp_event_init,
8603         .add            = perf_trace_add,
8604         .del            = perf_trace_del,
8605         .start          = perf_swevent_start,
8606         .stop           = perf_swevent_stop,
8607         .read           = perf_swevent_read,
8608 };
8609
8610 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8611 /*
8612  * Flags in config, used by dynamic PMU kprobe and uprobe
8613  * The flags should match following PMU_FORMAT_ATTR().
8614  *
8615  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8616  *                               if not set, create kprobe/uprobe
8617  *
8618  * The following values specify a reference counter (or semaphore in the
8619  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8620  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8621  *
8622  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8623  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8624  */
8625 enum perf_probe_config {
8626         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8627         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8628         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8629 };
8630
8631 PMU_FORMAT_ATTR(retprobe, "config:0");
8632 #endif
8633
8634 #ifdef CONFIG_KPROBE_EVENTS
8635 static struct attribute *kprobe_attrs[] = {
8636         &format_attr_retprobe.attr,
8637         NULL,
8638 };
8639
8640 static struct attribute_group kprobe_format_group = {
8641         .name = "format",
8642         .attrs = kprobe_attrs,
8643 };
8644
8645 static const struct attribute_group *kprobe_attr_groups[] = {
8646         &kprobe_format_group,
8647         NULL,
8648 };
8649
8650 static int perf_kprobe_event_init(struct perf_event *event);
8651 static struct pmu perf_kprobe = {
8652         .task_ctx_nr    = perf_sw_context,
8653         .event_init     = perf_kprobe_event_init,
8654         .add            = perf_trace_add,
8655         .del            = perf_trace_del,
8656         .start          = perf_swevent_start,
8657         .stop           = perf_swevent_stop,
8658         .read           = perf_swevent_read,
8659         .attr_groups    = kprobe_attr_groups,
8660 };
8661
8662 static int perf_kprobe_event_init(struct perf_event *event)
8663 {
8664         int err;
8665         bool is_retprobe;
8666
8667         if (event->attr.type != perf_kprobe.type)
8668                 return -ENOENT;
8669
8670         if (!capable(CAP_SYS_ADMIN))
8671                 return -EACCES;
8672
8673         /*
8674          * no branch sampling for probe events
8675          */
8676         if (has_branch_stack(event))
8677                 return -EOPNOTSUPP;
8678
8679         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8680         err = perf_kprobe_init(event, is_retprobe);
8681         if (err)
8682                 return err;
8683
8684         event->destroy = perf_kprobe_destroy;
8685
8686         return 0;
8687 }
8688 #endif /* CONFIG_KPROBE_EVENTS */
8689
8690 #ifdef CONFIG_UPROBE_EVENTS
8691 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8692
8693 static struct attribute *uprobe_attrs[] = {
8694         &format_attr_retprobe.attr,
8695         &format_attr_ref_ctr_offset.attr,
8696         NULL,
8697 };
8698
8699 static struct attribute_group uprobe_format_group = {
8700         .name = "format",
8701         .attrs = uprobe_attrs,
8702 };
8703
8704 static const struct attribute_group *uprobe_attr_groups[] = {
8705         &uprobe_format_group,
8706         NULL,
8707 };
8708
8709 static int perf_uprobe_event_init(struct perf_event *event);
8710 static struct pmu perf_uprobe = {
8711         .task_ctx_nr    = perf_sw_context,
8712         .event_init     = perf_uprobe_event_init,
8713         .add            = perf_trace_add,
8714         .del            = perf_trace_del,
8715         .start          = perf_swevent_start,
8716         .stop           = perf_swevent_stop,
8717         .read           = perf_swevent_read,
8718         .attr_groups    = uprobe_attr_groups,
8719 };
8720
8721 static int perf_uprobe_event_init(struct perf_event *event)
8722 {
8723         int err;
8724         unsigned long ref_ctr_offset;
8725         bool is_retprobe;
8726
8727         if (event->attr.type != perf_uprobe.type)
8728                 return -ENOENT;
8729
8730         if (!capable(CAP_SYS_ADMIN))
8731                 return -EACCES;
8732
8733         /*
8734          * no branch sampling for probe events
8735          */
8736         if (has_branch_stack(event))
8737                 return -EOPNOTSUPP;
8738
8739         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8740         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8741         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8742         if (err)
8743                 return err;
8744
8745         event->destroy = perf_uprobe_destroy;
8746
8747         return 0;
8748 }
8749 #endif /* CONFIG_UPROBE_EVENTS */
8750
8751 static inline void perf_tp_register(void)
8752 {
8753         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8754 #ifdef CONFIG_KPROBE_EVENTS
8755         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8756 #endif
8757 #ifdef CONFIG_UPROBE_EVENTS
8758         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8759 #endif
8760 }
8761
8762 static void perf_event_free_filter(struct perf_event *event)
8763 {
8764         ftrace_profile_free_filter(event);
8765 }
8766
8767 #ifdef CONFIG_BPF_SYSCALL
8768 static void bpf_overflow_handler(struct perf_event *event,
8769                                  struct perf_sample_data *data,
8770                                  struct pt_regs *regs)
8771 {
8772         struct bpf_perf_event_data_kern ctx = {
8773                 .data = data,
8774                 .event = event,
8775         };
8776         int ret = 0;
8777
8778         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8779         preempt_disable();
8780         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8781                 goto out;
8782         rcu_read_lock();
8783         ret = BPF_PROG_RUN(event->prog, &ctx);
8784         rcu_read_unlock();
8785 out:
8786         __this_cpu_dec(bpf_prog_active);
8787         preempt_enable();
8788         if (!ret)
8789                 return;
8790
8791         event->orig_overflow_handler(event, data, regs);
8792 }
8793
8794 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8795 {
8796         struct bpf_prog *prog;
8797
8798         if (event->overflow_handler_context)
8799                 /* hw breakpoint or kernel counter */
8800                 return -EINVAL;
8801
8802         if (event->prog)
8803                 return -EEXIST;
8804
8805         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8806         if (IS_ERR(prog))
8807                 return PTR_ERR(prog);
8808
8809         event->prog = prog;
8810         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8811         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8812         return 0;
8813 }
8814
8815 static void perf_event_free_bpf_handler(struct perf_event *event)
8816 {
8817         struct bpf_prog *prog = event->prog;
8818
8819         if (!prog)
8820                 return;
8821
8822         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8823         event->prog = NULL;
8824         bpf_prog_put(prog);
8825 }
8826 #else
8827 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8828 {
8829         return -EOPNOTSUPP;
8830 }
8831 static void perf_event_free_bpf_handler(struct perf_event *event)
8832 {
8833 }
8834 #endif
8835
8836 /*
8837  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8838  * with perf_event_open()
8839  */
8840 static inline bool perf_event_is_tracing(struct perf_event *event)
8841 {
8842         if (event->pmu == &perf_tracepoint)
8843                 return true;
8844 #ifdef CONFIG_KPROBE_EVENTS
8845         if (event->pmu == &perf_kprobe)
8846                 return true;
8847 #endif
8848 #ifdef CONFIG_UPROBE_EVENTS
8849         if (event->pmu == &perf_uprobe)
8850                 return true;
8851 #endif
8852         return false;
8853 }
8854
8855 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8856 {
8857         bool is_kprobe, is_tracepoint, is_syscall_tp;
8858         struct bpf_prog *prog;
8859         int ret;
8860
8861         if (!perf_event_is_tracing(event))
8862                 return perf_event_set_bpf_handler(event, prog_fd);
8863
8864         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8865         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8866         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8867         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8868                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8869                 return -EINVAL;
8870
8871         prog = bpf_prog_get(prog_fd);
8872         if (IS_ERR(prog))
8873                 return PTR_ERR(prog);
8874
8875         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8876             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8877             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8878                 /* valid fd, but invalid bpf program type */
8879                 bpf_prog_put(prog);
8880                 return -EINVAL;
8881         }
8882
8883         /* Kprobe override only works for kprobes, not uprobes. */
8884         if (prog->kprobe_override &&
8885             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8886                 bpf_prog_put(prog);
8887                 return -EINVAL;
8888         }
8889
8890         if (is_tracepoint || is_syscall_tp) {
8891                 int off = trace_event_get_offsets(event->tp_event);
8892
8893                 if (prog->aux->max_ctx_offset > off) {
8894                         bpf_prog_put(prog);
8895                         return -EACCES;
8896                 }
8897         }
8898
8899         ret = perf_event_attach_bpf_prog(event, prog);
8900         if (ret)
8901                 bpf_prog_put(prog);
8902         return ret;
8903 }
8904
8905 static void perf_event_free_bpf_prog(struct perf_event *event)
8906 {
8907         if (!perf_event_is_tracing(event)) {
8908                 perf_event_free_bpf_handler(event);
8909                 return;
8910         }
8911         perf_event_detach_bpf_prog(event);
8912 }
8913
8914 #else
8915
8916 static inline void perf_tp_register(void)
8917 {
8918 }
8919
8920 static void perf_event_free_filter(struct perf_event *event)
8921 {
8922 }
8923
8924 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8925 {
8926         return -ENOENT;
8927 }
8928
8929 static void perf_event_free_bpf_prog(struct perf_event *event)
8930 {
8931 }
8932 #endif /* CONFIG_EVENT_TRACING */
8933
8934 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8935 void perf_bp_event(struct perf_event *bp, void *data)
8936 {
8937         struct perf_sample_data sample;
8938         struct pt_regs *regs = data;
8939
8940         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8941
8942         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8943                 perf_swevent_event(bp, 1, &sample, regs);
8944 }
8945 #endif
8946
8947 /*
8948  * Allocate a new address filter
8949  */
8950 static struct perf_addr_filter *
8951 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8952 {
8953         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8954         struct perf_addr_filter *filter;
8955
8956         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8957         if (!filter)
8958                 return NULL;
8959
8960         INIT_LIST_HEAD(&filter->entry);
8961         list_add_tail(&filter->entry, filters);
8962
8963         return filter;
8964 }
8965
8966 static void free_filters_list(struct list_head *filters)
8967 {
8968         struct perf_addr_filter *filter, *iter;
8969
8970         list_for_each_entry_safe(filter, iter, filters, entry) {
8971                 path_put(&filter->path);
8972                 list_del(&filter->entry);
8973                 kfree(filter);
8974         }
8975 }
8976
8977 /*
8978  * Free existing address filters and optionally install new ones
8979  */
8980 static void perf_addr_filters_splice(struct perf_event *event,
8981                                      struct list_head *head)
8982 {
8983         unsigned long flags;
8984         LIST_HEAD(list);
8985
8986         if (!has_addr_filter(event))
8987                 return;
8988
8989         /* don't bother with children, they don't have their own filters */
8990         if (event->parent)
8991                 return;
8992
8993         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8994
8995         list_splice_init(&event->addr_filters.list, &list);
8996         if (head)
8997                 list_splice(head, &event->addr_filters.list);
8998
8999         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9000
9001         free_filters_list(&list);
9002 }
9003
9004 /*
9005  * Scan through mm's vmas and see if one of them matches the
9006  * @filter; if so, adjust filter's address range.
9007  * Called with mm::mmap_sem down for reading.
9008  */
9009 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9010                                    struct mm_struct *mm,
9011                                    struct perf_addr_filter_range *fr)
9012 {
9013         struct vm_area_struct *vma;
9014
9015         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9016                 if (!vma->vm_file)
9017                         continue;
9018
9019                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9020                         return;
9021         }
9022 }
9023
9024 /*
9025  * Update event's address range filters based on the
9026  * task's existing mappings, if any.
9027  */
9028 static void perf_event_addr_filters_apply(struct perf_event *event)
9029 {
9030         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9031         struct task_struct *task = READ_ONCE(event->ctx->task);
9032         struct perf_addr_filter *filter;
9033         struct mm_struct *mm = NULL;
9034         unsigned int count = 0;
9035         unsigned long flags;
9036
9037         /*
9038          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9039          * will stop on the parent's child_mutex that our caller is also holding
9040          */
9041         if (task == TASK_TOMBSTONE)
9042                 return;
9043
9044         if (!ifh->nr_file_filters)
9045                 return;
9046
9047         mm = get_task_mm(event->ctx->task);
9048         if (!mm)
9049                 goto restart;
9050
9051         down_read(&mm->mmap_sem);
9052
9053         raw_spin_lock_irqsave(&ifh->lock, flags);
9054         list_for_each_entry(filter, &ifh->list, entry) {
9055                 event->addr_filter_ranges[count].start = 0;
9056                 event->addr_filter_ranges[count].size = 0;
9057
9058                 /*
9059                  * Adjust base offset if the filter is associated to a binary
9060                  * that needs to be mapped:
9061                  */
9062                 if (filter->path.dentry)
9063                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9064
9065                 count++;
9066         }
9067
9068         event->addr_filters_gen++;
9069         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9070
9071         up_read(&mm->mmap_sem);
9072
9073         mmput(mm);
9074
9075 restart:
9076         perf_event_stop(event, 1);
9077 }
9078
9079 /*
9080  * Address range filtering: limiting the data to certain
9081  * instruction address ranges. Filters are ioctl()ed to us from
9082  * userspace as ascii strings.
