Merge branch 'tip/perf/urgent'
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_CGROUP = 0x10,
379         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381
382 /*
383  * perf_sched_events : >0 events exist
384  */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE         100000
428 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439 static void update_perf_cpu_limits(void)
440 {
441         u64 tmp = perf_sample_period_ns;
442
443         tmp *= sysctl_perf_cpu_time_max_percent;
444         tmp = div_u64(tmp, 100);
445         if (!tmp)
446                 tmp = 1;
447
448         WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454                                        void *buffer, size_t *lenp, loff_t *ppos)
455 {
456         int ret;
457         int perf_cpu = sysctl_perf_cpu_time_max_percent;
458         /*
459          * If throttling is disabled don't allow the write:
460          */
461         if (write && (perf_cpu == 100 || perf_cpu == 0))
462                 return -EINVAL;
463
464         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465         if (ret || !write)
466                 return ret;
467
468         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470         update_perf_cpu_limits();
471
472         return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478                 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482         if (ret || !write)
483                 return ret;
484
485         if (sysctl_perf_cpu_time_max_percent == 100 ||
486             sysctl_perf_cpu_time_max_percent == 0) {
487                 printk(KERN_WARNING
488                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489                 WRITE_ONCE(perf_sample_allowed_ns, 0);
490         } else {
491                 update_perf_cpu_limits();
492         }
493
494         return 0;
495 }
496
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
509 static void perf_duration_warn(struct irq_work *w)
510 {
511         printk_ratelimited(KERN_INFO
512                 "perf: interrupt took too long (%lld > %lld), lowering "
513                 "kernel.perf_event_max_sample_rate to %d\n",
514                 __report_avg, __report_allowed,
515                 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523         u64 running_len;
524         u64 avg_len;
525         u32 max;
526
527         if (max_len == 0)
528                 return;
529
530         /* Decay the counter by 1 average sample. */
531         running_len = __this_cpu_read(running_sample_length);
532         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533         running_len += sample_len_ns;
534         __this_cpu_write(running_sample_length, running_len);
535
536         /*
537          * Note: this will be biased artifically low until we have
538          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539          * from having to maintain a count.
540          */
541         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542         if (avg_len <= max_len)
543                 return;
544
545         __report_avg = avg_len;
546         __report_allowed = max_len;
547
548         /*
549          * Compute a throttle threshold 25% below the current duration.
550          */
551         avg_len += avg_len / 4;
552         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553         if (avg_len < max)
554                 max /= (u32)avg_len;
555         else
556                 max = 1;
557
558         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559         WRITE_ONCE(max_samples_per_tick, max);
560
561         sysctl_perf_event_sample_rate = max * HZ;
562         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564         if (!irq_work_queue(&perf_duration_work)) {
565                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566                              "kernel.perf_event_max_sample_rate to %d\n",
567                              __report_avg, __report_allowed,
568                              sysctl_perf_event_sample_rate);
569         }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
577 void __weak perf_event_print_debug(void)        { }
578
579 static inline u64 perf_clock(void)
580 {
581         return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586         return event->clock();
587 }
588
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614         struct perf_event *leader = event->group_leader;
615
616         if (leader->state <= PERF_EVENT_STATE_OFF)
617                 return leader->state;
618
619         return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625         enum perf_event_state state = __perf_effective_state(event);
626         u64 delta = now - event->tstamp;
627
628         *enabled = event->total_time_enabled;
629         if (state >= PERF_EVENT_STATE_INACTIVE)
630                 *enabled += delta;
631
632         *running = event->total_time_running;
633         if (state >= PERF_EVENT_STATE_ACTIVE)
634                 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639         u64 now = perf_event_time(event);
640
641         __perf_update_times(event, now, &event->total_time_enabled,
642                                         &event->total_time_running);
643         event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648         struct perf_event *sibling;
649
650         for_each_sibling_event(sibling, leader)
651                 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657         if (event->state == state)
658                 return;
659
660         perf_event_update_time(event);
661         /*
662          * If a group leader gets enabled/disabled all its siblings
663          * are affected too.
664          */
665         if ((event->state < 0) ^ (state < 0))
666                 perf_event_update_sibling_time(event);
667
668         WRITE_ONCE(event->state, state);
669 }
670
671 /*
672  * UP store-release, load-acquire
673  */
674
675 #define __store_release(ptr, val)                                       \
676 do {                                                                    \
677         barrier();                                                      \
678         WRITE_ONCE(*(ptr), (val));                                      \
679 } while (0)
680
681 #define __load_acquire(ptr)                                             \
682 ({                                                                      \
683         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
684         barrier();                                                      \
685         ___p;                                                           \
686 })
687
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690         struct perf_event_pmu_context *pmu_ctx;
691
692         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693                 if (cgroup && !pmu_ctx->nr_cgroups)
694                         continue;
695                 perf_pmu_disable(pmu_ctx->pmu);
696         }
697 }
698
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701         struct perf_event_pmu_context *pmu_ctx;
702
703         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704                 if (cgroup && !pmu_ctx->nr_cgroups)
705                         continue;
706                 perf_pmu_enable(pmu_ctx->pmu);
707         }
708 }
709
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713 #ifdef CONFIG_CGROUP_PERF
714
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720         /* @event doesn't care about cgroup */
721         if (!event->cgrp)
722                 return true;
723
724         /* wants specific cgroup scope but @cpuctx isn't associated with any */
725         if (!cpuctx->cgrp)
726                 return false;
727
728         /*
729          * Cgroup scoping is recursive.  An event enabled for a cgroup is
730          * also enabled for all its descendant cgroups.  If @cpuctx's
731          * cgroup is a descendant of @event's (the test covers identity
732          * case), it's a match.
