Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62         struct task_struct      *p;
63         remote_function_f       func;
64         void                    *info;
65         int                     ret;
66 };
67
68 static void remote_function(void *data)
69 {
70         struct remote_function_call *tfc = data;
71         struct task_struct *p = tfc->p;
72
73         if (p) {
74                 /* -EAGAIN */
75                 if (task_cpu(p) != smp_processor_id())
76                         return;
77
78                 /*
79                  * Now that we're on right CPU with IRQs disabled, we can test
80                  * if we hit the right task without races.
81                  */
82
83                 tfc->ret = -ESRCH; /* No such (running) process */
84                 if (p != current)
85                         return;
86         }
87
88         tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:          the task to evaluate
94  * @func:       the function to be called
95  * @info:       the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly
99  *
100  * returns: @func return value, or
101  *          -ESRCH  - when the process isn't running
102  *          -EAGAIN - when the process moved away
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107         struct remote_function_call data = {
108                 .p      = p,
109                 .func   = func,
110                 .info   = info,
111                 .ret    = -EAGAIN,
112         };
113         int ret;
114
115         do {
116                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119         } while (ret == -EAGAIN);
120
121         return ret;
122 }
123
124 /**
125  * cpu_function_call - call a function on the cpu
126  * @func:       the function to be called
127  * @info:       the function call argument
128  *
129  * Calls the function @func on the remote cpu.
130  *
131  * returns: @func return value or -ENXIO when the cpu is offline
132  */
133 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 {
135         struct remote_function_call data = {
136                 .p      = NULL,
137                 .func   = func,
138                 .info   = info,
139                 .ret    = -ENXIO, /* No such CPU */
140         };
141
142         smp_call_function_single(cpu, remote_function, &data, 1);
143
144         return data.ret;
145 }
146
147 static inline struct perf_cpu_context *
148 __get_cpu_context(struct perf_event_context *ctx)
149 {
150         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151 }
152
153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
154                           struct perf_event_context *ctx)
155 {
156         raw_spin_lock(&cpuctx->ctx.lock);
157         if (ctx)
158                 raw_spin_lock(&ctx->lock);
159 }
160
161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
162                             struct perf_event_context *ctx)
163 {
164         if (ctx)
165                 raw_spin_unlock(&ctx->lock);
166         raw_spin_unlock(&cpuctx->ctx.lock);
167 }
168
169 #define TASK_TOMBSTONE ((void *)-1L)
170
171 static bool is_kernel_event(struct perf_event *event)
172 {
173         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
174 }
175
176 /*
177  * On task ctx scheduling...
178  *
179  * When !ctx->nr_events a task context will not be scheduled. This means
180  * we can disable the scheduler hooks (for performance) without leaving
181  * pending task ctx state.
182  *
183  * This however results in two special cases:
184  *
185  *  - removing the last event from a task ctx; this is relatively straight
186  *    forward and is done in __perf_remove_from_context.
187  *
188  *  - adding the first event to a task ctx; this is tricky because we cannot
189  *    rely on ctx->is_active and therefore cannot use event_function_call().
190  *    See perf_install_in_context().
191  *
192  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193  */
194
195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
196                         struct perf_event_context *, void *);
197
198 struct event_function_struct {
199         struct perf_event *event;
200         event_f func;
201         void *data;
202 };
203
204 static int event_function(void *info)
205 {
206         struct event_function_struct *efs = info;
207         struct perf_event *event = efs->event;
208         struct perf_event_context *ctx = event->ctx;
209         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
210         struct perf_event_context *task_ctx = cpuctx->task_ctx;
211         int ret = 0;
212
213         lockdep_assert_irqs_disabled();
214
215         perf_ctx_lock(cpuctx, task_ctx);
216         /*
217          * Since we do the IPI call without holding ctx->lock things can have
218          * changed, double check we hit the task we set out to hit.
219          */
220         if (ctx->task) {
221                 if (ctx->task != current) {
222                         ret = -ESRCH;
223                         goto unlock;
224                 }
225
226                 /*
227                  * We only use event_function_call() on established contexts,
228                  * and event_function() is only ever called when active (or
229                  * rather, we'll have bailed in task_function_call() or the
230                  * above ctx->task != current test), therefore we must have
231                  * ctx->is_active here.
232                  */
233                 WARN_ON_ONCE(!ctx->is_active);
234                 /*
235                  * And since we have ctx->is_active, cpuctx->task_ctx must
236                  * match.
237                  */
238                 WARN_ON_ONCE(task_ctx != ctx);
239         } else {
240                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
241         }
242
243         efs->func(event, cpuctx, ctx, efs->data);
244 unlock:
245         perf_ctx_unlock(cpuctx, task_ctx);
246
247         return ret;
248 }
249
250 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 {
252         struct perf_event_context *ctx = event->ctx;
253         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
254         struct event_function_struct efs = {
255                 .event = event,
256                 .func = func,
257                 .data = data,
258         };
259
260         if (!event->parent) {
261                 /*
262                  * If this is a !child event, we must hold ctx::mutex to
263                  * stabilize the the event->ctx relation. See
264                  * perf_event_ctx_lock().
265                  */
266                 lockdep_assert_held(&ctx->mutex);
267         }
268
269         if (!task) {
270                 cpu_function_call(event->cpu, event_function, &efs);
271                 return;
272         }
273
274         if (task == TASK_TOMBSTONE)
275                 return;
276
277 again:
278         if (!task_function_call(task, event_function, &efs))
279                 return;
280
281         raw_spin_lock_irq(&ctx->lock);
282         /*
283          * Reload the task pointer, it might have been changed by
284          * a concurrent perf_event_context_sched_out().
285          */
286         task = ctx->task;
287         if (task == TASK_TOMBSTONE) {
288                 raw_spin_unlock_irq(&ctx->lock);
289                 return;
290         }
291         if (ctx->is_active) {
292                 raw_spin_unlock_irq(&ctx->lock);
293                 goto again;
294         }
295         func(event, NULL, ctx, data);
296         raw_spin_unlock_irq(&ctx->lock);
297 }
298
299 /*
300  * Similar to event_function_call() + event_function(), but hard assumes IRQs
301  * are already disabled and we're on the right CPU.
302  */
303 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 {
305         struct perf_event_context *ctx = event->ctx;
306         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
307         struct task_struct *task = READ_ONCE(ctx->task);
308         struct perf_event_context *task_ctx = NULL;
309
310         lockdep_assert_irqs_disabled();
311
312         if (task) {
313                 if (task == TASK_TOMBSTONE)
314                         return;
315
316                 task_ctx = ctx;
317         }
318
319         perf_ctx_lock(cpuctx, task_ctx);
320
321         task = ctx->task;
322         if (task == TASK_TOMBSTONE)
323                 goto unlock;
324
325         if (task) {
326                 /*
327                  * We must be either inactive or active and the right task,
328                  * otherwise we're screwed, since we cannot IPI to somewhere
329                  * else.
330                  */
331                 if (ctx->is_active) {
332                         if (WARN_ON_ONCE(task != current))
333                                 goto unlock;
334
335                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
336                                 goto unlock;
337                 }
338         } else {
339                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
340         }
341
342         func(event, cpuctx, ctx, data);
343 unlock:
344         perf_ctx_unlock(cpuctx, task_ctx);
345 }
346
347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
348                        PERF_FLAG_FD_OUTPUT  |\
349                        PERF_FLAG_PID_CGROUP |\
350                        PERF_FLAG_FD_CLOEXEC)
351
352 /*
353  * branch priv levels that need permission checks
354  */
355 #define PERF_SAMPLE_BRANCH_PERM_PLM \
356         (PERF_SAMPLE_BRANCH_KERNEL |\
357          PERF_SAMPLE_BRANCH_HV)
358
359 enum event_type_t {
360         EVENT_FLEXIBLE = 0x1,
361         EVENT_PINNED = 0x2,
362         EVENT_TIME = 0x4,
363         /* see ctx_resched() for details */
364         EVENT_CPU = 0x8,
365         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
366 };
367
368 /*
369  * perf_sched_events : >0 events exist
370  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371  */
372
373 static void perf_sched_delayed(struct work_struct *work);
374 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
376 static DEFINE_MUTEX(perf_sched_mutex);
377 static atomic_t perf_sched_count;
378
379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
380 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382
383 static atomic_t nr_mmap_events __read_mostly;
384 static atomic_t nr_comm_events __read_mostly;
385 static atomic_t nr_namespaces_events __read_mostly;
386 static atomic_t nr_task_events __read_mostly;
387 static atomic_t nr_freq_events __read_mostly;
388 static atomic_t nr_switch_events __read_mostly;
389 static atomic_t nr_ksymbol_events __read_mostly;
390 static atomic_t nr_bpf_events __read_mostly;
391 static atomic_t nr_cgroup_events __read_mostly;
392
393 static LIST_HEAD(pmus);
394 static DEFINE_MUTEX(pmus_lock);
395 static struct srcu_struct pmus_srcu;
396 static cpumask_var_t perf_online_mask;
397
398 /*
399  * perf event paranoia level:
400  *  -1 - not paranoid at all
401  *   0 - disallow raw tracepoint access for unpriv
402  *   1 - disallow cpu events for unpriv
403  *   2 - disallow kernel profiling for unpriv
404  */
405 int sysctl_perf_event_paranoid __read_mostly = 2;
406
407 /* Minimum for 512 kiB + 1 user control page */
408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
409
410 /*
411  * max perf event sample rate
412  */
413 #define DEFAULT_MAX_SAMPLE_RATE         100000
414 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
415 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
416
417 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
418
419 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
420 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
421
422 static int perf_sample_allowed_ns __read_mostly =
423         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
424
425 static void update_perf_cpu_limits(void)
426 {
427         u64 tmp = perf_sample_period_ns;
428
429         tmp *= sysctl_perf_cpu_time_max_percent;
430         tmp = div_u64(tmp, 100);
431         if (!tmp)
432                 tmp = 1;
433
434         WRITE_ONCE(perf_sample_allowed_ns, tmp);
435 }
436
437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
438
439 int perf_proc_update_handler(struct ctl_table *table, int write,
440                 void __user *buffer, size_t *lenp,
441                 loff_t *ppos)
442 {
443         int ret;
444         int perf_cpu = sysctl_perf_cpu_time_max_percent;
445         /*
446          * If throttling is disabled don't allow the write:
447          */
448         if (write && (perf_cpu == 100 || perf_cpu == 0))
449                 return -EINVAL;
450
451         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452         if (ret || !write)
453                 return ret;
454
455         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
456         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
457         update_perf_cpu_limits();
458
459         return 0;
460 }
461
462 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
463
464 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
465                                 void __user *buffer, size_t *lenp,
466                                 loff_t *ppos)
467 {
468         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469
470         if (ret || !write)
471                 return ret;
472
473         if (sysctl_perf_cpu_time_max_percent == 100 ||
474             sysctl_perf_cpu_time_max_percent == 0) {
475                 printk(KERN_WARNING
476                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
477                 WRITE_ONCE(perf_sample_allowed_ns, 0);
478         } else {
479                 update_perf_cpu_limits();
480         }
481
482         return 0;
483 }
484
485 /*
486  * perf samples are done in some very critical code paths (NMIs).
487  * If they take too much CPU time, the system can lock up and not
488  * get any real work done.  This will drop the sample rate when
489  * we detect that events are taking too long.
490  */
491 #define NR_ACCUMULATED_SAMPLES 128
492 static DEFINE_PER_CPU(u64, running_sample_length);
493
494 static u64 __report_avg;
495 static u64 __report_allowed;
496
497 static void perf_duration_warn(struct irq_work *w)
498 {
499         printk_ratelimited(KERN_INFO
500                 "perf: interrupt took too long (%lld > %lld), lowering "
501                 "kernel.perf_event_max_sample_rate to %d\n",
502                 __report_avg, __report_allowed,
503                 sysctl_perf_event_sample_rate);
504 }
505
506 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
507
508 void perf_sample_event_took(u64 sample_len_ns)
509 {
510         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
511         u64 running_len;
512         u64 avg_len;
513         u32 max;
514
515         if (max_len == 0)
516                 return;
517
518         /* Decay the counter by 1 average sample. */
519         running_len = __this_cpu_read(running_sample_length);
520         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
521         running_len += sample_len_ns;
522         __this_cpu_write(running_sample_length, running_len);
523
524         /*
525          * Note: this will be biased artifically low until we have
526          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
527          * from having to maintain a count.
528          */
529         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
530         if (avg_len <= max_len)
531                 return;
532
533         __report_avg = avg_len;
534         __report_allowed = max_len;
535
536         /*
537          * Compute a throttle threshold 25% below the current duration.
538          */
539         avg_len += avg_len / 4;
540         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
541         if (avg_len < max)
542                 max /= (u32)avg_len;
543         else
544                 max = 1;
545
546         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
547         WRITE_ONCE(max_samples_per_tick, max);
548
549         sysctl_perf_event_sample_rate = max * HZ;
550         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
551
552         if (!irq_work_queue(&perf_duration_work)) {
553                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
554                              "kernel.perf_event_max_sample_rate to %d\n",
555                              __report_avg, __report_allowed,
556                              sysctl_perf_event_sample_rate);
557         }
558 }
559
560 static atomic64_t perf_event_id;
561
562 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
563                               enum event_type_t event_type);
564
565 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
566                              enum event_type_t event_type,
567                              struct task_struct *task);
568
569 static void update_context_time(struct perf_event_context *ctx);
570 static u64 perf_event_time(struct perf_event *event);
571
572 void __weak perf_event_print_debug(void)        { }
573
574 extern __weak const char *perf_pmu_name(void)
575 {
576         return "pmu";
577 }
578
579 static inline u64 perf_clock(void)
580 {
581         return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586         return event->clock();
587 }
588
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614         struct perf_event *leader = event->group_leader;
615
616         if (leader->state <= PERF_EVENT_STATE_OFF)
617                 return leader->state;
618
619         return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625         enum perf_event_state state = __perf_effective_state(event);
626         u64 delta = now - event->tstamp;
627
628         *enabled = event->total_time_enabled;
629         if (state >= PERF_EVENT_STATE_INACTIVE)
630                 *enabled += delta;
631
632         *running = event->total_time_running;
633         if (state >= PERF_EVENT_STATE_ACTIVE)
634                 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639         u64 now = perf_event_time(event);
640
641         __perf_update_times(event, now, &event->total_time_enabled,
642                                         &event->total_time_running);
643         event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648         struct perf_event *sibling;
649
650         for_each_sibling_event(sibling, leader)
651                 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657         if (event->state == state)
658                 return;
659
660         perf_event_update_time(event);
661         /*
662          * If a group leader gets enabled/disabled all its siblings
663          * are affected too.
664          */
665         if ((event->state < 0) ^ (state < 0))
666                 perf_event_update_sibling_time(event);
667
668         WRITE_ONCE(event->state, state);
669 }
670
671 #ifdef CONFIG_CGROUP_PERF
672
673 static inline bool
674 perf_cgroup_match(struct perf_event *event)
675 {
676         struct perf_event_context *ctx = event->ctx;
677         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
678
679         /* @event doesn't care about cgroup */
680         if (!event->cgrp)
681                 return true;
682
683         /* wants specific cgroup scope but @cpuctx isn't associated with any */
684         if (!cpuctx->cgrp)
685                 return false;
686
687         /*
688          * Cgroup scoping is recursive.  An event enabled for a cgroup is
689          * also enabled for all its descendant cgroups.  If @cpuctx's
690          * cgroup is a descendant of @event's (the test covers identity
691          * case), it's a match.
692          */
693         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
694                                     event->cgrp->css.cgroup);
695 }
696
697 static inline void perf_detach_cgroup(struct perf_event *event)
698 {
699         css_put(&event->cgrp->css);
700         event->cgrp = NULL;
701 }
702
703 static inline int is_cgroup_event(struct perf_event *event)
704 {
705         return event->cgrp != NULL;
706 }
707
708 static inline u64 perf_cgroup_event_time(struct perf_event *event)
709 {
710         struct perf_cgroup_info *t;
711
712         t = per_cpu_ptr(event->cgrp->info, event->cpu);
713         return t->time;
714 }
715
716 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
717 {
718         struct perf_cgroup_info *info;
719         u64 now;
720
721         now = perf_clock();
722
723         info = this_cpu_ptr(cgrp->info);
724
725         info->time += now - info->timestamp;
726         info->timestamp = now;
727 }
728
729 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
730 {
731         struct perf_cgroup *cgrp = cpuctx->cgrp;
732         struct cgroup_subsys_state *css;
733
734         if (cgrp) {
735                 for (css = &cgrp->css; css; css = css->parent) {
736                         cgrp = container_of(css, struct perf_cgroup, css);
737                         __update_cgrp_time(cgrp);
738                 }
739         }
740 }
741
742 static inline void update_cgrp_time_from_event(struct perf_event *event)
743 {
744         struct perf_cgroup *cgrp;
745
746         /*
747          * ensure we access cgroup data only when needed and
748          * when we know the cgroup is pinned (css_get)
749          */
750         if (!is_cgroup_event(event))
751                 return;
752
753         cgrp = perf_cgroup_from_task(current, event->ctx);
754         /*
755          * Do not update time when cgroup is not active
756          */
757         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
758                 __update_cgrp_time(event->cgrp);
759 }
760
761 static inline void
762 perf_cgroup_set_timestamp(struct task_struct *task,
763                           struct perf_event_context *ctx)
764 {
765         struct perf_cgroup *cgrp;
766         struct perf_cgroup_info *info;
767         struct cgroup_subsys_state *css;
768
769         /*
770          * ctx->lock held by caller
771          * ensure we do not access cgroup data
772          * unless we have the cgroup pinned (css_get)
773          */
774         if (!task || !ctx->nr_cgroups)
775                 return;
776
777         cgrp = perf_cgroup_from_task(task, ctx);
778
779         for (css = &cgrp->css; css; css = css->parent) {
780                 cgrp = container_of(css, struct perf_cgroup, css);
781                 info = this_cpu_ptr(cgrp->info);
782                 info->timestamp = ctx->timestamp;
783         }
784 }
785
786 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
787
788 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
789 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
790
791 /*
792  * reschedule events based on the cgroup constraint of task.
793  *
794  * mode SWOUT : schedule out everything
795  * mode SWIN : schedule in based on cgroup for next
796  */
797 static void perf_cgroup_switch(struct task_struct *task, int mode)
798 {
799         struct perf_cpu_context *cpuctx;
800         struct list_head *list;
801         unsigned long flags;
802
803         /*
804          * Disable interrupts and preemption to avoid this CPU's
805          * cgrp_cpuctx_entry to change under us.
806          */
807         local_irq_save(flags);
808
809         list = this_cpu_ptr(&cgrp_cpuctx_list);
810         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
811                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
812
813                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
814                 perf_pmu_disable(cpuctx->ctx.pmu);
815
816                 if (mode & PERF_CGROUP_SWOUT) {
817                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
818                         /*
819                          * must not be done before ctxswout due
820                          * to event_filter_match() in event_sched_out()
821                          */
822                         cpuctx->cgrp = NULL;
823                 }
824
825                 if (mode & PERF_CGROUP_SWIN) {
826                         WARN_ON_ONCE(cpuctx->cgrp);
827                         /*
828                          * set cgrp before ctxsw in to allow
829                          * event_filter_match() to not have to pass
830                          * task around
831                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
832                          * because cgorup events are only per-cpu
833                          */
834                         cpuctx->cgrp = perf_cgroup_from_task(task,
835                                                              &cpuctx->ctx);
836                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
837                 }
838                 perf_pmu_enable(cpuctx->ctx.pmu);
839                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
840         }
841
842         local_irq_restore(flags);
843 }
844
845 static inline void perf_cgroup_sched_out(struct task_struct *task,
846                                          struct task_struct *next)
847 {
848         struct perf_cgroup *cgrp1;
849         struct perf_cgroup *cgrp2 = NULL;
850
851         rcu_read_lock();
852         /*
853          * we come here when we know perf_cgroup_events > 0
854          * we do not need to pass the ctx here because we know
855          * we are holding the rcu lock
856          */
857         cgrp1 = perf_cgroup_from_task(task, NULL);
858         cgrp2 = perf_cgroup_from_task(next, NULL);
859
860         /*
861          * only schedule out current cgroup events if we know
862          * that we are switching to a different cgroup. Otherwise,
863          * do no touch the cgroup events.
864          */
865         if (cgrp1 != cgrp2)
866                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
867
868         rcu_read_unlock();
869 }
870
871 static inline void perf_cgroup_sched_in(struct task_struct *prev,
872                                         struct task_struct *task)
873 {
874         struct perf_cgroup *cgrp1;
875         struct perf_cgroup *cgrp2 = NULL;
876
877         rcu_read_lock();
878         /*
879          * we come here when we know perf_cgroup_events > 0
880          * we do not need to pass the ctx here because we know
881          * we are holding the rcu lock
882          */
883         cgrp1 = perf_cgroup_from_task(task, NULL);
884         cgrp2 = perf_cgroup_from_task(prev, NULL);
885
886         /*
887          * only need to schedule in cgroup events if we are changing
888          * cgroup during ctxsw. Cgroup events were not scheduled
889          * out of ctxsw out if that was not the case.
890          */
891         if (cgrp1 != cgrp2)
892                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
893
894         rcu_read_unlock();
895 }
896
897 static int perf_cgroup_ensure_storage(struct perf_event *event,
898                                 struct cgroup_subsys_state *css)
899 {
900         struct perf_cpu_context *cpuctx;
901         struct perf_event **storage;
902         int cpu, heap_size, ret = 0;
903
904         /*
905          * Allow storage to have sufficent space for an iterator for each
906          * possibly nested cgroup plus an iterator for events with no cgroup.
907          */
908         for (heap_size = 1; css; css = css->parent)
909                 heap_size++;
910
911         for_each_possible_cpu(cpu) {
912                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
913                 if (heap_size <= cpuctx->heap_size)
914                         continue;
915
916                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
917                                        GFP_KERNEL, cpu_to_node(cpu));
918                 if (!storage) {
919                         ret = -ENOMEM;
920                         break;
921                 }
922
923                 raw_spin_lock_irq(&cpuctx->ctx.lock);
924                 if (cpuctx->heap_size < heap_size) {
925                         swap(cpuctx->heap, storage);
926                         if (storage == cpuctx->heap_default)
927                                 storage = NULL;
928                         cpuctx->heap_size = heap_size;
929                 }
930                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
931
932                 kfree(storage);
933         }
934
935         return ret;
936 }
937
938 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
939                                       struct perf_event_attr *attr,
940                                       struct perf_event *group_leader)
941 {
942         struct perf_cgroup *cgrp;
943         struct cgroup_subsys_state *css;
944         struct fd f = fdget(fd);
945         int ret = 0;
946
947         if (!f.file)
948                 return -EBADF;
949
950         css = css_tryget_online_from_dir(f.file->f_path.dentry,
951                                          &perf_event_cgrp_subsys);
952         if (IS_ERR(css)) {
953                 ret = PTR_ERR(css);
954                 goto out;
955         }
956
957         ret = perf_cgroup_ensure_storage(event, css);
958         if (ret)
959                 goto out;
960
961         cgrp = container_of(css, struct perf_cgroup, css);
962         event->cgrp = cgrp;
963
964         /*
965          * all events in a group must monitor
966          * the same cgroup because a task belongs
967          * to only one perf cgroup at a time
968          */
969         if (group_leader && group_leader->cgrp != cgrp) {
970                 perf_detach_cgroup(event);
971                 ret = -EINVAL;
972         }
973 out:
974         fdput(f);
975         return ret;
976 }
977
978 static inline void
979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980 {
981         struct perf_cgroup_info *t;
982         t = per_cpu_ptr(event->cgrp->info, event->cpu);
983         event->shadow_ctx_time = now - t->timestamp;
984 }
985
986 static inline void
987 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
988 {
989         struct perf_cpu_context *cpuctx;
990
991         if (!is_cgroup_event(event))
992                 return;
993
994         /*
995          * Because cgroup events are always per-cpu events,
996          * @ctx == &cpuctx->ctx.
997          */
998         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
999
1000         /*
1001          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1002          * matching the event's cgroup, we must do this for every new event,
1003          * because if the first would mismatch, the second would not try again
1004          * and we would leave cpuctx->cgrp unset.
1005          */
1006         if (ctx->is_active && !cpuctx->cgrp) {
1007                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1008
1009                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1010                         cpuctx->cgrp = cgrp;
1011         }
1012
1013         if (ctx->nr_cgroups++)
1014                 return;
1015
1016         list_add(&cpuctx->cgrp_cpuctx_entry,
1017                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1018 }
1019
1020 static inline void
1021 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1022 {
1023         struct perf_cpu_context *cpuctx;
1024
1025         if (!is_cgroup_event(event))
1026                 return;
1027
1028         /*
1029          * Because cgroup events are always per-cpu events,
1030          * @ctx == &cpuctx->ctx.
1031          */
1032         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1033
1034         if (--ctx->nr_cgroups)
1035                 return;
1036
1037         if (ctx->is_active && cpuctx->cgrp)
1038                 cpuctx->cgrp = NULL;
1039
1040         list_del(&cpuctx->cgrp_cpuctx_entry);
1041 }
1042
1043 #else /* !CONFIG_CGROUP_PERF */
1044
1045 static inline bool
1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048         return true;
1049 }
1050
1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053
1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056         return 0;
1057 }
1058
1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1064 {
1065 }
1066
1067 static inline void perf_cgroup_sched_out(struct task_struct *task,
1068                                          struct task_struct *next)
1069 {
1070 }
1071
1072 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1073                                         struct task_struct *task)
1074 {
1075 }
1076
1077 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1078                                       struct perf_event_attr *attr,
1079                                       struct perf_event *group_leader)
1080 {
1081         return -EINVAL;
1082 }
1083
1084 static inline void
1085 perf_cgroup_set_timestamp(struct task_struct *task,
1086                           struct perf_event_context *ctx)
1087 {
1088 }
1089
1090 static inline void
1091 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1092 {
1093 }
1094
1095 static inline void
1096 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1097 {
1098 }
1099
1100 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1101 {
1102         return 0;
1103 }
1104
1105 static inline void
1106 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1107 {
1108 }
1109
1110 static inline void
1111 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114 #endif
1115
1116 /*
1117  * set default to be dependent on timer tick just
1118  * like original code
1119  */
1120 #define PERF_CPU_HRTIMER (1000 / HZ)
1121 /*
1122  * function must be called with interrupts disabled
1123  */
1124 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1125 {
1126         struct perf_cpu_context *cpuctx;
1127         bool rotations;
1128
1129         lockdep_assert_irqs_disabled();
1130
1131         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1132         rotations = perf_rotate_context(cpuctx);
1133
1134         raw_spin_lock(&cpuctx->hrtimer_lock);
1135         if (rotations)
1136                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1137         else
1138                 cpuctx->hrtimer_active = 0;
1139         raw_spin_unlock(&cpuctx->hrtimer_lock);
1140
1141         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1142 }
1143
1144 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1145 {
1146         struct hrtimer *timer = &cpuctx->hrtimer;
1147         struct pmu *pmu = cpuctx->ctx.pmu;
1148         u64 interval;
1149
1150         /* no multiplexing needed for SW PMU */
1151         if (pmu->task_ctx_nr == perf_sw_context)
1152                 return;
1153
1154         /*
1155          * check default is sane, if not set then force to
1156          * default interval (1/tick)
1157          */
1158         interval = pmu->hrtimer_interval_ms;
1159         if (interval < 1)
1160                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1161
1162         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1163
1164         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1165         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1166         timer->function = perf_mux_hrtimer_handler;
1167 }
1168
1169 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1170 {
1171         struct hrtimer *timer = &cpuctx->hrtimer;
1172         struct pmu *pmu = cpuctx->ctx.pmu;
1173         unsigned long flags;
1174
1175         /* not for SW PMU */
1176         if (pmu->task_ctx_nr == perf_sw_context)
1177                 return 0;
1178
1179         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1180         if (!cpuctx->hrtimer_active) {
1181                 cpuctx->hrtimer_active = 1;
1182                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1183                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1184         }
1185         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1186
1187         return 0;
1188 }
1189
1190 void perf_pmu_disable(struct pmu *pmu)
1191 {
1192         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1193         if (!(*count)++)
1194                 pmu->pmu_disable(pmu);
1195 }
1196
1197 void perf_pmu_enable(struct pmu *pmu)
1198 {
1199         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1200         if (!--(*count))
1201                 pmu->pmu_enable(pmu);
1202 }
1203
1204 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1205
1206 /*
1207  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1208  * perf_event_task_tick() are fully serialized because they're strictly cpu
1209  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1210  * disabled, while perf_event_task_tick is called from IRQ context.
1211  */
1212 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1213 {
1214         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1215
1216         lockdep_assert_irqs_disabled();
1217
1218         WARN_ON(!list_empty(&ctx->active_ctx_list));
1219
1220         list_add(&ctx->active_ctx_list, head);
1221 }
1222
1223 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1224 {
1225         lockdep_assert_irqs_disabled();
1226
1227         WARN_ON(list_empty(&ctx->active_ctx_list));
1228
1229         list_del_init(&ctx->active_ctx_list);
1230 }
1231
1232 static void get_ctx(struct perf_event_context *ctx)
1233 {
1234         refcount_inc(&ctx->refcount);
1235 }
1236
1237 static void free_ctx(struct rcu_head *head)
1238 {
1239         struct perf_event_context *ctx;
1240
1241         ctx = container_of(head, struct perf_event_context, rcu_head);
1242         kfree(ctx->task_ctx_data);
1243         kfree(ctx);
1244 }
1245
1246 static void put_ctx(struct perf_event_context *ctx)
1247 {
1248         if (refcount_dec_and_test(&ctx->refcount)) {
1249                 if (ctx->parent_ctx)
1250                         put_ctx(ctx->parent_ctx);
1251                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1252                         put_task_struct(ctx->task);
1253                 call_rcu(&ctx->rcu_head, free_ctx);
1254         }
1255 }
1256
1257 /*
1258  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1259  * perf_pmu_migrate_context() we need some magic.
1260  *
1261  * Those places that change perf_event::ctx will hold both
1262  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1263  *
1264  * Lock ordering is by mutex address. There are two other sites where
1265  * perf_event_context::mutex nests and those are:
1266  *
1267  *  - perf_event_exit_task_context()    [ child , 0 ]
1268  *      perf_event_exit_event()
1269  *        put_event()                   [ parent, 1 ]
1270  *
1271  *  - perf_event_init_context()         [ parent, 0 ]
1272  *      inherit_task_group()
1273  *        inherit_group()
1274  *          inherit_event()
1275  *            perf_event_alloc()
1276  *              perf_init_event()
1277  *                perf_try_init_event() [ child , 1 ]
1278  *
1279  * While it appears there is an obvious deadlock here -- the parent and child
1280  * nesting levels are inverted between the two. This is in fact safe because
1281  * life-time rules separate them. That is an exiting task cannot fork, and a
1282  * spawning task cannot (yet) exit.
1283  *
1284  * But remember that that these are parent<->child context relations, and
1285  * migration does not affect children, therefore these two orderings should not
1286  * interact.
1287  *
1288  * The change in perf_event::ctx does not affect children (as claimed above)
1289  * because the sys_perf_event_open() case will install a new event and break
1290  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1291  * concerned with cpuctx and that doesn't have children.
1292  *
1293  * The places that change perf_event::ctx will issue:
1294  *
1295  *   perf_remove_from_context();
1296  *   synchronize_rcu();
1297  *   perf_install_in_context();
1298  *
1299  * to affect the change. The remove_from_context() + synchronize_rcu() should
1300  * quiesce the event, after which we can install it in the new location. This
1301  * means that only external vectors (perf_fops, prctl) can perturb the event
1302  * while in transit. Therefore all such accessors should also acquire
1303  * perf_event_context::mutex to serialize against this.
1304  *
1305  * However; because event->ctx can change while we're waiting to acquire
1306  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1307  * function.
1308  *
1309  * Lock order:
1310  *    exec_update_mutex
1311  *      task_struct::perf_event_mutex
1312  *        perf_event_context::mutex
1313  *          perf_event::child_mutex;
1314  *            perf_event_context::lock
1315  *          perf_event::mmap_mutex
1316  *          mmap_sem
1317  *            perf_addr_filters_head::lock
1318  *
1319  *    cpu_hotplug_lock
1320  *      pmus_lock
1321  *        cpuctx->mutex / perf_event_context::mutex
1322  */
1323 static struct perf_event_context *
1324 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1325 {
1326         struct perf_event_context *ctx;
1327
1328 again:
1329         rcu_read_lock();
1330         ctx = READ_ONCE(event->ctx);
1331         if (!refcount_inc_not_zero(&ctx->refcount)) {
1332                 rcu_read_unlock();
1333                 goto again;
1334         }
1335         rcu_read_unlock();
1336
1337         mutex_lock_nested(&ctx->mutex, nesting);
1338         if (event->ctx != ctx) {
1339                 mutex_unlock(&ctx->mutex);
1340                 put_ctx(ctx);
1341                 goto again;
1342         }
1343
1344         return ctx;
1345 }
1346
1347 static inline struct perf_event_context *
1348 perf_event_ctx_lock(struct perf_event *event)
1349 {
1350         return perf_event_ctx_lock_nested(event, 0);
1351 }
1352
1353 static void perf_event_ctx_unlock(struct perf_event *event,
1354                                   struct perf_event_context *ctx)
1355 {
1356         mutex_unlock(&ctx->mutex);
1357         put_ctx(ctx);
1358 }
1359
1360 /*
1361  * This must be done under the ctx->lock, such as to serialize against
1362  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1363  * calling scheduler related locks and ctx->lock nests inside those.
1364  */
1365 static __must_check struct perf_event_context *
1366 unclone_ctx(struct perf_event_context *ctx)
1367 {
1368         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1369
1370         lockdep_assert_held(&ctx->lock);
1371
1372         if (parent_ctx)
1373                 ctx->parent_ctx = NULL;
1374         ctx->generation++;
1375
1376         return parent_ctx;
1377 }
1378
1379 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1380                                 enum pid_type type)
1381 {
1382         u32 nr;
1383         /*
1384          * only top level events have the pid namespace they were created in
1385          */
1386         if (event->parent)
1387                 event = event->parent;
1388
1389         nr = __task_pid_nr_ns(p, type, event->ns);
1390         /* avoid -1 if it is idle thread or runs in another ns */
1391         if (!nr && !pid_alive(p))
1392                 nr = -1;
1393         return nr;
1394 }
1395
1396 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1397 {
1398         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1399 }
1400
1401 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1402 {
1403         return perf_event_pid_type(event, p, PIDTYPE_PID);
1404 }
1405
1406 /*
1407  * If we inherit events we want to return the parent event id
1408  * to userspace.
1409  */
1410 static u64 primary_event_id(struct perf_event *event)
1411 {
1412         u64 id = event->id;
1413
1414         if (event->parent)
1415                 id = event->parent->id;
1416
1417         return id;
1418 }
1419
1420 /*
1421  * Get the perf_event_context for a task and lock it.
1422  *
1423  * This has to cope with with the fact that until it is locked,
1424  * the context could get moved to another task.
1425  */
1426 static struct perf_event_context *
1427 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1428 {
1429         struct perf_event_context *ctx;
1430
1431 retry:
1432         /*
1433          * One of the few rules of preemptible RCU is that one cannot do
1434          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1435          * part of the read side critical section was irqs-enabled -- see
1436          * rcu_read_unlock_special().
1437          *
1438          * Since ctx->lock nests under rq->lock we must ensure the entire read
1439          * side critical section has interrupts disabled.
1440          */
1441         local_irq_save(*flags);
1442         rcu_read_lock();
1443         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1444         if (ctx) {
1445                 /*
1446                  * If this context is a clone of another, it might
1447                  * get swapped for another underneath us by
1448                  * perf_event_task_sched_out, though the
1449                  * rcu_read_lock() protects us from any context
1450                  * getting freed.  Lock the context and check if it
1451                  * got swapped before we could get the lock, and retry
1452                  * if so.  If we locked the right context, then it
1453                  * can't get swapped on us any more.
1454                  */
1455                 raw_spin_lock(&ctx->lock);
1456                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1457                         raw_spin_unlock(&ctx->lock);
1458                         rcu_read_unlock();
1459                         local_irq_restore(*flags);
1460                         goto retry;
1461                 }
1462
1463                 if (ctx->task == TASK_TOMBSTONE ||
1464                     !refcount_inc_not_zero(&ctx->refcount)) {
1465                         raw_spin_unlock(&ctx->lock);
1466                         ctx = NULL;
1467                 } else {
1468                         WARN_ON_ONCE(ctx->task != task);
1469                 }
1470         }
1471         rcu_read_unlock();
1472         if (!ctx)
1473                 local_irq_restore(*flags);
1474         return ctx;
1475 }
1476
1477 /*
1478  * Get the context for a task and increment its pin_count so it
1479  * can't get swapped to another task.  This also increments its
1480  * reference count so that the context can't get freed.
1481  */
1482 static struct perf_event_context *
1483 perf_pin_task_context(struct task_struct *task, int ctxn)
1484 {
1485         struct perf_event_context *ctx;
1486         unsigned long flags;
1487
1488         ctx = perf_lock_task_context(task, ctxn, &flags);
1489         if (ctx) {
1490                 ++ctx->pin_count;
1491                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1492         }
1493         return ctx;
1494 }
1495
1496 static void perf_unpin_context(struct perf_event_context *ctx)
1497 {
1498         unsigned long flags;
1499
1500         raw_spin_lock_irqsave(&ctx->lock, flags);
1501         --ctx->pin_count;
1502         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1503 }
1504
1505 /*
1506  * Update the record of the current time in a context.
1507  */
1508 static void update_context_time(struct perf_event_context *ctx)
1509 {
1510         u64 now = perf_clock();
1511
1512         ctx->time += now - ctx->timestamp;
1513         ctx->timestamp = now;
1514 }
1515
1516 static u64 perf_event_time(struct perf_event *event)
1517 {
1518         struct perf_event_context *ctx = event->ctx;
1519
1520         if (is_cgroup_event(event))
1521                 return perf_cgroup_event_time(event);
1522
1523         return ctx ? ctx->time : 0;
1524 }
1525
1526 static enum event_type_t get_event_type(struct perf_event *event)
1527 {
1528         struct perf_event_context *ctx = event->ctx;
1529         enum event_type_t event_type;
1530
1531         lockdep_assert_held(&ctx->lock);
1532
1533         /*
1534          * It's 'group type', really, because if our group leader is
1535          * pinned, so are we.
1536          */
1537         if (event->group_leader != event)
1538                 event = event->group_leader;
1539
1540         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1541         if (!ctx->task)
1542                 event_type |= EVENT_CPU;
1543
1544         return event_type;
1545 }
1546
1547 /*
1548  * Helper function to initialize event group nodes.
1549  */
1550 static void init_event_group(struct perf_event *event)
1551 {
1552         RB_CLEAR_NODE(&event->group_node);
1553         event->group_index = 0;
1554 }
1555
1556 /*
1557  * Extract pinned or flexible groups from the context
1558  * based on event attrs bits.
1559  */
1560 static struct perf_event_groups *
1561 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1562 {
1563         if (event->attr.pinned)
1564                 return &ctx->pinned_groups;
1565         else
1566                 return &ctx->flexible_groups;
1567 }
1568
1569 /*
1570  * Helper function to initializes perf_event_group trees.
1571  */
1572 static void perf_event_groups_init(struct perf_event_groups *groups)
1573 {
1574         groups->tree = RB_ROOT;
1575         groups->index = 0;
1576 }
1577
1578 /*
1579  * Compare function for event groups;
1580  *
1581  * Implements complex key that first sorts by CPU and then by virtual index
1582  * which provides ordering when rotating groups for the same CPU.
1583  */
1584 static bool
1585 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1586 {
1587         if (left->cpu < right->cpu)
1588                 return true;
1589         if (left->cpu > right->cpu)
1590                 return false;
1591
1592 #ifdef CONFIG_CGROUP_PERF
1593         if (left->cgrp != right->cgrp) {
1594                 if (!left->cgrp || !left->cgrp->css.cgroup) {
1595                         /*
1596                          * Left has no cgroup but right does, no cgroups come
1597                          * first.
1598                          */
1599                         return true;
1600                 }
1601                 if (!right->cgrp || !right->cgrp->css.cgroup) {
1602                         /*
1603                          * Right has no cgroup but left does, no cgroups come
1604                          * first.
1605                          */
1606                         return false;
1607                 }
1608                 /* Two dissimilar cgroups, order by id. */
1609                 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1610                         return true;
1611
1612                 return false;
1613         }
1614 #endif
1615
1616         if (left->group_index < right->group_index)
1617                 return true;
1618         if (left->group_index > right->group_index)
1619                 return false;
1620
1621         return false;
1622 }
1623
1624 /*
1625  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1626  * key (see perf_event_groups_less). This places it last inside the CPU
1627  * subtree.
1628  */
1629 static void
1630 perf_event_groups_insert(struct perf_event_groups *groups,
1631                          struct perf_event *event)
1632 {
1633         struct perf_event *node_event;
1634         struct rb_node *parent;
1635         struct rb_node **node;
1636
1637         event->group_index = ++groups->index;
1638
1639         node = &groups->tree.rb_node;
1640         parent = *node;
1641
1642         while (*node) {
1643                 parent = *node;
1644                 node_event = container_of(*node, struct perf_event, group_node);
1645
1646                 if (perf_event_groups_less(event, node_event))
1647                         node = &parent->rb_left;
1648                 else
1649                         node = &parent->rb_right;
1650         }
1651
1652         rb_link_node(&event->group_node, parent, node);
1653         rb_insert_color(&event->group_node, &groups->tree);
1654 }
1655
1656 /*
1657  * Helper function to insert event into the pinned or flexible groups.
1658  */
1659 static void
1660 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1661 {
1662         struct perf_event_groups *groups;
1663
1664         groups = get_event_groups(event, ctx);
1665         perf_event_groups_insert(groups, event);
1666 }
1667
1668 /*
1669  * Delete a group from a tree.
1670  */
1671 static void
1672 perf_event_groups_delete(struct perf_event_groups *groups,
1673                          struct perf_event *event)
1674 {
1675         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1676                      RB_EMPTY_ROOT(&groups->tree));
1677
1678         rb_erase(&event->group_node, &groups->tree);
1679         init_event_group(event);
1680 }
1681
1682 /*
1683  * Helper function to delete event from its groups.
1684  */
1685 static void
1686 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1687 {
1688         struct perf_event_groups *groups;
1689
1690         groups = get_event_groups(event, ctx);
1691         perf_event_groups_delete(groups, event);
1692 }
1693
1694 /*
1695  * Get the leftmost event in the cpu/cgroup subtree.
1696  */
1697 static struct perf_event *
1698 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1699                         struct cgroup *cgrp)
1700 {
1701         struct perf_event *node_event = NULL, *match = NULL;
1702         struct rb_node *node = groups->tree.rb_node;
1703 #ifdef CONFIG_CGROUP_PERF
1704         u64 node_cgrp_id, cgrp_id = 0;
1705
1706         if (cgrp)
1707                 cgrp_id = cgrp->kn->id;
1708 #endif
1709
1710         while (node) {
1711                 node_event = container_of(node, struct perf_event, group_node);
1712
1713                 if (cpu < node_event->cpu) {
1714                         node = node->rb_left;
1715                         continue;
1716                 }
1717                 if (cpu > node_event->cpu) {
1718                         node = node->rb_right;
1719                         continue;
1720                 }
1721 #ifdef CONFIG_CGROUP_PERF
1722                 node_cgrp_id = 0;
1723                 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1724                         node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1725
1726                 if (cgrp_id < node_cgrp_id) {
1727                         node = node->rb_left;
1728                         continue;
1729                 }
1730                 if (cgrp_id > node_cgrp_id) {
1731                         node = node->rb_right;
1732                         continue;
1733                 }
1734 #endif
1735                 match = node_event;
1736                 node = node->rb_left;
1737         }
1738
1739         return match;
1740 }
1741
1742 /*
1743  * Like rb_entry_next_safe() for the @cpu subtree.
1744  */
1745 static struct perf_event *
1746 perf_event_groups_next(struct perf_event *event)
1747 {
1748         struct perf_event *next;
1749 #ifdef CONFIG_CGROUP_PERF
1750         u64 curr_cgrp_id = 0;
1751         u64 next_cgrp_id = 0;
1752 #endif
1753
1754         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1755         if (next == NULL || next->cpu != event->cpu)
1756                 return NULL;
1757
1758 #ifdef CONFIG_CGROUP_PERF
1759         if (event->cgrp && event->cgrp->css.cgroup)
1760                 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1761
1762         if (next->cgrp && next->cgrp->css.cgroup)
1763                 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1764
1765         if (curr_cgrp_id != next_cgrp_id)
1766                 return NULL;
1767 #endif
1768         return next;
1769 }
1770
1771 /*
1772  * Iterate through the whole groups tree.
1773  */
1774 #define perf_event_groups_for_each(event, groups)                       \
1775         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1776                                 typeof(*event), group_node); event;     \
1777                 event = rb_entry_safe(rb_next(&event->group_node),      \
1778                                 typeof(*event), group_node))
1779
1780 /*
1781  * Add an event from the lists for its context.
1782  * Must be called with ctx->mutex and ctx->lock held.
1783  */
1784 static void
1785 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1786 {
1787         lockdep_assert_held(&ctx->lock);
1788
1789         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1790         event->attach_state |= PERF_ATTACH_CONTEXT;
1791
1792         event->tstamp = perf_event_time(event);
1793
1794         /*
1795          * If we're a stand alone event or group leader, we go to the context
1796          * list, group events are kept attached to the group so that
1797          * perf_group_detach can, at all times, locate all siblings.
1798          */
1799         if (event->group_leader == event) {
1800                 event->group_caps = event->event_caps;
1801                 add_event_to_groups(event, ctx);
1802         }
1803
1804         list_add_rcu(&event->event_entry, &ctx->event_list);
1805         ctx->nr_events++;
1806         if (event->attr.inherit_stat)
1807                 ctx->nr_stat++;
1808
1809         if (event->state > PERF_EVENT_STATE_OFF)
1810                 perf_cgroup_event_enable(event, ctx);
1811
1812         ctx->generation++;
1813 }
1814
1815 /*
1816  * Initialize event state based on the perf_event_attr::disabled.