9083  *
9084  * Filter string format:
9085  *
9086  * ACTION RANGE_SPEC
9087  * where ACTION is one of the
9088  *  * "filter": limit the trace to this region
9089  *  * "start": start tracing from this address
9090  *  * "stop": stop tracing at this address/region;
9091  * RANGE_SPEC is
9092  *  * for kernel addresses: <start address>[/<size>]
9093  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9094  *
9095  * if <size> is not specified or is zero, the range is treated as a single
9096  * address; not valid for ACTION=="filter".
9097  */
9098 enum {
9099         IF_ACT_NONE = -1,
9100         IF_ACT_FILTER,
9101         IF_ACT_START,
9102         IF_ACT_STOP,
9103         IF_SRC_FILE,
9104         IF_SRC_KERNEL,
9105         IF_SRC_FILEADDR,
9106         IF_SRC_KERNELADDR,
9107 };
9108
9109 enum {
9110         IF_STATE_ACTION = 0,
9111         IF_STATE_SOURCE,
9112         IF_STATE_END,
9113 };
9114
9115 static const match_table_t if_tokens = {
9116         { IF_ACT_FILTER,        "filter" },
9117         { IF_ACT_START,         "start" },
9118         { IF_ACT_STOP,          "stop" },
9119         { IF_SRC_FILE,          "%u/%u@%s" },
9120         { IF_SRC_KERNEL,        "%u/%u" },
9121         { IF_SRC_FILEADDR,      "%u@%s" },
9122         { IF_SRC_KERNELADDR,    "%u" },
9123         { IF_ACT_NONE,          NULL },
9124 };
9125
9126 /*
9127  * Address filter string parser
9128  */
9129 static int
9130 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9131                              struct list_head *filters)
9132 {
9133         struct perf_addr_filter *filter = NULL;
9134         char *start, *orig, *filename = NULL;
9135         substring_t args[MAX_OPT_ARGS];
9136         int state = IF_STATE_ACTION, token;
9137         unsigned int kernel = 0;
9138         int ret = -EINVAL;
9139
9140         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9141         if (!fstr)
9142                 return -ENOMEM;
9143
9144         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9145                 static const enum perf_addr_filter_action_t actions[] = {
9146                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9147                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9148                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9149                 };
9150                 ret = -EINVAL;
9151
9152                 if (!*start)
9153                         continue;
9154
9155                 /* filter definition begins */
9156                 if (state == IF_STATE_ACTION) {
9157                         filter = perf_addr_filter_new(event, filters);
9158                         if (!filter)
9159                                 goto fail;
9160                 }
9161
9162                 token = match_token(start, if_tokens, args);
9163                 switch (token) {
9164                 case IF_ACT_FILTER:
9165                 case IF_ACT_START:
9166                 case IF_ACT_STOP:
9167                         if (state != IF_STATE_ACTION)
9168                                 goto fail;
9169
9170                         filter->action = actions[token];
9171                         state = IF_STATE_SOURCE;
9172                         break;
9173
9174                 case IF_SRC_KERNELADDR:
9175                 case IF_SRC_KERNEL:
9176                         kernel = 1;
9177                         /* fall through */
9178
9179                 case IF_SRC_FILEADDR:
9180                 case IF_SRC_FILE:
9181                         if (state != IF_STATE_SOURCE)
9182                                 goto fail;
9183
9184                         *args[0].to = 0;
9185                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9186                         if (ret)
9187                                 goto fail;
9188
9189                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9190                                 *args[1].to = 0;
9191                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9192                                 if (ret)
9193                                         goto fail;
9194                         }
9195
9196                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9197                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9198
9199                                 filename = match_strdup(&args[fpos]);
9200                                 if (!filename) {
9201                                         ret = -ENOMEM;
9202                                         goto fail;
9203                                 }
9204                         }
9205
9206                         state = IF_STATE_END;
9207                         break;
9208
9209                 default:
9210                         goto fail;
9211                 }
9212
9213                 /*
9214                  * Filter definition is fully parsed, validate and install it.
9215                  * Make sure that it doesn't contradict itself or the event's
9216                  * attribute.
9217                  */
9218                 if (state == IF_STATE_END) {
9219                         ret = -EINVAL;
9220                         if (kernel && event->attr.exclude_kernel)
9221                                 goto fail;
9222
9223                         /*
9224                          * ACTION "filter" must have a non-zero length region
9225                          * specified.
9226                          */
9227                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9228                             !filter->size)
9229                                 goto fail;
9230
9231                         if (!kernel) {
9232                                 if (!filename)
9233                                         goto fail;
9234
9235                                 /*
9236                                  * For now, we only support file-based filters
9237                                  * in per-task events; doing so for CPU-wide
9238                                  * events requires additional context switching
9239                                  * trickery, since same object code will be
9240                                  * mapped at different virtual addresses in
9241                                  * different processes.
9242                                  */
9243                                 ret = -EOPNOTSUPP;
9244                                 if (!event->ctx->task)
9245                                         goto fail_free_name;
9246
9247                                 /* look up the path and grab its inode */
9248                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9249                                                 &filter->path);
9250                                 if (ret)
9251                                         goto fail_free_name;
9252
9253                                 kfree(filename);
9254                                 filename = NULL;
9255
9256                                 ret = -EINVAL;
9257                                 if (!filter->path.dentry ||
9258                                     !S_ISREG(d_inode(filter->path.dentry)
9259                                              ->i_mode))
9260                                         goto fail;
9261
9262                                 event->addr_filters.nr_file_filters++;
9263                         }
9264
9265                         /* ready to consume more filters */
9266                         state = IF_STATE_ACTION;
9267                         filter = NULL;
9268                 }
9269         }
9270
9271         if (state != IF_STATE_ACTION)
9272                 goto fail;
9273
9274         kfree(orig);
9275
9276         return 0;
9277
9278 fail_free_name:
9279         kfree(filename);
9280 fail:
9281         free_filters_list(filters);
9282         kfree(orig);
9283
9284         return ret;
9285 }
9286
9287 static int
9288 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9289 {
9290         LIST_HEAD(filters);
9291         int ret;
9292
9293         /*
9294          * Since this is called in perf_ioctl() path, we're already holding
9295          * ctx::mutex.
9296          */
9297         lockdep_assert_held(&event->ctx->mutex);
9298
9299         if (WARN_ON_ONCE(event->parent))
9300                 return -EINVAL;
9301
9302         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9303         if (ret)
9304                 goto fail_clear_files;
9305
9306         ret = event->pmu->addr_filters_validate(&filters);
9307         if (ret)
9308                 goto fail_free_filters;
9309
9310         /* remove existing filters, if any */
9311         perf_addr_filters_splice(event, &filters);
9312
9313         /* install new filters */
9314         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9315
9316         return ret;
9317
9318 fail_free_filters:
9319         free_filters_list(&filters);
9320
9321 fail_clear_files:
9322         event->addr_filters.nr_file_filters = 0;
9323
9324         return ret;
9325 }
9326
9327 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9328 {
9329         int ret = -EINVAL;
9330         char *filter_str;
9331
9332         filter_str = strndup_user(arg, PAGE_SIZE);
9333         if (IS_ERR(filter_str))
9334                 return PTR_ERR(filter_str);
9335
9336 #ifdef CONFIG_EVENT_TRACING
9337         if (perf_event_is_tracing(event)) {
9338                 struct perf_event_context *ctx = event->ctx;
9339
9340                 /*
9341                  * Beware, here be dragons!!
9342                  *
9343                  * the tracepoint muck will deadlock against ctx->mutex, but
9344                  * the tracepoint stuff does not actually need it. So
9345                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9346                  * already have a reference on ctx.
9347                  *
9348                  * This can result in event getting moved to a different ctx,
9349                  * but that does not affect the tracepoint state.
9350                  */
9351                 mutex_unlock(&ctx->mutex);
9352                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9353                 mutex_lock(&ctx->mutex);
9354         } else
9355 #endif
9356         if (has_addr_filter(event))
9357                 ret = perf_event_set_addr_filter(event, filter_str);
9358
9359         kfree(filter_str);
9360         return ret;
9361 }
9362
9363 /*
9364  * hrtimer based swevent callback
9365  */
9366
9367 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9368 {
9369         enum hrtimer_restart ret = HRTIMER_RESTART;
9370         struct perf_sample_data data;
9371         struct pt_regs *regs;
9372         struct perf_event *event;
9373         u64 period;
9374
9375         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9376
9377         if (event->state != PERF_EVENT_STATE_ACTIVE)
9378                 return HRTIMER_NORESTART;
9379
9380         event->pmu->read(event);
9381
9382         perf_sample_data_init(&data, 0, event->hw.last_period);
9383         regs = get_irq_regs();
9384
9385         if (regs && !perf_exclude_event(event, regs)) {
9386                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9387                         if (__perf_event_overflow(event, 1, &data, regs))
9388                                 ret = HRTIMER_NORESTART;
9389         }
9390
9391         period = max_t(u64, 10000, event->hw.sample_period);
9392         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9393
9394         return ret;
9395 }
9396
9397 static void perf_swevent_start_hrtimer(struct perf_event *event)
9398 {
9399         struct hw_perf_event *hwc = &event->hw;
9400         s64 period;
9401
9402         if (!is_sampling_event(event))
9403                 return;
9404
9405         period = local64_read(&hwc->period_left);
9406         if (period) {
9407                 if (period < 0)
9408                         period = 10000;
9409
9410                 local64_set(&hwc->period_left, 0);
9411         } else {
9412                 period = max_t(u64, 10000, hwc->sample_period);
9413         }
9414         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9415                       HRTIMER_MODE_REL_PINNED);
9416 }
9417
9418 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9419 {
9420         struct hw_perf_event *hwc = &event->hw;
9421
9422         if (is_sampling_event(event)) {
9423                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9424                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9425
9426                 hrtimer_cancel(&hwc->hrtimer);
9427         }
9428 }
9429
9430 static void perf_swevent_init_hrtimer(struct perf_event *event)
9431 {
9432         struct hw_perf_event *hwc = &event->hw;
9433
9434         if (!is_sampling_event(event))
9435                 return;
9436
9437         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9438         hwc->hrtimer.function = perf_swevent_hrtimer;
9439
9440         /*
9441          * Since hrtimers have a fixed rate, we can do a static freq->period
9442          * mapping and avoid the whole period adjust feedback stuff.