733          */
734         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735                                     event->cgrp->css.cgroup);
736 }
737
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740         css_put(&event->cgrp->css);
741         event->cgrp = NULL;
742 }
743
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746         return event->cgrp != NULL;
747 }
748
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751         struct perf_cgroup_info *t;
752
753         t = per_cpu_ptr(event->cgrp->info, event->cpu);
754         return t->time;
755 }
756
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759         struct perf_cgroup_info *t;
760
761         t = per_cpu_ptr(event->cgrp->info, event->cpu);
762         if (!__load_acquire(&t->active))
763                 return t->time;
764         now += READ_ONCE(t->timeoffset);
765         return now;
766 }
767
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770         if (adv)
771                 info->time += now - info->timestamp;
772         info->timestamp = now;
773         /*
774          * see update_context_time()
775          */
776         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781         struct perf_cgroup *cgrp = cpuctx->cgrp;
782         struct cgroup_subsys_state *css;
783         struct perf_cgroup_info *info;
784
785         if (cgrp) {
786                 u64 now = perf_clock();
787
788                 for (css = &cgrp->css; css; css = css->parent) {
789                         cgrp = container_of(css, struct perf_cgroup, css);
790                         info = this_cpu_ptr(cgrp->info);
791
792                         __update_cgrp_time(info, now, true);
793                         if (final)
794                                 __store_release(&info->active, 0);
795                 }
796         }
797 }
798
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801         struct perf_cgroup_info *info;
802
803         /*
804          * ensure we access cgroup data only when needed and
805          * when we know the cgroup is pinned (css_get)
806          */
807         if (!is_cgroup_event(event))
808                 return;
809
810         info = this_cpu_ptr(event->cgrp->info);
811         /*
812          * Do not update time when cgroup is not active
813          */
814         if (info->active)
815                 __update_cgrp_time(info, perf_clock(), true);
816 }
817
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821         struct perf_event_context *ctx = &cpuctx->ctx;
822         struct perf_cgroup *cgrp = cpuctx->cgrp;
823         struct perf_cgroup_info *info;
824         struct cgroup_subsys_state *css;
825
826         /*
827          * ctx->lock held by caller
828          * ensure we do not access cgroup data
829          * unless we have the cgroup pinned (css_get)
830          */
831         if (!cgrp)
832                 return;
833
834         WARN_ON_ONCE(!ctx->nr_cgroups);
835
836         for (css = &cgrp->css; css; css = css->parent) {
837                 cgrp = container_of(css, struct perf_cgroup, css);
838                 info = this_cpu_ptr(cgrp->info);
839                 __update_cgrp_time(info, ctx->timestamp, false);
840                 __store_release(&info->active, 1);
841         }
842 }
843
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850         struct perf_cgroup *cgrp;
851
852         /*
853          * cpuctx->cgrp is set when the first cgroup event enabled,
854          * and is cleared when the last cgroup event disabled.
855          */
856         if (READ_ONCE(cpuctx->cgrp) == NULL)
857                 return;
858
859         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861         cgrp = perf_cgroup_from_task(task, NULL);
862         if (READ_ONCE(cpuctx->cgrp) == cgrp)
863                 return;
864
865         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866         perf_ctx_disable(&cpuctx->ctx, true);
867
868         ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869         /*
870          * must not be done before ctxswout due
871          * to update_cgrp_time_from_cpuctx() in
872          * ctx_sched_out()
873          */
874         cpuctx->cgrp = cgrp;
875         /*
876          * set cgrp before ctxsw in to allow
877          * perf_cgroup_set_timestamp() in ctx_sched_in()
878          * to not have to pass task around
879          */
880         ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881
882         perf_ctx_enable(&cpuctx->ctx, true);
883         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887                                 struct cgroup_subsys_state *css)
888 {
889         struct perf_cpu_context *cpuctx;
890         struct perf_event **storage;
891         int cpu, heap_size, ret = 0;
892
893         /*
894          * Allow storage to have sufficent space for an iterator for each
895          * possibly nested cgroup plus an iterator for events with no cgroup.
896          */
897         for (heap_size = 1; css; css = css->parent)
898                 heap_size++;
899
900         for_each_possible_cpu(cpu) {
901                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902                 if (heap_size <= cpuctx->heap_size)
903                         continue;
904
905                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906                                        GFP_KERNEL, cpu_to_node(cpu));
907                 if (!storage) {
908                         ret = -ENOMEM;
909                         break;
910                 }
911
912                 raw_spin_lock_irq(&cpuctx->ctx.lock);
913                 if (cpuctx->heap_size < heap_size) {
914                         swap(cpuctx->heap, storage);
915                         if (storage == cpuctx->heap_default)
916                                 storage = NULL;
917                         cpuctx->heap_size = heap_size;
918                 }
919                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921                 kfree(storage);
922         }
923
924         return ret;
925 }
926
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928                                       struct perf_event_attr *attr,
929                                       struct perf_event *group_leader)
930 {
931         struct perf_cgroup *cgrp;
932         struct cgroup_subsys_state *css;
933         struct fd f = fdget(fd);
934         int ret = 0;
935
936         if (!f.file)
937                 return -EBADF;
938
939         css = css_tryget_online_from_dir(f.file->f_path.dentry,
940                                          &perf_event_cgrp_subsys);
941         if (IS_ERR(css)) {
942                 ret = PTR_ERR(css);
943                 goto out;
944         }
945
946         ret = perf_cgroup_ensure_storage(event, css);
947         if (ret)
948                 goto out;
949
950         cgrp = container_of(css, struct perf_cgroup, css);
951         event->cgrp = cgrp;
952
953         /*
954          * all events in a group must monitor
955          * the same cgroup because a task belongs
956          * to only one perf cgroup at a time
957          */
958         if (group_leader && group_leader->cgrp != cgrp) {
959                 perf_detach_cgroup(event);
960                 ret = -EINVAL;
961         }
962 out:
963         fdput(f);
964         return ret;
965 }
966
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970         struct perf_cpu_context *cpuctx;
971
972         if (!is_cgroup_event(event))
973                 return;
974
975         event->pmu_ctx->nr_cgroups++;
976
977         /*
978          * Because cgroup events are always per-cpu events,
979          * @ctx == &cpuctx->ctx.