1817  */
1818 static inline void perf_event__state_init(struct perf_event *event)
1819 {
1820         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1821                                               PERF_EVENT_STATE_INACTIVE;
1822 }
1823
1824 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1825 {
1826         int entry = sizeof(u64); /* value */
1827         int size = 0;
1828         int nr = 1;
1829
1830         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1831                 size += sizeof(u64);
1832
1833         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1834                 size += sizeof(u64);
1835
1836         if (event->attr.read_format & PERF_FORMAT_ID)
1837                 entry += sizeof(u64);
1838
1839         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1840                 nr += nr_siblings;
1841                 size += sizeof(u64);
1842         }
1843
1844         size += entry * nr;
1845         event->read_size = size;
1846 }
1847
1848 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1849 {
1850         struct perf_sample_data *data;
1851         u16 size = 0;
1852
1853         if (sample_type & PERF_SAMPLE_IP)
1854                 size += sizeof(data->ip);
1855
1856         if (sample_type & PERF_SAMPLE_ADDR)
1857                 size += sizeof(data->addr);
1858
1859         if (sample_type & PERF_SAMPLE_PERIOD)
1860                 size += sizeof(data->period);
1861
1862         if (sample_type & PERF_SAMPLE_WEIGHT)
1863                 size += sizeof(data->weight);
1864
1865         if (sample_type & PERF_SAMPLE_READ)
1866                 size += event->read_size;
1867
1868         if (sample_type & PERF_SAMPLE_DATA_SRC)
1869                 size += sizeof(data->data_src.val);
1870
1871         if (sample_type & PERF_SAMPLE_TRANSACTION)
1872                 size += sizeof(data->txn);
1873
1874         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1875                 size += sizeof(data->phys_addr);
1876
1877         if (sample_type & PERF_SAMPLE_CGROUP)
1878                 size += sizeof(data->cgroup);
1879
1880         event->header_size = size;
1881 }
1882
1883 /*
1884  * Called at perf_event creation and when events are attached/detached from a
1885  * group.
1886  */
1887 static void perf_event__header_size(struct perf_event *event)
1888 {
1889         __perf_event_read_size(event,
1890                                event->group_leader->nr_siblings);
1891         __perf_event_header_size(event, event->attr.sample_type);
1892 }
1893
1894 static void perf_event__id_header_size(struct perf_event *event)
1895 {
1896         struct perf_sample_data *data;
1897         u64 sample_type = event->attr.sample_type;
1898         u16 size = 0;
1899
1900         if (sample_type & PERF_SAMPLE_TID)
1901                 size += sizeof(data->tid_entry);
1902
1903         if (sample_type & PERF_SAMPLE_TIME)
1904                 size += sizeof(data->time);
1905
1906         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1907                 size += sizeof(data->id);
1908
1909         if (sample_type & PERF_SAMPLE_ID)
1910                 size += sizeof(data->id);
1911
1912         if (sample_type & PERF_SAMPLE_STREAM_ID)
1913                 size += sizeof(data->stream_id);
1914
1915         if (sample_type & PERF_SAMPLE_CPU)
1916                 size += sizeof(data->cpu_entry);
1917
1918         event->id_header_size = size;
1919 }
1920
1921 static bool perf_event_validate_size(struct perf_event *event)
1922 {
1923         /*
1924          * The values computed here will be over-written when we actually
1925          * attach the event.
1926          */
1927         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1928         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1929         perf_event__id_header_size(event);
1930
1931         /*
1932          * Sum the lot; should not exceed the 64k limit we have on records.
1933          * Conservative limit to allow for callchains and other variable fields.
1934          */
1935         if (event->read_size + event->header_size +
1936             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1937                 return false;
1938
1939         return true;
1940 }
1941
1942 static void perf_group_attach(struct perf_event *event)
1943 {
1944         struct perf_event *group_leader = event->group_leader, *pos;
1945
1946         lockdep_assert_held(&event->ctx->lock);
1947
1948         /*
1949          * We can have double attach due to group movement in perf_event_open.
1950          */
1951         if (event->attach_state & PERF_ATTACH_GROUP)
1952                 return;
1953
1954         event->attach_state |= PERF_ATTACH_GROUP;
1955
1956         if (group_leader == event)
1957                 return;
1958
1959         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1960
1961         group_leader->group_caps &= event->event_caps;
1962
1963         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1964         group_leader->nr_siblings++;
1965
1966         perf_event__header_size(group_leader);
1967
1968         for_each_sibling_event(pos, group_leader)
1969                 perf_event__header_size(pos);
1970 }
1971
1972 /*
1973  * Remove an event from the lists for its context.
1974  * Must be called with ctx->mutex and ctx->lock held.
1975  */
1976 static void
1977 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1978 {
1979         WARN_ON_ONCE(event->ctx != ctx);
1980         lockdep_assert_held(&ctx->lock);
1981
1982         /*
1983          * We can have double detach due to exit/hot-unplug + close.
1984          */
1985         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1986                 return;
1987
1988         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1989
1990         ctx->nr_events--;
1991         if (event->attr.inherit_stat)
1992                 ctx->nr_stat--;
1993
1994         list_del_rcu(&event->event_entry);
1995
1996         if (event->group_leader == event)
1997                 del_event_from_groups(event, ctx);
1998
1999         /*
2000          * If event was in error state, then keep it
2001          * that way, otherwise bogus counts will be
2002          * returned on read(). The only way to get out
2003          * of error state is by explicit re-enabling
2004          * of the event
2005          */
2006         if (event->state > PERF_EVENT_STATE_OFF) {
2007                 perf_cgroup_event_disable(event, ctx);
2008                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2009         }
2010
2011         ctx->generation++;
2012 }
2013
2014 static int
2015 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2016 {
2017         if (!has_aux(aux_event))
2018                 return 0;
2019
2020         if (!event->pmu->aux_output_match)
2021                 return 0;
2022
2023         return event->pmu->aux_output_match(aux_event);
2024 }
2025
2026 static void put_event(struct perf_event *event);
2027 static void event_sched_out(struct perf_event *event,
2028                             struct perf_cpu_context *cpuctx,
2029                             struct perf_event_context *ctx);
2030
2031 static void perf_put_aux_event(struct perf_event *event)
2032 {
2033         struct perf_event_context *ctx = event->ctx;
2034         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2035         struct perf_event *iter;
2036
2037         /*
2038          * If event uses aux_event tear down the link
2039          */
2040         if (event->aux_event) {
2041                 iter = event->aux_event;
2042                 event->aux_event = NULL;
2043                 put_event(iter);
2044                 return;
2045         }
2046
2047         /*
2048          * If the event is an aux_event, tear down all links to
2049          * it from other events.
2050          */
2051         for_each_sibling_event(iter, event->group_leader) {
2052                 if (iter->aux_event != event)
2053                         continue;
2054
2055                 iter->aux_event = NULL;
2056                 put_event(event);
2057
2058                 /*
2059                  * If it's ACTIVE, schedule it out and put it into ERROR
2060                  * state so that we don't try to schedule it again. Note
2061                  * that perf_event_enable() will clear the ERROR status.
2062                  */
2063                 event_sched_out(iter, cpuctx, ctx);
2064                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2065         }
2066 }
2067
2068 static bool perf_need_aux_event(struct perf_event *event)
2069 {
2070         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2071 }
2072
2073 static int perf_get_aux_event(struct perf_event *event,
2074                               struct perf_event *group_leader)
2075 {
2076         /*
2077          * Our group leader must be an aux event if we want to be
2078          * an aux_output. This way, the aux event will precede its
2079          * aux_output events in the group, and therefore will always
2080          * schedule first.
2081          */
2082         if (!group_leader)
2083                 return 0;
2084
2085         /*
2086          * aux_output and aux_sample_size are mutually exclusive.
2087          */
2088         if (event->attr.aux_output && event->attr.aux_sample_size)
2089                 return 0;
2090
2091         if (event->attr.aux_output &&
2092             !perf_aux_output_match(event, group_leader))
2093                 return 0;
2094
2095         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2096                 return 0;
2097
2098         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2099                 return 0;
2100
2101         /*
2102          * Link aux_outputs to their aux event; this is undone in
2103          * perf_group_detach() by perf_put_aux_event(). When the
2104          * group in torn down, the aux_output events loose their
2105          * link to the aux_event and can't schedule any more.
2106          */
2107         event->aux_event = group_leader;
2108
2109         return 1;
2110 }
2111
2112 static inline struct list_head *get_event_list(struct perf_event *event)
2113 {
2114         struct perf_event_context *ctx = event->ctx;
2115         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2116 }
2117
2118 static void perf_group_detach(struct perf_event *event)
2119 {
2120         struct perf_event *sibling, *tmp;
2121         struct perf_event_context *ctx = event->ctx;
2122
2123         lockdep_assert_held(&ctx->lock);
2124
2125         /*
2126          * We can have double detach due to exit/hot-unplug + close.
2127          */
2128         if (!(event->attach_state & PERF_ATTACH_GROUP))
2129                 return;
2130
2131         event->attach_state &= ~PERF_ATTACH_GROUP;
2132
2133         perf_put_aux_event(event);
2134
2135         /*
2136          * If this is a sibling, remove it from its group.
2137          */
2138         if (event->group_leader != event) {
2139                 list_del_init(&event->sibling_list);
2140                 event->group_leader->nr_siblings--;
2141                 goto out;
2142         }
2143
2144         /*
2145          * If this was a group event with sibling events then
2146          * upgrade the siblings to singleton events by adding them
2147          * to whatever list we are on.
2148          */
2149         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2150
2151                 sibling->group_leader = sibling;
2152                 list_del_init(&sibling->sibling_list);
2153
2154                 /* Inherit group flags from the previous leader */
2155                 sibling->group_caps = event->group_caps;
2156
2157                 if (!RB_EMPTY_NODE(&event->group_node)) {
2158                         add_event_to_groups(sibling, event->ctx);
2159
2160                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2161                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2162                 }
2163
2164                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2165         }
2166
2167 out:
2168         perf_event__header_size(event->group_leader);
2169
2170         for_each_sibling_event(tmp, event->group_leader)
2171                 perf_event__header_size(tmp);
2172 }
2173
2174 static bool is_orphaned_event(struct perf_event *event)
2175 {
2176         return event->state == PERF_EVENT_STATE_DEAD;
2177 }
2178
2179 static inline int __pmu_filter_match(struct perf_event *event)
2180 {
2181         struct pmu *pmu = event->pmu;
2182         return pmu->filter_match ? pmu->filter_match(event) : 1;
2183 }
2184
2185 /*
2186  * Check whether we should attempt to schedule an event group based on
2187  * PMU-specific filtering. An event group can consist of HW and SW events,
2188  * potentially with a SW leader, so we must check all the filters, to
2189  * determine whether a group is schedulable:
2190  */
2191 static inline int pmu_filter_match(struct perf_event *event)
2192 {
2193         struct perf_event *sibling;
2194
2195         if (!__pmu_filter_match(event))
2196                 return 0;
2197
2198         for_each_sibling_event(sibling, event) {
2199                 if (!__pmu_filter_match(sibling))
2200                         return 0;
2201         }
2202
2203         return 1;
2204 }
2205
2206 static inline int
2207 event_filter_match(struct perf_event *event)
2208 {
2209         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2210                perf_cgroup_match(event) && pmu_filter_match(event);
2211 }
2212
2213 static void
2214 event_sched_out(struct perf_event *event,
2215                   struct perf_cpu_context *cpuctx,
2216                   struct perf_event_context *ctx)
2217 {
2218         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2219
2220         WARN_ON_ONCE(event->ctx != ctx);
2221         lockdep_assert_held(&ctx->lock);
2222
2223         if (event->state != PERF_EVENT_STATE_ACTIVE)
2224                 return;
2225
2226         /*
2227          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2228          * we can schedule events _OUT_ individually through things like
2229          * __perf_remove_from_context().
2230          */
2231         list_del_init(&event->active_list);
2232
2233         perf_pmu_disable(event->pmu);
2234
2235         event->pmu->del(event, 0);
2236         event->oncpu = -1;
2237
2238         if (READ_ONCE(event->pending_disable) >= 0) {
2239                 WRITE_ONCE(event->pending_disable, -1);
2240                 perf_cgroup_event_disable(event, ctx);
2241                 state = PERF_EVENT_STATE_OFF;
2242         }
2243         perf_event_set_state(event, state);
2244
2245         if (!is_software_event(event))
2246                 cpuctx->active_oncpu--;
2247         if (!--ctx->nr_active)
2248                 perf_event_ctx_deactivate(ctx);
2249         if (event->attr.freq && event->attr.sample_freq)
2250                 ctx->nr_freq--;
2251         if (event->attr.exclusive || !cpuctx->active_oncpu)
2252                 cpuctx->exclusive = 0;
2253
2254         perf_pmu_enable(event->pmu);
2255 }
2256
2257 static void
2258 group_sched_out(struct perf_event *group_event,
2259                 struct perf_cpu_context *cpuctx,
2260                 struct perf_event_context *ctx)
2261 {
2262         struct perf_event *event;
2263
2264         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2265                 return;
2266
2267         perf_pmu_disable(ctx->pmu);
2268
2269         event_sched_out(group_event, cpuctx, ctx);
2270
2271         /*
2272          * Schedule out siblings (if any):
2273          */
2274         for_each_sibling_event(event, group_event)
2275                 event_sched_out(event, cpuctx, ctx);
2276
2277         perf_pmu_enable(ctx->pmu);
2278
2279         if (group_event->attr.exclusive)
2280                 cpuctx->exclusive = 0;
2281 }
2282
2283 #define DETACH_GROUP    0x01UL
2284
2285 /*
2286  * Cross CPU call to remove a performance event
2287  *
2288  * We disable the event on the hardware level first. After that we
2289  * remove it from the context list.
2290  */
2291 static void
2292 __perf_remove_from_context(struct perf_event *event,
2293                            struct perf_cpu_context *cpuctx,
2294                            struct perf_event_context *ctx,
2295                            void *info)
2296 {
2297         unsigned long flags = (unsigned long)info;
2298
2299         if (ctx->is_active & EVENT_TIME) {
2300                 update_context_time(ctx);
2301                 update_cgrp_time_from_cpuctx(cpuctx);
2302         }
2303
2304         event_sched_out(event, cpuctx, ctx);
2305         if (flags & DETACH_GROUP)
2306                 perf_group_detach(event);
2307         list_del_event(event, ctx);
2308
2309         if (!ctx->nr_events && ctx->is_active) {
2310                 ctx->is_active = 0;
2311                 ctx->rotate_necessary = 0;
2312                 if (ctx->task) {
2313                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2314                         cpuctx->task_ctx = NULL;
2315                 }
2316         }
2317 }
2318
2319 /*
2320  * Remove the event from a task's (or a CPU's) list of events.
2321  *
2322  * If event->ctx is a cloned context, callers must make sure that
2323  * every task struct that event->ctx->task could possibly point to
2324  * remains valid.  This is OK when called from perf_release since
2325  * that only calls us on the top-level context, which can't be a clone.
2326  * When called from perf_event_exit_task, it's OK because the
2327  * context has been detached from its task.
2328  */
2329 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2330 {
2331         struct perf_event_context *ctx = event->ctx;
2332
2333         lockdep_assert_held(&ctx->mutex);
2334
2335         event_function_call(event, __perf_remove_from_context, (void *)flags);
2336
2337         /*
2338          * The above event_function_call() can NO-OP when it hits
2339          * TASK_TOMBSTONE. In that case we must already have been detached
2340          * from the context (by perf_event_exit_event()) but the grouping
2341          * might still be in-tact.
2342          */
2343         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2344         if ((flags & DETACH_GROUP) &&
2345             (event->attach_state & PERF_ATTACH_GROUP)) {
2346                 /*
2347                  * Since in that case we cannot possibly be scheduled, simply
2348                  * detach now.
2349                  */
2350                 raw_spin_lock_irq(&ctx->lock);
2351                 perf_group_detach(event);
2352                 raw_spin_unlock_irq(&ctx->lock);
2353         }
2354 }
2355
2356 /*
2357  * Cross CPU call to disable a performance event
2358  */
2359 static void __perf_event_disable(struct perf_event *event,
2360                                  struct perf_cpu_context *cpuctx,
2361                                  struct perf_event_context *ctx,
2362                                  void *info)
2363 {
2364         if (event->state < PERF_EVENT_STATE_INACTIVE)
2365                 return;
2366
2367         if (ctx->is_active & EVENT_TIME) {
2368                 update_context_time(ctx);
2369                 update_cgrp_time_from_event(event);
2370         }
2371
2372         if (event == event->group_leader)
2373                 group_sched_out(event, cpuctx, ctx);
2374         else
2375                 event_sched_out(event, cpuctx, ctx);
2376
2377         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2378         perf_cgroup_event_disable(event, ctx);
2379 }
2380
2381 /*
2382  * Disable an event.
2383  *
2384  * If event->ctx is a cloned context, callers must make sure that
2385  * every task struct that event->ctx->task could possibly point to
2386  * remains valid.  This condition is satisfied when called through
2387  * perf_event_for_each_child or perf_event_for_each because they
2388  * hold the top-level event's child_mutex, so any descendant that
2389  * goes to exit will block in perf_event_exit_event().
2390  *
2391  * When called from perf_pending_event it's OK because event->ctx
2392  * is the current context on this CPU and preemption is disabled,
2393  * hence we can't get into perf_event_task_sched_out for this context.
2394  */
2395 static void _perf_event_disable(struct perf_event *event)
2396 {
2397         struct perf_event_context *ctx = event->ctx;
2398
2399         raw_spin_lock_irq(&ctx->lock);
2400         if (event->state <= PERF_EVENT_STATE_OFF) {
2401                 raw_spin_unlock_irq(&ctx->lock);
2402                 return;
2403         }
2404         raw_spin_unlock_irq(&ctx->lock);
2405
2406         event_function_call(event, __perf_event_disable, NULL);
2407 }
2408
2409 void perf_event_disable_local(struct perf_event *event)
2410 {
2411         event_function_local(event, __perf_event_disable, NULL);
2412 }
2413
2414 /*
2415  * Strictly speaking kernel users cannot create groups and therefore this
2416  * interface does not need the perf_event_ctx_lock() magic.
2417  */
2418 void perf_event_disable(struct perf_event *event)
2419 {
2420         struct perf_event_context *ctx;
2421
2422         ctx = perf_event_ctx_lock(event);
2423         _perf_event_disable(event);
2424         perf_event_ctx_unlock(event, ctx);
2425 }
2426 EXPORT_SYMBOL_GPL(perf_event_disable);
2427
2428 void perf_event_disable_inatomic(struct perf_event *event)
2429 {
2430         WRITE_ONCE(event->pending_disable, smp_processor_id());
2431         /* can fail, see perf_pending_event_disable() */
2432         irq_work_queue(&event->pending);
2433 }
2434
2435 static void perf_set_shadow_time(struct perf_event *event,
2436                                  struct perf_event_context *ctx)
2437 {
2438         /*
2439          * use the correct time source for the time snapshot
2440          *
2441          * We could get by without this by leveraging the
2442          * fact that to get to this function, the caller
2443          * has most likely already called update_context_time()
2444          * and update_cgrp_time_xx() and thus both timestamp
2445          * are identical (or very close). Given that tstamp is,
2446          * already adjusted for cgroup, we could say that:
2447          *    tstamp - ctx->timestamp
2448          * is equivalent to
2449          *    tstamp - cgrp->timestamp.
2450          *
2451          * Then, in perf_output_read(), the calculation would
2452          * work with no changes because:
2453          * - event is guaranteed scheduled in
2454          * - no scheduled out in between
2455          * - thus the timestamp would be the same
2456          *
2457          * But this is a bit hairy.
2458          *
2459          * So instead, we have an explicit cgroup call to remain
2460          * within the time time source all along. We believe it
2461          * is cleaner and simpler to understand.
2462          */
2463         if (is_cgroup_event(event))
2464                 perf_cgroup_set_shadow_time(event, event->tstamp);
2465         else
2466                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2467 }
2468
2469 #define MAX_INTERRUPTS (~0ULL)
2470
2471 static void perf_log_throttle(struct perf_event *event, int enable);
2472 static void perf_log_itrace_start(struct perf_event *event);
2473
2474 static int
2475 event_sched_in(struct perf_event *event,
2476                  struct perf_cpu_context *cpuctx,
2477                  struct perf_event_context *ctx)
2478 {
2479         int ret = 0;
2480
2481         WARN_ON_ONCE(event->ctx != ctx);
2482
2483         lockdep_assert_held(&ctx->lock);
2484
2485         if (event->state <= PERF_EVENT_STATE_OFF)
2486                 return 0;
2487
2488         WRITE_ONCE(event->oncpu, smp_processor_id());
2489         /*
2490          * Order event::oncpu write to happen before the ACTIVE state is
2491          * visible. This allows perf_event_{stop,read}() to observe the correct
2492          * ->oncpu if it sees ACTIVE.
2493          */
2494         smp_wmb();
2495         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2496
2497         /*
2498          * Unthrottle events, since we scheduled we might have missed several
2499          * ticks already, also for a heavily scheduling task there is little
2500          * guarantee it'll get a tick in a timely manner.
2501          */
2502         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2503                 perf_log_throttle(event, 1);
2504                 event->hw.interrupts = 0;
2505         }
2506
2507         perf_pmu_disable(event->pmu);
2508
2509         perf_set_shadow_time(event, ctx);
2510
2511         perf_log_itrace_start(event);
2512
2513         if (event->pmu->add(event, PERF_EF_START)) {
2514                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2515                 event->oncpu = -1;
2516                 ret = -EAGAIN;
2517                 goto out;
2518         }
2519
2520         if (!is_software_event(event))
2521                 cpuctx->active_oncpu++;
2522         if (!ctx->nr_active++)
2523                 perf_event_ctx_activate(ctx);
2524         if (event->attr.freq && event->attr.sample_freq)
2525                 ctx->nr_freq++;
2526
2527         if (event->attr.exclusive)
2528                 cpuctx->exclusive = 1;
2529
2530 out:
2531         perf_pmu_enable(event->pmu);
2532
2533         return ret;
2534 }
2535
2536 static int
2537 group_sched_in(struct perf_event *group_event,
2538                struct perf_cpu_context *cpuctx,
2539                struct perf_event_context *ctx)
2540 {
2541         struct perf_event *event, *partial_group = NULL;
2542         struct pmu *pmu = ctx->pmu;
2543
2544         if (group_event->state == PERF_EVENT_STATE_OFF)
2545                 return 0;
2546
2547         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2548
2549         if (event_sched_in(group_event, cpuctx, ctx)) {
2550                 pmu->cancel_txn(pmu);
2551                 perf_mux_hrtimer_restart(cpuctx);
2552                 return -EAGAIN;
2553         }
2554
2555         /*
2556          * Schedule in siblings as one group (if any):
2557          */
2558         for_each_sibling_event(event, group_event) {
2559                 if (event_sched_in(event, cpuctx, ctx)) {
2560                         partial_group = event;
2561                         goto group_error;
2562                 }
2563         }
2564
2565         if (!pmu->commit_txn(pmu))
2566                 return 0;
2567
2568 group_error:
2569         /*
2570          * Groups can be scheduled in as one unit only, so undo any
2571          * partial group before returning:
2572          * The events up to the failed event are scheduled out normally.
2573          */
2574         for_each_sibling_event(event, group_event) {
2575                 if (event == partial_group)
2576                         break;
2577
2578                 event_sched_out(event, cpuctx, ctx);
2579         }
2580         event_sched_out(group_event, cpuctx, ctx);
2581
2582         pmu->cancel_txn(pmu);
2583
2584         perf_mux_hrtimer_restart(cpuctx);
2585
2586         return -EAGAIN;
2587 }
2588
2589 /*
2590  * Work out whether we can put this event group on the CPU now.
2591  */
2592 static int group_can_go_on(struct perf_event *event,
2593                            struct perf_cpu_context *cpuctx,
2594                            int can_add_hw)
2595 {
2596         /*
2597          * Groups consisting entirely of software events can always go on.
2598          */
2599         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2600                 return 1;
2601         /*
2602          * If an exclusive group is already on, no other hardware
2603          * events can go on.
2604          */
2605         if (cpuctx->exclusive)
2606                 return 0;
2607         /*
2608          * If this group is exclusive and there are already
2609          * events on the CPU, it can't go on.
2610          */
2611         if (event->attr.exclusive && cpuctx->active_oncpu)
2612                 return 0;
2613         /*
2614          * Otherwise, try to add it if all previous groups were able
2615          * to go on.
2616          */
2617         return can_add_hw;
2618 }
2619
2620 static void add_event_to_ctx(struct perf_event *event,
2621                                struct perf_event_context *ctx)
2622 {
2623         list_add_event(event, ctx);
2624         perf_group_attach(event);
2625 }
2626
2627 static void ctx_sched_out(struct perf_event_context *ctx,
2628                           struct perf_cpu_context *cpuctx,
2629                           enum event_type_t event_type);
2630 static void
2631 ctx_sched_in(struct perf_event_context *ctx,
2632              struct perf_cpu_context *cpuctx,
2633              enum event_type_t event_type,
2634              struct task_struct *task);
2635
2636 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2637                                struct perf_event_context *ctx,
2638                                enum event_type_t event_type)
2639 {
2640         if (!cpuctx->task_ctx)
2641                 return;
2642
2643         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2644                 return;
2645
2646         ctx_sched_out(ctx, cpuctx, event_type);
2647 }
2648
2649 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2650                                 struct perf_event_context *ctx,
2651                                 struct task_struct *task)
2652 {
2653         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2654         if (ctx)
2655                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2656         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2657         if (ctx)
2658                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2659 }
2660
2661 /*
2662  * We want to maintain the following priority of scheduling:
2663  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2664  *  - task pinned (EVENT_PINNED)
2665  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2666  *  - task flexible (EVENT_FLEXIBLE).
2667  *
2668  * In order to avoid unscheduling and scheduling back in everything every
2669  * time an event is added, only do it for the groups of equal priority and
2670  * below.
2671  *
2672  * This can be called after a batch operation on task events, in which case
2673  * event_type is a bit mask of the types of events involved. For CPU events,
2674  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2675  */
2676 static void ctx_resched(struct perf_cpu_context *cpuctx,
2677                         struct perf_event_context *task_ctx,
2678                         enum event_type_t event_type)
2679 {
2680         enum event_type_t ctx_event_type;
2681         bool cpu_event = !!(event_type & EVENT_CPU);
2682
2683         /*
2684          * If pinned groups are involved, flexible groups also need to be
2685          * scheduled out.
2686          */
2687         if (event_type & EVENT_PINNED)
2688                 event_type |= EVENT_FLEXIBLE;
2689
2690         ctx_event_type = event_type & EVENT_ALL;
2691
2692         perf_pmu_disable(cpuctx->ctx.pmu);
2693         if (task_ctx)
2694                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2695
2696         /*
2697          * Decide which cpu ctx groups to schedule out based on the types
2698          * of events that caused rescheduling:
2699          *  - EVENT_CPU: schedule out corresponding groups;
2700          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2701          *  - otherwise, do nothing more.
2702          */
2703         if (cpu_event)
2704                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2705         else if (ctx_event_type & EVENT_PINNED)
2706                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2707
2708         perf_event_sched_in(cpuctx, task_ctx, current);
2709         perf_pmu_enable(cpuctx->ctx.pmu);
2710 }
2711
2712 void perf_pmu_resched(struct pmu *pmu)
2713 {
2714         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2715         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2716
2717         perf_ctx_lock(cpuctx, task_ctx);
2718         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2719         perf_ctx_unlock(cpuctx, task_ctx);
2720 }
2721
2722 /*
2723  * Cross CPU call to install and enable a performance event
2724  *
2725  * Very similar to remote_function() + event_function() but cannot assume that
2726  * things like ctx->is_active and cpuctx->task_ctx are set.
2727  */
2728 static int  __perf_install_in_context(void *info)
2729 {
2730         struct perf_event *event = info;
2731         struct perf_event_context *ctx = event->ctx;
2732         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2733         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2734         bool reprogram = true;
2735         int ret = 0;
2736
2737         raw_spin_lock(&cpuctx->ctx.lock);
2738         if (ctx->task) {
2739                 raw_spin_lock(&ctx->lock);
2740                 task_ctx = ctx;
2741
2742                 reprogram = (ctx->task == current);
2743
2744                 /*
2745                  * If the task is running, it must be running on this CPU,
2746                  * otherwise we cannot reprogram things.
2747                  *
2748                  * If its not running, we don't care, ctx->lock will
2749                  * serialize against it becoming runnable.
2750                  */
2751                 if (task_curr(ctx->task) && !reprogram) {
2752                         ret = -ESRCH;
2753                         goto unlock;
2754                 }
2755
2756                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2757         } else if (task_ctx) {
2758                 raw_spin_lock(&task_ctx->lock);
2759         }
2760
2761 #ifdef CONFIG_CGROUP_PERF
2762         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2763                 /*
2764                  * If the current cgroup doesn't match the event's
2765                  * cgroup, we should not try to schedule it.
2766                  */
2767                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2768                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2769                                         event->cgrp->css.cgroup);
2770         }
2771 #endif
2772
2773         if (reprogram) {
2774                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2775                 add_event_to_ctx(event, ctx);
2776                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2777         } else {
2778                 add_event_to_ctx(event, ctx);
2779         }
2780
2781 unlock:
2782         perf_ctx_unlock(cpuctx, task_ctx);
2783
2784         return ret;
2785 }
2786
2787 static bool exclusive_event_installable(struct perf_event *event,
2788                                         struct perf_event_context *ctx);
2789
2790 /*
2791  * Attach a performance event to a context.
2792  *
2793  * Very similar to event_function_call, see comment there.
2794  */
2795 static void
2796 perf_install_in_context(struct perf_event_context *ctx,
2797                         struct perf_event *event,
2798                         int cpu)
2799 {
2800         struct task_struct *task = READ_ONCE(ctx->task);
2801
2802         lockdep_assert_held(&ctx->mutex);
2803
2804         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2805
2806         if (event->cpu != -1)
2807                 event->cpu = cpu;
2808
2809         /*
2810          * Ensures that if we can observe event->ctx, both the event and ctx
2811          * will be 'complete'. See perf_iterate_sb_cpu().
2812          */
2813         smp_store_release(&event->ctx, ctx);
2814
2815         /*
2816          * perf_event_attr::disabled events will not run and can be initialized
2817          * without IPI. Except when this is the first event for the context, in
2818          * that case we need the magic of the IPI to set ctx->is_active.
2819          *
2820          * The IOC_ENABLE that is sure to follow the creation of a disabled
2821          * event will issue the IPI and reprogram the hardware.
2822          */
2823         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2824                 raw_spin_lock_irq(&ctx->lock);
2825                 if (ctx->task == TASK_TOMBSTONE) {
2826                         raw_spin_unlock_irq(&ctx->lock);
2827                         return;
2828                 }
2829                 add_event_to_ctx(event, ctx);
2830                 raw_spin_unlock_irq(&ctx->lock);
2831                 return;
2832         }
2833
2834         if (!task) {
2835                 cpu_function_call(cpu, __perf_install_in_context, event);
2836                 return;
2837         }
2838
2839         /*
2840          * Should not happen, we validate the ctx is still alive before calling.
2841          */
2842         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2843                 return;
2844
2845         /*
2846          * Installing events is tricky because we cannot rely on ctx->is_active
2847          * to be set in case this is the nr_events 0 -> 1 transition.
2848          *
2849          * Instead we use task_curr(), which tells us if the task is running.
2850          * However, since we use task_curr() outside of rq::lock, we can race
2851          * against the actual state. This means the result can be wrong.
2852          *
2853          * If we get a false positive, we retry, this is harmless.
2854          *
2855          * If we get a false negative, things are complicated. If we are after
2856          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2857          * value must be correct. If we're before, it doesn't matter since
2858          * perf_event_context_sched_in() will program the counter.
2859          *
2860          * However, this hinges on the remote context switch having observed
2861          * our task->perf_event_ctxp[] store, such that it will in fact take
2862          * ctx::lock in perf_event_context_sched_in().
2863          *
2864          * We do this by task_function_call(), if the IPI fails to hit the task
2865          * we know any future context switch of task must see the
2866          * perf_event_ctpx[] store.
2867          */
2868
2869         /*
2870          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2871          * task_cpu() load, such that if the IPI then does not find the task
2872          * running, a future context switch of that task must observe the
2873          * store.
2874          */
2875         smp_mb();
2876 again:
2877         if (!task_function_call(task, __perf_install_in_context, event))
2878                 return;
2879
2880         raw_spin_lock_irq(&ctx->lock);
2881         task = ctx->task;
2882         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2883                 /*
2884                  * Cannot happen because we already checked above (which also
2885                  * cannot happen), and we hold ctx->mutex, which serializes us
2886                  * against perf_event_exit_task_context().
2887                  */
2888                 raw_spin_unlock_irq(&ctx->lock);
2889                 return;
2890         }
2891         /*
2892          * If the task is not running, ctx->lock will avoid it becoming so,
2893          * thus we can safely install the event.
2894          */
2895         if (task_curr(task)) {
2896                 raw_spin_unlock_irq(&ctx->lock);
2897                 goto again;
2898         }
2899         add_event_to_ctx(event, ctx);
2900         raw_spin_unlock_irq(&ctx->lock);
2901 }
2902
2903 /*
2904  * Cross CPU call to enable a performance event
2905  */
2906 static void __perf_event_enable(struct perf_event *event,
2907                                 struct perf_cpu_context *cpuctx,
2908                                 struct perf_event_context *ctx,
2909                                 void *info)
2910 {
2911         struct perf_event *leader = event->group_leader;
2912         struct perf_event_context *task_ctx;
2913
2914         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2915             event->state <= PERF_EVENT_STATE_ERROR)
2916                 return;
2917
2918         if (ctx->is_active)
2919                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2920
2921         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2922         perf_cgroup_event_enable(event, ctx);
2923
2924         if (!ctx->is_active)
2925                 return;
2926
2927         if (!event_filter_match(event)) {
2928                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2929                 return;
2930         }
2931
2932         /*
2933          * If the event is in a group and isn't the group leader,
2934          * then don't put it on unless the group is on.
2935          */
2936         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2937                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2938                 return;
2939         }
2940
2941         task_ctx = cpuctx->task_ctx;
2942         if (ctx->task)
2943                 WARN_ON_ONCE(task_ctx != ctx);
2944
2945         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2946 }
2947
2948 /*
2949  * Enable an event.
2950  *
2951  * If event->ctx is a cloned context, callers must make sure that
2952  * every task struct that event->ctx->task could possibly point to
2953  * remains valid.  This condition is satisfied when called through
2954  * perf_event_for_each_child or perf_event_for_each as described
2955  * for perf_event_disable.
2956  */
2957 static void _perf_event_enable(struct perf_event *event)
2958 {
2959         struct perf_event_context *ctx = event->ctx;
2960
2961         raw_spin_lock_irq(&ctx->lock);
2962         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2963             event->state <  PERF_EVENT_STATE_ERROR) {
2964                 raw_spin_unlock_irq(&ctx->lock);
2965                 return;
2966         }
2967
2968         /*
2969          * If the event is in error state, clear that first.
2970          *
2971          * That way, if we see the event in error state below, we know that it
2972          * has gone back into error state, as distinct from the task having
2973          * been scheduled away before the cross-call arrived.
2974          */
2975         if (event->state == PERF_EVENT_STATE_ERROR)
2976                 event->state = PERF_EVENT_STATE_OFF;
2977         raw_spin_unlock_irq(&ctx->lock);
2978
2979         event_function_call(event, __perf_event_enable, NULL);
2980 }
2981
2982 /*
2983  * See perf_event_disable();
2984  */
2985 void perf_event_enable(struct perf_event *event)
2986 {
2987         struct perf_event_context *ctx;
2988
2989         ctx = perf_event_ctx_lock(event);
2990         _perf_event_enable(event);
2991         perf_event_ctx_unlock(event, ctx);
2992 }
2993 EXPORT_SYMBOL_GPL(perf_event_enable);
2994
2995 struct stop_event_data {
2996         struct perf_event       *event;
2997         unsigned int            restart;
2998 };
2999
3000 static int __perf_event_stop(void *info)
3001 {
3002         struct stop_event_data *sd = info;
3003         struct perf_event *event = sd->event;
3004
3005         /* if it's already INACTIVE, do nothing */
3006         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3007                 return 0;
3008
3009         /* matches smp_wmb() in event_sched_in() */
3010         smp_rmb();
3011
3012         /*
3013          * There is a window with interrupts enabled before we get here,
3014          * so we need to check again lest we try to stop another CPU's event.
3015          */
3016         if (READ_ONCE(event->oncpu) != smp_processor_id())
3017                 return -EAGAIN;
3018
3019         event->pmu->stop(event, PERF_EF_UPDATE);
3020
3021         /*
3022          * May race with the actual stop (through perf_pmu_output_stop()),
3023          * but it is only used for events with AUX ring buffer, and such
3024          * events will refuse to restart because of rb::aux_mmap_count==0,
3025          * see comments in perf_aux_output_begin().
3026          *
3027          * Since this is happening on an event-local CPU, no trace is lost
3028          * while restarting.
3029          */
3030         if (sd->restart)
3031                 event->pmu->start(event, 0);
3032
3033         return 0;
3034 }
3035
3036 static int perf_event_stop(struct perf_event *event, int restart)
3037 {
3038         struct stop_event_data sd = {
3039                 .event          = event,
3040                 .restart        = restart,
3041         };
3042         int ret = 0;
3043
3044         do {
3045                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3046                         return 0;
3047
3048                 /* matches smp_wmb() in event_sched_in() */
3049                 smp_rmb();
3050
3051                 /*
3052                  * We only want to restart ACTIVE events, so if the event goes
3053                  * inactive here (event->oncpu==-1), there's nothing more to do;
3054                  * fall through with ret==-ENXIO.
3055                  */
3056                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3057                                         __perf_event_stop, &sd);
3058         } while (ret == -EAGAIN);
3059
3060         return ret;
3061 }
3062
3063 /*
3064  * In order to contain the amount of racy and tricky in the address filter
3065  * configuration management, it is a two part process:
3066  *
3067  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3068  *      we update the addresses of corresponding vmas in
3069  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3070  * (p2) when an event is scheduled in (pmu::add), it calls
3071  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3072  *      if the generation has changed since the previous call.
3073  *
3074  * If (p1) happens while the event is active, we restart it to force (p2).
3075  *
3076  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3077  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3078  *     ioctl;
3079  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3080  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
3081  *     for reading;
3082  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3083  *     of exec.
3084  */
3085 void perf_event_addr_filters_sync(struct perf_event *event)
3086 {
3087         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3088
3089         if (!has_addr_filter(event))
3090                 return;
3091
3092         raw_spin_lock(&ifh->lock);
3093         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3094                 event->pmu->addr_filters_sync(event);
3095                 event->hw.addr_filters_gen = event->addr_filters_gen;
3096         }
3097         raw_spin_unlock(&ifh->lock);
3098 }
3099 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3100
3101 static int _perf_event_refresh(struct perf_event *event, int refresh)
3102 {
3103         /*
3104          * not supported on inherited events
3105          */
3106         if (event->attr.inherit || !is_sampling_event(event))
3107                 return -EINVAL;
3108
3109         atomic_add(refresh, &event->event_limit);
3110         _perf_event_enable(event);
3111
3112         return 0;
3113 }
3114
3115 /*
3116  * See perf_event_disable()
3117  */
3118 int perf_event_refresh(struct perf_event *event, int refresh)
3119 {
3120         struct perf_event_context *ctx;
3121         int ret;
3122
3123         ctx = perf_event_ctx_lock(event);
3124         ret = _perf_event_refresh(event, refresh);
3125         perf_event_ctx_unlock(event, ctx);
3126
3127         return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(perf_event_refresh);
3130
3131 static int perf_event_modify_breakpoint(struct perf_event *bp,
3132                                          struct perf_event_attr *attr)
3133 {
3134         int err;
3135
3136         _perf_event_disable(bp);
3137
3138         err = modify_user_hw_breakpoint_check(bp, attr, true);
3139
3140         if (!bp->attr.disabled)
3141                 _perf_event_enable(bp);
3142
3143         return err;
3144 }
3145
3146 static int perf_event_modify_attr(struct perf_event *event,
3147                                   struct perf_event_attr *attr)
3148 {
3149         if (event->attr.type != attr->type)
3150                 return -EINVAL;
3151
3152         switch (event->attr.type) {
3153         case PERF_TYPE_BREAKPOINT:
3154                 return perf_event_modify_breakpoint(event, attr);
3155         default:
3156                 /* Place holder for future additions. */
3157                 return -EOPNOTSUPP;
3158         }
3159 }
3160
3161 static void ctx_sched_out(struct perf_event_context *ctx,
3162                           struct perf_cpu_context *cpuctx,
3163                           enum event_type_t event_type)
3164 {
3165         struct perf_event *event, *tmp;
3166         int is_active = ctx->is_active;
3167
3168         lockdep_assert_held(&ctx->lock);
3169
3170         if (likely(!ctx->nr_events)) {
3171                 /*
3172                  * See __perf_remove_from_context().
3173                  */
3174                 WARN_ON_ONCE(ctx->is_active);
3175                 if (ctx->task)
3176                         WARN_ON_ONCE(cpuctx->task_ctx);
3177                 return;
3178         }
3179
3180         ctx->is_active &= ~event_type;
3181         if (!(ctx->is_active & EVENT_ALL))
3182                 ctx->is_active = 0;
3183
3184         if (ctx->task) {
3185                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3186                 if (!ctx->is_active)
3187                         cpuctx->task_ctx = NULL;
3188         }
3189
3190         /*
3191          * Always update time if it was set; not only when it changes.
3192          * Otherwise we can 'forget' to update time for any but the last
3193          * context we sched out. For example:
3194          *
3195          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3196          *   ctx_sched_out(.event_type = EVENT_PINNED)
3197          *
3198          * would only update time for the pinned events.
3199          */
3200         if (is_active & EVENT_TIME) {
3201                 /* update (and stop) ctx time */
3202                 update_context_time(ctx);
3203                 update_cgrp_time_from_cpuctx(cpuctx);
3204         }
3205
3206         is_active ^= ctx->is_active; /* changed bits */
3207
3208         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3209                 return;
3210
3211         perf_pmu_disable(ctx->pmu);
3212         if (is_active & EVENT_PINNED) {
3213                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3214                         group_sched_out(event, cpuctx, ctx);
3215         }
3216
3217         if (is_active & EVENT_FLEXIBLE) {
3218                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3219                         group_sched_out(event, cpuctx, ctx);
3220
3221                 /*
3222                  * Since we cleared EVENT_FLEXIBLE, also clear
3223                  * rotate_necessary, is will be reset by
3224                  * ctx_flexible_sched_in() when needed.
3225                  */
3226                 ctx->rotate_necessary = 0;
3227         }
3228         perf_pmu_enable(ctx->pmu);
3229 }
3230
3231 /*
3232  * Test whether two contexts are equivalent, i.e. whether they have both been
3233  * cloned from the same version of the same context.
3234  *
3235  * Equivalence is measured using a generation number in the context that is
3236  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3237  * and list_del_event().
3238  */
3239 static int context_equiv(struct perf_event_context *ctx1,
3240                          struct perf_event_context *ctx2)
3241 {
3242         lockdep_assert_held(&ctx1->lock);
3243         lockdep_assert_held(&ctx2->lock);
3244
3245         /* Pinning disables the swap optimization */
3246         if (ctx1->pin_count || ctx2->pin_count)
3247                 return 0;
3248
3249         /* If ctx1 is the parent of ctx2 */
3250         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3251                 return 1;
3252
3253         /* If ctx2 is the parent of ctx1 */
3254         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3255                 return 1;
3256
3257         /*
3258          * If ctx1 and ctx2 have the same parent; we flatten the parent
3259          * hierarchy, see perf_event_init_context().
3260          */
3261         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3262                         ctx1->parent_gen == ctx2->parent_gen)
3263                 return 1;
3264
3265         /* Unmatched */
3266         return 0;
3267 }
3268
3269 static void __perf_event_sync_stat(struct perf_event *event,
3270                                      struct perf_event *next_event)
3271 {
3272         u64 value;
3273
3274         if (!event->attr.inherit_stat)
3275                 return;
3276
3277         /*
3278          * Update the event value, we cannot use perf_event_read()
3279          * because we're in the middle of a context switch and have IRQs
3280          * disabled, which upsets smp_call_function_single(), however
3281          * we know the event must be on the current CPU, therefore we
3282          * don't need to use it.
3283          */
3284         if (event->state == PERF_EVENT_STATE_ACTIVE)
3285                 event->pmu->read(event);
3286
3287         perf_event_update_time(event);
3288
3289         /*
3290          * In order to keep per-task stats reliable we need to flip the event
3291          * values when we flip the contexts.
3292          */
3293         value = local64_read(&next_event->count);
3294         value = local64_xchg(&event->count, value);
3295         local64_set(&next_event->count, value);
3296
3297         swap(event->total_time_enabled, next_event->total_time_enabled);
3298         swap(event->total_time_running, next_event->total_time_running);
3299
3300         /*
3301          * Since we swizzled the values, update the user visible data too.
3302          */
3303         perf_event_update_userpage(event);
3304         perf_event_update_userpage(next_event);
3305 }
3306
3307 static void perf_event_sync_stat(struct perf_event_context *ctx,
3308                                    struct perf_event_context *next_ctx)
3309 {
3310         struct perf_event *event, *next_event;
3311
3312         if (!ctx->nr_stat)
3313                 return;
3314
3315         update_context_time(ctx);
3316
3317         event = list_first_entry(&ctx->event_list,
3318                                    struct perf_event, event_entry);
3319
3320         next_event = list_first_entry(&next_ctx->event_list,
3321                                         struct perf_event, event_entry);
3322
3323         while (&event->event_entry != &ctx->event_list &&
3324                &next_event->event_entry != &next_ctx->event_list) {
3325
3326                 __perf_event_sync_stat(event, next_event);
3327
3328                 event = list_next_entry(event, event_entry);
3329                 next_event = list_next_entry(next_event, event_entry);
3330         }
3331 }
3332
3333 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3334                                          struct task_struct *next)
3335 {
3336         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3337         struct perf_event_context *next_ctx;
3338         struct perf_event_context *parent, *next_parent;
3339         struct perf_cpu_context *cpuctx;
3340         int do_switch = 1;
3341
3342         if (likely(!ctx))
3343                 return;
3344
3345         cpuctx = __get_cpu_context(ctx);
3346         if (!cpuctx->task_ctx)
3347                 return;
3348
3349         rcu_read_lock();
3350         next_ctx = next->perf_event_ctxp[ctxn];
3351         if (!next_ctx)
3352                 goto unlock;
3353
3354         parent = rcu_dereference(ctx->parent_ctx);
3355         next_parent = rcu_dereference(next_ctx->parent_ctx);
3356
3357         /* If neither context have a parent context; they cannot be clones. */
3358         if (!parent && !next_parent)
3359                 goto unlock;
3360
3361         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3362                 /*
3363                  * Looks like the two contexts are clones, so we might be
3364                  * able to optimize the context switch.  We lock both
3365                  * contexts and check that they are clones under the
3366                  * lock (including re-checking that neither has been
3367                  * uncloned in the meantime).  It doesn't matter which
3368                  * order we take the locks because no other cpu could
3369                  * be trying to lock both of these tasks.