9443          */
9444         if (event->attr.freq) {
9445                 long freq = event->attr.sample_freq;
9446
9447                 event->attr.sample_period = NSEC_PER_SEC / freq;
9448                 hwc->sample_period = event->attr.sample_period;
9449                 local64_set(&hwc->period_left, hwc->sample_period);
9450                 hwc->last_period = hwc->sample_period;
9451                 event->attr.freq = 0;
9452         }
9453 }
9454
9455 /*
9456  * Software event: cpu wall time clock
9457  */
9458
9459 static void cpu_clock_event_update(struct perf_event *event)
9460 {
9461         s64 prev;
9462         u64 now;
9463
9464         now = local_clock();
9465         prev = local64_xchg(&event->hw.prev_count, now);
9466         local64_add(now - prev, &event->count);
9467 }
9468
9469 static void cpu_clock_event_start(struct perf_event *event, int flags)
9470 {
9471         local64_set(&event->hw.prev_count, local_clock());
9472         perf_swevent_start_hrtimer(event);
9473 }
9474
9475 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9476 {
9477         perf_swevent_cancel_hrtimer(event);
9478         cpu_clock_event_update(event);
9479 }
9480
9481 static int cpu_clock_event_add(struct perf_event *event, int flags)
9482 {
9483         if (flags & PERF_EF_START)
9484                 cpu_clock_event_start(event, flags);
9485         perf_event_update_userpage(event);
9486
9487         return 0;
9488 }
9489
9490 static void cpu_clock_event_del(struct perf_event *event, int flags)
9491 {
9492         cpu_clock_event_stop(event, flags);
9493 }
9494
9495 static void cpu_clock_event_read(struct perf_event *event)
9496 {
9497         cpu_clock_event_update(event);
9498 }
9499
9500 static int cpu_clock_event_init(struct perf_event *event)
9501 {
9502         if (event->attr.type != PERF_TYPE_SOFTWARE)
9503                 return -ENOENT;
9504
9505         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9506                 return -ENOENT;
9507
9508         /*
9509          * no branch sampling for software events
9510          */
9511         if (has_branch_stack(event))
9512                 return -EOPNOTSUPP;
9513
9514         perf_swevent_init_hrtimer(event);
9515
9516         return 0;
9517 }
9518
9519 static struct pmu perf_cpu_clock = {
9520         .task_ctx_nr    = perf_sw_context,
9521
9522         .capabilities   = PERF_PMU_CAP_NO_NMI,
9523
9524         .event_init     = cpu_clock_event_init,
9525         .add            = cpu_clock_event_add,
9526         .del            = cpu_clock_event_del,
9527         .start          = cpu_clock_event_start,
9528         .stop           = cpu_clock_event_stop,
9529         .read           = cpu_clock_event_read,
9530 };
9531
9532 /*
9533  * Software event: task time clock
9534  */
9535
9536 static void task_clock_event_update(struct perf_event *event, u64 now)
9537 {
9538         u64 prev;
9539         s64 delta;
9540
9541         prev = local64_xchg(&event->hw.prev_count, now);
9542         delta = now - prev;
9543         local64_add(delta, &event->count);
9544 }
9545
9546 static void task_clock_event_start(struct perf_event *event, int flags)
9547 {
9548         local64_set(&event->hw.prev_count, event->ctx->time);
9549         perf_swevent_start_hrtimer(event);
9550 }
9551
9552 static void task_clock_event_stop(struct perf_event *event, int flags)
9553 {
9554         perf_swevent_cancel_hrtimer(event);
9555         task_clock_event_update(event, event->ctx->time);
9556 }
9557
9558 static int task_clock_event_add(struct perf_event *event, int flags)
9559 {
9560         if (flags & PERF_EF_START)
9561                 task_clock_event_start(event, flags);
9562         perf_event_update_userpage(event);
9563
9564         return 0;
9565 }
9566
9567 static void task_clock_event_del(struct perf_event *event, int flags)
9568 {
9569         task_clock_event_stop(event, PERF_EF_UPDATE);
9570 }
9571
9572 static void task_clock_event_read(struct perf_event *event)
9573 {
9574         u64 now = perf_clock();
9575         u64 delta = now - event->ctx->timestamp;
9576         u64 time = event->ctx->time + delta;
9577
9578         task_clock_event_update(event, time);
9579 }
9580
9581 static int task_clock_event_init(struct perf_event *event)
9582 {
9583         if (event->attr.type != PERF_TYPE_SOFTWARE)
9584                 return -ENOENT;
9585
9586         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9587                 return -ENOENT;
9588
9589         /*
9590          * no branch sampling for software events
9591          */
9592         if (has_branch_stack(event))
9593                 return -EOPNOTSUPP;
9594
9595         perf_swevent_init_hrtimer(event);
9596
9597         return 0;
9598 }
9599
9600 static struct pmu perf_task_clock = {
9601         .task_ctx_nr    = perf_sw_context,
9602
9603         .capabilities   = PERF_PMU_CAP_NO_NMI,
9604
9605         .event_init     = task_clock_event_init,
9606         .add            = task_clock_event_add,
9607         .del            = task_clock_event_del,
9608         .start          = task_clock_event_start,
9609         .stop           = task_clock_event_stop,
9610         .read           = task_clock_event_read,
9611 };
9612
9613 static void perf_pmu_nop_void(struct pmu *pmu)
9614 {
9615 }
9616
9617 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9618 {
9619 }
9620
9621 static int perf_pmu_nop_int(struct pmu *pmu)
9622 {
9623         return 0;
9624 }
9625
9626 static int perf_event_nop_int(struct perf_event *event, u64 value)
9627 {
9628         return 0;
9629 }
9630
9631 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9632
9633 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9634 {
9635         __this_cpu_write(nop_txn_flags, flags);
9636
9637         if (flags & ~PERF_PMU_TXN_ADD)
9638                 return;
9639
9640         perf_pmu_disable(pmu);
9641 }
9642
9643 static int perf_pmu_commit_txn(struct pmu *pmu)
9644 {
9645         unsigned int flags = __this_cpu_read(nop_txn_flags);
9646
9647         __this_cpu_write(nop_txn_flags, 0);
9648
9649         if (flags & ~PERF_PMU_TXN_ADD)
9650                 return 0;
9651
9652         perf_pmu_enable(pmu);
9653         return 0;
9654 }
9655
9656 static void perf_pmu_cancel_txn(struct pmu *pmu)
9657 {
9658         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9659
9660         __this_cpu_write(nop_txn_flags, 0);
9661
9662         if (flags & ~PERF_PMU_TXN_ADD)
9663                 return;
9664
9665         perf_pmu_enable(pmu);
9666 }
9667
9668 static int perf_event_idx_default(struct perf_event *event)
9669 {
9670         return 0;
9671 }
9672
9673 /*
9674  * Ensures all contexts with the same task_ctx_nr have the same
9675  * pmu_cpu_context too.
9676  */
9677 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9678 {
9679         struct pmu *pmu;
9680
9681         if (ctxn < 0)
9682                 return NULL;
9683
9684         list_for_each_entry(pmu, &pmus, entry) {
9685                 if (pmu->task_ctx_nr == ctxn)
9686                         return pmu->pmu_cpu_context;
9687         }
9688
9689         return NULL;
9690 }
9691
9692 static void free_pmu_context(struct pmu *pmu)
9693 {
9694         /*
9695          * Static contexts such as perf_sw_context have a global lifetime
9696          * and may be shared between different PMUs. Avoid freeing them
9697          * when a single PMU is going away.
9698          */
9699         if (pmu->task_ctx_nr > perf_invalid_context)
9700                 return;
9701
9702         free_percpu(pmu->pmu_cpu_context);
9703 }
9704
9705 /*
9706  * Let userspace know that this PMU supports address range filtering:
9707  */
9708 static ssize_t nr_addr_filters_show(struct device *dev,
9709                                     struct device_attribute *attr,
9710                                     char *page)
9711 {
9712         struct pmu *pmu = dev_get_drvdata(dev);
9713
9714         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9715 }
9716 DEVICE_ATTR_RO(nr_addr_filters);
9717
9718 static struct idr pmu_idr;
9719
9720 static ssize_t
9721 type_show(struct device *dev, struct device_attribute *attr, char *page)
9722 {
9723         struct pmu *pmu = dev_get_drvdata(dev);
9724
9725         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9726 }
9727 static DEVICE_ATTR_RO(type);
9728
9729 static ssize_t
9730 perf_event_mux_interval_ms_show(struct device *dev,
9731                                 struct device_attribute *attr,
9732                                 char *page)
9733 {
9734         struct pmu *pmu = dev_get_drvdata(dev);
9735
9736         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9737 }
9738
9739 static DEFINE_MUTEX(mux_interval_mutex);
9740
9741 static ssize_t
9742 perf_event_mux_interval_ms_store(struct device *dev,
9743                                  struct device_attribute *attr,
9744                                  const char *buf, size_t count)
9745 {
9746         struct pmu *pmu = dev_get_drvdata(dev);
9747         int timer, cpu, ret;
9748
9749         ret = kstrtoint(buf, 0, &timer);
9750         if (ret)
9751                 return ret;
9752
9753         if (timer < 1)
9754                 return -EINVAL;
9755
9756         /* same value, noting to do */
9757         if (timer == pmu->hrtimer_interval_ms)
9758                 return count;
9759
9760         mutex_lock(&mux_interval_mutex);
9761         pmu->hrtimer_interval_ms = timer;
9762
9763         /* update all cpuctx for this PMU */
9764         cpus_read_lock();
9765         for_each_online_cpu(cpu) {
9766                 struct perf_cpu_context *cpuctx;
9767                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9768                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9769
9770                 cpu_function_call(cpu,
9771                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9772         }
9773         cpus_read_unlock();
9774         mutex_unlock(&mux_interval_mutex);
9775
9776         return count;
9777 }
9778 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9779
9780 static struct attribute *pmu_dev_attrs[] = {
9781         &dev_attr_type.attr,
9782         &dev_attr_perf_event_mux_interval_ms.attr,
9783         NULL,
9784 };
9785 ATTRIBUTE_GROUPS(pmu_dev);
9786
9787 static int pmu_bus_running;
9788 static struct bus_type pmu_bus = {
9789         .name           = "event_source",
9790         .dev_groups     = pmu_dev_groups,
9791 };
9792
9793 static void pmu_dev_release(struct device *dev)
9794 {
9795         kfree(dev);
9796 }
9797
9798 static int pmu_dev_alloc(struct pmu *pmu)
9799 {
9800         int ret = -ENOMEM;
9801
9802         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9803         if (!pmu->dev)
9804                 goto out;
9805
9806         pmu->dev->groups = pmu->attr_groups;
9807         device_initialize(pmu->dev);
9808         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9809         if (ret)
9810                 goto free_dev;
9811
9812         dev_set_drvdata(pmu->dev, pmu);
9813         pmu->dev->bus = &pmu_bus;
9814         pmu->dev->release = pmu_dev_release;
9815         ret = device_add(pmu->dev);
9816         if (ret)
9817                 goto free_dev;
9818
9819         /* For PMUs with address filters, throw in an extra attribute: */
9820         if (pmu->nr_addr_filters)
9821                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9822
9823         if (ret)
9824                 goto del_dev;
9825
9826 out:
9827         return ret;
9828
9829 del_dev:
9830         device_del(pmu->dev);
9831
9832 free_dev:
9833         put_device(pmu->dev);
9834         goto out;
9835 }
9836
9837 static struct lock_class_key cpuctx_mutex;
9838 static struct lock_class_key cpuctx_lock;
9839
9840 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9841 {
9842         int cpu, ret;
9843
9844         mutex_lock(&pmus_lock);
9845         ret = -ENOMEM;
9846         pmu->pmu_disable_count = alloc_percpu(int);
9847         if (!pmu->pmu_disable_count)
9848                 goto unlock;
9849
9850         pmu->type = -1;
9851         if (!name)
9852                 goto skip_type;
9853         pmu->name = name;
9854
9855         if (type < 0) {
9856                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9857                 if (type < 0) {
9858                         ret = type;
9859                         goto free_pdc;
9860                 }
9861         }
9862         pmu->type = type;
9863
9864         if (pmu_bus_running) {
9865                 ret = pmu_dev_alloc(pmu);
9866                 if (ret)
9867                         goto free_idr;
9868         }
9869
9870 skip_type:
9871         if (pmu->task_ctx_nr == perf_hw_context) {
9872                 static int hw_context_taken = 0;
9873
9874                 /*
9875                  * Other than systems with heterogeneous CPUs, it never makes
9876                  * sense for two PMUs to share perf_hw_context. PMUs which are
9877                  * uncore must use perf_invalid_context.
9878                  */
9879                 if (WARN_ON_ONCE(hw_context_taken &&
9880                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9881                         pmu->task_ctx_nr = perf_invalid_context;
9882
9883                 hw_context_taken = 1;
9884         }
9885
9886         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9887         if (pmu->pmu_cpu_context)
9888                 goto got_cpu_context;
9889
9890         ret = -ENOMEM;
9891         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9892         if (!pmu->pmu_cpu_context)
9893                 goto free_dev;
9894
9895         for_each_possible_cpu(cpu) {
9896                 struct perf_cpu_context *cpuctx;
9897
9898                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9899                 __perf_event_init_context(&cpuctx->ctx);
9900                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9901                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9902                 cpuctx->ctx.pmu = pmu;
9903                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9904
9905                 __perf_mux_hrtimer_init(cpuctx, cpu);
9906         }
9907
9908 got_cpu_context:
9909         if (!pmu->start_txn) {
9910                 if (pmu->pmu_enable) {
9911                         /*
9912                          * If we have pmu_enable/pmu_disable calls, install
9913                          * transaction stubs that use that to try and batch
9914                          * hardware accesses.
9915                          */
9916                         pmu->start_txn  = perf_pmu_start_txn;
9917                         pmu->commit_txn = perf_pmu_commit_txn;
9918                         pmu->cancel_txn = perf_pmu_cancel_txn;
9919                 } else {
9920                         pmu->start_txn  = perf_pmu_nop_txn;
9921                         pmu->commit_txn = perf_pmu_nop_int;
9922                         pmu->cancel_txn = perf_pmu_nop_void;
9923                 }
9924         }
9925
9926         if (!pmu->pmu_enable) {
9927                 pmu->pmu_enable  = perf_pmu_nop_void;
9928                 pmu->pmu_disable = perf_pmu_nop_void;
9929         }
9930
9931         if (!pmu->check_period)
9932                 pmu->check_period = perf_event_nop_int;
9933
9934         if (!pmu->event_idx)
9935                 pmu->event_idx = perf_event_idx_default;
9936
9937         list_add_rcu(&pmu->entry, &pmus);
9938         atomic_set(&pmu->exclusive_cnt, 0);
9939         ret = 0;
9940 unlock:
9941         mutex_unlock(&pmus_lock);
9942
9943         return ret;
9944
9945 free_dev:
9946         device_del(pmu->dev);
9947         put_device(pmu->dev);
9948
9949 free_idr:
9950         if (pmu->type >= PERF_TYPE_MAX)
9951                 idr_remove(&pmu_idr, pmu->type);
9952
9953 free_pdc:
9954         free_percpu(pmu->pmu_disable_count);
9955         goto unlock;
9956 }
9957 EXPORT_SYMBOL_GPL(perf_pmu_register);
9958
9959 void perf_pmu_unregister(struct pmu *pmu)
9960 {
9961         mutex_lock(&pmus_lock);
9962         list_del_rcu(&pmu->entry);
9963
9964         /*
9965          * We dereference the pmu list under both SRCU and regular RCU, so
9966          * synchronize against both of those.
