perf: Fix task context PMU for Hetero
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726
727         now = perf_clock();
728
729         info = this_cpu_ptr(cgrp->info);
730
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782
783         cgrp = perf_cgroup_from_task(task, ctx);
784
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847
848         local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874         rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900         rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938                 kfree(storage);
939         }
940
941         return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952
953         if (!f.file)
954                 return -EBADF;
955
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (ctx->nr_cgroups++)
1020                 return;
1021
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030
1031         if (!is_cgroup_event(event))
1032                 return;
1033
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040         if (--ctx->nr_cgroups)
1041                 return;
1042
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134
1135         lockdep_assert_irqs_disabled();
1136
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193         return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222         lockdep_assert_irqs_disabled();
1223
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248         return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363
1364         return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390         lockdep_assert_held(&ctx->lock);
1391
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395
1396         return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433
1434         if (event->parent)
1435                 id = event->parent->id;
1436
1437         return id;
1438 }
1439
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542
1543         return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550
1551         lockdep_assert_held(&ctx->lock);
1552
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563
1564         return event_type;
1565 }
1566
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607         return cgroup;
1608 }
1609
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657
1658         return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753
1754         return NULL;
1755 }
1756
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772
1773         return NULL;
1774 }
1775
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797         event->tstamp = perf_event_time(event);
1798
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->attr.inherit_stat)
1812                 ctx->nr_stat++;
1813
1814         if (event->state > PERF_EVENT_STATE_OFF)
1815                 perf_cgroup_event_enable(event, ctx);
1816
1817         ctx->generation++;
1818 }
1819
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                               PERF_EVENT_STATE_INACTIVE;
1827 }
1828
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831         int entry = sizeof(u64); /* value */
1832         int size = 0;
1833         int nr = 1;
1834
1835         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                 size += sizeof(u64);
1837
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                 size += sizeof(u64);
1840
1841         if (event->attr.read_format & PERF_FORMAT_ID)
1842                 entry += sizeof(u64);
1843
1844         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                 nr += nr_siblings;
1846                 size += sizeof(u64);
1847         }
1848
1849         size += entry * nr;
1850         event->read_size = size;
1851 }
1852
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855         struct perf_sample_data *data;
1856         u16 size = 0;
1857
1858         if (sample_type & PERF_SAMPLE_IP)
1859                 size += sizeof(data->ip);
1860
1861         if (sample_type & PERF_SAMPLE_ADDR)
1862                 size += sizeof(data->addr);
1863
1864         if (sample_type & PERF_SAMPLE_PERIOD)
1865                 size += sizeof(data->period);
1866
1867         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                 size += sizeof(data->weight.full);
1869
1870         if (sample_type & PERF_SAMPLE_READ)
1871                 size += event->read_size;
1872
1873         if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                 size += sizeof(data->data_src.val);
1875
1876         if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                 size += sizeof(data->txn);
1878
1879         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                 size += sizeof(data->phys_addr);
1881
1882         if (sample_type & PERF_SAMPLE_CGROUP)
1883                 size += sizeof(data->cgroup);
1884
1885         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                 size += sizeof(data->data_page_size);
1887
1888         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                 size += sizeof(data->code_page_size);
1890
1891         event->header_size = size;
1892 }
1893
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900         __perf_event_read_size(event,
1901                                event->group_leader->nr_siblings);
1902         __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907         struct perf_sample_data *data;
1908         u64 sample_type = event->attr.sample_type;
1909         u16 size = 0;
1910
1911         if (sample_type & PERF_SAMPLE_TID)
1912                 size += sizeof(data->tid_entry);
1913
1914         if (sample_type & PERF_SAMPLE_TIME)
1915                 size += sizeof(data->time);
1916
1917         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                 size += sizeof(data->id);
1919
1920         if (sample_type & PERF_SAMPLE_ID)
1921                 size += sizeof(data->id);
1922
1923         if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                 size += sizeof(data->stream_id);
1925
1926         if (sample_type & PERF_SAMPLE_CPU)
1927                 size += sizeof(data->cpu_entry);
1928
1929         event->id_header_size = size;
1930 }
1931
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934         /*
1935          * The values computed here will be over-written when we actually
1936          * attach the event.
1937          */
1938         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940         perf_event__id_header_size(event);
1941
1942         /*
1943          * Sum the lot; should not exceed the 64k limit we have on records.
1944          * Conservative limit to allow for callchains and other variable fields.
1945          */
1946         if (event->read_size + event->header_size +
1947             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                 return false;
1949
1950         return true;
1951 }
1952
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955         struct perf_event *group_leader = event->group_leader, *pos;
1956
1957         lockdep_assert_held(&event->ctx->lock);
1958
1959         /*
1960          * We can have double attach due to group movement in perf_event_open.
1961          */
1962         if (event->attach_state & PERF_ATTACH_GROUP)
1963                 return;
1964
1965         event->attach_state |= PERF_ATTACH_GROUP;
1966
1967         if (group_leader == event)
1968                 return;
1969
1970         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972         group_leader->group_caps &= event->event_caps;
1973
1974         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975         group_leader->nr_siblings++;
1976
1977         perf_event__header_size(group_leader);
1978
1979         for_each_sibling_event(pos, group_leader)
1980                 perf_event__header_size(pos);
1981 }
1982
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990         WARN_ON_ONCE(event->ctx != ctx);
1991         lockdep_assert_held(&ctx->lock);
1992
1993         /*
1994          * We can have double detach due to exit/hot-unplug + close.
1995          */
1996         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                 return;
1998
1999         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001         ctx->nr_events--;
2002         if (event->attr.inherit_stat)
2003                 ctx->nr_stat--;
2004
2005         list_del_rcu(&event->event_entry);
2006
2007         if (event->group_leader == event)
2008                 del_event_from_groups(event, ctx);
2009
2010         /*
2011          * If event was in error state, then keep it
2012          * that way, otherwise bogus counts will be
2013          * returned on read(). The only way to get out
2014          * of error state is by explicit re-enabling
2015          * of the event
2016          */
2017         if (event->state > PERF_EVENT_STATE_OFF) {
2018                 perf_cgroup_event_disable(event, ctx);
2019                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020         }
2021
2022         ctx->generation++;
2023 }
2024
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028         if (!has_aux(aux_event))
2029                 return 0;
2030
2031         if (!event->pmu->aux_output_match)
2032                 return 0;
2033
2034         return event->pmu->aux_output_match(aux_event);
2035 }
2036
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039                             struct perf_cpu_context *cpuctx,
2040                             struct perf_event_context *ctx);
2041
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044         struct perf_event_context *ctx = event->ctx;
2045         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046         struct perf_event *iter;
2047
2048         /*
2049          * If event uses aux_event tear down the link
2050          */
2051         if (event->aux_event) {
2052                 iter = event->aux_event;
2053                 event->aux_event = NULL;
2054                 put_event(iter);
2055                 return;
2056         }
2057
2058         /*
2059          * If the event is an aux_event, tear down all links to
2060          * it from other events.
2061          */
2062         for_each_sibling_event(iter, event->group_leader) {
2063                 if (iter->aux_event != event)
2064                         continue;
2065
2066                 iter->aux_event = NULL;
2067                 put_event(event);
2068
2069                 /*
2070                  * If it's ACTIVE, schedule it out and put it into ERROR
2071                  * state so that we don't try to schedule it again. Note
2072                  * that perf_event_enable() will clear the ERROR status.
2073                  */
2074                 event_sched_out(iter, cpuctx, ctx);
2075                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076         }
2077 }
2078
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083
2084 static int perf_get_aux_event(struct perf_event *event,
2085                               struct perf_event *group_leader)
2086 {
2087         /*
2088          * Our group leader must be an aux event if we want to be
2089          * an aux_output. This way, the aux event will precede its
2090          * aux_output events in the group, and therefore will always
2091          * schedule first.
2092          */
2093         if (!group_leader)
2094                 return 0;
2095
2096         /*
2097          * aux_output and aux_sample_size are mutually exclusive.
2098          */
2099         if (event->attr.aux_output && event->attr.aux_sample_size)
2100                 return 0;
2101
2102         if (event->attr.aux_output &&
2103             !perf_aux_output_match(event, group_leader))
2104                 return 0;
2105
2106         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                 return 0;
2108
2109         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                 return 0;
2111
2112         /*
2113          * Link aux_outputs to their aux event; this is undone in
2114          * perf_group_detach() by perf_put_aux_event(). When the
2115          * group in torn down, the aux_output events loose their
2116          * link to the aux_event and can't schedule any more.
2117          */
2118         event->aux_event = group_leader;
2119
2120         return 1;
2121 }
2122
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125         struct perf_event_context *ctx = event->ctx;
2126         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140         event_sched_out(event, cpuctx, ctx);
2141         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146         struct perf_event *leader = event->group_leader;
2147         struct perf_event *sibling, *tmp;
2148         struct perf_event_context *ctx = event->ctx;
2149
2150         lockdep_assert_held(&ctx->lock);
2151
2152         /*
2153          * We can have double detach due to exit/hot-unplug + close.
2154          */
2155         if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                 return;
2157
2158         event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160         perf_put_aux_event(event);
2161
2162         /*
2163          * If this is a sibling, remove it from its group.
2164          */
2165         if (leader != event) {
2166                 list_del_init(&event->sibling_list);
2167                 event->group_leader->nr_siblings--;
2168                 goto out;
2169         }
2170
2171         /*
2172          * If this was a group event with sibling events then
2173          * upgrade the siblings to singleton events by adding them
2174          * to whatever list we are on.
2175          */
2176         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                         perf_remove_sibling_event(sibling);
2180
2181                 sibling->group_leader = sibling;
2182                 list_del_init(&sibling->sibling_list);
2183
2184                 /* Inherit group flags from the previous leader */
2185                 sibling->group_caps = event->group_caps;
2186
2187                 if (!RB_EMPTY_NODE(&event->group_node)) {
2188                         add_event_to_groups(sibling, event->ctx);
2189
2190                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                 }
2193
2194                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195         }
2196
2197 out:
2198         for_each_sibling_event(tmp, leader)
2199                 perf_event__header_size(tmp);
2200
2201         perf_event__header_size(leader);
2202 }
2203
2204 static void sync_child_event(struct perf_event *child_event);
2205
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208         struct perf_event *parent_event = event->parent;
2209
2210         if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                 return;
2212
2213         event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215         if (WARN_ON_ONCE(!parent_event))
2216                 return;
2217
2218         lockdep_assert_held(&parent_event->child_mutex);
2219
2220         sync_child_event(event);
2221         list_del_init(&event->child_list);
2222 }
2223
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226         return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231         struct pmu *pmu = event->pmu;
2232         return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243         struct perf_event *sibling;
2244
2245         if (!__pmu_filter_match(event))
2246                 return 0;
2247
2248         for_each_sibling_event(sibling, event) {
2249                 if (!__pmu_filter_match(sibling))
2250                         return 0;
2251         }
2252
2253         return 1;
2254 }
2255
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260                perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262
2263 static void
2264 event_sched_out(struct perf_event *event,
2265                   struct perf_cpu_context *cpuctx,
2266                   struct perf_event_context *ctx)
2267 {
2268         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270         WARN_ON_ONCE(event->ctx != ctx);
2271         lockdep_assert_held(&ctx->lock);
2272
2273         if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                 return;
2275
2276         /*
2277          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278          * we can schedule events _OUT_ individually through things like
2279          * __perf_remove_from_context().
2280          */
2281         list_del_init(&event->active_list);
2282
2283         perf_pmu_disable(event->pmu);
2284
2285         event->pmu->del(event, 0);
2286         event->oncpu = -1;
2287
2288         if (READ_ONCE(event->pending_disable) >= 0) {
2289                 WRITE_ONCE(event->pending_disable, -1);
2290                 perf_cgroup_event_disable(event, ctx);
2291                 state = PERF_EVENT_STATE_OFF;
2292         }
2293         perf_event_set_state(event, state);
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu--;
2297         if (!--ctx->nr_active)
2298                 perf_event_ctx_deactivate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq--;
2301         if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                 cpuctx->exclusive = 0;
2303
2304         perf_pmu_enable(event->pmu);
2305 }
2306
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309                 struct perf_cpu_context *cpuctx,
2310                 struct perf_event_context *ctx)
2311 {
2312         struct perf_event *event;
2313
2314         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316
2317         perf_pmu_disable(ctx->pmu);
2318
2319         event_sched_out(group_event, cpuctx, ctx);
2320
2321         /*
2322          * Schedule out siblings (if any):
2323          */
2324         for_each_sibling_event(event, group_event)
2325                 event_sched_out(event, cpuctx, ctx);
2326
2327         perf_pmu_enable(ctx->pmu);
2328 }
2329
2330 #define DETACH_GROUP    0x01UL
2331 #define DETACH_CHILD    0x02UL
2332
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341                            struct perf_cpu_context *cpuctx,
2342                            struct perf_event_context *ctx,
2343                            void *info)
2344 {
2345         unsigned long flags = (unsigned long)info;
2346
2347         if (ctx->is_active & EVENT_TIME) {
2348                 update_context_time(ctx);
2349                 update_cgrp_time_from_cpuctx(cpuctx);
2350         }
2351
2352         event_sched_out(event, cpuctx, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358
2359         if (!ctx->nr_events && ctx->is_active) {
2360                 ctx->is_active = 0;
2361                 ctx->rotate_necessary = 0;
2362                 if (ctx->task) {
2363                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                         cpuctx->task_ctx = NULL;
2365                 }
2366         }
2367 }
2368
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381         struct perf_event_context *ctx = event->ctx;
2382
2383         lockdep_assert_held(&ctx->mutex);
2384
2385         /*
2386          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387          * to work in the face of TASK_TOMBSTONE, unlike every other
2388          * event_function_call() user.
2389          */
2390         raw_spin_lock_irq(&ctx->lock);
2391         if (!ctx->is_active) {
2392                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                            ctx, (void *)flags);
2394                 raw_spin_unlock_irq(&ctx->lock);
2395                 return;
2396         }
2397         raw_spin_unlock_irq(&ctx->lock);
2398
2399         event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406                                  struct perf_cpu_context *cpuctx,
2407                                  struct perf_event_context *ctx,
2408                                  void *info)
2409 {
2410         if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                 return;
2412
2413         if (ctx->is_active & EVENT_TIME) {
2414                 update_context_time(ctx);
2415                 update_cgrp_time_from_event(event);
2416         }
2417
2418         if (event == event->group_leader)
2419                 group_sched_out(event, cpuctx, ctx);
2420         else
2421                 event_sched_out(event, cpuctx, ctx);
2422
2423         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424         perf_cgroup_event_disable(event, ctx);
2425 }
2426
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443         struct perf_event_context *ctx = event->ctx;
2444
2445         raw_spin_lock_irq(&ctx->lock);
2446         if (event->state <= PERF_EVENT_STATE_OFF) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 return;
2449         }
2450         raw_spin_unlock_irq(&ctx->lock);
2451
2452         event_function_call(event, __perf_event_disable, NULL);
2453 }
2454
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457         event_function_local(event, __perf_event_disable, NULL);
2458 }
2459
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466         struct perf_event_context *ctx;
2467
2468         ctx = perf_event_ctx_lock(event);
2469         _perf_event_disable(event);
2470         perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476         WRITE_ONCE(event->pending_disable, smp_processor_id());
2477         /* can fail, see perf_pending_event_disable() */
2478         irq_work_queue(&event->pending);
2479 }
2480
2481 static void perf_set_shadow_time(struct perf_event *event,
2482                                  struct perf_event_context *ctx)
2483 {
2484         /*
2485          * use the correct time source for the time snapshot
2486          *
2487          * We could get by without this by leveraging the
2488          * fact that to get to this function, the caller
2489          * has most likely already called update_context_time()
2490          * and update_cgrp_time_xx() and thus both timestamp
2491          * are identical (or very close). Given that tstamp is,
2492          * already adjusted for cgroup, we could say that:
2493          *    tstamp - ctx->timestamp
2494          * is equivalent to
2495          *    tstamp - cgrp->timestamp.
2496          *
2497          * Then, in perf_output_read(), the calculation would
2498          * work with no changes because:
2499          * - event is guaranteed scheduled in
2500          * - no scheduled out in between
2501          * - thus the timestamp would be the same
2502          *
2503          * But this is a bit hairy.
2504          *
2505          * So instead, we have an explicit cgroup call to remain
2506          * within the time source all along. We believe it
2507          * is cleaner and simpler to understand.
2508          */
2509         if (is_cgroup_event(event))
2510                 perf_cgroup_set_shadow_time(event, event->tstamp);
2511         else
2512                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514
2515 #define MAX_INTERRUPTS (~0ULL)
2516
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519
2520 static int
2521 event_sched_in(struct perf_event *event,
2522                  struct perf_cpu_context *cpuctx,
2523                  struct perf_event_context *ctx)
2524 {
2525         int ret = 0;
2526
2527         WARN_ON_ONCE(event->ctx != ctx);
2528
2529         lockdep_assert_held(&ctx->lock);
2530
2531         if (event->state <= PERF_EVENT_STATE_OFF)
2532                 return 0;
2533
2534         WRITE_ONCE(event->oncpu, smp_processor_id());
2535         /*
2536          * Order event::oncpu write to happen before the ACTIVE state is
2537          * visible. This allows perf_event_{stop,read}() to observe the correct
2538          * ->oncpu if it sees ACTIVE.
2539          */
2540         smp_wmb();
2541         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543         /*
2544          * Unthrottle events, since we scheduled we might have missed several
2545          * ticks already, also for a heavily scheduling task there is little
2546          * guarantee it'll get a tick in a timely manner.
2547          */
2548         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                 perf_log_throttle(event, 1);
2550                 event->hw.interrupts = 0;
2551         }
2552
2553         perf_pmu_disable(event->pmu);
2554
2555         perf_set_shadow_time(event, ctx);
2556
2557         perf_log_itrace_start(event);
2558
2559         if (event->pmu->add(event, PERF_EF_START)) {
2560                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                 event->oncpu = -1;
2562                 ret = -EAGAIN;
2563                 goto out;
2564         }
2565
2566         if (!is_software_event(event))
2567                 cpuctx->active_oncpu++;
2568         if (!ctx->nr_active++)
2569                 perf_event_ctx_activate(ctx);
2570         if (event->attr.freq && event->attr.sample_freq)
2571                 ctx->nr_freq++;
2572
2573         if (event->attr.exclusive)
2574                 cpuctx->exclusive = 1;
2575
2576 out:
2577         perf_pmu_enable(event->pmu);
2578
2579         return ret;
2580 }
2581
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584                struct perf_cpu_context *cpuctx,
2585                struct perf_event_context *ctx)
2586 {
2587         struct perf_event *event, *partial_group = NULL;
2588         struct pmu *pmu = ctx->pmu;
2589
2590         if (group_event->state == PERF_EVENT_STATE_OFF)
2591                 return 0;
2592
2593         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595         if (event_sched_in(group_event, cpuctx, ctx))
2596                 goto error;
2597
2598         /*
2599          * Schedule in siblings as one group (if any):
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event_sched_in(event, cpuctx, ctx)) {
2603                         partial_group = event;
2604                         goto group_error;
2605                 }
2606         }
2607
2608         if (!pmu->commit_txn(pmu))
2609                 return 0;
2610
2611 group_error:
2612         /*
2613          * Groups can be scheduled in as one unit only, so undo any
2614          * partial group before returning:
2615          * The events up to the failed event are scheduled out normally.
2616          */
2617         for_each_sibling_event(event, group_event) {
2618                 if (event == partial_group)
2619                         break;
2620
2621                 event_sched_out(event, cpuctx, ctx);
2622         }
2623         event_sched_out(group_event, cpuctx, ctx);
2624
2625 error:
2626         pmu->cancel_txn(pmu);
2627         return -EAGAIN;
2628 }
2629
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634                            struct perf_cpu_context *cpuctx,
2635                            int can_add_hw)
2636 {
2637         /*
2638          * Groups consisting entirely of software events can always go on.
2639          */
2640         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                 return 1;
2642         /*
2643          * If an exclusive group is already on, no other hardware
2644          * events can go on.
2645          */
2646         if (cpuctx->exclusive)
2647                 return 0;
2648         /*
2649          * If this group is exclusive and there are already
2650          * events on the CPU, it can't go on.
2651          */
2652         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                 return 0;
2654         /*
2655          * Otherwise, try to add it if all previous groups were able
2656          * to go on.
2657          */
2658         return can_add_hw;
2659 }
2660
2661 static void add_event_to_ctx(struct perf_event *event,
2662                                struct perf_event_context *ctx)
2663 {
2664         list_add_event(event, ctx);
2665         perf_group_attach(event);
2666 }
2667
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669                           struct perf_cpu_context *cpuctx,
2670                           enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673              struct perf_cpu_context *cpuctx,
2674              enum event_type_t event_type,
2675              struct task_struct *task);
2676
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                                struct perf_event_context *ctx,
2679                                enum event_type_t event_type)
2680 {
2681         if (!cpuctx->task_ctx)
2682                 return;
2683
2684         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                 return;
2686
2687         ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                 struct perf_event_context *ctx,
2692                                 struct task_struct *task)
2693 {
2694         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695         if (ctx)
2696                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698         if (ctx)
2699                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                         struct perf_event_context *task_ctx,
2719                         enum event_type_t event_type)
2720 {
2721         enum event_type_t ctx_event_type;
2722         bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724         /*
2725          * If pinned groups are involved, flexible groups also need to be
2726          * scheduled out.
2727          */
2728         if (event_type & EVENT_PINNED)
2729                 event_type |= EVENT_FLEXIBLE;
2730
2731         ctx_event_type = event_type & EVENT_ALL;
2732
2733         perf_pmu_disable(cpuctx->ctx.pmu);
2734         if (task_ctx)
2735                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737         /*
2738          * Decide which cpu ctx groups to schedule out based on the types
2739          * of events that caused rescheduling:
2740          *  - EVENT_CPU: schedule out corresponding groups;
2741          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742          *  - otherwise, do nothing more.
2743          */
2744         if (cpu_event)
2745                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746         else if (ctx_event_type & EVENT_PINNED)
2747                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749         perf_event_sched_in(cpuctx, task_ctx, current);
2750         perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758         perf_ctx_lock(cpuctx, task_ctx);
2759         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760         perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771         struct perf_event *event = info;
2772         struct perf_event_context *ctx = event->ctx;
2773         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775         bool reprogram = true;
2776         int ret = 0;
2777
2778         raw_spin_lock(&cpuctx->ctx.lock);
2779         if (ctx->task) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx = ctx;
2782
2783                 reprogram = (ctx->task == current);
2784
2785                 /*
2786                  * If the task is running, it must be running on this CPU,
2787                  * otherwise we cannot reprogram things.
2788                  *
2789                  * If its not running, we don't care, ctx->lock will
2790                  * serialize against it becoming runnable.
2791                  */
2792                 if (task_curr(ctx->task) && !reprogram) {
2793                         ret = -ESRCH;
2794                         goto unlock;
2795                 }
2796
2797                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798         } else if (task_ctx) {
2799                 raw_spin_lock(&task_ctx->lock);
2800         }
2801
2802 #ifdef CONFIG_CGROUP_PERF
2803         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                 /*
2805                  * If the current cgroup doesn't match the event's
2806                  * cgroup, we should not try to schedule it.
2807                  */
2808                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                         event->cgrp->css.cgroup);
2811         }
2812 #endif
2813
2814         if (reprogram) {
2815                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                 add_event_to_ctx(event, ctx);
2817                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818         } else {
2819                 add_event_to_ctx(event, ctx);
2820         }
2821
2822 unlock:
2823         perf_ctx_unlock(cpuctx, task_ctx);
2824
2825         return ret;
2826 }
2827
2828 static bool exclusive_event_installable(struct perf_event *event,
2829                                         struct perf_event_context *ctx);
2830
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838                         struct perf_event *event,
2839                         int cpu)
2840 {
2841         struct task_struct *task = READ_ONCE(ctx->task);
2842
2843         lockdep_assert_held(&ctx->mutex);
2844
2845         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847         if (event->cpu != -1)
2848                 event->cpu = cpu;
2849
2850         /*
2851          * Ensures that if we can observe event->ctx, both the event and ctx
2852          * will be 'complete'. See perf_iterate_sb_cpu().
2853          */
2854         smp_store_release(&event->ctx, ctx);
2855
2856         /*
2857          * perf_event_attr::disabled events will not run and can be initialized
2858          * without IPI. Except when this is the first event for the context, in
2859          * that case we need the magic of the IPI to set ctx->is_active.
2860          *
2861          * The IOC_ENABLE that is sure to follow the creation of a disabled
2862          * event will issue the IPI and reprogram the hardware.
2863          */
2864         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                 raw_spin_lock_irq(&ctx->lock);
2866                 if (ctx->task == TASK_TOMBSTONE) {
2867                         raw_spin_unlock_irq(&ctx->lock);
2868                         return;
2869                 }
2870                 add_event_to_ctx(event, ctx);
2871                 raw_spin_unlock_irq(&ctx->lock);
2872                 return;
2873         }
2874
2875         if (!task) {
2876                 cpu_function_call(cpu, __perf_install_in_context, event);
2877                 return;
2878         }
2879
2880         /*
2881          * Should not happen, we validate the ctx is still alive before calling.
2882          */
2883         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                 return;
2885
2886         /*
2887          * Installing events is tricky because we cannot rely on ctx->is_active
2888          * to be set in case this is the nr_events 0 -> 1 transition.
2889          *
2890          * Instead we use task_curr(), which tells us if the task is running.
2891          * However, since we use task_curr() outside of rq::lock, we can race
2892          * against the actual state. This means the result can be wrong.
2893          *
2894          * If we get a false positive, we retry, this is harmless.
2895          *
2896          * If we get a false negative, things are complicated. If we are after
2897          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898          * value must be correct. If we're before, it doesn't matter since
2899          * perf_event_context_sched_in() will program the counter.
2900          *
2901          * However, this hinges on the remote context switch having observed
2902          * our task->perf_event_ctxp[] store, such that it will in fact take
2903          * ctx::lock in perf_event_context_sched_in().
2904          *
2905          * We do this by task_function_call(), if the IPI fails to hit the task
2906          * we know any future context switch of task must see the
2907          * perf_event_ctpx[] store.
2908          */
2909
2910         /*
2911          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912          * task_cpu() load, such that if the IPI then does not find the task
2913          * running, a future context switch of that task must observe the
2914          * store.
2915          */
2916         smp_mb();
2917 again:
2918         if (!task_function_call(task, __perf_install_in_context, event))
2919                 return;
2920
2921         raw_spin_lock_irq(&ctx->lock);
2922         task = ctx->task;
2923         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                 /*
2925                  * Cannot happen because we already checked above (which also
2926                  * cannot happen), and we hold ctx->mutex, which serializes us
2927                  * against perf_event_exit_task_context().
2928                  */
2929                 raw_spin_unlock_irq(&ctx->lock);
2930                 return;
2931         }
2932         /*
2933          * If the task is not running, ctx->lock will avoid it becoming so,
2934          * thus we can safely install the event.
2935          */
2936         if (task_curr(task)) {
2937                 raw_spin_unlock_irq(&ctx->lock);
2938                 goto again;
2939         }
2940         add_event_to_ctx(event, ctx);
2941         raw_spin_unlock_irq(&ctx->lock);
2942 }
2943
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948                                 struct perf_cpu_context *cpuctx,
2949                                 struct perf_event_context *ctx,
2950                                 void *info)
2951 {
2952         struct perf_event *leader = event->group_leader;
2953         struct perf_event_context *task_ctx;
2954
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <= PERF_EVENT_STATE_ERROR)
2957                 return;
2958
2959         if (ctx->is_active)
2960                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963         perf_cgroup_event_enable(event, ctx);
2964
2965         if (!ctx->is_active)
2966                 return;
2967
2968         if (!event_filter_match(event)) {
2969                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                 return;
2971         }
2972
2973         /*
2974          * If the event is in a group and isn't the group leader,
2975          * then don't put it on unless the group is on.
2976          */
2977         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                 return;
2980         }
2981
2982         task_ctx = cpuctx->task_ctx;
2983         if (ctx->task)
2984                 WARN_ON_ONCE(task_ctx != ctx);
2985
2986         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000         struct perf_event_context *ctx = event->ctx;
3001
3002         raw_spin_lock_irq(&ctx->lock);
3003         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004             event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006                 raw_spin_unlock_irq(&ctx->lock);
3007                 return;
3008         }
3009
3010         /*
3011          * If the event is in error state, clear that first.
3012          *
3013          * That way, if we see the event in error state below, we know that it
3014          * has gone back into error state, as distinct from the task having
3015          * been scheduled away before the cross-call arrived.
3016          */
3017         if (event->state == PERF_EVENT_STATE_ERROR) {
3018                 /*
3019                  * Detached SIBLING events cannot leave ERROR state.
3020                  */
3021                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                     event->group_leader == event)
3023                         goto out;
3024
3025                 event->state = PERF_EVENT_STATE_OFF;
3026         }
3027         raw_spin_unlock_irq(&ctx->lock);
3028
3029         event_function_call(event, __perf_event_enable, NULL);
3030 }
3031
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037         struct perf_event_context *ctx;
3038
3039         ctx = perf_event_ctx_lock(event);
3040         _perf_event_enable(event);
3041         perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045 struct stop_event_data {
3046         struct perf_event       *event;
3047         unsigned int            restart;
3048 };
3049
3050 static int __perf_event_stop(void *info)
3051 {
3052         struct stop_event_data *sd = info;
3053         struct perf_event *event = sd->event;
3054
3055         /* if it's already INACTIVE, do nothing */
3056         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                 return 0;
3058
3059         /* matches smp_wmb() in event_sched_in() */
3060         smp_rmb();
3061
3062         /*
3063          * There is a window with interrupts enabled before we get here,
3064          * so we need to check again lest we try to stop another CPU's event.
3065          */
3066         if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                 return -EAGAIN;
3068
3069         event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071         /*
3072          * May race with the actual stop (through perf_pmu_output_stop()),
3073          * but it is only used for events with AUX ring buffer, and such
3074          * events will refuse to restart because of rb::aux_mmap_count==0,
3075          * see comments in perf_aux_output_begin().
3076          *
3077          * Since this is happening on an event-local CPU, no trace is lost
3078          * while restarting.
3079          */
3080         if (sd->restart)
3081                 event->pmu->start(event, 0);
3082
3083         return 0;
3084 }
3085
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088         struct stop_event_data sd = {
3089                 .event          = event,
3090                 .restart        = restart,
3091         };
3092         int ret = 0;
3093
3094         do {
3095                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                         return 0;
3097
3098                 /* matches smp_wmb() in event_sched_in() */
3099                 smp_rmb();
3100
3101                 /*
3102                  * We only want to restart ACTIVE events, so if the event goes
3103                  * inactive here (event->oncpu==-1), there's nothing more to do;
3104                  * fall through with ret==-ENXIO.
3105                  */
3106                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                         __perf_event_stop, &sd);
3108         } while (ret == -EAGAIN);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139         if (!has_addr_filter(event))
3140                 return;
3141
3142         raw_spin_lock(&ifh->lock);
3143         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                 event->pmu->addr_filters_sync(event);
3145                 event->hw.addr_filters_gen = event->addr_filters_gen;
3146         }
3147         raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         /*
3154          * not supported on inherited events
3155          */
3156         if (event->attr.inherit || !is_sampling_event(event))
3157                 return -EINVAL;
3158
3159         atomic_add(refresh, &event->event_limit);
3160         _perf_event_enable(event);
3161
3162         return 0;
3163 }
3164
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170         struct perf_event_context *ctx;
3171         int ret;
3172
3173         ctx = perf_event_ctx_lock(event);
3174         ret = _perf_event_refresh(event, refresh);
3175         perf_event_ctx_unlock(event, ctx);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                          struct perf_event_attr *attr)
3183 {
3184         int err;
3185
3186         _perf_event_disable(bp);
3187
3188         err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190         if (!bp->attr.disabled)
3191                 _perf_event_enable(bp);
3192
3193         return err;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         err = func(event, attr);
3219         if (err)
3220                 goto out;
3221         list_for_each_entry(child, &event->child_list, child_list) {
3222                 err = func(child, attr);
3223                 if (err)
3224                         goto out;
3225         }
3226 out:
3227         mutex_unlock(&event->child_mutex);
3228         return err;
3229 }
3230
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232                           struct perf_cpu_context *cpuctx,
3233                           enum event_type_t event_type)
3234 {
3235         struct perf_event *event, *tmp;
3236         int is_active = ctx->is_active;
3237
3238         lockdep_assert_held(&ctx->lock);
3239
3240         if (likely(!ctx->nr_events)) {
3241                 /*
3242                  * See __perf_remove_from_context().
3243                  */
3244                 WARN_ON_ONCE(ctx->is_active);
3245                 if (ctx->task)
3246                         WARN_ON_ONCE(cpuctx->task_ctx);
3247                 return;
3248         }
3249
3250         ctx->is_active &= ~event_type;
3251         if (!(ctx->is_active & EVENT_ALL))
3252                 ctx->is_active = 0;
3253
3254         if (ctx->task) {
3255                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                 if (!ctx->is_active)
3257                         cpuctx->task_ctx = NULL;
3258         }
3259
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx);
3274         }
3275
3276         is_active ^= ctx->is_active; /* changed bits */
3277
3278         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                 return;
3280
3281         perf_pmu_disable(ctx->pmu);
3282         if (is_active & EVENT_PINNED) {
3283                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                         group_sched_out(event, cpuctx, ctx);
3285         }
3286
3287         if (is_active & EVENT_FLEXIBLE) {
3288                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                         group_sched_out(event, cpuctx, ctx);
3290
3291                 /*
3292                  * Since we cleared EVENT_FLEXIBLE, also clear
3293                  * rotate_necessary, is will be reset by
3294                  * ctx_flexible_sched_in() when needed.
3295                  */
3296                 ctx->rotate_necessary = 0;
3297         }
3298         perf_pmu_enable(ctx->pmu);
3299 }
3300
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310                          struct perf_event_context *ctx2)
3311 {
3312         lockdep_assert_held(&ctx1->lock);
3313         lockdep_assert_held(&ctx2->lock);
3314
3315         /* Pinning disables the swap optimization */
3316         if (ctx1->pin_count || ctx2->pin_count)
3317                 return 0;
3318
3319         /* If ctx1 is the parent of ctx2 */
3320         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                 return 1;
3322
3323         /* If ctx2 is the parent of ctx1 */
3324         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                 return 1;
3326
3327         /*
3328          * If ctx1 and ctx2 have the same parent; we flatten the parent
3329          * hierarchy, see perf_event_init_context().
3330          */
3331         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                         ctx1->parent_gen == ctx2->parent_gen)
3333                 return 1;
3334
3335         /* Unmatched */
3336         return 0;
3337 }
3338
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340                                      struct perf_event *next_event)
3341 {
3342         u64 value;
3343
3344         if (!event->attr.inherit_stat)
3345                 return;
3346
3347         /*
3348          * Update the event value, we cannot use perf_event_read()
3349          * because we're in the middle of a context switch and have IRQs
3350          * disabled, which upsets smp_call_function_single(), however
3351          * we know the event must be on the current CPU, therefore we
3352          * don't need to use it.
3353          */
3354         if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                 event->pmu->read(event);
3356
3357         perf_event_update_time(event);
3358
3359         /*
3360          * In order to keep per-task stats reliable we need to flip the event
3361          * values when we flip the contexts.
3362          */
3363         value = local64_read(&next_event->count);
3364         value = local64_xchg(&event->count, value);
3365         local64_set(&next_event->count, value);
3366
3367         swap(event->total_time_enabled, next_event->total_time_enabled);
3368         swap(event->total_time_running, next_event->total_time_running);
3369
3370         /*
3371          * Since we swizzled the values, update the user visible data too.
3372          */
3373         perf_event_update_userpage(event);
3374         perf_event_update_userpage(next_event);
3375 }
3376
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                    struct perf_event_context *next_ctx)
3379 {
3380         struct perf_event *event, *next_event;
3381
3382         if (!ctx->nr_stat)
3383                 return;
3384
3385         update_context_time(ctx);
3386
3387         event = list_first_entry(&ctx->event_list,
3388                                    struct perf_event, event_entry);
3389
3390         next_event = list_first_entry(&next_ctx->event_list,
3391                                         struct perf_event, event_entry);
3392
3393         while (&event->event_entry != &ctx->event_list &&
3394                &next_event->event_entry != &next_ctx->event_list) {
3395
3396                 __perf_event_sync_stat(event, next_event);
3397
3398                 event = list_next_entry(event, event_entry);
3399                 next_event = list_next_entry(next_event, event_entry);
3400         }
3401 }
3402
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                          struct task_struct *next)
3405 {
3406         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407         struct perf_event_context *next_ctx;
3408         struct perf_event_context *parent, *next_parent;
3409         struct perf_cpu_context *cpuctx;
3410         int do_switch = 1;
3411         struct pmu *pmu;
3412
3413         if (likely(!ctx))
3414                 return;
3415
3416         pmu = ctx->pmu;
3417         cpuctx = __get_cpu_context(ctx);
3418         if (!cpuctx->task_ctx)
3419                 return;
3420
3421         rcu_read_lock();
3422         next_ctx = next->perf_event_ctxp[ctxn];
3423         if (!next_ctx)
3424                 goto unlock;
3425
3426         parent = rcu_dereference(ctx->parent_ctx);
3427         next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429         /* If neither context have a parent context; they cannot be clones. */
3430         if (!parent && !next_parent)
3431                 goto unlock;
3432
3433         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                 /*
3435                  * Looks like the two contexts are clones, so we might be
3436                  * able to optimize the context switch.  We lock both
3437                  * contexts and check that they are clones under the
3438                  * lock (including re-checking that neither has been
3439                  * uncloned in the meantime).  It doesn't matter which
3440                  * order we take the locks because no other cpu could
3441                  * be trying to lock both of these tasks.
3442                  */
3443                 raw_spin_lock(&ctx->lock);
3444                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                 if (context_equiv(ctx, next_ctx)) {
3446
3447                         WRITE_ONCE(ctx->task, next);
3448                         WRITE_ONCE(next_ctx->task, task);
3449
3450                         perf_pmu_disable(pmu);
3451
3452                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                 pmu->sched_task(ctx, false);
3454
3455                         /*
3456                          * PMU specific parts of task perf context can require
3457                          * additional synchronization. As an example of such
3458                          * synchronization see implementation details of Intel
3459                          * LBR call stack data profiling;
3460                          */
3461                         if (pmu->swap_task_ctx)
3462                                 pmu->swap_task_ctx(ctx, next_ctx);
3463                         else
3464                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466                         perf_pmu_enable(pmu);
3467
3468                         /*
3469                          * RCU_INIT_POINTER here is safe because we've not
3470                          * modified the ctx and the above modification of
3471                          * ctx->task and ctx->task_ctx_data are immaterial
3472                          * since those values are always verified under
3473                          * ctx->lock which we're now holding.
3474                          */
3475                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478                         do_switch = 0;
3479
3480                         perf_event_sync_stat(ctx, next_ctx);
3481                 }
3482                 raw_spin_unlock(&next_ctx->lock);
3483                 raw_spin_unlock(&ctx->lock);
3484         }
3485 unlock:
3486         rcu_read_unlock();
3487
3488         if (do_switch) {
3489                 raw_spin_lock(&ctx->lock);
3490                 perf_pmu_disable(pmu);
3491
3492                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                         pmu->sched_task(ctx, false);
3494                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496                 perf_pmu_enable(pmu);
3497                 raw_spin_unlock(&ctx->lock);
3498         }
3499 }
3500
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507         this_cpu_dec(perf_sched_cb_usages);
3508
3509         if (!--cpuctx->sched_cb_usage)
3510                 list_del(&cpuctx->sched_cb_entry);
3511 }
3512
3513
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518         if (!cpuctx->sched_cb_usage++)
3519                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521         this_cpu_inc(perf_sched_cb_usages);
3522 }
3523
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534         struct pmu *pmu;
3535
3536         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538         if (WARN_ON_ONCE(!pmu->sched_task))
3539                 return;
3540
3541         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542         perf_pmu_disable(pmu);
3543
3544         pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546         perf_pmu_enable(pmu);
3547         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551                                 struct task_struct *next,
3552                                 bool sched_in)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555
3556         if (prev == next)
3557                 return;
3558
3559         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                 /* will be handled in perf_event_context_sched_in/out */
3561                 if (cpuctx->task_ctx)
3562                         continue;
3563
3564                 __perf_pmu_sched_task(cpuctx, sched_in);
3565         }
3566 }
3567
3568 static void perf_event_switch(struct task_struct *task,
3569                               struct task_struct *next_prev, bool sched_in);
3570
3571 #define for_each_task_context_nr(ctxn)                                  \
3572         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586                                  struct task_struct *next)
3587 {
3588         int ctxn;
3589
3590         if (__this_cpu_read(perf_sched_cb_usages))
3591                 perf_pmu_sched_task(task, next, false);
3592
3593         if (atomic_read(&nr_switch_events))
3594                 perf_event_switch(task, next, false);
3595
3596         for_each_task_context_nr(ctxn)
3597                 perf_event_context_sched_out(task, ctxn, next);
3598
3599         /*
3600          * if cgroup events exist on this CPU, then we need
3601          * to check if we have to switch out PMU state.