3370                  */
3371                 raw_spin_lock(&ctx->lock);
3372                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3373                 if (context_equiv(ctx, next_ctx)) {
3374                         struct pmu *pmu = ctx->pmu;
3375
3376                         WRITE_ONCE(ctx->task, next);
3377                         WRITE_ONCE(next_ctx->task, task);
3378
3379                         /*
3380                          * PMU specific parts of task perf context can require
3381                          * additional synchronization. As an example of such
3382                          * synchronization see implementation details of Intel
3383                          * LBR call stack data profiling;
3384                          */
3385                         if (pmu->swap_task_ctx)
3386                                 pmu->swap_task_ctx(ctx, next_ctx);
3387                         else
3388                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3389
3390                         /*
3391                          * RCU_INIT_POINTER here is safe because we've not
3392                          * modified the ctx and the above modification of
3393                          * ctx->task and ctx->task_ctx_data are immaterial
3394                          * since those values are always verified under
3395                          * ctx->lock which we're now holding.
3396                          */
3397                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3398                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3399
3400                         do_switch = 0;
3401
3402                         perf_event_sync_stat(ctx, next_ctx);
3403                 }
3404                 raw_spin_unlock(&next_ctx->lock);
3405                 raw_spin_unlock(&ctx->lock);
3406         }
3407 unlock:
3408         rcu_read_unlock();
3409
3410         if (do_switch) {
3411                 raw_spin_lock(&ctx->lock);
3412                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3413                 raw_spin_unlock(&ctx->lock);
3414         }
3415 }
3416
3417 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3418
3419 void perf_sched_cb_dec(struct pmu *pmu)
3420 {
3421         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3422
3423         this_cpu_dec(perf_sched_cb_usages);
3424
3425         if (!--cpuctx->sched_cb_usage)
3426                 list_del(&cpuctx->sched_cb_entry);
3427 }
3428
3429
3430 void perf_sched_cb_inc(struct pmu *pmu)
3431 {
3432         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3433
3434         if (!cpuctx->sched_cb_usage++)
3435                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3436
3437         this_cpu_inc(perf_sched_cb_usages);
3438 }
3439
3440 /*
3441  * This function provides the context switch callback to the lower code
3442  * layer. It is invoked ONLY when the context switch callback is enabled.
3443  *
3444  * This callback is relevant even to per-cpu events; for example multi event
3445  * PEBS requires this to provide PID/TID information. This requires we flush
3446  * all queued PEBS records before we context switch to a new task.
3447  */
3448 static void perf_pmu_sched_task(struct task_struct *prev,
3449                                 struct task_struct *next,
3450                                 bool sched_in)
3451 {
3452         struct perf_cpu_context *cpuctx;
3453         struct pmu *pmu;
3454
3455         if (prev == next)
3456                 return;
3457
3458         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3459                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3460
3461                 if (WARN_ON_ONCE(!pmu->sched_task))
3462                         continue;
3463
3464                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3465                 perf_pmu_disable(pmu);
3466
3467                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3468
3469                 perf_pmu_enable(pmu);
3470                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3471         }
3472 }
3473
3474 static void perf_event_switch(struct task_struct *task,
3475                               struct task_struct *next_prev, bool sched_in);
3476
3477 #define for_each_task_context_nr(ctxn)                                  \
3478         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3479
3480 /*
3481  * Called from scheduler to remove the events of the current task,
3482  * with interrupts disabled.
3483  *
3484  * We stop each event and update the event value in event->count.
3485  *
3486  * This does not protect us against NMI, but disable()
3487  * sets the disabled bit in the control field of event _before_
3488  * accessing the event control register. If a NMI hits, then it will
3489  * not restart the event.
3490  */
3491 void __perf_event_task_sched_out(struct task_struct *task,
3492                                  struct task_struct *next)
3493 {
3494         int ctxn;
3495
3496         if (__this_cpu_read(perf_sched_cb_usages))
3497                 perf_pmu_sched_task(task, next, false);
3498
3499         if (atomic_read(&nr_switch_events))
3500                 perf_event_switch(task, next, false);
3501
3502         for_each_task_context_nr(ctxn)
3503                 perf_event_context_sched_out(task, ctxn, next);
3504
3505         /*
3506          * if cgroup events exist on this CPU, then we need
3507          * to check if we have to switch out PMU state.
3508          * cgroup event are system-wide mode only
3509          */
3510         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3511                 perf_cgroup_sched_out(task, next);
3512 }
3513
3514 /*
3515  * Called with IRQs disabled
3516  */
3517 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3518                               enum event_type_t event_type)
3519 {
3520         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3521 }
3522
3523 static bool perf_less_group_idx(const void *l, const void *r)
3524 {
3525         const struct perf_event *le = *(const struct perf_event **)l;
3526         const struct perf_event *re = *(const struct perf_event **)r;
3527
3528         return le->group_index < re->group_index;
3529 }
3530
3531 static void swap_ptr(void *l, void *r)
3532 {
3533         void **lp = l, **rp = r;
3534
3535         swap(*lp, *rp);
3536 }
3537
3538 static const struct min_heap_callbacks perf_min_heap = {
3539         .elem_size = sizeof(struct perf_event *),
3540         .less = perf_less_group_idx,
3541         .swp = swap_ptr,
3542 };
3543
3544 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3545 {
3546         struct perf_event **itrs = heap->data;
3547
3548         if (event) {
3549                 itrs[heap->nr] = event;
3550                 heap->nr++;
3551         }
3552 }
3553
3554 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3555                                 struct perf_event_groups *groups, int cpu,
3556                                 int (*func)(struct perf_event *, void *),
3557                                 void *data)
3558 {
3559 #ifdef CONFIG_CGROUP_PERF
3560         struct cgroup_subsys_state *css = NULL;
3561 #endif
3562         /* Space for per CPU and/or any CPU event iterators. */
3563         struct perf_event *itrs[2];
3564         struct min_heap event_heap;
3565         struct perf_event **evt;
3566         int ret;
3567
3568         if (cpuctx) {
3569                 event_heap = (struct min_heap){
3570                         .data = cpuctx->heap,
3571                         .nr = 0,
3572                         .size = cpuctx->heap_size,
3573                 };
3574
3575                 lockdep_assert_held(&cpuctx->ctx.lock);
3576
3577 #ifdef CONFIG_CGROUP_PERF
3578                 if (cpuctx->cgrp)
3579                         css = &cpuctx->cgrp->css;
3580 #endif
3581         } else {
3582                 event_heap = (struct min_heap){
3583                         .data = itrs,
3584                         .nr = 0,
3585                         .size = ARRAY_SIZE(itrs),
3586                 };
3587                 /* Events not within a CPU context may be on any CPU. */
3588                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3589         }
3590         evt = event_heap.data;
3591
3592         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3593
3594 #ifdef CONFIG_CGROUP_PERF
3595         for (; css; css = css->parent)
3596                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3597 #endif
3598
3599         min_heapify_all(&event_heap, &perf_min_heap);
3600
3601         while (event_heap.nr) {
3602                 ret = func(*evt, data);
3603                 if (ret)
3604                         return ret;
3605
3606                 *evt = perf_event_groups_next(*evt);
3607                 if (*evt)
3608                         min_heapify(&event_heap, 0, &perf_min_heap);
3609                 else
3610                         min_heap_pop(&event_heap, &perf_min_heap);
3611         }
3612
3613         return 0;
3614 }
3615
3616 static int merge_sched_in(struct perf_event *event, void *data)
3617 {
3618         struct perf_event_context *ctx = event->ctx;
3619         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3620         int *can_add_hw = data;
3621
3622         if (event->state <= PERF_EVENT_STATE_OFF)
3623                 return 0;
3624
3625         if (!event_filter_match(event))
3626                 return 0;
3627
3628         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3629                 if (!group_sched_in(event, cpuctx, ctx))
3630                         list_add_tail(&event->active_list, get_event_list(event));
3631         }
3632
3633         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3634                 if (event->attr.pinned) {
3635                         perf_cgroup_event_disable(event, ctx);
3636                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3637                 }
3638
3639                 *can_add_hw = 0;
3640                 ctx->rotate_necessary = 1;
3641         }
3642
3643         return 0;
3644 }
3645
3646 static void
3647 ctx_pinned_sched_in(struct perf_event_context *ctx,
3648                     struct perf_cpu_context *cpuctx)
3649 {
3650         int can_add_hw = 1;
3651
3652         if (ctx != &cpuctx->ctx)
3653                 cpuctx = NULL;
3654
3655         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3656                            smp_processor_id(),
3657                            merge_sched_in, &can_add_hw);
3658 }
3659
3660 static void
3661 ctx_flexible_sched_in(struct perf_event_context *ctx,
3662                       struct perf_cpu_context *cpuctx)
3663 {
3664         int can_add_hw = 1;
3665
3666         if (ctx != &cpuctx->ctx)
3667                 cpuctx = NULL;
3668
3669         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3670                            smp_processor_id(),
3671                            merge_sched_in, &can_add_hw);
3672 }
3673
3674 static void
3675 ctx_sched_in(struct perf_event_context *ctx,
3676              struct perf_cpu_context *cpuctx,
3677              enum event_type_t event_type,
3678              struct task_struct *task)
3679 {
3680         int is_active = ctx->is_active;
3681         u64 now;
3682
3683         lockdep_assert_held(&ctx->lock);
3684
3685         if (likely(!ctx->nr_events))
3686                 return;
3687
3688         ctx->is_active |= (event_type | EVENT_TIME);
3689         if (ctx->task) {
3690                 if (!is_active)
3691                         cpuctx->task_ctx = ctx;
3692                 else
3693                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3694         }
3695
3696         is_active ^= ctx->is_active; /* changed bits */
3697
3698         if (is_active & EVENT_TIME) {
3699                 /* start ctx time */
3700                 now = perf_clock();
3701                 ctx->timestamp = now;
3702                 perf_cgroup_set_timestamp(task, ctx);
3703         }
3704
3705         /*
3706          * First go through the list and put on any pinned groups
3707          * in order to give them the best chance of going on.
3708          */
3709         if (is_active & EVENT_PINNED)
3710                 ctx_pinned_sched_in(ctx, cpuctx);
3711
3712         /* Then walk through the lower prio flexible groups */
3713         if (is_active & EVENT_FLEXIBLE)
3714                 ctx_flexible_sched_in(ctx, cpuctx);
3715 }
3716
3717 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3718                              enum event_type_t event_type,
3719                              struct task_struct *task)
3720 {
3721         struct perf_event_context *ctx = &cpuctx->ctx;
3722
3723         ctx_sched_in(ctx, cpuctx, event_type, task);
3724 }
3725
3726 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3727                                         struct task_struct *task)
3728 {
3729         struct perf_cpu_context *cpuctx;
3730
3731         cpuctx = __get_cpu_context(ctx);
3732         if (cpuctx->task_ctx == ctx)
3733                 return;
3734
3735         perf_ctx_lock(cpuctx, ctx);
3736         /*
3737          * We must check ctx->nr_events while holding ctx->lock, such
3738          * that we serialize against perf_install_in_context().
3739          */
3740         if (!ctx->nr_events)
3741                 goto unlock;
3742
3743         perf_pmu_disable(ctx->pmu);
3744         /*
3745          * We want to keep the following priority order:
3746          * cpu pinned (that don't need to move), task pinned,
3747          * cpu flexible, task flexible.
3748          *
3749          * However, if task's ctx is not carrying any pinned
3750          * events, no need to flip the cpuctx's events around.
3751          */
3752         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3753                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3754         perf_event_sched_in(cpuctx, ctx, task);
3755         perf_pmu_enable(ctx->pmu);
3756
3757 unlock:
3758         perf_ctx_unlock(cpuctx, ctx);
3759 }
3760
3761 /*
3762  * Called from scheduler to add the events of the current task
3763  * with interrupts disabled.
3764  *
3765  * We restore the event value and then enable it.
3766  *
3767  * This does not protect us against NMI, but enable()
3768  * sets the enabled bit in the control field of event _before_
3769  * accessing the event control register. If a NMI hits, then it will
3770  * keep the event running.
3771  */
3772 void __perf_event_task_sched_in(struct task_struct *prev,
3773                                 struct task_struct *task)
3774 {
3775         struct perf_event_context *ctx;
3776         int ctxn;
3777
3778         /*
3779          * If cgroup events exist on this CPU, then we need to check if we have
3780          * to switch in PMU state; cgroup event are system-wide mode only.
3781          *
3782          * Since cgroup events are CPU events, we must schedule these in before
3783          * we schedule in the task events.
3784          */
3785         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3786                 perf_cgroup_sched_in(prev, task);
3787
3788         for_each_task_context_nr(ctxn) {
3789                 ctx = task->perf_event_ctxp[ctxn];
3790                 if (likely(!ctx))
3791                         continue;
3792
3793                 perf_event_context_sched_in(ctx, task);
3794         }
3795
3796         if (atomic_read(&nr_switch_events))
3797                 perf_event_switch(task, prev, true);
3798
3799         if (__this_cpu_read(perf_sched_cb_usages))
3800                 perf_pmu_sched_task(prev, task, true);
3801 }
3802
3803 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3804 {
3805         u64 frequency = event->attr.sample_freq;
3806         u64 sec = NSEC_PER_SEC;
3807         u64 divisor, dividend;
3808
3809         int count_fls, nsec_fls, frequency_fls, sec_fls;
3810
3811         count_fls = fls64(count);
3812         nsec_fls = fls64(nsec);
3813         frequency_fls = fls64(frequency);
3814         sec_fls = 30;
3815
3816         /*
3817          * We got @count in @nsec, with a target of sample_freq HZ
3818          * the target period becomes:
3819          *
3820          *             @count * 10^9
3821          * period = -------------------
3822          *          @nsec * sample_freq
3823          *
3824          */
3825
3826         /*
3827          * Reduce accuracy by one bit such that @a and @b converge
3828          * to a similar magnitude.
3829          */
3830 #define REDUCE_FLS(a, b)                \
3831 do {                                    \
3832         if (a##_fls > b##_fls) {        \
3833                 a >>= 1;                \
3834                 a##_fls--;              \
3835         } else {                        \
3836                 b >>= 1;                \
3837                 b##_fls--;              \
3838         }                               \
3839 } while (0)
3840
3841         /*
3842          * Reduce accuracy until either term fits in a u64, then proceed with
3843          * the other, so that finally we can do a u64/u64 division.
3844          */
3845         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3846                 REDUCE_FLS(nsec, frequency);
3847                 REDUCE_FLS(sec, count);
3848         }
3849
3850         if (count_fls + sec_fls > 64) {
3851                 divisor = nsec * frequency;
3852
3853                 while (count_fls + sec_fls > 64) {
3854                         REDUCE_FLS(count, sec);
3855                         divisor >>= 1;
3856                 }
3857
3858                 dividend = count * sec;
3859         } else {
3860                 dividend = count * sec;
3861
3862                 while (nsec_fls + frequency_fls > 64) {
3863                         REDUCE_FLS(nsec, frequency);
3864                         dividend >>= 1;
3865                 }
3866
3867                 divisor = nsec * frequency;
3868         }
3869
3870         if (!divisor)
3871                 return dividend;
3872
3873         return div64_u64(dividend, divisor);
3874 }
3875
3876 static DEFINE_PER_CPU(int, perf_throttled_count);
3877 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3878
3879 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3880 {
3881         struct hw_perf_event *hwc = &event->hw;
3882         s64 period, sample_period;
3883         s64 delta;
3884
3885         period = perf_calculate_period(event, nsec, count);
3886
3887         delta = (s64)(period - hwc->sample_period);
3888         delta = (delta + 7) / 8; /* low pass filter */
3889
3890         sample_period = hwc->sample_period + delta;
3891
3892         if (!sample_period)
3893                 sample_period = 1;
3894
3895         hwc->sample_period = sample_period;
3896
3897         if (local64_read(&hwc->period_left) > 8*sample_period) {
3898                 if (disable)
3899                         event->pmu->stop(event, PERF_EF_UPDATE);
3900
3901                 local64_set(&hwc->period_left, 0);
3902
3903                 if (disable)
3904                         event->pmu->start(event, PERF_EF_RELOAD);
3905         }
3906 }
3907
3908 /*
3909  * combine freq adjustment with unthrottling to avoid two passes over the
3910  * events. At the same time, make sure, having freq events does not change
3911  * the rate of unthrottling as that would introduce bias.
3912  */
3913 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3914                                            int needs_unthr)
3915 {
3916         struct perf_event *event;
3917         struct hw_perf_event *hwc;
3918         u64 now, period = TICK_NSEC;
3919         s64 delta;
3920
3921         /*
3922          * only need to iterate over all events iff:
3923          * - context have events in frequency mode (needs freq adjust)
3924          * - there are events to unthrottle on this cpu
3925          */
3926         if (!(ctx->nr_freq || needs_unthr))
3927                 return;
3928
3929         raw_spin_lock(&ctx->lock);
3930         perf_pmu_disable(ctx->pmu);
3931
3932         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3933                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3934                         continue;
3935
3936                 if (!event_filter_match(event))
3937                         continue;
3938
3939                 perf_pmu_disable(event->pmu);
3940
3941                 hwc = &event->hw;
3942
3943                 if (hwc->interrupts == MAX_INTERRUPTS) {
3944                         hwc->interrupts = 0;
3945                         perf_log_throttle(event, 1);
3946                         event->pmu->start(event, 0);
3947                 }
3948
3949                 if (!event->attr.freq || !event->attr.sample_freq)
3950                         goto next;
3951
3952                 /*
3953                  * stop the event and update event->count
3954                  */
3955                 event->pmu->stop(event, PERF_EF_UPDATE);
3956
3957                 now = local64_read(&event->count);
3958                 delta = now - hwc->freq_count_stamp;
3959                 hwc->freq_count_stamp = now;
3960
3961                 /*
3962                  * restart the event
3963                  * reload only if value has changed
3964                  * we have stopped the event so tell that
3965                  * to perf_adjust_period() to avoid stopping it
3966                  * twice.
3967                  */
3968                 if (delta > 0)
3969                         perf_adjust_period(event, period, delta, false);
3970
3971                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3972         next:
3973                 perf_pmu_enable(event->pmu);
3974         }
3975
3976         perf_pmu_enable(ctx->pmu);
3977         raw_spin_unlock(&ctx->lock);
3978 }
3979
3980 /*
3981  * Move @event to the tail of the @ctx's elegible events.
3982  */
3983 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3984 {
3985         /*
3986          * Rotate the first entry last of non-pinned groups. Rotation might be
3987          * disabled by the inheritance code.
3988          */
3989         if (ctx->rotate_disable)
3990                 return;
3991
3992         perf_event_groups_delete(&ctx->flexible_groups, event);
3993         perf_event_groups_insert(&ctx->flexible_groups, event);
3994 }
3995
3996 /* pick an event from the flexible_groups to rotate */
3997 static inline struct perf_event *
3998 ctx_event_to_rotate(struct perf_event_context *ctx)
3999 {
4000         struct perf_event *event;
4001
4002         /* pick the first active flexible event */
4003         event = list_first_entry_or_null(&ctx->flexible_active,
4004                                          struct perf_event, active_list);
4005
4006         /* if no active flexible event, pick the first event */
4007         if (!event) {
4008                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4009                                       typeof(*event), group_node);
4010         }
4011
4012         /*
4013          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4014          * finds there are unschedulable events, it will set it again.
4015          */
4016         ctx->rotate_necessary = 0;
4017
4018         return event;
4019 }
4020
4021 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4022 {
4023         struct perf_event *cpu_event = NULL, *task_event = NULL;
4024         struct perf_event_context *task_ctx = NULL;
4025         int cpu_rotate, task_rotate;
4026
4027         /*
4028          * Since we run this from IRQ context, nobody can install new
4029          * events, thus the event count values are stable.
4030          */
4031
4032         cpu_rotate = cpuctx->ctx.rotate_necessary;
4033         task_ctx = cpuctx->task_ctx;
4034         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4035
4036         if (!(cpu_rotate || task_rotate))
4037                 return false;
4038
4039         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4040         perf_pmu_disable(cpuctx->ctx.pmu);
4041
4042         if (task_rotate)
4043                 task_event = ctx_event_to_rotate(task_ctx);
4044         if (cpu_rotate)
4045                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4046
4047         /*
4048          * As per the order given at ctx_resched() first 'pop' task flexible
4049          * and then, if needed CPU flexible.
4050          */
4051         if (task_event || (task_ctx && cpu_event))
4052                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4053         if (cpu_event)
4054                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4055
4056         if (task_event)
4057                 rotate_ctx(task_ctx, task_event);
4058         if (cpu_event)
4059                 rotate_ctx(&cpuctx->ctx, cpu_event);
4060
4061         perf_event_sched_in(cpuctx, task_ctx, current);
4062
4063         perf_pmu_enable(cpuctx->ctx.pmu);
4064         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4065
4066         return true;
4067 }
4068
4069 void perf_event_task_tick(void)
4070 {
4071         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4072         struct perf_event_context *ctx, *tmp;
4073         int throttled;
4074
4075         lockdep_assert_irqs_disabled();
4076
4077         __this_cpu_inc(perf_throttled_seq);
4078         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4079         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4080
4081         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4082                 perf_adjust_freq_unthr_context(ctx, throttled);
4083 }
4084
4085 static int event_enable_on_exec(struct perf_event *event,
4086                                 struct perf_event_context *ctx)
4087 {
4088         if (!event->attr.enable_on_exec)
4089                 return 0;
4090
4091         event->attr.enable_on_exec = 0;
4092         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4093                 return 0;
4094
4095         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4096
4097         return 1;
4098 }
4099
4100 /*
4101  * Enable all of a task's events that have been marked enable-on-exec.
4102  * This expects task == current.
4103  */
4104 static void perf_event_enable_on_exec(int ctxn)
4105 {
4106         struct perf_event_context *ctx, *clone_ctx = NULL;
4107         enum event_type_t event_type = 0;
4108         struct perf_cpu_context *cpuctx;
4109         struct perf_event *event;
4110         unsigned long flags;
4111         int enabled = 0;
4112
4113         local_irq_save(flags);
4114         ctx = current->perf_event_ctxp[ctxn];
4115         if (!ctx || !ctx->nr_events)
4116                 goto out;
4117
4118         cpuctx = __get_cpu_context(ctx);
4119         perf_ctx_lock(cpuctx, ctx);
4120         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4121         list_for_each_entry(event, &ctx->event_list, event_entry) {
4122                 enabled |= event_enable_on_exec(event, ctx);
4123                 event_type |= get_event_type(event);
4124         }
4125
4126         /*
4127          * Unclone and reschedule this context if we enabled any event.
4128          */
4129         if (enabled) {
4130                 clone_ctx = unclone_ctx(ctx);
4131                 ctx_resched(cpuctx, ctx, event_type);
4132         } else {
4133                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4134         }
4135         perf_ctx_unlock(cpuctx, ctx);
4136
4137 out:
4138         local_irq_restore(flags);
4139
4140         if (clone_ctx)
4141                 put_ctx(clone_ctx);
4142 }
4143
4144 struct perf_read_data {
4145         struct perf_event *event;
4146         bool group;
4147         int ret;
4148 };
4149
4150 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4151 {
4152         u16 local_pkg, event_pkg;
4153
4154         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4155                 int local_cpu = smp_processor_id();
4156
4157                 event_pkg = topology_physical_package_id(event_cpu);
4158                 local_pkg = topology_physical_package_id(local_cpu);
4159
4160                 if (event_pkg == local_pkg)
4161                         return local_cpu;
4162         }
4163
4164         return event_cpu;
4165 }
4166
4167 /*
4168  * Cross CPU call to read the hardware event
4169  */
4170 static void __perf_event_read(void *info)
4171 {
4172         struct perf_read_data *data = info;
4173         struct perf_event *sub, *event = data->event;
4174         struct perf_event_context *ctx = event->ctx;
4175         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4176         struct pmu *pmu = event->pmu;
4177
4178         /*
4179          * If this is a task context, we need to check whether it is
4180          * the current task context of this cpu.  If not it has been
4181          * scheduled out before the smp call arrived.  In that case
4182          * event->count would have been updated to a recent sample
4183          * when the event was scheduled out.
4184          */
4185         if (ctx->task && cpuctx->task_ctx != ctx)
4186                 return;
4187
4188         raw_spin_lock(&ctx->lock);
4189         if (ctx->is_active & EVENT_TIME) {
4190                 update_context_time(ctx);
4191                 update_cgrp_time_from_event(event);
4192         }
4193
4194         perf_event_update_time(event);
4195         if (data->group)
4196                 perf_event_update_sibling_time(event);
4197
4198         if (event->state != PERF_EVENT_STATE_ACTIVE)
4199                 goto unlock;
4200
4201         if (!data->group) {
4202                 pmu->read(event);
4203                 data->ret = 0;
4204                 goto unlock;
4205         }
4206
4207         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4208
4209         pmu->read(event);
4210
4211         for_each_sibling_event(sub, event) {
4212                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4213                         /*
4214                          * Use sibling's PMU rather than @event's since
4215                          * sibling could be on different (eg: software) PMU.
4216                          */
4217                         sub->pmu->read(sub);
4218                 }
4219         }
4220
4221         data->ret = pmu->commit_txn(pmu);
4222
4223 unlock:
4224         raw_spin_unlock(&ctx->lock);
4225 }
4226
4227 static inline u64 perf_event_count(struct perf_event *event)
4228 {
4229         return local64_read(&event->count) + atomic64_read(&event->child_count);
4230 }
4231
4232 /*
4233  * NMI-safe method to read a local event, that is an event that
4234  * is:
4235  *   - either for the current task, or for this CPU
4236  *   - does not have inherit set, for inherited task events
4237  *     will not be local and we cannot read them atomically
4238  *   - must not have a pmu::count method
4239  */
4240 int perf_event_read_local(struct perf_event *event, u64 *value,
4241                           u64 *enabled, u64 *running)
4242 {
4243         unsigned long flags;
4244         int ret = 0;
4245
4246         /*
4247          * Disabling interrupts avoids all counter scheduling (context
4248          * switches, timer based rotation and IPIs).
4249          */
4250         local_irq_save(flags);
4251
4252         /*
4253          * It must not be an event with inherit set, we cannot read
4254          * all child counters from atomic context.
4255          */
4256         if (event->attr.inherit) {
4257                 ret = -EOPNOTSUPP;
4258                 goto out;
4259         }
4260
4261         /* If this is a per-task event, it must be for current */
4262         if ((event->attach_state & PERF_ATTACH_TASK) &&
4263             event->hw.target != current) {
4264                 ret = -EINVAL;
4265                 goto out;
4266         }
4267
4268         /* If this is a per-CPU event, it must be for this CPU */
4269         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4270             event->cpu != smp_processor_id()) {
4271                 ret = -EINVAL;
4272                 goto out;
4273         }
4274
4275         /* If this is a pinned event it must be running on this CPU */
4276         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4277                 ret = -EBUSY;
4278                 goto out;
4279         }
4280
4281         /*
4282          * If the event is currently on this CPU, its either a per-task event,
4283          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4284          * oncpu == -1).
4285          */
4286         if (event->oncpu == smp_processor_id())
4287                 event->pmu->read(event);
4288
4289         *value = local64_read(&event->count);
4290         if (enabled || running) {
4291                 u64 now = event->shadow_ctx_time + perf_clock();
4292                 u64 __enabled, __running;
4293
4294                 __perf_update_times(event, now, &__enabled, &__running);
4295                 if (enabled)
4296                         *enabled = __enabled;
4297                 if (running)
4298                         *running = __running;
4299         }
4300 out:
4301         local_irq_restore(flags);
4302
4303         return ret;
4304 }
4305
4306 static int perf_event_read(struct perf_event *event, bool group)
4307 {
4308         enum perf_event_state state = READ_ONCE(event->state);
4309         int event_cpu, ret = 0;
4310
4311         /*
4312          * If event is enabled and currently active on a CPU, update the
4313          * value in the event structure:
4314          */
4315 again:
4316         if (state == PERF_EVENT_STATE_ACTIVE) {
4317                 struct perf_read_data data;
4318
4319                 /*
4320                  * Orders the ->state and ->oncpu loads such that if we see
4321                  * ACTIVE we must also see the right ->oncpu.
4322                  *
4323                  * Matches the smp_wmb() from event_sched_in().
4324                  */
4325                 smp_rmb();
4326
4327                 event_cpu = READ_ONCE(event->oncpu);
4328                 if ((unsigned)event_cpu >= nr_cpu_ids)
4329                         return 0;
4330
4331                 data = (struct perf_read_data){
4332                         .event = event,
4333                         .group = group,
4334                         .ret = 0,
4335                 };
4336
4337                 preempt_disable();
4338                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4339
4340                 /*
4341                  * Purposely ignore the smp_call_function_single() return
4342                  * value.
4343                  *
4344                  * If event_cpu isn't a valid CPU it means the event got
4345                  * scheduled out and that will have updated the event count.
4346                  *
4347                  * Therefore, either way, we'll have an up-to-date event count
4348                  * after this.
4349                  */
4350                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4351                 preempt_enable();
4352                 ret = data.ret;
4353
4354         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4355                 struct perf_event_context *ctx = event->ctx;
4356                 unsigned long flags;
4357
4358                 raw_spin_lock_irqsave(&ctx->lock, flags);
4359                 state = event->state;
4360                 if (state != PERF_EVENT_STATE_INACTIVE) {
4361                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4362                         goto again;
4363                 }
4364
4365                 /*
4366                  * May read while context is not active (e.g., thread is
4367                  * blocked), in that case we cannot update context time
4368                  */
4369                 if (ctx->is_active & EVENT_TIME) {
4370                         update_context_time(ctx);
4371                         update_cgrp_time_from_event(event);
4372                 }
4373
4374                 perf_event_update_time(event);
4375                 if (group)
4376                         perf_event_update_sibling_time(event);
4377                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4378         }
4379
4380         return ret;
4381 }
4382
4383 /*
4384  * Initialize the perf_event context in a task_struct:
4385  */
4386 static void __perf_event_init_context(struct perf_event_context *ctx)
4387 {
4388         raw_spin_lock_init(&ctx->lock);
4389         mutex_init(&ctx->mutex);
4390         INIT_LIST_HEAD(&ctx->active_ctx_list);
4391         perf_event_groups_init(&ctx->pinned_groups);
4392         perf_event_groups_init(&ctx->flexible_groups);
4393         INIT_LIST_HEAD(&ctx->event_list);
4394         INIT_LIST_HEAD(&ctx->pinned_active);
4395         INIT_LIST_HEAD(&ctx->flexible_active);
4396         refcount_set(&ctx->refcount, 1);
4397 }
4398
4399 static struct perf_event_context *
4400 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4401 {
4402         struct perf_event_context *ctx;
4403
4404         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4405         if (!ctx)
4406                 return NULL;
4407
4408         __perf_event_init_context(ctx);
4409         if (task)
4410                 ctx->task = get_task_struct(task);
4411         ctx->pmu = pmu;
4412
4413         return ctx;
4414 }
4415
4416 static struct task_struct *
4417 find_lively_task_by_vpid(pid_t vpid)
4418 {
4419         struct task_struct *task;
4420
4421         rcu_read_lock();
4422         if (!vpid)
4423                 task = current;
4424         else
4425                 task = find_task_by_vpid(vpid);
4426         if (task)
4427                 get_task_struct(task);
4428         rcu_read_unlock();
4429
4430         if (!task)
4431                 return ERR_PTR(-ESRCH);
4432
4433         return task;
4434 }
4435
4436 /*
4437  * Returns a matching context with refcount and pincount.
4438  */
4439 static struct perf_event_context *
4440 find_get_context(struct pmu *pmu, struct task_struct *task,
4441                 struct perf_event *event)
4442 {
4443         struct perf_event_context *ctx, *clone_ctx = NULL;
4444         struct perf_cpu_context *cpuctx;
4445         void *task_ctx_data = NULL;
4446         unsigned long flags;
4447         int ctxn, err;
4448         int cpu = event->cpu;
4449
4450         if (!task) {
4451                 /* Must be root to operate on a CPU event: */
4452                 err = perf_allow_cpu(&event->attr);
4453                 if (err)
4454                         return ERR_PTR(err);
4455
4456                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4457                 ctx = &cpuctx->ctx;
4458                 get_ctx(ctx);
4459                 ++ctx->pin_count;
4460
4461                 return ctx;
4462         }
4463
4464         err = -EINVAL;
4465         ctxn = pmu->task_ctx_nr;
4466         if (ctxn < 0)
4467                 goto errout;
4468
4469         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4470                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4471                 if (!task_ctx_data) {
4472                         err = -ENOMEM;
4473                         goto errout;
4474                 }
4475         }
4476
4477 retry:
4478         ctx = perf_lock_task_context(task, ctxn, &flags);
4479         if (ctx) {
4480                 clone_ctx = unclone_ctx(ctx);
4481                 ++ctx->pin_count;
4482
4483                 if (task_ctx_data && !ctx->task_ctx_data) {
4484                         ctx->task_ctx_data = task_ctx_data;
4485                         task_ctx_data = NULL;
4486                 }
4487                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4488
4489                 if (clone_ctx)
4490                         put_ctx(clone_ctx);
4491         } else {
4492                 ctx = alloc_perf_context(pmu, task);
4493                 err = -ENOMEM;
4494                 if (!ctx)
4495                         goto errout;
4496
4497                 if (task_ctx_data) {
4498                         ctx->task_ctx_data = task_ctx_data;
4499                         task_ctx_data = NULL;
4500                 }
4501
4502                 err = 0;
4503                 mutex_lock(&task->perf_event_mutex);
4504                 /*
4505                  * If it has already passed perf_event_exit_task().
4506                  * we must see PF_EXITING, it takes this mutex too.
4507                  */
4508                 if (task->flags & PF_EXITING)
4509                         err = -ESRCH;
4510                 else if (task->perf_event_ctxp[ctxn])
4511                         err = -EAGAIN;
4512                 else {
4513                         get_ctx(ctx);
4514                         ++ctx->pin_count;
4515                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4516                 }
4517                 mutex_unlock(&task->perf_event_mutex);
4518
4519                 if (unlikely(err)) {
4520                         put_ctx(ctx);
4521
4522                         if (err == -EAGAIN)
4523                                 goto retry;
4524                         goto errout;
4525                 }
4526         }
4527
4528         kfree(task_ctx_data);
4529         return ctx;
4530
4531 errout:
4532         kfree(task_ctx_data);
4533         return ERR_PTR(err);
4534 }
4535
4536 static void perf_event_free_filter(struct perf_event *event);
4537 static void perf_event_free_bpf_prog(struct perf_event *event);
4538
4539 static void free_event_rcu(struct rcu_head *head)
4540 {
4541         struct perf_event *event;
4542
4543         event = container_of(head, struct perf_event, rcu_head);
4544         if (event->ns)
4545                 put_pid_ns(event->ns);
4546         perf_event_free_filter(event);
4547         kfree(event);
4548 }
4549
4550 static void ring_buffer_attach(struct perf_event *event,
4551                                struct perf_buffer *rb);
4552
4553 static void detach_sb_event(struct perf_event *event)
4554 {
4555         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4556
4557         raw_spin_lock(&pel->lock);
4558         list_del_rcu(&event->sb_list);
4559         raw_spin_unlock(&pel->lock);
4560 }
4561
4562 static bool is_sb_event(struct perf_event *event)
4563 {
4564         struct perf_event_attr *attr = &event->attr;
4565
4566         if (event->parent)
4567                 return false;
4568
4569         if (event->attach_state & PERF_ATTACH_TASK)
4570                 return false;
4571
4572         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4573             attr->comm || attr->comm_exec ||
4574             attr->task || attr->ksymbol ||
4575             attr->context_switch ||
4576             attr->bpf_event)
4577                 return true;
4578         return false;
4579 }
4580
4581 static void unaccount_pmu_sb_event(struct perf_event *event)
4582 {
4583         if (is_sb_event(event))
4584                 detach_sb_event(event);
4585 }
4586
4587 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4588 {
4589         if (event->parent)
4590                 return;
4591
4592         if (is_cgroup_event(event))
4593                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4594 }
4595
4596 #ifdef CONFIG_NO_HZ_FULL
4597 static DEFINE_SPINLOCK(nr_freq_lock);
4598 #endif
4599
4600 static void unaccount_freq_event_nohz(void)
4601 {
4602 #ifdef CONFIG_NO_HZ_FULL
4603         spin_lock(&nr_freq_lock);
4604         if (atomic_dec_and_test(&nr_freq_events))
4605                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4606         spin_unlock(&nr_freq_lock);
4607 #endif
4608 }
4609
4610 static void unaccount_freq_event(void)
4611 {
4612         if (tick_nohz_full_enabled())
4613                 unaccount_freq_event_nohz();
4614         else
4615                 atomic_dec(&nr_freq_events);
4616 }
4617
4618 static void unaccount_event(struct perf_event *event)
4619 {
4620         bool dec = false;
4621
4622         if (event->parent)
4623                 return;
4624
4625         if (event->attach_state & PERF_ATTACH_TASK)
4626                 dec = true;
4627         if (event->attr.mmap || event->attr.mmap_data)
4628                 atomic_dec(&nr_mmap_events);
4629         if (event->attr.comm)
4630                 atomic_dec(&nr_comm_events);
4631         if (event->attr.namespaces)
4632                 atomic_dec(&nr_namespaces_events);
4633         if (event->attr.cgroup)
4634                 atomic_dec(&nr_cgroup_events);
4635         if (event->attr.task)
4636                 atomic_dec(&nr_task_events);
4637         if (event->attr.freq)
4638                 unaccount_freq_event();
4639         if (event->attr.context_switch) {
4640                 dec = true;
4641                 atomic_dec(&nr_switch_events);
4642         }
4643         if (is_cgroup_event(event))
4644                 dec = true;
4645         if (has_branch_stack(event))
4646                 dec = true;
4647         if (event->attr.ksymbol)
4648                 atomic_dec(&nr_ksymbol_events);
4649         if (event->attr.bpf_event)
4650                 atomic_dec(&nr_bpf_events);
4651
4652         if (dec) {
4653                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4654                         schedule_delayed_work(&perf_sched_work, HZ);
4655         }
4656
4657         unaccount_event_cpu(event, event->cpu);
4658
4659         unaccount_pmu_sb_event(event);
4660 }
4661
4662 static void perf_sched_delayed(struct work_struct *work)
4663 {
4664         mutex_lock(&perf_sched_mutex);
4665         if (atomic_dec_and_test(&perf_sched_count))
4666                 static_branch_disable(&perf_sched_events);
4667         mutex_unlock(&perf_sched_mutex);
4668 }
4669
4670 /*
4671  * The following implement mutual exclusion of events on "exclusive" pmus
4672  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4673  * at a time, so we disallow creating events that might conflict, namely:
4674  *
4675  *  1) cpu-wide events in the presence of per-task events,
4676  *  2) per-task events in the presence of cpu-wide events,
4677  *  3) two matching events on the same context.
4678  *
4679  * The former two cases are handled in the allocation path (perf_event_alloc(),
4680  * _free_event()), the latter -- before the first perf_install_in_context().
4681  */
4682 static int exclusive_event_init(struct perf_event *event)
4683 {
4684         struct pmu *pmu = event->pmu;
4685
4686         if (!is_exclusive_pmu(pmu))
4687                 return 0;
4688
4689         /*
4690          * Prevent co-existence of per-task and cpu-wide events on the
4691          * same exclusive pmu.
4692          *
4693          * Negative pmu::exclusive_cnt means there are cpu-wide
4694          * events on this "exclusive" pmu, positive means there are
4695          * per-task events.
4696          *
4697          * Since this is called in perf_event_alloc() path, event::ctx
4698          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4699          * to mean "per-task event", because unlike other attach states it
4700          * never gets cleared.
4701          */
4702         if (event->attach_state & PERF_ATTACH_TASK) {
4703                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4704                         return -EBUSY;
4705         } else {
4706                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4707                         return -EBUSY;
4708         }
4709
4710         return 0;
4711 }
4712
4713 static void exclusive_event_destroy(struct perf_event *event)
4714 {
4715         struct pmu *pmu = event->pmu;
4716
4717         if (!is_exclusive_pmu(pmu))
4718                 return;
4719
4720         /* see comment in exclusive_event_init() */
4721         if (event->attach_state & PERF_ATTACH_TASK)
4722                 atomic_dec(&pmu->exclusive_cnt);
4723         else
4724                 atomic_inc(&pmu->exclusive_cnt);
4725 }
4726
4727 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4728 {
4729         if ((e1->pmu == e2->pmu) &&
4730             (e1->cpu == e2->cpu ||
4731              e1->cpu == -1 ||
4732              e2->cpu == -1))
4733                 return true;
4734         return false;
4735 }
4736
4737 static bool exclusive_event_installable(struct perf_event *event,
4738                                         struct perf_event_context *ctx)
4739 {
4740         struct perf_event *iter_event;
4741         struct pmu *pmu = event->pmu;
4742
4743         lockdep_assert_held(&ctx->mutex);
4744
4745         if (!is_exclusive_pmu(pmu))
4746                 return true;
4747
4748         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4749                 if (exclusive_event_match(iter_event, event))
4750                         return false;
4751         }
4752
4753         return true;
4754 }
4755
4756 static void perf_addr_filters_splice(struct perf_event *event,
4757                                        struct list_head *head);
4758
4759 static void _free_event(struct perf_event *event)
4760 {
4761         irq_work_sync(&event->pending);
4762
4763         unaccount_event(event);
4764
4765         security_perf_event_free(event);
4766
4767         if (event->rb) {
4768                 /*
4769                  * Can happen when we close an event with re-directed output.
4770                  *
4771                  * Since we have a 0 refcount, perf_mmap_close() will skip
4772                  * over us; possibly making our ring_buffer_put() the last.
4773                  */
4774                 mutex_lock(&event->mmap_mutex);
4775                 ring_buffer_attach(event, NULL);
4776                 mutex_unlock(&event->mmap_mutex);
4777         }
4778
4779         if (is_cgroup_event(event))
4780                 perf_detach_cgroup(event);
4781
4782         if (!event->parent) {
4783                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4784                         put_callchain_buffers();
4785         }
4786
4787         perf_event_free_bpf_prog(event);
4788         perf_addr_filters_splice(event, NULL);
4789         kfree(event->addr_filter_ranges);
4790
4791         if (event->destroy)
4792                 event->destroy(event);
4793
4794         /*
4795          * Must be after ->destroy(), due to uprobe_perf_close() using
4796          * hw.target.
4797          */
4798         if (event->hw.target)
4799                 put_task_struct(event->hw.target);
4800
4801         /*
4802          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4803          * all task references must be cleaned up.
4804          */
4805         if (event->ctx)
4806                 put_ctx(event->ctx);
4807
4808         exclusive_event_destroy(event);
4809         module_put(event->pmu->module);
4810
4811         call_rcu(&event->rcu_head, free_event_rcu);
4812 }
4813
4814 /*
4815  * Used to free events which have a known refcount of 1, such as in error paths
4816  * where the event isn't exposed yet and inherited events.
4817  */
4818 static void free_event(struct perf_event *event)
4819 {
4820         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4821                                 "unexpected event refcount: %ld; ptr=%p\n",
4822                                 atomic_long_read(&event->refcount), event)) {
4823                 /* leak to avoid use-after-free */
4824                 return;
4825         }
4826
4827         _free_event(event);
4828 }
4829
4830 /*
4831  * Remove user event from the owner task.
4832  */
4833 static void perf_remove_from_owner(struct perf_event *event)
4834 {
4835         struct task_struct *owner;
4836
4837         rcu_read_lock();
4838         /*
4839          * Matches the smp_store_release() in perf_event_exit_task(). If we
4840          * observe !owner it means the list deletion is complete and we can
4841          * indeed free this event, otherwise we need to serialize on
4842          * owner->perf_event_mutex.
4843          */
4844         owner = READ_ONCE(event->owner);
4845         if (owner) {
4846                 /*
4847                  * Since delayed_put_task_struct() also drops the last
4848                  * task reference we can safely take a new reference
4849                  * while holding the rcu_read_lock().
4850                  */
4851                 get_task_struct(owner);
4852         }
4853         rcu_read_unlock();
4854
4855         if (owner) {
4856                 /*
4857                  * If we're here through perf_event_exit_task() we're already
4858                  * holding ctx->mutex which would be an inversion wrt. the
4859                  * normal lock order.
4860                  *
4861                  * However we can safely take this lock because its the child
4862                  * ctx->mutex.
4863                  */
4864                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4865
4866                 /*
4867                  * We have to re-check the event->owner field, if it is cleared
4868                  * we raced with perf_event_exit_task(), acquiring the mutex
4869                  * ensured they're done, and we can proceed with freeing the
4870                  * event.
4871                  */
4872                 if (event->owner) {
4873                         list_del_init(&event->owner_entry);
4874                         smp_store_release(&event->owner, NULL);
4875                 }
4876                 mutex_unlock(&owner->perf_event_mutex);
4877                 put_task_struct(owner);
4878         }
4879 }
4880
4881 static void put_event(struct perf_event *event)
4882 {
4883         if (!atomic_long_dec_and_test(&event->refcount))
4884                 return;
4885
4886         _free_event(event);
4887 }
4888
4889 /*
4890  * Kill an event dead; while event:refcount will preserve the event
4891  * object, it will not preserve its functionality. Once the last 'user'
4892  * gives up the object, we'll destroy the thing.
4893  */
4894 int perf_event_release_kernel(struct perf_event *event)
4895 {
4896         struct perf_event_context *ctx = event->ctx;
4897         struct perf_event *child, *tmp;
4898         LIST_HEAD(free_list);
4899
4900         /*
4901          * If we got here through err_file: fput(event_file); we will not have
4902          * attached to a context yet.
4903          */
4904         if (!ctx) {
4905                 WARN_ON_ONCE(event->attach_state &
4906                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4907                 goto no_ctx;
4908         }
4909
4910         if (!is_kernel_event(event))
4911                 perf_remove_from_owner(event);
4912
4913         ctx = perf_event_ctx_lock(event);
4914         WARN_ON_ONCE(ctx->parent_ctx);
4915         perf_remove_from_context(event, DETACH_GROUP);
4916
4917         raw_spin_lock_irq(&ctx->lock);
4918         /*
4919          * Mark this event as STATE_DEAD, there is no external reference to it
4920          * anymore.
4921          *
4922          * Anybody acquiring event->child_mutex after the below loop _must_
4923          * also see this, most importantly inherit_event() which will avoid
4924          * placing more children on the list.
4925          *
4926          * Thus this guarantees that we will in fact observe and kill _ALL_
4927          * child events.