9967          */
9968         synchronize_srcu(&pmus_srcu);
9969         synchronize_rcu();
9970
9971         free_percpu(pmu->pmu_disable_count);
9972         if (pmu->type >= PERF_TYPE_MAX)
9973                 idr_remove(&pmu_idr, pmu->type);
9974         if (pmu_bus_running) {
9975                 if (pmu->nr_addr_filters)
9976                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9977                 device_del(pmu->dev);
9978                 put_device(pmu->dev);
9979         }
9980         free_pmu_context(pmu);
9981         mutex_unlock(&pmus_lock);
9982 }
9983 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9984
9985 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9986 {
9987         struct perf_event_context *ctx = NULL;
9988         int ret;
9989
9990         if (!try_module_get(pmu->module))
9991                 return -ENODEV;
9992
9993         /*
9994          * A number of pmu->event_init() methods iterate the sibling_list to,
9995          * for example, validate if the group fits on the PMU. Therefore,
9996          * if this is a sibling event, acquire the ctx->mutex to protect
9997          * the sibling_list.
9998          */
9999         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10000                 /*
10001                  * This ctx->mutex can nest when we're called through
10002                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10003                  */
10004                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10005                                                  SINGLE_DEPTH_NESTING);
10006                 BUG_ON(!ctx);
10007         }
10008
10009         event->pmu = pmu;
10010         ret = pmu->event_init(event);
10011
10012         if (ctx)
10013                 perf_event_ctx_unlock(event->group_leader, ctx);
10014
10015         if (!ret) {
10016                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10017                                 event_has_any_exclude_flag(event)) {
10018                         if (event->destroy)
10019                                 event->destroy(event);
10020                         ret = -EINVAL;
10021                 }
10022         }
10023
10024         if (ret)
10025                 module_put(pmu->module);
10026
10027         return ret;
10028 }
10029
10030 static struct pmu *perf_init_event(struct perf_event *event)
10031 {
10032         struct pmu *pmu;
10033         int idx;
10034         int ret;
10035
10036         idx = srcu_read_lock(&pmus_srcu);
10037
10038         /* Try parent's PMU first: */
10039         if (event->parent && event->parent->pmu) {
10040                 pmu = event->parent->pmu;
10041                 ret = perf_try_init_event(pmu, event);
10042                 if (!ret)
10043                         goto unlock;
10044         }
10045
10046         rcu_read_lock();
10047         pmu = idr_find(&pmu_idr, event->attr.type);
10048         rcu_read_unlock();
10049         if (pmu) {
10050                 ret = perf_try_init_event(pmu, event);
10051                 if (ret)
10052                         pmu = ERR_PTR(ret);
10053                 goto unlock;
10054         }
10055
10056         list_for_each_entry_rcu(pmu, &pmus, entry) {
10057                 ret = perf_try_init_event(pmu, event);
10058                 if (!ret)
10059                         goto unlock;
10060
10061                 if (ret != -ENOENT) {
10062                         pmu = ERR_PTR(ret);
10063                         goto unlock;
10064                 }
10065         }
10066         pmu = ERR_PTR(-ENOENT);
10067 unlock:
10068         srcu_read_unlock(&pmus_srcu, idx);
10069
10070         return pmu;
10071 }
10072
10073 static void attach_sb_event(struct perf_event *event)
10074 {
10075         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10076
10077         raw_spin_lock(&pel->lock);
10078         list_add_rcu(&event->sb_list, &pel->list);
10079         raw_spin_unlock(&pel->lock);
10080 }
10081
10082 /*
10083  * We keep a list of all !task (and therefore per-cpu) events
10084  * that need to receive side-band records.
10085  *
10086  * This avoids having to scan all the various PMU per-cpu contexts
10087  * looking for them.
10088  */
10089 static void account_pmu_sb_event(struct perf_event *event)
10090 {
10091         if (is_sb_event(event))
10092                 attach_sb_event(event);
10093 }
10094
10095 static void account_event_cpu(struct perf_event *event, int cpu)
10096 {
10097         if (event->parent)
10098                 return;
10099
10100         if (is_cgroup_event(event))
10101                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10102 }
10103
10104 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10105 static void account_freq_event_nohz(void)
10106 {
10107 #ifdef CONFIG_NO_HZ_FULL
10108         /* Lock so we don't race with concurrent unaccount */
10109         spin_lock(&nr_freq_lock);
10110         if (atomic_inc_return(&nr_freq_events) == 1)
10111                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10112         spin_unlock(&nr_freq_lock);
10113 #endif
10114 }
10115
10116 static void account_freq_event(void)
10117 {
10118         if (tick_nohz_full_enabled())
10119                 account_freq_event_nohz();
10120         else
10121                 atomic_inc(&nr_freq_events);
10122 }
10123
10124
10125 static void account_event(struct perf_event *event)
10126 {
10127         bool inc = false;
10128
10129         if (event->parent)
10130                 return;
10131
10132         if (event->attach_state & PERF_ATTACH_TASK)
10133                 inc = true;
10134         if (event->attr.mmap || event->attr.mmap_data)
10135                 atomic_inc(&nr_mmap_events);
10136         if (event->attr.comm)
10137                 atomic_inc(&nr_comm_events);
10138         if (event->attr.namespaces)
10139                 atomic_inc(&nr_namespaces_events);
10140         if (event->attr.task)
10141                 atomic_inc(&nr_task_events);
10142         if (event->attr.freq)
10143                 account_freq_event();
10144         if (event->attr.context_switch) {
10145                 atomic_inc(&nr_switch_events);
10146                 inc = true;
10147         }
10148         if (has_branch_stack(event))
10149                 inc = true;
10150         if (is_cgroup_event(event))
10151                 inc = true;
10152         if (event->attr.ksymbol)
10153                 atomic_inc(&nr_ksymbol_events);
10154         if (event->attr.bpf_event)
10155                 atomic_inc(&nr_bpf_events);
10156
10157         if (inc) {
10158                 /*
10159                  * We need the mutex here because static_branch_enable()
10160                  * must complete *before* the perf_sched_count increment
10161                  * becomes visible.
10162                  */
10163                 if (atomic_inc_not_zero(&perf_sched_count))
10164                         goto enabled;
10165
10166                 mutex_lock(&perf_sched_mutex);
10167                 if (!atomic_read(&perf_sched_count)) {
10168                         static_branch_enable(&perf_sched_events);
10169                         /*
10170                          * Guarantee that all CPUs observe they key change and
10171                          * call the perf scheduling hooks before proceeding to
10172                          * install events that need them.
10173                          */
10174                         synchronize_rcu();
10175                 }
10176                 /*
10177                  * Now that we have waited for the sync_sched(), allow further
10178                  * increments to by-pass the mutex.
10179                  */
10180                 atomic_inc(&perf_sched_count);
10181                 mutex_unlock(&perf_sched_mutex);
10182         }
10183 enabled:
10184
10185         account_event_cpu(event, event->cpu);
10186
10187         account_pmu_sb_event(event);
10188 }
10189
10190 /*
10191  * Allocate and initialize an event structure
10192  */
10193 static struct perf_event *
10194 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10195                  struct task_struct *task,
10196                  struct perf_event *group_leader,
10197                  struct perf_event *parent_event,
10198                  perf_overflow_handler_t overflow_handler,
10199                  void *context, int cgroup_fd)
10200 {
10201         struct pmu *pmu;
10202         struct perf_event *event;
10203         struct hw_perf_event *hwc;
10204         long err = -EINVAL;
10205
10206         if ((unsigned)cpu >= nr_cpu_ids) {
10207                 if (!task || cpu != -1)
10208                         return ERR_PTR(-EINVAL);
10209         }
10210
10211         event = kzalloc(sizeof(*event), GFP_KERNEL);
10212         if (!event)
10213                 return ERR_PTR(-ENOMEM);
10214
10215         /*
10216          * Single events are their own group leaders, with an
10217          * empty sibling list:
10218          */
10219         if (!group_leader)
10220                 group_leader = event;
10221
10222         mutex_init(&event->child_mutex);
10223         INIT_LIST_HEAD(&event->child_list);
10224
10225         INIT_LIST_HEAD(&event->event_entry);
10226         INIT_LIST_HEAD(&event->sibling_list);
10227         INIT_LIST_HEAD(&event->active_list);
10228         init_event_group(event);
10229         INIT_LIST_HEAD(&event->rb_entry);
10230         INIT_LIST_HEAD(&event->active_entry);
10231         INIT_LIST_HEAD(&event->addr_filters.list);
10232         INIT_HLIST_NODE(&event->hlist_entry);
10233
10234
10235         init_waitqueue_head(&event->waitq);
10236         init_irq_work(&event->pending, perf_pending_event);
10237
10238         mutex_init(&event->mmap_mutex);
10239         raw_spin_lock_init(&event->addr_filters.lock);
10240
10241         atomic_long_set(&event->refcount, 1);
10242         event->cpu              = cpu;
10243         event->attr             = *attr;
10244         event->group_leader     = group_leader;
10245         event->pmu              = NULL;
10246         event->oncpu            = -1;
10247
10248         event->parent           = parent_event;
10249
10250         event->ns               = get_pid_ns(task_active_pid_ns(current));
10251         event->id               = atomic64_inc_return(&perf_event_id);
10252
10253         event->state            = PERF_EVENT_STATE_INACTIVE;
10254
10255         if (task) {
10256                 event->attach_state = PERF_ATTACH_TASK;
10257                 /*
10258                  * XXX pmu::event_init needs to know what task to account to
10259                  * and we cannot use the ctx information because we need the
10260                  * pmu before we get a ctx.
10261                  */
10262                 get_task_struct(task);
10263                 event->hw.target = task;
10264         }
10265
10266         event->clock = &local_clock;
10267         if (parent_event)
10268                 event->clock = parent_event->clock;
10269
10270         if (!overflow_handler && parent_event) {
10271                 overflow_handler = parent_event->overflow_handler;
10272                 context = parent_event->overflow_handler_context;
10273 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10274                 if (overflow_handler == bpf_overflow_handler) {
10275                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10276
10277                         if (IS_ERR(prog)) {
10278                                 err = PTR_ERR(prog);
10279                                 goto err_ns;
10280                         }
10281                         event->prog = prog;
10282                         event->orig_overflow_handler =
10283                                 parent_event->orig_overflow_handler;
10284                 }
10285 #endif
10286         }
10287
10288         if (overflow_handler) {
10289                 event->overflow_handler = overflow_handler;
10290                 event->overflow_handler_context = context;
10291         } else if (is_write_backward(event)){
10292                 event->overflow_handler = perf_event_output_backward;
10293                 event->overflow_handler_context = NULL;
10294         } else {
10295                 event->overflow_handler = perf_event_output_forward;
10296                 event->overflow_handler_context = NULL;
10297         }
10298
10299         perf_event__state_init(event);
10300
10301         pmu = NULL;
10302
10303         hwc = &event->hw;
10304         hwc->sample_period = attr->sample_period;
10305         if (attr->freq && attr->sample_freq)
10306                 hwc->sample_period = 1;
10307         hwc->last_period = hwc->sample_period;
10308
10309         local64_set(&hwc->period_left, hwc->sample_period);
10310
10311         /*
10312          * We currently do not support PERF_SAMPLE_READ on inherited events.
10313          * See perf_output_read().
10314          */
10315         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10316                 goto err_ns;
10317
10318         if (!has_branch_stack(event))
10319                 event->attr.branch_sample_type = 0;
10320
10321         if (cgroup_fd != -1) {
10322                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10323                 if (err)
10324                         goto err_ns;
10325         }
10326
10327         pmu = perf_init_event(event);
10328         if (IS_ERR(pmu)) {
10329                 err = PTR_ERR(pmu);
10330                 goto err_ns;
10331         }
10332
10333         err = exclusive_event_init(event);
10334         if (err)
10335                 goto err_pmu;
10336
10337         if (has_addr_filter(event)) {
10338                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10339                                                     sizeof(struct perf_addr_filter_range),
10340                                                     GFP_KERNEL);
10341                 if (!event->addr_filter_ranges) {
10342                         err = -ENOMEM;
10343                         goto err_per_task;
10344                 }
10345
10346                 /*
10347                  * Clone the parent's vma offsets: they are valid until exec()
10348                  * even if the mm is not shared with the parent.