980          */
981         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983         if (ctx->nr_cgroups++)
984                 return;
985
986         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992         struct perf_cpu_context *cpuctx;
993
994         if (!is_cgroup_event(event))
995                 return;
996
997         event->pmu_ctx->nr_cgroups--;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         if (--ctx->nr_cgroups)
1006                 return;
1007
1008         cpuctx->cgrp = NULL;
1009 }
1010
1011 #else /* !CONFIG_CGROUP_PERF */
1012
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016         return true;
1017 }
1018
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024         return 0;
1025 }
1026
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032                                                 bool final)
1033 {
1034 }
1035
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037                                       struct perf_event_attr *attr,
1038                                       struct perf_event *group_leader)
1039 {
1040         return -EINVAL;
1041 }
1042
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050         return 0;
1051 }
1052
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055         return 0;
1056 }
1057
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083         struct perf_cpu_pmu_context *cpc;
1084         bool rotations;
1085
1086         lockdep_assert_irqs_disabled();
1087
1088         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089         rotations = perf_rotate_context(cpc);
1090
1091         raw_spin_lock(&cpc->hrtimer_lock);
1092         if (rotations)
1093                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094         else
1095                 cpc->hrtimer_active = 0;
1096         raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103         struct hrtimer *timer = &cpc->hrtimer;
1104         struct pmu *pmu = cpc->epc.pmu;
1105         u64 interval;
1106
1107         /*
1108          * check default is sane, if not set then force to
1109          * default interval (1/tick)
1110          */
1111         interval = pmu->hrtimer_interval_ms;
1112         if (interval < 1)
1113                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117         raw_spin_lock_init(&cpc->hrtimer_lock);
1118         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119         timer->function = perf_mux_hrtimer_handler;
1120 }
1121
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124         struct hrtimer *timer = &cpc->hrtimer;
1125         unsigned long flags;
1126
1127         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128         if (!cpc->hrtimer_active) {
1129                 cpc->hrtimer_active = 1;
1130                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132         }
1133         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135         return 0;
1136 }
1137
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140         return perf_mux_hrtimer_restart(arg);
1141 }
1142
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!(*count)++)
1147                 pmu->pmu_disable(pmu);
1148 }
1149
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153         if (!--(*count))
1154                 pmu->pmu_enable(pmu);
1155 }
1156
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164         refcount_inc(&ctx->refcount);
1165 }
1166
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169         if (pmu->task_ctx_cache)
1170                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
1172         return NULL;
1173 }
1174
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177         if (pmu->task_ctx_cache && task_ctx_data)
1178                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183         struct perf_event_context *ctx;
1184
1185         ctx = container_of(head, struct perf_event_context, rcu_head);
1186         kfree(ctx);
1187 }
1188
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191         if (refcount_dec_and_test(&ctx->refcount)) {
1192                 if (ctx->parent_ctx)
1193                         put_ctx(ctx->parent_ctx);
1194                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195                         put_task_struct(ctx->task);
1196                 call_rcu(&ctx->rcu_head, free_ctx);
1197         }
1198 }
1199
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()    [ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()                   [ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()         [ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event() [ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *      task_struct::perf_event_mutex
1255  *        perf_event_context::mutex
1256  *          perf_event::child_mutex;
1257  *            perf_event_context::lock
1258  *          perf_event::mmap_mutex
1259  *          mmap_lock
1260  *            perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *        cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269         struct perf_event_context *ctx;
1270
1271 again:
1272         rcu_read_lock();
1273         ctx = READ_ONCE(event->ctx);
1274         if (!refcount_inc_not_zero(&ctx->refcount)) {
1275                 rcu_read_unlock();
1276                 goto again;
1277         }
1278         rcu_read_unlock();
1279
1280         mutex_lock_nested(&ctx->mutex, nesting);
1281         if (event->ctx != ctx) {
1282                 mutex_unlock(&ctx->mutex);
1283                 put_ctx(ctx);
1284                 goto again;
1285         }
1286
1287         return ctx;
1288 }
1289
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293         return perf_event_ctx_lock_nested(event, 0);
1294 }
1295
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297                                   struct perf_event_context *ctx)
1298 {
1299         mutex_unlock(&ctx->mutex);
1300         put_ctx(ctx);
1301 }
1302
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313         lockdep_assert_held(&ctx->lock);
1314
1315         if (parent_ctx)
1316                 ctx->parent_ctx = NULL;
1317         ctx->generation++;
1318
1319         return parent_ctx;
1320 }
1321
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323                                 enum pid_type type)
1324 {
1325         u32 nr;
1326         /*
1327          * only top level events have the pid namespace they were created in
1328          */
1329         if (event->parent)
1330                 event = event->parent;
1331
1332         nr = __task_pid_nr_ns(p, type, event->ns);
1333         /* avoid -1 if it is idle thread or runs in another ns */
1334         if (!nr && !pid_alive(p))
1335                 nr = -1;
1336         return nr;
1337 }
1338
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346         return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355         u64 id = event->id;
1356
1357         if (event->parent)
1358                 id = event->parent->id;
1359
1360         return id;
1361 }
1362
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372         struct perf_event_context *ctx;
1373
1374 retry:
1375         /*
1376          * One of the few rules of preemptible RCU is that one cannot do
1377          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378          * part of the read side critical section was irqs-enabled -- see
1379          * rcu_read_unlock_special().
1380          *
1381          * Since ctx->lock nests under rq->lock we must ensure the entire read
1382          * side critical section has interrupts disabled.
1383          */
1384         local_irq_save(*flags);
1385         rcu_read_lock();
1386         ctx = rcu_dereference(task->perf_event_ctxp);
1387         if (ctx) {
1388                 /*
1389                  * If this context is a clone of another, it might
1390                  * get swapped for another underneath us by
1391                  * perf_event_task_sched_out, though the
1392                  * rcu_read_lock() protects us from any context
1393                  * getting freed.  Lock the context and check if it
1394                  * got swapped before we could get the lock, and retry
1395                  * if so.  If we locked the right context, then it
1396                  * can't get swapped on us any more.