3602          * cgroup event are system-wide mode only
3603          */
3604         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                 perf_cgroup_sched_out(task, next);
3606 }
3607
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                               enum event_type_t event_type)
3613 {
3614         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619         const struct perf_event *le = *(const struct perf_event **)l;
3620         const struct perf_event *re = *(const struct perf_event **)r;
3621
3622         return le->group_index < re->group_index;
3623 }
3624
3625 static void swap_ptr(void *l, void *r)
3626 {
3627         void **lp = l, **rp = r;
3628
3629         swap(*lp, *rp);
3630 }
3631
3632 static const struct min_heap_callbacks perf_min_heap = {
3633         .elem_size = sizeof(struct perf_event *),
3634         .less = perf_less_group_idx,
3635         .swp = swap_ptr,
3636 };
3637
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640         struct perf_event **itrs = heap->data;
3641
3642         if (event) {
3643                 itrs[heap->nr] = event;
3644                 heap->nr++;
3645         }
3646 }
3647
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                 struct perf_event_groups *groups, int cpu,
3650                                 int (*func)(struct perf_event *, void *),
3651                                 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654         struct cgroup_subsys_state *css = NULL;
3655 #endif
3656         /* Space for per CPU and/or any CPU event iterators. */
3657         struct perf_event *itrs[2];
3658         struct min_heap event_heap;
3659         struct perf_event **evt;
3660         int ret;
3661
3662         if (cpuctx) {
3663                 event_heap = (struct min_heap){
3664                         .data = cpuctx->heap,
3665                         .nr = 0,
3666                         .size = cpuctx->heap_size,
3667                 };
3668
3669                 lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671 #ifdef CONFIG_CGROUP_PERF
3672                 if (cpuctx->cgrp)
3673                         css = &cpuctx->cgrp->css;
3674 #endif
3675         } else {
3676                 event_heap = (struct min_heap){
3677                         .data = itrs,
3678                         .nr = 0,
3679                         .size = ARRAY_SIZE(itrs),
3680                 };
3681                 /* Events not within a CPU context may be on any CPU. */
3682                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683         }
3684         evt = event_heap.data;
3685
3686         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688 #ifdef CONFIG_CGROUP_PERF
3689         for (; css; css = css->parent)
3690                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692
3693         min_heapify_all(&event_heap, &perf_min_heap);
3694
3695         while (event_heap.nr) {
3696                 ret = func(*evt, data);
3697                 if (ret)
3698                         return ret;
3699
3700                 *evt = perf_event_groups_next(*evt);
3701                 if (*evt)
3702                         min_heapify(&event_heap, 0, &perf_min_heap);
3703                 else
3704                         min_heap_pop(&event_heap, &perf_min_heap);
3705         }
3706
3707         return 0;
3708 }
3709
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712         struct perf_event_context *ctx = event->ctx;
3713         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714         int *can_add_hw = data;
3715
3716         if (event->state <= PERF_EVENT_STATE_OFF)
3717                 return 0;
3718
3719         if (!event_filter_match(event))
3720                 return 0;
3721
3722         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723                 if (!group_sched_in(event, cpuctx, ctx))
3724                         list_add_tail(&event->active_list, get_event_list(event));
3725         }
3726
3727         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728                 if (event->attr.pinned) {
3729                         perf_cgroup_event_disable(event, ctx);
3730                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731                 }
3732
3733                 *can_add_hw = 0;
3734                 ctx->rotate_necessary = 1;
3735                 perf_mux_hrtimer_restart(cpuctx);
3736         }
3737
3738         return 0;
3739 }
3740
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743                     struct perf_cpu_context *cpuctx)
3744 {
3745         int can_add_hw = 1;
3746
3747         if (ctx != &cpuctx->ctx)
3748                 cpuctx = NULL;
3749
3750         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751                            smp_processor_id(),
3752                            merge_sched_in, &can_add_hw);
3753 }
3754
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757                       struct perf_cpu_context *cpuctx)
3758 {
3759         int can_add_hw = 1;
3760
3761         if (ctx != &cpuctx->ctx)
3762                 cpuctx = NULL;
3763
3764         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765                            smp_processor_id(),
3766                            merge_sched_in, &can_add_hw);
3767 }
3768
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771              struct perf_cpu_context *cpuctx,
3772              enum event_type_t event_type,
3773              struct task_struct *task)
3774 {
3775         int is_active = ctx->is_active;
3776         u64 now;
3777
3778         lockdep_assert_held(&ctx->lock);
3779
3780         if (likely(!ctx->nr_events))
3781                 return;
3782
3783         ctx->is_active |= (event_type | EVENT_TIME);
3784         if (ctx->task) {
3785                 if (!is_active)
3786                         cpuctx->task_ctx = ctx;
3787                 else
3788                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789         }
3790
3791         is_active ^= ctx->is_active; /* changed bits */
3792
3793         if (is_active & EVENT_TIME) {
3794                 /* start ctx time */
3795                 now = perf_clock();
3796                 ctx->timestamp = now;
3797                 perf_cgroup_set_timestamp(task, ctx);
3798         }
3799
3800         /*
3801          * First go through the list and put on any pinned groups
3802          * in order to give them the best chance of going on.
3803          */
3804         if (is_active & EVENT_PINNED)
3805                 ctx_pinned_sched_in(ctx, cpuctx);
3806
3807         /* Then walk through the lower prio flexible groups */
3808         if (is_active & EVENT_FLEXIBLE)
3809                 ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813                              enum event_type_t event_type,
3814                              struct task_struct *task)
3815 {
3816         struct perf_event_context *ctx = &cpuctx->ctx;
3817
3818         ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822                                         struct task_struct *task)
3823 {
3824         struct perf_cpu_context *cpuctx;
3825         struct pmu *pmu;
3826
3827         cpuctx = __get_cpu_context(ctx);
3828
3829         /*
3830          * HACK: for HETEROGENEOUS the task context might have switched to a
3831          * different PMU, force (re)set the context,
3832          */
3833         pmu = ctx->pmu = cpuctx->ctx.pmu;
3834
3835         if (cpuctx->task_ctx == ctx) {
3836                 if (cpuctx->sched_cb_usage)
3837                         __perf_pmu_sched_task(cpuctx, true);
3838                 return;
3839         }
3840
3841         perf_ctx_lock(cpuctx, ctx);
3842         /*
3843          * We must check ctx->nr_events while holding ctx->lock, such
3844          * that we serialize against perf_install_in_context().
3845          */
3846         if (!ctx->nr_events)
3847                 goto unlock;
3848
3849         perf_pmu_disable(pmu);
3850         /*
3851          * We want to keep the following priority order:
3852          * cpu pinned (that don't need to move), task pinned,
3853          * cpu flexible, task flexible.
3854          *
3855          * However, if task's ctx is not carrying any pinned
3856          * events, no need to flip the cpuctx's events around.
3857          */
3858         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3859                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3860         perf_event_sched_in(cpuctx, ctx, task);
3861
3862         if (cpuctx->sched_cb_usage && pmu->sched_task)
3863                 pmu->sched_task(cpuctx->task_ctx, true);
3864
3865         perf_pmu_enable(pmu);
3866
3867 unlock:
3868         perf_ctx_unlock(cpuctx, ctx);
3869 }
3870
3871 /*
3872  * Called from scheduler to add the events of the current task
3873  * with interrupts disabled.
3874  *
3875  * We restore the event value and then enable it.
3876  *
3877  * This does not protect us against NMI, but enable()
3878  * sets the enabled bit in the control field of event _before_
3879  * accessing the event control register. If a NMI hits, then it will
3880  * keep the event running.
3881  */
3882 void __perf_event_task_sched_in(struct task_struct *prev,
3883                                 struct task_struct *task)
3884 {
3885         struct perf_event_context *ctx;
3886         int ctxn;
3887
3888         /*
3889          * If cgroup events exist on this CPU, then we need to check if we have
3890          * to switch in PMU state; cgroup event are system-wide mode only.
3891          *
3892          * Since cgroup events are CPU events, we must schedule these in before
3893          * we schedule in the task events.
3894          */
3895         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3896                 perf_cgroup_sched_in(prev, task);
3897
3898         for_each_task_context_nr(ctxn) {
3899                 ctx = task->perf_event_ctxp[ctxn];
3900                 if (likely(!ctx))
3901                         continue;
3902
3903                 perf_event_context_sched_in(ctx, task);
3904         }
3905
3906         if (atomic_read(&nr_switch_events))
3907                 perf_event_switch(task, prev, true);
3908
3909         if (__this_cpu_read(perf_sched_cb_usages))
3910                 perf_pmu_sched_task(prev, task, true);
3911 }
3912
3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3914 {
3915         u64 frequency = event->attr.sample_freq;
3916         u64 sec = NSEC_PER_SEC;
3917         u64 divisor, dividend;
3918
3919         int count_fls, nsec_fls, frequency_fls, sec_fls;
3920
3921         count_fls = fls64(count);
3922         nsec_fls = fls64(nsec);
3923         frequency_fls = fls64(frequency);
3924         sec_fls = 30;
3925
3926         /*
3927          * We got @count in @nsec, with a target of sample_freq HZ
3928          * the target period becomes:
3929          *
3930          *             @count * 10^9
3931          * period = -------------------
3932          *          @nsec * sample_freq
3933          *
3934          */
3935
3936         /*
3937          * Reduce accuracy by one bit such that @a and @b converge
3938          * to a similar magnitude.
3939          */
3940 #define REDUCE_FLS(a, b)                \
3941 do {                                    \
3942         if (a##_fls > b##_fls) {        \
3943                 a >>= 1;                \
3944                 a##_fls--;              \
3945         } else {                        \
3946                 b >>= 1;                \
3947                 b##_fls--;              \
3948         }                               \
3949 } while (0)
3950
3951         /*
3952          * Reduce accuracy until either term fits in a u64, then proceed with
3953          * the other, so that finally we can do a u64/u64 division.
3954          */
3955         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3956                 REDUCE_FLS(nsec, frequency);
3957                 REDUCE_FLS(sec, count);
3958         }
3959
3960         if (count_fls + sec_fls > 64) {
3961                 divisor = nsec * frequency;
3962
3963                 while (count_fls + sec_fls > 64) {
3964                         REDUCE_FLS(count, sec);
3965                         divisor >>= 1;
3966                 }
3967
3968                 dividend = count * sec;
3969         } else {
3970                 dividend = count * sec;
3971
3972                 while (nsec_fls + frequency_fls > 64) {
3973                         REDUCE_FLS(nsec, frequency);
3974                         dividend >>= 1;
3975                 }
3976
3977                 divisor = nsec * frequency;
3978         }
3979
3980         if (!divisor)
3981                 return dividend;
3982
3983         return div64_u64(dividend, divisor);
3984 }
3985
3986 static DEFINE_PER_CPU(int, perf_throttled_count);
3987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3988
3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3990 {
3991         struct hw_perf_event *hwc = &event->hw;
3992         s64 period, sample_period;
3993         s64 delta;
3994
3995         period = perf_calculate_period(event, nsec, count);
3996
3997         delta = (s64)(period - hwc->sample_period);
3998         delta = (delta + 7) / 8; /* low pass filter */
3999
4000         sample_period = hwc->sample_period + delta;
4001
4002         if (!sample_period)
4003                 sample_period = 1;
4004
4005         hwc->sample_period = sample_period;
4006
4007         if (local64_read(&hwc->period_left) > 8*sample_period) {
4008                 if (disable)
4009                         event->pmu->stop(event, PERF_EF_UPDATE);
4010
4011                 local64_set(&hwc->period_left, 0);
4012
4013                 if (disable)
4014                         event->pmu->start(event, PERF_EF_RELOAD);
4015         }
4016 }
4017
4018 /*
4019  * combine freq adjustment with unthrottling to avoid two passes over the
4020  * events. At the same time, make sure, having freq events does not change
4021  * the rate of unthrottling as that would introduce bias.
4022  */
4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4024                                            int needs_unthr)
4025 {
4026         struct perf_event *event;
4027         struct hw_perf_event *hwc;
4028         u64 now, period = TICK_NSEC;
4029         s64 delta;
4030
4031         /*
4032          * only need to iterate over all events iff:
4033          * - context have events in frequency mode (needs freq adjust)
4034          * - there are events to unthrottle on this cpu
4035          */
4036         if (!(ctx->nr_freq || needs_unthr))
4037                 return;
4038
4039         raw_spin_lock(&ctx->lock);
4040         perf_pmu_disable(ctx->pmu);
4041
4042         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4044                         continue;
4045
4046                 if (!event_filter_match(event))
4047                         continue;
4048
4049                 perf_pmu_disable(event->pmu);
4050
4051                 hwc = &event->hw;
4052
4053                 if (hwc->interrupts == MAX_INTERRUPTS) {
4054                         hwc->interrupts = 0;
4055                         perf_log_throttle(event, 1);
4056                         event->pmu->start(event, 0);
4057                 }
4058
4059                 if (!event->attr.freq || !event->attr.sample_freq)
4060                         goto next;
4061
4062                 /*
4063                  * stop the event and update event->count
4064                  */
4065                 event->pmu->stop(event, PERF_EF_UPDATE);
4066
4067                 now = local64_read(&event->count);
4068                 delta = now - hwc->freq_count_stamp;
4069                 hwc->freq_count_stamp = now;
4070
4071                 /*
4072                  * restart the event
4073                  * reload only if value has changed
4074                  * we have stopped the event so tell that
4075                  * to perf_adjust_period() to avoid stopping it
4076                  * twice.
4077                  */
4078                 if (delta > 0)
4079                         perf_adjust_period(event, period, delta, false);
4080
4081                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4082         next:
4083                 perf_pmu_enable(event->pmu);
4084         }
4085
4086         perf_pmu_enable(ctx->pmu);
4087         raw_spin_unlock(&ctx->lock);
4088 }
4089
4090 /*
4091  * Move @event to the tail of the @ctx's elegible events.
4092  */
4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4094 {
4095         /*
4096          * Rotate the first entry last of non-pinned groups. Rotation might be
4097          * disabled by the inheritance code.
4098          */
4099         if (ctx->rotate_disable)
4100                 return;
4101
4102         perf_event_groups_delete(&ctx->flexible_groups, event);
4103         perf_event_groups_insert(&ctx->flexible_groups, event);
4104 }
4105
4106 /* pick an event from the flexible_groups to rotate */
4107 static inline struct perf_event *
4108 ctx_event_to_rotate(struct perf_event_context *ctx)
4109 {
4110         struct perf_event *event;
4111
4112         /* pick the first active flexible event */
4113         event = list_first_entry_or_null(&ctx->flexible_active,
4114                                          struct perf_event, active_list);
4115
4116         /* if no active flexible event, pick the first event */
4117         if (!event) {
4118                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4119                                       typeof(*event), group_node);
4120         }
4121
4122         /*
4123          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4124          * finds there are unschedulable events, it will set it again.
4125          */
4126         ctx->rotate_necessary = 0;
4127
4128         return event;
4129 }
4130
4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4132 {
4133         struct perf_event *cpu_event = NULL, *task_event = NULL;
4134         struct perf_event_context *task_ctx = NULL;
4135         int cpu_rotate, task_rotate;
4136
4137         /*
4138          * Since we run this from IRQ context, nobody can install new
4139          * events, thus the event count values are stable.
4140          */
4141
4142         cpu_rotate = cpuctx->ctx.rotate_necessary;
4143         task_ctx = cpuctx->task_ctx;
4144         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4145
4146         if (!(cpu_rotate || task_rotate))
4147                 return false;
4148
4149         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4150         perf_pmu_disable(cpuctx->ctx.pmu);
4151
4152         if (task_rotate)
4153                 task_event = ctx_event_to_rotate(task_ctx);
4154         if (cpu_rotate)
4155                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4156
4157         /*
4158          * As per the order given at ctx_resched() first 'pop' task flexible
4159          * and then, if needed CPU flexible.
4160          */
4161         if (task_event || (task_ctx && cpu_event))
4162                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4163         if (cpu_event)
4164                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4165
4166         if (task_event)
4167                 rotate_ctx(task_ctx, task_event);
4168         if (cpu_event)
4169                 rotate_ctx(&cpuctx->ctx, cpu_event);
4170
4171         perf_event_sched_in(cpuctx, task_ctx, current);
4172
4173         perf_pmu_enable(cpuctx->ctx.pmu);
4174         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4175
4176         return true;
4177 }
4178
4179 void perf_event_task_tick(void)
4180 {
4181         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4182         struct perf_event_context *ctx, *tmp;
4183         int throttled;
4184
4185         lockdep_assert_irqs_disabled();
4186
4187         __this_cpu_inc(perf_throttled_seq);
4188         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4189         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4190
4191         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4192                 perf_adjust_freq_unthr_context(ctx, throttled);
4193 }
4194
4195 static int event_enable_on_exec(struct perf_event *event,
4196                                 struct perf_event_context *ctx)
4197 {
4198         if (!event->attr.enable_on_exec)
4199                 return 0;
4200
4201         event->attr.enable_on_exec = 0;
4202         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4203                 return 0;
4204
4205         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4206
4207         return 1;
4208 }
4209
4210 /*
4211  * Enable all of a task's events that have been marked enable-on-exec.
4212  * This expects task == current.
4213  */
4214 static void perf_event_enable_on_exec(int ctxn)
4215 {
4216         struct perf_event_context *ctx, *clone_ctx = NULL;
4217         enum event_type_t event_type = 0;
4218         struct perf_cpu_context *cpuctx;
4219         struct perf_event *event;
4220         unsigned long flags;
4221         int enabled = 0;
4222
4223         local_irq_save(flags);
4224         ctx = current->perf_event_ctxp[ctxn];
4225         if (!ctx || !ctx->nr_events)
4226                 goto out;
4227
4228         cpuctx = __get_cpu_context(ctx);
4229         perf_ctx_lock(cpuctx, ctx);
4230         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4231         list_for_each_entry(event, &ctx->event_list, event_entry) {
4232                 enabled |= event_enable_on_exec(event, ctx);
4233                 event_type |= get_event_type(event);
4234         }
4235
4236         /*
4237          * Unclone and reschedule this context if we enabled any event.
4238          */
4239         if (enabled) {
4240                 clone_ctx = unclone_ctx(ctx);
4241                 ctx_resched(cpuctx, ctx, event_type);
4242         } else {
4243                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4244         }
4245         perf_ctx_unlock(cpuctx, ctx);
4246
4247 out:
4248         local_irq_restore(flags);
4249
4250         if (clone_ctx)
4251                 put_ctx(clone_ctx);
4252 }
4253
4254 static void perf_remove_from_owner(struct perf_event *event);
4255 static void perf_event_exit_event(struct perf_event *event,
4256                                   struct perf_event_context *ctx);
4257
4258 /*
4259  * Removes all events from the current task that have been marked
4260  * remove-on-exec, and feeds their values back to parent events.
4261  */
4262 static void perf_event_remove_on_exec(int ctxn)
4263 {
4264         struct perf_event_context *ctx, *clone_ctx = NULL;
4265         struct perf_event *event, *next;
4266         LIST_HEAD(free_list);
4267         unsigned long flags;
4268         bool modified = false;
4269
4270         ctx = perf_pin_task_context(current, ctxn);
4271         if (!ctx)
4272                 return;
4273
4274         mutex_lock(&ctx->mutex);
4275
4276         if (WARN_ON_ONCE(ctx->task != current))
4277                 goto unlock;
4278
4279         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4280                 if (!event->attr.remove_on_exec)
4281                         continue;
4282
4283                 if (!is_kernel_event(event))
4284                         perf_remove_from_owner(event);
4285
4286                 modified = true;
4287
4288                 perf_event_exit_event(event, ctx);
4289         }
4290
4291         raw_spin_lock_irqsave(&ctx->lock, flags);
4292         if (modified)
4293                 clone_ctx = unclone_ctx(ctx);
4294         --ctx->pin_count;
4295         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4296
4297 unlock:
4298         mutex_unlock(&ctx->mutex);
4299
4300         put_ctx(ctx);
4301         if (clone_ctx)
4302                 put_ctx(clone_ctx);
4303 }
4304
4305 struct perf_read_data {
4306         struct perf_event *event;
4307         bool group;
4308         int ret;
4309 };
4310
4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4312 {
4313         u16 local_pkg, event_pkg;
4314
4315         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4316                 int local_cpu = smp_processor_id();
4317
4318                 event_pkg = topology_physical_package_id(event_cpu);
4319                 local_pkg = topology_physical_package_id(local_cpu);
4320
4321                 if (event_pkg == local_pkg)
4322                         return local_cpu;
4323         }
4324
4325         return event_cpu;
4326 }
4327
4328 /*
4329  * Cross CPU call to read the hardware event
4330  */
4331 static void __perf_event_read(void *info)
4332 {
4333         struct perf_read_data *data = info;
4334         struct perf_event *sub, *event = data->event;
4335         struct perf_event_context *ctx = event->ctx;
4336         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4337         struct pmu *pmu = event->pmu;
4338
4339         /*
4340          * If this is a task context, we need to check whether it is
4341          * the current task context of this cpu.  If not it has been
4342          * scheduled out before the smp call arrived.  In that case
4343          * event->count would have been updated to a recent sample
4344          * when the event was scheduled out.
4345          */
4346         if (ctx->task && cpuctx->task_ctx != ctx)
4347                 return;
4348
4349         raw_spin_lock(&ctx->lock);
4350         if (ctx->is_active & EVENT_TIME) {
4351                 update_context_time(ctx);
4352                 update_cgrp_time_from_event(event);
4353         }
4354
4355         perf_event_update_time(event);
4356         if (data->group)
4357                 perf_event_update_sibling_time(event);
4358
4359         if (event->state != PERF_EVENT_STATE_ACTIVE)
4360                 goto unlock;
4361
4362         if (!data->group) {
4363                 pmu->read(event);
4364                 data->ret = 0;
4365                 goto unlock;
4366         }
4367
4368         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369
4370         pmu->read(event);
4371
4372         for_each_sibling_event(sub, event) {
4373                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4374                         /*
4375                          * Use sibling's PMU rather than @event's since
4376                          * sibling could be on different (eg: software) PMU.
4377                          */
4378                         sub->pmu->read(sub);
4379                 }
4380         }
4381
4382         data->ret = pmu->commit_txn(pmu);
4383
4384 unlock:
4385         raw_spin_unlock(&ctx->lock);
4386 }
4387
4388 static inline u64 perf_event_count(struct perf_event *event)
4389 {
4390         return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 }
4392
4393 /*
4394  * NMI-safe method to read a local event, that is an event that
4395  * is:
4396  *   - either for the current task, or for this CPU
4397  *   - does not have inherit set, for inherited task events
4398  *     will not be local and we cannot read them atomically
4399  *   - must not have a pmu::count method
4400  */
4401 int perf_event_read_local(struct perf_event *event, u64 *value,
4402                           u64 *enabled, u64 *running)
4403 {
4404         unsigned long flags;
4405         int ret = 0;
4406
4407         /*
4408          * Disabling interrupts avoids all counter scheduling (context
4409          * switches, timer based rotation and IPIs).
4410          */
4411         local_irq_save(flags);
4412
4413         /*
4414          * It must not be an event with inherit set, we cannot read
4415          * all child counters from atomic context.
4416          */
4417         if (event->attr.inherit) {
4418                 ret = -EOPNOTSUPP;
4419                 goto out;
4420         }
4421
4422         /* If this is a per-task event, it must be for current */
4423         if ((event->attach_state & PERF_ATTACH_TASK) &&
4424             event->hw.target != current) {
4425                 ret = -EINVAL;
4426                 goto out;
4427         }
4428
4429         /* If this is a per-CPU event, it must be for this CPU */
4430         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4431             event->cpu != smp_processor_id()) {
4432                 ret = -EINVAL;
4433                 goto out;
4434         }
4435
4436         /* If this is a pinned event it must be running on this CPU */
4437         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4438                 ret = -EBUSY;
4439                 goto out;
4440         }
4441
4442         /*
4443          * If the event is currently on this CPU, its either a per-task event,
4444          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4445          * oncpu == -1).
4446          */
4447         if (event->oncpu == smp_processor_id())
4448                 event->pmu->read(event);
4449
4450         *value = local64_read(&event->count);
4451         if (enabled || running) {
4452                 u64 now = event->shadow_ctx_time + perf_clock();
4453                 u64 __enabled, __running;
4454
4455                 __perf_update_times(event, now, &__enabled, &__running);
4456                 if (enabled)
4457                         *enabled = __enabled;
4458                 if (running)
4459                         *running = __running;
4460         }
4461 out:
4462         local_irq_restore(flags);
4463
4464         return ret;
4465 }
4466
4467 static int perf_event_read(struct perf_event *event, bool group)
4468 {
4469         enum perf_event_state state = READ_ONCE(event->state);
4470         int event_cpu, ret = 0;
4471
4472         /*
4473          * If event is enabled and currently active on a CPU, update the
4474          * value in the event structure:
4475          */
4476 again:
4477         if (state == PERF_EVENT_STATE_ACTIVE) {
4478                 struct perf_read_data data;
4479
4480                 /*
4481                  * Orders the ->state and ->oncpu loads such that if we see
4482                  * ACTIVE we must also see the right ->oncpu.
4483                  *
4484                  * Matches the smp_wmb() from event_sched_in().
4485                  */
4486                 smp_rmb();
4487
4488                 event_cpu = READ_ONCE(event->oncpu);
4489                 if ((unsigned)event_cpu >= nr_cpu_ids)
4490                         return 0;
4491
4492                 data = (struct perf_read_data){
4493                         .event = event,
4494                         .group = group,
4495                         .ret = 0,
4496                 };
4497
4498                 preempt_disable();
4499                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4500
4501                 /*
4502                  * Purposely ignore the smp_call_function_single() return
4503                  * value.
4504                  *
4505                  * If event_cpu isn't a valid CPU it means the event got
4506                  * scheduled out and that will have updated the event count.
4507                  *
4508                  * Therefore, either way, we'll have an up-to-date event count
4509                  * after this.
4510                  */
4511                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512                 preempt_enable();
4513                 ret = data.ret;
4514
4515         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4516                 struct perf_event_context *ctx = event->ctx;
4517                 unsigned long flags;
4518
4519                 raw_spin_lock_irqsave(&ctx->lock, flags);
4520                 state = event->state;
4521                 if (state != PERF_EVENT_STATE_INACTIVE) {
4522                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4523                         goto again;
4524                 }
4525
4526                 /*
4527                  * May read while context is not active (e.g., thread is
4528                  * blocked), in that case we cannot update context time
4529                  */
4530                 if (ctx->is_active & EVENT_TIME) {
4531                         update_context_time(ctx);
4532                         update_cgrp_time_from_event(event);
4533                 }
4534
4535                 perf_event_update_time(event);
4536                 if (group)
4537                         perf_event_update_sibling_time(event);
4538                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539         }
4540
4541         return ret;
4542 }
4543
4544 /*
4545  * Initialize the perf_event context in a task_struct:
4546  */
4547 static void __perf_event_init_context(struct perf_event_context *ctx)
4548 {
4549         raw_spin_lock_init(&ctx->lock);
4550         mutex_init(&ctx->mutex);
4551         INIT_LIST_HEAD(&ctx->active_ctx_list);
4552         perf_event_groups_init(&ctx->pinned_groups);
4553         perf_event_groups_init(&ctx->flexible_groups);
4554         INIT_LIST_HEAD(&ctx->event_list);
4555         INIT_LIST_HEAD(&ctx->pinned_active);
4556         INIT_LIST_HEAD(&ctx->flexible_active);
4557         refcount_set(&ctx->refcount, 1);
4558 }
4559
4560 static struct perf_event_context *
4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4562 {
4563         struct perf_event_context *ctx;
4564
4565         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566         if (!ctx)
4567                 return NULL;
4568
4569         __perf_event_init_context(ctx);
4570         if (task)
4571                 ctx->task = get_task_struct(task);
4572         ctx->pmu = pmu;
4573
4574         return ctx;
4575 }
4576
4577 static struct task_struct *
4578 find_lively_task_by_vpid(pid_t vpid)
4579 {
4580         struct task_struct *task;
4581
4582         rcu_read_lock();
4583         if (!vpid)
4584                 task = current;
4585         else
4586                 task = find_task_by_vpid(vpid);
4587         if (task)
4588                 get_task_struct(task);
4589         rcu_read_unlock();
4590
4591         if (!task)
4592                 return ERR_PTR(-ESRCH);
4593
4594         return task;
4595 }
4596
4597 /*
4598  * Returns a matching context with refcount and pincount.
4599  */
4600 static struct perf_event_context *
4601 find_get_context(struct pmu *pmu, struct task_struct *task,
4602                 struct perf_event *event)
4603 {
4604         struct perf_event_context *ctx, *clone_ctx = NULL;
4605         struct perf_cpu_context *cpuctx;
4606         void *task_ctx_data = NULL;
4607         unsigned long flags;
4608         int ctxn, err;
4609         int cpu = event->cpu;
4610
4611         if (!task) {
4612                 /* Must be root to operate on a CPU event: */
4613                 err = perf_allow_cpu(&event->attr);
4614                 if (err)
4615                         return ERR_PTR(err);
4616
4617                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4618                 ctx = &cpuctx->ctx;
4619                 get_ctx(ctx);
4620                 ++ctx->pin_count;
4621
4622                 return ctx;
4623         }
4624
4625         err = -EINVAL;
4626         ctxn = pmu->task_ctx_nr;
4627         if (ctxn < 0)
4628                 goto errout;
4629
4630         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4631                 task_ctx_data = alloc_task_ctx_data(pmu);
4632                 if (!task_ctx_data) {
4633                         err = -ENOMEM;
4634                         goto errout;
4635                 }
4636         }
4637
4638 retry:
4639         ctx = perf_lock_task_context(task, ctxn, &flags);
4640         if (ctx) {
4641                 clone_ctx = unclone_ctx(ctx);
4642                 ++ctx->pin_count;
4643
4644                 if (task_ctx_data && !ctx->task_ctx_data) {
4645                         ctx->task_ctx_data = task_ctx_data;
4646                         task_ctx_data = NULL;
4647                 }
4648                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4649
4650                 if (clone_ctx)
4651                         put_ctx(clone_ctx);
4652         } else {
4653                 ctx = alloc_perf_context(pmu, task);
4654                 err = -ENOMEM;
4655                 if (!ctx)
4656                         goto errout;
4657
4658                 if (task_ctx_data) {
4659                         ctx->task_ctx_data = task_ctx_data;
4660                         task_ctx_data = NULL;
4661                 }
4662
4663                 err = 0;
4664                 mutex_lock(&task->perf_event_mutex);
4665                 /*
4666                  * If it has already passed perf_event_exit_task().
4667                  * we must see PF_EXITING, it takes this mutex too.
4668                  */
4669                 if (task->flags & PF_EXITING)
4670                         err = -ESRCH;
4671                 else if (task->perf_event_ctxp[ctxn])
4672                         err = -EAGAIN;
4673                 else {
4674                         get_ctx(ctx);
4675                         ++ctx->pin_count;
4676                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4677                 }
4678                 mutex_unlock(&task->perf_event_mutex);
4679
4680                 if (unlikely(err)) {
4681                         put_ctx(ctx);
4682
4683                         if (err == -EAGAIN)
4684                                 goto retry;
4685                         goto errout;
4686                 }
4687         }
4688
4689         free_task_ctx_data(pmu, task_ctx_data);
4690         return ctx;
4691
4692 errout:
4693         free_task_ctx_data(pmu, task_ctx_data);
4694         return ERR_PTR(err);
4695 }
4696
4697 static void perf_event_free_filter(struct perf_event *event);
4698 static void perf_event_free_bpf_prog(struct perf_event *event);
4699
4700 static void free_event_rcu(struct rcu_head *head)
4701 {
4702         struct perf_event *event;
4703
4704         event = container_of(head, struct perf_event, rcu_head);
4705         if (event->ns)
4706                 put_pid_ns(event->ns);
4707         perf_event_free_filter(event);
4708         kmem_cache_free(perf_event_cache, event);
4709 }
4710
4711 static void ring_buffer_attach(struct perf_event *event,
4712                                struct perf_buffer *rb);
4713
4714 static void detach_sb_event(struct perf_event *event)
4715 {
4716         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4717
4718         raw_spin_lock(&pel->lock);
4719         list_del_rcu(&event->sb_list);
4720         raw_spin_unlock(&pel->lock);
4721 }
4722
4723 static bool is_sb_event(struct perf_event *event)
4724 {
4725         struct perf_event_attr *attr = &event->attr;
4726
4727         if (event->parent)
4728                 return false;
4729
4730         if (event->attach_state & PERF_ATTACH_TASK)
4731                 return false;
4732
4733         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4734             attr->comm || attr->comm_exec ||
4735             attr->task || attr->ksymbol ||
4736             attr->context_switch || attr->text_poke ||
4737             attr->bpf_event)
4738                 return true;
4739         return false;
4740 }
4741
4742 static void unaccount_pmu_sb_event(struct perf_event *event)
4743 {
4744         if (is_sb_event(event))
4745                 detach_sb_event(event);
4746 }
4747
4748 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4749 {
4750         if (event->parent)
4751                 return;
4752
4753         if (is_cgroup_event(event))
4754                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4755 }
4756
4757 #ifdef CONFIG_NO_HZ_FULL
4758 static DEFINE_SPINLOCK(nr_freq_lock);
4759 #endif
4760
4761 static void unaccount_freq_event_nohz(void)
4762 {
4763 #ifdef CONFIG_NO_HZ_FULL
4764         spin_lock(&nr_freq_lock);
4765         if (atomic_dec_and_test(&nr_freq_events))
4766                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4767         spin_unlock(&nr_freq_lock);
4768 #endif
4769 }
4770
4771 static void unaccount_freq_event(void)
4772 {
4773         if (tick_nohz_full_enabled())
4774                 unaccount_freq_event_nohz();
4775         else
4776                 atomic_dec(&nr_freq_events);
4777 }
4778
4779 static void unaccount_event(struct perf_event *event)
4780 {
4781         bool dec = false;
4782
4783         if (event->parent)
4784                 return;
4785
4786         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4787                 dec = true;
4788         if (event->attr.mmap || event->attr.mmap_data)
4789                 atomic_dec(&nr_mmap_events);
4790         if (event->attr.build_id)
4791                 atomic_dec(&nr_build_id_events);
4792         if (event->attr.comm)
4793                 atomic_dec(&nr_comm_events);
4794         if (event->attr.namespaces)
4795                 atomic_dec(&nr_namespaces_events);
4796         if (event->attr.cgroup)
4797                 atomic_dec(&nr_cgroup_events);
4798         if (event->attr.task)
4799                 atomic_dec(&nr_task_events);
4800         if (event->attr.freq)
4801                 unaccount_freq_event();
4802         if (event->attr.context_switch) {
4803                 dec = true;
4804                 atomic_dec(&nr_switch_events);
4805         }
4806         if (is_cgroup_event(event))
4807                 dec = true;
4808         if (has_branch_stack(event))
4809                 dec = true;
4810         if (event->attr.ksymbol)
4811                 atomic_dec(&nr_ksymbol_events);
4812         if (event->attr.bpf_event)
4813                 atomic_dec(&nr_bpf_events);
4814         if (event->attr.text_poke)
4815                 atomic_dec(&nr_text_poke_events);
4816
4817         if (dec) {
4818                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4819                         schedule_delayed_work(&perf_sched_work, HZ);
4820         }
4821
4822         unaccount_event_cpu(event, event->cpu);
4823
4824         unaccount_pmu_sb_event(event);
4825 }
4826
4827 static void perf_sched_delayed(struct work_struct *work)
4828 {
4829         mutex_lock(&perf_sched_mutex);
4830         if (atomic_dec_and_test(&perf_sched_count))
4831                 static_branch_disable(&perf_sched_events);
4832         mutex_unlock(&perf_sched_mutex);
4833 }
4834
4835 /*
4836  * The following implement mutual exclusion of events on "exclusive" pmus
4837  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4838  * at a time, so we disallow creating events that might conflict, namely:
4839  *
4840  *  1) cpu-wide events in the presence of per-task events,
4841  *  2) per-task events in the presence of cpu-wide events,
4842  *  3) two matching events on the same context.
4843  *
4844  * The former two cases are handled in the allocation path (perf_event_alloc(),
4845  * _free_event()), the latter -- before the first perf_install_in_context().
4846  */
4847 static int exclusive_event_init(struct perf_event *event)
4848 {
4849         struct pmu *pmu = event->pmu;
4850
4851         if (!is_exclusive_pmu(pmu))
4852                 return 0;
4853
4854         /*
4855          * Prevent co-existence of per-task and cpu-wide events on the
4856          * same exclusive pmu.
4857          *
4858          * Negative pmu::exclusive_cnt means there are cpu-wide
4859          * events on this "exclusive" pmu, positive means there are
4860          * per-task events.
4861          *
4862          * Since this is called in perf_event_alloc() path, event::ctx
4863          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4864          * to mean "per-task event", because unlike other attach states it
4865          * never gets cleared.
4866          */
4867         if (event->attach_state & PERF_ATTACH_TASK) {
4868                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4869                         return -EBUSY;
4870         } else {
4871                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4872                         return -EBUSY;
4873         }
4874
4875         return 0;
4876 }
4877
4878 static void exclusive_event_destroy(struct perf_event *event)
4879 {
4880         struct pmu *pmu = event->pmu;
4881
4882         if (!is_exclusive_pmu(pmu))
4883                 return;
4884
4885         /* see comment in exclusive_event_init() */
4886         if (event->attach_state & PERF_ATTACH_TASK)
4887                 atomic_dec(&pmu->exclusive_cnt);
4888         else
4889                 atomic_inc(&pmu->exclusive_cnt);
4890 }
4891
4892 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4893 {
4894         if ((e1->pmu == e2->pmu) &&
4895             (e1->cpu == e2->cpu ||
4896              e1->cpu == -1 ||
4897              e2->cpu == -1))
4898                 return true;
4899         return false;
4900 }
4901
4902 static bool exclusive_event_installable(struct perf_event *event,
4903                                         struct perf_event_context *ctx)
4904 {
4905         struct perf_event *iter_event;
4906         struct pmu *pmu = event->pmu;
4907
4908         lockdep_assert_held(&ctx->mutex);
4909
4910         if (!is_exclusive_pmu(pmu))
4911                 return true;
4912
4913         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4914                 if (exclusive_event_match(iter_event, event))
4915                         return false;
4916         }
4917
4918         return true;
4919 }
4920
4921 static void perf_addr_filters_splice(struct perf_event *event,
4922                                        struct list_head *head);
4923
4924 static void _free_event(struct perf_event *event)
4925 {
4926         irq_work_sync(&event->pending);
4927
4928         unaccount_event(event);
4929
4930         security_perf_event_free(event);
4931
4932         if (event->rb) {
4933                 /*
4934                  * Can happen when we close an event with re-directed output.
4935                  *
4936                  * Since we have a 0 refcount, perf_mmap_close() will skip
4937                  * over us; possibly making our ring_buffer_put() the last.
4938                  */
4939                 mutex_lock(&event->mmap_mutex);
4940                 ring_buffer_attach(event, NULL);
4941                 mutex_unlock(&event->mmap_mutex);
4942         }
4943
4944         if (is_cgroup_event(event))
4945                 perf_detach_cgroup(event);
4946
4947         if (!event->parent) {
4948                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4949                         put_callchain_buffers();
4950         }
4951
4952         perf_event_free_bpf_prog(event);
4953         perf_addr_filters_splice(event, NULL);
4954         kfree(event->addr_filter_ranges);
4955
4956         if (event->destroy)
4957                 event->destroy(event);
4958
4959         /*
4960          * Must be after ->destroy(), due to uprobe_perf_close() using
4961          * hw.target.
4962          */
4963         if (event->hw.target)
4964                 put_task_struct(event->hw.target);
4965
4966         /*
4967          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4968          * all task references must be cleaned up.
4969          */
4970         if (event->ctx)
4971                 put_ctx(event->ctx);
4972
4973         exclusive_event_destroy(event);
4974         module_put(event->pmu->module);
4975
4976         call_rcu(&event->rcu_head, free_event_rcu);
4977 }
4978
4979 /*
4980  * Used to free events which have a known refcount of 1, such as in error paths
4981  * where the event isn't exposed yet and inherited events.
4982  */
4983 static void free_event(struct perf_event *event)
4984 {
4985         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4986                                 "unexpected event refcount: %ld; ptr=%p\n",
4987                                 atomic_long_read(&event->refcount), event)) {
4988                 /* leak to avoid use-after-free */
4989                 return;
4990         }
4991
4992         _free_event(event);
4993 }
4994
4995 /*
4996  * Remove user event from the owner task.