4928          */
4929         event->state = PERF_EVENT_STATE_DEAD;
4930         raw_spin_unlock_irq(&ctx->lock);
4931
4932         perf_event_ctx_unlock(event, ctx);
4933
4934 again:
4935         mutex_lock(&event->child_mutex);
4936         list_for_each_entry(child, &event->child_list, child_list) {
4937
4938                 /*
4939                  * Cannot change, child events are not migrated, see the
4940                  * comment with perf_event_ctx_lock_nested().
4941                  */
4942                 ctx = READ_ONCE(child->ctx);
4943                 /*
4944                  * Since child_mutex nests inside ctx::mutex, we must jump
4945                  * through hoops. We start by grabbing a reference on the ctx.
4946                  *
4947                  * Since the event cannot get freed while we hold the
4948                  * child_mutex, the context must also exist and have a !0
4949                  * reference count.
4950                  */
4951                 get_ctx(ctx);
4952
4953                 /*
4954                  * Now that we have a ctx ref, we can drop child_mutex, and
4955                  * acquire ctx::mutex without fear of it going away. Then we
4956                  * can re-acquire child_mutex.
4957                  */
4958                 mutex_unlock(&event->child_mutex);
4959                 mutex_lock(&ctx->mutex);
4960                 mutex_lock(&event->child_mutex);
4961
4962                 /*
4963                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4964                  * state, if child is still the first entry, it didn't get freed
4965                  * and we can continue doing so.
4966                  */
4967                 tmp = list_first_entry_or_null(&event->child_list,
4968                                                struct perf_event, child_list);
4969                 if (tmp == child) {
4970                         perf_remove_from_context(child, DETACH_GROUP);
4971                         list_move(&child->child_list, &free_list);
4972                         /*
4973                          * This matches the refcount bump in inherit_event();
4974                          * this can't be the last reference.
4975                          */
4976                         put_event(event);
4977                 }
4978
4979                 mutex_unlock(&event->child_mutex);
4980                 mutex_unlock(&ctx->mutex);
4981                 put_ctx(ctx);
4982                 goto again;
4983         }
4984         mutex_unlock(&event->child_mutex);
4985
4986         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4987                 void *var = &child->ctx->refcount;
4988
4989                 list_del(&child->child_list);
4990                 free_event(child);
4991
4992                 /*
4993                  * Wake any perf_event_free_task() waiting for this event to be
4994                  * freed.
4995                  */
4996                 smp_mb(); /* pairs with wait_var_event() */
4997                 wake_up_var(var);
4998         }
4999
5000 no_ctx:
5001         put_event(event); /* Must be the 'last' reference */
5002         return 0;
5003 }
5004 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5005
5006 /*
5007  * Called when the last reference to the file is gone.
5008  */
5009 static int perf_release(struct inode *inode, struct file *file)
5010 {
5011         perf_event_release_kernel(file->private_data);
5012         return 0;
5013 }
5014
5015 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5016 {
5017         struct perf_event *child;
5018         u64 total = 0;
5019
5020         *enabled = 0;
5021         *running = 0;
5022
5023         mutex_lock(&event->child_mutex);
5024
5025         (void)perf_event_read(event, false);
5026         total += perf_event_count(event);
5027
5028         *enabled += event->total_time_enabled +
5029                         atomic64_read(&event->child_total_time_enabled);
5030         *running += event->total_time_running +
5031                         atomic64_read(&event->child_total_time_running);
5032
5033         list_for_each_entry(child, &event->child_list, child_list) {
5034                 (void)perf_event_read(child, false);
5035                 total += perf_event_count(child);
5036                 *enabled += child->total_time_enabled;
5037                 *running += child->total_time_running;
5038         }
5039         mutex_unlock(&event->child_mutex);
5040
5041         return total;
5042 }
5043
5044 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5045 {
5046         struct perf_event_context *ctx;
5047         u64 count;
5048
5049         ctx = perf_event_ctx_lock(event);
5050         count = __perf_event_read_value(event, enabled, running);
5051         perf_event_ctx_unlock(event, ctx);
5052
5053         return count;
5054 }
5055 EXPORT_SYMBOL_GPL(perf_event_read_value);
5056
5057 static int __perf_read_group_add(struct perf_event *leader,
5058                                         u64 read_format, u64 *values)
5059 {
5060         struct perf_event_context *ctx = leader->ctx;
5061         struct perf_event *sub;
5062         unsigned long flags;
5063         int n = 1; /* skip @nr */
5064         int ret;
5065
5066         ret = perf_event_read(leader, true);
5067         if (ret)
5068                 return ret;
5069
5070         raw_spin_lock_irqsave(&ctx->lock, flags);
5071
5072         /*
5073          * Since we co-schedule groups, {enabled,running} times of siblings
5074          * will be identical to those of the leader, so we only publish one
5075          * set.
5076          */
5077         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5078                 values[n++] += leader->total_time_enabled +
5079                         atomic64_read(&leader->child_total_time_enabled);
5080         }
5081
5082         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5083                 values[n++] += leader->total_time_running +
5084                         atomic64_read(&leader->child_total_time_running);
5085         }
5086
5087         /*
5088          * Write {count,id} tuples for every sibling.
5089          */
5090         values[n++] += perf_event_count(leader);
5091         if (read_format & PERF_FORMAT_ID)
5092                 values[n++] = primary_event_id(leader);
5093
5094         for_each_sibling_event(sub, leader) {
5095                 values[n++] += perf_event_count(sub);
5096                 if (read_format & PERF_FORMAT_ID)
5097                         values[n++] = primary_event_id(sub);
5098         }
5099
5100         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5101         return 0;
5102 }
5103
5104 static int perf_read_group(struct perf_event *event,
5105                                    u64 read_format, char __user *buf)
5106 {
5107         struct perf_event *leader = event->group_leader, *child;
5108         struct perf_event_context *ctx = leader->ctx;
5109         int ret;
5110         u64 *values;
5111
5112         lockdep_assert_held(&ctx->mutex);
5113
5114         values = kzalloc(event->read_size, GFP_KERNEL);
5115         if (!values)
5116                 return -ENOMEM;
5117
5118         values[0] = 1 + leader->nr_siblings;
5119
5120         /*
5121          * By locking the child_mutex of the leader we effectively
5122          * lock the child list of all siblings.. XXX explain how.
5123          */
5124         mutex_lock(&leader->child_mutex);
5125
5126         ret = __perf_read_group_add(leader, read_format, values);
5127         if (ret)
5128                 goto unlock;
5129
5130         list_for_each_entry(child, &leader->child_list, child_list) {
5131                 ret = __perf_read_group_add(child, read_format, values);
5132                 if (ret)
5133                         goto unlock;
5134         }
5135
5136         mutex_unlock(&leader->child_mutex);
5137
5138         ret = event->read_size;
5139         if (copy_to_user(buf, values, event->read_size))
5140                 ret = -EFAULT;
5141         goto out;
5142
5143 unlock:
5144         mutex_unlock(&leader->child_mutex);
5145 out:
5146         kfree(values);
5147         return ret;
5148 }
5149
5150 static int perf_read_one(struct perf_event *event,
5151                                  u64 read_format, char __user *buf)
5152 {
5153         u64 enabled, running;
5154         u64 values[4];
5155         int n = 0;
5156
5157         values[n++] = __perf_event_read_value(event, &enabled, &running);
5158         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5159                 values[n++] = enabled;
5160         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5161                 values[n++] = running;
5162         if (read_format & PERF_FORMAT_ID)
5163                 values[n++] = primary_event_id(event);
5164
5165         if (copy_to_user(buf, values, n * sizeof(u64)))
5166                 return -EFAULT;
5167
5168         return n * sizeof(u64);
5169 }
5170
5171 static bool is_event_hup(struct perf_event *event)
5172 {
5173         bool no_children;
5174
5175         if (event->state > PERF_EVENT_STATE_EXIT)
5176                 return false;
5177
5178         mutex_lock(&event->child_mutex);
5179         no_children = list_empty(&event->child_list);
5180         mutex_unlock(&event->child_mutex);
5181         return no_children;
5182 }
5183
5184 /*
5185  * Read the performance event - simple non blocking version for now
5186  */
5187 static ssize_t
5188 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5189 {
5190         u64 read_format = event->attr.read_format;
5191         int ret;
5192
5193         /*
5194          * Return end-of-file for a read on an event that is in
5195          * error state (i.e. because it was pinned but it couldn't be
5196          * scheduled on to the CPU at some point).
5197          */
5198         if (event->state == PERF_EVENT_STATE_ERROR)
5199                 return 0;
5200
5201         if (count < event->read_size)
5202                 return -ENOSPC;
5203
5204         WARN_ON_ONCE(event->ctx->parent_ctx);
5205         if (read_format & PERF_FORMAT_GROUP)
5206                 ret = perf_read_group(event, read_format, buf);
5207         else
5208                 ret = perf_read_one(event, read_format, buf);
5209
5210         return ret;
5211 }
5212
5213 static ssize_t
5214 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5215 {
5216         struct perf_event *event = file->private_data;
5217         struct perf_event_context *ctx;
5218         int ret;
5219
5220         ret = security_perf_event_read(event);
5221         if (ret)
5222                 return ret;
5223
5224         ctx = perf_event_ctx_lock(event);
5225         ret = __perf_read(event, buf, count);
5226         perf_event_ctx_unlock(event, ctx);
5227
5228         return ret;
5229 }
5230
5231 static __poll_t perf_poll(struct file *file, poll_table *wait)
5232 {
5233         struct perf_event *event = file->private_data;
5234         struct perf_buffer *rb;
5235         __poll_t events = EPOLLHUP;
5236
5237         poll_wait(file, &event->waitq, wait);
5238
5239         if (is_event_hup(event))
5240                 return events;
5241
5242         /*
5243          * Pin the event->rb by taking event->mmap_mutex; otherwise
5244          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5245          */
5246         mutex_lock(&event->mmap_mutex);
5247         rb = event->rb;
5248         if (rb)
5249                 events = atomic_xchg(&rb->poll, 0);
5250         mutex_unlock(&event->mmap_mutex);
5251         return events;
5252 }
5253
5254 static void _perf_event_reset(struct perf_event *event)
5255 {
5256         (void)perf_event_read(event, false);
5257         local64_set(&event->count, 0);
5258         perf_event_update_userpage(event);
5259 }
5260
5261 /* Assume it's not an event with inherit set. */
5262 u64 perf_event_pause(struct perf_event *event, bool reset)
5263 {
5264         struct perf_event_context *ctx;
5265         u64 count;
5266
5267         ctx = perf_event_ctx_lock(event);
5268         WARN_ON_ONCE(event->attr.inherit);
5269         _perf_event_disable(event);
5270         count = local64_read(&event->count);
5271         if (reset)
5272                 local64_set(&event->count, 0);
5273         perf_event_ctx_unlock(event, ctx);
5274
5275         return count;
5276 }
5277 EXPORT_SYMBOL_GPL(perf_event_pause);
5278
5279 /*
5280  * Holding the top-level event's child_mutex means that any
5281  * descendant process that has inherited this event will block
5282  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5283  * task existence requirements of perf_event_enable/disable.
5284  */
5285 static void perf_event_for_each_child(struct perf_event *event,
5286                                         void (*func)(struct perf_event *))
5287 {
5288         struct perf_event *child;
5289
5290         WARN_ON_ONCE(event->ctx->parent_ctx);
5291
5292         mutex_lock(&event->child_mutex);
5293         func(event);
5294         list_for_each_entry(child, &event->child_list, child_list)
5295                 func(child);
5296         mutex_unlock(&event->child_mutex);
5297 }
5298
5299 static void perf_event_for_each(struct perf_event *event,
5300                                   void (*func)(struct perf_event *))
5301 {
5302         struct perf_event_context *ctx = event->ctx;
5303         struct perf_event *sibling;
5304
5305         lockdep_assert_held(&ctx->mutex);
5306
5307         event = event->group_leader;
5308
5309         perf_event_for_each_child(event, func);
5310         for_each_sibling_event(sibling, event)
5311                 perf_event_for_each_child(sibling, func);
5312 }
5313
5314 static void __perf_event_period(struct perf_event *event,
5315                                 struct perf_cpu_context *cpuctx,
5316                                 struct perf_event_context *ctx,
5317                                 void *info)
5318 {
5319         u64 value = *((u64 *)info);
5320         bool active;
5321
5322         if (event->attr.freq) {
5323                 event->attr.sample_freq = value;
5324         } else {
5325                 event->attr.sample_period = value;
5326                 event->hw.sample_period = value;
5327         }
5328
5329         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5330         if (active) {
5331                 perf_pmu_disable(ctx->pmu);
5332                 /*
5333                  * We could be throttled; unthrottle now to avoid the tick
5334                  * trying to unthrottle while we already re-started the event.
5335                  */
5336                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5337                         event->hw.interrupts = 0;
5338                         perf_log_throttle(event, 1);
5339                 }
5340                 event->pmu->stop(event, PERF_EF_UPDATE);
5341         }
5342
5343         local64_set(&event->hw.period_left, 0);
5344
5345         if (active) {
5346                 event->pmu->start(event, PERF_EF_RELOAD);
5347                 perf_pmu_enable(ctx->pmu);
5348         }
5349 }
5350
5351 static int perf_event_check_period(struct perf_event *event, u64 value)
5352 {
5353         return event->pmu->check_period(event, value);
5354 }
5355
5356 static int _perf_event_period(struct perf_event *event, u64 value)
5357 {
5358         if (!is_sampling_event(event))
5359                 return -EINVAL;
5360
5361         if (!value)
5362                 return -EINVAL;
5363
5364         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5365                 return -EINVAL;
5366
5367         if (perf_event_check_period(event, value))
5368                 return -EINVAL;
5369
5370         if (!event->attr.freq && (value & (1ULL << 63)))
5371                 return -EINVAL;
5372
5373         event_function_call(event, __perf_event_period, &value);
5374
5375         return 0;
5376 }
5377
5378 int perf_event_period(struct perf_event *event, u64 value)
5379 {
5380         struct perf_event_context *ctx;
5381         int ret;
5382
5383         ctx = perf_event_ctx_lock(event);
5384         ret = _perf_event_period(event, value);
5385         perf_event_ctx_unlock(event, ctx);
5386
5387         return ret;
5388 }
5389 EXPORT_SYMBOL_GPL(perf_event_period);
5390
5391 static const struct file_operations perf_fops;
5392
5393 static inline int perf_fget_light(int fd, struct fd *p)
5394 {
5395         struct fd f = fdget(fd);
5396         if (!f.file)
5397                 return -EBADF;
5398
5399         if (f.file->f_op != &perf_fops) {
5400                 fdput(f);
5401                 return -EBADF;
5402         }
5403         *p = f;
5404         return 0;
5405 }
5406
5407 static int perf_event_set_output(struct perf_event *event,
5408                                  struct perf_event *output_event);
5409 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5410 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5411 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5412                           struct perf_event_attr *attr);
5413
5414 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5415 {
5416         void (*func)(struct perf_event *);
5417         u32 flags = arg;
5418
5419         switch (cmd) {
5420         case PERF_EVENT_IOC_ENABLE:
5421                 func = _perf_event_enable;
5422                 break;
5423         case PERF_EVENT_IOC_DISABLE:
5424                 func = _perf_event_disable;
5425                 break;
5426         case PERF_EVENT_IOC_RESET:
5427                 func = _perf_event_reset;
5428                 break;
5429
5430         case PERF_EVENT_IOC_REFRESH:
5431                 return _perf_event_refresh(event, arg);
5432
5433         case PERF_EVENT_IOC_PERIOD:
5434         {
5435                 u64 value;
5436
5437                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5438                         return -EFAULT;
5439
5440                 return _perf_event_period(event, value);
5441         }
5442         case PERF_EVENT_IOC_ID:
5443         {
5444                 u64 id = primary_event_id(event);
5445
5446                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5447                         return -EFAULT;
5448                 return 0;
5449         }
5450
5451         case PERF_EVENT_IOC_SET_OUTPUT:
5452         {
5453                 int ret;
5454                 if (arg != -1) {
5455                         struct perf_event *output_event;
5456                         struct fd output;
5457                         ret = perf_fget_light(arg, &output);
5458                         if (ret)
5459                                 return ret;
5460                         output_event = output.file->private_data;
5461                         ret = perf_event_set_output(event, output_event);
5462                         fdput(output);
5463                 } else {
5464                         ret = perf_event_set_output(event, NULL);
5465                 }
5466                 return ret;
5467         }
5468
5469         case PERF_EVENT_IOC_SET_FILTER:
5470                 return perf_event_set_filter(event, (void __user *)arg);
5471
5472         case PERF_EVENT_IOC_SET_BPF:
5473                 return perf_event_set_bpf_prog(event, arg);
5474
5475         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5476                 struct perf_buffer *rb;
5477
5478                 rcu_read_lock();
5479                 rb = rcu_dereference(event->rb);
5480                 if (!rb || !rb->nr_pages) {
5481                         rcu_read_unlock();
5482                         return -EINVAL;
5483                 }
5484                 rb_toggle_paused(rb, !!arg);
5485                 rcu_read_unlock();
5486                 return 0;
5487         }
5488
5489         case PERF_EVENT_IOC_QUERY_BPF:
5490                 return perf_event_query_prog_array(event, (void __user *)arg);
5491
5492         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5493                 struct perf_event_attr new_attr;
5494                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5495                                          &new_attr);
5496
5497                 if (err)
5498                         return err;
5499
5500                 return perf_event_modify_attr(event,  &new_attr);
5501         }
5502         default:
5503                 return -ENOTTY;
5504         }
5505
5506         if (flags & PERF_IOC_FLAG_GROUP)
5507                 perf_event_for_each(event, func);
5508         else
5509                 perf_event_for_each_child(event, func);
5510
5511         return 0;
5512 }
5513
5514 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5515 {
5516         struct perf_event *event = file->private_data;
5517         struct perf_event_context *ctx;
5518         long ret;
5519
5520         /* Treat ioctl like writes as it is likely a mutating operation. */
5521         ret = security_perf_event_write(event);
5522         if (ret)
5523                 return ret;
5524
5525         ctx = perf_event_ctx_lock(event);
5526         ret = _perf_ioctl(event, cmd, arg);
5527         perf_event_ctx_unlock(event, ctx);
5528
5529         return ret;
5530 }
5531
5532 #ifdef CONFIG_COMPAT
5533 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5534                                 unsigned long arg)
5535 {
5536         switch (_IOC_NR(cmd)) {
5537         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5538         case _IOC_NR(PERF_EVENT_IOC_ID):
5539         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5540         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5541                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5542                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5543                         cmd &= ~IOCSIZE_MASK;
5544                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5545                 }
5546                 break;
5547         }
5548         return perf_ioctl(file, cmd, arg);
5549 }
5550 #else
5551 # define perf_compat_ioctl NULL
5552 #endif
5553
5554 int perf_event_task_enable(void)
5555 {
5556         struct perf_event_context *ctx;
5557         struct perf_event *event;
5558
5559         mutex_lock(&current->perf_event_mutex);
5560         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5561                 ctx = perf_event_ctx_lock(event);
5562                 perf_event_for_each_child(event, _perf_event_enable);
5563                 perf_event_ctx_unlock(event, ctx);
5564         }
5565         mutex_unlock(&current->perf_event_mutex);
5566
5567         return 0;
5568 }
5569
5570 int perf_event_task_disable(void)
5571 {
5572         struct perf_event_context *ctx;
5573         struct perf_event *event;
5574
5575         mutex_lock(&current->perf_event_mutex);
5576         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5577                 ctx = perf_event_ctx_lock(event);
5578                 perf_event_for_each_child(event, _perf_event_disable);
5579                 perf_event_ctx_unlock(event, ctx);
5580         }
5581         mutex_unlock(&current->perf_event_mutex);
5582
5583         return 0;
5584 }
5585
5586 static int perf_event_index(struct perf_event *event)
5587 {
5588         if (event->hw.state & PERF_HES_STOPPED)
5589                 return 0;
5590
5591         if (event->state != PERF_EVENT_STATE_ACTIVE)
5592                 return 0;
5593
5594         return event->pmu->event_idx(event);
5595 }
5596
5597 static void calc_timer_values(struct perf_event *event,
5598                                 u64 *now,
5599                                 u64 *enabled,
5600                                 u64 *running)
5601 {
5602         u64 ctx_time;
5603
5604         *now = perf_clock();
5605         ctx_time = event->shadow_ctx_time + *now;
5606         __perf_update_times(event, ctx_time, enabled, running);
5607 }
5608
5609 static void perf_event_init_userpage(struct perf_event *event)
5610 {
5611         struct perf_event_mmap_page *userpg;
5612         struct perf_buffer *rb;
5613
5614         rcu_read_lock();
5615         rb = rcu_dereference(event->rb);
5616         if (!rb)
5617                 goto unlock;
5618
5619         userpg = rb->user_page;
5620
5621         /* Allow new userspace to detect that bit 0 is deprecated */
5622         userpg->cap_bit0_is_deprecated = 1;
5623         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5624         userpg->data_offset = PAGE_SIZE;
5625         userpg->data_size = perf_data_size(rb);
5626
5627 unlock:
5628         rcu_read_unlock();
5629 }
5630
5631 void __weak arch_perf_update_userpage(
5632         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5633 {
5634 }
5635
5636 /*
5637  * Callers need to ensure there can be no nesting of this function, otherwise
5638  * the seqlock logic goes bad. We can not serialize this because the arch
5639  * code calls this from NMI context.
5640  */
5641 void perf_event_update_userpage(struct perf_event *event)
5642 {
5643         struct perf_event_mmap_page *userpg;
5644         struct perf_buffer *rb;
5645         u64 enabled, running, now;
5646
5647         rcu_read_lock();
5648         rb = rcu_dereference(event->rb);
5649         if (!rb)
5650                 goto unlock;
5651
5652         /*
5653          * compute total_time_enabled, total_time_running
5654          * based on snapshot values taken when the event
5655          * was last scheduled in.
5656          *
5657          * we cannot simply called update_context_time()
5658          * because of locking issue as we can be called in
5659          * NMI context
5660          */
5661         calc_timer_values(event, &now, &enabled, &running);
5662
5663         userpg = rb->user_page;
5664         /*
5665          * Disable preemption to guarantee consistent time stamps are stored to
5666          * the user page.
5667          */
5668         preempt_disable();
5669         ++userpg->lock;
5670         barrier();
5671         userpg->index = perf_event_index(event);
5672         userpg->offset = perf_event_count(event);
5673         if (userpg->index)
5674                 userpg->offset -= local64_read(&event->hw.prev_count);
5675
5676         userpg->time_enabled = enabled +
5677                         atomic64_read(&event->child_total_time_enabled);
5678
5679         userpg->time_running = running +
5680                         atomic64_read(&event->child_total_time_running);
5681
5682         arch_perf_update_userpage(event, userpg, now);
5683
5684         barrier();
5685         ++userpg->lock;
5686         preempt_enable();
5687 unlock:
5688         rcu_read_unlock();
5689 }
5690 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5691
5692 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5693 {
5694         struct perf_event *event = vmf->vma->vm_file->private_data;
5695         struct perf_buffer *rb;
5696         vm_fault_t ret = VM_FAULT_SIGBUS;
5697
5698         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5699                 if (vmf->pgoff == 0)
5700                         ret = 0;
5701                 return ret;
5702         }
5703
5704         rcu_read_lock();
5705         rb = rcu_dereference(event->rb);
5706         if (!rb)
5707                 goto unlock;
5708
5709         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5710                 goto unlock;
5711
5712         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5713         if (!vmf->page)
5714                 goto unlock;
5715
5716         get_page(vmf->page);
5717         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5718         vmf->page->index   = vmf->pgoff;
5719
5720         ret = 0;
5721 unlock:
5722         rcu_read_unlock();
5723
5724         return ret;
5725 }
5726
5727 static void ring_buffer_attach(struct perf_event *event,
5728                                struct perf_buffer *rb)
5729 {
5730         struct perf_buffer *old_rb = NULL;
5731         unsigned long flags;
5732
5733         if (event->rb) {
5734                 /*
5735                  * Should be impossible, we set this when removing
5736                  * event->rb_entry and wait/clear when adding event->rb_entry.
5737                  */
5738                 WARN_ON_ONCE(event->rcu_pending);
5739
5740                 old_rb = event->rb;
5741                 spin_lock_irqsave(&old_rb->event_lock, flags);
5742                 list_del_rcu(&event->rb_entry);
5743                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5744
5745                 event->rcu_batches = get_state_synchronize_rcu();
5746                 event->rcu_pending = 1;
5747         }
5748
5749         if (rb) {
5750                 if (event->rcu_pending) {
5751                         cond_synchronize_rcu(event->rcu_batches);
5752                         event->rcu_pending = 0;
5753                 }
5754
5755                 spin_lock_irqsave(&rb->event_lock, flags);
5756                 list_add_rcu(&event->rb_entry, &rb->event_list);
5757                 spin_unlock_irqrestore(&rb->event_lock, flags);
5758         }
5759
5760         /*
5761          * Avoid racing with perf_mmap_close(AUX): stop the event
5762          * before swizzling the event::rb pointer; if it's getting
5763          * unmapped, its aux_mmap_count will be 0 and it won't
5764          * restart. See the comment in __perf_pmu_output_stop().
5765          *
5766          * Data will inevitably be lost when set_output is done in
5767          * mid-air, but then again, whoever does it like this is
5768          * not in for the data anyway.
5769          */
5770         if (has_aux(event))
5771                 perf_event_stop(event, 0);
5772
5773         rcu_assign_pointer(event->rb, rb);
5774
5775         if (old_rb) {
5776                 ring_buffer_put(old_rb);
5777                 /*
5778                  * Since we detached before setting the new rb, so that we
5779                  * could attach the new rb, we could have missed a wakeup.
5780                  * Provide it now.
5781                  */
5782                 wake_up_all(&event->waitq);
5783         }
5784 }
5785
5786 static void ring_buffer_wakeup(struct perf_event *event)
5787 {
5788         struct perf_buffer *rb;
5789
5790         rcu_read_lock();
5791         rb = rcu_dereference(event->rb);
5792         if (rb) {
5793                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5794                         wake_up_all(&event->waitq);
5795         }
5796         rcu_read_unlock();
5797 }
5798
5799 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5800 {
5801         struct perf_buffer *rb;
5802
5803         rcu_read_lock();
5804         rb = rcu_dereference(event->rb);
5805         if (rb) {
5806                 if (!refcount_inc_not_zero(&rb->refcount))
5807                         rb = NULL;
5808         }
5809         rcu_read_unlock();
5810
5811         return rb;
5812 }
5813
5814 void ring_buffer_put(struct perf_buffer *rb)
5815 {
5816         if (!refcount_dec_and_test(&rb->refcount))
5817                 return;
5818
5819         WARN_ON_ONCE(!list_empty(&rb->event_list));
5820
5821         call_rcu(&rb->rcu_head, rb_free_rcu);
5822 }
5823
5824 static void perf_mmap_open(struct vm_area_struct *vma)
5825 {
5826         struct perf_event *event = vma->vm_file->private_data;
5827
5828         atomic_inc(&event->mmap_count);
5829         atomic_inc(&event->rb->mmap_count);
5830
5831         if (vma->vm_pgoff)
5832                 atomic_inc(&event->rb->aux_mmap_count);
5833
5834         if (event->pmu->event_mapped)
5835                 event->pmu->event_mapped(event, vma->vm_mm);
5836 }
5837
5838 static void perf_pmu_output_stop(struct perf_event *event);
5839
5840 /*
5841  * A buffer can be mmap()ed multiple times; either directly through the same
5842  * event, or through other events by use of perf_event_set_output().
5843  *
5844  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5845  * the buffer here, where we still have a VM context. This means we need
5846  * to detach all events redirecting to us.
5847  */
5848 static void perf_mmap_close(struct vm_area_struct *vma)
5849 {
5850         struct perf_event *event = vma->vm_file->private_data;
5851
5852         struct perf_buffer *rb = ring_buffer_get(event);
5853         struct user_struct *mmap_user = rb->mmap_user;
5854         int mmap_locked = rb->mmap_locked;
5855         unsigned long size = perf_data_size(rb);
5856
5857         if (event->pmu->event_unmapped)
5858                 event->pmu->event_unmapped(event, vma->vm_mm);
5859
5860         /*
5861          * rb->aux_mmap_count will always drop before rb->mmap_count and
5862          * event->mmap_count, so it is ok to use event->mmap_mutex to
5863          * serialize with perf_mmap here.
5864          */
5865         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5866             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5867                 /*
5868                  * Stop all AUX events that are writing to this buffer,
5869                  * so that we can free its AUX pages and corresponding PMU
5870                  * data. Note that after rb::aux_mmap_count dropped to zero,
5871                  * they won't start any more (see perf_aux_output_begin()).
5872                  */
5873                 perf_pmu_output_stop(event);
5874
5875                 /* now it's safe to free the pages */
5876                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5877                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5878
5879                 /* this has to be the last one */
5880                 rb_free_aux(rb);
5881                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5882
5883                 mutex_unlock(&event->mmap_mutex);
5884         }
5885
5886         atomic_dec(&rb->mmap_count);
5887
5888         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5889                 goto out_put;
5890
5891         ring_buffer_attach(event, NULL);
5892         mutex_unlock(&event->mmap_mutex);
5893
5894         /* If there's still other mmap()s of this buffer, we're done. */
5895         if (atomic_read(&rb->mmap_count))
5896                 goto out_put;
5897
5898         /*
5899          * No other mmap()s, detach from all other events that might redirect
5900          * into the now unreachable buffer. Somewhat complicated by the
5901          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5902          */
5903 again:
5904         rcu_read_lock();
5905         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5906                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5907                         /*
5908                          * This event is en-route to free_event() which will
5909                          * detach it and remove it from the list.
5910                          */
5911                         continue;
5912                 }
5913                 rcu_read_unlock();
5914
5915                 mutex_lock(&event->mmap_mutex);
5916                 /*
5917                  * Check we didn't race with perf_event_set_output() which can
5918                  * swizzle the rb from under us while we were waiting to
5919                  * acquire mmap_mutex.
5920                  *
5921                  * If we find a different rb; ignore this event, a next
5922                  * iteration will no longer find it on the list. We have to
5923                  * still restart the iteration to make sure we're not now
5924                  * iterating the wrong list.
5925                  */
5926                 if (event->rb == rb)
5927                         ring_buffer_attach(event, NULL);
5928
5929                 mutex_unlock(&event->mmap_mutex);
5930                 put_event(event);
5931
5932                 /*
5933                  * Restart the iteration; either we're on the wrong list or
5934                  * destroyed its integrity by doing a deletion.
5935                  */
5936                 goto again;
5937         }
5938         rcu_read_unlock();
5939
5940         /*
5941          * It could be there's still a few 0-ref events on the list; they'll
5942          * get cleaned up by free_event() -- they'll also still have their
5943          * ref on the rb and will free it whenever they are done with it.
5944          *
5945          * Aside from that, this buffer is 'fully' detached and unmapped,
5946          * undo the VM accounting.
5947          */
5948
5949         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5950                         &mmap_user->locked_vm);
5951         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5952         free_uid(mmap_user);
5953
5954 out_put:
5955         ring_buffer_put(rb); /* could be last */
5956 }
5957
5958 static const struct vm_operations_struct perf_mmap_vmops = {
5959         .open           = perf_mmap_open,
5960         .close          = perf_mmap_close, /* non mergeable */
5961         .fault          = perf_mmap_fault,
5962         .page_mkwrite   = perf_mmap_fault,
5963 };
5964
5965 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5966 {
5967         struct perf_event *event = file->private_data;
5968         unsigned long user_locked, user_lock_limit;
5969         struct user_struct *user = current_user();
5970         struct perf_buffer *rb = NULL;
5971         unsigned long locked, lock_limit;
5972         unsigned long vma_size;
5973         unsigned long nr_pages;
5974         long user_extra = 0, extra = 0;
5975         int ret = 0, flags = 0;
5976
5977         /*
5978          * Don't allow mmap() of inherited per-task counters. This would
5979          * create a performance issue due to all children writing to the
5980          * same rb.
5981          */
5982         if (event->cpu == -1 && event->attr.inherit)
5983                 return -EINVAL;
5984
5985         if (!(vma->vm_flags & VM_SHARED))
5986                 return -EINVAL;
5987
5988         ret = security_perf_event_read(event);
5989         if (ret)
5990                 return ret;
5991
5992         vma_size = vma->vm_end - vma->vm_start;
5993
5994         if (vma->vm_pgoff == 0) {
5995                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5996         } else {
5997                 /*
5998                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5999                  * mapped, all subsequent mappings should have the same size
6000                  * and offset. Must be above the normal perf buffer.
6001                  */
6002                 u64 aux_offset, aux_size;
6003
6004                 if (!event->rb)
6005                         return -EINVAL;
6006
6007                 nr_pages = vma_size / PAGE_SIZE;
6008
6009                 mutex_lock(&event->mmap_mutex);
6010                 ret = -EINVAL;
6011
6012                 rb = event->rb;
6013                 if (!rb)
6014                         goto aux_unlock;
6015
6016                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6017                 aux_size = READ_ONCE(rb->user_page->aux_size);
6018
6019                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6020                         goto aux_unlock;
6021
6022                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6023                         goto aux_unlock;
6024
6025                 /* already mapped with a different offset */
6026                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6027                         goto aux_unlock;
6028
6029                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6030                         goto aux_unlock;
6031
6032                 /* already mapped with a different size */
6033                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6034                         goto aux_unlock;
6035
6036                 if (!is_power_of_2(nr_pages))
6037                         goto aux_unlock;
6038
6039                 if (!atomic_inc_not_zero(&rb->mmap_count))
6040                         goto aux_unlock;
6041
6042                 if (rb_has_aux(rb)) {
6043                         atomic_inc(&rb->aux_mmap_count);
6044                         ret = 0;
6045                         goto unlock;
6046                 }
6047
6048                 atomic_set(&rb->aux_mmap_count, 1);
6049                 user_extra = nr_pages;
6050
6051                 goto accounting;
6052         }
6053
6054         /*
6055          * If we have rb pages ensure they're a power-of-two number, so we
6056          * can do bitmasks instead of modulo.
6057          */
6058         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6059                 return -EINVAL;
6060
6061         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6062                 return -EINVAL;
6063
6064         WARN_ON_ONCE(event->ctx->parent_ctx);
6065 again:
6066         mutex_lock(&event->mmap_mutex);
6067         if (event->rb) {
6068                 if (event->rb->nr_pages != nr_pages) {
6069                         ret = -EINVAL;
6070                         goto unlock;
6071                 }
6072
6073                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6074                         /*
6075                          * Raced against perf_mmap_close() through
6076                          * perf_event_set_output(). Try again, hope for better
6077                          * luck.
6078                          */
6079                         mutex_unlock(&event->mmap_mutex);
6080                         goto again;
6081                 }
6082
6083                 goto unlock;
6084         }
6085
6086         user_extra = nr_pages + 1;
6087
6088 accounting:
6089         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6090
6091         /*
6092          * Increase the limit linearly with more CPUs:
6093          */
6094         user_lock_limit *= num_online_cpus();
6095
6096         user_locked = atomic_long_read(&user->locked_vm);
6097
6098         /*
6099          * sysctl_perf_event_mlock may have changed, so that
6100          *     user->locked_vm > user_lock_limit
6101          */
6102         if (user_locked > user_lock_limit)
6103                 user_locked = user_lock_limit;
6104         user_locked += user_extra;
6105
6106         if (user_locked > user_lock_limit) {
6107                 /*
6108                  * charge locked_vm until it hits user_lock_limit;
6109                  * charge the rest from pinned_vm
6110                  */
6111                 extra = user_locked - user_lock_limit;
6112                 user_extra -= extra;
6113         }
6114
6115         lock_limit = rlimit(RLIMIT_MEMLOCK);
6116         lock_limit >>= PAGE_SHIFT;
6117         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6118
6119         if ((locked > lock_limit) && perf_is_paranoid() &&
6120                 !capable(CAP_IPC_LOCK)) {
6121                 ret = -EPERM;
6122                 goto unlock;
6123         }
6124
6125         WARN_ON(!rb && event->rb);
6126
6127         if (vma->vm_flags & VM_WRITE)
6128                 flags |= RING_BUFFER_WRITABLE;
6129
6130         if (!rb) {
6131                 rb = rb_alloc(nr_pages,
6132                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6133                               event->cpu, flags);
6134
6135                 if (!rb) {
6136                         ret = -ENOMEM;
6137                         goto unlock;
6138                 }
6139
6140                 atomic_set(&rb->mmap_count, 1);
6141                 rb->mmap_user = get_current_user();
6142                 rb->mmap_locked = extra;
6143
6144                 ring_buffer_attach(event, rb);
6145
6146                 perf_event_init_userpage(event);
6147                 perf_event_update_userpage(event);
6148         } else {
6149                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6150                                    event->attr.aux_watermark, flags);
6151                 if (!ret)
6152                         rb->aux_mmap_locked = extra;
6153         }
6154
6155 unlock:
6156         if (!ret) {
6157                 atomic_long_add(user_extra, &user->locked_vm);
6158                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6159
6160                 atomic_inc(&event->mmap_count);
6161         } else if (rb) {
6162                 atomic_dec(&rb->mmap_count);
6163         }
6164 aux_unlock:
6165         mutex_unlock(&event->mmap_mutex);
6166
6167         /*
6168          * Since pinned accounting is per vm we cannot allow fork() to copy our
6169          * vma.
6170          */
6171         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6172         vma->vm_ops = &perf_mmap_vmops;
6173
6174         if (event->pmu->event_mapped)
6175                 event->pmu->event_mapped(event, vma->vm_mm);
6176
6177         return ret;
6178 }
6179
6180 static int perf_fasync(int fd, struct file *filp, int on)
6181 {
6182         struct inode *inode = file_inode(filp);
6183         struct perf_event *event = filp->private_data;
6184         int retval;
6185
6186         inode_lock(inode);
6187         retval = fasync_helper(fd, filp, on, &event->fasync);
6188         inode_unlock(inode);
6189
6190         if (retval < 0)
6191                 return retval;
6192
6193         return 0;
6194 }
6195
6196 static const struct file_operations perf_fops = {
6197         .llseek                 = no_llseek,
6198         .release                = perf_release,
6199         .read                   = perf_read,
6200         .poll                   = perf_poll,
6201         .unlocked_ioctl         = perf_ioctl,
6202         .compat_ioctl           = perf_compat_ioctl,
6203         .mmap                   = perf_mmap,
6204         .fasync                 = perf_fasync,
6205 };
6206
6207 /*
6208  * Perf event wakeup
6209  *
6210  * If there's data, ensure we set the poll() state and publish everything
6211  * to user-space before waking everybody up.
6212  */
6213
6214 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6215 {
6216         /* only the parent has fasync state */
6217         if (event->parent)
6218                 event = event->parent;
6219         return &event->fasync;
6220 }
6221
6222 void perf_event_wakeup(struct perf_event *event)
6223 {
6224         ring_buffer_wakeup(event);
6225
6226         if (event->pending_kill) {
6227                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6228                 event->pending_kill = 0;
6229         }
6230 }
6231
6232 static void perf_pending_event_disable(struct perf_event *event)
6233 {
6234         int cpu = READ_ONCE(event->pending_disable);
6235
6236         if (cpu < 0)
6237                 return;
6238
6239         if (cpu == smp_processor_id()) {
6240                 WRITE_ONCE(event->pending_disable, -1);
6241                 perf_event_disable_local(event);
6242                 return;
6243         }
6244
6245         /*
6246          *  CPU-A                       CPU-B
6247          *
6248          *  perf_event_disable_inatomic()
6249          *    @pending_disable = CPU-A;
6250          *    irq_work_queue();
6251          *
6252          *  sched-out
6253          *    @pending_disable = -1;
6254          *
6255          *                              sched-in
6256          *                              perf_event_disable_inatomic()
6257          *                                @pending_disable = CPU-B;
6258          *                                irq_work_queue(); // FAILS
6259          *
6260          *  irq_work_run()
6261          *    perf_pending_event()
6262          *
6263          * But the event runs on CPU-B and wants disabling there.
6264          */
6265         irq_work_queue_on(&event->pending, cpu);
6266 }
6267
6268 static void perf_pending_event(struct irq_work *entry)
6269 {
6270         struct perf_event *event = container_of(entry, struct perf_event, pending);
6271         int rctx;
6272
6273         rctx = perf_swevent_get_recursion_context();
6274         /*
6275          * If we 'fail' here, that's OK, it means recursion is already disabled
6276          * and we won't recurse 'further'.
6277          */
6278
6279         perf_pending_event_disable(event);
6280
6281         if (event->pending_wakeup) {
6282                 event->pending_wakeup = 0;
6283                 perf_event_wakeup(event);
6284         }
6285
6286         if (rctx >= 0)
6287                 perf_swevent_put_recursion_context(rctx);
6288 }
6289
6290 /*
6291  * We assume there is only KVM supporting the callbacks.
6292  * Later on, we might change it to a list if there is
6293  * another virtualization implementation supporting the callbacks.
6294  */
6295 struct perf_guest_info_callbacks *perf_guest_cbs;
6296
6297 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6298 {
6299         perf_guest_cbs = cbs;
6300         return 0;
6301 }
6302 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6303
6304 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6305 {
6306         perf_guest_cbs = NULL;
6307         return 0;
6308 }
6309 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6310
6311 static void
6312 perf_output_sample_regs(struct perf_output_handle *handle,
6313                         struct pt_regs *regs, u64 mask)
6314 {
6315         int bit;
6316         DECLARE_BITMAP(_mask, 64);
6317
6318         bitmap_from_u64(_mask, mask);
6319         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6320                 u64 val;
6321
6322                 val = perf_reg_value(regs, bit);
6323                 perf_output_put(handle, val);
6324         }
6325 }
6326
6327 static void perf_sample_regs_user(struct perf_regs *regs_user,
6328                                   struct pt_regs *regs,
6329                                   struct pt_regs *regs_user_copy)
6330 {
6331         if (user_mode(regs)) {
6332                 regs_user->abi = perf_reg_abi(current);
6333                 regs_user->regs = regs;
6334         } else if (!(current->flags & PF_KTHREAD)) {
6335                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6336         } else {
6337                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6338                 regs_user->regs = NULL;
6339         }
6340 }
6341
6342 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6343                                   struct pt_regs *regs)
6344 {
6345         regs_intr->regs = regs;
6346         regs_intr->abi  = perf_reg_abi(current);
6347 }
6348
6349
6350 /*
6351  * Get remaining task size from user stack pointer.
6352  *
6353  * It'd be better to take stack vma map and limit this more
6354  * precisely, but there's no way to get it safely under interrupt,
6355  * so using TASK_SIZE as limit.
6356  */
6357 static u64 perf_ustack_task_size(struct pt_regs *regs)
6358 {
6359         unsigned long addr = perf_user_stack_pointer(regs);
6360
6361         if (!addr || addr >= TASK_SIZE)
6362                 return 0;
6363
6364         return TASK_SIZE - addr;
6365 }
6366
6367 static u16
6368 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6369                         struct pt_regs *regs)
6370 {
6371         u64 task_size;
6372
6373         /* No regs, no stack pointer, no dump. */
6374         if (!regs)
6375                 return 0;
6376
6377         /*
6378          * Check if we fit in with the requested stack size into the:
6379          * - TASK_SIZE
6380          *   If we don't, we limit the size to the TASK_SIZE.
6381          *
6382          * - remaining sample size
6383          *   If we don't, we customize the stack size to
6384          *   fit in to the remaining sample size.
6385          */
6386
6387         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6388         stack_size = min(stack_size, (u16) task_size);
6389
6390         /* Current header size plus static size and dynamic size. */
6391         header_size += 2 * sizeof(u64);
6392
6393         /* Do we fit in with the current stack dump size? */
6394         if ((u16) (header_size + stack_size) < header_size) {
6395                 /*
6396                  * If we overflow the maximum size for the sample,
6397                  * we customize the stack dump size to fit in.
6398                  */
6399                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6400                 stack_size = round_up(stack_size, sizeof(u64));
6401         }
6402
6403         return stack_size;
6404 }
6405
6406 static void
6407 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6408                           struct pt_regs *regs)
6409 {
6410         /* Case of a kernel thread, nothing to dump */
6411         if (!regs) {
6412                 u64 size = 0;
6413                 perf_output_put(handle, size);
6414         } else {
6415                 unsigned long sp;
6416                 unsigned int rem;
6417                 u64 dyn_size;
6418                 mm_segment_t fs;
6419
6420                 /*
6421                  * We dump:
6422                  * static size
6423                  *   - the size requested by user or the best one we can fit
6424                  *     in to the sample max size
6425                  * data
6426                  *   - user stack dump data
6427                  * dynamic size
6428                  *   - the actual dumped size
6429                  */
6430
6431                 /* Static size. */
6432                 perf_output_put(handle, dump_size);
6433
6434                 /* Data. */
6435                 sp = perf_user_stack_pointer(regs);
6436                 fs = get_fs();
6437                 set_fs(USER_DS);
6438                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6439                 set_fs(fs);
6440                 dyn_size = dump_size - rem;
6441
6442                 perf_output_skip(handle, rem);
6443
6444                 /* Dynamic size. */
6445                 perf_output_put(handle, dyn_size);
6446         }
6447 }
6448
6449 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6450                                           struct perf_sample_data *data,
6451                                           size_t size)
6452 {
6453         struct perf_event *sampler = event->aux_event;
6454         struct perf_buffer *rb;
6455
6456         data->aux_size = 0;
6457
6458         if (!sampler)
6459                 goto out;
6460
6461         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6462                 goto out;
6463
6464         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6465                 goto out;
6466
6467         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6468         if (!rb)
6469                 goto out;
6470
6471         /*
6472          * If this is an NMI hit inside sampling code, don't take
6473          * the sample. See also perf_aux_sample_output().
6474          */
6475         if (READ_ONCE(rb->aux_in_sampling)) {
6476                 data->aux_size = 0;
6477         } else {
6478                 size = min_t(size_t, size, perf_aux_size(rb));
6479                 data->aux_size = ALIGN(size, sizeof(u64));
6480         }
6481         ring_buffer_put(rb);
6482
6483 out:
6484         return data->aux_size;
6485 }
6486
6487 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6488                            struct perf_event *event,
6489                            struct perf_output_handle *handle,
6490                            unsigned long size)
6491 {
6492         unsigned long flags;
6493         long ret;
6494
6495         /*
6496          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6497          * paths. If we start calling them in NMI context, they may race with
6498          * the IRQ ones, that is, for example, re-starting an event that's just
6499          * been stopped, which is why we're using a separate callback that
6500          * doesn't change the event state.
6501          *
6502          * IRQs need to be disabled to prevent IPIs from racing with us.
6503          */
6504         local_irq_save(flags);
6505         /*
6506          * Guard against NMI hits inside the critical section;
6507          * see also perf_prepare_sample_aux().