10349                  */
10350                 if (event->parent) {
10351                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10352
10353                         raw_spin_lock_irq(&ifh->lock);
10354                         memcpy(event->addr_filter_ranges,
10355                                event->parent->addr_filter_ranges,
10356                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10357                         raw_spin_unlock_irq(&ifh->lock);
10358                 }
10359
10360                 /* force hw sync on the address filters */
10361                 event->addr_filters_gen = 1;
10362         }
10363
10364         if (!event->parent) {
10365                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10366                         err = get_callchain_buffers(attr->sample_max_stack);
10367                         if (err)
10368                                 goto err_addr_filters;
10369                 }
10370         }
10371
10372         /* symmetric to unaccount_event() in _free_event() */
10373         account_event(event);
10374
10375         return event;
10376
10377 err_addr_filters:
10378         kfree(event->addr_filter_ranges);
10379
10380 err_per_task:
10381         exclusive_event_destroy(event);
10382
10383 err_pmu:
10384         if (event->destroy)
10385                 event->destroy(event);
10386         module_put(pmu->module);
10387 err_ns:
10388         if (is_cgroup_event(event))
10389                 perf_detach_cgroup(event);
10390         if (event->ns)
10391                 put_pid_ns(event->ns);
10392         if (event->hw.target)
10393                 put_task_struct(event->hw.target);
10394         kfree(event);
10395
10396         return ERR_PTR(err);
10397 }
10398
10399 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10400                           struct perf_event_attr *attr)
10401 {
10402         u32 size;
10403         int ret;
10404
10405         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10406                 return -EFAULT;
10407
10408         /*
10409          * zero the full structure, so that a short copy will be nice.
10410          */
10411         memset(attr, 0, sizeof(*attr));
10412
10413         ret = get_user(size, &uattr->size);
10414         if (ret)
10415                 return ret;
10416
10417         if (size > PAGE_SIZE)   /* silly large */
10418                 goto err_size;
10419
10420         if (!size)              /* abi compat */
10421                 size = PERF_ATTR_SIZE_VER0;
10422
10423         if (size < PERF_ATTR_SIZE_VER0)
10424                 goto err_size;
10425
10426         /*
10427          * If we're handed a bigger struct than we know of,
10428          * ensure all the unknown bits are 0 - i.e. new
10429          * user-space does not rely on any kernel feature
10430          * extensions we dont know about yet.
10431          */
10432         if (size > sizeof(*attr)) {
10433                 unsigned char __user *addr;
10434                 unsigned char __user *end;
10435                 unsigned char val;
10436
10437                 addr = (void __user *)uattr + sizeof(*attr);
10438                 end  = (void __user *)uattr + size;
10439
10440                 for (; addr < end; addr++) {
10441                         ret = get_user(val, addr);
10442                         if (ret)
10443                                 return ret;
10444                         if (val)
10445                                 goto err_size;
10446                 }
10447                 size = sizeof(*attr);
10448         }
10449
10450         ret = copy_from_user(attr, uattr, size);
10451         if (ret)
10452                 return -EFAULT;
10453
10454         attr->size = size;
10455
10456         if (attr->__reserved_1)
10457                 return -EINVAL;
10458
10459         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10460                 return -EINVAL;
10461
10462         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10463                 return -EINVAL;
10464
10465         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10466                 u64 mask = attr->branch_sample_type;
10467
10468                 /* only using defined bits */
10469                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10470                         return -EINVAL;
10471
10472                 /* at least one branch bit must be set */
10473                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10474                         return -EINVAL;
10475
10476                 /* propagate priv level, when not set for branch */
10477                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10478
10479                         /* exclude_kernel checked on syscall entry */
10480                         if (!attr->exclude_kernel)
10481                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10482
10483                         if (!attr->exclude_user)
10484                                 mask |= PERF_SAMPLE_BRANCH_USER;
10485
10486                         if (!attr->exclude_hv)
10487                                 mask |= PERF_SAMPLE_BRANCH_HV;
10488                         /*
10489                          * adjust user setting (for HW filter setup)
10490                          */
10491                         attr->branch_sample_type = mask;
10492                 }
10493                 /* privileged levels capture (kernel, hv): check permissions */
10494                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10495                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10496                         return -EACCES;
10497         }
10498
10499         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10500                 ret = perf_reg_validate(attr->sample_regs_user);
10501                 if (ret)
10502                         return ret;
10503         }
10504
10505         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10506                 if (!arch_perf_have_user_stack_dump())
10507                         return -ENOSYS;
10508
10509                 /*
10510                  * We have __u32 type for the size, but so far
10511                  * we can only use __u16 as maximum due to the
10512                  * __u16 sample size limit.
10513                  */
10514                 if (attr->sample_stack_user >= USHRT_MAX)
10515                         return -EINVAL;
10516                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10517                         return -EINVAL;
10518         }
10519
10520         if (!attr->sample_max_stack)
10521                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10522
10523         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10524                 ret = perf_reg_validate(attr->sample_regs_intr);
10525 out:
10526         return ret;
10527
10528 err_size:
10529         put_user(sizeof(*attr), &uattr->size);
10530         ret = -E2BIG;
10531         goto out;
10532 }
10533
10534 static int
10535 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10536 {
10537         struct ring_buffer *rb = NULL;
10538         int ret = -EINVAL;
10539
10540         if (!output_event)
10541                 goto set;
10542
10543         /* don't allow circular references */
10544         if (event == output_event)
10545                 goto out;
10546
10547         /*
10548          * Don't allow cross-cpu buffers
10549          */
10550         if (output_event->cpu != event->cpu)
10551                 goto out;
10552
10553         /*
10554          * If its not a per-cpu rb, it must be the same task.
10555          */
10556         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10557                 goto out;
10558
10559         /*
10560          * Mixing clocks in the same buffer is trouble you don't need.
10561          */
10562         if (output_event->clock != event->clock)
10563                 goto out;
10564
10565         /*
10566          * Either writing ring buffer from beginning or from end.
10567          * Mixing is not allowed.
10568          */
10569         if (is_write_backward(output_event) != is_write_backward(event))
10570                 goto out;
10571
10572         /*
10573          * If both events generate aux data, they must be on the same PMU
10574          */
10575         if (has_aux(event) && has_aux(output_event) &&
10576             event->pmu != output_event->pmu)
10577                 goto out;
10578
10579 set:
10580         mutex_lock(&event->mmap_mutex);
10581         /* Can't redirect output if we've got an active mmap() */
10582         if (atomic_read(&event->mmap_count))
10583                 goto unlock;
10584
10585         if (output_event) {
10586                 /* get the rb we want to redirect to */
10587                 rb = ring_buffer_get(output_event);
10588                 if (!rb)
10589                         goto unlock;
10590         }
10591
10592         ring_buffer_attach(event, rb);
10593
10594         ret = 0;
10595 unlock:
10596         mutex_unlock(&event->mmap_mutex);
10597
10598 out:
10599         return ret;
10600 }
10601
10602 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10603 {
10604         if (b < a)
10605                 swap(a, b);
10606
10607         mutex_lock(a);
10608         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10609 }
10610
10611 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10612 {
10613         bool nmi_safe = false;
10614
10615         switch (clk_id) {
10616         case CLOCK_MONOTONIC:
10617                 event->clock = &ktime_get_mono_fast_ns;
10618                 nmi_safe = true;
10619                 break;
10620
10621         case CLOCK_MONOTONIC_RAW:
10622                 event->clock = &ktime_get_raw_fast_ns;
10623                 nmi_safe = true;
10624                 break;
10625
10626         case CLOCK_REALTIME:
10627                 event->clock = &ktime_get_real_ns;
10628                 break;
10629
10630         case CLOCK_BOOTTIME:
10631                 event->clock = &ktime_get_boot_ns;
10632                 break;
10633
10634         case CLOCK_TAI:
10635                 event->clock = &ktime_get_tai_ns;
10636                 break;
10637
10638         default:
10639                 return -EINVAL;
10640         }
10641
10642         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10643                 return -EINVAL;
10644
10645         return 0;
10646 }
10647
10648 /*
10649  * Variation on perf_event_ctx_lock_nested(), except we take two context
10650  * mutexes.
10651  */
10652 static struct perf_event_context *
10653 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10654                              struct perf_event_context *ctx)
10655 {
10656         struct perf_event_context *gctx;
10657
10658 again:
10659         rcu_read_lock();
10660         gctx = READ_ONCE(group_leader->ctx);
10661         if (!refcount_inc_not_zero(&gctx->refcount)) {
10662                 rcu_read_unlock();
10663                 goto again;
10664         }
10665         rcu_read_unlock();
10666
10667         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10668
10669         if (group_leader->ctx != gctx) {
10670                 mutex_unlock(&ctx->mutex);
10671                 mutex_unlock(&gctx->mutex);
10672                 put_ctx(gctx);
10673                 goto again;
10674         }
10675
10676         return gctx;
10677 }
10678
10679 /**
10680  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10681  *
10682  * @attr_uptr:  event_id type attributes for monitoring/sampling
10683  * @pid:                target pid
10684  * @cpu:                target cpu
10685  * @group_fd:           group leader event fd
10686  */
10687 SYSCALL_DEFINE5(perf_event_open,
10688                 struct perf_event_attr __user *, attr_uptr,
10689                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10690 {
10691         struct perf_event *group_leader = NULL, *output_event = NULL;
10692         struct perf_event *event, *sibling;
10693         struct perf_event_attr attr;
10694         struct perf_event_context *ctx, *uninitialized_var(gctx);
10695         struct file *event_file = NULL;
10696         struct fd group = {NULL, 0};
10697         struct task_struct *task = NULL;
10698         struct pmu *pmu;
10699         int event_fd;
10700         int move_group = 0;
10701         int err;
10702         int f_flags = O_RDWR;
10703         int cgroup_fd = -1;
10704
10705         /* for future expandability... */
10706         if (flags & ~PERF_FLAG_ALL)
10707                 return -EINVAL;
10708
10709         err = perf_copy_attr(attr_uptr, &attr);
10710         if (err)
10711                 return err;
10712
10713         if (!attr.exclude_kernel) {
10714                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10715                         return -EACCES;
10716         }
10717
10718         if (attr.namespaces) {
10719                 if (!capable(CAP_SYS_ADMIN))
10720                         return -EACCES;
10721         }
10722
10723         if (attr.freq) {
10724                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10725                         return -EINVAL;
10726         } else {
10727                 if (attr.sample_period & (1ULL << 63))
10728                         return -EINVAL;
10729         }
10730
10731         /* Only privileged users can get physical addresses */
10732         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10733             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10734                 return -EACCES;
10735
10736         /*
10737          * In cgroup mode, the pid argument is used to pass the fd
10738          * opened to the cgroup directory in cgroupfs. The cpu argument
10739          * designates the cpu on which to monitor threads from that
10740          * cgroup.
10741          */
10742         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10743                 return -EINVAL;
10744
10745         if (flags & PERF_FLAG_FD_CLOEXEC)
10746                 f_flags |= O_CLOEXEC;
10747
10748         event_fd = get_unused_fd_flags(f_flags);
10749         if (event_fd < 0)
10750                 return event_fd;
10751
10752         if (group_fd != -1) {
10753                 err = perf_fget_light(group_fd, &group);
10754                 if (err)
10755                         goto err_fd;
10756                 group_leader = group.file->private_data;
10757                 if (flags & PERF_FLAG_FD_OUTPUT)
10758                         output_event = group_leader;
10759                 if (flags & PERF_FLAG_FD_NO_GROUP)
10760                         group_leader = NULL;
10761         }
10762
10763         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10764                 task = find_lively_task_by_vpid(pid);
10765                 if (IS_ERR(task)) {
10766                         err = PTR_ERR(task);
10767                         goto err_group_fd;
10768                 }
10769         }
10770
10771         if (task && group_leader &&
10772             group_leader->attr.inherit != attr.inherit) {
10773                 err = -EINVAL;
10774                 goto err_task;
10775         }
10776
10777         if (task) {
10778                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10779                 if (err)
10780                         goto err_task;
10781
10782                 /*
10783                  * Reuse ptrace permission checks for now.
10784                  *
10785                  * We must hold cred_guard_mutex across this and any potential
10786                  * perf_install_in_context() call for this new event to
10787                  * serialize against exec() altering our credentials (and the
10788                  * perf_event_exit_task() that could imply).
10789                  */
10790                 err = -EACCES;
10791                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10792                         goto err_cred;
10793         }
10794
10795         if (flags & PERF_FLAG_PID_CGROUP)
10796                 cgroup_fd = pid;
10797
10798         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10799                                  NULL, NULL, cgroup_fd);
10800         if (IS_ERR(event)) {
10801                 err = PTR_ERR(event);
10802                 goto err_cred;
10803         }
10804
10805         if (is_sampling_event(event)) {
10806                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10807                         err = -EOPNOTSUPP;
10808                         goto err_alloc;
10809                 }
10810         }
10811
10812         /*
10813          * Special case software events and allow them to be part of
10814          * any hardware group.
10815          */
10816         pmu = event->pmu;
10817
10818         if (attr.use_clockid) {
10819                 err = perf_event_set_clock(event, attr.clockid);
10820                 if (err)
10821                         goto err_alloc;
10822         }
10823
10824         if (pmu->task_ctx_nr == perf_sw_context)
10825                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10826
10827         if (group_leader) {
10828                 if (is_software_event(event) &&
10829                     !in_software_context(group_leader)) {
10830                         /*
10831                          * If the event is a sw event, but the group_leader
10832                          * is on hw context.