4997  */
4998 static void perf_remove_from_owner(struct perf_event *event)
4999 {
5000         struct task_struct *owner;
5001
5002         rcu_read_lock();
5003         /*
5004          * Matches the smp_store_release() in perf_event_exit_task(). If we
5005          * observe !owner it means the list deletion is complete and we can
5006          * indeed free this event, otherwise we need to serialize on
5007          * owner->perf_event_mutex.
5008          */
5009         owner = READ_ONCE(event->owner);
5010         if (owner) {
5011                 /*
5012                  * Since delayed_put_task_struct() also drops the last
5013                  * task reference we can safely take a new reference
5014                  * while holding the rcu_read_lock().
5015                  */
5016                 get_task_struct(owner);
5017         }
5018         rcu_read_unlock();
5019
5020         if (owner) {
5021                 /*
5022                  * If we're here through perf_event_exit_task() we're already
5023                  * holding ctx->mutex which would be an inversion wrt. the
5024                  * normal lock order.
5025                  *
5026                  * However we can safely take this lock because its the child
5027                  * ctx->mutex.
5028                  */
5029                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5030
5031                 /*
5032                  * We have to re-check the event->owner field, if it is cleared
5033                  * we raced with perf_event_exit_task(), acquiring the mutex
5034                  * ensured they're done, and we can proceed with freeing the
5035                  * event.
5036                  */
5037                 if (event->owner) {
5038                         list_del_init(&event->owner_entry);
5039                         smp_store_release(&event->owner, NULL);
5040                 }
5041                 mutex_unlock(&owner->perf_event_mutex);
5042                 put_task_struct(owner);
5043         }
5044 }
5045
5046 static void put_event(struct perf_event *event)
5047 {
5048         if (!atomic_long_dec_and_test(&event->refcount))
5049                 return;
5050
5051         _free_event(event);
5052 }
5053
5054 /*
5055  * Kill an event dead; while event:refcount will preserve the event
5056  * object, it will not preserve its functionality. Once the last 'user'
5057  * gives up the object, we'll destroy the thing.
5058  */
5059 int perf_event_release_kernel(struct perf_event *event)
5060 {
5061         struct perf_event_context *ctx = event->ctx;
5062         struct perf_event *child, *tmp;
5063         LIST_HEAD(free_list);
5064
5065         /*
5066          * If we got here through err_file: fput(event_file); we will not have
5067          * attached to a context yet.
5068          */
5069         if (!ctx) {
5070                 WARN_ON_ONCE(event->attach_state &
5071                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5072                 goto no_ctx;
5073         }
5074
5075         if (!is_kernel_event(event))
5076                 perf_remove_from_owner(event);
5077
5078         ctx = perf_event_ctx_lock(event);
5079         WARN_ON_ONCE(ctx->parent_ctx);
5080         perf_remove_from_context(event, DETACH_GROUP);
5081
5082         raw_spin_lock_irq(&ctx->lock);
5083         /*
5084          * Mark this event as STATE_DEAD, there is no external reference to it
5085          * anymore.
5086          *
5087          * Anybody acquiring event->child_mutex after the below loop _must_
5088          * also see this, most importantly inherit_event() which will avoid
5089          * placing more children on the list.
5090          *
5091          * Thus this guarantees that we will in fact observe and kill _ALL_
5092          * child events.
5093          */
5094         event->state = PERF_EVENT_STATE_DEAD;
5095         raw_spin_unlock_irq(&ctx->lock);
5096
5097         perf_event_ctx_unlock(event, ctx);
5098
5099 again:
5100         mutex_lock(&event->child_mutex);
5101         list_for_each_entry(child, &event->child_list, child_list) {
5102
5103                 /*
5104                  * Cannot change, child events are not migrated, see the
5105                  * comment with perf_event_ctx_lock_nested().
5106                  */
5107                 ctx = READ_ONCE(child->ctx);
5108                 /*
5109                  * Since child_mutex nests inside ctx::mutex, we must jump
5110                  * through hoops. We start by grabbing a reference on the ctx.
5111                  *
5112                  * Since the event cannot get freed while we hold the
5113                  * child_mutex, the context must also exist and have a !0
5114                  * reference count.
5115                  */
5116                 get_ctx(ctx);
5117
5118                 /*
5119                  * Now that we have a ctx ref, we can drop child_mutex, and
5120                  * acquire ctx::mutex without fear of it going away. Then we
5121                  * can re-acquire child_mutex.
5122                  */
5123                 mutex_unlock(&event->child_mutex);
5124                 mutex_lock(&ctx->mutex);
5125                 mutex_lock(&event->child_mutex);
5126
5127                 /*
5128                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5129                  * state, if child is still the first entry, it didn't get freed
5130                  * and we can continue doing so.
5131                  */
5132                 tmp = list_first_entry_or_null(&event->child_list,
5133                                                struct perf_event, child_list);
5134                 if (tmp == child) {
5135                         perf_remove_from_context(child, DETACH_GROUP);
5136                         list_move(&child->child_list, &free_list);
5137                         /*
5138                          * This matches the refcount bump in inherit_event();
5139                          * this can't be the last reference.
5140                          */
5141                         put_event(event);
5142                 }
5143
5144                 mutex_unlock(&event->child_mutex);
5145                 mutex_unlock(&ctx->mutex);
5146                 put_ctx(ctx);
5147                 goto again;
5148         }
5149         mutex_unlock(&event->child_mutex);
5150
5151         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5152                 void *var = &child->ctx->refcount;
5153
5154                 list_del(&child->child_list);
5155                 free_event(child);
5156
5157                 /*
5158                  * Wake any perf_event_free_task() waiting for this event to be
5159                  * freed.
5160                  */
5161                 smp_mb(); /* pairs with wait_var_event() */
5162                 wake_up_var(var);
5163         }
5164
5165 no_ctx:
5166         put_event(event); /* Must be the 'last' reference */
5167         return 0;
5168 }
5169 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5170
5171 /*
5172  * Called when the last reference to the file is gone.
5173  */
5174 static int perf_release(struct inode *inode, struct file *file)
5175 {
5176         perf_event_release_kernel(file->private_data);
5177         return 0;
5178 }
5179
5180 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5181 {
5182         struct perf_event *child;
5183         u64 total = 0;
5184
5185         *enabled = 0;
5186         *running = 0;
5187
5188         mutex_lock(&event->child_mutex);
5189
5190         (void)perf_event_read(event, false);
5191         total += perf_event_count(event);
5192
5193         *enabled += event->total_time_enabled +
5194                         atomic64_read(&event->child_total_time_enabled);
5195         *running += event->total_time_running +
5196                         atomic64_read(&event->child_total_time_running);
5197
5198         list_for_each_entry(child, &event->child_list, child_list) {
5199                 (void)perf_event_read(child, false);
5200                 total += perf_event_count(child);
5201                 *enabled += child->total_time_enabled;
5202                 *running += child->total_time_running;
5203         }
5204         mutex_unlock(&event->child_mutex);
5205
5206         return total;
5207 }
5208
5209 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5210 {
5211         struct perf_event_context *ctx;
5212         u64 count;
5213
5214         ctx = perf_event_ctx_lock(event);
5215         count = __perf_event_read_value(event, enabled, running);
5216         perf_event_ctx_unlock(event, ctx);
5217
5218         return count;
5219 }
5220 EXPORT_SYMBOL_GPL(perf_event_read_value);
5221
5222 static int __perf_read_group_add(struct perf_event *leader,
5223                                         u64 read_format, u64 *values)
5224 {
5225         struct perf_event_context *ctx = leader->ctx;
5226         struct perf_event *sub;
5227         unsigned long flags;
5228         int n = 1; /* skip @nr */
5229         int ret;
5230
5231         ret = perf_event_read(leader, true);
5232         if (ret)
5233                 return ret;
5234
5235         raw_spin_lock_irqsave(&ctx->lock, flags);
5236
5237         /*
5238          * Since we co-schedule groups, {enabled,running} times of siblings
5239          * will be identical to those of the leader, so we only publish one
5240          * set.
5241          */
5242         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5243                 values[n++] += leader->total_time_enabled +
5244                         atomic64_read(&leader->child_total_time_enabled);
5245         }
5246
5247         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5248                 values[n++] += leader->total_time_running +
5249                         atomic64_read(&leader->child_total_time_running);
5250         }
5251
5252         /*
5253          * Write {count,id} tuples for every sibling.
5254          */
5255         values[n++] += perf_event_count(leader);
5256         if (read_format & PERF_FORMAT_ID)
5257                 values[n++] = primary_event_id(leader);
5258
5259         for_each_sibling_event(sub, leader) {
5260                 values[n++] += perf_event_count(sub);
5261                 if (read_format & PERF_FORMAT_ID)
5262                         values[n++] = primary_event_id(sub);
5263         }
5264
5265         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5266         return 0;
5267 }
5268
5269 static int perf_read_group(struct perf_event *event,
5270                                    u64 read_format, char __user *buf)
5271 {
5272         struct perf_event *leader = event->group_leader, *child;
5273         struct perf_event_context *ctx = leader->ctx;
5274         int ret;
5275         u64 *values;
5276
5277         lockdep_assert_held(&ctx->mutex);
5278
5279         values = kzalloc(event->read_size, GFP_KERNEL);
5280         if (!values)
5281                 return -ENOMEM;
5282
5283         values[0] = 1 + leader->nr_siblings;
5284
5285         /*
5286          * By locking the child_mutex of the leader we effectively
5287          * lock the child list of all siblings.. XXX explain how.
5288          */
5289         mutex_lock(&leader->child_mutex);
5290
5291         ret = __perf_read_group_add(leader, read_format, values);
5292         if (ret)
5293                 goto unlock;
5294
5295         list_for_each_entry(child, &leader->child_list, child_list) {
5296                 ret = __perf_read_group_add(child, read_format, values);
5297                 if (ret)
5298                         goto unlock;
5299         }
5300
5301         mutex_unlock(&leader->child_mutex);
5302
5303         ret = event->read_size;
5304         if (copy_to_user(buf, values, event->read_size))
5305                 ret = -EFAULT;
5306         goto out;
5307
5308 unlock:
5309         mutex_unlock(&leader->child_mutex);
5310 out:
5311         kfree(values);
5312         return ret;
5313 }
5314
5315 static int perf_read_one(struct perf_event *event,
5316                                  u64 read_format, char __user *buf)
5317 {
5318         u64 enabled, running;
5319         u64 values[4];
5320         int n = 0;
5321
5322         values[n++] = __perf_event_read_value(event, &enabled, &running);
5323         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5324                 values[n++] = enabled;
5325         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5326                 values[n++] = running;
5327         if (read_format & PERF_FORMAT_ID)
5328                 values[n++] = primary_event_id(event);
5329
5330         if (copy_to_user(buf, values, n * sizeof(u64)))
5331                 return -EFAULT;
5332
5333         return n * sizeof(u64);
5334 }
5335
5336 static bool is_event_hup(struct perf_event *event)
5337 {
5338         bool no_children;
5339
5340         if (event->state > PERF_EVENT_STATE_EXIT)
5341                 return false;
5342
5343         mutex_lock(&event->child_mutex);
5344         no_children = list_empty(&event->child_list);
5345         mutex_unlock(&event->child_mutex);
5346         return no_children;
5347 }
5348
5349 /*
5350  * Read the performance event - simple non blocking version for now
5351  */
5352 static ssize_t
5353 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5354 {
5355         u64 read_format = event->attr.read_format;
5356         int ret;
5357
5358         /*
5359          * Return end-of-file for a read on an event that is in
5360          * error state (i.e. because it was pinned but it couldn't be
5361          * scheduled on to the CPU at some point).
5362          */
5363         if (event->state == PERF_EVENT_STATE_ERROR)
5364                 return 0;
5365
5366         if (count < event->read_size)
5367                 return -ENOSPC;
5368
5369         WARN_ON_ONCE(event->ctx->parent_ctx);
5370         if (read_format & PERF_FORMAT_GROUP)
5371                 ret = perf_read_group(event, read_format, buf);
5372         else
5373                 ret = perf_read_one(event, read_format, buf);
5374
5375         return ret;
5376 }
5377
5378 static ssize_t
5379 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5380 {
5381         struct perf_event *event = file->private_data;
5382         struct perf_event_context *ctx;
5383         int ret;
5384
5385         ret = security_perf_event_read(event);
5386         if (ret)
5387                 return ret;
5388
5389         ctx = perf_event_ctx_lock(event);
5390         ret = __perf_read(event, buf, count);
5391         perf_event_ctx_unlock(event, ctx);
5392
5393         return ret;
5394 }
5395
5396 static __poll_t perf_poll(struct file *file, poll_table *wait)
5397 {
5398         struct perf_event *event = file->private_data;
5399         struct perf_buffer *rb;
5400         __poll_t events = EPOLLHUP;
5401
5402         poll_wait(file, &event->waitq, wait);
5403
5404         if (is_event_hup(event))
5405                 return events;
5406
5407         /*
5408          * Pin the event->rb by taking event->mmap_mutex; otherwise
5409          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5410          */
5411         mutex_lock(&event->mmap_mutex);
5412         rb = event->rb;
5413         if (rb)
5414                 events = atomic_xchg(&rb->poll, 0);
5415         mutex_unlock(&event->mmap_mutex);
5416         return events;
5417 }
5418
5419 static void _perf_event_reset(struct perf_event *event)
5420 {
5421         (void)perf_event_read(event, false);
5422         local64_set(&event->count, 0);
5423         perf_event_update_userpage(event);
5424 }
5425
5426 /* Assume it's not an event with inherit set. */
5427 u64 perf_event_pause(struct perf_event *event, bool reset)
5428 {
5429         struct perf_event_context *ctx;
5430         u64 count;
5431
5432         ctx = perf_event_ctx_lock(event);
5433         WARN_ON_ONCE(event->attr.inherit);
5434         _perf_event_disable(event);
5435         count = local64_read(&event->count);
5436         if (reset)
5437                 local64_set(&event->count, 0);
5438         perf_event_ctx_unlock(event, ctx);
5439
5440         return count;
5441 }
5442 EXPORT_SYMBOL_GPL(perf_event_pause);
5443
5444 /*
5445  * Holding the top-level event's child_mutex means that any
5446  * descendant process that has inherited this event will block
5447  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5448  * task existence requirements of perf_event_enable/disable.
5449  */
5450 static void perf_event_for_each_child(struct perf_event *event,
5451                                         void (*func)(struct perf_event *))
5452 {
5453         struct perf_event *child;
5454
5455         WARN_ON_ONCE(event->ctx->parent_ctx);
5456
5457         mutex_lock(&event->child_mutex);
5458         func(event);
5459         list_for_each_entry(child, &event->child_list, child_list)
5460                 func(child);
5461         mutex_unlock(&event->child_mutex);
5462 }
5463
5464 static void perf_event_for_each(struct perf_event *event,
5465                                   void (*func)(struct perf_event *))
5466 {
5467         struct perf_event_context *ctx = event->ctx;
5468         struct perf_event *sibling;
5469
5470         lockdep_assert_held(&ctx->mutex);
5471
5472         event = event->group_leader;
5473
5474         perf_event_for_each_child(event, func);
5475         for_each_sibling_event(sibling, event)
5476                 perf_event_for_each_child(sibling, func);
5477 }
5478
5479 static void __perf_event_period(struct perf_event *event,
5480                                 struct perf_cpu_context *cpuctx,
5481                                 struct perf_event_context *ctx,
5482                                 void *info)
5483 {
5484         u64 value = *((u64 *)info);
5485         bool active;
5486
5487         if (event->attr.freq) {
5488                 event->attr.sample_freq = value;
5489         } else {
5490                 event->attr.sample_period = value;
5491                 event->hw.sample_period = value;
5492         }
5493
5494         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5495         if (active) {
5496                 perf_pmu_disable(ctx->pmu);
5497                 /*
5498                  * We could be throttled; unthrottle now to avoid the tick
5499                  * trying to unthrottle while we already re-started the event.
5500                  */
5501                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5502                         event->hw.interrupts = 0;
5503                         perf_log_throttle(event, 1);
5504                 }
5505                 event->pmu->stop(event, PERF_EF_UPDATE);
5506         }
5507
5508         local64_set(&event->hw.period_left, 0);
5509
5510         if (active) {
5511                 event->pmu->start(event, PERF_EF_RELOAD);
5512                 perf_pmu_enable(ctx->pmu);
5513         }
5514 }
5515
5516 static int perf_event_check_period(struct perf_event *event, u64 value)
5517 {
5518         return event->pmu->check_period(event, value);
5519 }
5520
5521 static int _perf_event_period(struct perf_event *event, u64 value)
5522 {
5523         if (!is_sampling_event(event))
5524                 return -EINVAL;
5525
5526         if (!value)
5527                 return -EINVAL;
5528
5529         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5530                 return -EINVAL;
5531
5532         if (perf_event_check_period(event, value))
5533                 return -EINVAL;
5534
5535         if (!event->attr.freq && (value & (1ULL << 63)))
5536                 return -EINVAL;
5537
5538         event_function_call(event, __perf_event_period, &value);
5539
5540         return 0;
5541 }
5542
5543 int perf_event_period(struct perf_event *event, u64 value)
5544 {
5545         struct perf_event_context *ctx;
5546         int ret;
5547
5548         ctx = perf_event_ctx_lock(event);
5549         ret = _perf_event_period(event, value);
5550         perf_event_ctx_unlock(event, ctx);
5551
5552         return ret;
5553 }
5554 EXPORT_SYMBOL_GPL(perf_event_period);
5555
5556 static const struct file_operations perf_fops;
5557
5558 static inline int perf_fget_light(int fd, struct fd *p)
5559 {
5560         struct fd f = fdget(fd);
5561         if (!f.file)
5562                 return -EBADF;
5563
5564         if (f.file->f_op != &perf_fops) {
5565                 fdput(f);
5566                 return -EBADF;
5567         }
5568         *p = f;
5569         return 0;
5570 }
5571
5572 static int perf_event_set_output(struct perf_event *event,
5573                                  struct perf_event *output_event);
5574 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5575 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5576 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5577                           struct perf_event_attr *attr);
5578
5579 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5580 {
5581         void (*func)(struct perf_event *);
5582         u32 flags = arg;
5583
5584         switch (cmd) {
5585         case PERF_EVENT_IOC_ENABLE:
5586                 func = _perf_event_enable;
5587                 break;
5588         case PERF_EVENT_IOC_DISABLE:
5589                 func = _perf_event_disable;
5590                 break;
5591         case PERF_EVENT_IOC_RESET:
5592                 func = _perf_event_reset;
5593                 break;
5594
5595         case PERF_EVENT_IOC_REFRESH:
5596                 return _perf_event_refresh(event, arg);
5597
5598         case PERF_EVENT_IOC_PERIOD:
5599         {
5600                 u64 value;
5601
5602                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5603                         return -EFAULT;
5604
5605                 return _perf_event_period(event, value);
5606         }
5607         case PERF_EVENT_IOC_ID:
5608         {
5609                 u64 id = primary_event_id(event);
5610
5611                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5612                         return -EFAULT;
5613                 return 0;
5614         }
5615
5616         case PERF_EVENT_IOC_SET_OUTPUT:
5617         {
5618                 int ret;
5619                 if (arg != -1) {
5620                         struct perf_event *output_event;
5621                         struct fd output;
5622                         ret = perf_fget_light(arg, &output);
5623                         if (ret)
5624                                 return ret;
5625                         output_event = output.file->private_data;
5626                         ret = perf_event_set_output(event, output_event);
5627                         fdput(output);
5628                 } else {
5629                         ret = perf_event_set_output(event, NULL);
5630                 }
5631                 return ret;
5632         }
5633
5634         case PERF_EVENT_IOC_SET_FILTER:
5635                 return perf_event_set_filter(event, (void __user *)arg);
5636
5637         case PERF_EVENT_IOC_SET_BPF:
5638                 return perf_event_set_bpf_prog(event, arg);
5639
5640         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5641                 struct perf_buffer *rb;
5642
5643                 rcu_read_lock();
5644                 rb = rcu_dereference(event->rb);
5645                 if (!rb || !rb->nr_pages) {
5646                         rcu_read_unlock();
5647                         return -EINVAL;
5648                 }
5649                 rb_toggle_paused(rb, !!arg);
5650                 rcu_read_unlock();
5651                 return 0;
5652         }
5653
5654         case PERF_EVENT_IOC_QUERY_BPF:
5655                 return perf_event_query_prog_array(event, (void __user *)arg);
5656
5657         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5658                 struct perf_event_attr new_attr;
5659                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5660                                          &new_attr);
5661
5662                 if (err)
5663                         return err;
5664
5665                 return perf_event_modify_attr(event,  &new_attr);
5666         }
5667         default:
5668                 return -ENOTTY;
5669         }
5670
5671         if (flags & PERF_IOC_FLAG_GROUP)
5672                 perf_event_for_each(event, func);
5673         else
5674                 perf_event_for_each_child(event, func);
5675
5676         return 0;
5677 }
5678
5679 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5680 {
5681         struct perf_event *event = file->private_data;
5682         struct perf_event_context *ctx;
5683         long ret;
5684
5685         /* Treat ioctl like writes as it is likely a mutating operation. */
5686         ret = security_perf_event_write(event);
5687         if (ret)
5688                 return ret;
5689
5690         ctx = perf_event_ctx_lock(event);
5691         ret = _perf_ioctl(event, cmd, arg);
5692         perf_event_ctx_unlock(event, ctx);
5693
5694         return ret;
5695 }
5696
5697 #ifdef CONFIG_COMPAT
5698 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5699                                 unsigned long arg)
5700 {
5701         switch (_IOC_NR(cmd)) {
5702         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5703         case _IOC_NR(PERF_EVENT_IOC_ID):
5704         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5705         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5706                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5707                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5708                         cmd &= ~IOCSIZE_MASK;
5709                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5710                 }
5711                 break;
5712         }
5713         return perf_ioctl(file, cmd, arg);
5714 }
5715 #else
5716 # define perf_compat_ioctl NULL
5717 #endif
5718
5719 int perf_event_task_enable(void)
5720 {
5721         struct perf_event_context *ctx;
5722         struct perf_event *event;
5723
5724         mutex_lock(&current->perf_event_mutex);
5725         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5726                 ctx = perf_event_ctx_lock(event);
5727                 perf_event_for_each_child(event, _perf_event_enable);
5728                 perf_event_ctx_unlock(event, ctx);
5729         }
5730         mutex_unlock(&current->perf_event_mutex);
5731
5732         return 0;
5733 }
5734
5735 int perf_event_task_disable(void)
5736 {
5737         struct perf_event_context *ctx;
5738         struct perf_event *event;
5739
5740         mutex_lock(&current->perf_event_mutex);
5741         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5742                 ctx = perf_event_ctx_lock(event);
5743                 perf_event_for_each_child(event, _perf_event_disable);
5744                 perf_event_ctx_unlock(event, ctx);
5745         }
5746         mutex_unlock(&current->perf_event_mutex);
5747
5748         return 0;
5749 }
5750
5751 static int perf_event_index(struct perf_event *event)
5752 {
5753         if (event->hw.state & PERF_HES_STOPPED)
5754                 return 0;
5755
5756         if (event->state != PERF_EVENT_STATE_ACTIVE)
5757                 return 0;
5758
5759         return event->pmu->event_idx(event);
5760 }
5761
5762 static void calc_timer_values(struct perf_event *event,
5763                                 u64 *now,
5764                                 u64 *enabled,
5765                                 u64 *running)
5766 {
5767         u64 ctx_time;
5768
5769         *now = perf_clock();
5770         ctx_time = event->shadow_ctx_time + *now;
5771         __perf_update_times(event, ctx_time, enabled, running);
5772 }
5773
5774 static void perf_event_init_userpage(struct perf_event *event)
5775 {
5776         struct perf_event_mmap_page *userpg;
5777         struct perf_buffer *rb;
5778
5779         rcu_read_lock();
5780         rb = rcu_dereference(event->rb);
5781         if (!rb)
5782                 goto unlock;
5783
5784         userpg = rb->user_page;
5785
5786         /* Allow new userspace to detect that bit 0 is deprecated */
5787         userpg->cap_bit0_is_deprecated = 1;
5788         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5789         userpg->data_offset = PAGE_SIZE;
5790         userpg->data_size = perf_data_size(rb);
5791
5792 unlock:
5793         rcu_read_unlock();
5794 }
5795
5796 void __weak arch_perf_update_userpage(
5797         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5798 {
5799 }
5800
5801 /*
5802  * Callers need to ensure there can be no nesting of this function, otherwise
5803  * the seqlock logic goes bad. We can not serialize this because the arch
5804  * code calls this from NMI context.
5805  */
5806 void perf_event_update_userpage(struct perf_event *event)
5807 {
5808         struct perf_event_mmap_page *userpg;
5809         struct perf_buffer *rb;
5810         u64 enabled, running, now;
5811
5812         rcu_read_lock();
5813         rb = rcu_dereference(event->rb);
5814         if (!rb)
5815                 goto unlock;
5816
5817         /*
5818          * compute total_time_enabled, total_time_running
5819          * based on snapshot values taken when the event
5820          * was last scheduled in.
5821          *
5822          * we cannot simply called update_context_time()
5823          * because of locking issue as we can be called in
5824          * NMI context
5825          */
5826         calc_timer_values(event, &now, &enabled, &running);
5827
5828         userpg = rb->user_page;
5829         /*
5830          * Disable preemption to guarantee consistent time stamps are stored to
5831          * the user page.
5832          */
5833         preempt_disable();
5834         ++userpg->lock;
5835         barrier();
5836         userpg->index = perf_event_index(event);
5837         userpg->offset = perf_event_count(event);
5838         if (userpg->index)
5839                 userpg->offset -= local64_read(&event->hw.prev_count);
5840
5841         userpg->time_enabled = enabled +
5842                         atomic64_read(&event->child_total_time_enabled);
5843
5844         userpg->time_running = running +
5845                         atomic64_read(&event->child_total_time_running);
5846
5847         arch_perf_update_userpage(event, userpg, now);
5848
5849         barrier();
5850         ++userpg->lock;
5851         preempt_enable();
5852 unlock:
5853         rcu_read_unlock();
5854 }
5855 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5856
5857 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5858 {
5859         struct perf_event *event = vmf->vma->vm_file->private_data;
5860         struct perf_buffer *rb;
5861         vm_fault_t ret = VM_FAULT_SIGBUS;
5862
5863         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5864                 if (vmf->pgoff == 0)
5865                         ret = 0;
5866                 return ret;
5867         }
5868
5869         rcu_read_lock();
5870         rb = rcu_dereference(event->rb);
5871         if (!rb)
5872                 goto unlock;
5873
5874         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5875                 goto unlock;
5876
5877         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5878         if (!vmf->page)
5879                 goto unlock;
5880
5881         get_page(vmf->page);
5882         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5883         vmf->page->index   = vmf->pgoff;
5884
5885         ret = 0;
5886 unlock:
5887         rcu_read_unlock();
5888
5889         return ret;
5890 }
5891
5892 static void ring_buffer_attach(struct perf_event *event,
5893                                struct perf_buffer *rb)
5894 {
5895         struct perf_buffer *old_rb = NULL;
5896         unsigned long flags;
5897
5898         if (event->rb) {
5899                 /*
5900                  * Should be impossible, we set this when removing
5901                  * event->rb_entry and wait/clear when adding event->rb_entry.
5902                  */
5903                 WARN_ON_ONCE(event->rcu_pending);
5904
5905                 old_rb = event->rb;
5906                 spin_lock_irqsave(&old_rb->event_lock, flags);
5907                 list_del_rcu(&event->rb_entry);
5908                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5909
5910                 event->rcu_batches = get_state_synchronize_rcu();
5911                 event->rcu_pending = 1;
5912         }
5913
5914         if (rb) {
5915                 if (event->rcu_pending) {
5916                         cond_synchronize_rcu(event->rcu_batches);
5917                         event->rcu_pending = 0;
5918                 }
5919
5920                 spin_lock_irqsave(&rb->event_lock, flags);
5921                 list_add_rcu(&event->rb_entry, &rb->event_list);
5922                 spin_unlock_irqrestore(&rb->event_lock, flags);
5923         }
5924
5925         /*
5926          * Avoid racing with perf_mmap_close(AUX): stop the event
5927          * before swizzling the event::rb pointer; if it's getting
5928          * unmapped, its aux_mmap_count will be 0 and it won't
5929          * restart. See the comment in __perf_pmu_output_stop().
5930          *
5931          * Data will inevitably be lost when set_output is done in
5932          * mid-air, but then again, whoever does it like this is
5933          * not in for the data anyway.
5934          */
5935         if (has_aux(event))
5936                 perf_event_stop(event, 0);
5937
5938         rcu_assign_pointer(event->rb, rb);
5939
5940         if (old_rb) {
5941                 ring_buffer_put(old_rb);
5942                 /*
5943                  * Since we detached before setting the new rb, so that we
5944                  * could attach the new rb, we could have missed a wakeup.
5945                  * Provide it now.
5946                  */
5947                 wake_up_all(&event->waitq);
5948         }
5949 }
5950
5951 static void ring_buffer_wakeup(struct perf_event *event)
5952 {
5953         struct perf_buffer *rb;
5954
5955         rcu_read_lock();
5956         rb = rcu_dereference(event->rb);
5957         if (rb) {
5958                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5959                         wake_up_all(&event->waitq);
5960         }
5961         rcu_read_unlock();
5962 }
5963
5964 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5965 {
5966         struct perf_buffer *rb;
5967
5968         rcu_read_lock();
5969         rb = rcu_dereference(event->rb);
5970         if (rb) {
5971                 if (!refcount_inc_not_zero(&rb->refcount))
5972                         rb = NULL;
5973         }
5974         rcu_read_unlock();
5975
5976         return rb;
5977 }
5978
5979 void ring_buffer_put(struct perf_buffer *rb)
5980 {
5981         if (!refcount_dec_and_test(&rb->refcount))
5982                 return;
5983
5984         WARN_ON_ONCE(!list_empty(&rb->event_list));
5985
5986         call_rcu(&rb->rcu_head, rb_free_rcu);
5987 }
5988
5989 static void perf_mmap_open(struct vm_area_struct *vma)
5990 {
5991         struct perf_event *event = vma->vm_file->private_data;
5992
5993         atomic_inc(&event->mmap_count);
5994         atomic_inc(&event->rb->mmap_count);
5995
5996         if (vma->vm_pgoff)
5997                 atomic_inc(&event->rb->aux_mmap_count);
5998
5999         if (event->pmu->event_mapped)
6000                 event->pmu->event_mapped(event, vma->vm_mm);
6001 }
6002
6003 static void perf_pmu_output_stop(struct perf_event *event);
6004
6005 /*
6006  * A buffer can be mmap()ed multiple times; either directly through the same
6007  * event, or through other events by use of perf_event_set_output().
6008  *
6009  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6010  * the buffer here, where we still have a VM context. This means we need
6011  * to detach all events redirecting to us.
6012  */
6013 static void perf_mmap_close(struct vm_area_struct *vma)
6014 {
6015         struct perf_event *event = vma->vm_file->private_data;
6016         struct perf_buffer *rb = ring_buffer_get(event);
6017         struct user_struct *mmap_user = rb->mmap_user;
6018         int mmap_locked = rb->mmap_locked;
6019         unsigned long size = perf_data_size(rb);
6020         bool detach_rest = false;
6021
6022         if (event->pmu->event_unmapped)
6023                 event->pmu->event_unmapped(event, vma->vm_mm);
6024
6025         /*
6026          * rb->aux_mmap_count will always drop before rb->mmap_count and
6027          * event->mmap_count, so it is ok to use event->mmap_mutex to
6028          * serialize with perf_mmap here.
6029          */
6030         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6031             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6032                 /*
6033                  * Stop all AUX events that are writing to this buffer,
6034                  * so that we can free its AUX pages and corresponding PMU
6035                  * data. Note that after rb::aux_mmap_count dropped to zero,
6036                  * they won't start any more (see perf_aux_output_begin()).
6037                  */
6038                 perf_pmu_output_stop(event);
6039
6040                 /* now it's safe to free the pages */
6041                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6042                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6043
6044                 /* this has to be the last one */
6045                 rb_free_aux(rb);
6046                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6047
6048                 mutex_unlock(&event->mmap_mutex);
6049         }
6050
6051         if (atomic_dec_and_test(&rb->mmap_count))
6052                 detach_rest = true;
6053
6054         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6055                 goto out_put;
6056
6057         ring_buffer_attach(event, NULL);
6058         mutex_unlock(&event->mmap_mutex);
6059
6060         /* If there's still other mmap()s of this buffer, we're done. */
6061         if (!detach_rest)
6062                 goto out_put;
6063
6064         /*
6065          * No other mmap()s, detach from all other events that might redirect
6066          * into the now unreachable buffer. Somewhat complicated by the
6067          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6068          */
6069 again:
6070         rcu_read_lock();
6071         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6072                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6073                         /*
6074                          * This event is en-route to free_event() which will
6075                          * detach it and remove it from the list.
6076                          */
6077                         continue;
6078                 }
6079                 rcu_read_unlock();
6080
6081                 mutex_lock(&event->mmap_mutex);
6082                 /*
6083                  * Check we didn't race with perf_event_set_output() which can
6084                  * swizzle the rb from under us while we were waiting to
6085                  * acquire mmap_mutex.
6086                  *
6087                  * If we find a different rb; ignore this event, a next
6088                  * iteration will no longer find it on the list. We have to
6089                  * still restart the iteration to make sure we're not now
6090                  * iterating the wrong list.
6091                  */
6092                 if (event->rb == rb)
6093                         ring_buffer_attach(event, NULL);
6094
6095                 mutex_unlock(&event->mmap_mutex);
6096                 put_event(event);
6097
6098                 /*
6099                  * Restart the iteration; either we're on the wrong list or
6100                  * destroyed its integrity by doing a deletion.
6101                  */
6102                 goto again;
6103         }
6104         rcu_read_unlock();
6105
6106         /*
6107          * It could be there's still a few 0-ref events on the list; they'll
6108          * get cleaned up by free_event() -- they'll also still have their
6109          * ref on the rb and will free it whenever they are done with it.
6110          *
6111          * Aside from that, this buffer is 'fully' detached and unmapped,
6112          * undo the VM accounting.
6113          */
6114
6115         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6116                         &mmap_user->locked_vm);
6117         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6118         free_uid(mmap_user);
6119
6120 out_put:
6121         ring_buffer_put(rb); /* could be last */
6122 }
6123
6124 static const struct vm_operations_struct perf_mmap_vmops = {
6125         .open           = perf_mmap_open,
6126         .close          = perf_mmap_close, /* non mergeable */
6127         .fault          = perf_mmap_fault,
6128         .page_mkwrite   = perf_mmap_fault,
6129 };
6130
6131 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6132 {
6133         struct perf_event *event = file->private_data;
6134         unsigned long user_locked, user_lock_limit;
6135         struct user_struct *user = current_user();
6136         struct perf_buffer *rb = NULL;
6137         unsigned long locked, lock_limit;
6138         unsigned long vma_size;
6139         unsigned long nr_pages;
6140         long user_extra = 0, extra = 0;
6141         int ret = 0, flags = 0;
6142
6143         /*
6144          * Don't allow mmap() of inherited per-task counters. This would
6145          * create a performance issue due to all children writing to the
6146          * same rb.
6147          */
6148         if (event->cpu == -1 && event->attr.inherit)
6149                 return -EINVAL;
6150
6151         if (!(vma->vm_flags & VM_SHARED))
6152                 return -EINVAL;
6153
6154         ret = security_perf_event_read(event);
6155         if (ret)
6156                 return ret;
6157
6158         vma_size = vma->vm_end - vma->vm_start;
6159
6160         if (vma->vm_pgoff == 0) {
6161                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6162         } else {
6163                 /*
6164                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6165                  * mapped, all subsequent mappings should have the same size
6166                  * and offset. Must be above the normal perf buffer.
6167                  */
6168                 u64 aux_offset, aux_size;
6169
6170                 if (!event->rb)
6171                         return -EINVAL;
6172
6173                 nr_pages = vma_size / PAGE_SIZE;
6174
6175                 mutex_lock(&event->mmap_mutex);
6176                 ret = -EINVAL;
6177
6178                 rb = event->rb;
6179                 if (!rb)
6180                         goto aux_unlock;
6181
6182                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6183                 aux_size = READ_ONCE(rb->user_page->aux_size);
6184
6185                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6186                         goto aux_unlock;
6187
6188                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6189                         goto aux_unlock;
6190
6191                 /* already mapped with a different offset */
6192                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6193                         goto aux_unlock;
6194
6195                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6196                         goto aux_unlock;
6197
6198                 /* already mapped with a different size */
6199                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6200                         goto aux_unlock;
6201
6202                 if (!is_power_of_2(nr_pages))
6203                         goto aux_unlock;
6204
6205                 if (!atomic_inc_not_zero(&rb->mmap_count))
6206                         goto aux_unlock;
6207
6208                 if (rb_has_aux(rb)) {
6209                         atomic_inc(&rb->aux_mmap_count);
6210                         ret = 0;
6211                         goto unlock;
6212                 }
6213
6214                 atomic_set(&rb->aux_mmap_count, 1);
6215                 user_extra = nr_pages;
6216
6217                 goto accounting;
6218         }
6219
6220         /*
6221          * If we have rb pages ensure they're a power-of-two number, so we
6222          * can do bitmasks instead of modulo.
6223          */
6224         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6225                 return -EINVAL;
6226
6227         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6228                 return -EINVAL;
6229
6230         WARN_ON_ONCE(event->ctx->parent_ctx);
6231 again:
6232         mutex_lock(&event->mmap_mutex);
6233         if (event->rb) {
6234                 if (event->rb->nr_pages != nr_pages) {
6235                         ret = -EINVAL;
6236                         goto unlock;
6237                 }
6238
6239                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6240                         /*
6241                          * Raced against perf_mmap_close() through
6242                          * perf_event_set_output(). Try again, hope for better
6243                          * luck.
6244                          */
6245                         mutex_unlock(&event->mmap_mutex);
6246                         goto again;
6247                 }
6248
6249                 goto unlock;
6250         }
6251
6252         user_extra = nr_pages + 1;
6253
6254 accounting:
6255         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6256
6257         /*
6258          * Increase the limit linearly with more CPUs:
6259          */
6260         user_lock_limit *= num_online_cpus();
6261
6262         user_locked = atomic_long_read(&user->locked_vm);
6263
6264         /*
6265          * sysctl_perf_event_mlock may have changed, so that
6266          *     user->locked_vm > user_lock_limit
6267          */
6268         if (user_locked > user_lock_limit)
6269                 user_locked = user_lock_limit;
6270         user_locked += user_extra;
6271
6272         if (user_locked > user_lock_limit) {
6273                 /*
6274                  * charge locked_vm until it hits user_lock_limit;
6275                  * charge the rest from pinned_vm
6276                  */
6277                 extra = user_locked - user_lock_limit;
6278                 user_extra -= extra;
6279         }
6280
6281         lock_limit = rlimit(RLIMIT_MEMLOCK);
6282         lock_limit >>= PAGE_SHIFT;
6283         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6284
6285         if ((locked > lock_limit) && perf_is_paranoid() &&
6286                 !capable(CAP_IPC_LOCK)) {
6287                 ret = -EPERM;
6288                 goto unlock;
6289         }
6290
6291         WARN_ON(!rb && event->rb);
6292
6293         if (vma->vm_flags & VM_WRITE)
6294                 flags |= RING_BUFFER_WRITABLE;
6295
6296         if (!rb) {
6297                 rb = rb_alloc(nr_pages,
6298                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6299                               event->cpu, flags);
6300
6301                 if (!rb) {
6302                         ret = -ENOMEM;
6303                         goto unlock;
6304                 }
6305
6306                 atomic_set(&rb->mmap_count, 1);
6307                 rb->mmap_user = get_current_user();
6308                 rb->mmap_locked = extra;
6309
6310                 ring_buffer_attach(event, rb);
6311
6312                 perf_event_init_userpage(event);
6313                 perf_event_update_userpage(event);
6314         } else {
6315                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6316                                    event->attr.aux_watermark, flags);
6317                 if (!ret)
6318                         rb->aux_mmap_locked = extra;
6319         }
6320
6321 unlock:
6322         if (!ret) {
6323                 atomic_long_add(user_extra, &user->locked_vm);
6324                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6325
6326                 atomic_inc(&event->mmap_count);
6327         } else if (rb) {
6328                 atomic_dec(&rb->mmap_count);
6329         }
6330 aux_unlock:
6331         mutex_unlock(&event->mmap_mutex);
6332
6333         /*
6334          * Since pinned accounting is per vm we cannot allow fork() to copy our
6335          * vma.