1397                  */
1398                 raw_spin_lock(&ctx->lock);
1399                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400                         raw_spin_unlock(&ctx->lock);
1401                         rcu_read_unlock();
1402                         local_irq_restore(*flags);
1403                         goto retry;
1404                 }
1405
1406                 if (ctx->task == TASK_TOMBSTONE ||
1407                     !refcount_inc_not_zero(&ctx->refcount)) {
1408                         raw_spin_unlock(&ctx->lock);
1409                         ctx = NULL;
1410                 } else {
1411                         WARN_ON_ONCE(ctx->task != task);
1412                 }
1413         }
1414         rcu_read_unlock();
1415         if (!ctx)
1416                 local_irq_restore(*flags);
1417         return ctx;
1418 }
1419
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428         struct perf_event_context *ctx;
1429         unsigned long flags;
1430
1431         ctx = perf_lock_task_context(task, &flags);
1432         if (ctx) {
1433                 ++ctx->pin_count;
1434                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435         }
1436         return ctx;
1437 }
1438
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441         unsigned long flags;
1442
1443         raw_spin_lock_irqsave(&ctx->lock, flags);
1444         --ctx->pin_count;
1445         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453         u64 now = perf_clock();
1454
1455         lockdep_assert_held(&ctx->lock);
1456
1457         if (adv)
1458                 ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460
1461         /*
1462          * The above: time' = time + (now - timestamp), can be re-arranged
1463          * into: time` = now + (time - timestamp), which gives a single value
1464          * offset to compute future time without locks on.
1465          *
1466          * See perf_event_time_now(), which can be used from NMI context where
1467          * it's (obviously) not possible to acquire ctx->lock in order to read
1468          * both the above values in a consistent manner.
1469          */
1470         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475         __update_context_time(ctx, true);
1476 }
1477
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480         struct perf_event_context *ctx = event->ctx;
1481
1482         if (unlikely(!ctx))
1483                 return 0;
1484
1485         if (is_cgroup_event(event))
1486                 return perf_cgroup_event_time(event);
1487
1488         return ctx->time;
1489 }
1490
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493         struct perf_event_context *ctx = event->ctx;
1494
1495         if (unlikely(!ctx))
1496                 return 0;
1497
1498         if (is_cgroup_event(event))
1499                 return perf_cgroup_event_time_now(event, now);
1500
1501         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502                 return ctx->time;
1503
1504         now += READ_ONCE(ctx->timeoffset);
1505         return now;
1506 }
1507
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510         struct perf_event_context *ctx = event->ctx;
1511         enum event_type_t event_type;
1512
1513         lockdep_assert_held(&ctx->lock);
1514
1515         /*
1516          * It's 'group type', really, because if our group leader is
1517          * pinned, so are we.
1518          */
1519         if (event->group_leader != event)
1520                 event = event->group_leader;
1521
1522         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523         if (!ctx->task)
1524                 event_type |= EVENT_CPU;
1525
1526         return event_type;
1527 }
1528
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534         RB_CLEAR_NODE(&event->group_node);
1535         event->group_index = 0;
1536 }
1537
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545         if (event->attr.pinned)
1546                 return &ctx->pinned_groups;
1547         else
1548                 return &ctx->flexible_groups;
1549 }
1550
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556         groups->tree = RB_ROOT;
1557         groups->index = 0;
1558 }
1559
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562         struct cgroup *cgroup = NULL;
1563
1564 #ifdef CONFIG_CGROUP_PERF
1565         if (event->cgrp)
1566                 cgroup = event->cgrp->css.cgroup;
1567 #endif
1568
1569         return cgroup;
1570 }
1571
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580                       const struct cgroup *left_cgroup, const u64 left_group_index,
1581                       const struct perf_event *right)
1582 {
1583         if (left_cpu < right->cpu)
1584                 return -1;
1585         if (left_cpu > right->cpu)
1586                 return 1;
1587
1588         if (left_pmu) {
1589                 if (left_pmu < right->pmu_ctx->pmu)
1590                         return -1;
1591                 if (left_pmu > right->pmu_ctx->pmu)
1592                         return 1;
1593         }
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596         {
1597                 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599                 if (left_cgroup != right_cgroup) {
1600                         if (!left_cgroup) {
1601                                 /*
1602                                  * Left has no cgroup but right does, no
1603                                  * cgroups come first.
1604                                  */
1605                                 return -1;
1606                         }
1607                         if (!right_cgroup) {
1608                                 /*
1609                                  * Right has no cgroup but left does, no
1610                                  * cgroups come first.
1611                                  */
1612                                 return 1;
1613                         }
1614                         /* Two dissimilar cgroups, order by id. */
1615                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616                                 return -1;
1617
1618                         return 1;
1619                 }
1620         }
1621 #endif
1622
1623         if (left_group_index < right->group_index)
1624                 return -1;
1625         if (left_group_index > right->group_index)
1626                 return 1;
1627
1628         return 0;
1629 }
1630
1631 #define __node_2_pe(node) \
1632         rb_entry((node), struct perf_event, group_node)
1633
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636         struct perf_event *e = __node_2_pe(a);
1637         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638                                      e->group_index, __node_2_pe(b)) < 0;
1639 }
1640
1641 struct __group_key {
1642         int cpu;
1643         struct pmu *pmu;
1644         struct cgroup *cgroup;
1645 };
1646
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649         const struct __group_key *a = key;
1650         const struct perf_event *b = __node_2_pe(node);
1651
1652         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659         const struct __group_key *a = key;
1660         const struct perf_event *b = __node_2_pe(node);
1661
1662         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664                                      b->group_index, b);
1665 }
1666
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674                          struct perf_event *event)
1675 {
1676         event->group_index = ++groups->index;
1677
1678         rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687         struct perf_event_groups *groups;
1688
1689         groups = get_event_groups(event, ctx);
1690         perf_event_groups_insert(groups, event);
1691 }
1692
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698                          struct perf_event *event)
1699 {
1700         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701                      RB_EMPTY_ROOT(&groups->tree));
1702
1703         rb_erase(&event->group_node, &groups->tree);
1704         init_event_group(event);
1705 }
1706
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713         struct perf_event_groups *groups;
1714
1715         groups = get_event_groups(event, ctx);
1716         perf_event_groups_delete(groups, event);
1717 }
1718
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724                         struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726         struct __group_key key = {
1727                 .cpu = cpu,
1728                 .pmu = pmu,
1729                 .cgroup = cgrp,
1730         };
1731         struct rb_node *node;
1732
1733         node = rb_find_first(&key, &groups->tree, __group_cmp);
1734         if (node)
1735                 return __node_2_pe(node);
1736
1737         return NULL;
1738 }
1739
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743         struct __group_key key = {
1744                 .cpu = event->cpu,
1745                 .pmu = pmu,
1746                 .cgroup = event_cgroup(event),
1747         };
1748         struct rb_node *next;
1749
1750         next = rb_next_match(&key, &event->group_node, __group_cmp);
1751         if (next)
1752                 return __node_2_pe(next);
1753
1754         return NULL;
1755 }
1756
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1758         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1759              event; event = perf_event_groups_next(event, pmu))
1760
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)                       \
1765         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1766                                 typeof(*event), group_node); event;     \
1767                 event = rb_entry_safe(rb_next(&event->group_node),      \
1768                                 typeof(*event), group_node))
1769
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777         lockdep_assert_held(&ctx->lock);
1778
1779         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780         event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782         event->tstamp = perf_event_time(event);
1783
1784         /*
1785          * If we're a stand alone event or group leader, we go to the context
1786          * list, group events are kept attached to the group so that
1787          * perf_group_detach can, at all times, locate all siblings.