10833                          *
10834                          * Allow the addition of software events to hw
10835                          * groups, this is safe because software events
10836                          * never fail to schedule.
10837                          */
10838                         pmu = group_leader->ctx->pmu;
10839                 } else if (!is_software_event(event) &&
10840                            is_software_event(group_leader) &&
10841                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10842                         /*
10843                          * In case the group is a pure software group, and we
10844                          * try to add a hardware event, move the whole group to
10845                          * the hardware context.
10846                          */
10847                         move_group = 1;
10848                 }
10849         }
10850
10851         /*
10852          * Get the target context (task or percpu):
10853          */
10854         ctx = find_get_context(pmu, task, event);
10855         if (IS_ERR(ctx)) {
10856                 err = PTR_ERR(ctx);
10857                 goto err_alloc;
10858         }
10859
10860         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10861                 err = -EBUSY;
10862                 goto err_context;
10863         }
10864
10865         /*
10866          * Look up the group leader (we will attach this event to it):
10867          */
10868         if (group_leader) {
10869                 err = -EINVAL;
10870
10871                 /*
10872                  * Do not allow a recursive hierarchy (this new sibling
10873                  * becoming part of another group-sibling):
10874                  */
10875                 if (group_leader->group_leader != group_leader)
10876                         goto err_context;
10877
10878                 /* All events in a group should have the same clock */
10879                 if (group_leader->clock != event->clock)
10880                         goto err_context;
10881
10882                 /*
10883                  * Make sure we're both events for the same CPU;
10884                  * grouping events for different CPUs is broken; since
10885                  * you can never concurrently schedule them anyhow.
10886                  */
10887                 if (group_leader->cpu != event->cpu)
10888                         goto err_context;
10889
10890                 /*
10891                  * Make sure we're both on the same task, or both
10892                  * per-CPU events.
10893                  */
10894                 if (group_leader->ctx->task != ctx->task)
10895                         goto err_context;
10896
10897                 /*
10898                  * Do not allow to attach to a group in a different task
10899                  * or CPU context. If we're moving SW events, we'll fix
10900                  * this up later, so allow that.
10901                  */
10902                 if (!move_group && group_leader->ctx != ctx)
10903                         goto err_context;
10904
10905                 /*
10906                  * Only a group leader can be exclusive or pinned
10907                  */
10908                 if (attr.exclusive || attr.pinned)
10909                         goto err_context;
10910         }
10911
10912         if (output_event) {
10913                 err = perf_event_set_output(event, output_event);
10914                 if (err)
10915                         goto err_context;
10916         }
10917
10918         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10919                                         f_flags);
10920         if (IS_ERR(event_file)) {
10921                 err = PTR_ERR(event_file);
10922                 event_file = NULL;
10923                 goto err_context;
10924         }
10925
10926         if (move_group) {
10927                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10928
10929                 if (gctx->task == TASK_TOMBSTONE) {
10930                         err = -ESRCH;
10931                         goto err_locked;
10932                 }
10933
10934                 /*
10935                  * Check if we raced against another sys_perf_event_open() call
10936                  * moving the software group underneath us.
10937                  */
10938                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10939                         /*
10940                          * If someone moved the group out from under us, check
10941                          * if this new event wound up on the same ctx, if so
10942                          * its the regular !move_group case, otherwise fail.
10943                          */
10944                         if (gctx != ctx) {
10945                                 err = -EINVAL;
10946                                 goto err_locked;
10947                         } else {
10948                                 perf_event_ctx_unlock(group_leader, gctx);
10949                                 move_group = 0;
10950                         }
10951                 }
10952         } else {
10953                 mutex_lock(&ctx->mutex);
10954         }
10955
10956         if (ctx->task == TASK_TOMBSTONE) {
10957                 err = -ESRCH;
10958                 goto err_locked;
10959         }
10960
10961         if (!perf_event_validate_size(event)) {
10962                 err = -E2BIG;
10963                 goto err_locked;
10964         }
10965
10966         if (!task) {
10967                 /*
10968                  * Check if the @cpu we're creating an event for is online.
10969                  *
10970                  * We use the perf_cpu_context::ctx::mutex to serialize against
10971                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10972                  */
10973                 struct perf_cpu_context *cpuctx =
10974                         container_of(ctx, struct perf_cpu_context, ctx);
10975
10976                 if (!cpuctx->online) {
10977                         err = -ENODEV;
10978                         goto err_locked;
10979                 }
10980         }
10981
10982
10983         /*
10984          * Must be under the same ctx::mutex as perf_install_in_context(),
10985          * because we need to serialize with concurrent event creation.
10986          */
10987         if (!exclusive_event_installable(event, ctx)) {
10988                 /* exclusive and group stuff are assumed mutually exclusive */
10989                 WARN_ON_ONCE(move_group);
10990
10991                 err = -EBUSY;
10992                 goto err_locked;
10993         }
10994
10995         WARN_ON_ONCE(ctx->parent_ctx);
10996
10997         /*
10998          * This is the point on no return; we cannot fail hereafter. This is
10999          * where we start modifying current state.
11000          */
11001
11002         if (move_group) {
11003                 /*
11004                  * See perf_event_ctx_lock() for comments on the details
11005                  * of swizzling perf_event::ctx.
11006                  */
11007                 perf_remove_from_context(group_leader, 0);
11008                 put_ctx(gctx);
11009
11010                 for_each_sibling_event(sibling, group_leader) {
11011                         perf_remove_from_context(sibling, 0);
11012                         put_ctx(gctx);
11013                 }
11014
11015                 /*
11016                  * Wait for everybody to stop referencing the events through
11017                  * the old lists, before installing it on new lists.
11018                  */
11019                 synchronize_rcu();
11020
11021                 /*
11022                  * Install the group siblings before the group leader.
11023                  *
11024                  * Because a group leader will try and install the entire group
11025                  * (through the sibling list, which is still in-tact), we can
11026                  * end up with siblings installed in the wrong context.
11027                  *
11028                  * By installing siblings first we NO-OP because they're not
11029                  * reachable through the group lists.
11030                  */
11031                 for_each_sibling_event(sibling, group_leader) {
11032                         perf_event__state_init(sibling);
11033                         perf_install_in_context(ctx, sibling, sibling->cpu);
11034                         get_ctx(ctx);
11035                 }
11036
11037                 /*
11038                  * Removing from the context ends up with disabled
11039                  * event. What we want here is event in the initial
11040                  * startup state, ready to be add into new context.
11041                  */
11042                 perf_event__state_init(group_leader);
11043                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11044                 get_ctx(ctx);
11045         }
11046
11047         /*
11048          * Precalculate sample_data sizes; do while holding ctx::mutex such
11049          * that we're serialized against further additions and before
11050          * perf_install_in_context() which is the point the event is active and
11051          * can use these values.
11052          */
11053         perf_event__header_size(event);
11054         perf_event__id_header_size(event);
11055
11056         event->owner = current;
11057
11058         perf_install_in_context(ctx, event, event->cpu);
11059         perf_unpin_context(ctx);
11060
11061         if (move_group)
11062                 perf_event_ctx_unlock(group_leader, gctx);
11063         mutex_unlock(&ctx->mutex);
11064
11065         if (task) {
11066                 mutex_unlock(&task->signal->cred_guard_mutex);
11067                 put_task_struct(task);
11068         }
11069
11070         mutex_lock(&current->perf_event_mutex);
11071         list_add_tail(&event->owner_entry, &current->perf_event_list);
11072         mutex_unlock(&current->perf_event_mutex);
11073
11074         /*
11075          * Drop the reference on the group_event after placing the
11076          * new event on the sibling_list. This ensures destruction
11077          * of the group leader will find the pointer to itself in
11078          * perf_group_detach().
11079          */
11080         fdput(group);
11081         fd_install(event_fd, event_file);
11082         return event_fd;
11083
11084 err_locked:
11085         if (move_group)
11086                 perf_event_ctx_unlock(group_leader, gctx);
11087         mutex_unlock(&ctx->mutex);
11088 /* err_file: */
11089         fput(event_file);
11090 err_context:
11091         perf_unpin_context(ctx);
11092         put_ctx(ctx);
11093 err_alloc:
11094         /*
11095          * If event_file is set, the fput() above will have called ->release()
11096          * and that will take care of freeing the event.
11097          */
11098         if (!event_file)
11099                 free_event(event);
11100 err_cred:
11101         if (task)
11102                 mutex_unlock(&task->signal->cred_guard_mutex);
11103 err_task:
11104         if (task)
11105                 put_task_struct(task);
11106 err_group_fd:
11107         fdput(group);
11108 err_fd:
11109         put_unused_fd(event_fd);
11110         return err;
11111 }
11112
11113 /**
11114  * perf_event_create_kernel_counter
11115  *
11116  * @attr: attributes of the counter to create
11117  * @cpu: cpu in which the counter is bound
11118  * @task: task to profile (NULL for percpu)
11119  */
11120 struct perf_event *
11121 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11122                                  struct task_struct *task,
11123                                  perf_overflow_handler_t overflow_handler,
11124                                  void *context)
11125 {
11126         struct perf_event_context *ctx;
11127         struct perf_event *event;
11128         int err;
11129
11130         /*
11131          * Get the target context (task or percpu):
11132          */
11133
11134         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11135                                  overflow_handler, context, -1);
11136         if (IS_ERR(event)) {
11137                 err = PTR_ERR(event);
11138                 goto err;
11139         }
11140
11141         /* Mark owner so we could distinguish it from user events. */
11142         event->owner = TASK_TOMBSTONE;
11143
11144         ctx = find_get_context(event->pmu, task, event);
11145         if (IS_ERR(ctx)) {
11146                 err = PTR_ERR(ctx);
11147                 goto err_free;
11148         }
11149
11150         WARN_ON_ONCE(ctx->parent_ctx);
11151         mutex_lock(&ctx->mutex);
11152         if (ctx->task == TASK_TOMBSTONE) {
11153                 err = -ESRCH;
11154                 goto err_unlock;
11155         }
11156
11157         if (!task) {
11158                 /*
11159                  * Check if the @cpu we're creating an event for is online.
11160                  *
11161                  * We use the perf_cpu_context::ctx::mutex to serialize against
11162                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11163                  */
11164                 struct perf_cpu_context *cpuctx =
11165                         container_of(ctx, struct perf_cpu_context, ctx);
11166                 if (!cpuctx->online) {
11167                         err = -ENODEV;
11168                         goto err_unlock;
11169                 }
11170         }
11171
11172         if (!exclusive_event_installable(event, ctx)) {
11173                 err = -EBUSY;
11174                 goto err_unlock;
11175         }
11176
11177         perf_install_in_context(ctx, event, cpu);
11178         perf_unpin_context(ctx);
11179         mutex_unlock(&ctx->mutex);
11180
11181         return event;
11182
11183 err_unlock:
11184         mutex_unlock(&ctx->mutex);
11185         perf_unpin_context(ctx);
11186         put_ctx(ctx);
11187 err_free:
11188         free_event(event);
11189 err:
11190         return ERR_PTR(err);
11191 }
11192 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11193
11194 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11195 {
11196         struct perf_event_context *src_ctx;
11197         struct perf_event_context *dst_ctx;
11198         struct perf_event *event, *tmp;
11199         LIST_HEAD(events);
11200
11201         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11202         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11203
11204         /*
11205          * See perf_event_ctx_lock() for comments on the details
11206          * of swizzling perf_event::ctx.
11207          */
11208         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11209         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11210                                  event_entry) {
11211                 perf_remove_from_context(event, 0);
11212                 unaccount_event_cpu(event, src_cpu);
11213                 put_ctx(src_ctx);
11214                 list_add(&event->migrate_entry, &events);
11215         }
11216
11217         /*
11218          * Wait for the events to quiesce before re-instating them.
11219          */
11220         synchronize_rcu();
11221
11222         /*
11223          * Re-instate events in 2 passes.
11224          *
11225          * Skip over group leaders and only install siblings on this first
11226          * pass, siblings will not get enabled without a leader, however a
11227          * leader will enable its siblings, even if those are still on the old
11228          * context.
11229          */
11230         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11231                 if (event->group_leader == event)
11232                         continue;
11233
11234                 list_del(&event->migrate_entry);
11235                 if (event->state >= PERF_EVENT_STATE_OFF)
11236                         event->state = PERF_EVENT_STATE_INACTIVE;
11237                 account_event_cpu(event, dst_cpu);
11238                 perf_install_in_context(dst_ctx, event, dst_cpu);
11239                 get_ctx(dst_ctx);
11240         }
11241
11242         /*
11243          * Once all the siblings are setup properly, install the group leaders
11244          * to make it go.