6508          */
6509         WRITE_ONCE(rb->aux_in_sampling, 1);
6510         barrier();
6511
6512         ret = event->pmu->snapshot_aux(event, handle, size);
6513
6514         barrier();
6515         WRITE_ONCE(rb->aux_in_sampling, 0);
6516         local_irq_restore(flags);
6517
6518         return ret;
6519 }
6520
6521 static void perf_aux_sample_output(struct perf_event *event,
6522                                    struct perf_output_handle *handle,
6523                                    struct perf_sample_data *data)
6524 {
6525         struct perf_event *sampler = event->aux_event;
6526         struct perf_buffer *rb;
6527         unsigned long pad;
6528         long size;
6529
6530         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6531                 return;
6532
6533         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6534         if (!rb)
6535                 return;
6536
6537         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6538
6539         /*
6540          * An error here means that perf_output_copy() failed (returned a
6541          * non-zero surplus that it didn't copy), which in its current
6542          * enlightened implementation is not possible. If that changes, we'd
6543          * like to know.
6544          */
6545         if (WARN_ON_ONCE(size < 0))
6546                 goto out_put;
6547
6548         /*
6549          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6550          * perf_prepare_sample_aux(), so should not be more than that.
6551          */
6552         pad = data->aux_size - size;
6553         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6554                 pad = 8;
6555
6556         if (pad) {
6557                 u64 zero = 0;
6558                 perf_output_copy(handle, &zero, pad);
6559         }
6560
6561 out_put:
6562         ring_buffer_put(rb);
6563 }
6564
6565 static void __perf_event_header__init_id(struct perf_event_header *header,
6566                                          struct perf_sample_data *data,
6567                                          struct perf_event *event)
6568 {
6569         u64 sample_type = event->attr.sample_type;
6570
6571         data->type = sample_type;
6572         header->size += event->id_header_size;
6573
6574         if (sample_type & PERF_SAMPLE_TID) {
6575                 /* namespace issues */
6576                 data->tid_entry.pid = perf_event_pid(event, current);
6577                 data->tid_entry.tid = perf_event_tid(event, current);
6578         }
6579
6580         if (sample_type & PERF_SAMPLE_TIME)
6581                 data->time = perf_event_clock(event);
6582
6583         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6584                 data->id = primary_event_id(event);
6585
6586         if (sample_type & PERF_SAMPLE_STREAM_ID)
6587                 data->stream_id = event->id;
6588
6589         if (sample_type & PERF_SAMPLE_CPU) {
6590                 data->cpu_entry.cpu      = raw_smp_processor_id();
6591                 data->cpu_entry.reserved = 0;
6592         }
6593 }
6594
6595 void perf_event_header__init_id(struct perf_event_header *header,
6596                                 struct perf_sample_data *data,
6597                                 struct perf_event *event)
6598 {
6599         if (event->attr.sample_id_all)
6600                 __perf_event_header__init_id(header, data, event);
6601 }
6602
6603 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6604                                            struct perf_sample_data *data)
6605 {
6606         u64 sample_type = data->type;
6607
6608         if (sample_type & PERF_SAMPLE_TID)
6609                 perf_output_put(handle, data->tid_entry);
6610
6611         if (sample_type & PERF_SAMPLE_TIME)
6612                 perf_output_put(handle, data->time);
6613
6614         if (sample_type & PERF_SAMPLE_ID)
6615                 perf_output_put(handle, data->id);
6616
6617         if (sample_type & PERF_SAMPLE_STREAM_ID)
6618                 perf_output_put(handle, data->stream_id);
6619
6620         if (sample_type & PERF_SAMPLE_CPU)
6621                 perf_output_put(handle, data->cpu_entry);
6622
6623         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6624                 perf_output_put(handle, data->id);
6625 }
6626
6627 void perf_event__output_id_sample(struct perf_event *event,
6628                                   struct perf_output_handle *handle,
6629                                   struct perf_sample_data *sample)
6630 {
6631         if (event->attr.sample_id_all)
6632                 __perf_event__output_id_sample(handle, sample);
6633 }
6634
6635 static void perf_output_read_one(struct perf_output_handle *handle,
6636                                  struct perf_event *event,
6637                                  u64 enabled, u64 running)
6638 {
6639         u64 read_format = event->attr.read_format;
6640         u64 values[4];
6641         int n = 0;
6642
6643         values[n++] = perf_event_count(event);
6644         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6645                 values[n++] = enabled +
6646                         atomic64_read(&event->child_total_time_enabled);
6647         }
6648         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6649                 values[n++] = running +
6650                         atomic64_read(&event->child_total_time_running);
6651         }
6652         if (read_format & PERF_FORMAT_ID)
6653                 values[n++] = primary_event_id(event);
6654
6655         __output_copy(handle, values, n * sizeof(u64));
6656 }
6657
6658 static void perf_output_read_group(struct perf_output_handle *handle,
6659                             struct perf_event *event,
6660                             u64 enabled, u64 running)
6661 {
6662         struct perf_event *leader = event->group_leader, *sub;
6663         u64 read_format = event->attr.read_format;
6664         u64 values[5];
6665         int n = 0;
6666
6667         values[n++] = 1 + leader->nr_siblings;
6668
6669         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6670                 values[n++] = enabled;
6671
6672         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6673                 values[n++] = running;
6674
6675         if ((leader != event) &&
6676             (leader->state == PERF_EVENT_STATE_ACTIVE))
6677                 leader->pmu->read(leader);
6678
6679         values[n++] = perf_event_count(leader);
6680         if (read_format & PERF_FORMAT_ID)
6681                 values[n++] = primary_event_id(leader);
6682
6683         __output_copy(handle, values, n * sizeof(u64));
6684
6685         for_each_sibling_event(sub, leader) {
6686                 n = 0;
6687
6688                 if ((sub != event) &&
6689                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6690                         sub->pmu->read(sub);
6691
6692                 values[n++] = perf_event_count(sub);
6693                 if (read_format & PERF_FORMAT_ID)
6694                         values[n++] = primary_event_id(sub);
6695
6696                 __output_copy(handle, values, n * sizeof(u64));
6697         }
6698 }
6699
6700 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6701                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6702
6703 /*
6704  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6705  *
6706  * The problem is that its both hard and excessively expensive to iterate the
6707  * child list, not to mention that its impossible to IPI the children running
6708  * on another CPU, from interrupt/NMI context.
6709  */
6710 static void perf_output_read(struct perf_output_handle *handle,
6711                              struct perf_event *event)
6712 {
6713         u64 enabled = 0, running = 0, now;
6714         u64 read_format = event->attr.read_format;
6715
6716         /*
6717          * compute total_time_enabled, total_time_running
6718          * based on snapshot values taken when the event
6719          * was last scheduled in.
6720          *
6721          * we cannot simply called update_context_time()
6722          * because of locking issue as we are called in
6723          * NMI context
6724          */
6725         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6726                 calc_timer_values(event, &now, &enabled, &running);
6727
6728         if (event->attr.read_format & PERF_FORMAT_GROUP)
6729                 perf_output_read_group(handle, event, enabled, running);
6730         else
6731                 perf_output_read_one(handle, event, enabled, running);
6732 }
6733
6734 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6735 {
6736         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6737 }
6738
6739 void perf_output_sample(struct perf_output_handle *handle,
6740                         struct perf_event_header *header,
6741                         struct perf_sample_data *data,
6742                         struct perf_event *event)
6743 {
6744         u64 sample_type = data->type;
6745
6746         perf_output_put(handle, *header);
6747
6748         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6749                 perf_output_put(handle, data->id);
6750
6751         if (sample_type & PERF_SAMPLE_IP)
6752                 perf_output_put(handle, data->ip);
6753
6754         if (sample_type & PERF_SAMPLE_TID)
6755                 perf_output_put(handle, data->tid_entry);
6756
6757         if (sample_type & PERF_SAMPLE_TIME)
6758                 perf_output_put(handle, data->time);
6759
6760         if (sample_type & PERF_SAMPLE_ADDR)
6761                 perf_output_put(handle, data->addr);
6762
6763         if (sample_type & PERF_SAMPLE_ID)
6764                 perf_output_put(handle, data->id);
6765
6766         if (sample_type & PERF_SAMPLE_STREAM_ID)
6767                 perf_output_put(handle, data->stream_id);
6768
6769         if (sample_type & PERF_SAMPLE_CPU)
6770                 perf_output_put(handle, data->cpu_entry);
6771
6772         if (sample_type & PERF_SAMPLE_PERIOD)
6773                 perf_output_put(handle, data->period);
6774
6775         if (sample_type & PERF_SAMPLE_READ)
6776                 perf_output_read(handle, event);
6777
6778         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6779                 int size = 1;
6780
6781                 size += data->callchain->nr;
6782                 size *= sizeof(u64);
6783                 __output_copy(handle, data->callchain, size);
6784         }
6785
6786         if (sample_type & PERF_SAMPLE_RAW) {
6787                 struct perf_raw_record *raw = data->raw;
6788
6789                 if (raw) {
6790                         struct perf_raw_frag *frag = &raw->frag;
6791
6792                         perf_output_put(handle, raw->size);
6793                         do {
6794                                 if (frag->copy) {
6795                                         __output_custom(handle, frag->copy,
6796                                                         frag->data, frag->size);
6797                                 } else {
6798                                         __output_copy(handle, frag->data,
6799                                                       frag->size);
6800                                 }
6801                                 if (perf_raw_frag_last(frag))
6802                                         break;
6803                                 frag = frag->next;
6804                         } while (1);
6805                         if (frag->pad)
6806                                 __output_skip(handle, NULL, frag->pad);
6807                 } else {
6808                         struct {
6809                                 u32     size;
6810                                 u32     data;
6811                         } raw = {
6812                                 .size = sizeof(u32),
6813                                 .data = 0,
6814                         };
6815                         perf_output_put(handle, raw);
6816                 }
6817         }
6818
6819         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6820                 if (data->br_stack) {
6821                         size_t size;
6822
6823                         size = data->br_stack->nr
6824                              * sizeof(struct perf_branch_entry);
6825
6826                         perf_output_put(handle, data->br_stack->nr);
6827                         if (perf_sample_save_hw_index(event))
6828                                 perf_output_put(handle, data->br_stack->hw_idx);
6829                         perf_output_copy(handle, data->br_stack->entries, size);
6830                 } else {
6831                         /*
6832                          * we always store at least the value of nr
6833                          */
6834                         u64 nr = 0;
6835                         perf_output_put(handle, nr);
6836                 }
6837         }
6838
6839         if (sample_type & PERF_SAMPLE_REGS_USER) {
6840                 u64 abi = data->regs_user.abi;
6841
6842                 /*
6843                  * If there are no regs to dump, notice it through
6844                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6845                  */
6846                 perf_output_put(handle, abi);
6847
6848                 if (abi) {
6849                         u64 mask = event->attr.sample_regs_user;
6850                         perf_output_sample_regs(handle,
6851                                                 data->regs_user.regs,
6852                                                 mask);
6853                 }
6854         }
6855
6856         if (sample_type & PERF_SAMPLE_STACK_USER) {
6857                 perf_output_sample_ustack(handle,
6858                                           data->stack_user_size,
6859                                           data->regs_user.regs);
6860         }
6861
6862         if (sample_type & PERF_SAMPLE_WEIGHT)
6863                 perf_output_put(handle, data->weight);
6864
6865         if (sample_type & PERF_SAMPLE_DATA_SRC)
6866                 perf_output_put(handle, data->data_src.val);
6867
6868         if (sample_type & PERF_SAMPLE_TRANSACTION)
6869                 perf_output_put(handle, data->txn);
6870
6871         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6872                 u64 abi = data->regs_intr.abi;
6873                 /*
6874                  * If there are no regs to dump, notice it through
6875                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6876                  */
6877                 perf_output_put(handle, abi);
6878
6879                 if (abi) {
6880                         u64 mask = event->attr.sample_regs_intr;
6881
6882                         perf_output_sample_regs(handle,
6883                                                 data->regs_intr.regs,
6884                                                 mask);
6885                 }
6886         }
6887
6888         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6889                 perf_output_put(handle, data->phys_addr);
6890
6891         if (sample_type & PERF_SAMPLE_CGROUP)
6892                 perf_output_put(handle, data->cgroup);
6893
6894         if (sample_type & PERF_SAMPLE_AUX) {
6895                 perf_output_put(handle, data->aux_size);
6896
6897                 if (data->aux_size)
6898                         perf_aux_sample_output(event, handle, data);
6899         }
6900
6901         if (!event->attr.watermark) {
6902                 int wakeup_events = event->attr.wakeup_events;
6903
6904                 if (wakeup_events) {
6905                         struct perf_buffer *rb = handle->rb;
6906                         int events = local_inc_return(&rb->events);
6907
6908                         if (events >= wakeup_events) {
6909                                 local_sub(wakeup_events, &rb->events);
6910                                 local_inc(&rb->wakeup);
6911                         }
6912                 }
6913         }
6914 }
6915
6916 static u64 perf_virt_to_phys(u64 virt)
6917 {
6918         u64 phys_addr = 0;
6919         struct page *p = NULL;
6920
6921         if (!virt)
6922                 return 0;
6923
6924         if (virt >= TASK_SIZE) {
6925                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6926                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6927                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6928                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6929         } else {
6930                 /*
6931                  * Walking the pages tables for user address.
6932                  * Interrupts are disabled, so it prevents any tear down
6933                  * of the page tables.
6934                  * Try IRQ-safe __get_user_pages_fast first.
6935                  * If failed, leave phys_addr as 0.
6936                  */
6937                 if (current->mm != NULL) {
6938                         pagefault_disable();
6939                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6940                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6941                         pagefault_enable();
6942                 }
6943
6944                 if (p)
6945                         put_page(p);
6946         }
6947
6948         return phys_addr;
6949 }
6950
6951 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6952
6953 struct perf_callchain_entry *
6954 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6955 {
6956         bool kernel = !event->attr.exclude_callchain_kernel;
6957         bool user   = !event->attr.exclude_callchain_user;
6958         /* Disallow cross-task user callchains. */
6959         bool crosstask = event->ctx->task && event->ctx->task != current;
6960         const u32 max_stack = event->attr.sample_max_stack;
6961         struct perf_callchain_entry *callchain;
6962
6963         if (!kernel && !user)
6964                 return &__empty_callchain;
6965
6966         callchain = get_perf_callchain(regs, 0, kernel, user,
6967                                        max_stack, crosstask, true);
6968         return callchain ?: &__empty_callchain;
6969 }
6970
6971 void perf_prepare_sample(struct perf_event_header *header,
6972                          struct perf_sample_data *data,
6973                          struct perf_event *event,
6974                          struct pt_regs *regs)
6975 {
6976         u64 sample_type = event->attr.sample_type;
6977
6978         header->type = PERF_RECORD_SAMPLE;
6979         header->size = sizeof(*header) + event->header_size;
6980
6981         header->misc = 0;
6982         header->misc |= perf_misc_flags(regs);
6983
6984         __perf_event_header__init_id(header, data, event);
6985
6986         if (sample_type & PERF_SAMPLE_IP)
6987                 data->ip = perf_instruction_pointer(regs);
6988
6989         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6990                 int size = 1;
6991
6992                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6993                         data->callchain = perf_callchain(event, regs);
6994
6995                 size += data->callchain->nr;
6996
6997                 header->size += size * sizeof(u64);
6998         }
6999
7000         if (sample_type & PERF_SAMPLE_RAW) {
7001                 struct perf_raw_record *raw = data->raw;
7002                 int size;
7003
7004                 if (raw) {
7005                         struct perf_raw_frag *frag = &raw->frag;
7006                         u32 sum = 0;
7007
7008                         do {
7009                                 sum += frag->size;
7010                                 if (perf_raw_frag_last(frag))
7011                                         break;
7012                                 frag = frag->next;
7013                         } while (1);
7014
7015                         size = round_up(sum + sizeof(u32), sizeof(u64));
7016                         raw->size = size - sizeof(u32);
7017                         frag->pad = raw->size - sum;
7018                 } else {
7019                         size = sizeof(u64);
7020                 }
7021
7022                 header->size += size;
7023         }
7024
7025         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7026                 int size = sizeof(u64); /* nr */
7027                 if (data->br_stack) {
7028                         if (perf_sample_save_hw_index(event))
7029                                 size += sizeof(u64);
7030
7031                         size += data->br_stack->nr
7032                               * sizeof(struct perf_branch_entry);
7033                 }
7034                 header->size += size;
7035         }
7036
7037         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7038                 perf_sample_regs_user(&data->regs_user, regs,
7039                                       &data->regs_user_copy);
7040
7041         if (sample_type & PERF_SAMPLE_REGS_USER) {
7042                 /* regs dump ABI info */
7043                 int size = sizeof(u64);
7044
7045                 if (data->regs_user.regs) {
7046                         u64 mask = event->attr.sample_regs_user;
7047                         size += hweight64(mask) * sizeof(u64);
7048                 }
7049
7050                 header->size += size;
7051         }
7052
7053         if (sample_type & PERF_SAMPLE_STACK_USER) {
7054                 /*
7055                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7056                  * processed as the last one or have additional check added
7057                  * in case new sample type is added, because we could eat
7058                  * up the rest of the sample size.
7059                  */
7060                 u16 stack_size = event->attr.sample_stack_user;
7061                 u16 size = sizeof(u64);
7062
7063                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7064                                                      data->regs_user.regs);
7065
7066                 /*
7067                  * If there is something to dump, add space for the dump
7068                  * itself and for the field that tells the dynamic size,
7069                  * which is how many have been actually dumped.
7070                  */
7071                 if (stack_size)
7072                         size += sizeof(u64) + stack_size;
7073
7074                 data->stack_user_size = stack_size;
7075                 header->size += size;
7076         }
7077
7078         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7079                 /* regs dump ABI info */
7080                 int size = sizeof(u64);
7081
7082                 perf_sample_regs_intr(&data->regs_intr, regs);
7083
7084                 if (data->regs_intr.regs) {
7085                         u64 mask = event->attr.sample_regs_intr;
7086
7087                         size += hweight64(mask) * sizeof(u64);
7088                 }
7089
7090                 header->size += size;
7091         }
7092
7093         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7094                 data->phys_addr = perf_virt_to_phys(data->addr);
7095
7096 #ifdef CONFIG_CGROUP_PERF
7097         if (sample_type & PERF_SAMPLE_CGROUP) {
7098                 struct cgroup *cgrp;
7099
7100                 /* protected by RCU */
7101                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7102                 data->cgroup = cgroup_id(cgrp);
7103         }
7104 #endif
7105
7106         if (sample_type & PERF_SAMPLE_AUX) {
7107                 u64 size;
7108
7109                 header->size += sizeof(u64); /* size */
7110
7111                 /*
7112                  * Given the 16bit nature of header::size, an AUX sample can
7113                  * easily overflow it, what with all the preceding sample bits.
7114                  * Make sure this doesn't happen by using up to U16_MAX bytes
7115                  * per sample in total (rounded down to 8 byte boundary).
7116                  */
7117                 size = min_t(size_t, U16_MAX - header->size,
7118                              event->attr.aux_sample_size);
7119                 size = rounddown(size, 8);
7120                 size = perf_prepare_sample_aux(event, data, size);
7121
7122                 WARN_ON_ONCE(size + header->size > U16_MAX);
7123                 header->size += size;
7124         }
7125         /*
7126          * If you're adding more sample types here, you likely need to do
7127          * something about the overflowing header::size, like repurpose the
7128          * lowest 3 bits of size, which should be always zero at the moment.
7129          * This raises a more important question, do we really need 512k sized
7130          * samples and why, so good argumentation is in order for whatever you
7131          * do here next.
7132          */
7133         WARN_ON_ONCE(header->size & 7);
7134 }
7135
7136 static __always_inline int
7137 __perf_event_output(struct perf_event *event,
7138                     struct perf_sample_data *data,
7139                     struct pt_regs *regs,
7140                     int (*output_begin)(struct perf_output_handle *,
7141                                         struct perf_event *,
7142                                         unsigned int))
7143 {
7144         struct perf_output_handle handle;
7145         struct perf_event_header header;
7146         int err;
7147
7148         /* protect the callchain buffers */
7149         rcu_read_lock();
7150
7151         perf_prepare_sample(&header, data, event, regs);
7152
7153         err = output_begin(&handle, event, header.size);
7154         if (err)
7155                 goto exit;
7156
7157         perf_output_sample(&handle, &header, data, event);
7158
7159         perf_output_end(&handle);
7160
7161 exit:
7162         rcu_read_unlock();
7163         return err;
7164 }
7165
7166 void
7167 perf_event_output_forward(struct perf_event *event,
7168                          struct perf_sample_data *data,
7169                          struct pt_regs *regs)
7170 {
7171         __perf_event_output(event, data, regs, perf_output_begin_forward);
7172 }
7173
7174 void
7175 perf_event_output_backward(struct perf_event *event,
7176                            struct perf_sample_data *data,
7177                            struct pt_regs *regs)
7178 {
7179         __perf_event_output(event, data, regs, perf_output_begin_backward);
7180 }
7181
7182 int
7183 perf_event_output(struct perf_event *event,
7184                   struct perf_sample_data *data,
7185                   struct pt_regs *regs)
7186 {
7187         return __perf_event_output(event, data, regs, perf_output_begin);
7188 }
7189
7190 /*
7191  * read event_id
7192  */
7193
7194 struct perf_read_event {
7195         struct perf_event_header        header;
7196
7197         u32                             pid;
7198         u32                             tid;
7199 };
7200
7201 static void
7202 perf_event_read_event(struct perf_event *event,
7203                         struct task_struct *task)
7204 {
7205         struct perf_output_handle handle;
7206         struct perf_sample_data sample;
7207         struct perf_read_event read_event = {
7208                 .header = {
7209                         .type = PERF_RECORD_READ,
7210                         .misc = 0,
7211                         .size = sizeof(read_event) + event->read_size,
7212                 },
7213                 .pid = perf_event_pid(event, task),
7214                 .tid = perf_event_tid(event, task),
7215         };
7216         int ret;
7217
7218         perf_event_header__init_id(&read_event.header, &sample, event);
7219         ret = perf_output_begin(&handle, event, read_event.header.size);
7220         if (ret)
7221                 return;
7222
7223         perf_output_put(&handle, read_event);
7224         perf_output_read(&handle, event);
7225         perf_event__output_id_sample(event, &handle, &sample);
7226
7227         perf_output_end(&handle);
7228 }
7229
7230 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7231
7232 static void
7233 perf_iterate_ctx(struct perf_event_context *ctx,
7234                    perf_iterate_f output,
7235                    void *data, bool all)
7236 {
7237         struct perf_event *event;
7238
7239         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7240                 if (!all) {
7241                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7242                                 continue;
7243                         if (!event_filter_match(event))
7244                                 continue;
7245                 }
7246
7247                 output(event, data);
7248         }
7249 }
7250
7251 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7252 {
7253         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7254         struct perf_event *event;
7255
7256         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7257                 /*
7258                  * Skip events that are not fully formed yet; ensure that
7259                  * if we observe event->ctx, both event and ctx will be
7260                  * complete enough. See perf_install_in_context().
7261                  */
7262                 if (!smp_load_acquire(&event->ctx))
7263                         continue;
7264
7265                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7266                         continue;
7267                 if (!event_filter_match(event))
7268                         continue;
7269                 output(event, data);
7270         }
7271 }
7272
7273 /*
7274  * Iterate all events that need to receive side-band events.
7275  *
7276  * For new callers; ensure that account_pmu_sb_event() includes
7277  * your event, otherwise it might not get delivered.
7278  */
7279 static void
7280 perf_iterate_sb(perf_iterate_f output, void *data,
7281                struct perf_event_context *task_ctx)
7282 {
7283         struct perf_event_context *ctx;
7284         int ctxn;
7285
7286         rcu_read_lock();
7287         preempt_disable();
7288
7289         /*
7290          * If we have task_ctx != NULL we only notify the task context itself.
7291          * The task_ctx is set only for EXIT events before releasing task
7292          * context.
7293          */
7294         if (task_ctx) {
7295                 perf_iterate_ctx(task_ctx, output, data, false);
7296                 goto done;
7297         }
7298
7299         perf_iterate_sb_cpu(output, data);
7300
7301         for_each_task_context_nr(ctxn) {
7302                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7303                 if (ctx)
7304                         perf_iterate_ctx(ctx, output, data, false);
7305         }
7306 done:
7307         preempt_enable();
7308         rcu_read_unlock();
7309 }
7310
7311 /*
7312  * Clear all file-based filters at exec, they'll have to be
7313  * re-instated when/if these objects are mmapped again.
7314  */
7315 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7316 {
7317         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7318         struct perf_addr_filter *filter;
7319         unsigned int restart = 0, count = 0;
7320         unsigned long flags;
7321
7322         if (!has_addr_filter(event))
7323                 return;
7324
7325         raw_spin_lock_irqsave(&ifh->lock, flags);
7326         list_for_each_entry(filter, &ifh->list, entry) {
7327                 if (filter->path.dentry) {
7328                         event->addr_filter_ranges[count].start = 0;
7329                         event->addr_filter_ranges[count].size = 0;
7330                         restart++;
7331                 }
7332
7333                 count++;
7334         }
7335
7336         if (restart)
7337                 event->addr_filters_gen++;
7338         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7339
7340         if (restart)
7341                 perf_event_stop(event, 1);
7342 }
7343
7344 void perf_event_exec(void)
7345 {
7346         struct perf_event_context *ctx;
7347         int ctxn;
7348
7349         rcu_read_lock();
7350         for_each_task_context_nr(ctxn) {
7351                 ctx = current->perf_event_ctxp[ctxn];
7352                 if (!ctx)
7353                         continue;
7354
7355                 perf_event_enable_on_exec(ctxn);
7356
7357                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7358                                    true);
7359         }
7360         rcu_read_unlock();
7361 }
7362
7363 struct remote_output {
7364         struct perf_buffer      *rb;
7365         int                     err;
7366 };
7367
7368 static void __perf_event_output_stop(struct perf_event *event, void *data)
7369 {
7370         struct perf_event *parent = event->parent;
7371         struct remote_output *ro = data;
7372         struct perf_buffer *rb = ro->rb;
7373         struct stop_event_data sd = {
7374                 .event  = event,
7375         };
7376
7377         if (!has_aux(event))
7378                 return;
7379
7380         if (!parent)
7381                 parent = event;
7382
7383         /*
7384          * In case of inheritance, it will be the parent that links to the
7385          * ring-buffer, but it will be the child that's actually using it.
7386          *
7387          * We are using event::rb to determine if the event should be stopped,
7388          * however this may race with ring_buffer_attach() (through set_output),
7389          * which will make us skip the event that actually needs to be stopped.
7390          * So ring_buffer_attach() has to stop an aux event before re-assigning
7391          * its rb pointer.
7392          */
7393         if (rcu_dereference(parent->rb) == rb)
7394                 ro->err = __perf_event_stop(&sd);
7395 }
7396
7397 static int __perf_pmu_output_stop(void *info)
7398 {
7399         struct perf_event *event = info;
7400         struct pmu *pmu = event->ctx->pmu;
7401         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7402         struct remote_output ro = {
7403                 .rb     = event->rb,
7404         };
7405
7406         rcu_read_lock();
7407         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7408         if (cpuctx->task_ctx)
7409                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7410                                    &ro, false);
7411         rcu_read_unlock();
7412
7413         return ro.err;
7414 }
7415
7416 static void perf_pmu_output_stop(struct perf_event *event)
7417 {
7418         struct perf_event *iter;
7419         int err, cpu;
7420
7421 restart:
7422         rcu_read_lock();
7423         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7424                 /*
7425                  * For per-CPU events, we need to make sure that neither they
7426                  * nor their children are running; for cpu==-1 events it's
7427                  * sufficient to stop the event itself if it's active, since
7428                  * it can't have children.
7429                  */
7430                 cpu = iter->cpu;
7431                 if (cpu == -1)
7432                         cpu = READ_ONCE(iter->oncpu);
7433
7434                 if (cpu == -1)
7435                         continue;
7436
7437                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7438                 if (err == -EAGAIN) {
7439                         rcu_read_unlock();
7440                         goto restart;
7441                 }
7442         }
7443         rcu_read_unlock();
7444 }
7445
7446 /*
7447  * task tracking -- fork/exit
7448  *
7449  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7450  */
7451
7452 struct perf_task_event {
7453         struct task_struct              *task;
7454         struct perf_event_context       *task_ctx;
7455
7456         struct {
7457                 struct perf_event_header        header;
7458
7459                 u32                             pid;
7460                 u32                             ppid;
7461                 u32                             tid;
7462                 u32                             ptid;
7463                 u64                             time;
7464         } event_id;
7465 };
7466
7467 static int perf_event_task_match(struct perf_event *event)
7468 {
7469         return event->attr.comm  || event->attr.mmap ||
7470                event->attr.mmap2 || event->attr.mmap_data ||
7471                event->attr.task;
7472 }
7473
7474 static void perf_event_task_output(struct perf_event *event,
7475                                    void *data)
7476 {
7477         struct perf_task_event *task_event = data;
7478         struct perf_output_handle handle;
7479         struct perf_sample_data sample;
7480         struct task_struct *task = task_event->task;
7481         int ret, size = task_event->event_id.header.size;
7482
7483         if (!perf_event_task_match(event))
7484                 return;
7485
7486         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7487
7488         ret = perf_output_begin(&handle, event,
7489                                 task_event->event_id.header.size);
7490         if (ret)
7491                 goto out;
7492
7493         task_event->event_id.pid = perf_event_pid(event, task);
7494         task_event->event_id.tid = perf_event_tid(event, task);
7495
7496         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7497                 task_event->event_id.ppid = perf_event_pid(event,
7498                                                         task->real_parent);
7499                 task_event->event_id.ptid = perf_event_pid(event,
7500                                                         task->real_parent);
7501         } else {  /* PERF_RECORD_FORK */
7502                 task_event->event_id.ppid = perf_event_pid(event, current);
7503                 task_event->event_id.ptid = perf_event_tid(event, current);
7504         }
7505
7506         task_event->event_id.time = perf_event_clock(event);
7507
7508         perf_output_put(&handle, task_event->event_id);
7509
7510         perf_event__output_id_sample(event, &handle, &sample);
7511
7512         perf_output_end(&handle);
7513 out:
7514         task_event->event_id.header.size = size;
7515 }
7516
7517 static void perf_event_task(struct task_struct *task,
7518                               struct perf_event_context *task_ctx,
7519                               int new)
7520 {
7521         struct perf_task_event task_event;
7522
7523         if (!atomic_read(&nr_comm_events) &&
7524             !atomic_read(&nr_mmap_events) &&
7525             !atomic_read(&nr_task_events))
7526                 return;
7527
7528         task_event = (struct perf_task_event){
7529                 .task     = task,
7530                 .task_ctx = task_ctx,
7531                 .event_id    = {
7532                         .header = {
7533                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7534                                 .misc = 0,
7535                                 .size = sizeof(task_event.event_id),
7536                         },
7537                         /* .pid  */
7538                         /* .ppid */
7539                         /* .tid  */
7540                         /* .ptid */
7541                         /* .time */
7542                 },
7543         };
7544
7545         perf_iterate_sb(perf_event_task_output,
7546                        &task_event,
7547                        task_ctx);
7548 }
7549
7550 void perf_event_fork(struct task_struct *task)
7551 {
7552         perf_event_task(task, NULL, 1);
7553         perf_event_namespaces(task);
7554 }
7555
7556 /*
7557  * comm tracking
7558  */
7559
7560 struct perf_comm_event {
7561         struct task_struct      *task;
7562         char                    *comm;
7563         int                     comm_size;
7564
7565         struct {
7566                 struct perf_event_header        header;
7567
7568                 u32                             pid;
7569                 u32                             tid;
7570         } event_id;
7571 };
7572
7573 static int perf_event_comm_match(struct perf_event *event)
7574 {
7575         return event->attr.comm;
7576 }
7577
7578 static void perf_event_comm_output(struct perf_event *event,
7579                                    void *data)
7580 {
7581         struct perf_comm_event *comm_event = data;
7582         struct perf_output_handle handle;
7583         struct perf_sample_data sample;
7584         int size = comm_event->event_id.header.size;
7585         int ret;
7586
7587         if (!perf_event_comm_match(event))
7588                 return;
7589
7590         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7591         ret = perf_output_begin(&handle, event,
7592                                 comm_event->event_id.header.size);
7593
7594         if (ret)
7595                 goto out;
7596
7597         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7598         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7599
7600         perf_output_put(&handle, comm_event->event_id);
7601         __output_copy(&handle, comm_event->comm,
7602                                    comm_event->comm_size);
7603
7604         perf_event__output_id_sample(event, &handle, &sample);
7605
7606         perf_output_end(&handle);
7607 out:
7608         comm_event->event_id.header.size = size;
7609 }
7610
7611 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7612 {
7613         char comm[TASK_COMM_LEN];
7614         unsigned int size;
7615
7616         memset(comm, 0, sizeof(comm));
7617         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7618         size = ALIGN(strlen(comm)+1, sizeof(u64));
7619
7620         comm_event->comm = comm;
7621         comm_event->comm_size = size;
7622
7623         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7624
7625         perf_iterate_sb(perf_event_comm_output,
7626                        comm_event,
7627                        NULL);
7628 }
7629
7630 void perf_event_comm(struct task_struct *task, bool exec)
7631 {
7632         struct perf_comm_event comm_event;
7633
7634         if (!atomic_read(&nr_comm_events))
7635                 return;
7636
7637         comm_event = (struct perf_comm_event){
7638                 .task   = task,
7639                 /* .comm      */
7640                 /* .comm_size */
7641                 .event_id  = {
7642                         .header = {
7643                                 .type = PERF_RECORD_COMM,
7644                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7645                                 /* .size */
7646                         },
7647                         /* .pid */
7648                         /* .tid */
7649                 },
7650         };
7651
7652         perf_event_comm_event(&comm_event);
7653 }
7654
7655 /*
7656  * namespaces tracking
7657  */
7658
7659 struct perf_namespaces_event {
7660         struct task_struct              *task;
7661
7662         struct {
7663                 struct perf_event_header        header;
7664
7665                 u32                             pid;
7666                 u32                             tid;
7667                 u64                             nr_namespaces;
7668                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7669         } event_id;
7670 };
7671
7672 static int perf_event_namespaces_match(struct perf_event *event)
7673 {
7674         return event->attr.namespaces;
7675 }
7676
7677 static void perf_event_namespaces_output(struct perf_event *event,
7678                                          void *data)
7679 {
7680         struct perf_namespaces_event *namespaces_event = data;
7681         struct perf_output_handle handle;
7682         struct perf_sample_data sample;
7683         u16 header_size = namespaces_event->event_id.header.size;
7684         int ret;
7685
7686         if (!perf_event_namespaces_match(event))
7687                 return;
7688
7689         perf_event_header__init_id(&namespaces_event->event_id.header,
7690                                    &sample, event);
7691         ret = perf_output_begin(&handle, event,
7692                                 namespaces_event->event_id.header.size);
7693         if (ret)
7694                 goto out;
7695
7696         namespaces_event->event_id.pid = perf_event_pid(event,
7697                                                         namespaces_event->task);
7698         namespaces_event->event_id.tid = perf_event_tid(event,
7699                                                         namespaces_event->task);
7700
7701         perf_output_put(&handle, namespaces_event->event_id);
7702
7703         perf_event__output_id_sample(event, &handle, &sample);
7704
7705         perf_output_end(&handle);
7706 out:
7707         namespaces_event->event_id.header.size = header_size;
7708 }
7709
7710 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7711                                    struct task_struct *task,
7712                                    const struct proc_ns_operations *ns_ops)
7713 {
7714         struct path ns_path;
7715         struct inode *ns_inode;
7716         int error;
7717
7718         error = ns_get_path(&ns_path, task, ns_ops);
7719         if (!error) {
7720                 ns_inode = ns_path.dentry->d_inode;
7721                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7722                 ns_link_info->ino = ns_inode->i_ino;
7723                 path_put(&ns_path);
7724         }
7725 }
7726
7727 void perf_event_namespaces(struct task_struct *task)
7728 {
7729         struct perf_namespaces_event namespaces_event;
7730         struct perf_ns_link_info *ns_link_info;
7731
7732         if (!atomic_read(&nr_namespaces_events))
7733                 return;
7734
7735         namespaces_event = (struct perf_namespaces_event){
7736                 .task   = task,
7737                 .event_id  = {
7738                         .header = {
7739                                 .type = PERF_RECORD_NAMESPACES,
7740                                 .misc = 0,
7741                                 .size = sizeof(namespaces_event.event_id),
7742                         },
7743                         /* .pid */
7744                         /* .tid */
7745                         .nr_namespaces = NR_NAMESPACES,
7746                         /* .link_info[NR_NAMESPACES] */
7747                 },
7748         };
7749
7750         ns_link_info = namespaces_event.event_id.link_info;
7751
7752         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7753                                task, &mntns_operations);
7754
7755 #ifdef CONFIG_USER_NS
7756         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7757                                task, &userns_operations);
7758 #endif
7759 #ifdef CONFIG_NET_NS
7760         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7761                                task, &netns_operations);
7762 #endif
7763 #ifdef CONFIG_UTS_NS
7764         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7765                                task, &utsns_operations);
7766 #endif
7767 #ifdef CONFIG_IPC_NS
7768         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7769                                task, &ipcns_operations);
7770 #endif
7771 #ifdef CONFIG_PID_NS
7772         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7773                                task, &pidns_operations);
7774 #endif
7775 #ifdef CONFIG_CGROUPS
7776         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7777                                task, &cgroupns_operations);
7778 #endif
7779
7780         perf_iterate_sb(perf_event_namespaces_output,
7781                         &namespaces_event,
7782                         NULL);
7783 }
7784
7785 /*
7786  * cgroup tracking
7787  */
7788 #ifdef CONFIG_CGROUP_PERF
7789
7790 struct perf_cgroup_event {
7791         char                            *path;
7792         int                             path_size;
7793         struct {
7794                 struct perf_event_header        header;
7795                 u64                             id;
7796                 char                            path[];
7797         } event_id;
7798 };
7799
7800 static int perf_event_cgroup_match(struct perf_event *event)
7801 {
7802         return event->attr.cgroup;
7803 }
7804
7805 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7806 {
7807         struct perf_cgroup_event *cgroup_event = data;
7808         struct perf_output_handle handle;
7809         struct perf_sample_data sample;
7810         u16 header_size = cgroup_event->event_id.header.size;
7811         int ret;
7812
7813         if (!perf_event_cgroup_match(event))
7814                 return;
7815
7816         perf_event_header__init_id(&cgroup_event->event_id.header,
7817                                    &sample, event);
7818         ret = perf_output_begin(&handle, event,
7819                                 cgroup_event->event_id.header.size);
7820         if (ret)
7821                 goto out;
7822
7823         perf_output_put(&handle, cgroup_event->event_id);
7824         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7825
7826         perf_event__output_id_sample(event, &handle, &sample);
7827
7828         perf_output_end(&handle);
7829 out:
7830         cgroup_event->event_id.header.size = header_size;
7831 }
7832
7833 static void perf_event_cgroup(struct cgroup *cgrp)
7834 {
7835         struct perf_cgroup_event cgroup_event;
7836         char path_enomem[16] = "//enomem";
7837         char *pathname;
7838         size_t size;
7839
7840         if (!atomic_read(&nr_cgroup_events))
7841                 return;
7842
7843         cgroup_event = (struct perf_cgroup_event){
7844                 .event_id  = {
7845                         .header = {
7846                                 .type = PERF_RECORD_CGROUP,
7847                                 .misc = 0,
7848                                 .size = sizeof(cgroup_event.event_id),
7849                         },
7850                         .id = cgroup_id(cgrp),
7851                 },
7852         };
7853
7854         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7855         if (pathname == NULL) {
7856                 cgroup_event.path = path_enomem;
7857         } else {
7858                 /* just to be sure to have enough space for alignment */
7859                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7860                 cgroup_event.path = pathname;
7861         }
7862
7863         /*
7864          * Since our buffer works in 8 byte units we need to align our string
7865          * size to a multiple of 8. However, we must guarantee the tail end is
7866          * zero'd out to avoid leaking random bits to userspace.
7867          */
7868         size = strlen(cgroup_event.path) + 1;
7869         while (!IS_ALIGNED(size, sizeof(u64)))
7870                 cgroup_event.path[size++] = '\0';
7871
7872         cgroup_event.event_id.header.size += size;
7873         cgroup_event.path_size = size;
7874
7875         perf_iterate_sb(perf_event_cgroup_output,
7876                         &cgroup_event,
7877                         NULL);
7878
7879         kfree(pathname);
7880 }
7881
7882 #endif
7883
7884 /*
7885  * mmap tracking
7886  */
7887
7888 struct perf_mmap_event {
7889         struct vm_area_struct   *vma;
7890
7891         const char              *file_name;
7892         int                     file_size;
7893         int                     maj, min;
7894         u64                     ino;
7895         u64                     ino_generation;
7896         u32                     prot, flags;
7897
7898         struct {
7899                 struct perf_event_header        header;
7900
7901                 u32                             pid;
7902                 u32                             tid;
7903                 u64                             start;
7904                 u64                             len;
7905                 u64                             pgoff;
7906         } event_id;
7907 };
7908
7909 static int perf_event_mmap_match(struct perf_event *event,
7910                                  void *data)
7911 {
7912         struct perf_mmap_event *mmap_event = data;
7913         struct vm_area_struct *vma = mmap_event->vma;
7914         int executable = vma->vm_flags & VM_EXEC;
7915
7916         return (!executable && event->attr.mmap_data) ||
7917                (executable && (event->attr.mmap || event->attr.mmap2));
7918 }
7919
7920 static void perf_event_mmap_output(struct perf_event *event,
7921                                    void *data)
7922 {
7923         struct perf_mmap_event *mmap_event = data;
7924         struct perf_output_handle handle;
7925         struct perf_sample_data sample;
7926         int size = mmap_event->event_id.header.size;
7927         u32 type = mmap_event->event_id.header.type;
7928         int ret;
7929
7930         if (!perf_event_mmap_match(event, data))
7931                 return;
7932
7933         if (event->attr.mmap2) {
7934                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7935                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7936                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7937                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7938                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7939                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7940                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7941         }
7942
7943         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7944         ret = perf_output_begin(&handle, event,
7945                                 mmap_event->event_id.header.size);
7946         if (ret)
7947                 goto out;
7948
7949         mmap_event->event_id.pid = perf_event_pid(event, current);
7950         mmap_event->event_id.tid = perf_event_tid(event, current);
7951
7952         perf_output_put(&handle, mmap_event->event_id);
7953
7954         if (event->attr.mmap2) {
7955                 perf_output_put(&handle, mmap_event->maj);
7956                 perf_output_put(&handle, mmap_event->min);
7957                 perf_output_put(&handle, mmap_event->ino);
7958                 perf_output_put(&handle, mmap_event->ino_generation);
7959                 perf_output_put(&handle, mmap_event->prot);
7960                 perf_output_put(&handle, mmap_event->flags);
7961         }
7962
7963         __output_copy(&handle, mmap_event->file_name,
7964                                    mmap_event->file_size);
7965
7966         perf_event__output_id_sample(event, &handle, &sample);
7967
7968         perf_output_end(&handle);
7969 out:
7970         mmap_event->event_id.header.size = size;
7971         mmap_event->event_id.header.type = type;
7972 }
7973
7974 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7975 {
7976         struct vm_area_struct *vma = mmap_event->vma;
7977         struct file *file = vma->vm_file;
7978         int maj = 0, min = 0;
7979         u64 ino = 0, gen = 0;
7980         u32 prot = 0, flags = 0;
7981         unsigned int size;
7982         char tmp[16];
7983         char *buf = NULL;
7984         char *name;
7985
7986         if (vma->vm_flags & VM_READ)
7987                 prot |= PROT_READ;
7988         if (vma->vm_flags & VM_WRITE)
7989                 prot |= PROT_WRITE;
7990         if (vma->vm_flags & VM_EXEC)
7991                 prot |= PROT_EXEC;
7992
7993         if (vma->vm_flags & VM_MAYSHARE)
7994                 flags = MAP_SHARED;
7995         else
7996                 flags = MAP_PRIVATE;
7997
7998         if (vma->vm_flags & VM_DENYWRITE)
7999                 flags |= MAP_DENYWRITE;
8000         if (vma->vm_flags & VM_MAYEXEC)
8001                 flags |= MAP_EXECUTABLE;
8002         if (vma->vm_flags & VM_LOCKED)
8003                 flags |= MAP_LOCKED;
8004         if (is_vm_hugetlb_page(vma))
8005                 flags |= MAP_HUGETLB;
8006
8007         if (file) {
8008                 struct inode *inode;
8009                 dev_t dev;
8010
8011                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8012                 if (!buf) {
8013                         name = "//enomem";
8014                         goto cpy_name;
8015                 }
8016                 /*
8017                  * d_path() works from the end of the rb backwards, so we
8018                  * need to add enough zero bytes after the string to handle
8019                  * the 64bit alignment we do later.
8020                  */
8021                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8022                 if (IS_ERR(name)) {
8023                         name = "//toolong";
8024                         goto cpy_name;
8025                 }
8026                 inode = file_inode(vma->vm_file);
8027                 dev = inode->i_sb->s_dev;
8028                 ino = inode->i_ino;
8029                 gen = inode->i_generation;
8030                 maj = MAJOR(dev);
8031                 min = MINOR(dev);
8032
8033                 goto got_name;
8034         } else {
8035                 if (vma->vm_ops && vma->vm_ops->name) {
8036                         name = (char *) vma->vm_ops->name(vma);
8037                         if (name)
8038                                 goto cpy_name;
8039                 }
8040
8041                 name = (char *)arch_vma_name(vma);
8042                 if (name)
8043                         goto cpy_name;
8044
8045                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8046                                 vma->vm_end >= vma->vm_mm->brk) {
8047                         name = "[heap]";
8048                         goto cpy_name;
8049                 }
8050                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8051                                 vma->vm_end >= vma->vm_mm->start_stack) {
8052                         name = "[stack]";
8053                         goto cpy_name;
8054                 }
8055
8056                 name = "//anon";
8057                 goto cpy_name;
8058         }
8059
8060 cpy_name:
8061         strlcpy(tmp, name, sizeof(tmp));
8062         name = tmp;
8063 got_name:
8064         /*
8065          * Since our buffer works in 8 byte units we need to align our string
8066          * size to a multiple of 8. However, we must guarantee the tail end is
8067          * zero'd out to avoid leaking random bits to userspace.
8068          */
8069         size = strlen(name)+1;
8070         while (!IS_ALIGNED(size, sizeof(u64)))
8071                 name[size++] = '\0';
8072
8073         mmap_event->file_name = name;
8074         mmap_event->file_size = size;
8075         mmap_event->maj = maj;
8076         mmap_event->min = min;
8077         mmap_event->ino = ino;
8078         mmap_event->ino_generation = gen;
8079         mmap_event->prot = prot;
8080         mmap_event->flags = flags;
8081
8082         if (!(vma->vm_flags & VM_EXEC))
8083                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8084
8085         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8086
8087         perf_iterate_sb(perf_event_mmap_output,
8088                        mmap_event,
8089                        NULL);
8090
8091         kfree(buf);
8092 }
8093
8094 /*
8095  * Check whether inode and address range match filter criteria.