1788          */
1789         if (event->group_leader == event) {
1790                 event->group_caps = event->event_caps;
1791                 add_event_to_groups(event, ctx);
1792         }
1793
1794         list_add_rcu(&event->event_entry, &ctx->event_list);
1795         ctx->nr_events++;
1796         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797                 ctx->nr_user++;
1798         if (event->attr.inherit_stat)
1799                 ctx->nr_stat++;
1800
1801         if (event->state > PERF_EVENT_STATE_OFF)
1802                 perf_cgroup_event_enable(event, ctx);
1803
1804         ctx->generation++;
1805         event->pmu_ctx->nr_events++;
1806 }
1807
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814                                               PERF_EVENT_STATE_INACTIVE;
1815 }
1816
1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1818 {
1819         int entry = sizeof(u64); /* value */
1820         int size = 0;
1821         int nr = 1;
1822
1823         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824                 size += sizeof(u64);
1825
1826         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827                 size += sizeof(u64);
1828
1829         if (event->attr.read_format & PERF_FORMAT_ID)
1830                 entry += sizeof(u64);
1831
1832         if (event->attr.read_format & PERF_FORMAT_LOST)
1833                 entry += sizeof(u64);
1834
1835         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1836                 nr += nr_siblings;
1837                 size += sizeof(u64);
1838         }
1839
1840         size += entry * nr;
1841         event->read_size = size;
1842 }
1843
1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1845 {
1846         struct perf_sample_data *data;
1847         u16 size = 0;
1848
1849         if (sample_type & PERF_SAMPLE_IP)
1850                 size += sizeof(data->ip);
1851
1852         if (sample_type & PERF_SAMPLE_ADDR)
1853                 size += sizeof(data->addr);
1854
1855         if (sample_type & PERF_SAMPLE_PERIOD)
1856                 size += sizeof(data->period);
1857
1858         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1859                 size += sizeof(data->weight.full);
1860
1861         if (sample_type & PERF_SAMPLE_READ)
1862                 size += event->read_size;
1863
1864         if (sample_type & PERF_SAMPLE_DATA_SRC)
1865                 size += sizeof(data->data_src.val);
1866
1867         if (sample_type & PERF_SAMPLE_TRANSACTION)
1868                 size += sizeof(data->txn);
1869
1870         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1871                 size += sizeof(data->phys_addr);
1872
1873         if (sample_type & PERF_SAMPLE_CGROUP)
1874                 size += sizeof(data->cgroup);
1875
1876         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1877                 size += sizeof(data->data_page_size);
1878
1879         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1880                 size += sizeof(data->code_page_size);
1881
1882         event->header_size = size;
1883 }
1884
1885 /*
1886  * Called at perf_event creation and when events are attached/detached from a
1887  * group.
1888  */
1889 static void perf_event__header_size(struct perf_event *event)
1890 {
1891         __perf_event_read_size(event,
1892                                event->group_leader->nr_siblings);
1893         __perf_event_header_size(event, event->attr.sample_type);
1894 }
1895
1896 static void perf_event__id_header_size(struct perf_event *event)
1897 {
1898         struct perf_sample_data *data;
1899         u64 sample_type = event->attr.sample_type;
1900         u16 size = 0;
1901
1902         if (sample_type & PERF_SAMPLE_TID)
1903                 size += sizeof(data->tid_entry);
1904
1905         if (sample_type & PERF_SAMPLE_TIME)
1906                 size += sizeof(data->time);
1907
1908         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1909                 size += sizeof(data->id);
1910
1911         if (sample_type & PERF_SAMPLE_ID)
1912                 size += sizeof(data->id);
1913
1914         if (sample_type & PERF_SAMPLE_STREAM_ID)
1915                 size += sizeof(data->stream_id);
1916
1917         if (sample_type & PERF_SAMPLE_CPU)
1918                 size += sizeof(data->cpu_entry);
1919
1920         event->id_header_size = size;
1921 }
1922
1923 static bool perf_event_validate_size(struct perf_event *event)
1924 {
1925         /*
1926          * The values computed here will be over-written when we actually
1927          * attach the event.
1928          */
1929         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1930         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1931         perf_event__id_header_size(event);
1932
1933         /*
1934          * Sum the lot; should not exceed the 64k limit we have on records.
1935          * Conservative limit to allow for callchains and other variable fields.
1936          */
1937         if (event->read_size + event->header_size +
1938             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1939                 return false;
1940
1941         return true;
1942 }
1943
1944 static void perf_group_attach(struct perf_event *event)
1945 {
1946         struct perf_event *group_leader = event->group_leader, *pos;
1947
1948         lockdep_assert_held(&event->ctx->lock);
1949
1950         /*
1951          * We can have double attach due to group movement (move_group) in
1952          * perf_event_open().