6336          */
6337         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6338         vma->vm_ops = &perf_mmap_vmops;
6339
6340         if (event->pmu->event_mapped)
6341                 event->pmu->event_mapped(event, vma->vm_mm);
6342
6343         return ret;
6344 }
6345
6346 static int perf_fasync(int fd, struct file *filp, int on)
6347 {
6348         struct inode *inode = file_inode(filp);
6349         struct perf_event *event = filp->private_data;
6350         int retval;
6351
6352         inode_lock(inode);
6353         retval = fasync_helper(fd, filp, on, &event->fasync);
6354         inode_unlock(inode);
6355
6356         if (retval < 0)
6357                 return retval;
6358
6359         return 0;
6360 }
6361
6362 static const struct file_operations perf_fops = {
6363         .llseek                 = no_llseek,
6364         .release                = perf_release,
6365         .read                   = perf_read,
6366         .poll                   = perf_poll,
6367         .unlocked_ioctl         = perf_ioctl,
6368         .compat_ioctl           = perf_compat_ioctl,
6369         .mmap                   = perf_mmap,
6370         .fasync                 = perf_fasync,
6371 };
6372
6373 /*
6374  * Perf event wakeup
6375  *
6376  * If there's data, ensure we set the poll() state and publish everything
6377  * to user-space before waking everybody up.
6378  */
6379
6380 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6381 {
6382         /* only the parent has fasync state */
6383         if (event->parent)
6384                 event = event->parent;
6385         return &event->fasync;
6386 }
6387
6388 void perf_event_wakeup(struct perf_event *event)
6389 {
6390         ring_buffer_wakeup(event);
6391
6392         if (event->pending_kill) {
6393                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6394                 event->pending_kill = 0;
6395         }
6396 }
6397
6398 static void perf_sigtrap(struct perf_event *event)
6399 {
6400         struct kernel_siginfo info;
6401
6402         /*
6403          * We'd expect this to only occur if the irq_work is delayed and either
6404          * ctx->task or current has changed in the meantime. This can be the
6405          * case on architectures that do not implement arch_irq_work_raise().
6406          */
6407         if (WARN_ON_ONCE(event->ctx->task != current))
6408                 return;
6409
6410         /*
6411          * perf_pending_event() can race with the task exiting.
6412          */
6413         if (current->flags & PF_EXITING)
6414                 return;
6415
6416         clear_siginfo(&info);
6417         info.si_signo = SIGTRAP;
6418         info.si_code = TRAP_PERF;
6419         info.si_errno = event->attr.type;
6420         info.si_perf = event->attr.sig_data;
6421         info.si_addr = (void __user *)event->pending_addr;
6422         force_sig_info(&info);
6423 }
6424
6425 static void perf_pending_event_disable(struct perf_event *event)
6426 {
6427         int cpu = READ_ONCE(event->pending_disable);
6428
6429         if (cpu < 0)
6430                 return;
6431
6432         if (cpu == smp_processor_id()) {
6433                 WRITE_ONCE(event->pending_disable, -1);
6434
6435                 if (event->attr.sigtrap) {
6436                         perf_sigtrap(event);
6437                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6438                         return;
6439                 }
6440
6441                 perf_event_disable_local(event);
6442                 return;
6443         }
6444
6445         /*
6446          *  CPU-A                       CPU-B
6447          *
6448          *  perf_event_disable_inatomic()
6449          *    @pending_disable = CPU-A;
6450          *    irq_work_queue();
6451          *
6452          *  sched-out
6453          *    @pending_disable = -1;
6454          *
6455          *                              sched-in
6456          *                              perf_event_disable_inatomic()
6457          *                                @pending_disable = CPU-B;
6458          *                                irq_work_queue(); // FAILS
6459          *
6460          *  irq_work_run()
6461          *    perf_pending_event()
6462          *
6463          * But the event runs on CPU-B and wants disabling there.
6464          */
6465         irq_work_queue_on(&event->pending, cpu);
6466 }
6467
6468 static void perf_pending_event(struct irq_work *entry)
6469 {
6470         struct perf_event *event = container_of(entry, struct perf_event, pending);
6471         int rctx;
6472
6473         rctx = perf_swevent_get_recursion_context();
6474         /*
6475          * If we 'fail' here, that's OK, it means recursion is already disabled
6476          * and we won't recurse 'further'.
6477          */
6478
6479         perf_pending_event_disable(event);
6480
6481         if (event->pending_wakeup) {
6482                 event->pending_wakeup = 0;
6483                 perf_event_wakeup(event);
6484         }
6485
6486         if (rctx >= 0)
6487                 perf_swevent_put_recursion_context(rctx);
6488 }
6489
6490 /*
6491  * We assume there is only KVM supporting the callbacks.
6492  * Later on, we might change it to a list if there is
6493  * another virtualization implementation supporting the callbacks.
6494  */
6495 struct perf_guest_info_callbacks *perf_guest_cbs;
6496
6497 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6498 {
6499         perf_guest_cbs = cbs;
6500         return 0;
6501 }
6502 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6503
6504 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6505 {
6506         perf_guest_cbs = NULL;
6507         return 0;
6508 }
6509 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6510
6511 static void
6512 perf_output_sample_regs(struct perf_output_handle *handle,
6513                         struct pt_regs *regs, u64 mask)
6514 {
6515         int bit;
6516         DECLARE_BITMAP(_mask, 64);
6517
6518         bitmap_from_u64(_mask, mask);
6519         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6520                 u64 val;
6521
6522                 val = perf_reg_value(regs, bit);
6523                 perf_output_put(handle, val);
6524         }
6525 }
6526
6527 static void perf_sample_regs_user(struct perf_regs *regs_user,
6528                                   struct pt_regs *regs)
6529 {
6530         if (user_mode(regs)) {
6531                 regs_user->abi = perf_reg_abi(current);
6532                 regs_user->regs = regs;
6533         } else if (!(current->flags & PF_KTHREAD)) {
6534                 perf_get_regs_user(regs_user, regs);
6535         } else {
6536                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6537                 regs_user->regs = NULL;
6538         }
6539 }
6540
6541 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6542                                   struct pt_regs *regs)
6543 {
6544         regs_intr->regs = regs;
6545         regs_intr->abi  = perf_reg_abi(current);
6546 }
6547
6548
6549 /*
6550  * Get remaining task size from user stack pointer.
6551  *
6552  * It'd be better to take stack vma map and limit this more
6553  * precisely, but there's no way to get it safely under interrupt,
6554  * so using TASK_SIZE as limit.
6555  */
6556 static u64 perf_ustack_task_size(struct pt_regs *regs)
6557 {
6558         unsigned long addr = perf_user_stack_pointer(regs);
6559
6560         if (!addr || addr >= TASK_SIZE)
6561                 return 0;
6562
6563         return TASK_SIZE - addr;
6564 }
6565
6566 static u16
6567 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6568                         struct pt_regs *regs)
6569 {
6570         u64 task_size;
6571
6572         /* No regs, no stack pointer, no dump. */
6573         if (!regs)
6574                 return 0;
6575
6576         /*
6577          * Check if we fit in with the requested stack size into the:
6578          * - TASK_SIZE
6579          *   If we don't, we limit the size to the TASK_SIZE.
6580          *
6581          * - remaining sample size
6582          *   If we don't, we customize the stack size to
6583          *   fit in to the remaining sample size.
6584          */
6585
6586         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6587         stack_size = min(stack_size, (u16) task_size);
6588
6589         /* Current header size plus static size and dynamic size. */
6590         header_size += 2 * sizeof(u64);
6591
6592         /* Do we fit in with the current stack dump size? */
6593         if ((u16) (header_size + stack_size) < header_size) {
6594                 /*
6595                  * If we overflow the maximum size for the sample,
6596                  * we customize the stack dump size to fit in.
6597                  */
6598                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6599                 stack_size = round_up(stack_size, sizeof(u64));
6600         }
6601
6602         return stack_size;
6603 }
6604
6605 static void
6606 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6607                           struct pt_regs *regs)
6608 {
6609         /* Case of a kernel thread, nothing to dump */
6610         if (!regs) {
6611                 u64 size = 0;
6612                 perf_output_put(handle, size);
6613         } else {
6614                 unsigned long sp;
6615                 unsigned int rem;
6616                 u64 dyn_size;
6617                 mm_segment_t fs;
6618
6619                 /*
6620                  * We dump:
6621                  * static size
6622                  *   - the size requested by user or the best one we can fit
6623                  *     in to the sample max size
6624                  * data
6625                  *   - user stack dump data
6626                  * dynamic size
6627                  *   - the actual dumped size
6628                  */
6629
6630                 /* Static size. */
6631                 perf_output_put(handle, dump_size);
6632
6633                 /* Data. */
6634                 sp = perf_user_stack_pointer(regs);
6635                 fs = force_uaccess_begin();
6636                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6637                 force_uaccess_end(fs);
6638                 dyn_size = dump_size - rem;
6639
6640                 perf_output_skip(handle, rem);
6641
6642                 /* Dynamic size. */
6643                 perf_output_put(handle, dyn_size);
6644         }
6645 }
6646
6647 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6648                                           struct perf_sample_data *data,
6649                                           size_t size)
6650 {
6651         struct perf_event *sampler = event->aux_event;
6652         struct perf_buffer *rb;
6653
6654         data->aux_size = 0;
6655
6656         if (!sampler)
6657                 goto out;
6658
6659         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6660                 goto out;
6661
6662         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6663                 goto out;
6664
6665         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6666         if (!rb)
6667                 goto out;
6668
6669         /*
6670          * If this is an NMI hit inside sampling code, don't take
6671          * the sample. See also perf_aux_sample_output().
6672          */
6673         if (READ_ONCE(rb->aux_in_sampling)) {
6674                 data->aux_size = 0;
6675         } else {
6676                 size = min_t(size_t, size, perf_aux_size(rb));
6677                 data->aux_size = ALIGN(size, sizeof(u64));
6678         }
6679         ring_buffer_put(rb);
6680
6681 out:
6682         return data->aux_size;
6683 }
6684
6685 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6686                                  struct perf_event *event,
6687                                  struct perf_output_handle *handle,
6688                                  unsigned long size)
6689 {
6690         unsigned long flags;
6691         long ret;
6692
6693         /*
6694          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6695          * paths. If we start calling them in NMI context, they may race with
6696          * the IRQ ones, that is, for example, re-starting an event that's just
6697          * been stopped, which is why we're using a separate callback that
6698          * doesn't change the event state.
6699          *
6700          * IRQs need to be disabled to prevent IPIs from racing with us.
6701          */
6702         local_irq_save(flags);
6703         /*
6704          * Guard against NMI hits inside the critical section;
6705          * see also perf_prepare_sample_aux().
6706          */
6707         WRITE_ONCE(rb->aux_in_sampling, 1);
6708         barrier();
6709
6710         ret = event->pmu->snapshot_aux(event, handle, size);
6711
6712         barrier();
6713         WRITE_ONCE(rb->aux_in_sampling, 0);
6714         local_irq_restore(flags);
6715
6716         return ret;
6717 }
6718
6719 static void perf_aux_sample_output(struct perf_event *event,
6720                                    struct perf_output_handle *handle,
6721                                    struct perf_sample_data *data)
6722 {
6723         struct perf_event *sampler = event->aux_event;
6724         struct perf_buffer *rb;
6725         unsigned long pad;
6726         long size;
6727
6728         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6729                 return;
6730
6731         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6732         if (!rb)
6733                 return;
6734
6735         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6736
6737         /*
6738          * An error here means that perf_output_copy() failed (returned a
6739          * non-zero surplus that it didn't copy), which in its current
6740          * enlightened implementation is not possible. If that changes, we'd
6741          * like to know.
6742          */
6743         if (WARN_ON_ONCE(size < 0))
6744                 goto out_put;
6745
6746         /*
6747          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6748          * perf_prepare_sample_aux(), so should not be more than that.
6749          */
6750         pad = data->aux_size - size;
6751         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6752                 pad = 8;
6753
6754         if (pad) {
6755                 u64 zero = 0;
6756                 perf_output_copy(handle, &zero, pad);
6757         }
6758
6759 out_put:
6760         ring_buffer_put(rb);
6761 }
6762
6763 static void __perf_event_header__init_id(struct perf_event_header *header,
6764                                          struct perf_sample_data *data,
6765                                          struct perf_event *event)
6766 {
6767         u64 sample_type = event->attr.sample_type;
6768
6769         data->type = sample_type;
6770         header->size += event->id_header_size;
6771
6772         if (sample_type & PERF_SAMPLE_TID) {
6773                 /* namespace issues */
6774                 data->tid_entry.pid = perf_event_pid(event, current);
6775                 data->tid_entry.tid = perf_event_tid(event, current);
6776         }
6777
6778         if (sample_type & PERF_SAMPLE_TIME)
6779                 data->time = perf_event_clock(event);
6780
6781         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6782                 data->id = primary_event_id(event);
6783
6784         if (sample_type & PERF_SAMPLE_STREAM_ID)
6785                 data->stream_id = event->id;
6786
6787         if (sample_type & PERF_SAMPLE_CPU) {
6788                 data->cpu_entry.cpu      = raw_smp_processor_id();
6789                 data->cpu_entry.reserved = 0;
6790         }
6791 }
6792
6793 void perf_event_header__init_id(struct perf_event_header *header,
6794                                 struct perf_sample_data *data,
6795                                 struct perf_event *event)
6796 {
6797         if (event->attr.sample_id_all)
6798                 __perf_event_header__init_id(header, data, event);
6799 }
6800
6801 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6802                                            struct perf_sample_data *data)
6803 {
6804         u64 sample_type = data->type;
6805
6806         if (sample_type & PERF_SAMPLE_TID)
6807                 perf_output_put(handle, data->tid_entry);
6808
6809         if (sample_type & PERF_SAMPLE_TIME)
6810                 perf_output_put(handle, data->time);
6811
6812         if (sample_type & PERF_SAMPLE_ID)
6813                 perf_output_put(handle, data->id);
6814
6815         if (sample_type & PERF_SAMPLE_STREAM_ID)
6816                 perf_output_put(handle, data->stream_id);
6817
6818         if (sample_type & PERF_SAMPLE_CPU)
6819                 perf_output_put(handle, data->cpu_entry);
6820
6821         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6822                 perf_output_put(handle, data->id);
6823 }
6824
6825 void perf_event__output_id_sample(struct perf_event *event,
6826                                   struct perf_output_handle *handle,
6827                                   struct perf_sample_data *sample)
6828 {
6829         if (event->attr.sample_id_all)
6830                 __perf_event__output_id_sample(handle, sample);
6831 }
6832
6833 static void perf_output_read_one(struct perf_output_handle *handle,
6834                                  struct perf_event *event,
6835                                  u64 enabled, u64 running)
6836 {
6837         u64 read_format = event->attr.read_format;
6838         u64 values[4];
6839         int n = 0;
6840
6841         values[n++] = perf_event_count(event);
6842         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6843                 values[n++] = enabled +
6844                         atomic64_read(&event->child_total_time_enabled);
6845         }
6846         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6847                 values[n++] = running +
6848                         atomic64_read(&event->child_total_time_running);
6849         }
6850         if (read_format & PERF_FORMAT_ID)
6851                 values[n++] = primary_event_id(event);
6852
6853         __output_copy(handle, values, n * sizeof(u64));
6854 }
6855
6856 static void perf_output_read_group(struct perf_output_handle *handle,
6857                             struct perf_event *event,
6858                             u64 enabled, u64 running)
6859 {
6860         struct perf_event *leader = event->group_leader, *sub;
6861         u64 read_format = event->attr.read_format;
6862         u64 values[5];
6863         int n = 0;
6864
6865         values[n++] = 1 + leader->nr_siblings;
6866
6867         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6868                 values[n++] = enabled;
6869
6870         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6871                 values[n++] = running;
6872
6873         if ((leader != event) &&
6874             (leader->state == PERF_EVENT_STATE_ACTIVE))
6875                 leader->pmu->read(leader);
6876
6877         values[n++] = perf_event_count(leader);
6878         if (read_format & PERF_FORMAT_ID)
6879                 values[n++] = primary_event_id(leader);
6880
6881         __output_copy(handle, values, n * sizeof(u64));
6882
6883         for_each_sibling_event(sub, leader) {
6884                 n = 0;
6885
6886                 if ((sub != event) &&
6887                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6888                         sub->pmu->read(sub);
6889
6890                 values[n++] = perf_event_count(sub);
6891                 if (read_format & PERF_FORMAT_ID)
6892                         values[n++] = primary_event_id(sub);
6893
6894                 __output_copy(handle, values, n * sizeof(u64));
6895         }
6896 }
6897
6898 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6899                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6900
6901 /*
6902  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6903  *
6904  * The problem is that its both hard and excessively expensive to iterate the
6905  * child list, not to mention that its impossible to IPI the children running
6906  * on another CPU, from interrupt/NMI context.
6907  */
6908 static void perf_output_read(struct perf_output_handle *handle,
6909                              struct perf_event *event)
6910 {
6911         u64 enabled = 0, running = 0, now;
6912         u64 read_format = event->attr.read_format;
6913
6914         /*
6915          * compute total_time_enabled, total_time_running
6916          * based on snapshot values taken when the event
6917          * was last scheduled in.
6918          *
6919          * we cannot simply called update_context_time()
6920          * because of locking issue as we are called in
6921          * NMI context
6922          */
6923         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6924                 calc_timer_values(event, &now, &enabled, &running);
6925
6926         if (event->attr.read_format & PERF_FORMAT_GROUP)
6927                 perf_output_read_group(handle, event, enabled, running);
6928         else
6929                 perf_output_read_one(handle, event, enabled, running);
6930 }
6931
6932 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6933 {
6934         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6935 }
6936
6937 void perf_output_sample(struct perf_output_handle *handle,
6938                         struct perf_event_header *header,
6939                         struct perf_sample_data *data,
6940                         struct perf_event *event)
6941 {
6942         u64 sample_type = data->type;
6943
6944         perf_output_put(handle, *header);
6945
6946         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6947                 perf_output_put(handle, data->id);
6948
6949         if (sample_type & PERF_SAMPLE_IP)
6950                 perf_output_put(handle, data->ip);
6951
6952         if (sample_type & PERF_SAMPLE_TID)
6953                 perf_output_put(handle, data->tid_entry);
6954
6955         if (sample_type & PERF_SAMPLE_TIME)
6956                 perf_output_put(handle, data->time);
6957
6958         if (sample_type & PERF_SAMPLE_ADDR)
6959                 perf_output_put(handle, data->addr);
6960
6961         if (sample_type & PERF_SAMPLE_ID)
6962                 perf_output_put(handle, data->id);
6963
6964         if (sample_type & PERF_SAMPLE_STREAM_ID)
6965                 perf_output_put(handle, data->stream_id);
6966
6967         if (sample_type & PERF_SAMPLE_CPU)
6968                 perf_output_put(handle, data->cpu_entry);
6969
6970         if (sample_type & PERF_SAMPLE_PERIOD)
6971                 perf_output_put(handle, data->period);
6972
6973         if (sample_type & PERF_SAMPLE_READ)
6974                 perf_output_read(handle, event);
6975
6976         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6977                 int size = 1;
6978
6979                 size += data->callchain->nr;
6980                 size *= sizeof(u64);
6981                 __output_copy(handle, data->callchain, size);
6982         }
6983
6984         if (sample_type & PERF_SAMPLE_RAW) {
6985                 struct perf_raw_record *raw = data->raw;
6986
6987                 if (raw) {
6988                         struct perf_raw_frag *frag = &raw->frag;
6989
6990                         perf_output_put(handle, raw->size);
6991                         do {
6992                                 if (frag->copy) {
6993                                         __output_custom(handle, frag->copy,
6994                                                         frag->data, frag->size);
6995                                 } else {
6996                                         __output_copy(handle, frag->data,
6997                                                       frag->size);
6998                                 }
6999                                 if (perf_raw_frag_last(frag))
7000                                         break;
7001                                 frag = frag->next;
7002                         } while (1);
7003                         if (frag->pad)
7004                                 __output_skip(handle, NULL, frag->pad);
7005                 } else {
7006                         struct {
7007                                 u32     size;
7008                                 u32     data;
7009                         } raw = {
7010                                 .size = sizeof(u32),
7011                                 .data = 0,
7012                         };
7013                         perf_output_put(handle, raw);
7014                 }
7015         }
7016
7017         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7018                 if (data->br_stack) {
7019                         size_t size;
7020
7021                         size = data->br_stack->nr
7022                              * sizeof(struct perf_branch_entry);
7023
7024                         perf_output_put(handle, data->br_stack->nr);
7025                         if (perf_sample_save_hw_index(event))
7026                                 perf_output_put(handle, data->br_stack->hw_idx);
7027                         perf_output_copy(handle, data->br_stack->entries, size);
7028                 } else {
7029                         /*
7030                          * we always store at least the value of nr
7031                          */
7032                         u64 nr = 0;
7033                         perf_output_put(handle, nr);
7034                 }
7035         }
7036
7037         if (sample_type & PERF_SAMPLE_REGS_USER) {
7038                 u64 abi = data->regs_user.abi;
7039
7040                 /*
7041                  * If there are no regs to dump, notice it through
7042                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7043                  */
7044                 perf_output_put(handle, abi);
7045
7046                 if (abi) {
7047                         u64 mask = event->attr.sample_regs_user;
7048                         perf_output_sample_regs(handle,
7049                                                 data->regs_user.regs,
7050                                                 mask);
7051                 }
7052         }
7053
7054         if (sample_type & PERF_SAMPLE_STACK_USER) {
7055                 perf_output_sample_ustack(handle,
7056                                           data->stack_user_size,
7057                                           data->regs_user.regs);
7058         }
7059
7060         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7061                 perf_output_put(handle, data->weight.full);
7062
7063         if (sample_type & PERF_SAMPLE_DATA_SRC)
7064                 perf_output_put(handle, data->data_src.val);
7065
7066         if (sample_type & PERF_SAMPLE_TRANSACTION)
7067                 perf_output_put(handle, data->txn);
7068
7069         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7070                 u64 abi = data->regs_intr.abi;
7071                 /*
7072                  * If there are no regs to dump, notice it through
7073                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7074                  */
7075                 perf_output_put(handle, abi);
7076
7077                 if (abi) {
7078                         u64 mask = event->attr.sample_regs_intr;
7079
7080                         perf_output_sample_regs(handle,
7081                                                 data->regs_intr.regs,
7082                                                 mask);
7083                 }
7084         }
7085
7086         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7087                 perf_output_put(handle, data->phys_addr);
7088
7089         if (sample_type & PERF_SAMPLE_CGROUP)
7090                 perf_output_put(handle, data->cgroup);
7091
7092         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7093                 perf_output_put(handle, data->data_page_size);
7094
7095         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7096                 perf_output_put(handle, data->code_page_size);
7097
7098         if (sample_type & PERF_SAMPLE_AUX) {
7099                 perf_output_put(handle, data->aux_size);
7100
7101                 if (data->aux_size)
7102                         perf_aux_sample_output(event, handle, data);
7103         }
7104
7105         if (!event->attr.watermark) {
7106                 int wakeup_events = event->attr.wakeup_events;
7107
7108                 if (wakeup_events) {
7109                         struct perf_buffer *rb = handle->rb;
7110                         int events = local_inc_return(&rb->events);
7111
7112                         if (events >= wakeup_events) {
7113                                 local_sub(wakeup_events, &rb->events);
7114                                 local_inc(&rb->wakeup);
7115                         }
7116                 }
7117         }
7118 }
7119
7120 static u64 perf_virt_to_phys(u64 virt)
7121 {
7122         u64 phys_addr = 0;
7123         struct page *p = NULL;
7124
7125         if (!virt)
7126                 return 0;
7127
7128         if (virt >= TASK_SIZE) {
7129                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7130                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7131                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7132                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7133         } else {
7134                 /*
7135                  * Walking the pages tables for user address.
7136                  * Interrupts are disabled, so it prevents any tear down
7137                  * of the page tables.
7138                  * Try IRQ-safe get_user_page_fast_only first.
7139                  * If failed, leave phys_addr as 0.
7140                  */
7141                 if (current->mm != NULL) {
7142                         pagefault_disable();
7143                         if (get_user_page_fast_only(virt, 0, &p))
7144                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7145                         pagefault_enable();
7146                 }
7147
7148                 if (p)
7149                         put_page(p);
7150         }
7151
7152         return phys_addr;
7153 }
7154
7155 /*
7156  * Return the pagetable size of a given virtual address.
7157  */
7158 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7159 {
7160         u64 size = 0;
7161
7162 #ifdef CONFIG_HAVE_FAST_GUP
7163         pgd_t *pgdp, pgd;
7164         p4d_t *p4dp, p4d;
7165         pud_t *pudp, pud;
7166         pmd_t *pmdp, pmd;
7167         pte_t *ptep, pte;
7168
7169         pgdp = pgd_offset(mm, addr);
7170         pgd = READ_ONCE(*pgdp);
7171         if (pgd_none(pgd))
7172                 return 0;
7173
7174         if (pgd_leaf(pgd))
7175                 return pgd_leaf_size(pgd);
7176
7177         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7178         p4d = READ_ONCE(*p4dp);
7179         if (!p4d_present(p4d))
7180                 return 0;
7181
7182         if (p4d_leaf(p4d))
7183                 return p4d_leaf_size(p4d);
7184
7185         pudp = pud_offset_lockless(p4dp, p4d, addr);
7186         pud = READ_ONCE(*pudp);
7187         if (!pud_present(pud))
7188                 return 0;
7189
7190         if (pud_leaf(pud))
7191                 return pud_leaf_size(pud);
7192
7193         pmdp = pmd_offset_lockless(pudp, pud, addr);
7194         pmd = READ_ONCE(*pmdp);
7195         if (!pmd_present(pmd))
7196                 return 0;
7197
7198         if (pmd_leaf(pmd))
7199                 return pmd_leaf_size(pmd);
7200
7201         ptep = pte_offset_map(&pmd, addr);
7202         pte = ptep_get_lockless(ptep);
7203         if (pte_present(pte))
7204                 size = pte_leaf_size(pte);
7205         pte_unmap(ptep);
7206 #endif /* CONFIG_HAVE_FAST_GUP */
7207
7208         return size;
7209 }
7210
7211 static u64 perf_get_page_size(unsigned long addr)
7212 {
7213         struct mm_struct *mm;
7214         unsigned long flags;
7215         u64 size;
7216
7217         if (!addr)
7218                 return 0;
7219
7220         /*
7221          * Software page-table walkers must disable IRQs,
7222          * which prevents any tear down of the page tables.
7223          */
7224         local_irq_save(flags);
7225
7226         mm = current->mm;
7227         if (!mm) {
7228                 /*
7229                  * For kernel threads and the like, use init_mm so that
7230                  * we can find kernel memory.
7231                  */
7232                 mm = &init_mm;
7233         }
7234
7235         size = perf_get_pgtable_size(mm, addr);
7236
7237         local_irq_restore(flags);
7238
7239         return size;
7240 }
7241
7242 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7243
7244 struct perf_callchain_entry *
7245 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7246 {
7247         bool kernel = !event->attr.exclude_callchain_kernel;
7248         bool user   = !event->attr.exclude_callchain_user;
7249         /* Disallow cross-task user callchains. */
7250         bool crosstask = event->ctx->task && event->ctx->task != current;
7251         const u32 max_stack = event->attr.sample_max_stack;
7252         struct perf_callchain_entry *callchain;
7253
7254         if (!kernel && !user)
7255                 return &__empty_callchain;
7256
7257         callchain = get_perf_callchain(regs, 0, kernel, user,
7258                                        max_stack, crosstask, true);
7259         return callchain ?: &__empty_callchain;
7260 }
7261
7262 void perf_prepare_sample(struct perf_event_header *header,
7263                          struct perf_sample_data *data,
7264                          struct perf_event *event,
7265                          struct pt_regs *regs)
7266 {
7267         u64 sample_type = event->attr.sample_type;
7268
7269         header->type = PERF_RECORD_SAMPLE;
7270         header->size = sizeof(*header) + event->header_size;
7271
7272         header->misc = 0;
7273         header->misc |= perf_misc_flags(regs);
7274
7275         __perf_event_header__init_id(header, data, event);
7276
7277         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7278                 data->ip = perf_instruction_pointer(regs);
7279
7280         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7281                 int size = 1;
7282
7283                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7284                         data->callchain = perf_callchain(event, regs);
7285
7286                 size += data->callchain->nr;
7287
7288                 header->size += size * sizeof(u64);
7289         }
7290
7291         if (sample_type & PERF_SAMPLE_RAW) {
7292                 struct perf_raw_record *raw = data->raw;
7293                 int size;
7294
7295                 if (raw) {
7296                         struct perf_raw_frag *frag = &raw->frag;
7297                         u32 sum = 0;
7298
7299                         do {
7300                                 sum += frag->size;
7301                                 if (perf_raw_frag_last(frag))
7302                                         break;
7303                                 frag = frag->next;
7304                         } while (1);
7305
7306                         size = round_up(sum + sizeof(u32), sizeof(u64));
7307                         raw->size = size - sizeof(u32);
7308                         frag->pad = raw->size - sum;
7309                 } else {
7310                         size = sizeof(u64);
7311                 }
7312
7313                 header->size += size;
7314         }
7315
7316         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7317                 int size = sizeof(u64); /* nr */
7318                 if (data->br_stack) {
7319                         if (perf_sample_save_hw_index(event))
7320                                 size += sizeof(u64);
7321
7322                         size += data->br_stack->nr
7323                               * sizeof(struct perf_branch_entry);
7324                 }
7325                 header->size += size;
7326         }
7327
7328         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7329                 perf_sample_regs_user(&data->regs_user, regs);
7330
7331         if (sample_type & PERF_SAMPLE_REGS_USER) {
7332                 /* regs dump ABI info */
7333                 int size = sizeof(u64);
7334
7335                 if (data->regs_user.regs) {
7336                         u64 mask = event->attr.sample_regs_user;
7337                         size += hweight64(mask) * sizeof(u64);
7338                 }
7339
7340                 header->size += size;
7341         }
7342
7343         if (sample_type & PERF_SAMPLE_STACK_USER) {
7344                 /*
7345                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7346                  * processed as the last one or have additional check added
7347                  * in case new sample type is added, because we could eat
7348                  * up the rest of the sample size.
7349                  */
7350                 u16 stack_size = event->attr.sample_stack_user;
7351                 u16 size = sizeof(u64);
7352
7353                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7354                                                      data->regs_user.regs);
7355
7356                 /*
7357                  * If there is something to dump, add space for the dump
7358                  * itself and for the field that tells the dynamic size,
7359                  * which is how many have been actually dumped.
7360                  */
7361                 if (stack_size)
7362                         size += sizeof(u64) + stack_size;
7363
7364                 data->stack_user_size = stack_size;
7365                 header->size += size;
7366         }
7367
7368         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7369                 /* regs dump ABI info */
7370                 int size = sizeof(u64);
7371
7372                 perf_sample_regs_intr(&data->regs_intr, regs);
7373
7374                 if (data->regs_intr.regs) {
7375                         u64 mask = event->attr.sample_regs_intr;
7376
7377                         size += hweight64(mask) * sizeof(u64);
7378                 }
7379
7380                 header->size += size;
7381         }
7382
7383         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7384                 data->phys_addr = perf_virt_to_phys(data->addr);
7385
7386 #ifdef CONFIG_CGROUP_PERF
7387         if (sample_type & PERF_SAMPLE_CGROUP) {
7388                 struct cgroup *cgrp;
7389
7390                 /* protected by RCU */
7391                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7392                 data->cgroup = cgroup_id(cgrp);
7393         }
7394 #endif
7395
7396         /*
7397          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7398          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7399          * but the value will not dump to the userspace.
7400          */
7401         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7402                 data->data_page_size = perf_get_page_size(data->addr);
7403
7404         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7405                 data->code_page_size = perf_get_page_size(data->ip);
7406
7407         if (sample_type & PERF_SAMPLE_AUX) {
7408                 u64 size;
7409
7410                 header->size += sizeof(u64); /* size */
7411
7412                 /*
7413                  * Given the 16bit nature of header::size, an AUX sample can
7414                  * easily overflow it, what with all the preceding sample bits.
7415                  * Make sure this doesn't happen by using up to U16_MAX bytes
7416                  * per sample in total (rounded down to 8 byte boundary).
7417                  */
7418                 size = min_t(size_t, U16_MAX - header->size,
7419                              event->attr.aux_sample_size);
7420                 size = rounddown(size, 8);
7421                 size = perf_prepare_sample_aux(event, data, size);
7422
7423                 WARN_ON_ONCE(size + header->size > U16_MAX);
7424                 header->size += size;
7425         }
7426         /*
7427          * If you're adding more sample types here, you likely need to do
7428          * something about the overflowing header::size, like repurpose the
7429          * lowest 3 bits of size, which should be always zero at the moment.
7430          * This raises a more important question, do we really need 512k sized
7431          * samples and why, so good argumentation is in order for whatever you
7432          * do here next.
7433          */
7434         WARN_ON_ONCE(header->size & 7);
7435 }
7436
7437 static __always_inline int
7438 __perf_event_output(struct perf_event *event,
7439                     struct perf_sample_data *data,
7440                     struct pt_regs *regs,
7441                     int (*output_begin)(struct perf_output_handle *,
7442                                         struct perf_sample_data *,
7443                                         struct perf_event *,
7444                                         unsigned int))
7445 {
7446         struct perf_output_handle handle;
7447         struct perf_event_header header;
7448         int err;
7449
7450         /* protect the callchain buffers */
7451         rcu_read_lock();
7452
7453         perf_prepare_sample(&header, data, event, regs);
7454
7455         err = output_begin(&handle, data, event, header.size);
7456         if (err)
7457                 goto exit;
7458
7459         perf_output_sample(&handle, &header, data, event);
7460
7461         perf_output_end(&handle);
7462
7463 exit:
7464         rcu_read_unlock();
7465         return err;
7466 }
7467
7468 void
7469 perf_event_output_forward(struct perf_event *event,
7470                          struct perf_sample_data *data,
7471                          struct pt_regs *regs)
7472 {
7473         __perf_event_output(event, data, regs, perf_output_begin_forward);
7474 }
7475
7476 void
7477 perf_event_output_backward(struct perf_event *event,
7478                            struct perf_sample_data *data,
7479                            struct pt_regs *regs)
7480 {
7481         __perf_event_output(event, data, regs, perf_output_begin_backward);
7482 }
7483
7484 int
7485 perf_event_output(struct perf_event *event,
7486                   struct perf_sample_data *data,
7487                   struct pt_regs *regs)
7488 {
7489         return __perf_event_output(event, data, regs, perf_output_begin);
7490 }
7491
7492 /*
7493  * read event_id
7494  */
7495
7496 struct perf_read_event {
7497         struct perf_event_header        header;
7498
7499         u32                             pid;
7500         u32                             tid;
7501 };
7502
7503 static void
7504 perf_event_read_event(struct perf_event *event,
7505                         struct task_struct *task)
7506 {
7507         struct perf_output_handle handle;
7508         struct perf_sample_data sample;
7509         struct perf_read_event read_event = {
7510                 .header = {
7511                         .type = PERF_RECORD_READ,
7512                         .misc = 0,
7513                         .size = sizeof(read_event) + event->read_size,
7514                 },
7515                 .pid = perf_event_pid(event, task),
7516                 .tid = perf_event_tid(event, task),
7517         };
7518         int ret;
7519
7520         perf_event_header__init_id(&read_event.header, &sample, event);
7521         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7522         if (ret)
7523                 return;
7524
7525         perf_output_put(&handle, read_event);
7526         perf_output_read(&handle, event);
7527         perf_event__output_id_sample(event, &handle, &sample);
7528
7529         perf_output_end(&handle);
7530 }
7531
7532 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7533
7534 static void
7535 perf_iterate_ctx(struct perf_event_context *ctx,
7536                    perf_iterate_f output,
7537                    void *data, bool all)
7538 {
7539         struct perf_event *event;
7540
7541         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7542                 if (!all) {
7543                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7544                                 continue;
7545                         if (!event_filter_match(event))
7546                                 continue;
7547                 }
7548
7549                 output(event, data);
7550         }
7551 }
7552
7553 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7554 {
7555         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7556         struct perf_event *event;
7557
7558         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7559                 /*
7560                  * Skip events that are not fully formed yet; ensure that
7561                  * if we observe event->ctx, both event and ctx will be
7562                  * complete enough. See perf_install_in_context().
7563                  */
7564                 if (!smp_load_acquire(&event->ctx))
7565                         continue;
7566
7567                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7568                         continue;
7569                 if (!event_filter_match(event))
7570                         continue;
7571                 output(event, data);
7572         }
7573 }
7574
7575 /*
7576  * Iterate all events that need to receive side-band events.
7577  *
7578  * For new callers; ensure that account_pmu_sb_event() includes
7579  * your event, otherwise it might not get delivered.
7580  */
7581 static void
7582 perf_iterate_sb(perf_iterate_f output, void *data,
7583                struct perf_event_context *task_ctx)
7584 {
7585         struct perf_event_context *ctx;
7586         int ctxn;
7587
7588         rcu_read_lock();
7589         preempt_disable();
7590
7591         /*
7592          * If we have task_ctx != NULL we only notify the task context itself.
7593          * The task_ctx is set only for EXIT events before releasing task
7594          * context.
7595          */
7596         if (task_ctx) {
7597                 perf_iterate_ctx(task_ctx, output, data, false);
7598                 goto done;
7599         }
7600
7601         perf_iterate_sb_cpu(output, data);
7602
7603         for_each_task_context_nr(ctxn) {
7604                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7605                 if (ctx)
7606                         perf_iterate_ctx(ctx, output, data, false);
7607         }
7608 done:
7609         preempt_enable();
7610         rcu_read_unlock();
7611 }
7612
7613 /*
7614  * Clear all file-based filters at exec, they'll have to be
7615  * re-instated when/if these objects are mmapped again.
7616  */
7617 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7618 {
7619         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7620         struct perf_addr_filter *filter;
7621         unsigned int restart = 0, count = 0;
7622         unsigned long flags;
7623
7624         if (!has_addr_filter(event))
7625                 return;
7626
7627         raw_spin_lock_irqsave(&ifh->lock, flags);
7628         list_for_each_entry(filter, &ifh->list, entry) {
7629                 if (filter->path.dentry) {
7630                         event->addr_filter_ranges[count].start = 0;
7631                         event->addr_filter_ranges[count].size = 0;
7632                         restart++;
7633                 }
7634
7635                 count++;
7636         }
7637
7638         if (restart)
7639                 event->addr_filters_gen++;
7640         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7641
7642         if (restart)
7643                 perf_event_stop(event, 1);
7644 }
7645
7646 void perf_event_exec(void)
7647 {
7648         struct perf_event_context *ctx;
7649         int ctxn;
7650
7651         for_each_task_context_nr(ctxn) {
7652                 perf_event_enable_on_exec(ctxn);
7653                 perf_event_remove_on_exec(ctxn);
7654
7655                 rcu_read_lock();
7656                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7657                 if (ctx) {
7658                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7659                                          NULL, true);
7660                 }
7661                 rcu_read_unlock();
7662         }
7663 }
7664
7665 struct remote_output {
7666         struct perf_buffer      *rb;
7667         int                     err;
7668 };
7669
7670 static void __perf_event_output_stop(struct perf_event *event, void *data)
7671 {
7672         struct perf_event *parent = event->parent;
7673         struct remote_output *ro = data;
7674         struct perf_buffer *rb = ro->rb;
7675         struct stop_event_data sd = {
7676                 .event  = event,
7677         };
7678
7679         if (!has_aux(event))
7680                 return;
7681
7682         if (!parent)
7683                 parent = event;
7684
7685         /*
7686          * In case of inheritance, it will be the parent that links to the
7687          * ring-buffer, but it will be the child that's actually using it.
7688          *
7689          * We are using event::rb to determine if the event should be stopped,
7690          * however this may race with ring_buffer_attach() (through set_output),
7691          * which will make us skip the event that actually needs to be stopped.
7692          * So ring_buffer_attach() has to stop an aux event before re-assigning
7693          * its rb pointer.
7694          */
7695         if (rcu_dereference(parent->rb) == rb)
7696                 ro->err = __perf_event_stop(&sd);
7697 }
7698
7699 static int __perf_pmu_output_stop(void *info)
7700 {
7701         struct perf_event *event = info;
7702         struct pmu *pmu = event->ctx->pmu;
7703         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7704         struct remote_output ro = {
7705                 .rb     = event->rb,
7706         };
7707
7708         rcu_read_lock();
7709         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7710         if (cpuctx->task_ctx)
7711                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7712                                    &ro, false);
7713         rcu_read_unlock();
7714
7715         return ro.err;
7716 }
7717
7718 static void perf_pmu_output_stop(struct perf_event *event)
7719 {
7720         struct perf_event *iter;
7721         int err, cpu;
7722
7723 restart:
7724         rcu_read_lock();
7725         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7726                 /*
7727                  * For per-CPU events, we need to make sure that neither they
7728                  * nor their children are running; for cpu==-1 events it's
7729                  * sufficient to stop the event itself if it's active, since
7730                  * it can't have children.