8096  */
8097 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8098                                      struct file *file, unsigned long offset,
8099                                      unsigned long size)
8100 {
8101         /* d_inode(NULL) won't be equal to any mapped user-space file */
8102         if (!filter->path.dentry)
8103                 return false;
8104
8105         if (d_inode(filter->path.dentry) != file_inode(file))
8106                 return false;
8107
8108         if (filter->offset > offset + size)
8109                 return false;
8110
8111         if (filter->offset + filter->size < offset)
8112                 return false;
8113
8114         return true;
8115 }
8116
8117 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8118                                         struct vm_area_struct *vma,
8119                                         struct perf_addr_filter_range *fr)
8120 {
8121         unsigned long vma_size = vma->vm_end - vma->vm_start;
8122         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8123         struct file *file = vma->vm_file;
8124
8125         if (!perf_addr_filter_match(filter, file, off, vma_size))
8126                 return false;
8127
8128         if (filter->offset < off) {
8129                 fr->start = vma->vm_start;
8130                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8131         } else {
8132                 fr->start = vma->vm_start + filter->offset - off;
8133                 fr->size = min(vma->vm_end - fr->start, filter->size);
8134         }
8135
8136         return true;
8137 }
8138
8139 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8140 {
8141         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8142         struct vm_area_struct *vma = data;
8143         struct perf_addr_filter *filter;
8144         unsigned int restart = 0, count = 0;
8145         unsigned long flags;
8146
8147         if (!has_addr_filter(event))
8148                 return;
8149
8150         if (!vma->vm_file)
8151                 return;
8152
8153         raw_spin_lock_irqsave(&ifh->lock, flags);
8154         list_for_each_entry(filter, &ifh->list, entry) {
8155                 if (perf_addr_filter_vma_adjust(filter, vma,
8156                                                 &event->addr_filter_ranges[count]))
8157                         restart++;
8158
8159                 count++;
8160         }
8161
8162         if (restart)
8163                 event->addr_filters_gen++;
8164         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8165
8166         if (restart)
8167                 perf_event_stop(event, 1);
8168 }
8169
8170 /*
8171  * Adjust all task's events' filters to the new vma
8172  */
8173 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8174 {
8175         struct perf_event_context *ctx;
8176         int ctxn;
8177
8178         /*
8179          * Data tracing isn't supported yet and as such there is no need
8180          * to keep track of anything that isn't related to executable code:
8181          */
8182         if (!(vma->vm_flags & VM_EXEC))
8183                 return;
8184
8185         rcu_read_lock();
8186         for_each_task_context_nr(ctxn) {
8187                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8188                 if (!ctx)
8189                         continue;
8190
8191                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8192         }
8193         rcu_read_unlock();
8194 }
8195
8196 void perf_event_mmap(struct vm_area_struct *vma)
8197 {
8198         struct perf_mmap_event mmap_event;
8199
8200         if (!atomic_read(&nr_mmap_events))
8201                 return;
8202
8203         mmap_event = (struct perf_mmap_event){
8204                 .vma    = vma,
8205                 /* .file_name */
8206                 /* .file_size */
8207                 .event_id  = {
8208                         .header = {
8209                                 .type = PERF_RECORD_MMAP,
8210                                 .misc = PERF_RECORD_MISC_USER,
8211                                 /* .size */
8212                         },
8213                         /* .pid */
8214                         /* .tid */
8215                         .start  = vma->vm_start,
8216                         .len    = vma->vm_end - vma->vm_start,
8217                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8218                 },
8219                 /* .maj (attr_mmap2 only) */
8220                 /* .min (attr_mmap2 only) */
8221                 /* .ino (attr_mmap2 only) */
8222                 /* .ino_generation (attr_mmap2 only) */
8223                 /* .prot (attr_mmap2 only) */
8224                 /* .flags (attr_mmap2 only) */
8225         };
8226
8227         perf_addr_filters_adjust(vma);
8228         perf_event_mmap_event(&mmap_event);
8229 }
8230
8231 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8232                           unsigned long size, u64 flags)
8233 {
8234         struct perf_output_handle handle;
8235         struct perf_sample_data sample;
8236         struct perf_aux_event {
8237                 struct perf_event_header        header;
8238                 u64                             offset;
8239                 u64                             size;
8240                 u64                             flags;
8241         } rec = {
8242                 .header = {
8243                         .type = PERF_RECORD_AUX,
8244                         .misc = 0,
8245                         .size = sizeof(rec),
8246                 },
8247                 .offset         = head,
8248                 .size           = size,
8249                 .flags          = flags,
8250         };
8251         int ret;
8252
8253         perf_event_header__init_id(&rec.header, &sample, event);
8254         ret = perf_output_begin(&handle, event, rec.header.size);
8255
8256         if (ret)
8257                 return;
8258
8259         perf_output_put(&handle, rec);
8260         perf_event__output_id_sample(event, &handle, &sample);
8261
8262         perf_output_end(&handle);
8263 }
8264
8265 /*
8266  * Lost/dropped samples logging
8267  */
8268 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8269 {
8270         struct perf_output_handle handle;
8271         struct perf_sample_data sample;
8272         int ret;
8273
8274         struct {
8275                 struct perf_event_header        header;
8276                 u64                             lost;
8277         } lost_samples_event = {
8278                 .header = {
8279                         .type = PERF_RECORD_LOST_SAMPLES,
8280                         .misc = 0,
8281                         .size = sizeof(lost_samples_event),
8282                 },
8283                 .lost           = lost,
8284         };
8285
8286         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8287
8288         ret = perf_output_begin(&handle, event,
8289                                 lost_samples_event.header.size);
8290         if (ret)
8291                 return;
8292
8293         perf_output_put(&handle, lost_samples_event);
8294         perf_event__output_id_sample(event, &handle, &sample);
8295         perf_output_end(&handle);
8296 }
8297
8298 /*
8299  * context_switch tracking
8300  */
8301
8302 struct perf_switch_event {
8303         struct task_struct      *task;
8304         struct task_struct      *next_prev;
8305
8306         struct {
8307                 struct perf_event_header        header;
8308                 u32                             next_prev_pid;
8309                 u32                             next_prev_tid;
8310         } event_id;
8311 };
8312
8313 static int perf_event_switch_match(struct perf_event *event)
8314 {
8315         return event->attr.context_switch;
8316 }
8317
8318 static void perf_event_switch_output(struct perf_event *event, void *data)
8319 {
8320         struct perf_switch_event *se = data;
8321         struct perf_output_handle handle;
8322         struct perf_sample_data sample;
8323         int ret;
8324
8325         if (!perf_event_switch_match(event))
8326                 return;
8327
8328         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8329         if (event->ctx->task) {
8330                 se->event_id.header.type = PERF_RECORD_SWITCH;
8331                 se->event_id.header.size = sizeof(se->event_id.header);
8332         } else {
8333                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8334                 se->event_id.header.size = sizeof(se->event_id);
8335                 se->event_id.next_prev_pid =
8336                                         perf_event_pid(event, se->next_prev);
8337                 se->event_id.next_prev_tid =
8338                                         perf_event_tid(event, se->next_prev);
8339         }
8340
8341         perf_event_header__init_id(&se->event_id.header, &sample, event);
8342
8343         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8344         if (ret)
8345                 return;
8346
8347         if (event->ctx->task)
8348                 perf_output_put(&handle, se->event_id.header);
8349         else
8350                 perf_output_put(&handle, se->event_id);
8351
8352         perf_event__output_id_sample(event, &handle, &sample);
8353
8354         perf_output_end(&handle);
8355 }
8356
8357 static void perf_event_switch(struct task_struct *task,
8358                               struct task_struct *next_prev, bool sched_in)
8359 {
8360         struct perf_switch_event switch_event;
8361
8362         /* N.B. caller checks nr_switch_events != 0 */
8363
8364         switch_event = (struct perf_switch_event){
8365                 .task           = task,
8366                 .next_prev      = next_prev,
8367                 .event_id       = {
8368                         .header = {
8369                                 /* .type */
8370                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8371                                 /* .size */
8372                         },
8373                         /* .next_prev_pid */
8374                         /* .next_prev_tid */
8375                 },
8376         };
8377
8378         if (!sched_in && task->state == TASK_RUNNING)
8379                 switch_event.event_id.header.misc |=
8380                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8381
8382         perf_iterate_sb(perf_event_switch_output,
8383                        &switch_event,
8384                        NULL);
8385 }
8386
8387 /*
8388  * IRQ throttle logging
8389  */
8390
8391 static void perf_log_throttle(struct perf_event *event, int enable)
8392 {
8393         struct perf_output_handle handle;
8394         struct perf_sample_data sample;
8395         int ret;
8396
8397         struct {
8398                 struct perf_event_header        header;
8399                 u64                             time;
8400                 u64                             id;
8401                 u64                             stream_id;
8402         } throttle_event = {
8403                 .header = {
8404                         .type = PERF_RECORD_THROTTLE,
8405                         .misc = 0,
8406                         .size = sizeof(throttle_event),
8407                 },
8408                 .time           = perf_event_clock(event),
8409                 .id             = primary_event_id(event),
8410                 .stream_id      = event->id,
8411         };
8412
8413         if (enable)
8414                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8415
8416         perf_event_header__init_id(&throttle_event.header, &sample, event);
8417
8418         ret = perf_output_begin(&handle, event,
8419                                 throttle_event.header.size);
8420         if (ret)
8421                 return;
8422
8423         perf_output_put(&handle, throttle_event);
8424         perf_event__output_id_sample(event, &handle, &sample);
8425         perf_output_end(&handle);
8426 }
8427
8428 /*
8429  * ksymbol register/unregister tracking
8430  */
8431
8432 struct perf_ksymbol_event {
8433         const char      *name;
8434         int             name_len;
8435         struct {
8436                 struct perf_event_header        header;
8437                 u64                             addr;
8438                 u32                             len;
8439                 u16                             ksym_type;
8440                 u16                             flags;
8441         } event_id;
8442 };
8443
8444 static int perf_event_ksymbol_match(struct perf_event *event)
8445 {
8446         return event->attr.ksymbol;
8447 }
8448
8449 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8450 {
8451         struct perf_ksymbol_event *ksymbol_event = data;
8452         struct perf_output_handle handle;
8453         struct perf_sample_data sample;
8454         int ret;
8455
8456         if (!perf_event_ksymbol_match(event))
8457                 return;
8458
8459         perf_event_header__init_id(&ksymbol_event->event_id.header,
8460                                    &sample, event);
8461         ret = perf_output_begin(&handle, event,
8462                                 ksymbol_event->event_id.header.size);
8463         if (ret)
8464                 return;
8465
8466         perf_output_put(&handle, ksymbol_event->event_id);
8467         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8468         perf_event__output_id_sample(event, &handle, &sample);
8469
8470         perf_output_end(&handle);
8471 }
8472
8473 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8474                         const char *sym)
8475 {
8476         struct perf_ksymbol_event ksymbol_event;
8477         char name[KSYM_NAME_LEN];
8478         u16 flags = 0;
8479         int name_len;
8480
8481         if (!atomic_read(&nr_ksymbol_events))
8482                 return;
8483
8484         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8485             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8486                 goto err;
8487
8488         strlcpy(name, sym, KSYM_NAME_LEN);
8489         name_len = strlen(name) + 1;
8490         while (!IS_ALIGNED(name_len, sizeof(u64)))
8491                 name[name_len++] = '\0';
8492         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8493
8494         if (unregister)
8495                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8496
8497         ksymbol_event = (struct perf_ksymbol_event){
8498                 .name = name,
8499                 .name_len = name_len,
8500                 .event_id = {
8501                         .header = {
8502                                 .type = PERF_RECORD_KSYMBOL,
8503                                 .size = sizeof(ksymbol_event.event_id) +
8504                                         name_len,
8505                         },
8506                         .addr = addr,
8507                         .len = len,
8508                         .ksym_type = ksym_type,
8509                         .flags = flags,
8510                 },
8511         };
8512
8513         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8514         return;
8515 err:
8516         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8517 }
8518
8519 /*
8520  * bpf program load/unload tracking
8521  */
8522
8523 struct perf_bpf_event {
8524         struct bpf_prog *prog;
8525         struct {
8526                 struct perf_event_header        header;
8527                 u16                             type;
8528                 u16                             flags;
8529                 u32                             id;
8530                 u8                              tag[BPF_TAG_SIZE];
8531         } event_id;
8532 };
8533
8534 static int perf_event_bpf_match(struct perf_event *event)
8535 {
8536         return event->attr.bpf_event;
8537 }
8538
8539 static void perf_event_bpf_output(struct perf_event *event, void *data)
8540 {
8541         struct perf_bpf_event *bpf_event = data;
8542         struct perf_output_handle handle;
8543         struct perf_sample_data sample;
8544         int ret;
8545
8546         if (!perf_event_bpf_match(event))
8547                 return;
8548
8549         perf_event_header__init_id(&bpf_event->event_id.header,
8550                                    &sample, event);
8551         ret = perf_output_begin(&handle, event,
8552                                 bpf_event->event_id.header.size);
8553         if (ret)
8554                 return;
8555
8556         perf_output_put(&handle, bpf_event->event_id);
8557         perf_event__output_id_sample(event, &handle, &sample);
8558
8559         perf_output_end(&handle);
8560 }
8561
8562 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8563                                          enum perf_bpf_event_type type)
8564 {
8565         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8566         int i;
8567
8568         if (prog->aux->func_cnt == 0) {
8569                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8570                                    (u64)(unsigned long)prog->bpf_func,
8571                                    prog->jited_len, unregister,
8572                                    prog->aux->ksym.name);
8573         } else {
8574                 for (i = 0; i < prog->aux->func_cnt; i++) {
8575                         struct bpf_prog *subprog = prog->aux->func[i];
8576
8577                         perf_event_ksymbol(
8578                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8579                                 (u64)(unsigned long)subprog->bpf_func,
8580                                 subprog->jited_len, unregister,
8581                                 prog->aux->ksym.name);
8582                 }
8583         }
8584 }
8585
8586 void perf_event_bpf_event(struct bpf_prog *prog,
8587                           enum perf_bpf_event_type type,
8588                           u16 flags)
8589 {
8590         struct perf_bpf_event bpf_event;
8591
8592         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8593             type >= PERF_BPF_EVENT_MAX)
8594                 return;
8595
8596         switch (type) {
8597         case PERF_BPF_EVENT_PROG_LOAD:
8598         case PERF_BPF_EVENT_PROG_UNLOAD:
8599                 if (atomic_read(&nr_ksymbol_events))
8600                         perf_event_bpf_emit_ksymbols(prog, type);
8601                 break;
8602         default:
8603                 break;
8604         }
8605
8606         if (!atomic_read(&nr_bpf_events))
8607                 return;
8608
8609         bpf_event = (struct perf_bpf_event){
8610                 .prog = prog,
8611                 .event_id = {
8612                         .header = {
8613                                 .type = PERF_RECORD_BPF_EVENT,
8614                                 .size = sizeof(bpf_event.event_id),
8615                         },
8616                         .type = type,
8617                         .flags = flags,
8618                         .id = prog->aux->id,
8619                 },
8620         };
8621
8622         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8623
8624         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8625         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8626 }
8627
8628 void perf_event_itrace_started(struct perf_event *event)
8629 {
8630         event->attach_state |= PERF_ATTACH_ITRACE;
8631 }
8632
8633 static void perf_log_itrace_start(struct perf_event *event)
8634 {
8635         struct perf_output_handle handle;
8636         struct perf_sample_data sample;
8637         struct perf_aux_event {
8638                 struct perf_event_header        header;
8639                 u32                             pid;
8640                 u32                             tid;
8641         } rec;
8642         int ret;
8643
8644         if (event->parent)
8645                 event = event->parent;
8646
8647         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8648             event->attach_state & PERF_ATTACH_ITRACE)
8649                 return;
8650
8651         rec.header.type = PERF_RECORD_ITRACE_START;
8652         rec.header.misc = 0;
8653         rec.header.size = sizeof(rec);
8654         rec.pid = perf_event_pid(event, current);
8655         rec.tid = perf_event_tid(event, current);
8656
8657         perf_event_header__init_id(&rec.header, &sample, event);
8658         ret = perf_output_begin(&handle, event, rec.header.size);
8659
8660         if (ret)
8661                 return;
8662
8663         perf_output_put(&handle, rec);
8664         perf_event__output_id_sample(event, &handle, &sample);
8665
8666         perf_output_end(&handle);
8667 }
8668
8669 static int
8670 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8671 {
8672         struct hw_perf_event *hwc = &event->hw;
8673         int ret = 0;
8674         u64 seq;
8675
8676         seq = __this_cpu_read(perf_throttled_seq);
8677         if (seq != hwc->interrupts_seq) {
8678                 hwc->interrupts_seq = seq;
8679                 hwc->interrupts = 1;
8680         } else {
8681                 hwc->interrupts++;
8682                 if (unlikely(throttle
8683                              && hwc->interrupts >= max_samples_per_tick)) {
8684                         __this_cpu_inc(perf_throttled_count);
8685                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8686                         hwc->interrupts = MAX_INTERRUPTS;
8687                         perf_log_throttle(event, 0);
8688                         ret = 1;
8689                 }
8690         }
8691
8692         if (event->attr.freq) {
8693                 u64 now = perf_clock();
8694                 s64 delta = now - hwc->freq_time_stamp;
8695
8696                 hwc->freq_time_stamp = now;
8697
8698                 if (delta > 0 && delta < 2*TICK_NSEC)
8699                         perf_adjust_period(event, delta, hwc->last_period, true);
8700         }
8701
8702         return ret;
8703 }
8704
8705 int perf_event_account_interrupt(struct perf_event *event)
8706 {
8707         return __perf_event_account_interrupt(event, 1);
8708 }
8709
8710 /*
8711  * Generic event overflow handling, sampling.
8712  */
8713
8714 static int __perf_event_overflow(struct perf_event *event,
8715                                    int throttle, struct perf_sample_data *data,
8716                                    struct pt_regs *regs)
8717 {
8718         int events = atomic_read(&event->event_limit);
8719         int ret = 0;
8720
8721         /*
8722          * Non-sampling counters might still use the PMI to fold short
8723          * hardware counters, ignore those.
8724          */
8725         if (unlikely(!is_sampling_event(event)))
8726                 return 0;
8727
8728         ret = __perf_event_account_interrupt(event, throttle);
8729
8730         /*
8731          * XXX event_limit might not quite work as expected on inherited
8732          * events
8733          */
8734
8735         event->pending_kill = POLL_IN;
8736         if (events && atomic_dec_and_test(&event->event_limit)) {
8737                 ret = 1;
8738                 event->pending_kill = POLL_HUP;
8739
8740                 perf_event_disable_inatomic(event);
8741         }
8742
8743         READ_ONCE(event->overflow_handler)(event, data, regs);
8744
8745         if (*perf_event_fasync(event) && event->pending_kill) {
8746                 event->pending_wakeup = 1;
8747                 irq_work_queue(&event->pending);
8748         }
8749
8750         return ret;
8751 }
8752
8753 int perf_event_overflow(struct perf_event *event,
8754                           struct perf_sample_data *data,
8755                           struct pt_regs *regs)
8756 {
8757         return __perf_event_overflow(event, 1, data, regs);
8758 }
8759
8760 /*
8761  * Generic software event infrastructure
8762  */
8763
8764 struct swevent_htable {
8765         struct swevent_hlist            *swevent_hlist;
8766         struct mutex                    hlist_mutex;
8767         int                             hlist_refcount;
8768
8769         /* Recursion avoidance in each contexts */
8770         int                             recursion[PERF_NR_CONTEXTS];
8771 };
8772
8773 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8774
8775 /*
8776  * We directly increment event->count and keep a second value in
8777  * event->hw.period_left to count intervals. This period event
8778  * is kept in the range [-sample_period, 0] so that we can use the
8779  * sign as trigger.
8780  */
8781
8782 u64 perf_swevent_set_period(struct perf_event *event)
8783 {
8784         struct hw_perf_event *hwc = &event->hw;
8785         u64 period = hwc->last_period;
8786         u64 nr, offset;
8787         s64 old, val;
8788
8789         hwc->last_period = hwc->sample_period;
8790
8791 again:
8792         old = val = local64_read(&hwc->period_left);
8793         if (val < 0)
8794                 return 0;
8795
8796         nr = div64_u64(period + val, period);
8797         offset = nr * period;
8798         val -= offset;
8799         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8800                 goto again;
8801
8802         return nr;
8803 }
8804
8805 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8806                                     struct perf_sample_data *data,
8807                                     struct pt_regs *regs)
8808 {
8809         struct hw_perf_event *hwc = &event->hw;
8810         int throttle = 0;
8811
8812         if (!overflow)
8813                 overflow = perf_swevent_set_period(event);
8814
8815         if (hwc->interrupts == MAX_INTERRUPTS)
8816                 return;
8817
8818         for (; overflow; overflow--) {
8819                 if (__perf_event_overflow(event, throttle,
8820                                             data, regs)) {
8821                         /*
8822                          * We inhibit the overflow from happening when
8823                          * hwc->interrupts == MAX_INTERRUPTS.
8824                          */
8825                         break;
8826                 }
8827                 throttle = 1;
8828         }
8829 }
8830
8831 static void perf_swevent_event(struct perf_event *event, u64 nr,
8832                                struct perf_sample_data *data,
8833                                struct pt_regs *regs)
8834 {
8835         struct hw_perf_event *hwc = &event->hw;
8836
8837         local64_add(nr, &event->count);
8838
8839         if (!regs)
8840                 return;
8841
8842         if (!is_sampling_event(event))
8843                 return;
8844
8845         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8846                 data->period = nr;
8847                 return perf_swevent_overflow(event, 1, data, regs);
8848         } else
8849                 data->period = event->hw.last_period;
8850
8851         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8852                 return perf_swevent_overflow(event, 1, data, regs);
8853
8854         if (local64_add_negative(nr, &hwc->period_left))
8855                 return;
8856
8857         perf_swevent_overflow(event, 0, data, regs);
8858 }
8859
8860 static int perf_exclude_event(struct perf_event *event,
8861                               struct pt_regs *regs)
8862 {
8863         if (event->hw.state & PERF_HES_STOPPED)
8864                 return 1;
8865
8866         if (regs) {
8867                 if (event->attr.exclude_user && user_mode(regs))
8868                         return 1;
8869
8870                 if (event->attr.exclude_kernel && !user_mode(regs))
8871                         return 1;
8872         }
8873
8874         return 0;
8875 }
8876
8877 static int perf_swevent_match(struct perf_event *event,
8878                                 enum perf_type_id type,
8879                                 u32 event_id,
8880                                 struct perf_sample_data *data,
8881                                 struct pt_regs *regs)
8882 {
8883         if (event->attr.type != type)
8884                 return 0;
8885
8886         if (event->attr.config != event_id)
8887                 return 0;
8888
8889         if (perf_exclude_event(event, regs))
8890                 return 0;
8891
8892         return 1;
8893 }
8894
8895 static inline u64 swevent_hash(u64 type, u32 event_id)
8896 {
8897         u64 val = event_id | (type << 32);
8898
8899         return hash_64(val, SWEVENT_HLIST_BITS);
8900 }
8901
8902 static inline struct hlist_head *
8903 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8904 {
8905         u64 hash = swevent_hash(type, event_id);
8906
8907         return &hlist->heads[hash];
8908 }
8909
8910 /* For the read side: events when they trigger */
8911 static inline struct hlist_head *
8912 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8913 {
8914         struct swevent_hlist *hlist;
8915
8916         hlist = rcu_dereference(swhash->swevent_hlist);
8917         if (!hlist)
8918                 return NULL;
8919
8920         return __find_swevent_head(hlist, type, event_id);
8921 }
8922
8923 /* For the event head insertion and removal in the hlist */
8924 static inline struct hlist_head *
8925 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8926 {
8927         struct swevent_hlist *hlist;
8928         u32 event_id = event->attr.config;
8929         u64 type = event->attr.type;
8930
8931         /*
8932          * Event scheduling is always serialized against hlist allocation
8933          * and release. Which makes the protected version suitable here.
8934          * The context lock guarantees that.
8935          */
8936         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8937                                           lockdep_is_held(&event->ctx->lock));
8938         if (!hlist)
8939                 return NULL;
8940
8941         return __find_swevent_head(hlist, type, event_id);
8942 }
8943
8944 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8945                                     u64 nr,
8946                                     struct perf_sample_data *data,
8947                                     struct pt_regs *regs)
8948 {
8949         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8950         struct perf_event *event;
8951         struct hlist_head *head;
8952
8953         rcu_read_lock();
8954         head = find_swevent_head_rcu(swhash, type, event_id);
8955         if (!head)
8956                 goto end;
8957
8958         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8959                 if (perf_swevent_match(event, type, event_id, data, regs))
8960                         perf_swevent_event(event, nr, data, regs);
8961         }
8962 end:
8963         rcu_read_unlock();
8964 }
8965
8966 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8967
8968 int perf_swevent_get_recursion_context(void)
8969 {
8970         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8971
8972         return get_recursion_context(swhash->recursion);
8973 }
8974 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8975
8976 void perf_swevent_put_recursion_context(int rctx)
8977 {
8978         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8979
8980         put_recursion_context(swhash->recursion, rctx);
8981 }
8982
8983 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8984 {
8985         struct perf_sample_data data;
8986
8987         if (WARN_ON_ONCE(!regs))
8988                 return;
8989
8990         perf_sample_data_init(&data, addr, 0);
8991         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8992 }
8993
8994 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8995 {
8996         int rctx;
8997
8998         preempt_disable_notrace();
8999         rctx = perf_swevent_get_recursion_context();
9000         if (unlikely(rctx < 0))
9001                 goto fail;
9002
9003         ___perf_sw_event(event_id, nr, regs, addr);
9004
9005         perf_swevent_put_recursion_context(rctx);
9006 fail:
9007         preempt_enable_notrace();
9008 }
9009
9010 static void perf_swevent_read(struct perf_event *event)
9011 {
9012 }
9013
9014 static int perf_swevent_add(struct perf_event *event, int flags)
9015 {
9016         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9017         struct hw_perf_event *hwc = &event->hw;
9018         struct hlist_head *head;
9019
9020         if (is_sampling_event(event)) {
9021                 hwc->last_period = hwc->sample_period;
9022                 perf_swevent_set_period(event);
9023         }
9024
9025         hwc->state = !(flags & PERF_EF_START);
9026
9027         head = find_swevent_head(swhash, event);
9028         if (WARN_ON_ONCE(!head))
9029                 return -EINVAL;
9030
9031         hlist_add_head_rcu(&event->hlist_entry, head);
9032         perf_event_update_userpage(event);
9033
9034         return 0;
9035 }
9036
9037 static void perf_swevent_del(struct perf_event *event, int flags)
9038 {
9039         hlist_del_rcu(&event->hlist_entry);
9040 }
9041
9042 static void perf_swevent_start(struct perf_event *event, int flags)
9043 {
9044         event->hw.state = 0;
9045 }
9046
9047 static void perf_swevent_stop(struct perf_event *event, int flags)
9048 {
9049         event->hw.state = PERF_HES_STOPPED;
9050 }
9051
9052 /* Deref the hlist from the update side */
9053 static inline struct swevent_hlist *
9054 swevent_hlist_deref(struct swevent_htable *swhash)
9055 {
9056         return rcu_dereference_protected(swhash->swevent_hlist,
9057                                          lockdep_is_held(&swhash->hlist_mutex));
9058 }
9059
9060 static void swevent_hlist_release(struct swevent_htable *swhash)
9061 {
9062         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9063
9064         if (!hlist)
9065                 return;
9066
9067         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9068         kfree_rcu(hlist, rcu_head);
9069 }
9070
9071 static void swevent_hlist_put_cpu(int cpu)
9072 {
9073         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9074
9075         mutex_lock(&swhash->hlist_mutex);
9076
9077         if (!--swhash->hlist_refcount)
9078                 swevent_hlist_release(swhash);
9079
9080         mutex_unlock(&swhash->hlist_mutex);
9081 }
9082
9083 static void swevent_hlist_put(void)
9084 {
9085         int cpu;
9086
9087         for_each_possible_cpu(cpu)
9088                 swevent_hlist_put_cpu(cpu);
9089 }
9090
9091 static int swevent_hlist_get_cpu(int cpu)
9092 {
9093         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9094         int err = 0;
9095
9096         mutex_lock(&swhash->hlist_mutex);
9097         if (!swevent_hlist_deref(swhash) &&
9098             cpumask_test_cpu(cpu, perf_online_mask)) {
9099                 struct swevent_hlist *hlist;
9100
9101                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9102                 if (!hlist) {
9103                         err = -ENOMEM;
9104                         goto exit;
9105                 }
9106                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9107         }
9108         swhash->hlist_refcount++;
9109 exit:
9110         mutex_unlock(&swhash->hlist_mutex);
9111
9112         return err;
9113 }
9114
9115 static int swevent_hlist_get(void)
9116 {
9117         int err, cpu, failed_cpu;
9118
9119         mutex_lock(&pmus_lock);
9120         for_each_possible_cpu(cpu) {
9121                 err = swevent_hlist_get_cpu(cpu);
9122                 if (err) {
9123                         failed_cpu = cpu;
9124                         goto fail;
9125                 }
9126         }
9127         mutex_unlock(&pmus_lock);
9128         return 0;
9129 fail:
9130         for_each_possible_cpu(cpu) {
9131                 if (cpu == failed_cpu)
9132                         break;
9133                 swevent_hlist_put_cpu(cpu);
9134         }
9135         mutex_unlock(&pmus_lock);
9136         return err;
9137 }
9138
9139 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9140
9141 static void sw_perf_event_destroy(struct perf_event *event)
9142 {
9143         u64 event_id = event->attr.config;
9144
9145         WARN_ON(event->parent);
9146
9147         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9148         swevent_hlist_put();
9149 }
9150
9151 static int perf_swevent_init(struct perf_event *event)
9152 {
9153         u64 event_id = event->attr.config;
9154
9155         if (event->attr.type != PERF_TYPE_SOFTWARE)
9156                 return -ENOENT;
9157
9158         /*
9159          * no branch sampling for software events
9160          */
9161         if (has_branch_stack(event))
9162                 return -EOPNOTSUPP;
9163
9164         switch (event_id) {
9165         case PERF_COUNT_SW_CPU_CLOCK:
9166         case PERF_COUNT_SW_TASK_CLOCK:
9167                 return -ENOENT;
9168
9169         default:
9170                 break;
9171         }
9172
9173         if (event_id >= PERF_COUNT_SW_MAX)
9174                 return -ENOENT;
9175
9176         if (!event->parent) {
9177                 int err;
9178
9179                 err = swevent_hlist_get();
9180                 if (err)
9181                         return err;
9182
9183                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9184                 event->destroy = sw_perf_event_destroy;
9185         }
9186
9187         return 0;
9188 }
9189
9190 static struct pmu perf_swevent = {
9191         .task_ctx_nr    = perf_sw_context,
9192
9193         .capabilities   = PERF_PMU_CAP_NO_NMI,
9194
9195         .event_init     = perf_swevent_init,
9196         .add            = perf_swevent_add,
9197         .del            = perf_swevent_del,
9198         .start          = perf_swevent_start,
9199         .stop           = perf_swevent_stop,
9200         .read           = perf_swevent_read,
9201 };
9202
9203 #ifdef CONFIG_EVENT_TRACING
9204
9205 static int perf_tp_filter_match(struct perf_event *event,
9206                                 struct perf_sample_data *data)
9207 {
9208         void *record = data->raw->frag.data;
9209
9210         /* only top level events have filters set */
9211         if (event->parent)
9212                 event = event->parent;
9213
9214         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9215                 return 1;
9216         return 0;
9217 }
9218
9219 static int perf_tp_event_match(struct perf_event *event,
9220                                 struct perf_sample_data *data,
9221                                 struct pt_regs *regs)
9222 {
9223         if (event->hw.state & PERF_HES_STOPPED)
9224                 return 0;
9225         /*
9226          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9227          */
9228         if (event->attr.exclude_kernel && !user_mode(regs))
9229                 return 0;
9230
9231         if (!perf_tp_filter_match(event, data))
9232                 return 0;
9233
9234         return 1;
9235 }
9236
9237 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9238                                struct trace_event_call *call, u64 count,
9239                                struct pt_regs *regs, struct hlist_head *head,
9240                                struct task_struct *task)
9241 {
9242         if (bpf_prog_array_valid(call)) {
9243                 *(struct pt_regs **)raw_data = regs;
9244                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9245                         perf_swevent_put_recursion_context(rctx);
9246                         return;
9247                 }
9248         }
9249         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9250                       rctx, task);
9251 }
9252 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9253
9254 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9255                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9256                    struct task_struct *task)
9257 {
9258         struct perf_sample_data data;
9259         struct perf_event *event;
9260
9261         struct perf_raw_record raw = {
9262                 .frag = {
9263                         .size = entry_size,
9264                         .data = record,
9265                 },
9266         };
9267
9268         perf_sample_data_init(&data, 0, 0);
9269         data.raw = &raw;
9270
9271         perf_trace_buf_update(record, event_type);
9272
9273         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9274                 if (perf_tp_event_match(event, &data, regs))
9275                         perf_swevent_event(event, count, &data, regs);
9276         }
9277
9278         /*
9279          * If we got specified a target task, also iterate its context and
9280          * deliver this event there too.
9281          */
9282         if (task && task != current) {
9283                 struct perf_event_context *ctx;
9284                 struct trace_entry *entry = record;
9285
9286                 rcu_read_lock();
9287                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9288                 if (!ctx)
9289                         goto unlock;
9290
9291                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9292                         if (event->cpu != smp_processor_id())
9293                                 continue;
9294                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9295                                 continue;
9296                         if (event->attr.config != entry->type)
9297                                 continue;
9298                         if (perf_tp_event_match(event, &data, regs))
9299                                 perf_swevent_event(event, count, &data, regs);
9300                 }
9301 unlock:
9302                 rcu_read_unlock();
9303         }
9304
9305         perf_swevent_put_recursion_context(rctx);
9306 }
9307 EXPORT_SYMBOL_GPL(perf_tp_event);
9308
9309 static void tp_perf_event_destroy(struct perf_event *event)
9310 {
9311         perf_trace_destroy(event);
9312 }
9313
9314 static int perf_tp_event_init(struct perf_event *event)
9315 {
9316         int err;
9317
9318         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9319                 return -ENOENT;
9320
9321         /*
9322          * no branch sampling for tracepoint events
9323          */
9324         if (has_branch_stack(event))
9325                 return -EOPNOTSUPP;
9326
9327         err = perf_trace_init(event);
9328         if (err)
9329                 return err;
9330
9331         event->destroy = tp_perf_event_destroy;
9332
9333         return 0;
9334 }
9335
9336 static struct pmu perf_tracepoint = {
9337         .task_ctx_nr    = perf_sw_context,
9338
9339         .event_init     = perf_tp_event_init,
9340         .add            = perf_trace_add,
9341         .del            = perf_trace_del,
9342         .start          = perf_swevent_start,
9343         .stop           = perf_swevent_stop,
9344         .read           = perf_swevent_read,
9345 };
9346
9347 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9348 /*
9349  * Flags in config, used by dynamic PMU kprobe and uprobe
9350  * The flags should match following PMU_FORMAT_ATTR().
9351  *
9352  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9353  *                               if not set, create kprobe/uprobe
9354  *
9355  * The following values specify a reference counter (or semaphore in the
9356  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9357  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9358  *
9359  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9360  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9361  */
9362 enum perf_probe_config {
9363         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9364         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9365         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9366 };
9367
9368 PMU_FORMAT_ATTR(retprobe, "config:0");
9369 #endif
9370
9371 #ifdef CONFIG_KPROBE_EVENTS
9372 static struct attribute *kprobe_attrs[] = {
9373         &format_attr_retprobe.attr,
9374         NULL,
9375 };
9376
9377 static struct attribute_group kprobe_format_group = {
9378         .name = "format",
9379         .attrs = kprobe_attrs,
9380 };
9381
9382 static const struct attribute_group *kprobe_attr_groups[] = {
9383         &kprobe_format_group,
9384         NULL,
9385 };
9386
9387 static int perf_kprobe_event_init(struct perf_event *event);
9388 static struct pmu perf_kprobe = {
9389         .task_ctx_nr    = perf_sw_context,
9390         .event_init     = perf_kprobe_event_init,
9391         .add            = perf_trace_add,
9392         .del            = perf_trace_del,
9393         .start          = perf_swevent_start,
9394         .stop           = perf_swevent_stop,
9395         .read           = perf_swevent_read,
9396         .attr_groups    = kprobe_attr_groups,
9397 };
9398
9399 static int perf_kprobe_event_init(struct perf_event *event)
9400 {
9401         int err;
9402         bool is_retprobe;
9403
9404         if (event->attr.type != perf_kprobe.type)
9405                 return -ENOENT;
9406
9407         if (!capable(CAP_SYS_ADMIN))
9408                 return -EACCES;
9409
9410         /*
9411          * no branch sampling for probe events
9412          */
9413         if (has_branch_stack(event))
9414                 return -EOPNOTSUPP;
9415
9416         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9417         err = perf_kprobe_init(event, is_retprobe);
9418         if (err)
9419                 return err;
9420
9421         event->destroy = perf_kprobe_destroy;
9422
9423         return 0;
9424 }
9425 #endif /* CONFIG_KPROBE_EVENTS */
9426
9427 #ifdef CONFIG_UPROBE_EVENTS
9428 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9429
9430 static struct attribute *uprobe_attrs[] = {
9431         &format_attr_retprobe.attr,
9432         &format_attr_ref_ctr_offset.attr,
9433         NULL,
9434 };
9435
9436 static struct attribute_group uprobe_format_group = {
9437         .name = "format",
9438         .attrs = uprobe_attrs,
9439 };
9440
9441 static const struct attribute_group *uprobe_attr_groups[] = {
9442         &uprobe_format_group,
9443         NULL,
9444 };
9445
9446 static int perf_uprobe_event_init(struct perf_event *event);
9447 static struct pmu perf_uprobe = {
9448         .task_ctx_nr    = perf_sw_context,
9449         .event_init     = perf_uprobe_event_init,
9450         .add            = perf_trace_add,
9451         .del            = perf_trace_del,
9452         .start          = perf_swevent_start,
9453         .stop           = perf_swevent_stop,
9454         .read           = perf_swevent_read,
9455         .attr_groups    = uprobe_attr_groups,
9456 };
9457
9458 static int perf_uprobe_event_init(struct perf_event *event)
9459 {
9460         int err;
9461         unsigned long ref_ctr_offset;
9462         bool is_retprobe;
9463
9464         if (event->attr.type != perf_uprobe.type)
9465                 return -ENOENT;
9466
9467         if (!capable(CAP_SYS_ADMIN))
9468                 return -EACCES;
9469
9470         /*
9471          * no branch sampling for probe events
9472          */
9473         if (has_branch_stack(event))
9474                 return -EOPNOTSUPP;
9475
9476         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9477         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9478         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9479         if (err)
9480                 return err;
9481
9482         event->destroy = perf_uprobe_destroy;
9483
9484         return 0;
9485 }
9486 #endif /* CONFIG_UPROBE_EVENTS */
9487
9488 static inline void perf_tp_register(void)
9489 {
9490         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9491 #ifdef CONFIG_KPROBE_EVENTS
9492         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9493 #endif
9494 #ifdef CONFIG_UPROBE_EVENTS
9495         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9496 #endif
9497 }
9498
9499 static void perf_event_free_filter(struct perf_event *event)
9500 {
9501         ftrace_profile_free_filter(event);
9502 }
9503
9504 #ifdef CONFIG_BPF_SYSCALL
9505 static void bpf_overflow_handler(struct perf_event *event,
9506                                  struct perf_sample_data *data,
9507                                  struct pt_regs *regs)
9508 {
9509         struct bpf_perf_event_data_kern ctx = {
9510                 .data = data,
9511                 .event = event,
9512         };
9513         int ret = 0;
9514
9515         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9516         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9517                 goto out;
9518         rcu_read_lock();
9519         ret = BPF_PROG_RUN(event->prog, &ctx);
9520         rcu_read_unlock();
9521 out:
9522         __this_cpu_dec(bpf_prog_active);
9523         if (!ret)
9524                 return;
9525
9526         event->orig_overflow_handler(event, data, regs);
9527 }
9528
9529 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9530 {
9531         struct bpf_prog *prog;
9532
9533         if (event->overflow_handler_context)
9534                 /* hw breakpoint or kernel counter */
9535                 return -EINVAL;
9536
9537         if (event->prog)
9538                 return -EEXIST;
9539
9540         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9541         if (IS_ERR(prog))
9542                 return PTR_ERR(prog);
9543
9544         event->prog = prog;
9545         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9546         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9547         return 0;
9548 }
9549
9550 static void perf_event_free_bpf_handler(struct perf_event *event)
9551 {
9552         struct bpf_prog *prog = event->prog;
9553
9554         if (!prog)
9555                 return;
9556
9557         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9558         event->prog = NULL;
9559         bpf_prog_put(prog);
9560 }
9561 #else
9562 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9563 {
9564         return -EOPNOTSUPP;
9565 }
9566 static void perf_event_free_bpf_handler(struct perf_event *event)
9567 {
9568 }
9569 #endif
9570
9571 /*
9572  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9573  * with perf_event_open()
9574  */
9575 static inline bool perf_event_is_tracing(struct perf_event *event)
9576 {
9577         if (event->pmu == &perf_tracepoint)
9578                 return true;
9579 #ifdef CONFIG_KPROBE_EVENTS
9580         if (event->pmu == &perf_kprobe)
9581                 return true;
9582 #endif
9583 #ifdef CONFIG_UPROBE_EVENTS
9584         if (event->pmu == &perf_uprobe)
9585                 return true;
9586 #endif
9587         return false;
9588 }
9589
9590 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9591 {
9592         bool is_kprobe, is_tracepoint, is_syscall_tp;
9593         struct bpf_prog *prog;
9594         int ret;
9595
9596         if (!perf_event_is_tracing(event))
9597                 return perf_event_set_bpf_handler(event, prog_fd);
9598
9599         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9600         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9601         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9602         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9603                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9604                 return -EINVAL;
9605
9606         prog = bpf_prog_get(prog_fd);
9607         if (IS_ERR(prog))
9608                 return PTR_ERR(prog);
9609
9610         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9611             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9612             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9613                 /* valid fd, but invalid bpf program type */
9614                 bpf_prog_put(prog);
9615                 return -EINVAL;
9616         }
9617
9618         /* Kprobe override only works for kprobes, not uprobes. */
9619         if (prog->kprobe_override &&
9620             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9621                 bpf_prog_put(prog);
9622                 return -EINVAL;
9623         }
9624
9625         if (is_tracepoint || is_syscall_tp) {
9626                 int off = trace_event_get_offsets(event->tp_event);
9627
9628                 if (prog->aux->max_ctx_offset > off) {
9629                         bpf_prog_put(prog);
9630                         return -EACCES;
9631                 }
9632         }
9633
9634         ret = perf_event_attach_bpf_prog(event, prog);
9635         if (ret)
9636                 bpf_prog_put(prog);
9637         return ret;
9638 }
9639
9640 static void perf_event_free_bpf_prog(struct perf_event *event)
9641 {
9642         if (!perf_event_is_tracing(event)) {
9643                 perf_event_free_bpf_handler(event);
9644                 return;
9645         }
9646         perf_event_detach_bpf_prog(event);
9647 }
9648
9649 #else
9650
9651 static inline void perf_tp_register(void)
9652 {
9653 }
9654
9655 static void perf_event_free_filter(struct perf_event *event)
9656 {
9657 }
9658
9659 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9660 {
9661         return -ENOENT;
9662 }
9663
9664 static void perf_event_free_bpf_prog(struct perf_event *event)
9665 {
9666 }
9667 #endif /* CONFIG_EVENT_TRACING */
9668
9669 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9670 void perf_bp_event(struct perf_event *bp, void *data)
9671 {
9672         struct perf_sample_data sample;
9673         struct pt_regs *regs = data;
9674
9675         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9676
9677         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9678                 perf_swevent_event(bp, 1, &sample, regs);
9679 }
9680 #endif
9681
9682 /*
9683  * Allocate a new address filter
9684  */
9685 static struct perf_addr_filter *
9686 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9687 {
9688         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9689         struct perf_addr_filter *filter;
9690
9691         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9692         if (!filter)
9693                 return NULL;
9694
9695         INIT_LIST_HEAD(&filter->entry);
9696         list_add_tail(&filter->entry, filters);
9697
9698         return filter;
9699 }
9700
9701 static void free_filters_list(struct list_head *filters)
9702 {
9703         struct perf_addr_filter *filter, *iter;
9704
9705         list_for_each_entry_safe(filter, iter, filters, entry) {
9706                 path_put(&filter->path);
9707                 list_del(&filter->entry);
9708                 kfree(filter);
9709         }
9710 }
9711
9712 /*
9713  * Free existing address filters and optionally install new ones
9714  */
9715 static void perf_addr_filters_splice(struct perf_event *event,
9716                                      struct list_head *head)
9717 {
9718         unsigned long flags;
9719         LIST_HEAD(list);
9720
9721         if (!has_addr_filter(event))
9722                 return;
9723
9724         /* don't bother with children, they don't have their own filters */
9725         if (event->parent)
9726                 return;
9727
9728         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9729
9730         list_splice_init(&event->addr_filters.list, &list);
9731         if (head)
9732                 list_splice(head, &event->addr_filters.list);
9733
9734         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9735
9736         free_filters_list(&list);
9737 }
9738
9739 /*
9740  * Scan through mm's vmas and see if one of them matches the
9741  * @filter; if so, adjust filter's address range.
9742  * Called with mm::mmap_sem down for reading.
9743  */
9744 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9745                                    struct mm_struct *mm,
9746                                    struct perf_addr_filter_range *fr)
9747 {
9748         struct vm_area_struct *vma;
9749
9750         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9751                 if (!vma->vm_file)
9752                         continue;
9753
9754                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9755                         return;
9756         }
9757 }
9758
9759 /*
9760  * Update event's address range filters based on the
9761  * task's existing mappings, if any.