1953          */
1954         if (event->attach_state & PERF_ATTACH_GROUP)
1955                 return;
1956
1957         event->attach_state |= PERF_ATTACH_GROUP;
1958
1959         if (group_leader == event)
1960                 return;
1961
1962         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1963
1964         group_leader->group_caps &= event->event_caps;
1965
1966         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1967         group_leader->nr_siblings++;
1968         group_leader->group_generation++;
1969
1970         perf_event__header_size(group_leader);
1971
1972         for_each_sibling_event(pos, group_leader)
1973                 perf_event__header_size(pos);
1974 }
1975
1976 /*
1977  * Remove an event from the lists for its context.
1978  * Must be called with ctx->mutex and ctx->lock held.
1979  */
1980 static void
1981 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1982 {
1983         WARN_ON_ONCE(event->ctx != ctx);
1984         lockdep_assert_held(&ctx->lock);
1985
1986         /*
1987          * We can have double detach due to exit/hot-unplug + close.
1988          */
1989         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1990                 return;
1991
1992         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1993
1994         ctx->nr_events--;
1995         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1996                 ctx->nr_user--;
1997         if (event->attr.inherit_stat)
1998                 ctx->nr_stat--;
1999
2000         list_del_rcu(&event->event_entry);
2001
2002         if (event->group_leader == event)
2003                 del_event_from_groups(event, ctx);
2004
2005         /*
2006          * If event was in error state, then keep it
2007          * that way, otherwise bogus counts will be
2008          * returned on read(). The only way to get out
2009          * of error state is by explicit re-enabling
2010          * of the event
2011          */
2012         if (event->state > PERF_EVENT_STATE_OFF) {
2013                 perf_cgroup_event_disable(event, ctx);
2014                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2015         }
2016
2017         ctx->generation++;
2018         event->pmu_ctx->nr_events--;
2019 }
2020
2021 static int
2022 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2023 {
2024         if (!has_aux(aux_event))
2025                 return 0;
2026
2027         if (!event->pmu->aux_output_match)
2028                 return 0;
2029
2030         return event->pmu->aux_output_match(aux_event);
2031 }
2032
2033 static void put_event(struct perf_event *event);
2034 static void event_sched_out(struct perf_event *event,
2035                             struct perf_event_context *ctx);
2036
2037 static void perf_put_aux_event(struct perf_event *event)
2038 {
2039         struct perf_event_context *ctx = event->ctx;
2040         struct perf_event *iter;
2041
2042         /*
2043          * If event uses aux_event tear down the link
2044          */
2045         if (event->aux_event) {
2046                 iter = event->aux_event;
2047                 event->aux_event = NULL;
2048                 put_event(iter);
2049                 return;
2050         }
2051
2052         /*
2053          * If the event is an aux_event, tear down all links to
2054          * it from other events.
2055          */
2056         for_each_sibling_event(iter, event->group_leader) {
2057                 if (iter->aux_event != event)
2058                         continue;
2059
2060                 iter->aux_event = NULL;
2061                 put_event(event);
2062
2063                 /*
2064                  * If it's ACTIVE, schedule it out and put it into ERROR
2065                  * state so that we don't try to schedule it again. Note
2066                  * that perf_event_enable() will clear the ERROR status.
2067                  */
2068                 event_sched_out(iter, ctx);
2069                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2070         }
2071 }
2072
2073 static bool perf_need_aux_event(struct perf_event *event)
2074 {
2075         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2076 }
2077
2078 static int perf_get_aux_event(struct perf_event *event,
2079                               struct perf_event *group_leader)
2080 {
2081         /*
2082          * Our group leader must be an aux event if we want to be
2083          * an aux_output. This way, the aux event will precede its
2084          * aux_output events in the group, and therefore will always
2085          * schedule first.
2086          */
2087         if (!group_leader)
2088                 return 0;
2089
2090         /*
2091          * aux_output and aux_sample_size are mutually exclusive.
2092          */
2093         if (event->attr.aux_output && event->attr.aux_sample_size)
2094                 return 0;
2095
2096         if (event->attr.aux_output &&
2097             !perf_aux_output_match(event, group_leader))
2098                 return 0;
2099
2100         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2101                 return 0;
2102
2103         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2104                 return 0;
2105
2106         /*
2107          * Link aux_outputs to their aux event; this is undone in
2108          * perf_group_detach() by perf_put_aux_event(). When the
2109          * group in torn down, the aux_output events loose their
2110          * link to the aux_event and can't schedule any more.
2111          */
2112         event->aux_event = group_leader;
2113
2114         return 1;
2115 }
2116
2117 static inline struct list_head *get_event_list(struct perf_event *event)
2118 {
2119         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2120                                     &event->pmu_ctx->flexible_active;
2121 }
2122
2123 /*
2124  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2125  * cannot exist on their own, schedule them out and move them into the ERROR
2126  * state. Also see _perf_event_enable(), it will not be able to recover
2127  * this ERROR state.
2128  */
2129 static inline void perf_remove_sibling_event(struct perf_event *event)
2130 {
2131         event_sched_out(event, event->ctx);
2132         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2133 }
2134
2135 static void perf_group_detach(struct perf_event *event)
2136 {
2137         struct perf_event *leader = event->group_leader;
2138         struct perf_event *sibling, *tmp;
2139         struct perf_event_context *ctx = event->ctx;
2140
2141         lockdep_assert_held(&ctx->lock);
2142
2143         /*
2144          * We can have double detach due to exit/hot-unplug + close.
2145          */
2146         if (!(event->attach_state & PERF_ATTACH_GROUP))
2147                 return;
2148
2149         event->attach_state &= ~PERF_ATTACH_GROUP;
2150
2151         perf_put_aux_event(event);
2152
2153         /*
2154          * If this is a sibling, remove it from its group.