7731                  */
7732                 cpu = iter->cpu;
7733                 if (cpu == -1)
7734                         cpu = READ_ONCE(iter->oncpu);
7735
7736                 if (cpu == -1)
7737                         continue;
7738
7739                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7740                 if (err == -EAGAIN) {
7741                         rcu_read_unlock();
7742                         goto restart;
7743                 }
7744         }
7745         rcu_read_unlock();
7746 }
7747
7748 /*
7749  * task tracking -- fork/exit
7750  *
7751  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7752  */
7753
7754 struct perf_task_event {
7755         struct task_struct              *task;
7756         struct perf_event_context       *task_ctx;
7757
7758         struct {
7759                 struct perf_event_header        header;
7760
7761                 u32                             pid;
7762                 u32                             ppid;
7763                 u32                             tid;
7764                 u32                             ptid;
7765                 u64                             time;
7766         } event_id;
7767 };
7768
7769 static int perf_event_task_match(struct perf_event *event)
7770 {
7771         return event->attr.comm  || event->attr.mmap ||
7772                event->attr.mmap2 || event->attr.mmap_data ||
7773                event->attr.task;
7774 }
7775
7776 static void perf_event_task_output(struct perf_event *event,
7777                                    void *data)
7778 {
7779         struct perf_task_event *task_event = data;
7780         struct perf_output_handle handle;
7781         struct perf_sample_data sample;
7782         struct task_struct *task = task_event->task;
7783         int ret, size = task_event->event_id.header.size;
7784
7785         if (!perf_event_task_match(event))
7786                 return;
7787
7788         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7789
7790         ret = perf_output_begin(&handle, &sample, event,
7791                                 task_event->event_id.header.size);
7792         if (ret)
7793                 goto out;
7794
7795         task_event->event_id.pid = perf_event_pid(event, task);
7796         task_event->event_id.tid = perf_event_tid(event, task);
7797
7798         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7799                 task_event->event_id.ppid = perf_event_pid(event,
7800                                                         task->real_parent);
7801                 task_event->event_id.ptid = perf_event_pid(event,
7802                                                         task->real_parent);
7803         } else {  /* PERF_RECORD_FORK */
7804                 task_event->event_id.ppid = perf_event_pid(event, current);
7805                 task_event->event_id.ptid = perf_event_tid(event, current);
7806         }
7807
7808         task_event->event_id.time = perf_event_clock(event);
7809
7810         perf_output_put(&handle, task_event->event_id);
7811
7812         perf_event__output_id_sample(event, &handle, &sample);
7813
7814         perf_output_end(&handle);
7815 out:
7816         task_event->event_id.header.size = size;
7817 }
7818
7819 static void perf_event_task(struct task_struct *task,
7820                               struct perf_event_context *task_ctx,
7821                               int new)
7822 {
7823         struct perf_task_event task_event;
7824
7825         if (!atomic_read(&nr_comm_events) &&
7826             !atomic_read(&nr_mmap_events) &&
7827             !atomic_read(&nr_task_events))
7828                 return;
7829
7830         task_event = (struct perf_task_event){
7831                 .task     = task,
7832                 .task_ctx = task_ctx,
7833                 .event_id    = {
7834                         .header = {
7835                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7836                                 .misc = 0,
7837                                 .size = sizeof(task_event.event_id),
7838                         },
7839                         /* .pid  */
7840                         /* .ppid */
7841                         /* .tid  */
7842                         /* .ptid */
7843                         /* .time */
7844                 },
7845         };
7846
7847         perf_iterate_sb(perf_event_task_output,
7848                        &task_event,
7849                        task_ctx);
7850 }
7851
7852 void perf_event_fork(struct task_struct *task)
7853 {
7854         perf_event_task(task, NULL, 1);
7855         perf_event_namespaces(task);
7856 }
7857
7858 /*
7859  * comm tracking
7860  */
7861
7862 struct perf_comm_event {
7863         struct task_struct      *task;
7864         char                    *comm;
7865         int                     comm_size;
7866
7867         struct {
7868                 struct perf_event_header        header;
7869
7870                 u32                             pid;
7871                 u32                             tid;
7872         } event_id;
7873 };
7874
7875 static int perf_event_comm_match(struct perf_event *event)
7876 {
7877         return event->attr.comm;
7878 }
7879
7880 static void perf_event_comm_output(struct perf_event *event,
7881                                    void *data)
7882 {
7883         struct perf_comm_event *comm_event = data;
7884         struct perf_output_handle handle;
7885         struct perf_sample_data sample;
7886         int size = comm_event->event_id.header.size;
7887         int ret;
7888
7889         if (!perf_event_comm_match(event))
7890                 return;
7891
7892         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7893         ret = perf_output_begin(&handle, &sample, event,
7894                                 comm_event->event_id.header.size);
7895
7896         if (ret)
7897                 goto out;
7898
7899         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7900         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7901
7902         perf_output_put(&handle, comm_event->event_id);
7903         __output_copy(&handle, comm_event->comm,
7904                                    comm_event->comm_size);
7905
7906         perf_event__output_id_sample(event, &handle, &sample);
7907
7908         perf_output_end(&handle);
7909 out:
7910         comm_event->event_id.header.size = size;
7911 }
7912
7913 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7914 {
7915         char comm[TASK_COMM_LEN];
7916         unsigned int size;
7917
7918         memset(comm, 0, sizeof(comm));
7919         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7920         size = ALIGN(strlen(comm)+1, sizeof(u64));
7921
7922         comm_event->comm = comm;
7923         comm_event->comm_size = size;
7924
7925         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7926
7927         perf_iterate_sb(perf_event_comm_output,
7928                        comm_event,
7929                        NULL);
7930 }
7931
7932 void perf_event_comm(struct task_struct *task, bool exec)
7933 {
7934         struct perf_comm_event comm_event;
7935
7936         if (!atomic_read(&nr_comm_events))
7937                 return;
7938
7939         comm_event = (struct perf_comm_event){
7940                 .task   = task,
7941                 /* .comm      */
7942                 /* .comm_size */
7943                 .event_id  = {
7944                         .header = {
7945                                 .type = PERF_RECORD_COMM,
7946                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7947                                 /* .size */
7948                         },
7949                         /* .pid */
7950                         /* .tid */
7951                 },
7952         };
7953
7954         perf_event_comm_event(&comm_event);
7955 }
7956
7957 /*
7958  * namespaces tracking
7959  */
7960
7961 struct perf_namespaces_event {
7962         struct task_struct              *task;
7963
7964         struct {
7965                 struct perf_event_header        header;
7966
7967                 u32                             pid;
7968                 u32                             tid;
7969                 u64                             nr_namespaces;
7970                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7971         } event_id;
7972 };
7973
7974 static int perf_event_namespaces_match(struct perf_event *event)
7975 {
7976         return event->attr.namespaces;
7977 }
7978
7979 static void perf_event_namespaces_output(struct perf_event *event,
7980                                          void *data)
7981 {
7982         struct perf_namespaces_event *namespaces_event = data;
7983         struct perf_output_handle handle;
7984         struct perf_sample_data sample;
7985         u16 header_size = namespaces_event->event_id.header.size;
7986         int ret;
7987
7988         if (!perf_event_namespaces_match(event))
7989                 return;
7990
7991         perf_event_header__init_id(&namespaces_event->event_id.header,
7992                                    &sample, event);
7993         ret = perf_output_begin(&handle, &sample, event,
7994                                 namespaces_event->event_id.header.size);
7995         if (ret)
7996                 goto out;
7997
7998         namespaces_event->event_id.pid = perf_event_pid(event,
7999                                                         namespaces_event->task);
8000         namespaces_event->event_id.tid = perf_event_tid(event,
8001                                                         namespaces_event->task);
8002
8003         perf_output_put(&handle, namespaces_event->event_id);
8004
8005         perf_event__output_id_sample(event, &handle, &sample);
8006
8007         perf_output_end(&handle);
8008 out:
8009         namespaces_event->event_id.header.size = header_size;
8010 }
8011
8012 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8013                                    struct task_struct *task,
8014                                    const struct proc_ns_operations *ns_ops)
8015 {
8016         struct path ns_path;
8017         struct inode *ns_inode;
8018         int error;
8019
8020         error = ns_get_path(&ns_path, task, ns_ops);
8021         if (!error) {
8022                 ns_inode = ns_path.dentry->d_inode;
8023                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8024                 ns_link_info->ino = ns_inode->i_ino;
8025                 path_put(&ns_path);
8026         }
8027 }
8028
8029 void perf_event_namespaces(struct task_struct *task)
8030 {
8031         struct perf_namespaces_event namespaces_event;
8032         struct perf_ns_link_info *ns_link_info;
8033
8034         if (!atomic_read(&nr_namespaces_events))
8035                 return;
8036
8037         namespaces_event = (struct perf_namespaces_event){
8038                 .task   = task,
8039                 .event_id  = {
8040                         .header = {
8041                                 .type = PERF_RECORD_NAMESPACES,
8042                                 .misc = 0,
8043                                 .size = sizeof(namespaces_event.event_id),
8044                         },
8045                         /* .pid */
8046                         /* .tid */
8047                         .nr_namespaces = NR_NAMESPACES,
8048                         /* .link_info[NR_NAMESPACES] */
8049                 },
8050         };
8051
8052         ns_link_info = namespaces_event.event_id.link_info;
8053
8054         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8055                                task, &mntns_operations);
8056
8057 #ifdef CONFIG_USER_NS
8058         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8059                                task, &userns_operations);
8060 #endif
8061 #ifdef CONFIG_NET_NS
8062         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8063                                task, &netns_operations);
8064 #endif
8065 #ifdef CONFIG_UTS_NS
8066         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8067                                task, &utsns_operations);
8068 #endif
8069 #ifdef CONFIG_IPC_NS
8070         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8071                                task, &ipcns_operations);
8072 #endif
8073 #ifdef CONFIG_PID_NS
8074         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8075                                task, &pidns_operations);
8076 #endif
8077 #ifdef CONFIG_CGROUPS
8078         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8079                                task, &cgroupns_operations);
8080 #endif
8081
8082         perf_iterate_sb(perf_event_namespaces_output,
8083                         &namespaces_event,
8084                         NULL);
8085 }
8086
8087 /*
8088  * cgroup tracking
8089  */
8090 #ifdef CONFIG_CGROUP_PERF
8091
8092 struct perf_cgroup_event {
8093         char                            *path;
8094         int                             path_size;
8095         struct {
8096                 struct perf_event_header        header;
8097                 u64                             id;
8098                 char                            path[];
8099         } event_id;
8100 };
8101
8102 static int perf_event_cgroup_match(struct perf_event *event)
8103 {
8104         return event->attr.cgroup;
8105 }
8106
8107 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8108 {
8109         struct perf_cgroup_event *cgroup_event = data;
8110         struct perf_output_handle handle;
8111         struct perf_sample_data sample;
8112         u16 header_size = cgroup_event->event_id.header.size;
8113         int ret;
8114
8115         if (!perf_event_cgroup_match(event))
8116                 return;
8117
8118         perf_event_header__init_id(&cgroup_event->event_id.header,
8119                                    &sample, event);
8120         ret = perf_output_begin(&handle, &sample, event,
8121                                 cgroup_event->event_id.header.size);
8122         if (ret)
8123                 goto out;
8124
8125         perf_output_put(&handle, cgroup_event->event_id);
8126         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8127
8128         perf_event__output_id_sample(event, &handle, &sample);
8129
8130         perf_output_end(&handle);
8131 out:
8132         cgroup_event->event_id.header.size = header_size;
8133 }
8134
8135 static void perf_event_cgroup(struct cgroup *cgrp)
8136 {
8137         struct perf_cgroup_event cgroup_event;
8138         char path_enomem[16] = "//enomem";
8139         char *pathname;
8140         size_t size;
8141
8142         if (!atomic_read(&nr_cgroup_events))
8143                 return;
8144
8145         cgroup_event = (struct perf_cgroup_event){
8146                 .event_id  = {
8147                         .header = {
8148                                 .type = PERF_RECORD_CGROUP,
8149                                 .misc = 0,
8150                                 .size = sizeof(cgroup_event.event_id),
8151                         },
8152                         .id = cgroup_id(cgrp),
8153                 },
8154         };
8155
8156         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8157         if (pathname == NULL) {
8158                 cgroup_event.path = path_enomem;
8159         } else {
8160                 /* just to be sure to have enough space for alignment */
8161                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8162                 cgroup_event.path = pathname;
8163         }
8164
8165         /*
8166          * Since our buffer works in 8 byte units we need to align our string
8167          * size to a multiple of 8. However, we must guarantee the tail end is
8168          * zero'd out to avoid leaking random bits to userspace.
8169          */
8170         size = strlen(cgroup_event.path) + 1;
8171         while (!IS_ALIGNED(size, sizeof(u64)))
8172                 cgroup_event.path[size++] = '\0';
8173
8174         cgroup_event.event_id.header.size += size;
8175         cgroup_event.path_size = size;
8176
8177         perf_iterate_sb(perf_event_cgroup_output,
8178                         &cgroup_event,
8179                         NULL);
8180
8181         kfree(pathname);
8182 }
8183
8184 #endif
8185
8186 /*
8187  * mmap tracking
8188  */
8189
8190 struct perf_mmap_event {
8191         struct vm_area_struct   *vma;
8192
8193         const char              *file_name;
8194         int                     file_size;
8195         int                     maj, min;
8196         u64                     ino;
8197         u64                     ino_generation;
8198         u32                     prot, flags;
8199         u8                      build_id[BUILD_ID_SIZE_MAX];
8200         u32                     build_id_size;
8201
8202         struct {
8203                 struct perf_event_header        header;
8204
8205                 u32                             pid;
8206                 u32                             tid;
8207                 u64                             start;
8208                 u64                             len;
8209                 u64                             pgoff;
8210         } event_id;
8211 };
8212
8213 static int perf_event_mmap_match(struct perf_event *event,
8214                                  void *data)
8215 {
8216         struct perf_mmap_event *mmap_event = data;
8217         struct vm_area_struct *vma = mmap_event->vma;
8218         int executable = vma->vm_flags & VM_EXEC;
8219
8220         return (!executable && event->attr.mmap_data) ||
8221                (executable && (event->attr.mmap || event->attr.mmap2));
8222 }
8223
8224 static void perf_event_mmap_output(struct perf_event *event,
8225                                    void *data)
8226 {
8227         struct perf_mmap_event *mmap_event = data;
8228         struct perf_output_handle handle;
8229         struct perf_sample_data sample;
8230         int size = mmap_event->event_id.header.size;
8231         u32 type = mmap_event->event_id.header.type;
8232         bool use_build_id;
8233         int ret;
8234
8235         if (!perf_event_mmap_match(event, data))
8236                 return;
8237
8238         if (event->attr.mmap2) {
8239                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8240                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8241                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8242                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8243                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8244                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8245                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8246         }
8247
8248         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8249         ret = perf_output_begin(&handle, &sample, event,
8250                                 mmap_event->event_id.header.size);
8251         if (ret)
8252                 goto out;
8253
8254         mmap_event->event_id.pid = perf_event_pid(event, current);
8255         mmap_event->event_id.tid = perf_event_tid(event, current);
8256
8257         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8258
8259         if (event->attr.mmap2 && use_build_id)
8260                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8261
8262         perf_output_put(&handle, mmap_event->event_id);
8263
8264         if (event->attr.mmap2) {
8265                 if (use_build_id) {
8266                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8267
8268                         __output_copy(&handle, size, 4);
8269                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8270                 } else {
8271                         perf_output_put(&handle, mmap_event->maj);
8272                         perf_output_put(&handle, mmap_event->min);
8273                         perf_output_put(&handle, mmap_event->ino);
8274                         perf_output_put(&handle, mmap_event->ino_generation);
8275                 }
8276                 perf_output_put(&handle, mmap_event->prot);
8277                 perf_output_put(&handle, mmap_event->flags);
8278         }
8279
8280         __output_copy(&handle, mmap_event->file_name,
8281                                    mmap_event->file_size);
8282
8283         perf_event__output_id_sample(event, &handle, &sample);
8284
8285         perf_output_end(&handle);
8286 out:
8287         mmap_event->event_id.header.size = size;
8288         mmap_event->event_id.header.type = type;
8289 }
8290
8291 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8292 {
8293         struct vm_area_struct *vma = mmap_event->vma;
8294         struct file *file = vma->vm_file;
8295         int maj = 0, min = 0;
8296         u64 ino = 0, gen = 0;
8297         u32 prot = 0, flags = 0;
8298         unsigned int size;
8299         char tmp[16];
8300         char *buf = NULL;
8301         char *name;
8302
8303         if (vma->vm_flags & VM_READ)
8304                 prot |= PROT_READ;
8305         if (vma->vm_flags & VM_WRITE)
8306                 prot |= PROT_WRITE;
8307         if (vma->vm_flags & VM_EXEC)
8308                 prot |= PROT_EXEC;
8309
8310         if (vma->vm_flags & VM_MAYSHARE)
8311                 flags = MAP_SHARED;
8312         else
8313                 flags = MAP_PRIVATE;
8314
8315         if (vma->vm_flags & VM_DENYWRITE)
8316                 flags |= MAP_DENYWRITE;
8317         if (vma->vm_flags & VM_MAYEXEC)
8318                 flags |= MAP_EXECUTABLE;
8319         if (vma->vm_flags & VM_LOCKED)
8320                 flags |= MAP_LOCKED;
8321         if (is_vm_hugetlb_page(vma))
8322                 flags |= MAP_HUGETLB;
8323
8324         if (file) {
8325                 struct inode *inode;
8326                 dev_t dev;
8327
8328                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8329                 if (!buf) {
8330                         name = "//enomem";
8331                         goto cpy_name;
8332                 }
8333                 /*
8334                  * d_path() works from the end of the rb backwards, so we
8335                  * need to add enough zero bytes after the string to handle
8336                  * the 64bit alignment we do later.
8337                  */
8338                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8339                 if (IS_ERR(name)) {
8340                         name = "//toolong";
8341                         goto cpy_name;
8342                 }
8343                 inode = file_inode(vma->vm_file);
8344                 dev = inode->i_sb->s_dev;
8345                 ino = inode->i_ino;
8346                 gen = inode->i_generation;
8347                 maj = MAJOR(dev);
8348                 min = MINOR(dev);
8349
8350                 goto got_name;
8351         } else {
8352                 if (vma->vm_ops && vma->vm_ops->name) {
8353                         name = (char *) vma->vm_ops->name(vma);
8354                         if (name)
8355                                 goto cpy_name;
8356                 }
8357
8358                 name = (char *)arch_vma_name(vma);
8359                 if (name)
8360                         goto cpy_name;
8361
8362                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8363                                 vma->vm_end >= vma->vm_mm->brk) {
8364                         name = "[heap]";
8365                         goto cpy_name;
8366                 }
8367                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8368                                 vma->vm_end >= vma->vm_mm->start_stack) {
8369                         name = "[stack]";
8370                         goto cpy_name;
8371                 }
8372
8373                 name = "//anon";
8374                 goto cpy_name;
8375         }
8376
8377 cpy_name:
8378         strlcpy(tmp, name, sizeof(tmp));
8379         name = tmp;
8380 got_name:
8381         /*
8382          * Since our buffer works in 8 byte units we need to align our string
8383          * size to a multiple of 8. However, we must guarantee the tail end is
8384          * zero'd out to avoid leaking random bits to userspace.
8385          */
8386         size = strlen(name)+1;
8387         while (!IS_ALIGNED(size, sizeof(u64)))
8388                 name[size++] = '\0';
8389
8390         mmap_event->file_name = name;
8391         mmap_event->file_size = size;
8392         mmap_event->maj = maj;
8393         mmap_event->min = min;
8394         mmap_event->ino = ino;
8395         mmap_event->ino_generation = gen;
8396         mmap_event->prot = prot;
8397         mmap_event->flags = flags;
8398
8399         if (!(vma->vm_flags & VM_EXEC))
8400                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8401
8402         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8403
8404         if (atomic_read(&nr_build_id_events))
8405                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8406
8407         perf_iterate_sb(perf_event_mmap_output,
8408                        mmap_event,
8409                        NULL);
8410
8411         kfree(buf);
8412 }
8413
8414 /*
8415  * Check whether inode and address range match filter criteria.
8416  */
8417 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8418                                      struct file *file, unsigned long offset,
8419                                      unsigned long size)
8420 {
8421         /* d_inode(NULL) won't be equal to any mapped user-space file */
8422         if (!filter->path.dentry)
8423                 return false;
8424
8425         if (d_inode(filter->path.dentry) != file_inode(file))
8426                 return false;
8427
8428         if (filter->offset > offset + size)
8429                 return false;
8430
8431         if (filter->offset + filter->size < offset)
8432                 return false;
8433
8434         return true;
8435 }
8436
8437 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8438                                         struct vm_area_struct *vma,
8439                                         struct perf_addr_filter_range *fr)
8440 {
8441         unsigned long vma_size = vma->vm_end - vma->vm_start;
8442         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8443         struct file *file = vma->vm_file;
8444
8445         if (!perf_addr_filter_match(filter, file, off, vma_size))
8446                 return false;
8447
8448         if (filter->offset < off) {
8449                 fr->start = vma->vm_start;
8450                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8451         } else {
8452                 fr->start = vma->vm_start + filter->offset - off;
8453                 fr->size = min(vma->vm_end - fr->start, filter->size);
8454         }
8455
8456         return true;
8457 }
8458
8459 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8460 {
8461         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8462         struct vm_area_struct *vma = data;
8463         struct perf_addr_filter *filter;
8464         unsigned int restart = 0, count = 0;
8465         unsigned long flags;
8466
8467         if (!has_addr_filter(event))
8468                 return;
8469
8470         if (!vma->vm_file)
8471                 return;
8472
8473         raw_spin_lock_irqsave(&ifh->lock, flags);
8474         list_for_each_entry(filter, &ifh->list, entry) {
8475                 if (perf_addr_filter_vma_adjust(filter, vma,
8476                                                 &event->addr_filter_ranges[count]))
8477                         restart++;
8478
8479                 count++;
8480         }
8481
8482         if (restart)
8483                 event->addr_filters_gen++;
8484         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8485
8486         if (restart)
8487                 perf_event_stop(event, 1);
8488 }
8489
8490 /*
8491  * Adjust all task's events' filters to the new vma
8492  */
8493 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8494 {
8495         struct perf_event_context *ctx;
8496         int ctxn;
8497
8498         /*
8499          * Data tracing isn't supported yet and as such there is no need
8500          * to keep track of anything that isn't related to executable code:
8501          */
8502         if (!(vma->vm_flags & VM_EXEC))
8503                 return;
8504
8505         rcu_read_lock();
8506         for_each_task_context_nr(ctxn) {
8507                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8508                 if (!ctx)
8509                         continue;
8510
8511                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8512         }
8513         rcu_read_unlock();
8514 }
8515
8516 void perf_event_mmap(struct vm_area_struct *vma)
8517 {
8518         struct perf_mmap_event mmap_event;
8519
8520         if (!atomic_read(&nr_mmap_events))
8521                 return;
8522
8523         mmap_event = (struct perf_mmap_event){
8524                 .vma    = vma,
8525                 /* .file_name */
8526                 /* .file_size */
8527                 .event_id  = {
8528                         .header = {
8529                                 .type = PERF_RECORD_MMAP,
8530                                 .misc = PERF_RECORD_MISC_USER,
8531                                 /* .size */
8532                         },
8533                         /* .pid */
8534                         /* .tid */
8535                         .start  = vma->vm_start,
8536                         .len    = vma->vm_end - vma->vm_start,
8537                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8538                 },
8539                 /* .maj (attr_mmap2 only) */
8540                 /* .min (attr_mmap2 only) */
8541                 /* .ino (attr_mmap2 only) */
8542                 /* .ino_generation (attr_mmap2 only) */
8543                 /* .prot (attr_mmap2 only) */
8544                 /* .flags (attr_mmap2 only) */
8545         };
8546
8547         perf_addr_filters_adjust(vma);
8548         perf_event_mmap_event(&mmap_event);
8549 }
8550
8551 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8552                           unsigned long size, u64 flags)
8553 {
8554         struct perf_output_handle handle;
8555         struct perf_sample_data sample;
8556         struct perf_aux_event {
8557                 struct perf_event_header        header;
8558                 u64                             offset;
8559                 u64                             size;
8560                 u64                             flags;
8561         } rec = {
8562                 .header = {
8563                         .type = PERF_RECORD_AUX,
8564                         .misc = 0,
8565                         .size = sizeof(rec),
8566                 },
8567                 .offset         = head,
8568                 .size           = size,
8569                 .flags          = flags,
8570         };
8571         int ret;
8572
8573         perf_event_header__init_id(&rec.header, &sample, event);
8574         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8575
8576         if (ret)
8577                 return;
8578
8579         perf_output_put(&handle, rec);
8580         perf_event__output_id_sample(event, &handle, &sample);
8581
8582         perf_output_end(&handle);
8583 }
8584
8585 /*
8586  * Lost/dropped samples logging
8587  */
8588 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8589 {
8590         struct perf_output_handle handle;
8591         struct perf_sample_data sample;
8592         int ret;
8593
8594         struct {
8595                 struct perf_event_header        header;
8596                 u64                             lost;
8597         } lost_samples_event = {
8598                 .header = {
8599                         .type = PERF_RECORD_LOST_SAMPLES,
8600                         .misc = 0,
8601                         .size = sizeof(lost_samples_event),
8602                 },
8603                 .lost           = lost,
8604         };
8605
8606         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8607
8608         ret = perf_output_begin(&handle, &sample, event,
8609                                 lost_samples_event.header.size);
8610         if (ret)
8611                 return;
8612
8613         perf_output_put(&handle, lost_samples_event);
8614         perf_event__output_id_sample(event, &handle, &sample);
8615         perf_output_end(&handle);
8616 }
8617
8618 /*
8619  * context_switch tracking
8620  */
8621
8622 struct perf_switch_event {
8623         struct task_struct      *task;
8624         struct task_struct      *next_prev;
8625
8626         struct {
8627                 struct perf_event_header        header;
8628                 u32                             next_prev_pid;
8629                 u32                             next_prev_tid;
8630         } event_id;
8631 };
8632
8633 static int perf_event_switch_match(struct perf_event *event)
8634 {
8635         return event->attr.context_switch;
8636 }
8637
8638 static void perf_event_switch_output(struct perf_event *event, void *data)
8639 {
8640         struct perf_switch_event *se = data;
8641         struct perf_output_handle handle;
8642         struct perf_sample_data sample;
8643         int ret;
8644
8645         if (!perf_event_switch_match(event))
8646                 return;
8647
8648         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8649         if (event->ctx->task) {
8650                 se->event_id.header.type = PERF_RECORD_SWITCH;
8651                 se->event_id.header.size = sizeof(se->event_id.header);
8652         } else {
8653                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8654                 se->event_id.header.size = sizeof(se->event_id);
8655                 se->event_id.next_prev_pid =
8656                                         perf_event_pid(event, se->next_prev);
8657                 se->event_id.next_prev_tid =
8658                                         perf_event_tid(event, se->next_prev);
8659         }
8660
8661         perf_event_header__init_id(&se->event_id.header, &sample, event);
8662
8663         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8664         if (ret)
8665                 return;
8666
8667         if (event->ctx->task)
8668                 perf_output_put(&handle, se->event_id.header);
8669         else
8670                 perf_output_put(&handle, se->event_id);
8671
8672         perf_event__output_id_sample(event, &handle, &sample);
8673
8674         perf_output_end(&handle);
8675 }
8676
8677 static void perf_event_switch(struct task_struct *task,
8678                               struct task_struct *next_prev, bool sched_in)
8679 {
8680         struct perf_switch_event switch_event;
8681
8682         /* N.B. caller checks nr_switch_events != 0 */
8683
8684         switch_event = (struct perf_switch_event){
8685                 .task           = task,
8686                 .next_prev      = next_prev,
8687                 .event_id       = {
8688                         .header = {
8689                                 /* .type */
8690                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8691                                 /* .size */
8692                         },
8693                         /* .next_prev_pid */
8694                         /* .next_prev_tid */
8695                 },
8696         };
8697
8698         if (!sched_in && task->state == TASK_RUNNING)
8699                 switch_event.event_id.header.misc |=
8700                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8701
8702         perf_iterate_sb(perf_event_switch_output,
8703                        &switch_event,
8704                        NULL);
8705 }
8706
8707 /*
8708  * IRQ throttle logging
8709  */
8710
8711 static void perf_log_throttle(struct perf_event *event, int enable)
8712 {
8713         struct perf_output_handle handle;
8714         struct perf_sample_data sample;
8715         int ret;
8716
8717         struct {
8718                 struct perf_event_header        header;
8719                 u64                             time;
8720                 u64                             id;
8721                 u64                             stream_id;
8722         } throttle_event = {
8723                 .header = {
8724                         .type = PERF_RECORD_THROTTLE,
8725                         .misc = 0,
8726                         .size = sizeof(throttle_event),
8727                 },
8728                 .time           = perf_event_clock(event),
8729                 .id             = primary_event_id(event),
8730                 .stream_id      = event->id,
8731         };
8732
8733         if (enable)
8734                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8735
8736         perf_event_header__init_id(&throttle_event.header, &sample, event);
8737
8738         ret = perf_output_begin(&handle, &sample, event,
8739                                 throttle_event.header.size);
8740         if (ret)
8741                 return;
8742
8743         perf_output_put(&handle, throttle_event);
8744         perf_event__output_id_sample(event, &handle, &sample);
8745         perf_output_end(&handle);
8746 }
8747
8748 /*
8749  * ksymbol register/unregister tracking
8750  */
8751
8752 struct perf_ksymbol_event {
8753         const char      *name;
8754         int             name_len;
8755         struct {
8756                 struct perf_event_header        header;
8757                 u64                             addr;
8758                 u32                             len;
8759                 u16                             ksym_type;
8760                 u16                             flags;
8761         } event_id;
8762 };
8763
8764 static int perf_event_ksymbol_match(struct perf_event *event)
8765 {
8766         return event->attr.ksymbol;
8767 }
8768
8769 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8770 {
8771         struct perf_ksymbol_event *ksymbol_event = data;
8772         struct perf_output_handle handle;
8773         struct perf_sample_data sample;
8774         int ret;
8775
8776         if (!perf_event_ksymbol_match(event))
8777                 return;
8778
8779         perf_event_header__init_id(&ksymbol_event->event_id.header,
8780                                    &sample, event);
8781         ret = perf_output_begin(&handle, &sample, event,
8782                                 ksymbol_event->event_id.header.size);
8783         if (ret)
8784                 return;
8785
8786         perf_output_put(&handle, ksymbol_event->event_id);
8787         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8788         perf_event__output_id_sample(event, &handle, &sample);
8789
8790         perf_output_end(&handle);
8791 }
8792
8793 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8794                         const char *sym)
8795 {
8796         struct perf_ksymbol_event ksymbol_event;
8797         char name[KSYM_NAME_LEN];
8798         u16 flags = 0;
8799         int name_len;
8800
8801         if (!atomic_read(&nr_ksymbol_events))
8802                 return;
8803
8804         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8805             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8806                 goto err;
8807
8808         strlcpy(name, sym, KSYM_NAME_LEN);
8809         name_len = strlen(name) + 1;
8810         while (!IS_ALIGNED(name_len, sizeof(u64)))
8811                 name[name_len++] = '\0';
8812         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8813
8814         if (unregister)
8815                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8816
8817         ksymbol_event = (struct perf_ksymbol_event){
8818                 .name = name,
8819                 .name_len = name_len,
8820                 .event_id = {
8821                         .header = {
8822                                 .type = PERF_RECORD_KSYMBOL,
8823                                 .size = sizeof(ksymbol_event.event_id) +
8824                                         name_len,
8825                         },
8826                         .addr = addr,
8827                         .len = len,
8828                         .ksym_type = ksym_type,
8829                         .flags = flags,
8830                 },
8831         };
8832
8833         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8834         return;
8835 err:
8836         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8837 }
8838
8839 /*
8840  * bpf program load/unload tracking
8841  */
8842
8843 struct perf_bpf_event {
8844         struct bpf_prog *prog;
8845         struct {
8846                 struct perf_event_header        header;
8847                 u16                             type;
8848                 u16                             flags;
8849                 u32                             id;
8850                 u8                              tag[BPF_TAG_SIZE];
8851         } event_id;
8852 };
8853
8854 static int perf_event_bpf_match(struct perf_event *event)
8855 {
8856         return event->attr.bpf_event;
8857 }
8858
8859 static void perf_event_bpf_output(struct perf_event *event, void *data)
8860 {
8861         struct perf_bpf_event *bpf_event = data;
8862         struct perf_output_handle handle;
8863         struct perf_sample_data sample;
8864         int ret;
8865
8866         if (!perf_event_bpf_match(event))
8867                 return;
8868
8869         perf_event_header__init_id(&bpf_event->event_id.header,
8870                                    &sample, event);
8871         ret = perf_output_begin(&handle, data, event,
8872                                 bpf_event->event_id.header.size);
8873         if (ret)
8874                 return;
8875
8876         perf_output_put(&handle, bpf_event->event_id);
8877         perf_event__output_id_sample(event, &handle, &sample);
8878
8879         perf_output_end(&handle);
8880 }
8881
8882 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8883                                          enum perf_bpf_event_type type)
8884 {
8885         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8886         int i;
8887
8888         if (prog->aux->func_cnt == 0) {
8889                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8890                                    (u64)(unsigned long)prog->bpf_func,
8891                                    prog->jited_len, unregister,
8892                                    prog->aux->ksym.name);
8893         } else {
8894                 for (i = 0; i < prog->aux->func_cnt; i++) {
8895                         struct bpf_prog *subprog = prog->aux->func[i];
8896
8897                         perf_event_ksymbol(
8898                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8899                                 (u64)(unsigned long)subprog->bpf_func,
8900                                 subprog->jited_len, unregister,
8901                                 prog->aux->ksym.name);
8902                 }
8903         }
8904 }
8905
8906 void perf_event_bpf_event(struct bpf_prog *prog,
8907                           enum perf_bpf_event_type type,
8908                           u16 flags)
8909 {
8910         struct perf_bpf_event bpf_event;
8911
8912         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8913             type >= PERF_BPF_EVENT_MAX)
8914                 return;
8915
8916         switch (type) {
8917         case PERF_BPF_EVENT_PROG_LOAD:
8918         case PERF_BPF_EVENT_PROG_UNLOAD:
8919                 if (atomic_read(&nr_ksymbol_events))
8920                         perf_event_bpf_emit_ksymbols(prog, type);
8921                 break;
8922         default:
8923                 break;
8924         }
8925
8926         if (!atomic_read(&nr_bpf_events))
8927                 return;
8928
8929         bpf_event = (struct perf_bpf_event){
8930                 .prog = prog,
8931                 .event_id = {
8932                         .header = {
8933                                 .type = PERF_RECORD_BPF_EVENT,
8934                                 .size = sizeof(bpf_event.event_id),
8935                         },
8936                         .type = type,
8937                         .flags = flags,
8938                         .id = prog->aux->id,
8939                 },
8940         };
8941
8942         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8943
8944         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8945         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8946 }
8947
8948 struct perf_text_poke_event {
8949         const void              *old_bytes;
8950         const void              *new_bytes;
8951         size_t                  pad;
8952         u16                     old_len;
8953         u16                     new_len;
8954
8955         struct {
8956                 struct perf_event_header        header;
8957
8958                 u64                             addr;
8959         } event_id;
8960 };
8961
8962 static int perf_event_text_poke_match(struct perf_event *event)
8963 {
8964         return event->attr.text_poke;
8965 }
8966
8967 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8968 {
8969         struct perf_text_poke_event *text_poke_event = data;
8970         struct perf_output_handle handle;
8971         struct perf_sample_data sample;
8972         u64 padding = 0;
8973         int ret;
8974
8975         if (!perf_event_text_poke_match(event))
8976                 return;
8977
8978         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8979
8980         ret = perf_output_begin(&handle, &sample, event,
8981                                 text_poke_event->event_id.header.size);
8982         if (ret)
8983                 return;
8984
8985         perf_output_put(&handle, text_poke_event->event_id);
8986         perf_output_put(&handle, text_poke_event->old_len);
8987         perf_output_put(&handle, text_poke_event->new_len);
8988
8989         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8990         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8991
8992         if (text_poke_event->pad)
8993                 __output_copy(&handle, &padding, text_poke_event->pad);
8994
8995         perf_event__output_id_sample(event, &handle, &sample);
8996
8997         perf_output_end(&handle);
8998 }
8999
9000 void perf_event_text_poke(const void *addr, const void *old_bytes,
9001                           size_t old_len, const void *new_bytes, size_t new_len)
9002 {
9003         struct perf_text_poke_event text_poke_event;
9004         size_t tot, pad;
9005
9006         if (!atomic_read(&nr_text_poke_events))
9007                 return;
9008
9009         tot  = sizeof(text_poke_event.old_len) + old_len;
9010         tot += sizeof(text_poke_event.new_len) + new_len;
9011         pad  = ALIGN(tot, sizeof(u64)) - tot;
9012
9013         text_poke_event = (struct perf_text_poke_event){
9014                 .old_bytes    = old_bytes,
9015                 .new_bytes    = new_bytes,
9016                 .pad          = pad,
9017                 .old_len      = old_len,
9018                 .new_len      = new_len,
9019                 .event_id  = {
9020                         .header = {
9021                                 .type = PERF_RECORD_TEXT_POKE,
9022                                 .misc = PERF_RECORD_MISC_KERNEL,
9023                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9024                         },
9025                         .addr = (unsigned long)addr,
9026                 },
9027         };
9028
9029         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9030 }
9031
9032 void perf_event_itrace_started(struct perf_event *event)
9033 {
9034         event->attach_state |= PERF_ATTACH_ITRACE;
9035 }
9036
9037 static void perf_log_itrace_start(struct perf_event *event)
9038 {
9039         struct perf_output_handle handle;
9040         struct perf_sample_data sample;
9041         struct perf_aux_event {
9042                 struct perf_event_header        header;
9043                 u32                             pid;
9044                 u32                             tid;
9045         } rec;
9046         int ret;
9047
9048         if (event->parent)
9049                 event = event->parent;
9050
9051         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9052             event->attach_state & PERF_ATTACH_ITRACE)
9053                 return;
9054
9055         rec.header.type = PERF_RECORD_ITRACE_START;
9056         rec.header.misc = 0;
9057         rec.header.size = sizeof(rec);
9058         rec.pid = perf_event_pid(event, current);
9059         rec.tid = perf_event_tid(event, current);
9060
9061         perf_event_header__init_id(&rec.header, &sample, event);
9062         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9063
9064         if (ret)
9065                 return;
9066
9067         perf_output_put(&handle, rec);
9068         perf_event__output_id_sample(event, &handle, &sample);
9069
9070         perf_output_end(&handle);
9071 }
9072
9073 static int
9074 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9075 {
9076         struct hw_perf_event *hwc = &event->hw;
9077         int ret = 0;
9078         u64 seq;
9079
9080         seq = __this_cpu_read(perf_throttled_seq);
9081         if (seq != hwc->interrupts_seq) {
9082                 hwc->interrupts_seq = seq;
9083                 hwc->interrupts = 1;
9084         } else {
9085                 hwc->interrupts++;
9086                 if (unlikely(throttle
9087                              && hwc->interrupts >= max_samples_per_tick)) {
9088                         __this_cpu_inc(perf_throttled_count);
9089                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9090                         hwc->interrupts = MAX_INTERRUPTS;
9091                         perf_log_throttle(event, 0);
9092                         ret = 1;
9093                 }
9094         }
9095
9096         if (event->attr.freq) {
9097                 u64 now = perf_clock();
9098                 s64 delta = now - hwc->freq_time_stamp;
9099
9100                 hwc->freq_time_stamp = now;
9101
9102                 if (delta > 0 && delta < 2*TICK_NSEC)
9103                         perf_adjust_period(event, delta, hwc->last_period, true);
9104         }
9105
9106         return ret;
9107 }
9108
9109 int perf_event_account_interrupt(struct perf_event *event)
9110 {
9111         return __perf_event_account_interrupt(event, 1);
9112 }
9113
9114 /*
9115  * Generic event overflow handling, sampling.
9116  */
9117
9118 static int __perf_event_overflow(struct perf_event *event,
9119                                    int throttle, struct perf_sample_data *data,
9120                                    struct pt_regs *regs)
9121 {
9122         int events = atomic_read(&event->event_limit);
9123         int ret = 0;
9124
9125         /*
9126          * Non-sampling counters might still use the PMI to fold short
9127          * hardware counters, ignore those.
9128          */
9129         if (unlikely(!is_sampling_event(event)))
9130                 return 0;
9131
9132         ret = __perf_event_account_interrupt(event, throttle);
9133
9134         /*
9135          * XXX event_limit might not quite work as expected on inherited
9136          * events
9137          */
9138
9139         event->pending_kill = POLL_IN;
9140         if (events && atomic_dec_and_test(&event->event_limit)) {
9141                 ret = 1;
9142                 event->pending_kill = POLL_HUP;
9143                 event->pending_addr = data->addr;
9144
9145                 perf_event_disable_inatomic(event);
9146         }
9147
9148         READ_ONCE(event->overflow_handler)(event, data, regs);
9149
9150         if (*perf_event_fasync(event) && event->pending_kill) {
9151                 event->pending_wakeup = 1;
9152                 irq_work_queue(&event->pending);
9153         }
9154
9155         return ret;
9156 }
9157
9158 int perf_event_overflow(struct perf_event *event,
9159                           struct perf_sample_data *data,
9160                           struct pt_regs *regs)
9161 {
9162         return __perf_event_overflow(event, 1, data, regs);
9163 }
9164
9165 /*
9166  * Generic software event infrastructure
9167  */
9168
9169 struct swevent_htable {
9170         struct swevent_hlist            *swevent_hlist;
9171         struct mutex                    hlist_mutex;
9172         int                             hlist_refcount;
9173
9174         /* Recursion avoidance in each contexts */
9175         int                             recursion[PERF_NR_CONTEXTS];
9176 };
9177
9178 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9179
9180 /*
9181  * We directly increment event->count and keep a second value in
9182  * event->hw.period_left to count intervals. This period event
9183  * is kept in the range [-sample_period, 0] so that we can use the
9184  * sign as trigger.