9762  */
9763 static void perf_event_addr_filters_apply(struct perf_event *event)
9764 {
9765         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9766         struct task_struct *task = READ_ONCE(event->ctx->task);
9767         struct perf_addr_filter *filter;
9768         struct mm_struct *mm = NULL;
9769         unsigned int count = 0;
9770         unsigned long flags;
9771
9772         /*
9773          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9774          * will stop on the parent's child_mutex that our caller is also holding
9775          */
9776         if (task == TASK_TOMBSTONE)
9777                 return;
9778
9779         if (ifh->nr_file_filters) {
9780                 mm = get_task_mm(event->ctx->task);
9781                 if (!mm)
9782                         goto restart;
9783
9784                 down_read(&mm->mmap_sem);
9785         }
9786
9787         raw_spin_lock_irqsave(&ifh->lock, flags);
9788         list_for_each_entry(filter, &ifh->list, entry) {
9789                 if (filter->path.dentry) {
9790                         /*
9791                          * Adjust base offset if the filter is associated to a
9792                          * binary that needs to be mapped:
9793                          */
9794                         event->addr_filter_ranges[count].start = 0;
9795                         event->addr_filter_ranges[count].size = 0;
9796
9797                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9798                 } else {
9799                         event->addr_filter_ranges[count].start = filter->offset;
9800                         event->addr_filter_ranges[count].size  = filter->size;
9801                 }
9802
9803                 count++;
9804         }
9805
9806         event->addr_filters_gen++;
9807         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9808
9809         if (ifh->nr_file_filters) {
9810                 up_read(&mm->mmap_sem);
9811
9812                 mmput(mm);
9813         }
9814
9815 restart:
9816         perf_event_stop(event, 1);
9817 }
9818
9819 /*
9820  * Address range filtering: limiting the data to certain
9821  * instruction address ranges. Filters are ioctl()ed to us from
9822  * userspace as ascii strings.
9823  *
9824  * Filter string format:
9825  *
9826  * ACTION RANGE_SPEC
9827  * where ACTION is one of the
9828  *  * "filter": limit the trace to this region
9829  *  * "start": start tracing from this address
9830  *  * "stop": stop tracing at this address/region;
9831  * RANGE_SPEC is
9832  *  * for kernel addresses: <start address>[/<size>]
9833  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9834  *
9835  * if <size> is not specified or is zero, the range is treated as a single
9836  * address; not valid for ACTION=="filter".
9837  */
9838 enum {
9839         IF_ACT_NONE = -1,
9840         IF_ACT_FILTER,
9841         IF_ACT_START,
9842         IF_ACT_STOP,
9843         IF_SRC_FILE,
9844         IF_SRC_KERNEL,
9845         IF_SRC_FILEADDR,
9846         IF_SRC_KERNELADDR,
9847 };
9848
9849 enum {
9850         IF_STATE_ACTION = 0,
9851         IF_STATE_SOURCE,
9852         IF_STATE_END,
9853 };
9854
9855 static const match_table_t if_tokens = {
9856         { IF_ACT_FILTER,        "filter" },
9857         { IF_ACT_START,         "start" },
9858         { IF_ACT_STOP,          "stop" },
9859         { IF_SRC_FILE,          "%u/%u@%s" },
9860         { IF_SRC_KERNEL,        "%u/%u" },
9861         { IF_SRC_FILEADDR,      "%u@%s" },
9862         { IF_SRC_KERNELADDR,    "%u" },
9863         { IF_ACT_NONE,          NULL },
9864 };
9865
9866 /*
9867  * Address filter string parser
9868  */
9869 static int
9870 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9871                              struct list_head *filters)
9872 {
9873         struct perf_addr_filter *filter = NULL;
9874         char *start, *orig, *filename = NULL;
9875         substring_t args[MAX_OPT_ARGS];
9876         int state = IF_STATE_ACTION, token;
9877         unsigned int kernel = 0;
9878         int ret = -EINVAL;
9879
9880         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9881         if (!fstr)
9882                 return -ENOMEM;
9883
9884         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9885                 static const enum perf_addr_filter_action_t actions[] = {
9886                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9887                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9888                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9889                 };
9890                 ret = -EINVAL;
9891
9892                 if (!*start)
9893                         continue;
9894
9895                 /* filter definition begins */
9896                 if (state == IF_STATE_ACTION) {
9897                         filter = perf_addr_filter_new(event, filters);
9898                         if (!filter)
9899                                 goto fail;
9900                 }
9901
9902                 token = match_token(start, if_tokens, args);
9903                 switch (token) {
9904                 case IF_ACT_FILTER:
9905                 case IF_ACT_START:
9906                 case IF_ACT_STOP:
9907                         if (state != IF_STATE_ACTION)
9908                                 goto fail;
9909
9910                         filter->action = actions[token];
9911                         state = IF_STATE_SOURCE;
9912                         break;
9913
9914                 case IF_SRC_KERNELADDR:
9915                 case IF_SRC_KERNEL:
9916                         kernel = 1;
9917                         /* fall through */
9918
9919                 case IF_SRC_FILEADDR:
9920                 case IF_SRC_FILE:
9921                         if (state != IF_STATE_SOURCE)
9922                                 goto fail;
9923
9924                         *args[0].to = 0;
9925                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9926                         if (ret)
9927                                 goto fail;
9928
9929                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9930                                 *args[1].to = 0;
9931                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9932                                 if (ret)
9933                                         goto fail;
9934                         }
9935
9936                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9937                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9938
9939                                 filename = match_strdup(&args[fpos]);
9940                                 if (!filename) {
9941                                         ret = -ENOMEM;
9942                                         goto fail;
9943                                 }
9944                         }
9945
9946                         state = IF_STATE_END;
9947                         break;
9948
9949                 default:
9950                         goto fail;
9951                 }
9952
9953                 /*
9954                  * Filter definition is fully parsed, validate and install it.
9955                  * Make sure that it doesn't contradict itself or the event's
9956                  * attribute.
9957                  */
9958                 if (state == IF_STATE_END) {
9959                         ret = -EINVAL;
9960                         if (kernel && event->attr.exclude_kernel)
9961                                 goto fail;
9962
9963                         /*
9964                          * ACTION "filter" must have a non-zero length region
9965                          * specified.
9966                          */
9967                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9968                             !filter->size)
9969                                 goto fail;
9970
9971                         if (!kernel) {
9972                                 if (!filename)
9973                                         goto fail;
9974
9975                                 /*
9976                                  * For now, we only support file-based filters
9977                                  * in per-task events; doing so for CPU-wide
9978                                  * events requires additional context switching
9979                                  * trickery, since same object code will be
9980                                  * mapped at different virtual addresses in
9981                                  * different processes.
9982                                  */
9983                                 ret = -EOPNOTSUPP;
9984                                 if (!event->ctx->task)
9985                                         goto fail_free_name;
9986
9987                                 /* look up the path and grab its inode */
9988                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9989                                                 &filter->path);
9990                                 if (ret)
9991                                         goto fail_free_name;
9992
9993                                 kfree(filename);
9994                                 filename = NULL;
9995
9996                                 ret = -EINVAL;
9997                                 if (!filter->path.dentry ||
9998                                     !S_ISREG(d_inode(filter->path.dentry)
9999                                              ->i_mode))
10000                                         goto fail;
10001
10002                                 event->addr_filters.nr_file_filters++;
10003                         }
10004
10005                         /* ready to consume more filters */
10006                         state = IF_STATE_ACTION;
10007                         filter = NULL;
10008                 }
10009         }
10010
10011         if (state != IF_STATE_ACTION)
10012                 goto fail;
10013
10014         kfree(orig);
10015
10016         return 0;
10017
10018 fail_free_name:
10019         kfree(filename);
10020 fail:
10021         free_filters_list(filters);
10022         kfree(orig);
10023
10024         return ret;
10025 }
10026
10027 static int
10028 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10029 {
10030         LIST_HEAD(filters);
10031         int ret;
10032
10033         /*
10034          * Since this is called in perf_ioctl() path, we're already holding
10035          * ctx::mutex.
10036          */
10037         lockdep_assert_held(&event->ctx->mutex);
10038
10039         if (WARN_ON_ONCE(event->parent))
10040                 return -EINVAL;
10041
10042         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10043         if (ret)
10044                 goto fail_clear_files;
10045
10046         ret = event->pmu->addr_filters_validate(&filters);
10047         if (ret)
10048                 goto fail_free_filters;
10049
10050         /* remove existing filters, if any */
10051         perf_addr_filters_splice(event, &filters);
10052
10053         /* install new filters */
10054         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10055
10056         return ret;
10057
10058 fail_free_filters:
10059         free_filters_list(&filters);
10060
10061 fail_clear_files:
10062         event->addr_filters.nr_file_filters = 0;
10063
10064         return ret;
10065 }
10066
10067 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10068 {
10069         int ret = -EINVAL;
10070         char *filter_str;
10071
10072         filter_str = strndup_user(arg, PAGE_SIZE);
10073         if (IS_ERR(filter_str))
10074                 return PTR_ERR(filter_str);
10075
10076 #ifdef CONFIG_EVENT_TRACING
10077         if (perf_event_is_tracing(event)) {
10078                 struct perf_event_context *ctx = event->ctx;
10079
10080                 /*
10081                  * Beware, here be dragons!!
10082                  *
10083                  * the tracepoint muck will deadlock against ctx->mutex, but
10084                  * the tracepoint stuff does not actually need it. So
10085                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10086                  * already have a reference on ctx.
10087                  *
10088                  * This can result in event getting moved to a different ctx,
10089                  * but that does not affect the tracepoint state.
10090                  */
10091                 mutex_unlock(&ctx->mutex);
10092                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10093                 mutex_lock(&ctx->mutex);
10094         } else
10095 #endif
10096         if (has_addr_filter(event))
10097                 ret = perf_event_set_addr_filter(event, filter_str);
10098
10099         kfree(filter_str);
10100         return ret;
10101 }
10102
10103 /*
10104  * hrtimer based swevent callback
10105  */
10106
10107 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10108 {
10109         enum hrtimer_restart ret = HRTIMER_RESTART;
10110         struct perf_sample_data data;
10111         struct pt_regs *regs;
10112         struct perf_event *event;
10113         u64 period;
10114
10115         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10116
10117         if (event->state != PERF_EVENT_STATE_ACTIVE)
10118                 return HRTIMER_NORESTART;
10119
10120         event->pmu->read(event);
10121
10122         perf_sample_data_init(&data, 0, event->hw.last_period);
10123         regs = get_irq_regs();
10124
10125         if (regs && !perf_exclude_event(event, regs)) {
10126                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10127                         if (__perf_event_overflow(event, 1, &data, regs))
10128                                 ret = HRTIMER_NORESTART;
10129         }
10130
10131         period = max_t(u64, 10000, event->hw.sample_period);
10132         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10133
10134         return ret;
10135 }
10136
10137 static void perf_swevent_start_hrtimer(struct perf_event *event)
10138 {
10139         struct hw_perf_event *hwc = &event->hw;
10140         s64 period;
10141
10142         if (!is_sampling_event(event))
10143                 return;
10144
10145         period = local64_read(&hwc->period_left);
10146         if (period) {
10147                 if (period < 0)
10148                         period = 10000;
10149
10150                 local64_set(&hwc->period_left, 0);
10151         } else {
10152                 period = max_t(u64, 10000, hwc->sample_period);
10153         }
10154         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10155                       HRTIMER_MODE_REL_PINNED_HARD);
10156 }
10157
10158 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10159 {
10160         struct hw_perf_event *hwc = &event->hw;
10161
10162         if (is_sampling_event(event)) {
10163                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10164                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10165
10166                 hrtimer_cancel(&hwc->hrtimer);
10167         }
10168 }
10169
10170 static void perf_swevent_init_hrtimer(struct perf_event *event)
10171 {
10172         struct hw_perf_event *hwc = &event->hw;
10173
10174         if (!is_sampling_event(event))
10175                 return;
10176
10177         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10178         hwc->hrtimer.function = perf_swevent_hrtimer;
10179
10180         /*
10181          * Since hrtimers have a fixed rate, we can do a static freq->period
10182          * mapping and avoid the whole period adjust feedback stuff.
10183          */
10184         if (event->attr.freq) {
10185                 long freq = event->attr.sample_freq;
10186
10187                 event->attr.sample_period = NSEC_PER_SEC / freq;
10188                 hwc->sample_period = event->attr.sample_period;
10189                 local64_set(&hwc->period_left, hwc->sample_period);
10190                 hwc->last_period = hwc->sample_period;
10191                 event->attr.freq = 0;
10192         }
10193 }
10194
10195 /*
10196  * Software event: cpu wall time clock
10197  */
10198
10199 static void cpu_clock_event_update(struct perf_event *event)
10200 {
10201         s64 prev;
10202         u64 now;
10203
10204         now = local_clock();
10205         prev = local64_xchg(&event->hw.prev_count, now);
10206         local64_add(now - prev, &event->count);
10207 }
10208
10209 static void cpu_clock_event_start(struct perf_event *event, int flags)
10210 {
10211         local64_set(&event->hw.prev_count, local_clock());
10212         perf_swevent_start_hrtimer(event);
10213 }
10214
10215 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10216 {
10217         perf_swevent_cancel_hrtimer(event);
10218         cpu_clock_event_update(event);
10219 }
10220
10221 static int cpu_clock_event_add(struct perf_event *event, int flags)
10222 {
10223         if (flags & PERF_EF_START)
10224                 cpu_clock_event_start(event, flags);
10225         perf_event_update_userpage(event);
10226
10227         return 0;
10228 }
10229
10230 static void cpu_clock_event_del(struct perf_event *event, int flags)
10231 {
10232         cpu_clock_event_stop(event, flags);
10233 }
10234
10235 static void cpu_clock_event_read(struct perf_event *event)
10236 {
10237         cpu_clock_event_update(event);
10238 }
10239
10240 static int cpu_clock_event_init(struct perf_event *event)
10241 {
10242         if (event->attr.type != PERF_TYPE_SOFTWARE)
10243                 return -ENOENT;
10244
10245         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10246                 return -ENOENT;
10247
10248         /*
10249          * no branch sampling for software events
10250          */
10251         if (has_branch_stack(event))
10252                 return -EOPNOTSUPP;
10253
10254         perf_swevent_init_hrtimer(event);
10255
10256         return 0;
10257 }
10258
10259 static struct pmu perf_cpu_clock = {
10260         .task_ctx_nr    = perf_sw_context,
10261
10262         .capabilities   = PERF_PMU_CAP_NO_NMI,
10263
10264         .event_init     = cpu_clock_event_init,
10265         .add            = cpu_clock_event_add,
10266         .del            = cpu_clock_event_del,
10267         .start          = cpu_clock_event_start,
10268         .stop           = cpu_clock_event_stop,
10269         .read           = cpu_clock_event_read,
10270 };
10271
10272 /*
10273  * Software event: task time clock
10274  */
10275
10276 static void task_clock_event_update(struct perf_event *event, u64 now)
10277 {
10278         u64 prev;
10279         s64 delta;
10280
10281         prev = local64_xchg(&event->hw.prev_count, now);
10282         delta = now - prev;
10283         local64_add(delta, &event->count);
10284 }
10285
10286 static void task_clock_event_start(struct perf_event *event, int flags)
10287 {
10288         local64_set(&event->hw.prev_count, event->ctx->time);
10289         perf_swevent_start_hrtimer(event);
10290 }
10291
10292 static void task_clock_event_stop(struct perf_event *event, int flags)
10293 {
10294         perf_swevent_cancel_hrtimer(event);
10295         task_clock_event_update(event, event->ctx->time);
10296 }
10297
10298 static int task_clock_event_add(struct perf_event *event, int flags)
10299 {
10300         if (flags & PERF_EF_START)
10301                 task_clock_event_start(event, flags);
10302         perf_event_update_userpage(event);
10303
10304         return 0;
10305 }
10306
10307 static void task_clock_event_del(struct perf_event *event, int flags)
10308 {
10309         task_clock_event_stop(event, PERF_EF_UPDATE);
10310 }
10311
10312 static void task_clock_event_read(struct perf_event *event)
10313 {
10314         u64 now = perf_clock();
10315         u64 delta = now - event->ctx->timestamp;
10316         u64 time = event->ctx->time + delta;
10317
10318         task_clock_event_update(event, time);
10319 }
10320
10321 static int task_clock_event_init(struct perf_event *event)
10322 {
10323         if (event->attr.type != PERF_TYPE_SOFTWARE)
10324                 return -ENOENT;
10325
10326         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10327                 return -ENOENT;
10328
10329         /*
10330          * no branch sampling for software events
10331          */
10332         if (has_branch_stack(event))
10333                 return -EOPNOTSUPP;
10334
10335         perf_swevent_init_hrtimer(event);
10336
10337         return 0;
10338 }
10339
10340 static struct pmu perf_task_clock = {
10341         .task_ctx_nr    = perf_sw_context,
10342
10343         .capabilities   = PERF_PMU_CAP_NO_NMI,
10344
10345         .event_init     = task_clock_event_init,
10346         .add            = task_clock_event_add,
10347         .del            = task_clock_event_del,
10348         .start          = task_clock_event_start,
10349         .stop           = task_clock_event_stop,
10350         .read           = task_clock_event_read,
10351 };
10352
10353 static void perf_pmu_nop_void(struct pmu *pmu)
10354 {
10355 }
10356
10357 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10358 {
10359 }
10360
10361 static int perf_pmu_nop_int(struct pmu *pmu)
10362 {
10363         return 0;
10364 }
10365
10366 static int perf_event_nop_int(struct perf_event *event, u64 value)
10367 {
10368         return 0;
10369 }
10370
10371 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10372
10373 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10374 {
10375         __this_cpu_write(nop_txn_flags, flags);
10376
10377         if (flags & ~PERF_PMU_TXN_ADD)
10378                 return;
10379
10380         perf_pmu_disable(pmu);
10381 }
10382
10383 static int perf_pmu_commit_txn(struct pmu *pmu)
10384 {
10385         unsigned int flags = __this_cpu_read(nop_txn_flags);
10386
10387         __this_cpu_write(nop_txn_flags, 0);
10388
10389         if (flags & ~PERF_PMU_TXN_ADD)
10390                 return 0;
10391
10392         perf_pmu_enable(pmu);
10393         return 0;
10394 }
10395
10396 static void perf_pmu_cancel_txn(struct pmu *pmu)
10397 {
10398         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10399
10400         __this_cpu_write(nop_txn_flags, 0);
10401
10402         if (flags & ~PERF_PMU_TXN_ADD)
10403                 return;
10404
10405         perf_pmu_enable(pmu);
10406 }
10407
10408 static int perf_event_idx_default(struct perf_event *event)
10409 {
10410         return 0;
10411 }
10412
10413 /*
10414  * Ensures all contexts with the same task_ctx_nr have the same
10415  * pmu_cpu_context too.
10416  */
10417 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10418 {
10419         struct pmu *pmu;
10420
10421         if (ctxn < 0)
10422                 return NULL;
10423
10424         list_for_each_entry(pmu, &pmus, entry) {
10425                 if (pmu->task_ctx_nr == ctxn)
10426                         return pmu->pmu_cpu_context;
10427         }
10428
10429         return NULL;
10430 }
10431
10432 static void free_pmu_context(struct pmu *pmu)
10433 {
10434         /*
10435          * Static contexts such as perf_sw_context have a global lifetime
10436          * and may be shared between different PMUs. Avoid freeing them
10437          * when a single PMU is going away.
10438          */
10439         if (pmu->task_ctx_nr > perf_invalid_context)
10440                 return;
10441
10442         free_percpu(pmu->pmu_cpu_context);
10443 }
10444
10445 /*
10446  * Let userspace know that this PMU supports address range filtering:
10447  */
10448 static ssize_t nr_addr_filters_show(struct device *dev,
10449                                     struct device_attribute *attr,
10450                                     char *page)
10451 {
10452         struct pmu *pmu = dev_get_drvdata(dev);
10453
10454         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10455 }
10456 DEVICE_ATTR_RO(nr_addr_filters);
10457
10458 static struct idr pmu_idr;
10459
10460 static ssize_t
10461 type_show(struct device *dev, struct device_attribute *attr, char *page)
10462 {
10463         struct pmu *pmu = dev_get_drvdata(dev);
10464
10465         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10466 }
10467 static DEVICE_ATTR_RO(type);
10468
10469 static ssize_t
10470 perf_event_mux_interval_ms_show(struct device *dev,
10471                                 struct device_attribute *attr,
10472                                 char *page)
10473 {
10474         struct pmu *pmu = dev_get_drvdata(dev);
10475
10476         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10477 }
10478
10479 static DEFINE_MUTEX(mux_interval_mutex);
10480
10481 static ssize_t
10482 perf_event_mux_interval_ms_store(struct device *dev,
10483                                  struct device_attribute *attr,
10484                                  const char *buf, size_t count)
10485 {
10486         struct pmu *pmu = dev_get_drvdata(dev);
10487         int timer, cpu, ret;
10488
10489         ret = kstrtoint(buf, 0, &timer);
10490         if (ret)
10491                 return ret;
10492
10493         if (timer < 1)
10494                 return -EINVAL;
10495
10496         /* same value, noting to do */
10497         if (timer == pmu->hrtimer_interval_ms)
10498                 return count;
10499
10500         mutex_lock(&mux_interval_mutex);
10501         pmu->hrtimer_interval_ms = timer;
10502
10503         /* update all cpuctx for this PMU */
10504         cpus_read_lock();
10505         for_each_online_cpu(cpu) {
10506                 struct perf_cpu_context *cpuctx;
10507                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10508                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10509
10510                 cpu_function_call(cpu,
10511                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10512         }
10513         cpus_read_unlock();
10514         mutex_unlock(&mux_interval_mutex);
10515
10516         return count;
10517 }
10518 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10519
10520 static struct attribute *pmu_dev_attrs[] = {
10521         &dev_attr_type.attr,
10522         &dev_attr_perf_event_mux_interval_ms.attr,
10523         NULL,
10524 };
10525 ATTRIBUTE_GROUPS(pmu_dev);
10526
10527 static int pmu_bus_running;
10528 static struct bus_type pmu_bus = {
10529         .name           = "event_source",
10530         .dev_groups     = pmu_dev_groups,
10531 };
10532
10533 static void pmu_dev_release(struct device *dev)
10534 {
10535         kfree(dev);
10536 }
10537
10538 static int pmu_dev_alloc(struct pmu *pmu)
10539 {
10540         int ret = -ENOMEM;
10541
10542         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10543         if (!pmu->dev)
10544                 goto out;
10545
10546         pmu->dev->groups = pmu->attr_groups;
10547         device_initialize(pmu->dev);
10548         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10549         if (ret)
10550                 goto free_dev;
10551
10552         dev_set_drvdata(pmu->dev, pmu);
10553         pmu->dev->bus = &pmu_bus;
10554         pmu->dev->release = pmu_dev_release;
10555         ret = device_add(pmu->dev);
10556         if (ret)
10557                 goto free_dev;
10558
10559         /* For PMUs with address filters, throw in an extra attribute: */
10560         if (pmu->nr_addr_filters)
10561                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10562
10563         if (ret)
10564                 goto del_dev;
10565
10566         if (pmu->attr_update)
10567                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10568
10569         if (ret)
10570                 goto del_dev;
10571
10572 out:
10573         return ret;
10574
10575 del_dev:
10576         device_del(pmu->dev);
10577
10578 free_dev:
10579         put_device(pmu->dev);
10580         goto out;
10581 }
10582
10583 static struct lock_class_key cpuctx_mutex;
10584 static struct lock_class_key cpuctx_lock;
10585
10586 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10587 {
10588         int cpu, ret, max = PERF_TYPE_MAX;
10589
10590         mutex_lock(&pmus_lock);
10591         ret = -ENOMEM;
10592         pmu->pmu_disable_count = alloc_percpu(int);
10593         if (!pmu->pmu_disable_count)
10594                 goto unlock;
10595
10596         pmu->type = -1;
10597         if (!name)
10598                 goto skip_type;
10599         pmu->name = name;
10600
10601         if (type != PERF_TYPE_SOFTWARE) {
10602                 if (type >= 0)
10603                         max = type;
10604
10605                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10606                 if (ret < 0)
10607                         goto free_pdc;
10608
10609                 WARN_ON(type >= 0 && ret != type);
10610
10611                 type = ret;
10612         }
10613         pmu->type = type;
10614
10615         if (pmu_bus_running) {
10616                 ret = pmu_dev_alloc(pmu);
10617                 if (ret)
10618                         goto free_idr;
10619         }
10620
10621 skip_type:
10622         if (pmu->task_ctx_nr == perf_hw_context) {
10623                 static int hw_context_taken = 0;
10624
10625                 /*
10626                  * Other than systems with heterogeneous CPUs, it never makes
10627                  * sense for two PMUs to share perf_hw_context. PMUs which are
10628                  * uncore must use perf_invalid_context.
10629                  */
10630                 if (WARN_ON_ONCE(hw_context_taken &&
10631                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10632                         pmu->task_ctx_nr = perf_invalid_context;
10633
10634                 hw_context_taken = 1;
10635         }
10636
10637         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10638         if (pmu->pmu_cpu_context)
10639                 goto got_cpu_context;
10640
10641         ret = -ENOMEM;
10642         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10643         if (!pmu->pmu_cpu_context)
10644                 goto free_dev;
10645
10646         for_each_possible_cpu(cpu) {
10647                 struct perf_cpu_context *cpuctx;
10648
10649                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10650                 __perf_event_init_context(&cpuctx->ctx);
10651                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10652                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10653                 cpuctx->ctx.pmu = pmu;
10654                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10655
10656                 __perf_mux_hrtimer_init(cpuctx, cpu);
10657
10658                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10659                 cpuctx->heap = cpuctx->heap_default;
10660         }
10661
10662 got_cpu_context:
10663         if (!pmu->start_txn) {
10664                 if (pmu->pmu_enable) {
10665                         /*
10666                          * If we have pmu_enable/pmu_disable calls, install
10667                          * transaction stubs that use that to try and batch
10668                          * hardware accesses.
10669                          */
10670                         pmu->start_txn  = perf_pmu_start_txn;
10671                         pmu->commit_txn = perf_pmu_commit_txn;
10672                         pmu->cancel_txn = perf_pmu_cancel_txn;
10673                 } else {
10674                         pmu->start_txn  = perf_pmu_nop_txn;
10675                         pmu->commit_txn = perf_pmu_nop_int;
10676                         pmu->cancel_txn = perf_pmu_nop_void;
10677                 }
10678         }
10679
10680         if (!pmu->pmu_enable) {
10681                 pmu->pmu_enable  = perf_pmu_nop_void;
10682                 pmu->pmu_disable = perf_pmu_nop_void;
10683         }
10684
10685         if (!pmu->check_period)
10686                 pmu->check_period = perf_event_nop_int;
10687
10688         if (!pmu->event_idx)
10689                 pmu->event_idx = perf_event_idx_default;
10690
10691         /*
10692          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10693          * since these cannot be in the IDR. This way the linear search
10694          * is fast, provided a valid software event is provided.
10695          */
10696         if (type == PERF_TYPE_SOFTWARE || !name)
10697                 list_add_rcu(&pmu->entry, &pmus);
10698         else
10699                 list_add_tail_rcu(&pmu->entry, &pmus);
10700
10701         atomic_set(&pmu->exclusive_cnt, 0);
10702         ret = 0;
10703 unlock:
10704         mutex_unlock(&pmus_lock);
10705
10706         return ret;
10707
10708 free_dev:
10709         device_del(pmu->dev);
10710         put_device(pmu->dev);
10711
10712 free_idr:
10713         if (pmu->type != PERF_TYPE_SOFTWARE)
10714                 idr_remove(&pmu_idr, pmu->type);
10715
10716 free_pdc:
10717         free_percpu(pmu->pmu_disable_count);
10718         goto unlock;
10719 }
10720 EXPORT_SYMBOL_GPL(perf_pmu_register);
10721
10722 void perf_pmu_unregister(struct pmu *pmu)
10723 {
10724         mutex_lock(&pmus_lock);
10725         list_del_rcu(&pmu->entry);
10726
10727         /*
10728          * We dereference the pmu list under both SRCU and regular RCU, so
10729          * synchronize against both of those.
10730          */
10731         synchronize_srcu(&pmus_srcu);
10732         synchronize_rcu();
10733
10734         free_percpu(pmu->pmu_disable_count);
10735         if (pmu->type != PERF_TYPE_SOFTWARE)
10736                 idr_remove(&pmu_idr, pmu->type);
10737         if (pmu_bus_running) {
10738                 if (pmu->nr_addr_filters)
10739                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10740                 device_del(pmu->dev);
10741                 put_device(pmu->dev);
10742         }
10743         free_pmu_context(pmu);
10744         mutex_unlock(&pmus_lock);
10745 }
10746 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10747
10748 static inline bool has_extended_regs(struct perf_event *event)
10749 {
10750         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10751                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10752 }
10753
10754 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10755 {
10756         struct perf_event_context *ctx = NULL;
10757         int ret;
10758
10759         if (!try_module_get(pmu->module))
10760                 return -ENODEV;
10761
10762         /*
10763          * A number of pmu->event_init() methods iterate the sibling_list to,
10764          * for example, validate if the group fits on the PMU. Therefore,
10765          * if this is a sibling event, acquire the ctx->mutex to protect
10766          * the sibling_list.
10767          */
10768         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10769                 /*
10770                  * This ctx->mutex can nest when we're called through
10771                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10772                  */
10773                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10774                                                  SINGLE_DEPTH_NESTING);
10775                 BUG_ON(!ctx);
10776         }
10777
10778         event->pmu = pmu;
10779         ret = pmu->event_init(event);
10780
10781         if (ctx)
10782                 perf_event_ctx_unlock(event->group_leader, ctx);
10783
10784         if (!ret) {
10785                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10786                     has_extended_regs(event))
10787                         ret = -EOPNOTSUPP;
10788
10789                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10790                     event_has_any_exclude_flag(event))
10791                         ret = -EINVAL;
10792
10793                 if (ret && event->destroy)
10794                         event->destroy(event);
10795         }
10796
10797         if (ret)
10798                 module_put(pmu->module);
10799
10800         return ret;
10801 }
10802
10803 static struct pmu *perf_init_event(struct perf_event *event)
10804 {
10805         int idx, type, ret;
10806         struct pmu *pmu;
10807
10808         idx = srcu_read_lock(&pmus_srcu);
10809
10810         /* Try parent's PMU first: */
10811         if (event->parent && event->parent->pmu) {
10812                 pmu = event->parent->pmu;
10813                 ret = perf_try_init_event(pmu, event);
10814                 if (!ret)
10815                         goto unlock;
10816         }
10817
10818         /*
10819          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10820          * are often aliases for PERF_TYPE_RAW.
10821          */
10822         type = event->attr.type;
10823         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10824                 type = PERF_TYPE_RAW;
10825
10826 again:
10827         rcu_read_lock();
10828         pmu = idr_find(&pmu_idr, type);
10829         rcu_read_unlock();
10830         if (pmu) {
10831                 ret = perf_try_init_event(pmu, event);
10832                 if (ret == -ENOENT && event->attr.type != type) {
10833                         type = event->attr.type;
10834                         goto again;
10835                 }
10836
10837                 if (ret)
10838                         pmu = ERR_PTR(ret);
10839
10840                 goto unlock;
10841         }
10842
10843         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10844                 ret = perf_try_init_event(pmu, event);
10845                 if (!ret)
10846                         goto unlock;
10847
10848                 if (ret != -ENOENT) {
10849                         pmu = ERR_PTR(ret);
10850                         goto unlock;
10851                 }
10852         }
10853         pmu = ERR_PTR(-ENOENT);
10854 unlock:
10855         srcu_read_unlock(&pmus_srcu, idx);
10856
10857         return pmu;
10858 }
10859
10860 static void attach_sb_event(struct perf_event *event)
10861 {
10862         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10863
10864         raw_spin_lock(&pel->lock);
10865         list_add_rcu(&event->sb_list, &pel->list);
10866         raw_spin_unlock(&pel->lock);
10867 }
10868
10869 /*
10870  * We keep a list of all !task (and therefore per-cpu) events
10871  * that need to receive side-band records.
10872  *
10873  * This avoids having to scan all the various PMU per-cpu contexts
10874  * looking for them.
10875  */
10876 static void account_pmu_sb_event(struct perf_event *event)
10877 {
10878         if (is_sb_event(event))
10879                 attach_sb_event(event);
10880 }
10881
10882 static void account_event_cpu(struct perf_event *event, int cpu)
10883 {
10884         if (event->parent)
10885                 return;
10886
10887         if (is_cgroup_event(event))
10888                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10889 }
10890
10891 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10892 static void account_freq_event_nohz(void)
10893 {
10894 #ifdef CONFIG_NO_HZ_FULL
10895         /* Lock so we don't race with concurrent unaccount */
10896         spin_lock(&nr_freq_lock);
10897         if (atomic_inc_return(&nr_freq_events) == 1)
10898                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10899         spin_unlock(&nr_freq_lock);
10900 #endif
10901 }
10902
10903 static void account_freq_event(void)
10904 {
10905         if (tick_nohz_full_enabled())
10906                 account_freq_event_nohz();
10907         else
10908                 atomic_inc(&nr_freq_events);
10909 }
10910
10911
10912 static void account_event(struct perf_event *event)
10913 {
10914         bool inc = false;
10915
10916         if (event->parent)
10917                 return;
10918
10919         if (event->attach_state & PERF_ATTACH_TASK)
10920                 inc = true;
10921         if (event->attr.mmap || event->attr.mmap_data)
10922                 atomic_inc(&nr_mmap_events);
10923         if (event->attr.comm)
10924                 atomic_inc(&nr_comm_events);
10925         if (event->attr.namespaces)
10926                 atomic_inc(&nr_namespaces_events);
10927         if (event->attr.cgroup)
10928                 atomic_inc(&nr_cgroup_events);
10929         if (event->attr.task)
10930                 atomic_inc(&nr_task_events);
10931         if (event->attr.freq)
10932                 account_freq_event();
10933         if (event->attr.context_switch) {
10934                 atomic_inc(&nr_switch_events);
10935                 inc = true;
10936         }
10937         if (has_branch_stack(event))
10938                 inc = true;
10939         if (is_cgroup_event(event))
10940                 inc = true;
10941         if (event->attr.ksymbol)
10942                 atomic_inc(&nr_ksymbol_events);
10943         if (event->attr.bpf_event)
10944                 atomic_inc(&nr_bpf_events);
10945
10946         if (inc) {
10947                 /*
10948                  * We need the mutex here because static_branch_enable()
10949                  * must complete *before* the perf_sched_count increment
10950                  * becomes visible.
10951                  */
10952                 if (atomic_inc_not_zero(&perf_sched_count))
10953                         goto enabled;
10954
10955                 mutex_lock(&perf_sched_mutex);
10956                 if (!atomic_read(&perf_sched_count)) {
10957                         static_branch_enable(&perf_sched_events);
10958                         /*
10959                          * Guarantee that all CPUs observe they key change and
10960                          * call the perf scheduling hooks before proceeding to
10961                          * install events that need them.
10962                          */
10963                         synchronize_rcu();
10964                 }
10965                 /*
10966                  * Now that we have waited for the sync_sched(), allow further
10967                  * increments to by-pass the mutex.
10968                  */
10969                 atomic_inc(&perf_sched_count);
10970                 mutex_unlock(&perf_sched_mutex);
10971         }
10972 enabled:
10973
10974         account_event_cpu(event, event->cpu);
10975
10976         account_pmu_sb_event(event);
10977 }
10978
10979 /*
10980  * Allocate and initialize an event structure
10981  */
10982 static struct perf_event *
10983 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10984                  struct task_struct *task,
10985                  struct perf_event *group_leader,
10986                  struct perf_event *parent_event,
10987                  perf_overflow_handler_t overflow_handler,
10988                  void *context, int cgroup_fd)
10989 {
10990         struct pmu *pmu;
10991         struct perf_event *event;
10992         struct hw_perf_event *hwc;
10993         long err = -EINVAL;
10994
10995         if ((unsigned)cpu >= nr_cpu_ids) {
10996                 if (!task || cpu != -1)
10997                         return ERR_PTR(-EINVAL);
10998         }
10999
11000         event = kzalloc(sizeof(*event), GFP_KERNEL);
11001         if (!event)
11002                 return ERR_PTR(-ENOMEM);
11003
11004         /*
11005          * Single events are their own group leaders, with an
11006          * empty sibling list:
11007          */
11008         if (!group_leader)
11009                 group_leader = event;
11010
11011         mutex_init(&event->child_mutex);
11012         INIT_LIST_HEAD(&event->child_list);
11013
11014         INIT_LIST_HEAD(&event->event_entry);
11015         INIT_LIST_HEAD(&event->sibling_list);
11016         INIT_LIST_HEAD(&event->active_list);
11017         init_event_group(event);
11018         INIT_LIST_HEAD(&event->rb_entry);
11019         INIT_LIST_HEAD(&event->active_entry);
11020         INIT_LIST_HEAD(&event->addr_filters.list);
11021         INIT_HLIST_NODE(&event->hlist_entry);
11022
11023
11024         init_waitqueue_head(&event->waitq);
11025         event->pending_disable = -1;
11026         init_irq_work(&event->pending, perf_pending_event);
11027
11028         mutex_init(&event->mmap_mutex);
11029         raw_spin_lock_init(&event->addr_filters.lock);
11030
11031         atomic_long_set(&event->refcount, 1);
11032         event->cpu              = cpu;
11033         event->attr             = *attr;
11034         event->group_leader     = group_leader;
11035         event->pmu              = NULL;
11036         event->oncpu            = -1;
11037
11038         event->parent           = parent_event;
11039
11040         event->ns               = get_pid_ns(task_active_pid_ns(current));
11041         event->id               = atomic64_inc_return(&perf_event_id);
11042
11043         event->state            = PERF_EVENT_STATE_INACTIVE;
11044
11045         if (task) {
11046                 event->attach_state = PERF_ATTACH_TASK;
11047                 /*
11048                  * XXX pmu::event_init needs to know what task to account to
11049                  * and we cannot use the ctx information because we need the
11050                  * pmu before we get a ctx.
11051                  */
11052                 event->hw.target = get_task_struct(task);
11053         }
11054
11055         event->clock = &local_clock;
11056         if (parent_event)
11057                 event->clock = parent_event->clock;
11058
11059         if (!overflow_handler && parent_event) {
11060                 overflow_handler = parent_event->overflow_handler;
11061                 context = parent_event->overflow_handler_context;
11062 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11063                 if (overflow_handler == bpf_overflow_handler) {
11064                         struct bpf_prog *prog = parent_event->prog;
11065
11066                         bpf_prog_inc(prog);
11067                         event->prog = prog;
11068                         event->orig_overflow_handler =
11069                                 parent_event->orig_overflow_handler;
11070                 }
11071 #endif
11072         }
11073
11074         if (overflow_handler) {
11075                 event->overflow_handler = overflow_handler;
11076                 event->overflow_handler_context = context;
11077         } else if (is_write_backward(event)){
11078                 event->overflow_handler = perf_event_output_backward;
11079                 event->overflow_handler_context = NULL;
11080         } else {
11081                 event->overflow_handler = perf_event_output_forward;
11082                 event->overflow_handler_context = NULL;
11083         }
11084
11085         perf_event__state_init(event);
11086
11087         pmu = NULL;
11088
11089         hwc = &event->hw;
11090         hwc->sample_period = attr->sample_period;
11091         if (attr->freq && attr->sample_freq)
11092                 hwc->sample_period = 1;
11093         hwc->last_period = hwc->sample_period;
11094
11095         local64_set(&hwc->period_left, hwc->sample_period);
11096
11097         /*
11098          * We currently do not support PERF_SAMPLE_READ on inherited events.
11099          * See perf_output_read().
11100          */
11101         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11102                 goto err_ns;
11103
11104         if (!has_branch_stack(event))
11105                 event->attr.branch_sample_type = 0;
11106
11107         pmu = perf_init_event(event);
11108         if (IS_ERR(pmu)) {
11109                 err = PTR_ERR(pmu);
11110                 goto err_ns;
11111         }
11112
11113         /*
11114          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11115          * be different on other CPUs in the uncore mask.
11116          */
11117         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11118                 err = -EINVAL;
11119                 goto err_pmu;
11120         }
11121
11122         if (event->attr.aux_output &&
11123             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11124                 err = -EOPNOTSUPP;
11125                 goto err_pmu;
11126         }
11127
11128         if (cgroup_fd != -1) {
11129                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11130                 if (err)
11131                         goto err_pmu;
11132         }
11133
11134         err = exclusive_event_init(event);
11135         if (err)
11136                 goto err_pmu;
11137
11138         if (has_addr_filter(event)) {
11139                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11140                                                     sizeof(struct perf_addr_filter_range),
11141                                                     GFP_KERNEL);
11142                 if (!event->addr_filter_ranges) {
11143                         err = -ENOMEM;
11144                         goto err_per_task;
11145                 }
11146
11147                 /*
11148                  * Clone the parent's vma offsets: they are valid until exec()
11149                  * even if the mm is not shared with the parent.
11150                  */
11151                 if (event->parent) {
11152                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11153
11154                         raw_spin_lock_irq(&ifh->lock);
11155                         memcpy(event->addr_filter_ranges,
11156                                event->parent->addr_filter_ranges,
11157                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11158                         raw_spin_unlock_irq(&ifh->lock);
11159                 }
11160
11161                 /* force hw sync on the address filters */
11162                 event->addr_filters_gen = 1;
11163         }
11164
11165         if (!event->parent) {
11166                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11167                         err = get_callchain_buffers(attr->sample_max_stack);
11168                         if (err)
11169                                 goto err_addr_filters;
11170                 }
11171         }
11172
11173         err = security_perf_event_alloc(event);
11174         if (err)
11175                 goto err_callchain_buffer;
11176
11177         /* symmetric to unaccount_event() in _free_event() */
11178         account_event(event);
11179
11180         return event;
11181
11182 err_callchain_buffer:
11183         if (!event->parent) {
11184                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11185                         put_callchain_buffers();
11186         }
11187 err_addr_filters:
11188         kfree(event->addr_filter_ranges);
11189
11190 err_per_task:
11191         exclusive_event_destroy(event);
11192
11193 err_pmu:
11194         if (is_cgroup_event(event))
11195                 perf_detach_cgroup(event);
11196         if (event->destroy)
11197                 event->destroy(event);
11198         module_put(pmu->module);
11199 err_ns:
11200         if (event->ns)
11201                 put_pid_ns(event->ns);
11202         if (event->hw.target)
11203                 put_task_struct(event->hw.target);
11204         kfree(event);
11205
11206         return ERR_PTR(err);
11207 }
11208
11209 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11210                           struct perf_event_attr *attr)
11211 {
11212         u32 size;
11213         int ret;
11214
11215         /* Zero the full structure, so that a short copy will be nice. */
11216         memset(attr, 0, sizeof(*attr));
11217
11218         ret = get_user(size, &uattr->size);
11219         if (ret)
11220                 return ret;
11221
11222         /* ABI compatibility quirk: */
11223         if (!size)
11224                 size = PERF_ATTR_SIZE_VER0;
11225         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11226                 goto err_size;
11227
11228         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11229         if (ret) {
11230                 if (ret == -E2BIG)
11231                         goto err_size;
11232                 return ret;
11233         }
11234
11235         attr->size = size;
11236
11237         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11238                 return -EINVAL;
11239
11240         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11241                 return -EINVAL;
11242
11243         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11244                 return -EINVAL;
11245
11246         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11247                 u64 mask = attr->branch_sample_type;
11248
11249                 /* only using defined bits */
11250                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11251                         return -EINVAL;
11252
11253                 /* at least one branch bit must be set */
11254                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11255                         return -EINVAL;
11256
11257                 /* propagate priv level, when not set for branch */
11258                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11259
11260                         /* exclude_kernel checked on syscall entry */
11261                         if (!attr->exclude_kernel)
11262                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11263
11264                         if (!attr->exclude_user)
11265                                 mask |= PERF_SAMPLE_BRANCH_USER;
11266
11267                         if (!attr->exclude_hv)
11268                                 mask |= PERF_SAMPLE_BRANCH_HV;
11269                         /*
11270                          * adjust user setting (for HW filter setup)
11271                          */
11272                         attr->branch_sample_type = mask;
11273                 }
11274                 /* privileged levels capture (kernel, hv): check permissions */
11275                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11276                         ret = perf_allow_kernel(attr);
11277                         if (ret)
11278                                 return ret;
11279                 }
11280         }
11281
11282         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11283                 ret = perf_reg_validate(attr->sample_regs_user);
11284                 if (ret)
11285                         return ret;
11286         }
11287
11288         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11289                 if (!arch_perf_have_user_stack_dump())
11290                         return -ENOSYS;
11291
11292                 /*
11293                  * We have __u32 type for the size, but so far
11294                  * we can only use __u16 as maximum due to the
11295                  * __u16 sample size limit.
11296                  */
11297                 if (attr->sample_stack_user >= USHRT_MAX)
11298                         return -EINVAL;
11299                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11300                         return -EINVAL;
11301         }
11302
11303         if (!attr->sample_max_stack)
11304                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11305
11306         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11307                 ret = perf_reg_validate(attr->sample_regs_intr);
11308
11309 #ifndef CONFIG_CGROUP_PERF
11310         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11311                 return -EINVAL;
11312 #endif
11313
11314 out:
11315         return ret;
11316
11317 err_size:
11318         put_user(sizeof(*attr), &uattr->size);
11319         ret = -E2BIG;
11320         goto out;
11321 }
11322
11323 static int
11324 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11325 {
11326         struct perf_buffer *rb = NULL;
11327         int ret = -EINVAL;
11328
11329         if (!output_event)
11330                 goto set;
11331
11332         /* don't allow circular references */
11333         if (event == output_event)
11334                 goto out;
11335
11336         /*
11337          * Don't allow cross-cpu buffers
11338          */
11339         if (output_event->cpu != event->cpu)
11340                 goto out;
11341
11342         /*
11343          * If its not a per-cpu rb, it must be the same task.
11344          */
11345         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11346                 goto out;
11347
11348         /*
11349          * Mixing clocks in the same buffer is trouble you don't need.
11350          */
11351         if (output_event->clock != event->clock)
11352                 goto out;
11353
11354         /*
11355          * Either writing ring buffer from beginning or from end.
11356          * Mixing is not allowed.