2155          */
2156         if (leader != event) {
2157                 list_del_init(&event->sibling_list);
2158                 event->group_leader->nr_siblings--;
2159                 event->group_leader->group_generation++;
2160                 goto out;
2161         }
2162
2163         /*
2164          * If this was a group event with sibling events then
2165          * upgrade the siblings to singleton events by adding them
2166          * to whatever list we are on.
2167          */
2168         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2169
2170                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2171                         perf_remove_sibling_event(sibling);
2172
2173                 sibling->group_leader = sibling;
2174                 list_del_init(&sibling->sibling_list);
2175
2176                 /* Inherit group flags from the previous leader */
2177                 sibling->group_caps = event->group_caps;
2178
2179                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2180                         add_event_to_groups(sibling, event->ctx);
2181
2182                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2183                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2184                 }
2185
2186                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2187         }
2188
2189 out:
2190         for_each_sibling_event(tmp, leader)
2191                 perf_event__header_size(tmp);
2192
2193         perf_event__header_size(leader);
2194 }
2195
2196 static void sync_child_event(struct perf_event *child_event);
2197
2198 static void perf_child_detach(struct perf_event *event)
2199 {
2200         struct perf_event *parent_event = event->parent;
2201
2202         if (!(event->attach_state & PERF_ATTACH_CHILD))
2203                 return;
2204
2205         event->attach_state &= ~PERF_ATTACH_CHILD;
2206
2207         if (WARN_ON_ONCE(!parent_event))
2208                 return;
2209
2210         lockdep_assert_held(&parent_event->child_mutex);
2211
2212         sync_child_event(event);
2213         list_del_init(&event->child_list);
2214 }
2215
2216 static bool is_orphaned_event(struct perf_event *event)
2217 {
2218         return event->state == PERF_EVENT_STATE_DEAD;
2219 }
2220
2221 static inline int
2222 event_filter_match(struct perf_event *event)
2223 {
2224         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2225                perf_cgroup_match(event);
2226 }
2227
2228 static void
2229 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2230 {
2231         struct perf_event_pmu_context *epc = event->pmu_ctx;
2232         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2233         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2234
2235         // XXX cpc serialization, probably per-cpu IRQ disabled
2236
2237         WARN_ON_ONCE(event->ctx != ctx);
2238         lockdep_assert_held(&ctx->lock);
2239
2240         if (event->state != PERF_EVENT_STATE_ACTIVE)
2241                 return;
2242
2243         /*
2244          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2245          * we can schedule events _OUT_ individually through things like
2246          * __perf_remove_from_context().
2247          */
2248         list_del_init(&event->active_list);
2249
2250         perf_pmu_disable(event->pmu);
2251
2252         event->pmu->del(event, 0);
2253         event->oncpu = -1;
2254
2255         if (event->pending_disable) {
2256                 event->pending_disable = 0;
2257                 perf_cgroup_event_disable(event, ctx);
2258                 state = PERF_EVENT_STATE_OFF;
2259         }
2260
2261         if (event->pending_sigtrap) {
2262                 bool dec = true;
2263
2264                 event->pending_sigtrap = 0;
2265                 if (state != PERF_EVENT_STATE_OFF &&
2266                     !event->pending_work) {
2267                         event->pending_work = 1;
2268                         dec = false;
2269                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2270                         task_work_add(current, &event->pending_task, TWA_RESUME);
2271                 }
2272                 if (dec)
2273                         local_dec(&event->ctx->nr_pending);
2274         }
2275
2276         perf_event_set_state(event, state);
2277
2278         if (!is_software_event(event))
2279                 cpc->active_oncpu--;
2280         if (event->attr.freq && event->attr.sample_freq)
2281                 ctx->nr_freq--;
2282         if (event->attr.exclusive || !cpc->active_oncpu)
2283                 cpc->exclusive = 0;
2284
2285         perf_pmu_enable(event->pmu);
2286 }
2287
2288 static void
2289 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2290 {
2291         struct perf_event *event;
2292
2293         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2294                 return;
2295
2296         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2297
2298         event_sched_out(group_event, ctx);
2299
2300         /*
2301          * Schedule out siblings (if any):
2302          */
2303         for_each_sibling_event(event, group_event)
2304                 event_sched_out(event, ctx);
2305 }
2306
2307 #define DETACH_GROUP    0x01UL
2308 #define DETACH_CHILD    0x02UL
2309 #define DETACH_DEAD     0x04UL
2310
2311 /*
2312  * Cross CPU call to remove a performance event
2313  *
2314  * We disable the event on the hardware level first. After that we
2315  * remove it from the context list.
2316  */
2317 static void
2318 __perf_remove_from_context(struct perf_event *event,
2319                            struct perf_cpu_context *cpuctx,
2320                            struct perf_event_context *ctx,
2321                            void *info)
2322 {
2323         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2324         unsigned long flags = (unsigned long)info;
2325
2326         if (ctx->is_active & EVENT_TIME) {
2327                 update_context_time(ctx);
2328                 update_cgrp_time_from_cpuctx(cpuctx, false);
2329         }
2330
2331         /*
2332          * Ensure event_sched_out() switches to OFF, at the very least
2333          * this avoids raising perf_pending_task() at this time.
2334          */
2335         if (flags & DETACH_DEAD)
2336                 event->pending_disable = 1;
2337         event_sched_out(event, ctx);
2338         if (flags & DETACH_GROUP)
2339                 perf_group_detach(event);
2340         if (flags & DETACH_CHILD)
2341                 perf_child_detach(event);
2342         list_del_event(event, ctx);
2343         if (flags & DETACH_DEAD)
2344                 event->state = PERF_EVENT_STATE_DEAD;
2345
2346         if (!pmu_ctx->nr_events) {
2347                 pmu_ctx->rotate_necessary = 0;
2348
2349                 if (ctx->task && ctx->is_active) {
2350                         struct perf_cpu_pmu_context *cpc;
2351
2352                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2353                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2354                         cpc->task_epc = NULL;
2355                 }
2356         }
2357
2358         if (!ctx->nr_events && ctx->is_active) {
2359                 if (ctx == &cpuctx->ctx)
2360                         update_cgrp_time_from_cpuctx(cpuctx, true);
2361
2362                 ctx->is_active = 0;
2363                 if (ctx->task) {
2364                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2365                         cpuctx->task_ctx = NULL;
2366                 }
2367         }
2368 }
2369
2370 /*
2371  * Remove the event from a task's (or a CPU's) list of events.