9185  */
9186
9187 u64 perf_swevent_set_period(struct perf_event *event)
9188 {
9189         struct hw_perf_event *hwc = &event->hw;
9190         u64 period = hwc->last_period;
9191         u64 nr, offset;
9192         s64 old, val;
9193
9194         hwc->last_period = hwc->sample_period;
9195
9196 again:
9197         old = val = local64_read(&hwc->period_left);
9198         if (val < 0)
9199                 return 0;
9200
9201         nr = div64_u64(period + val, period);
9202         offset = nr * period;
9203         val -= offset;
9204         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9205                 goto again;
9206
9207         return nr;
9208 }
9209
9210 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9211                                     struct perf_sample_data *data,
9212                                     struct pt_regs *regs)
9213 {
9214         struct hw_perf_event *hwc = &event->hw;
9215         int throttle = 0;
9216
9217         if (!overflow)
9218                 overflow = perf_swevent_set_period(event);
9219
9220         if (hwc->interrupts == MAX_INTERRUPTS)
9221                 return;
9222
9223         for (; overflow; overflow--) {
9224                 if (__perf_event_overflow(event, throttle,
9225                                             data, regs)) {
9226                         /*
9227                          * We inhibit the overflow from happening when
9228                          * hwc->interrupts == MAX_INTERRUPTS.
9229                          */
9230                         break;
9231                 }
9232                 throttle = 1;
9233         }
9234 }
9235
9236 static void perf_swevent_event(struct perf_event *event, u64 nr,
9237                                struct perf_sample_data *data,
9238                                struct pt_regs *regs)
9239 {
9240         struct hw_perf_event *hwc = &event->hw;
9241
9242         local64_add(nr, &event->count);
9243
9244         if (!regs)
9245                 return;
9246
9247         if (!is_sampling_event(event))
9248                 return;
9249
9250         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9251                 data->period = nr;
9252                 return perf_swevent_overflow(event, 1, data, regs);
9253         } else
9254                 data->period = event->hw.last_period;
9255
9256         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9257                 return perf_swevent_overflow(event, 1, data, regs);
9258
9259         if (local64_add_negative(nr, &hwc->period_left))
9260                 return;
9261
9262         perf_swevent_overflow(event, 0, data, regs);
9263 }
9264
9265 static int perf_exclude_event(struct perf_event *event,
9266                               struct pt_regs *regs)
9267 {
9268         if (event->hw.state & PERF_HES_STOPPED)
9269                 return 1;
9270
9271         if (regs) {
9272                 if (event->attr.exclude_user && user_mode(regs))
9273                         return 1;
9274
9275                 if (event->attr.exclude_kernel && !user_mode(regs))
9276                         return 1;
9277         }
9278
9279         return 0;
9280 }
9281
9282 static int perf_swevent_match(struct perf_event *event,
9283                                 enum perf_type_id type,
9284                                 u32 event_id,
9285                                 struct perf_sample_data *data,
9286                                 struct pt_regs *regs)
9287 {
9288         if (event->attr.type != type)
9289                 return 0;
9290
9291         if (event->attr.config != event_id)
9292                 return 0;
9293
9294         if (perf_exclude_event(event, regs))
9295                 return 0;
9296
9297         return 1;
9298 }
9299
9300 static inline u64 swevent_hash(u64 type, u32 event_id)
9301 {
9302         u64 val = event_id | (type << 32);
9303
9304         return hash_64(val, SWEVENT_HLIST_BITS);
9305 }
9306
9307 static inline struct hlist_head *
9308 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9309 {
9310         u64 hash = swevent_hash(type, event_id);
9311
9312         return &hlist->heads[hash];
9313 }
9314
9315 /* For the read side: events when they trigger */
9316 static inline struct hlist_head *
9317 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9318 {
9319         struct swevent_hlist *hlist;
9320
9321         hlist = rcu_dereference(swhash->swevent_hlist);
9322         if (!hlist)
9323                 return NULL;
9324
9325         return __find_swevent_head(hlist, type, event_id);
9326 }
9327
9328 /* For the event head insertion and removal in the hlist */
9329 static inline struct hlist_head *
9330 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9331 {
9332         struct swevent_hlist *hlist;
9333         u32 event_id = event->attr.config;
9334         u64 type = event->attr.type;
9335
9336         /*
9337          * Event scheduling is always serialized against hlist allocation
9338          * and release. Which makes the protected version suitable here.
9339          * The context lock guarantees that.
9340          */
9341         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9342                                           lockdep_is_held(&event->ctx->lock));
9343         if (!hlist)
9344                 return NULL;
9345
9346         return __find_swevent_head(hlist, type, event_id);
9347 }
9348
9349 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9350                                     u64 nr,
9351                                     struct perf_sample_data *data,
9352                                     struct pt_regs *regs)
9353 {
9354         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9355         struct perf_event *event;
9356         struct hlist_head *head;
9357
9358         rcu_read_lock();
9359         head = find_swevent_head_rcu(swhash, type, event_id);
9360         if (!head)
9361                 goto end;
9362
9363         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9364                 if (perf_swevent_match(event, type, event_id, data, regs))
9365                         perf_swevent_event(event, nr, data, regs);
9366         }
9367 end:
9368         rcu_read_unlock();
9369 }
9370
9371 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9372
9373 int perf_swevent_get_recursion_context(void)
9374 {
9375         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9376
9377         return get_recursion_context(swhash->recursion);
9378 }
9379 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9380
9381 void perf_swevent_put_recursion_context(int rctx)
9382 {
9383         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9384
9385         put_recursion_context(swhash->recursion, rctx);
9386 }
9387
9388 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9389 {
9390         struct perf_sample_data data;
9391
9392         if (WARN_ON_ONCE(!regs))
9393                 return;
9394
9395         perf_sample_data_init(&data, addr, 0);
9396         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9397 }
9398
9399 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9400 {
9401         int rctx;
9402
9403         preempt_disable_notrace();
9404         rctx = perf_swevent_get_recursion_context();
9405         if (unlikely(rctx < 0))
9406                 goto fail;
9407
9408         ___perf_sw_event(event_id, nr, regs, addr);
9409
9410         perf_swevent_put_recursion_context(rctx);
9411 fail:
9412         preempt_enable_notrace();
9413 }
9414
9415 static void perf_swevent_read(struct perf_event *event)
9416 {
9417 }
9418
9419 static int perf_swevent_add(struct perf_event *event, int flags)
9420 {
9421         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9422         struct hw_perf_event *hwc = &event->hw;
9423         struct hlist_head *head;
9424
9425         if (is_sampling_event(event)) {
9426                 hwc->last_period = hwc->sample_period;
9427                 perf_swevent_set_period(event);
9428         }
9429
9430         hwc->state = !(flags & PERF_EF_START);
9431
9432         head = find_swevent_head(swhash, event);
9433         if (WARN_ON_ONCE(!head))
9434                 return -EINVAL;
9435
9436         hlist_add_head_rcu(&event->hlist_entry, head);
9437         perf_event_update_userpage(event);
9438
9439         return 0;
9440 }
9441
9442 static void perf_swevent_del(struct perf_event *event, int flags)
9443 {
9444         hlist_del_rcu(&event->hlist_entry);
9445 }
9446
9447 static void perf_swevent_start(struct perf_event *event, int flags)
9448 {
9449         event->hw.state = 0;
9450 }
9451
9452 static void perf_swevent_stop(struct perf_event *event, int flags)
9453 {
9454         event->hw.state = PERF_HES_STOPPED;
9455 }
9456
9457 /* Deref the hlist from the update side */
9458 static inline struct swevent_hlist *
9459 swevent_hlist_deref(struct swevent_htable *swhash)
9460 {
9461         return rcu_dereference_protected(swhash->swevent_hlist,
9462                                          lockdep_is_held(&swhash->hlist_mutex));
9463 }
9464
9465 static void swevent_hlist_release(struct swevent_htable *swhash)
9466 {
9467         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9468
9469         if (!hlist)
9470                 return;
9471
9472         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9473         kfree_rcu(hlist, rcu_head);
9474 }
9475
9476 static void swevent_hlist_put_cpu(int cpu)
9477 {
9478         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9479
9480         mutex_lock(&swhash->hlist_mutex);
9481
9482         if (!--swhash->hlist_refcount)
9483                 swevent_hlist_release(swhash);
9484
9485         mutex_unlock(&swhash->hlist_mutex);
9486 }
9487
9488 static void swevent_hlist_put(void)
9489 {
9490         int cpu;
9491
9492         for_each_possible_cpu(cpu)
9493                 swevent_hlist_put_cpu(cpu);
9494 }
9495
9496 static int swevent_hlist_get_cpu(int cpu)
9497 {
9498         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9499         int err = 0;
9500
9501         mutex_lock(&swhash->hlist_mutex);
9502         if (!swevent_hlist_deref(swhash) &&
9503             cpumask_test_cpu(cpu, perf_online_mask)) {
9504                 struct swevent_hlist *hlist;
9505
9506                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9507                 if (!hlist) {
9508                         err = -ENOMEM;
9509                         goto exit;
9510                 }
9511                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9512         }
9513         swhash->hlist_refcount++;
9514 exit:
9515         mutex_unlock(&swhash->hlist_mutex);
9516
9517         return err;
9518 }
9519
9520 static int swevent_hlist_get(void)
9521 {
9522         int err, cpu, failed_cpu;
9523
9524         mutex_lock(&pmus_lock);
9525         for_each_possible_cpu(cpu) {
9526                 err = swevent_hlist_get_cpu(cpu);
9527                 if (err) {
9528                         failed_cpu = cpu;
9529                         goto fail;
9530                 }
9531         }
9532         mutex_unlock(&pmus_lock);
9533         return 0;
9534 fail:
9535         for_each_possible_cpu(cpu) {
9536                 if (cpu == failed_cpu)
9537                         break;
9538                 swevent_hlist_put_cpu(cpu);
9539         }
9540         mutex_unlock(&pmus_lock);
9541         return err;
9542 }
9543
9544 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9545
9546 static void sw_perf_event_destroy(struct perf_event *event)
9547 {
9548         u64 event_id = event->attr.config;
9549
9550         WARN_ON(event->parent);
9551
9552         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9553         swevent_hlist_put();
9554 }
9555
9556 static int perf_swevent_init(struct perf_event *event)
9557 {
9558         u64 event_id = event->attr.config;
9559
9560         if (event->attr.type != PERF_TYPE_SOFTWARE)
9561                 return -ENOENT;
9562
9563         /*
9564          * no branch sampling for software events
9565          */
9566         if (has_branch_stack(event))
9567                 return -EOPNOTSUPP;
9568
9569         switch (event_id) {
9570         case PERF_COUNT_SW_CPU_CLOCK:
9571         case PERF_COUNT_SW_TASK_CLOCK:
9572                 return -ENOENT;
9573
9574         default:
9575                 break;
9576         }
9577
9578         if (event_id >= PERF_COUNT_SW_MAX)
9579                 return -ENOENT;
9580
9581         if (!event->parent) {
9582                 int err;
9583
9584                 err = swevent_hlist_get();
9585                 if (err)
9586                         return err;
9587
9588                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9589                 event->destroy = sw_perf_event_destroy;
9590         }
9591
9592         return 0;
9593 }
9594
9595 static struct pmu perf_swevent = {
9596         .task_ctx_nr    = perf_sw_context,
9597
9598         .capabilities   = PERF_PMU_CAP_NO_NMI,
9599
9600         .event_init     = perf_swevent_init,
9601         .add            = perf_swevent_add,
9602         .del            = perf_swevent_del,
9603         .start          = perf_swevent_start,
9604         .stop           = perf_swevent_stop,
9605         .read           = perf_swevent_read,
9606 };
9607
9608 #ifdef CONFIG_EVENT_TRACING
9609
9610 static int perf_tp_filter_match(struct perf_event *event,
9611                                 struct perf_sample_data *data)
9612 {
9613         void *record = data->raw->frag.data;
9614
9615         /* only top level events have filters set */
9616         if (event->parent)
9617                 event = event->parent;
9618
9619         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9620                 return 1;
9621         return 0;
9622 }
9623
9624 static int perf_tp_event_match(struct perf_event *event,
9625                                 struct perf_sample_data *data,
9626                                 struct pt_regs *regs)
9627 {
9628         if (event->hw.state & PERF_HES_STOPPED)
9629                 return 0;
9630         /*
9631          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9632          */
9633         if (event->attr.exclude_kernel && !user_mode(regs))
9634                 return 0;
9635
9636         if (!perf_tp_filter_match(event, data))
9637                 return 0;
9638
9639         return 1;
9640 }
9641
9642 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9643                                struct trace_event_call *call, u64 count,
9644                                struct pt_regs *regs, struct hlist_head *head,
9645                                struct task_struct *task)
9646 {
9647         if (bpf_prog_array_valid(call)) {
9648                 *(struct pt_regs **)raw_data = regs;
9649                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9650                         perf_swevent_put_recursion_context(rctx);
9651                         return;
9652                 }
9653         }
9654         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9655                       rctx, task);
9656 }
9657 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9658
9659 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9660                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9661                    struct task_struct *task)
9662 {
9663         struct perf_sample_data data;
9664         struct perf_event *event;
9665
9666         struct perf_raw_record raw = {
9667                 .frag = {
9668                         .size = entry_size,
9669                         .data = record,
9670                 },
9671         };
9672
9673         perf_sample_data_init(&data, 0, 0);
9674         data.raw = &raw;
9675
9676         perf_trace_buf_update(record, event_type);
9677
9678         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9679                 if (perf_tp_event_match(event, &data, regs))
9680                         perf_swevent_event(event, count, &data, regs);
9681         }
9682
9683         /*
9684          * If we got specified a target task, also iterate its context and
9685          * deliver this event there too.
9686          */
9687         if (task && task != current) {
9688                 struct perf_event_context *ctx;
9689                 struct trace_entry *entry = record;
9690
9691                 rcu_read_lock();
9692                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9693                 if (!ctx)
9694                         goto unlock;
9695
9696                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9697                         if (event->cpu != smp_processor_id())
9698                                 continue;
9699                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9700                                 continue;
9701                         if (event->attr.config != entry->type)
9702                                 continue;
9703                         if (perf_tp_event_match(event, &data, regs))
9704                                 perf_swevent_event(event, count, &data, regs);
9705                 }
9706 unlock:
9707                 rcu_read_unlock();
9708         }
9709
9710         perf_swevent_put_recursion_context(rctx);
9711 }
9712 EXPORT_SYMBOL_GPL(perf_tp_event);
9713
9714 static void tp_perf_event_destroy(struct perf_event *event)
9715 {
9716         perf_trace_destroy(event);
9717 }
9718
9719 static int perf_tp_event_init(struct perf_event *event)
9720 {
9721         int err;
9722
9723         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9724                 return -ENOENT;
9725
9726         /*
9727          * no branch sampling for tracepoint events
9728          */
9729         if (has_branch_stack(event))
9730                 return -EOPNOTSUPP;
9731
9732         err = perf_trace_init(event);
9733         if (err)
9734                 return err;
9735
9736         event->destroy = tp_perf_event_destroy;
9737
9738         return 0;
9739 }
9740
9741 static struct pmu perf_tracepoint = {
9742         .task_ctx_nr    = perf_sw_context,
9743
9744         .event_init     = perf_tp_event_init,
9745         .add            = perf_trace_add,
9746         .del            = perf_trace_del,
9747         .start          = perf_swevent_start,
9748         .stop           = perf_swevent_stop,
9749         .read           = perf_swevent_read,
9750 };
9751
9752 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9753 /*
9754  * Flags in config, used by dynamic PMU kprobe and uprobe
9755  * The flags should match following PMU_FORMAT_ATTR().
9756  *
9757  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9758  *                               if not set, create kprobe/uprobe
9759  *
9760  * The following values specify a reference counter (or semaphore in the
9761  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9762  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9763  *
9764  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9765  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9766  */
9767 enum perf_probe_config {
9768         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9769         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9770         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9771 };
9772
9773 PMU_FORMAT_ATTR(retprobe, "config:0");
9774 #endif
9775
9776 #ifdef CONFIG_KPROBE_EVENTS
9777 static struct attribute *kprobe_attrs[] = {
9778         &format_attr_retprobe.attr,
9779         NULL,
9780 };
9781
9782 static struct attribute_group kprobe_format_group = {
9783         .name = "format",
9784         .attrs = kprobe_attrs,
9785 };
9786
9787 static const struct attribute_group *kprobe_attr_groups[] = {
9788         &kprobe_format_group,
9789         NULL,
9790 };
9791
9792 static int perf_kprobe_event_init(struct perf_event *event);
9793 static struct pmu perf_kprobe = {
9794         .task_ctx_nr    = perf_sw_context,
9795         .event_init     = perf_kprobe_event_init,
9796         .add            = perf_trace_add,
9797         .del            = perf_trace_del,
9798         .start          = perf_swevent_start,
9799         .stop           = perf_swevent_stop,
9800         .read           = perf_swevent_read,
9801         .attr_groups    = kprobe_attr_groups,
9802 };
9803
9804 static int perf_kprobe_event_init(struct perf_event *event)
9805 {
9806         int err;
9807         bool is_retprobe;
9808
9809         if (event->attr.type != perf_kprobe.type)
9810                 return -ENOENT;
9811
9812         if (!perfmon_capable())
9813                 return -EACCES;
9814
9815         /*
9816          * no branch sampling for probe events
9817          */
9818         if (has_branch_stack(event))
9819                 return -EOPNOTSUPP;
9820
9821         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9822         err = perf_kprobe_init(event, is_retprobe);
9823         if (err)
9824                 return err;
9825
9826         event->destroy = perf_kprobe_destroy;
9827
9828         return 0;
9829 }
9830 #endif /* CONFIG_KPROBE_EVENTS */
9831
9832 #ifdef CONFIG_UPROBE_EVENTS
9833 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9834
9835 static struct attribute *uprobe_attrs[] = {
9836         &format_attr_retprobe.attr,
9837         &format_attr_ref_ctr_offset.attr,
9838         NULL,
9839 };
9840
9841 static struct attribute_group uprobe_format_group = {
9842         .name = "format",
9843         .attrs = uprobe_attrs,
9844 };
9845
9846 static const struct attribute_group *uprobe_attr_groups[] = {
9847         &uprobe_format_group,
9848         NULL,
9849 };
9850
9851 static int perf_uprobe_event_init(struct perf_event *event);
9852 static struct pmu perf_uprobe = {
9853         .task_ctx_nr    = perf_sw_context,
9854         .event_init     = perf_uprobe_event_init,
9855         .add            = perf_trace_add,
9856         .del            = perf_trace_del,
9857         .start          = perf_swevent_start,
9858         .stop           = perf_swevent_stop,
9859         .read           = perf_swevent_read,
9860         .attr_groups    = uprobe_attr_groups,
9861 };
9862
9863 static int perf_uprobe_event_init(struct perf_event *event)
9864 {
9865         int err;
9866         unsigned long ref_ctr_offset;
9867         bool is_retprobe;
9868
9869         if (event->attr.type != perf_uprobe.type)
9870                 return -ENOENT;
9871
9872         if (!perfmon_capable())
9873                 return -EACCES;
9874
9875         /*
9876          * no branch sampling for probe events
9877          */
9878         if (has_branch_stack(event))
9879                 return -EOPNOTSUPP;
9880
9881         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9882         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9883         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9884         if (err)
9885                 return err;
9886
9887         event->destroy = perf_uprobe_destroy;
9888
9889         return 0;
9890 }
9891 #endif /* CONFIG_UPROBE_EVENTS */
9892
9893 static inline void perf_tp_register(void)
9894 {
9895         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9896 #ifdef CONFIG_KPROBE_EVENTS
9897         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9898 #endif
9899 #ifdef CONFIG_UPROBE_EVENTS
9900         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9901 #endif
9902 }
9903
9904 static void perf_event_free_filter(struct perf_event *event)
9905 {
9906         ftrace_profile_free_filter(event);
9907 }
9908
9909 #ifdef CONFIG_BPF_SYSCALL
9910 static void bpf_overflow_handler(struct perf_event *event,
9911                                  struct perf_sample_data *data,
9912                                  struct pt_regs *regs)
9913 {
9914         struct bpf_perf_event_data_kern ctx = {
9915                 .data = data,
9916                 .event = event,
9917         };
9918         int ret = 0;
9919
9920         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9921         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9922                 goto out;
9923         rcu_read_lock();
9924         ret = BPF_PROG_RUN(event->prog, &ctx);
9925         rcu_read_unlock();
9926 out:
9927         __this_cpu_dec(bpf_prog_active);
9928         if (!ret)
9929                 return;
9930
9931         event->orig_overflow_handler(event, data, regs);
9932 }
9933
9934 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9935 {
9936         struct bpf_prog *prog;
9937
9938         if (event->overflow_handler_context)
9939                 /* hw breakpoint or kernel counter */
9940                 return -EINVAL;
9941
9942         if (event->prog)
9943                 return -EEXIST;
9944
9945         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9946         if (IS_ERR(prog))
9947                 return PTR_ERR(prog);
9948
9949         if (event->attr.precise_ip &&
9950             prog->call_get_stack &&
9951             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9952              event->attr.exclude_callchain_kernel ||
9953              event->attr.exclude_callchain_user)) {
9954                 /*
9955                  * On perf_event with precise_ip, calling bpf_get_stack()
9956                  * may trigger unwinder warnings and occasional crashes.
9957                  * bpf_get_[stack|stackid] works around this issue by using
9958                  * callchain attached to perf_sample_data. If the
9959                  * perf_event does not full (kernel and user) callchain
9960                  * attached to perf_sample_data, do not allow attaching BPF
9961                  * program that calls bpf_get_[stack|stackid].
9962                  */
9963                 bpf_prog_put(prog);
9964                 return -EPROTO;
9965         }
9966
9967         event->prog = prog;
9968         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9969         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9970         return 0;
9971 }
9972
9973 static void perf_event_free_bpf_handler(struct perf_event *event)
9974 {
9975         struct bpf_prog *prog = event->prog;
9976
9977         if (!prog)
9978                 return;
9979
9980         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9981         event->prog = NULL;
9982         bpf_prog_put(prog);
9983 }
9984 #else
9985 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9986 {
9987         return -EOPNOTSUPP;
9988 }
9989 static void perf_event_free_bpf_handler(struct perf_event *event)
9990 {
9991 }
9992 #endif
9993
9994 /*
9995  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9996  * with perf_event_open()
9997  */
9998 static inline bool perf_event_is_tracing(struct perf_event *event)
9999 {
10000         if (event->pmu == &perf_tracepoint)
10001                 return true;
10002 #ifdef CONFIG_KPROBE_EVENTS
10003         if (event->pmu == &perf_kprobe)
10004                 return true;
10005 #endif
10006 #ifdef CONFIG_UPROBE_EVENTS
10007         if (event->pmu == &perf_uprobe)
10008                 return true;
10009 #endif
10010         return false;
10011 }
10012
10013 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10014 {
10015         bool is_kprobe, is_tracepoint, is_syscall_tp;
10016         struct bpf_prog *prog;
10017         int ret;
10018
10019         if (!perf_event_is_tracing(event))
10020                 return perf_event_set_bpf_handler(event, prog_fd);
10021
10022         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10023         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10024         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10025         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10026                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10027                 return -EINVAL;
10028
10029         prog = bpf_prog_get(prog_fd);
10030         if (IS_ERR(prog))
10031                 return PTR_ERR(prog);
10032
10033         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10034             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10035             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10036                 /* valid fd, but invalid bpf program type */
10037                 bpf_prog_put(prog);
10038                 return -EINVAL;
10039         }
10040
10041         /* Kprobe override only works for kprobes, not uprobes. */
10042         if (prog->kprobe_override &&
10043             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10044                 bpf_prog_put(prog);
10045                 return -EINVAL;
10046         }
10047
10048         if (is_tracepoint || is_syscall_tp) {
10049                 int off = trace_event_get_offsets(event->tp_event);
10050
10051                 if (prog->aux->max_ctx_offset > off) {
10052                         bpf_prog_put(prog);
10053                         return -EACCES;
10054                 }
10055         }
10056
10057         ret = perf_event_attach_bpf_prog(event, prog);
10058         if (ret)
10059                 bpf_prog_put(prog);
10060         return ret;
10061 }
10062
10063 static void perf_event_free_bpf_prog(struct perf_event *event)
10064 {
10065         if (!perf_event_is_tracing(event)) {
10066                 perf_event_free_bpf_handler(event);
10067                 return;
10068         }
10069         perf_event_detach_bpf_prog(event);
10070 }
10071
10072 #else
10073
10074 static inline void perf_tp_register(void)
10075 {
10076 }
10077
10078 static void perf_event_free_filter(struct perf_event *event)
10079 {
10080 }
10081
10082 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10083 {
10084         return -ENOENT;
10085 }
10086
10087 static void perf_event_free_bpf_prog(struct perf_event *event)
10088 {
10089 }
10090 #endif /* CONFIG_EVENT_TRACING */
10091
10092 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10093 void perf_bp_event(struct perf_event *bp, void *data)
10094 {
10095         struct perf_sample_data sample;
10096         struct pt_regs *regs = data;
10097
10098         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10099
10100         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10101                 perf_swevent_event(bp, 1, &sample, regs);
10102 }
10103 #endif
10104
10105 /*
10106  * Allocate a new address filter
10107  */
10108 static struct perf_addr_filter *
10109 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10110 {
10111         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10112         struct perf_addr_filter *filter;
10113
10114         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10115         if (!filter)
10116                 return NULL;
10117
10118         INIT_LIST_HEAD(&filter->entry);
10119         list_add_tail(&filter->entry, filters);
10120
10121         return filter;
10122 }
10123
10124 static void free_filters_list(struct list_head *filters)
10125 {
10126         struct perf_addr_filter *filter, *iter;
10127
10128         list_for_each_entry_safe(filter, iter, filters, entry) {
10129                 path_put(&filter->path);
10130                 list_del(&filter->entry);
10131                 kfree(filter);
10132         }
10133 }
10134
10135 /*
10136  * Free existing address filters and optionally install new ones
10137  */
10138 static void perf_addr_filters_splice(struct perf_event *event,
10139                                      struct list_head *head)
10140 {
10141         unsigned long flags;
10142         LIST_HEAD(list);
10143
10144         if (!has_addr_filter(event))
10145                 return;
10146
10147         /* don't bother with children, they don't have their own filters */
10148         if (event->parent)
10149                 return;
10150
10151         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10152
10153         list_splice_init(&event->addr_filters.list, &list);
10154         if (head)
10155                 list_splice(head, &event->addr_filters.list);
10156
10157         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10158
10159         free_filters_list(&list);
10160 }
10161
10162 /*
10163  * Scan through mm's vmas and see if one of them matches the
10164  * @filter; if so, adjust filter's address range.
10165  * Called with mm::mmap_lock down for reading.
10166  */
10167 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10168                                    struct mm_struct *mm,
10169                                    struct perf_addr_filter_range *fr)
10170 {
10171         struct vm_area_struct *vma;
10172
10173         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10174                 if (!vma->vm_file)
10175                         continue;
10176
10177                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10178                         return;
10179         }
10180 }
10181
10182 /*
10183  * Update event's address range filters based on the
10184  * task's existing mappings, if any.
10185  */
10186 static void perf_event_addr_filters_apply(struct perf_event *event)
10187 {
10188         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10189         struct task_struct *task = READ_ONCE(event->ctx->task);
10190         struct perf_addr_filter *filter;
10191         struct mm_struct *mm = NULL;
10192         unsigned int count = 0;
10193         unsigned long flags;
10194
10195         /*
10196          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10197          * will stop on the parent's child_mutex that our caller is also holding
10198          */
10199         if (task == TASK_TOMBSTONE)
10200                 return;
10201
10202         if (ifh->nr_file_filters) {
10203                 mm = get_task_mm(event->ctx->task);
10204                 if (!mm)
10205                         goto restart;
10206
10207                 mmap_read_lock(mm);
10208         }
10209
10210         raw_spin_lock_irqsave(&ifh->lock, flags);
10211         list_for_each_entry(filter, &ifh->list, entry) {
10212                 if (filter->path.dentry) {
10213                         /*
10214                          * Adjust base offset if the filter is associated to a
10215                          * binary that needs to be mapped:
10216                          */
10217                         event->addr_filter_ranges[count].start = 0;
10218                         event->addr_filter_ranges[count].size = 0;
10219
10220                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10221                 } else {
10222                         event->addr_filter_ranges[count].start = filter->offset;
10223                         event->addr_filter_ranges[count].size  = filter->size;
10224                 }
10225
10226                 count++;
10227         }
10228
10229         event->addr_filters_gen++;
10230         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10231
10232         if (ifh->nr_file_filters) {
10233                 mmap_read_unlock(mm);
10234
10235                 mmput(mm);
10236         }
10237
10238 restart:
10239         perf_event_stop(event, 1);
10240 }
10241
10242 /*
10243  * Address range filtering: limiting the data to certain
10244  * instruction address ranges. Filters are ioctl()ed to us from
10245  * userspace as ascii strings.
10246  *
10247  * Filter string format:
10248  *
10249  * ACTION RANGE_SPEC
10250  * where ACTION is one of the
10251  *  * "filter": limit the trace to this region
10252  *  * "start": start tracing from this address
10253  *  * "stop": stop tracing at this address/region;
10254  * RANGE_SPEC is
10255  *  * for kernel addresses: <start address>[/<size>]
10256  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10257  *
10258  * if <size> is not specified or is zero, the range is treated as a single
10259  * address; not valid for ACTION=="filter".
10260  */
10261 enum {
10262         IF_ACT_NONE = -1,
10263         IF_ACT_FILTER,
10264         IF_ACT_START,
10265         IF_ACT_STOP,
10266         IF_SRC_FILE,
10267         IF_SRC_KERNEL,
10268         IF_SRC_FILEADDR,
10269         IF_SRC_KERNELADDR,
10270 };
10271
10272 enum {
10273         IF_STATE_ACTION = 0,
10274         IF_STATE_SOURCE,
10275         IF_STATE_END,
10276 };
10277
10278 static const match_table_t if_tokens = {
10279         { IF_ACT_FILTER,        "filter" },
10280         { IF_ACT_START,         "start" },
10281         { IF_ACT_STOP,          "stop" },
10282         { IF_SRC_FILE,          "%u/%u@%s" },
10283         { IF_SRC_KERNEL,        "%u/%u" },
10284         { IF_SRC_FILEADDR,      "%u@%s" },
10285         { IF_SRC_KERNELADDR,    "%u" },
10286         { IF_ACT_NONE,          NULL },
10287 };
10288
10289 /*
10290  * Address filter string parser
10291  */
10292 static int
10293 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10294                              struct list_head *filters)
10295 {
10296         struct perf_addr_filter *filter = NULL;
10297         char *start, *orig, *filename = NULL;
10298         substring_t args[MAX_OPT_ARGS];
10299         int state = IF_STATE_ACTION, token;
10300         unsigned int kernel = 0;
10301         int ret = -EINVAL;
10302
10303         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10304         if (!fstr)
10305                 return -ENOMEM;
10306
10307         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10308                 static const enum perf_addr_filter_action_t actions[] = {
10309                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10310                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10311                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10312                 };
10313                 ret = -EINVAL;
10314
10315                 if (!*start)
10316                         continue;
10317
10318                 /* filter definition begins */
10319                 if (state == IF_STATE_ACTION) {
10320                         filter = perf_addr_filter_new(event, filters);
10321                         if (!filter)
10322                                 goto fail;
10323                 }
10324
10325                 token = match_token(start, if_tokens, args);
10326                 switch (token) {
10327                 case IF_ACT_FILTER:
10328                 case IF_ACT_START:
10329                 case IF_ACT_STOP:
10330                         if (state != IF_STATE_ACTION)
10331                                 goto fail;
10332
10333                         filter->action = actions[token];
10334                         state = IF_STATE_SOURCE;
10335                         break;
10336
10337                 case IF_SRC_KERNELADDR:
10338                 case IF_SRC_KERNEL:
10339                         kernel = 1;
10340                         fallthrough;
10341
10342                 case IF_SRC_FILEADDR:
10343                 case IF_SRC_FILE:
10344                         if (state != IF_STATE_SOURCE)
10345                                 goto fail;
10346
10347                         *args[0].to = 0;
10348                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10349                         if (ret)
10350                                 goto fail;
10351
10352                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10353                                 *args[1].to = 0;
10354                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10355                                 if (ret)
10356                                         goto fail;
10357                         }
10358
10359                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10360                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10361
10362                                 kfree(filename);
10363                                 filename = match_strdup(&args[fpos]);
10364                                 if (!filename) {
10365                                         ret = -ENOMEM;
10366                                         goto fail;
10367                                 }
10368                         }
10369
10370                         state = IF_STATE_END;
10371                         break;
10372
10373                 default:
10374                         goto fail;
10375                 }
10376
10377                 /*
10378                  * Filter definition is fully parsed, validate and install it.
10379                  * Make sure that it doesn't contradict itself or the event's
10380                  * attribute.
10381                  */
10382                 if (state == IF_STATE_END) {
10383                         ret = -EINVAL;
10384                         if (kernel && event->attr.exclude_kernel)
10385                                 goto fail;
10386
10387                         /*
10388                          * ACTION "filter" must have a non-zero length region
10389                          * specified.
10390                          */
10391                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10392                             !filter->size)
10393                                 goto fail;
10394
10395                         if (!kernel) {
10396                                 if (!filename)
10397                                         goto fail;
10398
10399                                 /*
10400                                  * For now, we only support file-based filters
10401                                  * in per-task events; doing so for CPU-wide
10402                                  * events requires additional context switching
10403                                  * trickery, since same object code will be
10404                                  * mapped at different virtual addresses in
10405                                  * different processes.
10406                                  */
10407                                 ret = -EOPNOTSUPP;
10408                                 if (!event->ctx->task)
10409                                         goto fail;
10410
10411                                 /* look up the path and grab its inode */
10412                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10413                                                 &filter->path);
10414                                 if (ret)
10415                                         goto fail;
10416
10417                                 ret = -EINVAL;
10418                                 if (!filter->path.dentry ||
10419                                     !S_ISREG(d_inode(filter->path.dentry)
10420                                              ->i_mode))
10421                                         goto fail;
10422
10423                                 event->addr_filters.nr_file_filters++;
10424                         }
10425
10426                         /* ready to consume more filters */
10427                         state = IF_STATE_ACTION;
10428                         filter = NULL;
10429                 }
10430         }
10431
10432         if (state != IF_STATE_ACTION)
10433                 goto fail;
10434
10435         kfree(filename);
10436         kfree(orig);
10437
10438         return 0;
10439
10440 fail:
10441         kfree(filename);
10442         free_filters_list(filters);
10443         kfree(orig);
10444
10445         return ret;
10446 }
10447
10448 static int
10449 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10450 {
10451         LIST_HEAD(filters);
10452         int ret;
10453
10454         /*
10455          * Since this is called in perf_ioctl() path, we're already holding
10456          * ctx::mutex.
10457          */
10458         lockdep_assert_held(&event->ctx->mutex);
10459
10460         if (WARN_ON_ONCE(event->parent))
10461                 return -EINVAL;
10462
10463         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10464         if (ret)
10465                 goto fail_clear_files;
10466
10467         ret = event->pmu->addr_filters_validate(&filters);
10468         if (ret)
10469                 goto fail_free_filters;
10470
10471         /* remove existing filters, if any */
10472         perf_addr_filters_splice(event, &filters);
10473
10474         /* install new filters */
10475         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10476
10477         return ret;
10478
10479 fail_free_filters:
10480         free_filters_list(&filters);
10481
10482 fail_clear_files:
10483         event->addr_filters.nr_file_filters = 0;
10484
10485         return ret;
10486 }
10487
10488 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10489 {
10490         int ret = -EINVAL;
10491         char *filter_str;
10492
10493         filter_str = strndup_user(arg, PAGE_SIZE);
10494         if (IS_ERR(filter_str))
10495                 return PTR_ERR(filter_str);
10496
10497 #ifdef CONFIG_EVENT_TRACING
10498         if (perf_event_is_tracing(event)) {
10499                 struct perf_event_context *ctx = event->ctx;
10500
10501                 /*
10502                  * Beware, here be dragons!!
10503                  *
10504                  * the tracepoint muck will deadlock against ctx->mutex, but
10505                  * the tracepoint stuff does not actually need it. So
10506                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10507                  * already have a reference on ctx.
10508                  *
10509                  * This can result in event getting moved to a different ctx,
10510                  * but that does not affect the tracepoint state.
10511                  */
10512                 mutex_unlock(&ctx->mutex);
10513                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10514                 mutex_lock(&ctx->mutex);
10515         } else
10516 #endif
10517         if (has_addr_filter(event))
10518                 ret = perf_event_set_addr_filter(event, filter_str);
10519
10520         kfree(filter_str);
10521         return ret;
10522 }
10523
10524 /*
10525  * hrtimer based swevent callback
10526  */
10527
10528 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10529 {
10530         enum hrtimer_restart ret = HRTIMER_RESTART;
10531         struct perf_sample_data data;
10532         struct pt_regs *regs;
10533         struct perf_event *event;
10534         u64 period;
10535
10536         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10537
10538         if (event->state != PERF_EVENT_STATE_ACTIVE)
10539                 return HRTIMER_NORESTART;
10540
10541         event->pmu->read(event);
10542
10543         perf_sample_data_init(&data, 0, event->hw.last_period);
10544         regs = get_irq_regs();
10545
10546         if (regs && !perf_exclude_event(event, regs)) {
10547                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10548                         if (__perf_event_overflow(event, 1, &data, regs))
10549                                 ret = HRTIMER_NORESTART;
10550         }
10551
10552         period = max_t(u64, 10000, event->hw.sample_period);
10553         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10554
10555         return ret;
10556 }
10557
10558 static void perf_swevent_start_hrtimer(struct perf_event *event)
10559 {
10560         struct hw_perf_event *hwc = &event->hw;
10561         s64 period;
10562
10563         if (!is_sampling_event(event))
10564                 return;
10565
10566         period = local64_read(&hwc->period_left);
10567         if (period) {
10568                 if (period < 0)
10569                         period = 10000;
10570
10571                 local64_set(&hwc->period_left, 0);
10572         } else {
10573                 period = max_t(u64, 10000, hwc->sample_period);
10574         }
10575         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10576                       HRTIMER_MODE_REL_PINNED_HARD);
10577 }
10578
10579 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10580 {
10581         struct hw_perf_event *hwc = &event->hw;
10582
10583         if (is_sampling_event(event)) {
10584                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10585                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10586
10587                 hrtimer_cancel(&hwc->hrtimer);
10588         }
10589 }
10590
10591 static void perf_swevent_init_hrtimer(struct perf_event *event)
10592 {
10593         struct hw_perf_event *hwc = &event->hw;
10594
10595         if (!is_sampling_event(event))
10596                 return;
10597
10598         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10599         hwc->hrtimer.function = perf_swevent_hrtimer;
10600
10601         /*
10602          * Since hrtimers have a fixed rate, we can do a static freq->period
10603          * mapping and avoid the whole period adjust feedback stuff.