11357          */
11358         if (is_write_backward(output_event) != is_write_backward(event))
11359                 goto out;
11360
11361         /*
11362          * If both events generate aux data, they must be on the same PMU
11363          */
11364         if (has_aux(event) && has_aux(output_event) &&
11365             event->pmu != output_event->pmu)
11366                 goto out;
11367
11368 set:
11369         mutex_lock(&event->mmap_mutex);
11370         /* Can't redirect output if we've got an active mmap() */
11371         if (atomic_read(&event->mmap_count))
11372                 goto unlock;
11373
11374         if (output_event) {
11375                 /* get the rb we want to redirect to */
11376                 rb = ring_buffer_get(output_event);
11377                 if (!rb)
11378                         goto unlock;
11379         }
11380
11381         ring_buffer_attach(event, rb);
11382
11383         ret = 0;
11384 unlock:
11385         mutex_unlock(&event->mmap_mutex);
11386
11387 out:
11388         return ret;
11389 }
11390
11391 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11392 {
11393         if (b < a)
11394                 swap(a, b);
11395
11396         mutex_lock(a);
11397         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11398 }
11399
11400 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11401 {
11402         bool nmi_safe = false;
11403
11404         switch (clk_id) {
11405         case CLOCK_MONOTONIC:
11406                 event->clock = &ktime_get_mono_fast_ns;
11407                 nmi_safe = true;
11408                 break;
11409
11410         case CLOCK_MONOTONIC_RAW:
11411                 event->clock = &ktime_get_raw_fast_ns;
11412                 nmi_safe = true;
11413                 break;
11414
11415         case CLOCK_REALTIME:
11416                 event->clock = &ktime_get_real_ns;
11417                 break;
11418
11419         case CLOCK_BOOTTIME:
11420                 event->clock = &ktime_get_boottime_ns;
11421                 break;
11422
11423         case CLOCK_TAI:
11424                 event->clock = &ktime_get_clocktai_ns;
11425                 break;
11426
11427         default:
11428                 return -EINVAL;
11429         }
11430
11431         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11432                 return -EINVAL;
11433
11434         return 0;
11435 }
11436
11437 /*
11438  * Variation on perf_event_ctx_lock_nested(), except we take two context
11439  * mutexes.
11440  */
11441 static struct perf_event_context *
11442 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11443                              struct perf_event_context *ctx)
11444 {
11445         struct perf_event_context *gctx;
11446
11447 again:
11448         rcu_read_lock();
11449         gctx = READ_ONCE(group_leader->ctx);
11450         if (!refcount_inc_not_zero(&gctx->refcount)) {
11451                 rcu_read_unlock();
11452                 goto again;
11453         }
11454         rcu_read_unlock();
11455
11456         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11457
11458         if (group_leader->ctx != gctx) {
11459                 mutex_unlock(&ctx->mutex);
11460                 mutex_unlock(&gctx->mutex);
11461                 put_ctx(gctx);
11462                 goto again;
11463         }
11464
11465         return gctx;
11466 }
11467
11468 /**
11469  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11470  *
11471  * @attr_uptr:  event_id type attributes for monitoring/sampling
11472  * @pid:                target pid
11473  * @cpu:                target cpu
11474  * @group_fd:           group leader event fd
11475  */
11476 SYSCALL_DEFINE5(perf_event_open,
11477                 struct perf_event_attr __user *, attr_uptr,
11478                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11479 {
11480         struct perf_event *group_leader = NULL, *output_event = NULL;
11481         struct perf_event *event, *sibling;
11482         struct perf_event_attr attr;
11483         struct perf_event_context *ctx, *uninitialized_var(gctx);
11484         struct file *event_file = NULL;
11485         struct fd group = {NULL, 0};
11486         struct task_struct *task = NULL;
11487         struct pmu *pmu;
11488         int event_fd;
11489         int move_group = 0;
11490         int err;
11491         int f_flags = O_RDWR;
11492         int cgroup_fd = -1;
11493
11494         /* for future expandability... */
11495         if (flags & ~PERF_FLAG_ALL)
11496                 return -EINVAL;
11497
11498         /* Do we allow access to perf_event_open(2) ? */
11499         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11500         if (err)
11501                 return err;
11502
11503         err = perf_copy_attr(attr_uptr, &attr);
11504         if (err)
11505                 return err;
11506
11507         if (!attr.exclude_kernel) {
11508                 err = perf_allow_kernel(&attr);
11509                 if (err)
11510                         return err;
11511         }
11512
11513         if (attr.namespaces) {
11514                 if (!capable(CAP_SYS_ADMIN))
11515                         return -EACCES;
11516         }
11517
11518         if (attr.freq) {
11519                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11520                         return -EINVAL;
11521         } else {
11522                 if (attr.sample_period & (1ULL << 63))
11523                         return -EINVAL;
11524         }
11525
11526         /* Only privileged users can get physical addresses */
11527         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11528                 err = perf_allow_kernel(&attr);
11529                 if (err)
11530                         return err;
11531         }
11532
11533         err = security_locked_down(LOCKDOWN_PERF);
11534         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11535                 /* REGS_INTR can leak data, lockdown must prevent this */
11536                 return err;
11537
11538         err = 0;
11539
11540         /*
11541          * In cgroup mode, the pid argument is used to pass the fd
11542          * opened to the cgroup directory in cgroupfs. The cpu argument
11543          * designates the cpu on which to monitor threads from that
11544          * cgroup.
11545          */
11546         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11547                 return -EINVAL;
11548
11549         if (flags & PERF_FLAG_FD_CLOEXEC)
11550                 f_flags |= O_CLOEXEC;
11551
11552         event_fd = get_unused_fd_flags(f_flags);
11553         if (event_fd < 0)
11554                 return event_fd;
11555
11556         if (group_fd != -1) {
11557                 err = perf_fget_light(group_fd, &group);
11558                 if (err)
11559                         goto err_fd;
11560                 group_leader = group.file->private_data;
11561                 if (flags & PERF_FLAG_FD_OUTPUT)
11562                         output_event = group_leader;
11563                 if (flags & PERF_FLAG_FD_NO_GROUP)
11564                         group_leader = NULL;
11565         }
11566
11567         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11568                 task = find_lively_task_by_vpid(pid);
11569                 if (IS_ERR(task)) {
11570                         err = PTR_ERR(task);
11571                         goto err_group_fd;
11572                 }
11573         }
11574
11575         if (task && group_leader &&
11576             group_leader->attr.inherit != attr.inherit) {
11577                 err = -EINVAL;
11578                 goto err_task;
11579         }
11580
11581         if (task) {
11582                 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11583                 if (err)
11584                         goto err_task;
11585
11586                 /*
11587                  * Reuse ptrace permission checks for now.
11588                  *
11589                  * We must hold exec_update_mutex across this and any potential
11590                  * perf_install_in_context() call for this new event to
11591                  * serialize against exec() altering our credentials (and the
11592                  * perf_event_exit_task() that could imply).
11593                  */
11594                 err = -EACCES;
11595                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11596                         goto err_cred;
11597         }
11598
11599         if (flags & PERF_FLAG_PID_CGROUP)
11600                 cgroup_fd = pid;
11601
11602         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11603                                  NULL, NULL, cgroup_fd);
11604         if (IS_ERR(event)) {
11605                 err = PTR_ERR(event);
11606                 goto err_cred;
11607         }
11608
11609         if (is_sampling_event(event)) {
11610                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11611                         err = -EOPNOTSUPP;
11612                         goto err_alloc;
11613                 }
11614         }
11615
11616         /*
11617          * Special case software events and allow them to be part of
11618          * any hardware group.
11619          */
11620         pmu = event->pmu;
11621
11622         if (attr.use_clockid) {
11623                 err = perf_event_set_clock(event, attr.clockid);
11624                 if (err)
11625                         goto err_alloc;
11626         }
11627
11628         if (pmu->task_ctx_nr == perf_sw_context)
11629                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11630
11631         if (group_leader) {
11632                 if (is_software_event(event) &&
11633                     !in_software_context(group_leader)) {
11634                         /*
11635                          * If the event is a sw event, but the group_leader
11636                          * is on hw context.
11637                          *
11638                          * Allow the addition of software events to hw
11639                          * groups, this is safe because software events
11640                          * never fail to schedule.
11641                          */
11642                         pmu = group_leader->ctx->pmu;
11643                 } else if (!is_software_event(event) &&
11644                            is_software_event(group_leader) &&
11645                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11646                         /*
11647                          * In case the group is a pure software group, and we
11648                          * try to add a hardware event, move the whole group to
11649                          * the hardware context.
11650                          */
11651                         move_group = 1;
11652                 }
11653         }
11654
11655         /*
11656          * Get the target context (task or percpu):
11657          */
11658         ctx = find_get_context(pmu, task, event);
11659         if (IS_ERR(ctx)) {
11660                 err = PTR_ERR(ctx);
11661                 goto err_alloc;
11662         }
11663
11664         /*
11665          * Look up the group leader (we will attach this event to it):
11666          */
11667         if (group_leader) {
11668                 err = -EINVAL;
11669
11670                 /*
11671                  * Do not allow a recursive hierarchy (this new sibling
11672                  * becoming part of another group-sibling):
11673                  */
11674                 if (group_leader->group_leader != group_leader)
11675                         goto err_context;
11676
11677                 /* All events in a group should have the same clock */
11678                 if (group_leader->clock != event->clock)
11679                         goto err_context;
11680
11681                 /*
11682                  * Make sure we're both events for the same CPU;
11683                  * grouping events for different CPUs is broken; since
11684                  * you can never concurrently schedule them anyhow.
11685                  */
11686                 if (group_leader->cpu != event->cpu)
11687                         goto err_context;
11688
11689                 /*
11690                  * Make sure we're both on the same task, or both
11691                  * per-CPU events.
11692                  */
11693                 if (group_leader->ctx->task != ctx->task)
11694                         goto err_context;
11695
11696                 /*
11697                  * Do not allow to attach to a group in a different task
11698                  * or CPU context. If we're moving SW events, we'll fix
11699                  * this up later, so allow that.
11700                  */
11701                 if (!move_group && group_leader->ctx != ctx)
11702                         goto err_context;
11703
11704                 /*
11705                  * Only a group leader can be exclusive or pinned
11706                  */
11707                 if (attr.exclusive || attr.pinned)
11708                         goto err_context;
11709         }
11710
11711         if (output_event) {
11712                 err = perf_event_set_output(event, output_event);
11713                 if (err)
11714                         goto err_context;
11715         }
11716
11717         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11718                                         f_flags);
11719         if (IS_ERR(event_file)) {
11720                 err = PTR_ERR(event_file);
11721                 event_file = NULL;
11722                 goto err_context;
11723         }
11724
11725         if (move_group) {
11726                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11727
11728                 if (gctx->task == TASK_TOMBSTONE) {
11729                         err = -ESRCH;
11730                         goto err_locked;
11731                 }
11732
11733                 /*
11734                  * Check if we raced against another sys_perf_event_open() call
11735                  * moving the software group underneath us.
11736                  */
11737                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11738                         /*
11739                          * If someone moved the group out from under us, check
11740                          * if this new event wound up on the same ctx, if so
11741                          * its the regular !move_group case, otherwise fail.
11742                          */
11743                         if (gctx != ctx) {
11744                                 err = -EINVAL;
11745                                 goto err_locked;
11746                         } else {
11747                                 perf_event_ctx_unlock(group_leader, gctx);
11748                                 move_group = 0;
11749                         }
11750                 }
11751
11752                 /*
11753                  * Failure to create exclusive events returns -EBUSY.
11754                  */
11755                 err = -EBUSY;
11756                 if (!exclusive_event_installable(group_leader, ctx))
11757                         goto err_locked;
11758
11759                 for_each_sibling_event(sibling, group_leader) {
11760                         if (!exclusive_event_installable(sibling, ctx))
11761                                 goto err_locked;
11762                 }
11763         } else {
11764                 mutex_lock(&ctx->mutex);
11765         }
11766
11767         if (ctx->task == TASK_TOMBSTONE) {
11768                 err = -ESRCH;
11769                 goto err_locked;
11770         }
11771
11772         if (!perf_event_validate_size(event)) {
11773                 err = -E2BIG;
11774                 goto err_locked;
11775         }
11776
11777         if (!task) {
11778                 /*
11779                  * Check if the @cpu we're creating an event for is online.
11780                  *
11781                  * We use the perf_cpu_context::ctx::mutex to serialize against
11782                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11783                  */
11784                 struct perf_cpu_context *cpuctx =
11785                         container_of(ctx, struct perf_cpu_context, ctx);
11786
11787                 if (!cpuctx->online) {
11788                         err = -ENODEV;
11789                         goto err_locked;
11790                 }
11791         }
11792
11793         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11794                 err = -EINVAL;
11795                 goto err_locked;
11796         }
11797
11798         /*
11799          * Must be under the same ctx::mutex as perf_install_in_context(),
11800          * because we need to serialize with concurrent event creation.
11801          */
11802         if (!exclusive_event_installable(event, ctx)) {
11803                 err = -EBUSY;
11804                 goto err_locked;
11805         }
11806
11807         WARN_ON_ONCE(ctx->parent_ctx);
11808
11809         /*
11810          * This is the point on no return; we cannot fail hereafter. This is
11811          * where we start modifying current state.
11812          */
11813
11814         if (move_group) {
11815                 /*
11816                  * See perf_event_ctx_lock() for comments on the details
11817                  * of swizzling perf_event::ctx.
11818                  */
11819                 perf_remove_from_context(group_leader, 0);
11820                 put_ctx(gctx);
11821
11822                 for_each_sibling_event(sibling, group_leader) {
11823                         perf_remove_from_context(sibling, 0);
11824                         put_ctx(gctx);
11825                 }
11826
11827                 /*
11828                  * Wait for everybody to stop referencing the events through
11829                  * the old lists, before installing it on new lists.
11830                  */
11831                 synchronize_rcu();
11832
11833                 /*
11834                  * Install the group siblings before the group leader.
11835                  *
11836                  * Because a group leader will try and install the entire group
11837                  * (through the sibling list, which is still in-tact), we can
11838                  * end up with siblings installed in the wrong context.
11839                  *
11840                  * By installing siblings first we NO-OP because they're not
11841                  * reachable through the group lists.
11842                  */
11843                 for_each_sibling_event(sibling, group_leader) {
11844                         perf_event__state_init(sibling);
11845                         perf_install_in_context(ctx, sibling, sibling->cpu);
11846                         get_ctx(ctx);
11847                 }
11848
11849                 /*
11850                  * Removing from the context ends up with disabled
11851                  * event. What we want here is event in the initial
11852                  * startup state, ready to be add into new context.
11853                  */
11854                 perf_event__state_init(group_leader);
11855                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11856                 get_ctx(ctx);
11857         }
11858
11859         /*
11860          * Precalculate sample_data sizes; do while holding ctx::mutex such
11861          * that we're serialized against further additions and before
11862          * perf_install_in_context() which is the point the event is active and
11863          * can use these values.
11864          */
11865         perf_event__header_size(event);
11866         perf_event__id_header_size(event);
11867
11868         event->owner = current;
11869
11870         perf_install_in_context(ctx, event, event->cpu);
11871         perf_unpin_context(ctx);
11872
11873         if (move_group)
11874                 perf_event_ctx_unlock(group_leader, gctx);
11875         mutex_unlock(&ctx->mutex);
11876
11877         if (task) {
11878                 mutex_unlock(&task->signal->exec_update_mutex);
11879                 put_task_struct(task);
11880         }
11881
11882         mutex_lock(&current->perf_event_mutex);
11883         list_add_tail(&event->owner_entry, &current->perf_event_list);
11884         mutex_unlock(&current->perf_event_mutex);
11885
11886         /*
11887          * Drop the reference on the group_event after placing the
11888          * new event on the sibling_list. This ensures destruction
11889          * of the group leader will find the pointer to itself in
11890          * perf_group_detach().
11891          */
11892         fdput(group);
11893         fd_install(event_fd, event_file);
11894         return event_fd;
11895
11896 err_locked:
11897         if (move_group)
11898                 perf_event_ctx_unlock(group_leader, gctx);
11899         mutex_unlock(&ctx->mutex);
11900 /* err_file: */
11901         fput(event_file);
11902 err_context:
11903         perf_unpin_context(ctx);
11904         put_ctx(ctx);
11905 err_alloc:
11906         /*
11907          * If event_file is set, the fput() above will have called ->release()
11908          * and that will take care of freeing the event.
11909          */
11910         if (!event_file)
11911                 free_event(event);
11912 err_cred:
11913         if (task)
11914                 mutex_unlock(&task->signal->exec_update_mutex);
11915 err_task:
11916         if (task)
11917                 put_task_struct(task);
11918 err_group_fd:
11919         fdput(group);
11920 err_fd:
11921         put_unused_fd(event_fd);
11922         return err;
11923 }
11924
11925 /**
11926  * perf_event_create_kernel_counter
11927  *
11928  * @attr: attributes of the counter to create
11929  * @cpu: cpu in which the counter is bound
11930  * @task: task to profile (NULL for percpu)
11931  */
11932 struct perf_event *
11933 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11934                                  struct task_struct *task,
11935                                  perf_overflow_handler_t overflow_handler,
11936                                  void *context)
11937 {
11938         struct perf_event_context *ctx;
11939         struct perf_event *event;
11940         int err;
11941
11942         /*
11943          * Grouping is not supported for kernel events, neither is 'AUX',
11944          * make sure the caller's intentions are adjusted.
11945          */
11946         if (attr->aux_output)
11947                 return ERR_PTR(-EINVAL);
11948
11949         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11950                                  overflow_handler, context, -1);
11951         if (IS_ERR(event)) {
11952                 err = PTR_ERR(event);
11953                 goto err;
11954         }
11955
11956         /* Mark owner so we could distinguish it from user events. */
11957         event->owner = TASK_TOMBSTONE;
11958
11959         /*
11960          * Get the target context (task or percpu):
11961          */
11962         ctx = find_get_context(event->pmu, task, event);
11963         if (IS_ERR(ctx)) {
11964                 err = PTR_ERR(ctx);
11965                 goto err_free;
11966         }
11967
11968         WARN_ON_ONCE(ctx->parent_ctx);
11969         mutex_lock(&ctx->mutex);
11970         if (ctx->task == TASK_TOMBSTONE) {
11971                 err = -ESRCH;
11972                 goto err_unlock;
11973         }
11974
11975         if (!task) {
11976                 /*
11977                  * Check if the @cpu we're creating an event for is online.
11978                  *
11979                  * We use the perf_cpu_context::ctx::mutex to serialize against
11980                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11981                  */
11982                 struct perf_cpu_context *cpuctx =
11983                         container_of(ctx, struct perf_cpu_context, ctx);
11984                 if (!cpuctx->online) {
11985                         err = -ENODEV;
11986                         goto err_unlock;
11987                 }
11988         }
11989
11990         if (!exclusive_event_installable(event, ctx)) {
11991                 err = -EBUSY;
11992                 goto err_unlock;
11993         }
11994
11995         perf_install_in_context(ctx, event, event->cpu);
11996         perf_unpin_context(ctx);
11997         mutex_unlock(&ctx->mutex);
11998
11999         return event;
12000
12001 err_unlock:
12002         mutex_unlock(&ctx->mutex);
12003         perf_unpin_context(ctx);
12004         put_ctx(ctx);
12005 err_free:
12006         free_event(event);
12007 err:
12008         return ERR_PTR(err);
12009 }
12010 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12011
12012 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12013 {
12014         struct perf_event_context *src_ctx;
12015         struct perf_event_context *dst_ctx;
12016         struct perf_event *event, *tmp;
12017         LIST_HEAD(events);
12018
12019         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12020         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12021
12022         /*
12023          * See perf_event_ctx_lock() for comments on the details
12024          * of swizzling perf_event::ctx.
12025          */
12026         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12027         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12028                                  event_entry) {
12029                 perf_remove_from_context(event, 0);
12030                 unaccount_event_cpu(event, src_cpu);
12031                 put_ctx(src_ctx);
12032                 list_add(&event->migrate_entry, &events);
12033         }
12034
12035         /*
12036          * Wait for the events to quiesce before re-instating them.
12037          */
12038         synchronize_rcu();
12039
12040         /*
12041          * Re-instate events in 2 passes.
12042          *
12043          * Skip over group leaders and only install siblings on this first
12044          * pass, siblings will not get enabled without a leader, however a
12045          * leader will enable its siblings, even if those are still on the old
12046          * context.
12047          */
12048         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12049                 if (event->group_leader == event)
12050                         continue;
12051
12052                 list_del(&event->migrate_entry);
12053                 if (event->state >= PERF_EVENT_STATE_OFF)
12054                         event->state = PERF_EVENT_STATE_INACTIVE;
12055                 account_event_cpu(event, dst_cpu);
12056                 perf_install_in_context(dst_ctx, event, dst_cpu);
12057                 get_ctx(dst_ctx);
12058         }
12059
12060         /*
12061          * Once all the siblings are setup properly, install the group leaders
12062          * to make it go.
12063          */
12064         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12065                 list_del(&event->migrate_entry);
12066                 if (event->state >= PERF_EVENT_STATE_OFF)
12067                         event->state = PERF_EVENT_STATE_INACTIVE;
12068                 account_event_cpu(event, dst_cpu);
12069                 perf_install_in_context(dst_ctx, event, dst_cpu);
12070                 get_ctx(dst_ctx);
12071         }
12072         mutex_unlock(&dst_ctx->mutex);
12073         mutex_unlock(&src_ctx->mutex);
12074 }
12075 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12076
12077 static void sync_child_event(struct perf_event *child_event,
12078                                struct task_struct *child)
12079 {
12080         struct perf_event *parent_event = child_event->parent;
12081         u64 child_val;
12082
12083         if (child_event->attr.inherit_stat)
12084                 perf_event_read_event(child_event, child);
12085
12086         child_val = perf_event_count(child_event);
12087
12088         /*
12089          * Add back the child's count to the parent's count:
12090          */
12091         atomic64_add(child_val, &parent_event->child_count);
12092         atomic64_add(child_event->total_time_enabled,
12093                      &parent_event->child_total_time_enabled);
12094         atomic64_add(child_event->total_time_running,
12095                      &parent_event->child_total_time_running);
12096 }
12097
12098 static void
12099 perf_event_exit_event(struct perf_event *child_event,
12100                       struct perf_event_context *child_ctx,
12101                       struct task_struct *child)
12102 {
12103         struct perf_event *parent_event = child_event->parent;
12104
12105         /*
12106          * Do not destroy the 'original' grouping; because of the context
12107          * switch optimization the original events could've ended up in a
12108          * random child task.
12109          *
12110          * If we were to destroy the original group, all group related
12111          * operations would cease to function properly after this random
12112          * child dies.
12113          *
12114          * Do destroy all inherited groups, we don't care about those
12115          * and being thorough is better.
12116          */
12117         raw_spin_lock_irq(&child_ctx->lock);
12118         WARN_ON_ONCE(child_ctx->is_active);
12119
12120         if (parent_event)
12121                 perf_group_detach(child_event);
12122         list_del_event(child_event, child_ctx);
12123         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12124         raw_spin_unlock_irq(&child_ctx->lock);
12125
12126         /*
12127          * Parent events are governed by their filedesc, retain them.
12128          */
12129         if (!parent_event) {
12130                 perf_event_wakeup(child_event);
12131                 return;
12132         }
12133         /*
12134          * Child events can be cleaned up.
12135          */
12136
12137         sync_child_event(child_event, child);
12138
12139         /*
12140          * Remove this event from the parent's list
12141          */
12142         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12143         mutex_lock(&parent_event->child_mutex);
12144         list_del_init(&child_event->child_list);
12145         mutex_unlock(&parent_event->child_mutex);
12146
12147         /*
12148          * Kick perf_poll() for is_event_hup().
12149          */
12150         perf_event_wakeup(parent_event);
12151         free_event(child_event);
12152         put_event(parent_event);
12153 }
12154
12155 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12156 {
12157         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12158         struct perf_event *child_event, *next;
12159
12160         WARN_ON_ONCE(child != current);
12161
12162         child_ctx = perf_pin_task_context(child, ctxn);
12163         if (!child_ctx)
12164                 return;
12165
12166         /*
12167          * In order to reduce the amount of tricky in ctx tear-down, we hold
12168          * ctx::mutex over the entire thing. This serializes against almost
12169          * everything that wants to access the ctx.
12170          *
12171          * The exception is sys_perf_event_open() /
12172          * perf_event_create_kernel_count() which does find_get_context()
12173          * without ctx::mutex (it cannot because of the move_group double mutex
12174          * lock thing). See the comments in perf_install_in_context().
12175          */
12176         mutex_lock(&child_ctx->mutex);
12177
12178         /*
12179          * In a single ctx::lock section, de-schedule the events and detach the
12180          * context from the task such that we cannot ever get it scheduled back
12181          * in.
12182          */
12183         raw_spin_lock_irq(&child_ctx->lock);
12184         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12185
12186         /*
12187          * Now that the context is inactive, destroy the task <-> ctx relation
12188          * and mark the context dead.
12189          */
12190         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12191         put_ctx(child_ctx); /* cannot be last */
12192         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12193         put_task_struct(current); /* cannot be last */
12194
12195         clone_ctx = unclone_ctx(child_ctx);
12196         raw_spin_unlock_irq(&child_ctx->lock);
12197
12198         if (clone_ctx)
12199                 put_ctx(clone_ctx);
12200
12201         /*
12202          * Report the task dead after unscheduling the events so that we
12203          * won't get any samples after PERF_RECORD_EXIT. We can however still
12204          * get a few PERF_RECORD_READ events.
12205          */
12206         perf_event_task(child, child_ctx, 0);
12207
12208         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12209                 perf_event_exit_event(child_event, child_ctx, child);
12210
12211         mutex_unlock(&child_ctx->mutex);
12212
12213         put_ctx(child_ctx);
12214 }
12215
12216 /*
12217  * When a child task exits, feed back event values to parent events.
12218  *
12219  * Can be called with exec_update_mutex held when called from
12220  * install_exec_creds().
12221  */
12222 void perf_event_exit_task(struct task_struct *child)
12223 {
12224         struct perf_event *event, *tmp;
12225         int ctxn;
12226
12227         mutex_lock(&child->perf_event_mutex);
12228         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12229                                  owner_entry) {
12230                 list_del_init(&event->owner_entry);
12231
12232                 /*
12233                  * Ensure the list deletion is visible before we clear
12234                  * the owner, closes a race against perf_release() where
12235                  * we need to serialize on the owner->perf_event_mutex.
12236                  */
12237                 smp_store_release(&event->owner, NULL);
12238         }
12239         mutex_unlock(&child->perf_event_mutex);
12240
12241         for_each_task_context_nr(ctxn)
12242                 perf_event_exit_task_context(child, ctxn);
12243
12244         /*
12245          * The perf_event_exit_task_context calls perf_event_task
12246          * with child's task_ctx, which generates EXIT events for
12247          * child contexts and sets child->perf_event_ctxp[] to NULL.
12248          * At this point we need to send EXIT events to cpu contexts.
12249          */
12250         perf_event_task(child, NULL, 0);
12251 }
12252
12253 static void perf_free_event(struct perf_event *event,
12254                             struct perf_event_context *ctx)
12255 {
12256         struct perf_event *parent = event->parent;
12257
12258         if (WARN_ON_ONCE(!parent))
12259                 return;
12260
12261         mutex_lock(&parent->child_mutex);
12262         list_del_init(&event->child_list);
12263         mutex_unlock(&parent->child_mutex);
12264
12265         put_event(parent);
12266
12267         raw_spin_lock_irq(&ctx->lock);
12268         perf_group_detach(event);
12269         list_del_event(event, ctx);
12270         raw_spin_unlock_irq(&ctx->lock);
12271         free_event(event);
12272 }
12273
12274 /*
12275  * Free a context as created by inheritance by perf_event_init_task() below,
12276  * used by fork() in case of fail.
12277  *
12278  * Even though the task has never lived, the context and events have been
12279  * exposed through the child_list, so we must take care tearing it all down.
12280  */
12281 void perf_event_free_task(struct task_struct *task)
12282 {
12283         struct perf_event_context *ctx;
12284         struct perf_event *event, *tmp;
12285         int ctxn;
12286
12287         for_each_task_context_nr(ctxn) {
12288                 ctx = task->perf_event_ctxp[ctxn];
12289                 if (!ctx)
12290                         continue;
12291
12292                 mutex_lock(&ctx->mutex);
12293                 raw_spin_lock_irq(&ctx->lock);
12294                 /*
12295                  * Destroy the task <-> ctx relation and mark the context dead.
12296                  *
12297                  * This is important because even though the task hasn't been
12298                  * exposed yet the context has been (through child_list).
12299                  */
12300                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12301                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12302                 put_task_struct(task); /* cannot be last */
12303                 raw_spin_unlock_irq(&ctx->lock);
12304
12305                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12306                         perf_free_event(event, ctx);
12307
12308                 mutex_unlock(&ctx->mutex);
12309
12310                 /*
12311                  * perf_event_release_kernel() could've stolen some of our
12312                  * child events and still have them on its free_list. In that
12313                  * case we must wait for these events to have been freed (in
12314                  * particular all their references to this task must've been
12315                  * dropped).
12316                  *
12317                  * Without this copy_process() will unconditionally free this
12318                  * task (irrespective of its reference count) and
12319                  * _free_event()'s put_task_struct(event->hw.target) will be a
12320                  * use-after-free.
12321                  *
12322                  * Wait for all events to drop their context reference.
12323                  */
12324                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12325                 put_ctx(ctx); /* must be last */
12326         }
12327 }
12328
12329 void perf_event_delayed_put(struct task_struct *task)
12330 {
12331         int ctxn;
12332
12333         for_each_task_context_nr(ctxn)
12334                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12335 }
12336
12337 struct file *perf_event_get(unsigned int fd)
12338 {
12339         struct file *file = fget(fd);
12340         if (!file)
12341                 return ERR_PTR(-EBADF);
12342
12343         if (file->f_op != &perf_fops) {
12344                 fput(file);
12345                 return ERR_PTR(-EBADF);
12346         }
12347
12348         return file;
12349 }
12350
12351 const struct perf_event *perf_get_event(struct file *file)
12352 {
12353         if (file->f_op != &perf_fops)
12354                 return ERR_PTR(-EINVAL);
12355
12356         return file->private_data;
12357 }
12358
12359 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12360 {
12361         if (!event)
12362                 return ERR_PTR(-EINVAL);
12363
12364         return &event->attr;
12365 }
12366
12367 /*
12368  * Inherit an event from parent task to child task.
12369  *
12370  * Returns:
12371  *  - valid pointer on success
12372  *  - NULL for orphaned events
12373  *  - IS_ERR() on error
12374  */
12375 static struct perf_event *
12376 inherit_event(struct perf_event *parent_event,
12377               struct task_struct *parent,
12378               struct perf_event_context *parent_ctx,
12379               struct task_struct *child,
12380               struct perf_event *group_leader,
12381               struct perf_event_context *child_ctx)
12382 {
12383         enum perf_event_state parent_state = parent_event->state;
12384         struct perf_event *child_event;
12385         unsigned long flags;
12386
12387         /*
12388          * Instead of creating recursive hierarchies of events,
12389          * we link inherited events back to the original parent,
12390          * which has a filp for sure, which we use as the reference
12391          * count:
12392          */
12393         if (parent_event->parent)
12394                 parent_event = parent_event->parent;
12395
12396         child_event = perf_event_alloc(&parent_event->attr,
12397                                            parent_event->cpu,
12398                                            child,
12399                                            group_leader, parent_event,
12400                                            NULL, NULL, -1);
12401         if (IS_ERR(child_event))
12402                 return child_event;
12403
12404
12405         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12406             !child_ctx->task_ctx_data) {
12407                 struct pmu *pmu = child_event->pmu;
12408
12409                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12410                                                    GFP_KERNEL);
12411                 if (!child_ctx->task_ctx_data) {
12412                         free_event(child_event);
12413                         return ERR_PTR(-ENOMEM);
12414                 }
12415         }
12416
12417         /*
12418          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12419          * must be under the same lock in order to serialize against
12420          * perf_event_release_kernel(), such that either we must observe
12421          * is_orphaned_event() or they will observe us on the child_list.
12422          */
12423         mutex_lock(&parent_event->child_mutex);
12424         if (is_orphaned_event(parent_event) ||
12425             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12426                 mutex_unlock(&parent_event->child_mutex);
12427                 /* task_ctx_data is freed with child_ctx */
12428                 free_event(child_event);
12429                 return NULL;
12430         }
12431
12432         get_ctx(child_ctx);
12433
12434         /*
12435          * Make the child state follow the state of the parent event,
12436          * not its attr.disabled bit.  We hold the parent's mutex,
12437          * so we won't race with perf_event_{en, dis}able_family.
12438          */
12439         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12440                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12441         else
12442                 child_event->state = PERF_EVENT_STATE_OFF;
12443
12444         if (parent_event->attr.freq) {
12445                 u64 sample_period = parent_event->hw.sample_period;
12446                 struct hw_perf_event *hwc = &child_event->hw;
12447
12448                 hwc->sample_period = sample_period;
12449                 hwc->last_period   = sample_period;
12450
12451                 local64_set(&hwc->period_left, sample_period);
12452         }
12453
12454         child_event->ctx = child_ctx;
12455         child_event->overflow_handler = parent_event->overflow_handler;
12456         child_event->overflow_handler_context
12457                 = parent_event->overflow_handler_context;
12458
12459         /*
12460          * Precalculate sample_data sizes
12461          */
12462         perf_event__header_size(child_event);
12463         perf_event__id_header_size(child_event);
12464
12465         /*
12466          * Link it up in the child's context:
12467          */
12468         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12469         add_event_to_ctx(child_event, child_ctx);
12470         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12471
12472         /*
12473          * Link this into the parent event's child list
12474          */
12475         list_add_tail(&child_event->child_list, &parent_event->child_list);
12476         mutex_unlock(&parent_event->child_mutex);
12477
12478         return child_event;
12479 }
12480
12481 /*
12482  * Inherits an event group.
12483  *
12484  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12485  * This matches with perf_event_release_kernel() removing all child events.
12486  *
12487  * Returns:
12488  *  - 0 on success
12489  *  - <0 on error
12490  */
12491 static int inherit_group(struct perf_event *parent_event,
12492               struct task_struct *parent,
12493               struct perf_event_context *parent_ctx,
12494               struct task_struct *child,
12495               struct perf_event_context *child_ctx)
12496 {
12497         struct perf_event *leader;
12498         struct perf_event *sub;
12499         struct perf_event *child_ctr;
12500
12501         leader = inherit_event(parent_event, parent, parent_ctx,
12502                                  child, NULL, child_ctx);
12503         if (IS_ERR(leader))
12504                 return PTR_ERR(leader);
12505         /*
12506          * @leader can be NULL here because of is_orphaned_event(). In this
12507          * case inherit_event() will create individual events, similar to what
12508          * perf_group_detach() would do anyway.
12509          */
12510         for_each_sibling_event(sub, parent_event) {
12511                 child_ctr = inherit_event(sub, parent, parent_ctx,
12512                                             child, leader, child_ctx);
12513                 if (IS_ERR(child_ctr))
12514                         return PTR_ERR(child_ctr);
12515
12516                 if (sub->aux_event == parent_event && child_ctr &&
12517                     !perf_get_aux_event(child_ctr, leader))
12518                         return -EINVAL;
12519         }
12520         return 0;
12521 }
12522
12523 /*
12524  * Creates the child task context and tries to inherit the event-group.
12525  *
12526  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12527  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12528  * consistent with perf_event_release_kernel() removing all child events.
12529  *
12530  * Returns:
12531  *  - 0 on success
12532  *  - <0 on error
12533  */
12534 static int
12535 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12536                    struct perf_event_context *parent_ctx,
12537                    struct task_struct *child, int ctxn,
12538                    int *inherited_all)
12539 {
12540         int ret;
12541         struct perf_event_context *child_ctx;
12542
12543         if (!event->attr.inherit) {
12544                 *inherited_all = 0;
12545                 return 0;
12546         }
12547
12548         child_ctx = child->perf_event_ctxp[ctxn];
12549         if (!child_ctx) {
12550                 /*
12551                  * This is executed from the parent task context, so
12552                  * inherit events that have been marked for cloning.
12553                  * First allocate and initialize a context for the
12554                  * child.
12555                  */
12556                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12557                 if (!child_ctx)
12558                         return -ENOMEM;
12559
12560                 child->perf_event_ctxp[ctxn] = child_ctx;
12561         }
12562
12563         ret = inherit_group(event, parent, parent_ctx,
12564                             child, child_ctx);
12565
12566         if (ret)
12567                 *inherited_all = 0;
12568
12569         return ret;
12570 }
12571
12572 /*
12573  * Initialize the perf_event context in task_struct
12574  */
12575 static int perf_event_init_context(struct task_struct *child, int ctxn)
12576 {
12577         struct perf_event_context *child_ctx, *parent_ctx;
12578         struct perf_event_context *cloned_ctx;
12579         struct perf_event *event;
12580         struct task_struct *parent = current;
12581         int inherited_all = 1;
12582         unsigned long flags;
12583         int ret = 0;
12584
12585         if (likely(!parent->perf_event_ctxp[ctxn]))
12586                 return 0;
12587
12588         /*
12589          * If the parent's context is a clone, pin it so it won't get
12590          * swapped under us.
12591          */
12592         parent_ctx = perf_pin_task_context(parent, ctxn);
12593         if (!parent_ctx)
12594                 return 0;
12595
12596         /*
12597          * No need to check if parent_ctx != NULL here; since we saw
12598          * it non-NULL earlier, the only reason for it to become NULL
12599          * is if we exit, and since we're currently in the middle of
12600          * a fork we can't be exiting at the same time.
12601          */
12602
12603         /*
12604          * Lock the parent list. No need to lock the child - not PID
12605          * hashed yet and not running, so nobody can access it.
12606          */
12607         mutex_lock(&parent_ctx->mutex);
12608
12609         /*
12610          * We dont have to disable NMIs - we are only looking at
12611          * the list, not manipulating it:
12612          */
12613         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12614                 ret = inherit_task_group(event, parent, parent_ctx,
12615                                          child, ctxn, &inherited_all);
12616                 if (ret)
12617                         goto out_unlock;
12618         }
12619
12620         /*
12621          * We can't hold ctx->lock when iterating the ->flexible_group list due
12622          * to allocations, but we need to prevent rotation because
12623          * rotate_ctx() will change the list from interrupt context.
12624          */
12625         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12626         parent_ctx->rotate_disable = 1;
12627         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12628
12629         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12630                 ret = inherit_task_group(event, parent, parent_ctx,
12631                                          child, ctxn, &inherited_all);
12632                 if (ret)
12633                         goto out_unlock;
12634         }
12635
12636         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12637         parent_ctx->rotate_disable = 0;
12638
12639         child_ctx = child->perf_event_ctxp[ctxn];
12640
12641         if (child_ctx && inherited_all) {
12642                 /*
12643                  * Mark the child context as a clone of the parent
12644                  * context, or of whatever the parent is a clone of.
12645                  *
12646                  * Note that if the parent is a clone, the holding of
12647                  * parent_ctx->lock avoids it from being uncloned.
12648                  */
12649                 cloned_ctx = parent_ctx->parent_ctx;
12650                 if (cloned_ctx) {
12651                         child_ctx->parent_ctx = cloned_ctx;
12652                         child_ctx->parent_gen = parent_ctx->parent_gen;
12653                 } else {
12654                         child_ctx->parent_ctx = parent_ctx;
12655                         child_ctx->parent_gen = parent_ctx->generation;
12656                 }
12657                 get_ctx(child_ctx->parent_ctx);
12658         }
12659
12660         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12661 out_unlock:
12662         mutex_unlock(&parent_ctx->mutex);
12663
12664         perf_unpin_context(parent_ctx);
12665         put_ctx(parent_ctx);
12666
12667         return ret;
12668 }
12669
12670 /*
12671  * Initialize the perf_event context in task_struct
12672  */
12673 int perf_event_init_task(struct task_struct *child)
12674 {
12675         int ctxn, ret;
12676
12677         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12678         mutex_init(&child->perf_event_mutex);
12679         INIT_LIST_HEAD(&child->perf_event_list);
12680
12681         for_each_task_context_nr(ctxn) {
12682                 ret = perf_event_init_context(child, ctxn);
12683                 if (ret) {
12684                         perf_event_free_task(child);
12685                         return ret;
12686                 }
12687         }
12688
12689         return 0;
12690 }
12691
12692 static void __init perf_event_init_all_cpus(void)
12693 {
12694         struct swevent_htable *swhash;
12695         int cpu;
12696
12697         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12698
12699         for_each_possible_cpu(cpu) {
12700                 swhash = &per_cpu(swevent_htable, cpu);
12701                 mutex_init(&swhash->hlist_mutex);
12702                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12703
12704                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12705                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12706
12707 #ifdef CONFIG_CGROUP_PERF
12708                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12709 #endif
12710                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12711         }
12712 }
12713
12714 static void perf_swevent_init_cpu(unsigned int cpu)
12715 {
12716         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12717
12718         mutex_lock(&swhash->hlist_mutex);
12719         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12720                 struct swevent_hlist *hlist;
12721
12722                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12723                 WARN_ON(!hlist);
12724                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12725         }
12726         mutex_unlock(&swhash->hlist_mutex);
12727 }
12728
12729 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12730 static void __perf_event_exit_context(void *__info)
12731 {
12732         struct perf_event_context *ctx = __info;
12733         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12734         struct perf_event *event;
12735
12736         raw_spin_lock(&ctx->lock);
12737         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12738         list_for_each_entry(event, &ctx->event_list, event_entry)
12739                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12740         raw_spin_unlock(&ctx->lock);
12741 }
12742
12743 static void perf_event_exit_cpu_context(int cpu)
12744 {
12745         struct perf_cpu_context *cpuctx;
12746         struct perf_event_context *ctx;
12747         struct pmu *pmu;
12748
12749         mutex_lock(&pmus_lock);
12750         list_for_each_entry(pmu, &pmus, entry) {
12751                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12752                 ctx = &cpuctx->ctx;
12753
12754                 mutex_lock(&ctx->mutex);
12755                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12756                 cpuctx->online = 0;
12757                 mutex_unlock(&ctx->mutex);
12758         }
12759         cpumask_clear_cpu(cpu, perf_online_mask);
12760         mutex_unlock(&pmus_lock);
12761 }
12762 #else
12763
12764 static void perf_event_exit_cpu_context(int cpu) { }
12765
12766 #endif
12767
12768 int perf_event_init_cpu(unsigned int cpu)
12769 {
12770         struct perf_cpu_context *cpuctx;
12771         struct perf_event_context *ctx;
12772         struct pmu *pmu;
12773
12774         perf_swevent_init_cpu(cpu);
12775
12776         mutex_lock(&pmus_lock);
12777         cpumask_set_cpu(cpu, perf_online_mask);
12778         list_for_each_entry(pmu, &pmus, entry) {
12779                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12780                 ctx = &cpuctx->ctx;
12781
12782                 mutex_lock(&ctx->mutex);
12783                 cpuctx->online = 1;
12784                 mutex_unlock(&ctx->mutex);
12785         }
12786         mutex_unlock(&pmus_lock);
12787
12788         return 0;
12789 }
12790
12791 int perf_event_exit_cpu(unsigned int cpu)
12792 {
12793         perf_event_exit_cpu_context(cpu);
12794         return 0;
12795 }
12796
12797 static int
12798 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12799 {
12800         int cpu;
12801
12802         for_each_online_cpu(cpu)
12803                 perf_event_exit_cpu(cpu);
12804
12805         return NOTIFY_OK;
12806 }
12807
12808 /*
12809  * Run the perf reboot notifier at the very last possible moment so that
12810  * the generic watchdog code runs as long as possible.
12811  */
12812 static struct notifier_block perf_reboot_notifier = {
12813         .notifier_call = perf_reboot,
12814         .priority = INT_MIN,
12815 };
12816
12817 void __init perf_event_init(void)
12818 {
12819         int ret;
12820
12821         idr_init(&pmu_idr);
12822
12823         perf_event_init_all_cpus();
12824         init_srcu_struct(&pmus_srcu);
12825         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12826         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12827         perf_pmu_register(&perf_task_clock, NULL, -1);
12828         perf_tp_register();
12829         perf_event_init_cpu(smp_processor_id());
12830         register_reboot_notifier(&perf_reboot_notifier);
12831
12832         ret = init_hw_breakpoint();
12833         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12834
12835         /*
12836          * Build time assertion that we keep the data_head at the intended
12837          * location.  IOW, validation we got the __reserved[] size right.
12838          */
12839         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12840                      != 1024);
12841 }
12842
12843 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12844                               char *page)
12845 {
12846         struct perf_pmu_events_attr *pmu_attr =
12847                 container_of(attr, struct perf_pmu_events_attr, attr);
12848
12849         if (pmu_attr->event_str)
12850                 return sprintf(page, "%s\n", pmu_attr->event_str);
12851
12852         return 0;
12853 }
12854 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12855
12856 static int __init perf_event_sysfs_init(void)
12857 {
12858         struct pmu *pmu;
12859         int ret;
12860
12861         mutex_lock(&pmus_lock);
12862
12863         ret = bus_register(&pmu_bus);
12864         if (ret)
12865                 goto unlock;
12866
12867         list_for_each_entry(pmu, &pmus, entry) {
12868                 if (!pmu->name || pmu->type < 0)
12869                         continue;
12870
12871                 ret = pmu_dev_alloc(pmu);
12872                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12873         }
12874         pmu_bus_running = 1;
12875         ret = 0;
12876
12877 unlock:
12878         mutex_unlock(&pmus_lock);
12879
12880         return ret;
12881 }
12882 device_initcall(perf_event_sysfs_init);
12883
12884 #ifdef CONFIG_CGROUP_PERF
12885 static struct cgroup_subsys_state *
12886 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12887 {
12888         struct perf_cgroup *jc;
12889
12890         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12891         if (!jc)
12892                 return ERR_PTR(-ENOMEM);
12893
12894         jc->info = alloc_percpu(struct perf_cgroup_info);
12895         if (!jc->info) {
12896                 kfree(jc);
12897                 return ERR_PTR(-ENOMEM);
12898         }
12899
12900         return &jc->css;
12901 }
12902
12903 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12904 {
12905         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12906
12907         free_percpu(jc->info);
12908         kfree(jc);
12909 }
12910
12911 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12912 {
12913         perf_event_cgroup(css->cgroup);
12914         return 0;
12915 }
12916
12917 static int __perf_cgroup_move(void *info)
12918 {
12919         struct task_struct *task = info;
12920         rcu_read_lock();
12921         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12922         rcu_read_unlock();
12923         return 0;
12924 }
12925
12926 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12927 {
12928         struct task_struct *task;
12929         struct cgroup_subsys_state *css;
12930
12931         cgroup_taskset_for_each(task, css, tset)
12932                 task_function_call(task, __perf_cgroup_move, task);
12933 }
12934
12935 struct cgroup_subsys perf_event_cgrp_subsys = {
12936         .css_alloc      = perf_cgroup_css_alloc,
12937         .css_free       = perf_cgroup_css_free,
12938         .css_online     = perf_cgroup_css_online,
12939         .attach         = perf_cgroup_attach,
12940         /*
12941          * Implicitly enable on dfl hierarchy so that perf events can
12942          * always be filtered by cgroup2 path as long as perf_event
12943          * controller is not mounted on a legacy hierarchy.
12944          */
12945         .implicit_on_dfl = true,
12946         .threaded       = true,
12947 };
12948 #endif /* CONFIG_CGROUP_PERF */