11245          */
11246         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11247                 list_del(&event->migrate_entry);
11248                 if (event->state >= PERF_EVENT_STATE_OFF)
11249                         event->state = PERF_EVENT_STATE_INACTIVE;
11250                 account_event_cpu(event, dst_cpu);
11251                 perf_install_in_context(dst_ctx, event, dst_cpu);
11252                 get_ctx(dst_ctx);
11253         }
11254         mutex_unlock(&dst_ctx->mutex);
11255         mutex_unlock(&src_ctx->mutex);
11256 }
11257 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11258
11259 static void sync_child_event(struct perf_event *child_event,
11260                                struct task_struct *child)
11261 {
11262         struct perf_event *parent_event = child_event->parent;
11263         u64 child_val;
11264
11265         if (child_event->attr.inherit_stat)
11266                 perf_event_read_event(child_event, child);
11267
11268         child_val = perf_event_count(child_event);
11269
11270         /*
11271          * Add back the child's count to the parent's count:
11272          */
11273         atomic64_add(child_val, &parent_event->child_count);
11274         atomic64_add(child_event->total_time_enabled,
11275                      &parent_event->child_total_time_enabled);
11276         atomic64_add(child_event->total_time_running,
11277                      &parent_event->child_total_time_running);
11278 }
11279
11280 static void
11281 perf_event_exit_event(struct perf_event *child_event,
11282                       struct perf_event_context *child_ctx,
11283                       struct task_struct *child)
11284 {
11285         struct perf_event *parent_event = child_event->parent;
11286
11287         /*
11288          * Do not destroy the 'original' grouping; because of the context
11289          * switch optimization the original events could've ended up in a
11290          * random child task.
11291          *
11292          * If we were to destroy the original group, all group related
11293          * operations would cease to function properly after this random
11294          * child dies.
11295          *
11296          * Do destroy all inherited groups, we don't care about those
11297          * and being thorough is better.
11298          */
11299         raw_spin_lock_irq(&child_ctx->lock);
11300         WARN_ON_ONCE(child_ctx->is_active);
11301
11302         if (parent_event)
11303                 perf_group_detach(child_event);
11304         list_del_event(child_event, child_ctx);
11305         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11306         raw_spin_unlock_irq(&child_ctx->lock);
11307
11308         /*
11309          * Parent events are governed by their filedesc, retain them.
11310          */
11311         if (!parent_event) {
11312                 perf_event_wakeup(child_event);
11313                 return;
11314         }
11315         /*
11316          * Child events can be cleaned up.
11317          */
11318
11319         sync_child_event(child_event, child);
11320
11321         /*
11322          * Remove this event from the parent's list
11323          */
11324         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11325         mutex_lock(&parent_event->child_mutex);
11326         list_del_init(&child_event->child_list);
11327         mutex_unlock(&parent_event->child_mutex);
11328
11329         /*
11330          * Kick perf_poll() for is_event_hup().
11331          */
11332         perf_event_wakeup(parent_event);
11333         free_event(child_event);
11334         put_event(parent_event);
11335 }
11336
11337 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11338 {
11339         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11340         struct perf_event *child_event, *next;
11341
11342         WARN_ON_ONCE(child != current);
11343
11344         child_ctx = perf_pin_task_context(child, ctxn);
11345         if (!child_ctx)
11346                 return;
11347
11348         /*
11349          * In order to reduce the amount of tricky in ctx tear-down, we hold
11350          * ctx::mutex over the entire thing. This serializes against almost
11351          * everything that wants to access the ctx.
11352          *
11353          * The exception is sys_perf_event_open() /
11354          * perf_event_create_kernel_count() which does find_get_context()
11355          * without ctx::mutex (it cannot because of the move_group double mutex
11356          * lock thing). See the comments in perf_install_in_context().
11357          */
11358         mutex_lock(&child_ctx->mutex);
11359
11360         /*
11361          * In a single ctx::lock section, de-schedule the events and detach the
11362          * context from the task such that we cannot ever get it scheduled back
11363          * in.
11364          */
11365         raw_spin_lock_irq(&child_ctx->lock);
11366         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11367
11368         /*
11369          * Now that the context is inactive, destroy the task <-> ctx relation
11370          * and mark the context dead.
11371          */
11372         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11373         put_ctx(child_ctx); /* cannot be last */
11374         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11375         put_task_struct(current); /* cannot be last */
11376
11377         clone_ctx = unclone_ctx(child_ctx);
11378         raw_spin_unlock_irq(&child_ctx->lock);
11379
11380         if (clone_ctx)
11381                 put_ctx(clone_ctx);
11382
11383         /*
11384          * Report the task dead after unscheduling the events so that we
11385          * won't get any samples after PERF_RECORD_EXIT. We can however still
11386          * get a few PERF_RECORD_READ events.
11387          */
11388         perf_event_task(child, child_ctx, 0);
11389
11390         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11391                 perf_event_exit_event(child_event, child_ctx, child);
11392
11393         mutex_unlock(&child_ctx->mutex);
11394
11395         put_ctx(child_ctx);
11396 }
11397
11398 /*
11399  * When a child task exits, feed back event values to parent events.
11400  *
11401  * Can be called with cred_guard_mutex held when called from
11402  * install_exec_creds().
11403  */
11404 void perf_event_exit_task(struct task_struct *child)
11405 {
11406         struct perf_event *event, *tmp;
11407         int ctxn;
11408
11409         mutex_lock(&child->perf_event_mutex);
11410         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11411                                  owner_entry) {
11412                 list_del_init(&event->owner_entry);
11413
11414                 /*
11415                  * Ensure the list deletion is visible before we clear
11416                  * the owner, closes a race against perf_release() where
11417                  * we need to serialize on the owner->perf_event_mutex.
11418                  */
11419                 smp_store_release(&event->owner, NULL);
11420         }
11421         mutex_unlock(&child->perf_event_mutex);
11422
11423         for_each_task_context_nr(ctxn)
11424                 perf_event_exit_task_context(child, ctxn);
11425
11426         /*
11427          * The perf_event_exit_task_context calls perf_event_task
11428          * with child's task_ctx, which generates EXIT events for
11429          * child contexts and sets child->perf_event_ctxp[] to NULL.
11430          * At this point we need to send EXIT events to cpu contexts.
11431          */
11432         perf_event_task(child, NULL, 0);
11433 }
11434
11435 static void perf_free_event(struct perf_event *event,
11436                             struct perf_event_context *ctx)
11437 {
11438         struct perf_event *parent = event->parent;
11439
11440         if (WARN_ON_ONCE(!parent))
11441                 return;
11442
11443         mutex_lock(&parent->child_mutex);
11444         list_del_init(&event->child_list);
11445         mutex_unlock(&parent->child_mutex);
11446
11447         put_event(parent);
11448
11449         raw_spin_lock_irq(&ctx->lock);
11450         perf_group_detach(event);
11451         list_del_event(event, ctx);
11452         raw_spin_unlock_irq(&ctx->lock);
11453         free_event(event);
11454 }
11455
11456 /*
11457  * Free an unexposed, unused context as created by inheritance by
11458  * perf_event_init_task below, used by fork() in case of fail.
11459  *
11460  * Not all locks are strictly required, but take them anyway to be nice and
11461  * help out with the lockdep assertions.
11462  */
11463 void perf_event_free_task(struct task_struct *task)
11464 {
11465         struct perf_event_context *ctx;
11466         struct perf_event *event, *tmp;
11467         int ctxn;
11468
11469         for_each_task_context_nr(ctxn) {
11470                 ctx = task->perf_event_ctxp[ctxn];
11471                 if (!ctx)
11472                         continue;
11473
11474                 mutex_lock(&ctx->mutex);
11475                 raw_spin_lock_irq(&ctx->lock);
11476                 /*
11477                  * Destroy the task <-> ctx relation and mark the context dead.
11478                  *
11479                  * This is important because even though the task hasn't been
11480                  * exposed yet the context has been (through child_list).
11481                  */
11482                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11483                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11484                 put_task_struct(task); /* cannot be last */
11485                 raw_spin_unlock_irq(&ctx->lock);
11486
11487                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11488                         perf_free_event(event, ctx);
11489
11490                 mutex_unlock(&ctx->mutex);
11491                 put_ctx(ctx);
11492         }
11493 }
11494
11495 void perf_event_delayed_put(struct task_struct *task)
11496 {
11497         int ctxn;
11498
11499         for_each_task_context_nr(ctxn)
11500                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11501 }
11502
11503 struct file *perf_event_get(unsigned int fd)
11504 {
11505         struct file *file;
11506
11507         file = fget_raw(fd);
11508         if (!file)
11509                 return ERR_PTR(-EBADF);
11510
11511         if (file->f_op != &perf_fops) {
11512                 fput(file);
11513                 return ERR_PTR(-EBADF);
11514         }
11515
11516         return file;
11517 }
11518
11519 const struct perf_event *perf_get_event(struct file *file)
11520 {
11521         if (file->f_op != &perf_fops)
11522                 return ERR_PTR(-EINVAL);
11523
11524         return file->private_data;
11525 }
11526
11527 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11528 {
11529         if (!event)
11530                 return ERR_PTR(-EINVAL);
11531
11532         return &event->attr;
11533 }
11534
11535 /*
11536  * Inherit an event from parent task to child task.
11537  *
11538  * Returns:
11539  *  - valid pointer on success
11540  *  - NULL for orphaned events
11541  *  - IS_ERR() on error
11542  */
11543 static struct perf_event *
11544 inherit_event(struct perf_event *parent_event,
11545               struct task_struct *parent,
11546               struct perf_event_context *parent_ctx,
11547               struct task_struct *child,
11548               struct perf_event *group_leader,
11549               struct perf_event_context *child_ctx)
11550 {
11551         enum perf_event_state parent_state = parent_event->state;
11552         struct perf_event *child_event;
11553         unsigned long flags;
11554
11555         /*
11556          * Instead of creating recursive hierarchies of events,
11557          * we link inherited events back to the original parent,
11558          * which has a filp for sure, which we use as the reference
11559          * count:
11560          */
11561         if (parent_event->parent)
11562                 parent_event = parent_event->parent;
11563
11564         child_event = perf_event_alloc(&parent_event->attr,
11565                                            parent_event->cpu,
11566                                            child,
11567                                            group_leader, parent_event,
11568                                            NULL, NULL, -1);
11569         if (IS_ERR(child_event))
11570                 return child_event;
11571
11572
11573         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11574             !child_ctx->task_ctx_data) {
11575                 struct pmu *pmu = child_event->pmu;
11576
11577                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11578                                                    GFP_KERNEL);
11579                 if (!child_ctx->task_ctx_data) {
11580                         free_event(child_event);
11581                         return NULL;
11582                 }
11583         }
11584
11585         /*
11586          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11587          * must be under the same lock in order to serialize against
11588          * perf_event_release_kernel(), such that either we must observe
11589          * is_orphaned_event() or they will observe us on the child_list.
11590          */
11591         mutex_lock(&parent_event->child_mutex);
11592         if (is_orphaned_event(parent_event) ||
11593             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11594                 mutex_unlock(&parent_event->child_mutex);
11595                 /* task_ctx_data is freed with child_ctx */
11596                 free_event(child_event);
11597                 return NULL;
11598         }
11599
11600         get_ctx(child_ctx);
11601
11602         /*
11603          * Make the child state follow the state of the parent event,
11604          * not its attr.disabled bit.  We hold the parent's mutex,
11605          * so we won't race with perf_event_{en, dis}able_family.
11606          */
11607         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11608                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11609         else
11610                 child_event->state = PERF_EVENT_STATE_OFF;
11611
11612         if (parent_event->attr.freq) {
11613                 u64 sample_period = parent_event->hw.sample_period;
11614                 struct hw_perf_event *hwc = &child_event->hw;
11615
11616                 hwc->sample_period = sample_period;
11617                 hwc->last_period   = sample_period;
11618
11619                 local64_set(&hwc->period_left, sample_period);
11620         }
11621
11622         child_event->ctx = child_ctx;
11623         child_event->overflow_handler = parent_event->overflow_handler;
11624         child_event->overflow_handler_context
11625                 = parent_event->overflow_handler_context;
11626
11627         /*
11628          * Precalculate sample_data sizes
11629          */
11630         perf_event__header_size(child_event);
11631         perf_event__id_header_size(child_event);
11632
11633         /*
11634          * Link it up in the child's context:
11635          */
11636         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11637         add_event_to_ctx(child_event, child_ctx);
11638         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11639
11640         /*
11641          * Link this into the parent event's child list
11642          */
11643         list_add_tail(&child_event->child_list, &parent_event->child_list);
11644         mutex_unlock(&parent_event->child_mutex);
11645
11646         return child_event;
11647 }
11648
11649 /*
11650  * Inherits an event group.
11651  *
11652  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11653  * This matches with perf_event_release_kernel() removing all child events.
11654  *
11655  * Returns:
11656  *  - 0 on success
11657  *  - <0 on error
11658  */
11659 static int inherit_group(struct perf_event *parent_event,
11660               struct task_struct *parent,
11661               struct perf_event_context *parent_ctx,
11662               struct task_struct *child,
11663               struct perf_event_context *child_ctx)
11664 {
11665         struct perf_event *leader;
11666         struct perf_event *sub;
11667         struct perf_event *child_ctr;
11668
11669         leader = inherit_event(parent_event, parent, parent_ctx,
11670                                  child, NULL, child_ctx);
11671         if (IS_ERR(leader))
11672                 return PTR_ERR(leader);
11673         /*
11674          * @leader can be NULL here because of is_orphaned_event(). In this
11675          * case inherit_event() will create individual events, similar to what
11676          * perf_group_detach() would do anyway.