10604          */
10605         if (event->attr.freq) {
10606                 long freq = event->attr.sample_freq;
10607
10608                 event->attr.sample_period = NSEC_PER_SEC / freq;
10609                 hwc->sample_period = event->attr.sample_period;
10610                 local64_set(&hwc->period_left, hwc->sample_period);
10611                 hwc->last_period = hwc->sample_period;
10612                 event->attr.freq = 0;
10613         }
10614 }
10615
10616 /*
10617  * Software event: cpu wall time clock
10618  */
10619
10620 static void cpu_clock_event_update(struct perf_event *event)
10621 {
10622         s64 prev;
10623         u64 now;
10624
10625         now = local_clock();
10626         prev = local64_xchg(&event->hw.prev_count, now);
10627         local64_add(now - prev, &event->count);
10628 }
10629
10630 static void cpu_clock_event_start(struct perf_event *event, int flags)
10631 {
10632         local64_set(&event->hw.prev_count, local_clock());
10633         perf_swevent_start_hrtimer(event);
10634 }
10635
10636 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10637 {
10638         perf_swevent_cancel_hrtimer(event);
10639         cpu_clock_event_update(event);
10640 }
10641
10642 static int cpu_clock_event_add(struct perf_event *event, int flags)
10643 {
10644         if (flags & PERF_EF_START)
10645                 cpu_clock_event_start(event, flags);
10646         perf_event_update_userpage(event);
10647
10648         return 0;
10649 }
10650
10651 static void cpu_clock_event_del(struct perf_event *event, int flags)
10652 {
10653         cpu_clock_event_stop(event, flags);
10654 }
10655
10656 static void cpu_clock_event_read(struct perf_event *event)
10657 {
10658         cpu_clock_event_update(event);
10659 }
10660
10661 static int cpu_clock_event_init(struct perf_event *event)
10662 {
10663         if (event->attr.type != PERF_TYPE_SOFTWARE)
10664                 return -ENOENT;
10665
10666         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10667                 return -ENOENT;
10668
10669         /*
10670          * no branch sampling for software events
10671          */
10672         if (has_branch_stack(event))
10673                 return -EOPNOTSUPP;
10674
10675         perf_swevent_init_hrtimer(event);
10676
10677         return 0;
10678 }
10679
10680 static struct pmu perf_cpu_clock = {
10681         .task_ctx_nr    = perf_sw_context,
10682
10683         .capabilities   = PERF_PMU_CAP_NO_NMI,
10684
10685         .event_init     = cpu_clock_event_init,
10686         .add            = cpu_clock_event_add,
10687         .del            = cpu_clock_event_del,
10688         .start          = cpu_clock_event_start,
10689         .stop           = cpu_clock_event_stop,
10690         .read           = cpu_clock_event_read,
10691 };
10692
10693 /*
10694  * Software event: task time clock
10695  */
10696
10697 static void task_clock_event_update(struct perf_event *event, u64 now)
10698 {
10699         u64 prev;
10700         s64 delta;
10701
10702         prev = local64_xchg(&event->hw.prev_count, now);
10703         delta = now - prev;
10704         local64_add(delta, &event->count);
10705 }
10706
10707 static void task_clock_event_start(struct perf_event *event, int flags)
10708 {
10709         local64_set(&event->hw.prev_count, event->ctx->time);
10710         perf_swevent_start_hrtimer(event);
10711 }
10712
10713 static void task_clock_event_stop(struct perf_event *event, int flags)
10714 {
10715         perf_swevent_cancel_hrtimer(event);
10716         task_clock_event_update(event, event->ctx->time);
10717 }
10718
10719 static int task_clock_event_add(struct perf_event *event, int flags)
10720 {
10721         if (flags & PERF_EF_START)
10722                 task_clock_event_start(event, flags);
10723         perf_event_update_userpage(event);
10724
10725         return 0;
10726 }
10727
10728 static void task_clock_event_del(struct perf_event *event, int flags)
10729 {
10730         task_clock_event_stop(event, PERF_EF_UPDATE);
10731 }
10732
10733 static void task_clock_event_read(struct perf_event *event)
10734 {
10735         u64 now = perf_clock();
10736         u64 delta = now - event->ctx->timestamp;
10737         u64 time = event->ctx->time + delta;
10738
10739         task_clock_event_update(event, time);
10740 }
10741
10742 static int task_clock_event_init(struct perf_event *event)
10743 {
10744         if (event->attr.type != PERF_TYPE_SOFTWARE)
10745                 return -ENOENT;
10746
10747         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10748                 return -ENOENT;
10749
10750         /*
10751          * no branch sampling for software events
10752          */
10753         if (has_branch_stack(event))
10754                 return -EOPNOTSUPP;
10755
10756         perf_swevent_init_hrtimer(event);
10757
10758         return 0;
10759 }
10760
10761 static struct pmu perf_task_clock = {
10762         .task_ctx_nr    = perf_sw_context,
10763
10764         .capabilities   = PERF_PMU_CAP_NO_NMI,
10765
10766         .event_init     = task_clock_event_init,
10767         .add            = task_clock_event_add,
10768         .del            = task_clock_event_del,
10769         .start          = task_clock_event_start,
10770         .stop           = task_clock_event_stop,
10771         .read           = task_clock_event_read,
10772 };
10773
10774 static void perf_pmu_nop_void(struct pmu *pmu)
10775 {
10776 }
10777
10778 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10779 {
10780 }
10781
10782 static int perf_pmu_nop_int(struct pmu *pmu)
10783 {
10784         return 0;
10785 }
10786
10787 static int perf_event_nop_int(struct perf_event *event, u64 value)
10788 {
10789         return 0;
10790 }
10791
10792 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10793
10794 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10795 {
10796         __this_cpu_write(nop_txn_flags, flags);
10797
10798         if (flags & ~PERF_PMU_TXN_ADD)
10799                 return;
10800
10801         perf_pmu_disable(pmu);
10802 }
10803
10804 static int perf_pmu_commit_txn(struct pmu *pmu)
10805 {
10806         unsigned int flags = __this_cpu_read(nop_txn_flags);
10807
10808         __this_cpu_write(nop_txn_flags, 0);
10809
10810         if (flags & ~PERF_PMU_TXN_ADD)
10811                 return 0;
10812
10813         perf_pmu_enable(pmu);
10814         return 0;
10815 }
10816
10817 static void perf_pmu_cancel_txn(struct pmu *pmu)
10818 {
10819         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10820
10821         __this_cpu_write(nop_txn_flags, 0);
10822
10823         if (flags & ~PERF_PMU_TXN_ADD)
10824                 return;
10825
10826         perf_pmu_enable(pmu);
10827 }
10828
10829 static int perf_event_idx_default(struct perf_event *event)
10830 {
10831         return 0;
10832 }
10833
10834 /*
10835  * Ensures all contexts with the same task_ctx_nr have the same
10836  * pmu_cpu_context too.
10837  */
10838 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10839 {
10840         struct pmu *pmu;
10841
10842         if (ctxn < 0)
10843                 return NULL;
10844
10845         list_for_each_entry(pmu, &pmus, entry) {
10846                 if (pmu->task_ctx_nr == ctxn)
10847                         return pmu->pmu_cpu_context;
10848         }
10849
10850         return NULL;
10851 }
10852
10853 static void free_pmu_context(struct pmu *pmu)
10854 {
10855         /*
10856          * Static contexts such as perf_sw_context have a global lifetime
10857          * and may be shared between different PMUs. Avoid freeing them
10858          * when a single PMU is going away.
10859          */
10860         if (pmu->task_ctx_nr > perf_invalid_context)
10861                 return;
10862
10863         free_percpu(pmu->pmu_cpu_context);
10864 }
10865
10866 /*
10867  * Let userspace know that this PMU supports address range filtering:
10868  */
10869 static ssize_t nr_addr_filters_show(struct device *dev,
10870                                     struct device_attribute *attr,
10871                                     char *page)
10872 {
10873         struct pmu *pmu = dev_get_drvdata(dev);
10874
10875         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10876 }
10877 DEVICE_ATTR_RO(nr_addr_filters);
10878
10879 static struct idr pmu_idr;
10880
10881 static ssize_t
10882 type_show(struct device *dev, struct device_attribute *attr, char *page)
10883 {
10884         struct pmu *pmu = dev_get_drvdata(dev);
10885
10886         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10887 }
10888 static DEVICE_ATTR_RO(type);
10889
10890 static ssize_t
10891 perf_event_mux_interval_ms_show(struct device *dev,
10892                                 struct device_attribute *attr,
10893                                 char *page)
10894 {
10895         struct pmu *pmu = dev_get_drvdata(dev);
10896
10897         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10898 }
10899
10900 static DEFINE_MUTEX(mux_interval_mutex);
10901
10902 static ssize_t
10903 perf_event_mux_interval_ms_store(struct device *dev,
10904                                  struct device_attribute *attr,
10905                                  const char *buf, size_t count)
10906 {
10907         struct pmu *pmu = dev_get_drvdata(dev);
10908         int timer, cpu, ret;
10909
10910         ret = kstrtoint(buf, 0, &timer);
10911         if (ret)
10912                 return ret;
10913
10914         if (timer < 1)
10915                 return -EINVAL;
10916
10917         /* same value, noting to do */
10918         if (timer == pmu->hrtimer_interval_ms)
10919                 return count;
10920
10921         mutex_lock(&mux_interval_mutex);
10922         pmu->hrtimer_interval_ms = timer;
10923
10924         /* update all cpuctx for this PMU */
10925         cpus_read_lock();
10926         for_each_online_cpu(cpu) {
10927                 struct perf_cpu_context *cpuctx;
10928                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10929                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10930
10931                 cpu_function_call(cpu,
10932                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10933         }
10934         cpus_read_unlock();
10935         mutex_unlock(&mux_interval_mutex);
10936
10937         return count;
10938 }
10939 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10940
10941 static struct attribute *pmu_dev_attrs[] = {
10942         &dev_attr_type.attr,
10943         &dev_attr_perf_event_mux_interval_ms.attr,
10944         NULL,
10945 };
10946 ATTRIBUTE_GROUPS(pmu_dev);
10947
10948 static int pmu_bus_running;
10949 static struct bus_type pmu_bus = {
10950         .name           = "event_source",
10951         .dev_groups     = pmu_dev_groups,
10952 };
10953
10954 static void pmu_dev_release(struct device *dev)
10955 {
10956         kfree(dev);
10957 }
10958
10959 static int pmu_dev_alloc(struct pmu *pmu)
10960 {
10961         int ret = -ENOMEM;
10962
10963         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10964         if (!pmu->dev)
10965                 goto out;
10966
10967         pmu->dev->groups = pmu->attr_groups;
10968         device_initialize(pmu->dev);
10969         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10970         if (ret)
10971                 goto free_dev;
10972
10973         dev_set_drvdata(pmu->dev, pmu);
10974         pmu->dev->bus = &pmu_bus;
10975         pmu->dev->release = pmu_dev_release;
10976         ret = device_add(pmu->dev);
10977         if (ret)
10978                 goto free_dev;
10979
10980         /* For PMUs with address filters, throw in an extra attribute: */
10981         if (pmu->nr_addr_filters)
10982                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10983
10984         if (ret)
10985                 goto del_dev;
10986
10987         if (pmu->attr_update)
10988                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10989
10990         if (ret)
10991                 goto del_dev;
10992
10993 out:
10994         return ret;
10995
10996 del_dev:
10997         device_del(pmu->dev);
10998
10999 free_dev:
11000         put_device(pmu->dev);
11001         goto out;
11002 }
11003
11004 static struct lock_class_key cpuctx_mutex;
11005 static struct lock_class_key cpuctx_lock;
11006
11007 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11008 {
11009         int cpu, ret, max = PERF_TYPE_MAX;
11010
11011         mutex_lock(&pmus_lock);
11012         ret = -ENOMEM;
11013         pmu->pmu_disable_count = alloc_percpu(int);
11014         if (!pmu->pmu_disable_count)
11015                 goto unlock;
11016
11017         pmu->type = -1;
11018         if (!name)
11019                 goto skip_type;
11020         pmu->name = name;
11021
11022         if (type != PERF_TYPE_SOFTWARE) {
11023                 if (type >= 0)
11024                         max = type;
11025
11026                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11027                 if (ret < 0)
11028                         goto free_pdc;
11029
11030                 WARN_ON(type >= 0 && ret != type);
11031
11032                 type = ret;
11033         }
11034         pmu->type = type;
11035
11036         if (pmu_bus_running) {
11037                 ret = pmu_dev_alloc(pmu);
11038                 if (ret)
11039                         goto free_idr;
11040         }
11041
11042 skip_type:
11043         if (pmu->task_ctx_nr == perf_hw_context) {
11044                 static int hw_context_taken = 0;
11045
11046                 /*
11047                  * Other than systems with heterogeneous CPUs, it never makes
11048                  * sense for two PMUs to share perf_hw_context. PMUs which are
11049                  * uncore must use perf_invalid_context.
11050                  */
11051                 if (WARN_ON_ONCE(hw_context_taken &&
11052                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11053                         pmu->task_ctx_nr = perf_invalid_context;
11054
11055                 hw_context_taken = 1;
11056         }
11057
11058         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11059         if (pmu->pmu_cpu_context)
11060                 goto got_cpu_context;
11061
11062         ret = -ENOMEM;
11063         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11064         if (!pmu->pmu_cpu_context)
11065                 goto free_dev;
11066
11067         for_each_possible_cpu(cpu) {
11068                 struct perf_cpu_context *cpuctx;
11069
11070                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11071                 __perf_event_init_context(&cpuctx->ctx);
11072                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11073                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11074                 cpuctx->ctx.pmu = pmu;
11075                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11076
11077                 __perf_mux_hrtimer_init(cpuctx, cpu);
11078
11079                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11080                 cpuctx->heap = cpuctx->heap_default;
11081         }
11082
11083 got_cpu_context:
11084         if (!pmu->start_txn) {
11085                 if (pmu->pmu_enable) {
11086                         /*
11087                          * If we have pmu_enable/pmu_disable calls, install
11088                          * transaction stubs that use that to try and batch
11089                          * hardware accesses.
11090                          */
11091                         pmu->start_txn  = perf_pmu_start_txn;
11092                         pmu->commit_txn = perf_pmu_commit_txn;
11093                         pmu->cancel_txn = perf_pmu_cancel_txn;
11094                 } else {
11095                         pmu->start_txn  = perf_pmu_nop_txn;
11096                         pmu->commit_txn = perf_pmu_nop_int;
11097                         pmu->cancel_txn = perf_pmu_nop_void;
11098                 }
11099         }
11100
11101         if (!pmu->pmu_enable) {
11102                 pmu->pmu_enable  = perf_pmu_nop_void;
11103                 pmu->pmu_disable = perf_pmu_nop_void;
11104         }
11105
11106         if (!pmu->check_period)
11107                 pmu->check_period = perf_event_nop_int;
11108
11109         if (!pmu->event_idx)
11110                 pmu->event_idx = perf_event_idx_default;
11111
11112         /*
11113          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11114          * since these cannot be in the IDR. This way the linear search
11115          * is fast, provided a valid software event is provided.
11116          */
11117         if (type == PERF_TYPE_SOFTWARE || !name)
11118                 list_add_rcu(&pmu->entry, &pmus);
11119         else
11120                 list_add_tail_rcu(&pmu->entry, &pmus);
11121
11122         atomic_set(&pmu->exclusive_cnt, 0);
11123         ret = 0;
11124 unlock:
11125         mutex_unlock(&pmus_lock);
11126
11127         return ret;
11128
11129 free_dev:
11130         device_del(pmu->dev);
11131         put_device(pmu->dev);
11132
11133 free_idr:
11134         if (pmu->type != PERF_TYPE_SOFTWARE)
11135                 idr_remove(&pmu_idr, pmu->type);
11136
11137 free_pdc:
11138         free_percpu(pmu->pmu_disable_count);
11139         goto unlock;
11140 }
11141 EXPORT_SYMBOL_GPL(perf_pmu_register);
11142
11143 void perf_pmu_unregister(struct pmu *pmu)
11144 {
11145         mutex_lock(&pmus_lock);
11146         list_del_rcu(&pmu->entry);
11147
11148         /*
11149          * We dereference the pmu list under both SRCU and regular RCU, so
11150          * synchronize against both of those.
11151          */
11152         synchronize_srcu(&pmus_srcu);
11153         synchronize_rcu();
11154
11155         free_percpu(pmu->pmu_disable_count);
11156         if (pmu->type != PERF_TYPE_SOFTWARE)
11157                 idr_remove(&pmu_idr, pmu->type);
11158         if (pmu_bus_running) {
11159                 if (pmu->nr_addr_filters)
11160                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11161                 device_del(pmu->dev);
11162                 put_device(pmu->dev);
11163         }
11164         free_pmu_context(pmu);
11165         mutex_unlock(&pmus_lock);
11166 }
11167 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11168
11169 static inline bool has_extended_regs(struct perf_event *event)
11170 {
11171         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11172                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11173 }
11174
11175 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11176 {
11177         struct perf_event_context *ctx = NULL;
11178         int ret;
11179
11180         if (!try_module_get(pmu->module))
11181                 return -ENODEV;
11182
11183         /*
11184          * A number of pmu->event_init() methods iterate the sibling_list to,
11185          * for example, validate if the group fits on the PMU. Therefore,
11186          * if this is a sibling event, acquire the ctx->mutex to protect
11187          * the sibling_list.
11188          */
11189         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11190                 /*
11191                  * This ctx->mutex can nest when we're called through
11192                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11193                  */
11194                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11195                                                  SINGLE_DEPTH_NESTING);
11196                 BUG_ON(!ctx);
11197         }
11198
11199         event->pmu = pmu;
11200         ret = pmu->event_init(event);
11201
11202         if (ctx)
11203                 perf_event_ctx_unlock(event->group_leader, ctx);
11204
11205         if (!ret) {
11206                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11207                     has_extended_regs(event))
11208                         ret = -EOPNOTSUPP;
11209
11210                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11211                     event_has_any_exclude_flag(event))
11212                         ret = -EINVAL;
11213
11214                 if (ret && event->destroy)
11215                         event->destroy(event);
11216         }
11217
11218         if (ret)
11219                 module_put(pmu->module);
11220
11221         return ret;
11222 }
11223
11224 static struct pmu *perf_init_event(struct perf_event *event)
11225 {
11226         bool extended_type = false;
11227         int idx, type, ret;
11228         struct pmu *pmu;
11229
11230         idx = srcu_read_lock(&pmus_srcu);
11231
11232         /* Try parent's PMU first: */
11233         if (event->parent && event->parent->pmu) {
11234                 pmu = event->parent->pmu;
11235                 ret = perf_try_init_event(pmu, event);
11236                 if (!ret)
11237                         goto unlock;
11238         }
11239
11240         /*
11241          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11242          * are often aliases for PERF_TYPE_RAW.
11243          */
11244         type = event->attr.type;
11245         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11246                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11247                 if (!type) {
11248                         type = PERF_TYPE_RAW;
11249                 } else {
11250                         extended_type = true;
11251                         event->attr.config &= PERF_HW_EVENT_MASK;
11252                 }
11253         }
11254
11255 again:
11256         rcu_read_lock();
11257         pmu = idr_find(&pmu_idr, type);
11258         rcu_read_unlock();
11259         if (pmu) {
11260                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11261                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11262                         goto fail;
11263
11264                 ret = perf_try_init_event(pmu, event);
11265                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11266                         type = event->attr.type;
11267                         goto again;
11268                 }
11269
11270                 if (ret)
11271                         pmu = ERR_PTR(ret);
11272
11273                 goto unlock;
11274         }
11275
11276         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11277                 ret = perf_try_init_event(pmu, event);
11278                 if (!ret)
11279                         goto unlock;
11280
11281                 if (ret != -ENOENT) {
11282                         pmu = ERR_PTR(ret);
11283                         goto unlock;
11284                 }
11285         }
11286 fail:
11287         pmu = ERR_PTR(-ENOENT);
11288 unlock:
11289         srcu_read_unlock(&pmus_srcu, idx);
11290
11291         return pmu;
11292 }
11293
11294 static void attach_sb_event(struct perf_event *event)
11295 {
11296         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11297
11298         raw_spin_lock(&pel->lock);
11299         list_add_rcu(&event->sb_list, &pel->list);
11300         raw_spin_unlock(&pel->lock);
11301 }
11302
11303 /*
11304  * We keep a list of all !task (and therefore per-cpu) events
11305  * that need to receive side-band records.
11306  *
11307  * This avoids having to scan all the various PMU per-cpu contexts
11308  * looking for them.
11309  */
11310 static void account_pmu_sb_event(struct perf_event *event)
11311 {
11312         if (is_sb_event(event))
11313                 attach_sb_event(event);
11314 }
11315
11316 static void account_event_cpu(struct perf_event *event, int cpu)
11317 {
11318         if (event->parent)
11319                 return;
11320
11321         if (is_cgroup_event(event))
11322                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11323 }
11324
11325 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11326 static void account_freq_event_nohz(void)
11327 {
11328 #ifdef CONFIG_NO_HZ_FULL
11329         /* Lock so we don't race with concurrent unaccount */
11330         spin_lock(&nr_freq_lock);
11331         if (atomic_inc_return(&nr_freq_events) == 1)
11332                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11333         spin_unlock(&nr_freq_lock);
11334 #endif
11335 }
11336
11337 static void account_freq_event(void)
11338 {
11339         if (tick_nohz_full_enabled())
11340                 account_freq_event_nohz();
11341         else
11342                 atomic_inc(&nr_freq_events);
11343 }
11344
11345
11346 static void account_event(struct perf_event *event)
11347 {
11348         bool inc = false;
11349
11350         if (event->parent)
11351                 return;
11352
11353         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11354                 inc = true;
11355         if (event->attr.mmap || event->attr.mmap_data)
11356                 atomic_inc(&nr_mmap_events);
11357         if (event->attr.build_id)
11358                 atomic_inc(&nr_build_id_events);
11359         if (event->attr.comm)
11360                 atomic_inc(&nr_comm_events);
11361         if (event->attr.namespaces)
11362                 atomic_inc(&nr_namespaces_events);
11363         if (event->attr.cgroup)
11364                 atomic_inc(&nr_cgroup_events);
11365         if (event->attr.task)
11366                 atomic_inc(&nr_task_events);
11367         if (event->attr.freq)
11368                 account_freq_event();
11369         if (event->attr.context_switch) {
11370                 atomic_inc(&nr_switch_events);
11371                 inc = true;
11372         }
11373         if (has_branch_stack(event))
11374                 inc = true;
11375         if (is_cgroup_event(event))
11376                 inc = true;
11377         if (event->attr.ksymbol)
11378                 atomic_inc(&nr_ksymbol_events);
11379         if (event->attr.bpf_event)
11380                 atomic_inc(&nr_bpf_events);
11381         if (event->attr.text_poke)
11382                 atomic_inc(&nr_text_poke_events);
11383
11384         if (inc) {
11385                 /*
11386                  * We need the mutex here because static_branch_enable()
11387                  * must complete *before* the perf_sched_count increment
11388                  * becomes visible.
11389                  */
11390                 if (atomic_inc_not_zero(&perf_sched_count))
11391                         goto enabled;
11392
11393                 mutex_lock(&perf_sched_mutex);
11394                 if (!atomic_read(&perf_sched_count)) {
11395                         static_branch_enable(&perf_sched_events);
11396                         /*
11397                          * Guarantee that all CPUs observe they key change and
11398                          * call the perf scheduling hooks before proceeding to
11399                          * install events that need them.
11400                          */
11401                         synchronize_rcu();
11402                 }
11403                 /*
11404                  * Now that we have waited for the sync_sched(), allow further
11405                  * increments to by-pass the mutex.
11406                  */
11407                 atomic_inc(&perf_sched_count);
11408                 mutex_unlock(&perf_sched_mutex);
11409         }
11410 enabled:
11411
11412         account_event_cpu(event, event->cpu);
11413
11414         account_pmu_sb_event(event);
11415 }
11416
11417 /*
11418  * Allocate and initialize an event structure
11419  */
11420 static struct perf_event *
11421 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11422                  struct task_struct *task,
11423                  struct perf_event *group_leader,
11424                  struct perf_event *parent_event,
11425                  perf_overflow_handler_t overflow_handler,
11426                  void *context, int cgroup_fd)
11427 {
11428         struct pmu *pmu;
11429         struct perf_event *event;
11430         struct hw_perf_event *hwc;
11431         long err = -EINVAL;
11432         int node;
11433
11434         if ((unsigned)cpu >= nr_cpu_ids) {
11435                 if (!task || cpu != -1)
11436                         return ERR_PTR(-EINVAL);
11437         }
11438         if (attr->sigtrap && !task) {
11439                 /* Requires a task: avoid signalling random tasks. */
11440                 return ERR_PTR(-EINVAL);
11441         }
11442
11443         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11444         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11445                                       node);
11446         if (!event)
11447                 return ERR_PTR(-ENOMEM);
11448
11449         /*
11450          * Single events are their own group leaders, with an
11451          * empty sibling list:
11452          */
11453         if (!group_leader)
11454                 group_leader = event;
11455
11456         mutex_init(&event->child_mutex);
11457         INIT_LIST_HEAD(&event->child_list);
11458
11459         INIT_LIST_HEAD(&event->event_entry);
11460         INIT_LIST_HEAD(&event->sibling_list);
11461         INIT_LIST_HEAD(&event->active_list);
11462         init_event_group(event);
11463         INIT_LIST_HEAD(&event->rb_entry);
11464         INIT_LIST_HEAD(&event->active_entry);
11465         INIT_LIST_HEAD(&event->addr_filters.list);
11466         INIT_HLIST_NODE(&event->hlist_entry);
11467
11468
11469         init_waitqueue_head(&event->waitq);
11470         event->pending_disable = -1;
11471         init_irq_work(&event->pending, perf_pending_event);
11472
11473         mutex_init(&event->mmap_mutex);
11474         raw_spin_lock_init(&event->addr_filters.lock);
11475
11476         atomic_long_set(&event->refcount, 1);
11477         event->cpu              = cpu;
11478         event->attr             = *attr;
11479         event->group_leader     = group_leader;
11480         event->pmu              = NULL;
11481         event->oncpu            = -1;
11482
11483         event->parent           = parent_event;
11484
11485         event->ns               = get_pid_ns(task_active_pid_ns(current));
11486         event->id               = atomic64_inc_return(&perf_event_id);
11487
11488         event->state            = PERF_EVENT_STATE_INACTIVE;
11489
11490         if (event->attr.sigtrap)
11491                 atomic_set(&event->event_limit, 1);
11492
11493         if (task) {
11494                 event->attach_state = PERF_ATTACH_TASK;
11495                 /*
11496                  * XXX pmu::event_init needs to know what task to account to
11497                  * and we cannot use the ctx information because we need the
11498                  * pmu before we get a ctx.
11499                  */
11500                 event->hw.target = get_task_struct(task);
11501         }
11502
11503         event->clock = &local_clock;
11504         if (parent_event)
11505                 event->clock = parent_event->clock;
11506
11507         if (!overflow_handler && parent_event) {
11508                 overflow_handler = parent_event->overflow_handler;
11509                 context = parent_event->overflow_handler_context;
11510 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11511                 if (overflow_handler == bpf_overflow_handler) {
11512                         struct bpf_prog *prog = parent_event->prog;
11513
11514                         bpf_prog_inc(prog);
11515                         event->prog = prog;
11516                         event->orig_overflow_handler =
11517                                 parent_event->orig_overflow_handler;
11518                 }
11519 #endif
11520         }
11521
11522         if (overflow_handler) {
11523                 event->overflow_handler = overflow_handler;
11524                 event->overflow_handler_context = context;
11525         } else if (is_write_backward(event)){
11526                 event->overflow_handler = perf_event_output_backward;
11527                 event->overflow_handler_context = NULL;
11528         } else {
11529                 event->overflow_handler = perf_event_output_forward;
11530                 event->overflow_handler_context = NULL;
11531         }
11532
11533         perf_event__state_init(event);
11534
11535         pmu = NULL;
11536
11537         hwc = &event->hw;
11538         hwc->sample_period = attr->sample_period;
11539         if (attr->freq && attr->sample_freq)
11540                 hwc->sample_period = 1;
11541         hwc->last_period = hwc->sample_period;
11542
11543         local64_set(&hwc->period_left, hwc->sample_period);
11544
11545         /*
11546          * We currently do not support PERF_SAMPLE_READ on inherited events.
11547          * See perf_output_read().
11548          */
11549         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11550                 goto err_ns;
11551
11552         if (!has_branch_stack(event))
11553                 event->attr.branch_sample_type = 0;
11554
11555         pmu = perf_init_event(event);
11556         if (IS_ERR(pmu)) {
11557                 err = PTR_ERR(pmu);
11558                 goto err_ns;
11559         }
11560
11561         /*
11562          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11563          * be different on other CPUs in the uncore mask.
11564          */
11565         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11566                 err = -EINVAL;
11567                 goto err_pmu;
11568         }
11569
11570         if (event->attr.aux_output &&
11571             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11572                 err = -EOPNOTSUPP;
11573                 goto err_pmu;
11574         }
11575
11576         if (cgroup_fd != -1) {
11577                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11578                 if (err)
11579                         goto err_pmu;
11580         }
11581
11582         err = exclusive_event_init(event);
11583         if (err)
11584                 goto err_pmu;
11585
11586         if (has_addr_filter(event)) {
11587                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11588                                                     sizeof(struct perf_addr_filter_range),
11589                                                     GFP_KERNEL);
11590                 if (!event->addr_filter_ranges) {
11591                         err = -ENOMEM;
11592                         goto err_per_task;
11593                 }
11594
11595                 /*
11596                  * Clone the parent's vma offsets: they are valid until exec()
11597                  * even if the mm is not shared with the parent.
11598                  */
11599                 if (event->parent) {
11600                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11601
11602                         raw_spin_lock_irq(&ifh->lock);
11603                         memcpy(event->addr_filter_ranges,
11604                                event->parent->addr_filter_ranges,
11605                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11606                         raw_spin_unlock_irq(&ifh->lock);
11607                 }
11608
11609                 /* force hw sync on the address filters */
11610                 event->addr_filters_gen = 1;
11611         }
11612
11613         if (!event->parent) {
11614                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11615                         err = get_callchain_buffers(attr->sample_max_stack);
11616                         if (err)
11617                                 goto err_addr_filters;
11618                 }
11619         }
11620
11621         err = security_perf_event_alloc(event);
11622         if (err)
11623                 goto err_callchain_buffer;
11624
11625         /* symmetric to unaccount_event() in _free_event() */
11626         account_event(event);
11627
11628         return event;
11629
11630 err_callchain_buffer:
11631         if (!event->parent) {
11632                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11633                         put_callchain_buffers();
11634         }
11635 err_addr_filters:
11636         kfree(event->addr_filter_ranges);
11637
11638 err_per_task:
11639         exclusive_event_destroy(event);
11640
11641 err_pmu:
11642         if (is_cgroup_event(event))
11643                 perf_detach_cgroup(event);
11644         if (event->destroy)
11645                 event->destroy(event);
11646         module_put(pmu->module);
11647 err_ns:
11648         if (event->ns)
11649                 put_pid_ns(event->ns);
11650         if (event->hw.target)
11651                 put_task_struct(event->hw.target);
11652         kmem_cache_free(perf_event_cache, event);
11653
11654         return ERR_PTR(err);
11655 }
11656
11657 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11658                           struct perf_event_attr *attr)
11659 {
11660         u32 size;
11661         int ret;
11662
11663         /* Zero the full structure, so that a short copy will be nice. */
11664         memset(attr, 0, sizeof(*attr));
11665
11666         ret = get_user(size, &uattr->size);
11667         if (ret)
11668                 return ret;
11669
11670         /* ABI compatibility quirk: */
11671         if (!size)
11672                 size = PERF_ATTR_SIZE_VER0;
11673         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11674                 goto err_size;
11675
11676         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11677         if (ret) {
11678                 if (ret == -E2BIG)
11679                         goto err_size;
11680                 return ret;
11681         }
11682
11683         attr->size = size;
11684
11685         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11686                 return -EINVAL;
11687
11688         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11689                 return -EINVAL;
11690
11691         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11692                 return -EINVAL;
11693
11694         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11695                 u64 mask = attr->branch_sample_type;
11696
11697                 /* only using defined bits */
11698                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11699                         return -EINVAL;
11700
11701                 /* at least one branch bit must be set */
11702                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11703                         return -EINVAL;
11704
11705                 /* propagate priv level, when not set for branch */
11706                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11707
11708                         /* exclude_kernel checked on syscall entry */
11709                         if (!attr->exclude_kernel)
11710                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11711
11712                         if (!attr->exclude_user)
11713                                 mask |= PERF_SAMPLE_BRANCH_USER;
11714
11715                         if (!attr->exclude_hv)
11716                                 mask |= PERF_SAMPLE_BRANCH_HV;
11717                         /*
11718                          * adjust user setting (for HW filter setup)
11719                          */
11720                         attr->branch_sample_type = mask;
11721                 }
11722                 /* privileged levels capture (kernel, hv): check permissions */
11723                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11724                         ret = perf_allow_kernel(attr);
11725                         if (ret)
11726                                 return ret;
11727                 }
11728         }
11729
11730         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11731                 ret = perf_reg_validate(attr->sample_regs_user);
11732                 if (ret)
11733                         return ret;
11734         }
11735
11736         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11737                 if (!arch_perf_have_user_stack_dump())
11738                         return -ENOSYS;
11739
11740                 /*
11741                  * We have __u32 type for the size, but so far
11742                  * we can only use __u16 as maximum due to the
11743                  * __u16 sample size limit.
11744                  */
11745                 if (attr->sample_stack_user >= USHRT_MAX)
11746                         return -EINVAL;
11747                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11748                         return -EINVAL;
11749         }
11750
11751         if (!attr->sample_max_stack)
11752                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11753
11754         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11755                 ret = perf_reg_validate(attr->sample_regs_intr);
11756
11757 #ifndef CONFIG_CGROUP_PERF
11758         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11759                 return -EINVAL;
11760 #endif
11761         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11762             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11763                 return -EINVAL;
11764
11765         if (!attr->inherit && attr->inherit_thread)
11766                 return -EINVAL;
11767
11768         if (attr->remove_on_exec && attr->enable_on_exec)
11769                 return -EINVAL;
11770
11771         if (attr->sigtrap && !attr->remove_on_exec)
11772                 return -EINVAL;
11773
11774 out:
11775         return ret;
11776
11777 err_size:
11778         put_user(sizeof(*attr), &uattr->size);
11779         ret = -E2BIG;
11780         goto out;
11781 }
11782
11783 static int
11784 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11785 {
11786         struct perf_buffer *rb = NULL;
11787         int ret = -EINVAL;
11788
11789         if (!output_event)
11790                 goto set;
11791
11792         /* don't allow circular references */
11793         if (event == output_event)
11794                 goto out;
11795
11796         /*
11797          * Don't allow cross-cpu buffers
11798          */
11799         if (output_event->cpu != event->cpu)
11800                 goto out;
11801
11802         /*
11803          * If its not a per-cpu rb, it must be the same task.
11804          */
11805         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11806                 goto out;
11807
11808         /*
11809          * Mixing clocks in the same buffer is trouble you don't need.
11810          */
11811         if (output_event->clock != event->clock)
11812                 goto out;
11813
11814         /*
11815          * Either writing ring buffer from beginning or from end.
11816          * Mixing is not allowed.
11817          */
11818         if (is_write_backward(output_event) != is_write_backward(event))
11819                 goto out;
11820
11821         /*
11822          * If both events generate aux data, they must be on the same PMU
11823          */
11824         if (has_aux(event) && has_aux(output_event) &&
11825             event->pmu != output_event->pmu)
11826                 goto out;
11827
11828 set:
11829         mutex_lock(&event->mmap_mutex);
11830         /* Can't redirect output if we've got an active mmap() */
11831         if (atomic_read(&event->mmap_count))
11832                 goto unlock;
11833
11834         if (output_event) {
11835                 /* get the rb we want to redirect to */
11836                 rb = ring_buffer_get(output_event);
11837                 if (!rb)
11838                         goto unlock;
11839         }
11840
11841         ring_buffer_attach(event, rb);
11842
11843         ret = 0;
11844 unlock:
11845         mutex_unlock(&event->mmap_mutex);
11846
11847 out:
11848         return ret;
11849 }
11850
11851 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11852 {
11853         if (b < a)
11854                 swap(a, b);
11855
11856         mutex_lock(a);
11857         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11858 }
11859
11860 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11861 {
11862         bool nmi_safe = false;
11863
11864         switch (clk_id) {
11865         case CLOCK_MONOTONIC:
11866                 event->clock = &ktime_get_mono_fast_ns;
11867                 nmi_safe = true;
11868                 break;
11869
11870         case CLOCK_MONOTONIC_RAW:
11871                 event->clock = &ktime_get_raw_fast_ns;
11872                 nmi_safe = true;
11873                 break;
11874
11875         case CLOCK_REALTIME:
11876                 event->clock = &ktime_get_real_ns;
11877                 break;
11878
11879         case CLOCK_BOOTTIME:
11880                 event->clock = &ktime_get_boottime_ns;
11881                 break;
11882
11883         case CLOCK_TAI:
11884                 event->clock = &ktime_get_clocktai_ns;
11885                 break;
11886
11887         default:
11888                 return -EINVAL;
11889         }
11890
11891         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11892                 return -EINVAL;
11893
11894         return 0;
11895 }
11896
11897 /*
11898  * Variation on perf_event_ctx_lock_nested(), except we take two context
11899  * mutexes.
11900  */
11901 static struct perf_event_context *
11902 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11903                              struct perf_event_context *ctx)
11904 {
11905         struct perf_event_context *gctx;
11906
11907 again:
11908         rcu_read_lock();
11909         gctx = READ_ONCE(group_leader->ctx);
11910         if (!refcount_inc_not_zero(&gctx->refcount)) {
11911                 rcu_read_unlock();
11912                 goto again;
11913         }
11914         rcu_read_unlock();
11915
11916         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11917
11918         if (group_leader->ctx != gctx) {
11919                 mutex_unlock(&ctx->mutex);
11920                 mutex_unlock(&gctx->mutex);
11921                 put_ctx(gctx);
11922                 goto again;
11923         }
11924
11925         return gctx;
11926 }
11927
11928 /**
11929  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11930  *
11931  * @attr_uptr:  event_id type attributes for monitoring/sampling
11932  * @pid:                target pid
11933  * @cpu:                target cpu
11934  * @group_fd:           group leader event fd
11935  * @flags:              perf event open flags
11936  */
11937 SYSCALL_DEFINE5(perf_event_open,
11938                 struct perf_event_attr __user *, attr_uptr,
11939                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11940 {
11941         struct perf_event *group_leader = NULL, *output_event = NULL;
11942         struct perf_event *event, *sibling;
11943         struct perf_event_attr attr;
11944         struct perf_event_context *ctx, *gctx;
11945         struct file *event_file = NULL;
11946         struct fd group = {NULL, 0};
11947         struct task_struct *task = NULL;
11948         struct pmu *pmu;
11949         int event_fd;
11950         int move_group = 0;
11951         int err;
11952         int f_flags = O_RDWR;
11953         int cgroup_fd = -1;
11954
11955         /* for future expandability... */
11956         if (flags & ~PERF_FLAG_ALL)
11957                 return -EINVAL;
11958
11959         /* Do we allow access to perf_event_open(2) ? */
11960         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11961         if (err)
11962                 return err;
11963
11964         err = perf_copy_attr(attr_uptr, &attr);
11965         if (err)
11966                 return err;
11967
11968         if (!attr.exclude_kernel) {
11969                 err = perf_allow_kernel(&attr);
11970                 if (err)
11971                         return err;
11972         }
11973
11974         if (attr.namespaces) {
11975                 if (!perfmon_capable())
11976                         return -EACCES;
11977         }
11978
11979         if (attr.freq) {
11980                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11981                         return -EINVAL;
11982         } else {
11983                 if (attr.sample_period & (1ULL << 63))
11984                         return -EINVAL;
11985         }
11986
11987         /* Only privileged users can get physical addresses */
11988         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11989                 err = perf_allow_kernel(&attr);
11990                 if (err)
11991                         return err;
11992         }
11993
11994         /* REGS_INTR can leak data, lockdown must prevent this */
11995         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11996                 err = security_locked_down(LOCKDOWN_PERF);
11997                 if (err)
11998                         return err;
11999         }
12000
12001         /*
12002          * In cgroup mode, the pid argument is used to pass the fd
12003          * opened to the cgroup directory in cgroupfs. The cpu argument
12004          * designates the cpu on which to monitor threads from that
12005          * cgroup.
12006          */
12007         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12008                 return -EINVAL;
12009
12010         if (flags & PERF_FLAG_FD_CLOEXEC)
12011                 f_flags |= O_CLOEXEC;
12012
12013         event_fd = get_unused_fd_flags(f_flags);
12014         if (event_fd < 0)
12015                 return event_fd;
12016
12017         if (group_fd != -1) {
12018                 err = perf_fget_light(group_fd, &group);
12019                 if (err)
12020                         goto err_fd;
12021                 group_leader = group.file->private_data;
12022                 if (flags & PERF_FLAG_FD_OUTPUT)
12023                         output_event = group_leader;
12024                 if (flags & PERF_FLAG_FD_NO_GROUP)
12025                         group_leader = NULL;
12026         }
12027
12028         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12029                 task = find_lively_task_by_vpid(pid);
12030                 if (IS_ERR(task)) {
12031                         err = PTR_ERR(task);
12032                         goto err_group_fd;
12033                 }
12034         }
12035
12036         if (task && group_leader &&
12037             group_leader->attr.inherit != attr.inherit) {
12038                 err = -EINVAL;
12039                 goto err_task;
12040         }
12041
12042         if (flags & PERF_FLAG_PID_CGROUP)
12043                 cgroup_fd = pid;
12044
12045         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12046                                  NULL, NULL, cgroup_fd);
12047         if (IS_ERR(event)) {
12048                 err = PTR_ERR(event);
12049                 goto err_task;
12050         }
12051
12052         if (is_sampling_event(event)) {
12053                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12054                         err = -EOPNOTSUPP;
12055                         goto err_alloc;
12056                 }
12057         }
12058
12059         /*
12060          * Special case software events and allow them to be part of
12061          * any hardware group.