11677          */
11678         for_each_sibling_event(sub, parent_event) {
11679                 child_ctr = inherit_event(sub, parent, parent_ctx,
11680                                             child, leader, child_ctx);
11681                 if (IS_ERR(child_ctr))
11682                         return PTR_ERR(child_ctr);
11683         }
11684         return 0;
11685 }
11686
11687 /*
11688  * Creates the child task context and tries to inherit the event-group.
11689  *
11690  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11691  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11692  * consistent with perf_event_release_kernel() removing all child events.
11693  *
11694  * Returns:
11695  *  - 0 on success
11696  *  - <0 on error
11697  */
11698 static int
11699 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11700                    struct perf_event_context *parent_ctx,
11701                    struct task_struct *child, int ctxn,
11702                    int *inherited_all)
11703 {
11704         int ret;
11705         struct perf_event_context *child_ctx;
11706
11707         if (!event->attr.inherit) {
11708                 *inherited_all = 0;
11709                 return 0;
11710         }
11711
11712         child_ctx = child->perf_event_ctxp[ctxn];
11713         if (!child_ctx) {
11714                 /*
11715                  * This is executed from the parent task context, so
11716                  * inherit events that have been marked for cloning.
11717                  * First allocate and initialize a context for the
11718                  * child.
11719                  */
11720                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11721                 if (!child_ctx)
11722                         return -ENOMEM;
11723
11724                 child->perf_event_ctxp[ctxn] = child_ctx;
11725         }
11726
11727         ret = inherit_group(event, parent, parent_ctx,
11728                             child, child_ctx);
11729
11730         if (ret)
11731                 *inherited_all = 0;
11732
11733         return ret;
11734 }
11735
11736 /*
11737  * Initialize the perf_event context in task_struct
11738  */
11739 static int perf_event_init_context(struct task_struct *child, int ctxn)
11740 {
11741         struct perf_event_context *child_ctx, *parent_ctx;
11742         struct perf_event_context *cloned_ctx;
11743         struct perf_event *event;
11744         struct task_struct *parent = current;
11745         int inherited_all = 1;
11746         unsigned long flags;
11747         int ret = 0;
11748
11749         if (likely(!parent->perf_event_ctxp[ctxn]))
11750                 return 0;
11751
11752         /*
11753          * If the parent's context is a clone, pin it so it won't get
11754          * swapped under us.
11755          */
11756         parent_ctx = perf_pin_task_context(parent, ctxn);
11757         if (!parent_ctx)
11758                 return 0;
11759
11760         /*
11761          * No need to check if parent_ctx != NULL here; since we saw
11762          * it non-NULL earlier, the only reason for it to become NULL
11763          * is if we exit, and since we're currently in the middle of
11764          * a fork we can't be exiting at the same time.
11765          */
11766
11767         /*
11768          * Lock the parent list. No need to lock the child - not PID
11769          * hashed yet and not running, so nobody can access it.
11770          */
11771         mutex_lock(&parent_ctx->mutex);
11772
11773         /*
11774          * We dont have to disable NMIs - we are only looking at
11775          * the list, not manipulating it:
11776          */
11777         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11778                 ret = inherit_task_group(event, parent, parent_ctx,
11779                                          child, ctxn, &inherited_all);
11780                 if (ret)
11781                         goto out_unlock;
11782         }
11783
11784         /*
11785          * We can't hold ctx->lock when iterating the ->flexible_group list due
11786          * to allocations, but we need to prevent rotation because
11787          * rotate_ctx() will change the list from interrupt context.
11788          */
11789         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11790         parent_ctx->rotate_disable = 1;
11791         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11792
11793         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11794                 ret = inherit_task_group(event, parent, parent_ctx,
11795                                          child, ctxn, &inherited_all);
11796                 if (ret)
11797                         goto out_unlock;
11798         }
11799
11800         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11801         parent_ctx->rotate_disable = 0;
11802
11803         child_ctx = child->perf_event_ctxp[ctxn];
11804
11805         if (child_ctx && inherited_all) {
11806                 /*
11807                  * Mark the child context as a clone of the parent
11808                  * context, or of whatever the parent is a clone of.
11809                  *
11810                  * Note that if the parent is a clone, the holding of
11811                  * parent_ctx->lock avoids it from being uncloned.
11812                  */
11813                 cloned_ctx = parent_ctx->parent_ctx;
11814                 if (cloned_ctx) {
11815                         child_ctx->parent_ctx = cloned_ctx;
11816                         child_ctx->parent_gen = parent_ctx->parent_gen;
11817                 } else {
11818                         child_ctx->parent_ctx = parent_ctx;
11819                         child_ctx->parent_gen = parent_ctx->generation;
11820                 }
11821                 get_ctx(child_ctx->parent_ctx);
11822         }
11823
11824         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11825 out_unlock:
11826         mutex_unlock(&parent_ctx->mutex);
11827
11828         perf_unpin_context(parent_ctx);
11829         put_ctx(parent_ctx);
11830
11831         return ret;
11832 }
11833
11834 /*
11835  * Initialize the perf_event context in task_struct
11836  */
11837 int perf_event_init_task(struct task_struct *child)
11838 {
11839         int ctxn, ret;
11840
11841         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11842         mutex_init(&child->perf_event_mutex);
11843         INIT_LIST_HEAD(&child->perf_event_list);
11844
11845         for_each_task_context_nr(ctxn) {
11846                 ret = perf_event_init_context(child, ctxn);
11847                 if (ret) {
11848                         perf_event_free_task(child);
11849                         return ret;
11850                 }
11851         }
11852
11853         return 0;
11854 }
11855
11856 static void __init perf_event_init_all_cpus(void)
11857 {
11858         struct swevent_htable *swhash;
11859         int cpu;
11860
11861         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11862
11863         for_each_possible_cpu(cpu) {
11864                 swhash = &per_cpu(swevent_htable, cpu);
11865                 mutex_init(&swhash->hlist_mutex);
11866                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11867
11868                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11869                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11870
11871 #ifdef CONFIG_CGROUP_PERF
11872                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11873 #endif
11874                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11875         }
11876 }
11877
11878 void perf_swevent_init_cpu(unsigned int cpu)
11879 {
11880         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11881
11882         mutex_lock(&swhash->hlist_mutex);
11883         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11884                 struct swevent_hlist *hlist;
11885
11886                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11887                 WARN_ON(!hlist);
11888                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11889         }
11890         mutex_unlock(&swhash->hlist_mutex);
11891 }
11892
11893 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11894 static void __perf_event_exit_context(void *__info)
11895 {
11896         struct perf_event_context *ctx = __info;
11897         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11898         struct perf_event *event;
11899
11900         raw_spin_lock(&ctx->lock);
11901         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11902         list_for_each_entry(event, &ctx->event_list, event_entry)
11903                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11904         raw_spin_unlock(&ctx->lock);
11905 }
11906
11907 static void perf_event_exit_cpu_context(int cpu)
11908 {
11909         struct perf_cpu_context *cpuctx;
11910         struct perf_event_context *ctx;
11911         struct pmu *pmu;
11912
11913         mutex_lock(&pmus_lock);
11914         list_for_each_entry(pmu, &pmus, entry) {
11915                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11916                 ctx = &cpuctx->ctx;
11917
11918                 mutex_lock(&ctx->mutex);
11919                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11920                 cpuctx->online = 0;
11921                 mutex_unlock(&ctx->mutex);
11922         }
11923         cpumask_clear_cpu(cpu, perf_online_mask);
11924         mutex_unlock(&pmus_lock);
11925 }
11926 #else
11927
11928 static void perf_event_exit_cpu_context(int cpu) { }
11929
11930 #endif
11931
11932 int perf_event_init_cpu(unsigned int cpu)
11933 {
11934         struct perf_cpu_context *cpuctx;
11935         struct perf_event_context *ctx;
11936         struct pmu *pmu;
11937
11938         perf_swevent_init_cpu(cpu);
11939
11940         mutex_lock(&pmus_lock);
11941         cpumask_set_cpu(cpu, perf_online_mask);
11942         list_for_each_entry(pmu, &pmus, entry) {
11943                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11944                 ctx = &cpuctx->ctx;
11945
11946                 mutex_lock(&ctx->mutex);
11947                 cpuctx->online = 1;
11948                 mutex_unlock(&ctx->mutex);
11949         }
11950         mutex_unlock(&pmus_lock);
11951
11952         return 0;
11953 }
11954
11955 int perf_event_exit_cpu(unsigned int cpu)
11956 {
11957         perf_event_exit_cpu_context(cpu);
11958         return 0;
11959 }
11960
11961 static int
11962 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11963 {
11964         int cpu;
11965
11966         for_each_online_cpu(cpu)
11967                 perf_event_exit_cpu(cpu);
11968
11969         return NOTIFY_OK;
11970 }
11971
11972 /*
11973  * Run the perf reboot notifier at the very last possible moment so that
11974  * the generic watchdog code runs as long as possible.
11975  */
11976 static struct notifier_block perf_reboot_notifier = {
11977         .notifier_call = perf_reboot,
11978         .priority = INT_MIN,
11979 };
11980
11981 void __init perf_event_init(void)
11982 {
11983         int ret;
11984
11985         idr_init(&pmu_idr);
11986
11987         perf_event_init_all_cpus();
11988         init_srcu_struct(&pmus_srcu);
11989         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11990         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11991         perf_pmu_register(&perf_task_clock, NULL, -1);
11992         perf_tp_register();
11993         perf_event_init_cpu(smp_processor_id());
11994         register_reboot_notifier(&perf_reboot_notifier);
11995
11996         ret = init_hw_breakpoint();
11997         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11998
11999         /*
12000          * Build time assertion that we keep the data_head at the intended
12001          * location.  IOW, validation we got the __reserved[] size right.
12002          */
12003         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12004                      != 1024);
12005 }
12006
12007 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12008                               char *page)
12009 {
12010         struct perf_pmu_events_attr *pmu_attr =
12011                 container_of(attr, struct perf_pmu_events_attr, attr);
12012
12013         if (pmu_attr->event_str)
12014                 return sprintf(page, "%s\n", pmu_attr->event_str);
12015
12016         return 0;
12017 }
12018 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12019
12020 static int __init perf_event_sysfs_init(void)
12021 {
12022         struct pmu *pmu;
12023         int ret;
12024
12025         mutex_lock(&pmus_lock);
12026
12027         ret = bus_register(&pmu_bus);
12028         if (ret)
12029                 goto unlock;
12030
12031         list_for_each_entry(pmu, &pmus, entry) {
12032                 if (!pmu->name || pmu->type < 0)
12033                         continue;
12034
12035                 ret = pmu_dev_alloc(pmu);
12036                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12037         }
12038         pmu_bus_running = 1;
12039         ret = 0;
12040
12041 unlock:
12042         mutex_unlock(&pmus_lock);
12043
12044         return ret;
12045 }
12046 device_initcall(perf_event_sysfs_init);
12047
12048 #ifdef CONFIG_CGROUP_PERF
12049 static struct cgroup_subsys_state *
12050 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12051 {
12052         struct perf_cgroup *jc;
12053
12054         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12055         if (!jc)
12056                 return ERR_PTR(-ENOMEM);
12057
12058         jc->info = alloc_percpu(struct perf_cgroup_info);
12059         if (!jc->info) {
12060                 kfree(jc);
12061                 return ERR_PTR(-ENOMEM);
12062         }
12063
12064         return &jc->css;
12065 }
12066
12067 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12068 {
12069         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12070
12071         free_percpu(jc->info);
12072         kfree(jc);
12073 }
12074
12075 static int __perf_cgroup_move(void *info)
12076 {
12077         struct task_struct *task = info;
12078         rcu_read_lock();
12079         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12080         rcu_read_unlock();
12081         return 0;
12082 }
12083
12084 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12085 {
12086         struct task_struct *task;
12087         struct cgroup_subsys_state *css;
12088
12089         cgroup_taskset_for_each(task, css, tset)
12090                 task_function_call(task, __perf_cgroup_move, task);
12091 }
12092
12093 struct cgroup_subsys perf_event_cgrp_subsys = {
12094         .css_alloc      = perf_cgroup_css_alloc,
12095         .css_free       = perf_cgroup_css_free,
12096         .attach         = perf_cgroup_attach,
12097         /*
12098          * Implicitly enable on dfl hierarchy so that perf events can
12099          * always be filtered by cgroup2 path as long as perf_event
12100          * controller is not mounted on a legacy hierarchy.
12101          */
12102         .implicit_on_dfl = true,
12103         .threaded       = true,
12104 };
12105 #endif /* CONFIG_CGROUP_PERF */