12062          */
12063         pmu = event->pmu;
12064
12065         if (attr.use_clockid) {
12066                 err = perf_event_set_clock(event, attr.clockid);
12067                 if (err)
12068                         goto err_alloc;
12069         }
12070
12071         if (pmu->task_ctx_nr == perf_sw_context)
12072                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12073
12074         if (group_leader) {
12075                 if (is_software_event(event) &&
12076                     !in_software_context(group_leader)) {
12077                         /*
12078                          * If the event is a sw event, but the group_leader
12079                          * is on hw context.
12080                          *
12081                          * Allow the addition of software events to hw
12082                          * groups, this is safe because software events
12083                          * never fail to schedule.
12084                          */
12085                         pmu = group_leader->ctx->pmu;
12086                 } else if (!is_software_event(event) &&
12087                            is_software_event(group_leader) &&
12088                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12089                         /*
12090                          * In case the group is a pure software group, and we
12091                          * try to add a hardware event, move the whole group to
12092                          * the hardware context.
12093                          */
12094                         move_group = 1;
12095                 }
12096         }
12097
12098         /*
12099          * Get the target context (task or percpu):
12100          */
12101         ctx = find_get_context(pmu, task, event);
12102         if (IS_ERR(ctx)) {
12103                 err = PTR_ERR(ctx);
12104                 goto err_alloc;
12105         }
12106
12107         /*
12108          * Look up the group leader (we will attach this event to it):
12109          */
12110         if (group_leader) {
12111                 err = -EINVAL;
12112
12113                 /*
12114                  * Do not allow a recursive hierarchy (this new sibling
12115                  * becoming part of another group-sibling):
12116                  */
12117                 if (group_leader->group_leader != group_leader)
12118                         goto err_context;
12119
12120                 /* All events in a group should have the same clock */
12121                 if (group_leader->clock != event->clock)
12122                         goto err_context;
12123
12124                 /*
12125                  * Make sure we're both events for the same CPU;
12126                  * grouping events for different CPUs is broken; since
12127                  * you can never concurrently schedule them anyhow.
12128                  */
12129                 if (group_leader->cpu != event->cpu)
12130                         goto err_context;
12131
12132                 /*
12133                  * Make sure we're both on the same task, or both
12134                  * per-CPU events.
12135                  */
12136                 if (group_leader->ctx->task != ctx->task)
12137                         goto err_context;
12138
12139                 /*
12140                  * Do not allow to attach to a group in a different task
12141                  * or CPU context. If we're moving SW events, we'll fix
12142                  * this up later, so allow that.
12143                  */
12144                 if (!move_group && group_leader->ctx != ctx)
12145                         goto err_context;
12146
12147                 /*
12148                  * Only a group leader can be exclusive or pinned
12149                  */
12150                 if (attr.exclusive || attr.pinned)
12151                         goto err_context;
12152         }
12153
12154         if (output_event) {
12155                 err = perf_event_set_output(event, output_event);
12156                 if (err)
12157                         goto err_context;
12158         }
12159
12160         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12161                                         f_flags);
12162         if (IS_ERR(event_file)) {
12163                 err = PTR_ERR(event_file);
12164                 event_file = NULL;
12165                 goto err_context;
12166         }
12167
12168         if (task) {
12169                 err = down_read_interruptible(&task->signal->exec_update_lock);
12170                 if (err)
12171                         goto err_file;
12172
12173                 /*
12174                  * Preserve ptrace permission check for backwards compatibility.
12175                  *
12176                  * We must hold exec_update_lock across this and any potential
12177                  * perf_install_in_context() call for this new event to
12178                  * serialize against exec() altering our credentials (and the
12179                  * perf_event_exit_task() that could imply).
12180                  */
12181                 err = -EACCES;
12182                 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12183                         goto err_cred;
12184         }
12185
12186         if (move_group) {
12187                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12188
12189                 if (gctx->task == TASK_TOMBSTONE) {
12190                         err = -ESRCH;
12191                         goto err_locked;
12192                 }
12193
12194                 /*
12195                  * Check if we raced against another sys_perf_event_open() call
12196                  * moving the software group underneath us.
12197                  */
12198                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12199                         /*
12200                          * If someone moved the group out from under us, check
12201                          * if this new event wound up on the same ctx, if so
12202                          * its the regular !move_group case, otherwise fail.
12203                          */
12204                         if (gctx != ctx) {
12205                                 err = -EINVAL;
12206                                 goto err_locked;
12207                         } else {
12208                                 perf_event_ctx_unlock(group_leader, gctx);
12209                                 move_group = 0;
12210                         }
12211                 }
12212
12213                 /*
12214                  * Failure to create exclusive events returns -EBUSY.
12215                  */
12216                 err = -EBUSY;
12217                 if (!exclusive_event_installable(group_leader, ctx))
12218                         goto err_locked;
12219
12220                 for_each_sibling_event(sibling, group_leader) {
12221                         if (!exclusive_event_installable(sibling, ctx))
12222                                 goto err_locked;
12223                 }
12224         } else {
12225                 mutex_lock(&ctx->mutex);
12226         }
12227
12228         if (ctx->task == TASK_TOMBSTONE) {
12229                 err = -ESRCH;
12230                 goto err_locked;
12231         }
12232
12233         if (!perf_event_validate_size(event)) {
12234                 err = -E2BIG;
12235                 goto err_locked;
12236         }
12237
12238         if (!task) {
12239                 /*
12240                  * Check if the @cpu we're creating an event for is online.
12241                  *
12242                  * We use the perf_cpu_context::ctx::mutex to serialize against
12243                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12244                  */
12245                 struct perf_cpu_context *cpuctx =
12246                         container_of(ctx, struct perf_cpu_context, ctx);
12247
12248                 if (!cpuctx->online) {
12249                         err = -ENODEV;
12250                         goto err_locked;
12251                 }
12252         }
12253
12254         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12255                 err = -EINVAL;
12256                 goto err_locked;
12257         }
12258
12259         /*
12260          * Must be under the same ctx::mutex as perf_install_in_context(),
12261          * because we need to serialize with concurrent event creation.
12262          */
12263         if (!exclusive_event_installable(event, ctx)) {
12264                 err = -EBUSY;
12265                 goto err_locked;
12266         }
12267
12268         WARN_ON_ONCE(ctx->parent_ctx);
12269
12270         /*
12271          * This is the point on no return; we cannot fail hereafter. This is
12272          * where we start modifying current state.
12273          */
12274
12275         if (move_group) {
12276                 /*
12277                  * See perf_event_ctx_lock() for comments on the details
12278                  * of swizzling perf_event::ctx.
12279                  */
12280                 perf_remove_from_context(group_leader, 0);
12281                 put_ctx(gctx);
12282
12283                 for_each_sibling_event(sibling, group_leader) {
12284                         perf_remove_from_context(sibling, 0);
12285                         put_ctx(gctx);
12286                 }
12287
12288                 /*
12289                  * Wait for everybody to stop referencing the events through
12290                  * the old lists, before installing it on new lists.
12291                  */
12292                 synchronize_rcu();
12293
12294                 /*
12295                  * Install the group siblings before the group leader.
12296                  *
12297                  * Because a group leader will try and install the entire group
12298                  * (through the sibling list, which is still in-tact), we can
12299                  * end up with siblings installed in the wrong context.
12300                  *
12301                  * By installing siblings first we NO-OP because they're not
12302                  * reachable through the group lists.
12303                  */
12304                 for_each_sibling_event(sibling, group_leader) {
12305                         perf_event__state_init(sibling);
12306                         perf_install_in_context(ctx, sibling, sibling->cpu);
12307                         get_ctx(ctx);
12308                 }
12309
12310                 /*
12311                  * Removing from the context ends up with disabled
12312                  * event. What we want here is event in the initial
12313                  * startup state, ready to be add into new context.
12314                  */
12315                 perf_event__state_init(group_leader);
12316                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12317                 get_ctx(ctx);
12318         }
12319
12320         /*
12321          * Precalculate sample_data sizes; do while holding ctx::mutex such
12322          * that we're serialized against further additions and before
12323          * perf_install_in_context() which is the point the event is active and
12324          * can use these values.
12325          */
12326         perf_event__header_size(event);
12327         perf_event__id_header_size(event);
12328
12329         event->owner = current;
12330
12331         perf_install_in_context(ctx, event, event->cpu);
12332         perf_unpin_context(ctx);
12333
12334         if (move_group)
12335                 perf_event_ctx_unlock(group_leader, gctx);
12336         mutex_unlock(&ctx->mutex);
12337
12338         if (task) {
12339                 up_read(&task->signal->exec_update_lock);
12340                 put_task_struct(task);
12341         }
12342
12343         mutex_lock(&current->perf_event_mutex);
12344         list_add_tail(&event->owner_entry, &current->perf_event_list);
12345         mutex_unlock(&current->perf_event_mutex);
12346
12347         /*
12348          * Drop the reference on the group_event after placing the
12349          * new event on the sibling_list. This ensures destruction
12350          * of the group leader will find the pointer to itself in
12351          * perf_group_detach().
12352          */
12353         fdput(group);
12354         fd_install(event_fd, event_file);
12355         return event_fd;
12356
12357 err_locked:
12358         if (move_group)
12359                 perf_event_ctx_unlock(group_leader, gctx);
12360         mutex_unlock(&ctx->mutex);
12361 err_cred:
12362         if (task)
12363                 up_read(&task->signal->exec_update_lock);
12364 err_file:
12365         fput(event_file);
12366 err_context:
12367         perf_unpin_context(ctx);
12368         put_ctx(ctx);
12369 err_alloc:
12370         /*
12371          * If event_file is set, the fput() above will have called ->release()
12372          * and that will take care of freeing the event.
12373          */
12374         if (!event_file)
12375                 free_event(event);
12376 err_task:
12377         if (task)
12378                 put_task_struct(task);
12379 err_group_fd:
12380         fdput(group);
12381 err_fd:
12382         put_unused_fd(event_fd);
12383         return err;
12384 }
12385
12386 /**
12387  * perf_event_create_kernel_counter
12388  *
12389  * @attr: attributes of the counter to create
12390  * @cpu: cpu in which the counter is bound
12391  * @task: task to profile (NULL for percpu)
12392  * @overflow_handler: callback to trigger when we hit the event
12393  * @context: context data could be used in overflow_handler callback
12394  */
12395 struct perf_event *
12396 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12397                                  struct task_struct *task,
12398                                  perf_overflow_handler_t overflow_handler,
12399                                  void *context)
12400 {
12401         struct perf_event_context *ctx;
12402         struct perf_event *event;
12403         int err;
12404
12405         /*
12406          * Grouping is not supported for kernel events, neither is 'AUX',
12407          * make sure the caller's intentions are adjusted.
12408          */
12409         if (attr->aux_output)
12410                 return ERR_PTR(-EINVAL);
12411
12412         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12413                                  overflow_handler, context, -1);
12414         if (IS_ERR(event)) {
12415                 err = PTR_ERR(event);
12416                 goto err;
12417         }
12418
12419         /* Mark owner so we could distinguish it from user events. */
12420         event->owner = TASK_TOMBSTONE;
12421
12422         /*
12423          * Get the target context (task or percpu):
12424          */
12425         ctx = find_get_context(event->pmu, task, event);
12426         if (IS_ERR(ctx)) {
12427                 err = PTR_ERR(ctx);
12428                 goto err_free;
12429         }
12430
12431         WARN_ON_ONCE(ctx->parent_ctx);
12432         mutex_lock(&ctx->mutex);
12433         if (ctx->task == TASK_TOMBSTONE) {
12434                 err = -ESRCH;
12435                 goto err_unlock;
12436         }
12437
12438         if (!task) {
12439                 /*
12440                  * Check if the @cpu we're creating an event for is online.
12441                  *
12442                  * We use the perf_cpu_context::ctx::mutex to serialize against
12443                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12444                  */
12445                 struct perf_cpu_context *cpuctx =
12446                         container_of(ctx, struct perf_cpu_context, ctx);
12447                 if (!cpuctx->online) {
12448                         err = -ENODEV;
12449                         goto err_unlock;
12450                 }
12451         }
12452
12453         if (!exclusive_event_installable(event, ctx)) {
12454                 err = -EBUSY;
12455                 goto err_unlock;
12456         }
12457
12458         perf_install_in_context(ctx, event, event->cpu);
12459         perf_unpin_context(ctx);
12460         mutex_unlock(&ctx->mutex);
12461
12462         return event;
12463
12464 err_unlock:
12465         mutex_unlock(&ctx->mutex);
12466         perf_unpin_context(ctx);
12467         put_ctx(ctx);
12468 err_free:
12469         free_event(event);
12470 err:
12471         return ERR_PTR(err);
12472 }
12473 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12474
12475 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12476 {
12477         struct perf_event_context *src_ctx;
12478         struct perf_event_context *dst_ctx;
12479         struct perf_event *event, *tmp;
12480         LIST_HEAD(events);
12481
12482         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12483         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12484
12485         /*
12486          * See perf_event_ctx_lock() for comments on the details
12487          * of swizzling perf_event::ctx.
12488          */
12489         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12490         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12491                                  event_entry) {
12492                 perf_remove_from_context(event, 0);
12493                 unaccount_event_cpu(event, src_cpu);
12494                 put_ctx(src_ctx);
12495                 list_add(&event->migrate_entry, &events);
12496         }
12497
12498         /*
12499          * Wait for the events to quiesce before re-instating them.
12500          */
12501         synchronize_rcu();
12502
12503         /*
12504          * Re-instate events in 2 passes.
12505          *
12506          * Skip over group leaders and only install siblings on this first
12507          * pass, siblings will not get enabled without a leader, however a
12508          * leader will enable its siblings, even if those are still on the old
12509          * context.
12510          */
12511         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12512                 if (event->group_leader == event)
12513                         continue;
12514
12515                 list_del(&event->migrate_entry);
12516                 if (event->state >= PERF_EVENT_STATE_OFF)
12517                         event->state = PERF_EVENT_STATE_INACTIVE;
12518                 account_event_cpu(event, dst_cpu);
12519                 perf_install_in_context(dst_ctx, event, dst_cpu);
12520                 get_ctx(dst_ctx);
12521         }
12522
12523         /*
12524          * Once all the siblings are setup properly, install the group leaders
12525          * to make it go.
12526          */
12527         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12528                 list_del(&event->migrate_entry);
12529                 if (event->state >= PERF_EVENT_STATE_OFF)
12530                         event->state = PERF_EVENT_STATE_INACTIVE;
12531                 account_event_cpu(event, dst_cpu);
12532                 perf_install_in_context(dst_ctx, event, dst_cpu);
12533                 get_ctx(dst_ctx);
12534         }
12535         mutex_unlock(&dst_ctx->mutex);
12536         mutex_unlock(&src_ctx->mutex);
12537 }
12538 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12539
12540 static void sync_child_event(struct perf_event *child_event)
12541 {
12542         struct perf_event *parent_event = child_event->parent;
12543         u64 child_val;
12544
12545         if (child_event->attr.inherit_stat) {
12546                 struct task_struct *task = child_event->ctx->task;
12547
12548                 if (task && task != TASK_TOMBSTONE)
12549                         perf_event_read_event(child_event, task);
12550         }
12551
12552         child_val = perf_event_count(child_event);
12553
12554         /*
12555          * Add back the child's count to the parent's count:
12556          */
12557         atomic64_add(child_val, &parent_event->child_count);
12558         atomic64_add(child_event->total_time_enabled,
12559                      &parent_event->child_total_time_enabled);
12560         atomic64_add(child_event->total_time_running,
12561                      &parent_event->child_total_time_running);
12562 }
12563
12564 static void
12565 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12566 {
12567         struct perf_event *parent_event = event->parent;
12568         unsigned long detach_flags = 0;
12569
12570         if (parent_event) {
12571                 /*
12572                  * Do not destroy the 'original' grouping; because of the
12573                  * context switch optimization the original events could've
12574                  * ended up in a random child task.
12575                  *
12576                  * If we were to destroy the original group, all group related
12577                  * operations would cease to function properly after this
12578                  * random child dies.
12579                  *
12580                  * Do destroy all inherited groups, we don't care about those
12581                  * and being thorough is better.
12582                  */
12583                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12584                 mutex_lock(&parent_event->child_mutex);
12585         }
12586
12587         perf_remove_from_context(event, detach_flags);
12588
12589         raw_spin_lock_irq(&ctx->lock);
12590         if (event->state > PERF_EVENT_STATE_EXIT)
12591                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12592         raw_spin_unlock_irq(&ctx->lock);
12593
12594         /*
12595          * Child events can be freed.
12596          */
12597         if (parent_event) {
12598                 mutex_unlock(&parent_event->child_mutex);
12599                 /*
12600                  * Kick perf_poll() for is_event_hup();
12601                  */
12602                 perf_event_wakeup(parent_event);
12603                 free_event(event);
12604                 put_event(parent_event);
12605                 return;
12606         }
12607
12608         /*
12609          * Parent events are governed by their filedesc, retain them.
12610          */
12611         perf_event_wakeup(event);
12612 }
12613
12614 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12615 {
12616         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12617         struct perf_event *child_event, *next;
12618
12619         WARN_ON_ONCE(child != current);
12620
12621         child_ctx = perf_pin_task_context(child, ctxn);
12622         if (!child_ctx)
12623                 return;
12624
12625         /*
12626          * In order to reduce the amount of tricky in ctx tear-down, we hold
12627          * ctx::mutex over the entire thing. This serializes against almost
12628          * everything that wants to access the ctx.
12629          *
12630          * The exception is sys_perf_event_open() /
12631          * perf_event_create_kernel_count() which does find_get_context()
12632          * without ctx::mutex (it cannot because of the move_group double mutex
12633          * lock thing). See the comments in perf_install_in_context().
12634          */
12635         mutex_lock(&child_ctx->mutex);
12636
12637         /*
12638          * In a single ctx::lock section, de-schedule the events and detach the
12639          * context from the task such that we cannot ever get it scheduled back
12640          * in.
12641          */
12642         raw_spin_lock_irq(&child_ctx->lock);
12643         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12644
12645         /*
12646          * Now that the context is inactive, destroy the task <-> ctx relation
12647          * and mark the context dead.
12648          */
12649         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12650         put_ctx(child_ctx); /* cannot be last */
12651         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12652         put_task_struct(current); /* cannot be last */
12653
12654         clone_ctx = unclone_ctx(child_ctx);
12655         raw_spin_unlock_irq(&child_ctx->lock);
12656
12657         if (clone_ctx)
12658                 put_ctx(clone_ctx);
12659
12660         /*
12661          * Report the task dead after unscheduling the events so that we
12662          * won't get any samples after PERF_RECORD_EXIT. We can however still
12663          * get a few PERF_RECORD_READ events.
12664          */
12665         perf_event_task(child, child_ctx, 0);
12666
12667         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12668                 perf_event_exit_event(child_event, child_ctx);
12669
12670         mutex_unlock(&child_ctx->mutex);
12671
12672         put_ctx(child_ctx);
12673 }
12674
12675 /*
12676  * When a child task exits, feed back event values to parent events.
12677  *
12678  * Can be called with exec_update_lock held when called from
12679  * setup_new_exec().
12680  */
12681 void perf_event_exit_task(struct task_struct *child)
12682 {
12683         struct perf_event *event, *tmp;
12684         int ctxn;
12685
12686         mutex_lock(&child->perf_event_mutex);
12687         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12688                                  owner_entry) {
12689                 list_del_init(&event->owner_entry);
12690
12691                 /*
12692                  * Ensure the list deletion is visible before we clear
12693                  * the owner, closes a race against perf_release() where
12694                  * we need to serialize on the owner->perf_event_mutex.
12695                  */
12696                 smp_store_release(&event->owner, NULL);
12697         }
12698         mutex_unlock(&child->perf_event_mutex);
12699
12700         for_each_task_context_nr(ctxn)
12701                 perf_event_exit_task_context(child, ctxn);
12702
12703         /*
12704          * The perf_event_exit_task_context calls perf_event_task
12705          * with child's task_ctx, which generates EXIT events for
12706          * child contexts and sets child->perf_event_ctxp[] to NULL.
12707          * At this point we need to send EXIT events to cpu contexts.
12708          */
12709         perf_event_task(child, NULL, 0);
12710 }
12711
12712 static void perf_free_event(struct perf_event *event,
12713                             struct perf_event_context *ctx)
12714 {
12715         struct perf_event *parent = event->parent;
12716
12717         if (WARN_ON_ONCE(!parent))
12718                 return;
12719
12720         mutex_lock(&parent->child_mutex);
12721         list_del_init(&event->child_list);
12722         mutex_unlock(&parent->child_mutex);
12723
12724         put_event(parent);
12725
12726         raw_spin_lock_irq(&ctx->lock);
12727         perf_group_detach(event);
12728         list_del_event(event, ctx);
12729         raw_spin_unlock_irq(&ctx->lock);
12730         free_event(event);
12731 }
12732
12733 /*
12734  * Free a context as created by inheritance by perf_event_init_task() below,
12735  * used by fork() in case of fail.
12736  *
12737  * Even though the task has never lived, the context and events have been
12738  * exposed through the child_list, so we must take care tearing it all down.
12739  */
12740 void perf_event_free_task(struct task_struct *task)
12741 {
12742         struct perf_event_context *ctx;
12743         struct perf_event *event, *tmp;
12744         int ctxn;
12745
12746         for_each_task_context_nr(ctxn) {
12747                 ctx = task->perf_event_ctxp[ctxn];
12748                 if (!ctx)
12749                         continue;
12750
12751                 mutex_lock(&ctx->mutex);
12752                 raw_spin_lock_irq(&ctx->lock);
12753                 /*
12754                  * Destroy the task <-> ctx relation and mark the context dead.
12755                  *
12756                  * This is important because even though the task hasn't been
12757                  * exposed yet the context has been (through child_list).
12758                  */
12759                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12760                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12761                 put_task_struct(task); /* cannot be last */
12762                 raw_spin_unlock_irq(&ctx->lock);
12763
12764                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12765                         perf_free_event(event, ctx);
12766
12767                 mutex_unlock(&ctx->mutex);
12768
12769                 /*
12770                  * perf_event_release_kernel() could've stolen some of our
12771                  * child events and still have them on its free_list. In that
12772                  * case we must wait for these events to have been freed (in
12773                  * particular all their references to this task must've been
12774                  * dropped).
12775                  *
12776                  * Without this copy_process() will unconditionally free this
12777                  * task (irrespective of its reference count) and
12778                  * _free_event()'s put_task_struct(event->hw.target) will be a
12779                  * use-after-free.
12780                  *
12781                  * Wait for all events to drop their context reference.
12782                  */
12783                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12784                 put_ctx(ctx); /* must be last */
12785         }
12786 }
12787
12788 void perf_event_delayed_put(struct task_struct *task)
12789 {
12790         int ctxn;
12791
12792         for_each_task_context_nr(ctxn)
12793                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12794 }
12795
12796 struct file *perf_event_get(unsigned int fd)
12797 {
12798         struct file *file = fget(fd);
12799         if (!file)
12800                 return ERR_PTR(-EBADF);
12801
12802         if (file->f_op != &perf_fops) {
12803                 fput(file);
12804                 return ERR_PTR(-EBADF);
12805         }
12806
12807         return file;
12808 }
12809
12810 const struct perf_event *perf_get_event(struct file *file)
12811 {
12812         if (file->f_op != &perf_fops)
12813                 return ERR_PTR(-EINVAL);
12814
12815         return file->private_data;
12816 }
12817
12818 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12819 {
12820         if (!event)
12821                 return ERR_PTR(-EINVAL);
12822
12823         return &event->attr;
12824 }
12825
12826 /*
12827  * Inherit an event from parent task to child task.
12828  *
12829  * Returns:
12830  *  - valid pointer on success
12831  *  - NULL for orphaned events
12832  *  - IS_ERR() on error
12833  */
12834 static struct perf_event *
12835 inherit_event(struct perf_event *parent_event,
12836               struct task_struct *parent,
12837               struct perf_event_context *parent_ctx,
12838               struct task_struct *child,
12839               struct perf_event *group_leader,
12840               struct perf_event_context *child_ctx)
12841 {
12842         enum perf_event_state parent_state = parent_event->state;
12843         struct perf_event *child_event;
12844         unsigned long flags;
12845
12846         /*
12847          * Instead of creating recursive hierarchies of events,
12848          * we link inherited events back to the original parent,
12849          * which has a filp for sure, which we use as the reference
12850          * count:
12851          */
12852         if (parent_event->parent)
12853                 parent_event = parent_event->parent;
12854
12855         child_event = perf_event_alloc(&parent_event->attr,
12856                                            parent_event->cpu,
12857                                            child,
12858                                            group_leader, parent_event,
12859                                            NULL, NULL, -1);
12860         if (IS_ERR(child_event))
12861                 return child_event;
12862
12863
12864         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12865             !child_ctx->task_ctx_data) {
12866                 struct pmu *pmu = child_event->pmu;
12867
12868                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12869                 if (!child_ctx->task_ctx_data) {
12870                         free_event(child_event);
12871                         return ERR_PTR(-ENOMEM);
12872                 }
12873         }
12874
12875         /*
12876          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12877          * must be under the same lock in order to serialize against
12878          * perf_event_release_kernel(), such that either we must observe
12879          * is_orphaned_event() or they will observe us on the child_list.
12880          */
12881         mutex_lock(&parent_event->child_mutex);
12882         if (is_orphaned_event(parent_event) ||
12883             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12884                 mutex_unlock(&parent_event->child_mutex);
12885                 /* task_ctx_data is freed with child_ctx */
12886                 free_event(child_event);
12887                 return NULL;
12888         }
12889
12890         get_ctx(child_ctx);
12891
12892         /*
12893          * Make the child state follow the state of the parent event,
12894          * not its attr.disabled bit.  We hold the parent's mutex,
12895          * so we won't race with perf_event_{en, dis}able_family.
12896          */
12897         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12898                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12899         else
12900                 child_event->state = PERF_EVENT_STATE_OFF;
12901
12902         if (parent_event->attr.freq) {
12903                 u64 sample_period = parent_event->hw.sample_period;
12904                 struct hw_perf_event *hwc = &child_event->hw;
12905
12906                 hwc->sample_period = sample_period;
12907                 hwc->last_period   = sample_period;
12908
12909                 local64_set(&hwc->period_left, sample_period);
12910         }
12911
12912         child_event->ctx = child_ctx;
12913         child_event->overflow_handler = parent_event->overflow_handler;
12914         child_event->overflow_handler_context
12915                 = parent_event->overflow_handler_context;
12916
12917         /*
12918          * Precalculate sample_data sizes
12919          */
12920         perf_event__header_size(child_event);
12921         perf_event__id_header_size(child_event);
12922
12923         /*
12924          * Link it up in the child's context:
12925          */
12926         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12927         add_event_to_ctx(child_event, child_ctx);
12928         child_event->attach_state |= PERF_ATTACH_CHILD;
12929         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12930
12931         /*
12932          * Link this into the parent event's child list
12933          */
12934         list_add_tail(&child_event->child_list, &parent_event->child_list);
12935         mutex_unlock(&parent_event->child_mutex);
12936
12937         return child_event;
12938 }
12939
12940 /*
12941  * Inherits an event group.
12942  *
12943  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12944  * This matches with perf_event_release_kernel() removing all child events.
12945  *
12946  * Returns:
12947  *  - 0 on success
12948  *  - <0 on error
12949  */
12950 static int inherit_group(struct perf_event *parent_event,
12951               struct task_struct *parent,
12952               struct perf_event_context *parent_ctx,
12953               struct task_struct *child,
12954               struct perf_event_context *child_ctx)
12955 {
12956         struct perf_event *leader;
12957         struct perf_event *sub;
12958         struct perf_event *child_ctr;
12959
12960         leader = inherit_event(parent_event, parent, parent_ctx,
12961                                  child, NULL, child_ctx);
12962         if (IS_ERR(leader))
12963                 return PTR_ERR(leader);
12964         /*
12965          * @leader can be NULL here because of is_orphaned_event(). In this
12966          * case inherit_event() will create individual events, similar to what
12967          * perf_group_detach() would do anyway.
12968          */
12969         for_each_sibling_event(sub, parent_event) {
12970                 child_ctr = inherit_event(sub, parent, parent_ctx,
12971                                             child, leader, child_ctx);
12972                 if (IS_ERR(child_ctr))
12973                         return PTR_ERR(child_ctr);
12974
12975                 if (sub->aux_event == parent_event && child_ctr &&
12976                     !perf_get_aux_event(child_ctr, leader))
12977                         return -EINVAL;
12978         }
12979         return 0;
12980 }
12981
12982 /*
12983  * Creates the child task context and tries to inherit the event-group.
12984  *
12985  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12986  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12987  * consistent with perf_event_release_kernel() removing all child events.
12988  *
12989  * Returns:
12990  *  - 0 on success
12991  *  - <0 on error
12992  */
12993 static int
12994 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12995                    struct perf_event_context *parent_ctx,
12996                    struct task_struct *child, int ctxn,
12997                    u64 clone_flags, int *inherited_all)
12998 {
12999         int ret;
13000         struct perf_event_context *child_ctx;
13001
13002         if (!event->attr.inherit ||
13003             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13004             /* Do not inherit if sigtrap and signal handlers were cleared. */
13005             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13006                 *inherited_all = 0;
13007                 return 0;
13008         }
13009
13010         child_ctx = child->perf_event_ctxp[ctxn];
13011         if (!child_ctx) {
13012                 /*
13013                  * This is executed from the parent task context, so
13014                  * inherit events that have been marked for cloning.
13015                  * First allocate and initialize a context for the
13016                  * child.
13017                  */
13018                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13019                 if (!child_ctx)
13020                         return -ENOMEM;
13021
13022                 child->perf_event_ctxp[ctxn] = child_ctx;
13023         }
13024
13025         ret = inherit_group(event, parent, parent_ctx,
13026                             child, child_ctx);
13027
13028         if (ret)
13029                 *inherited_all = 0;
13030
13031         return ret;
13032 }
13033
13034 /*
13035  * Initialize the perf_event context in task_struct
13036  */
13037 static int perf_event_init_context(struct task_struct *child, int ctxn,
13038                                    u64 clone_flags)
13039 {
13040         struct perf_event_context *child_ctx, *parent_ctx;
13041         struct perf_event_context *cloned_ctx;
13042         struct perf_event *event;
13043         struct task_struct *parent = current;
13044         int inherited_all = 1;
13045         unsigned long flags;
13046         int ret = 0;
13047
13048         if (likely(!parent->perf_event_ctxp[ctxn]))
13049                 return 0;
13050
13051         /*
13052          * If the parent's context is a clone, pin it so it won't get
13053          * swapped under us.
13054          */
13055         parent_ctx = perf_pin_task_context(parent, ctxn);
13056         if (!parent_ctx)
13057                 return 0;
13058
13059         /*
13060          * No need to check if parent_ctx != NULL here; since we saw
13061          * it non-NULL earlier, the only reason for it to become NULL
13062          * is if we exit, and since we're currently in the middle of
13063          * a fork we can't be exiting at the same time.
13064          */
13065
13066         /*
13067          * Lock the parent list. No need to lock the child - not PID
13068          * hashed yet and not running, so nobody can access it.
13069          */
13070         mutex_lock(&parent_ctx->mutex);
13071
13072         /*
13073          * We dont have to disable NMIs - we are only looking at
13074          * the list, not manipulating it:
13075          */
13076         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13077                 ret = inherit_task_group(event, parent, parent_ctx,
13078                                          child, ctxn, clone_flags,
13079                                          &inherited_all);
13080                 if (ret)
13081                         goto out_unlock;
13082         }
13083
13084         /*
13085          * We can't hold ctx->lock when iterating the ->flexible_group list due
13086          * to allocations, but we need to prevent rotation because
13087          * rotate_ctx() will change the list from interrupt context.
13088          */
13089         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13090         parent_ctx->rotate_disable = 1;
13091         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13092
13093         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13094                 ret = inherit_task_group(event, parent, parent_ctx,
13095                                          child, ctxn, clone_flags,
13096                                          &inherited_all);
13097                 if (ret)
13098                         goto out_unlock;
13099         }
13100
13101         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13102         parent_ctx->rotate_disable = 0;
13103
13104         child_ctx = child->perf_event_ctxp[ctxn];
13105
13106         if (child_ctx && inherited_all) {
13107                 /*
13108                  * Mark the child context as a clone of the parent
13109                  * context, or of whatever the parent is a clone of.
13110                  *
13111                  * Note that if the parent is a clone, the holding of
13112                  * parent_ctx->lock avoids it from being uncloned.
13113                  */
13114                 cloned_ctx = parent_ctx->parent_ctx;
13115                 if (cloned_ctx) {
13116                         child_ctx->parent_ctx = cloned_ctx;
13117                         child_ctx->parent_gen = parent_ctx->parent_gen;
13118                 } else {
13119                         child_ctx->parent_ctx = parent_ctx;
13120                         child_ctx->parent_gen = parent_ctx->generation;
13121                 }
13122                 get_ctx(child_ctx->parent_ctx);
13123         }
13124
13125         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13126 out_unlock:
13127         mutex_unlock(&parent_ctx->mutex);
13128
13129         perf_unpin_context(parent_ctx);
13130         put_ctx(parent_ctx);
13131
13132         return ret;
13133 }
13134
13135 /*
13136  * Initialize the perf_event context in task_struct
13137  */
13138 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13139 {
13140         int ctxn, ret;
13141
13142         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13143         mutex_init(&child->perf_event_mutex);
13144         INIT_LIST_HEAD(&child->perf_event_list);
13145
13146         for_each_task_context_nr(ctxn) {
13147                 ret = perf_event_init_context(child, ctxn, clone_flags);
13148                 if (ret) {
13149                         perf_event_free_task(child);
13150                         return ret;
13151                 }
13152         }
13153
13154         return 0;
13155 }
13156
13157 static void __init perf_event_init_all_cpus(void)
13158 {
13159         struct swevent_htable *swhash;
13160         int cpu;
13161
13162         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13163
13164         for_each_possible_cpu(cpu) {
13165                 swhash = &per_cpu(swevent_htable, cpu);
13166                 mutex_init(&swhash->hlist_mutex);
13167                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13168
13169                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13170                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13171
13172 #ifdef CONFIG_CGROUP_PERF
13173                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13174 #endif
13175                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13176         }
13177 }
13178
13179 static void perf_swevent_init_cpu(unsigned int cpu)
13180 {
13181         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13182
13183         mutex_lock(&swhash->hlist_mutex);
13184         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13185                 struct swevent_hlist *hlist;
13186
13187                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13188                 WARN_ON(!hlist);
13189                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13190         }
13191         mutex_unlock(&swhash->hlist_mutex);
13192 }
13193
13194 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13195 static void __perf_event_exit_context(void *__info)
13196 {
13197         struct perf_event_context *ctx = __info;
13198         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13199         struct perf_event *event;
13200
13201         raw_spin_lock(&ctx->lock);
13202         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13203         list_for_each_entry(event, &ctx->event_list, event_entry)
13204                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13205         raw_spin_unlock(&ctx->lock);
13206 }
13207
13208 static void perf_event_exit_cpu_context(int cpu)
13209 {
13210         struct perf_cpu_context *cpuctx;
13211         struct perf_event_context *ctx;
13212         struct pmu *pmu;
13213
13214         mutex_lock(&pmus_lock);
13215         list_for_each_entry(pmu, &pmus, entry) {
13216                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13217                 ctx = &cpuctx->ctx;
13218
13219                 mutex_lock(&ctx->mutex);
13220                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13221                 cpuctx->online = 0;
13222                 mutex_unlock(&ctx->mutex);
13223         }
13224         cpumask_clear_cpu(cpu, perf_online_mask);
13225         mutex_unlock(&pmus_lock);
13226 }
13227 #else
13228
13229 static void perf_event_exit_cpu_context(int cpu) { }
13230
13231 #endif
13232
13233 int perf_event_init_cpu(unsigned int cpu)
13234 {
13235         struct perf_cpu_context *cpuctx;
13236         struct perf_event_context *ctx;
13237         struct pmu *pmu;
13238
13239         perf_swevent_init_cpu(cpu);
13240
13241         mutex_lock(&pmus_lock);
13242         cpumask_set_cpu(cpu, perf_online_mask);
13243         list_for_each_entry(pmu, &pmus, entry) {
13244                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13245                 ctx = &cpuctx->ctx;
13246
13247                 mutex_lock(&ctx->mutex);
13248                 cpuctx->online = 1;
13249                 mutex_unlock(&ctx->mutex);
13250         }
13251         mutex_unlock(&pmus_lock);
13252
13253         return 0;
13254 }
13255
13256 int perf_event_exit_cpu(unsigned int cpu)
13257 {
13258         perf_event_exit_cpu_context(cpu);
13259         return 0;
13260 }
13261
13262 static int
13263 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13264 {
13265         int cpu;
13266
13267         for_each_online_cpu(cpu)
13268                 perf_event_exit_cpu(cpu);
13269
13270         return NOTIFY_OK;
13271 }
13272
13273 /*
13274  * Run the perf reboot notifier at the very last possible moment so that
13275  * the generic watchdog code runs as long as possible.
13276  */
13277 static struct notifier_block perf_reboot_notifier = {
13278         .notifier_call = perf_reboot,
13279         .priority = INT_MIN,
13280 };
13281
13282 void __init perf_event_init(void)
13283 {
13284         int ret;
13285
13286         idr_init(&pmu_idr);
13287
13288         perf_event_init_all_cpus();
13289         init_srcu_struct(&pmus_srcu);
13290         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13291         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13292         perf_pmu_register(&perf_task_clock, NULL, -1);
13293         perf_tp_register();
13294         perf_event_init_cpu(smp_processor_id());
13295         register_reboot_notifier(&perf_reboot_notifier);
13296
13297         ret = init_hw_breakpoint();
13298         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13299
13300         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13301
13302         /*
13303          * Build time assertion that we keep the data_head at the intended
13304          * location.  IOW, validation we got the __reserved[] size right.
13305          */
13306         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13307                      != 1024);
13308 }
13309
13310 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13311                               char *page)
13312 {
13313         struct perf_pmu_events_attr *pmu_attr =
13314                 container_of(attr, struct perf_pmu_events_attr, attr);
13315
13316         if (pmu_attr->event_str)
13317                 return sprintf(page, "%s\n", pmu_attr->event_str);
13318
13319         return 0;
13320 }
13321 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13322
13323 static int __init perf_event_sysfs_init(void)
13324 {
13325         struct pmu *pmu;
13326         int ret;
13327
13328         mutex_lock(&pmus_lock);
13329
13330         ret = bus_register(&pmu_bus);
13331         if (ret)
13332                 goto unlock;
13333
13334         list_for_each_entry(pmu, &pmus, entry) {
13335                 if (!pmu->name || pmu->type < 0)
13336                         continue;
13337
13338                 ret = pmu_dev_alloc(pmu);
13339                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13340         }
13341         pmu_bus_running = 1;
13342         ret = 0;
13343
13344 unlock:
13345         mutex_unlock(&pmus_lock);
13346
13347         return ret;
13348 }
13349 device_initcall(perf_event_sysfs_init);
13350
13351 #ifdef CONFIG_CGROUP_PERF
13352 static struct cgroup_subsys_state *
13353 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13354 {
13355         struct perf_cgroup *jc;
13356
13357         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13358         if (!jc)
13359                 return ERR_PTR(-ENOMEM);
13360
13361         jc->info = alloc_percpu(struct perf_cgroup_info);
13362         if (!jc->info) {
13363                 kfree(jc);
13364                 return ERR_PTR(-ENOMEM);
13365         }
13366
13367         return &jc->css;
13368 }
13369
13370 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13371 {
13372         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13373
13374         free_percpu(jc->info);
13375         kfree(jc);
13376 }
13377
13378 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13379 {
13380         perf_event_cgroup(css->cgroup);
13381         return 0;
13382 }
13383
13384 static int __perf_cgroup_move(void *info)
13385 {
13386         struct task_struct *task = info;
13387         rcu_read_lock();
13388         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13389         rcu_read_unlock();
13390         return 0;
13391 }
13392
13393 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13394 {
13395         struct task_struct *task;
13396         struct cgroup_subsys_state *css;
13397
13398         cgroup_taskset_for_each(task, css, tset)
13399                 task_function_call(task, __perf_cgroup_move, task);
13400 }
13401
13402 struct cgroup_subsys perf_event_cgrp_subsys = {
13403         .css_alloc      = perf_cgroup_css_alloc,
13404         .css_free       = perf_cgroup_css_free,
13405         .css_online     = perf_cgroup_css_online,
13406         .attach         = perf_cgroup_attach,
13407         /*
13408          * Implicitly enable on dfl hierarchy so that perf events can
13409          * always be filtered by cgroup2 path as long as perf_event
13410          * controller is not mounted on a legacy hierarchy.
13411          */
13412         .implicit_on_dfl = true,
13413         .threaded       = true,
13414 };
13415 #endif /* CONFIG_CGROUP_PERF */