2372  *
2373  * If event->ctx is a cloned context, callers must make sure that
2374  * every task struct that event->ctx->task could possibly point to
2375  * remains valid.  This is OK when called from perf_release since
2376  * that only calls us on the top-level context, which can't be a clone.
2377  * When called from perf_event_exit_task, it's OK because the
2378  * context has been detached from its task.
2379  */
2380 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2381 {
2382         struct perf_event_context *ctx = event->ctx;
2383
2384         lockdep_assert_held(&ctx->mutex);
2385
2386         /*
2387          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2388          * to work in the face of TASK_TOMBSTONE, unlike every other
2389          * event_function_call() user.
2390          */
2391         raw_spin_lock_irq(&ctx->lock);
2392         if (!ctx->is_active) {
2393                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2394                                            ctx, (void *)flags);
2395                 raw_spin_unlock_irq(&ctx->lock);
2396                 return;
2397         }
2398         raw_spin_unlock_irq(&ctx->lock);
2399
2400         event_function_call(event, __perf_remove_from_context, (void *)flags);
2401 }
2402
2403 /*
2404  * Cross CPU call to disable a performance event
2405  */
2406 static void __perf_event_disable(struct perf_event *event,
2407                                  struct perf_cpu_context *cpuctx,
2408                                  struct perf_event_context *ctx,
2409                                  void *info)
2410 {
2411         if (event->state < PERF_EVENT_STATE_INACTIVE)
2412                 return;
2413
2414         if (ctx->is_active & EVENT_TIME) {
2415                 update_context_time(ctx);
2416                 update_cgrp_time_from_event(event);
2417         }
2418
2419         perf_pmu_disable(event->pmu_ctx->pmu);
2420
2421         if (event == event->group_leader)
2422                 group_sched_out(event, ctx);
2423         else
2424                 event_sched_out(event, ctx);
2425
2426         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2427         perf_cgroup_event_disable(event, ctx);
2428
2429         perf_pmu_enable(event->pmu_ctx->pmu);
2430 }
2431
2432 /*
2433  * Disable an event.
2434  *
2435  * If event->ctx is a cloned context, callers must make sure that
2436  * every task struct that event->ctx->task could possibly point to
2437  * remains valid.  This condition is satisfied when called through
2438  * perf_event_for_each_child or perf_event_for_each because they
2439  * hold the top-level event's child_mutex, so any descendant that
2440  * goes to exit will block in perf_event_exit_event().
2441  *
2442  * When called from perf_pending_irq it's OK because event->ctx
2443  * is the current context on this CPU and preemption is disabled,
2444  * hence we can't get into perf_event_task_sched_out for this context.
2445  */
2446 static void _perf_event_disable(struct perf_event *event)
2447 {
2448         struct perf_event_context *ctx = event->ctx;
2449
2450         raw_spin_lock_irq(&ctx->lock);
2451         if (event->state <= PERF_EVENT_STATE_OFF) {
2452                 raw_spin_unlock_irq(&ctx->lock);
2453                 return;
2454         }
2455         raw_spin_unlock_irq(&ctx->lock);
2456
2457         event_function_call(event, __perf_event_disable, NULL);
2458 }
2459
2460 void perf_event_disable_local(struct perf_event *event)
2461 {
2462         event_function_local(event, __perf_event_disable, NULL);
2463 }
2464
2465 /*
2466  * Strictly speaking kernel users cannot create groups and therefore this
2467  * interface does not need the perf_event_ctx_lock() magic.
2468  */
2469 void perf_event_disable(struct perf_event *event)
2470 {
2471         struct perf_event_context *ctx;
2472
2473         ctx = perf_event_ctx_lock(event);
2474         _perf_event_disable(event);
2475         perf_event_ctx_unlock(event, ctx);
2476 }
2477 EXPORT_SYMBOL_GPL(perf_event_disable);
2478
2479 void perf_event_disable_inatomic(struct perf_event *event)
2480 {
2481         event->pending_disable = 1;
2482         irq_work_queue(&event->pending_irq);
2483 }
2484
2485 #define MAX_INTERRUPTS (~0ULL)
2486
2487 static void perf_log_throttle(struct perf_event *event, int enable);
2488 static void perf_log_itrace_start(struct perf_event *event);
2489
2490 static int
2491 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2492 {
2493         struct perf_event_pmu_context *epc = event->pmu_ctx;
2494         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2495         int ret = 0;
2496
2497         WARN_ON_ONCE(event->ctx != ctx);
2498
2499         lockdep_assert_held(&ctx->lock);
2500
2501         if (event->state <= PERF_EVENT_STATE_OFF)
2502                 return 0;
2503
2504         WRITE_ONCE(event->oncpu, smp_processor_id());
2505         /*
2506          * Order event::oncpu write to happen before the ACTIVE state is
2507          * visible. This allows perf_event_{stop,read}() to observe the correct
2508          * ->oncpu if it sees ACTIVE.
2509          */
2510         smp_wmb();
2511         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2512
2513         /*
2514          * Unthrottle events, since we scheduled we might have missed several
2515          * ticks already, also for a heavily scheduling task there is little
2516          * guarantee it'll get a tick in a timely manner.
2517          */
2518         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2519                 perf_log_throttle(event, 1);
2520                 event->hw.interrupts = 0;
2521         }
2522
2523         perf_pmu_disable(event->pmu);
2524
2525         perf_log_itrace_start(event);
2526
2527         if (event->pmu->add(event, PERF_EF_START)) {
2528                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2529                 event->oncpu = -1;
2530                 ret = -EAGAIN;
2531                 goto out;
2532         }
2533
2534         if (!is_software_event(event))
2535                 cpc->active_oncpu++;
2536         if (event->attr.freq && event->attr.sample_freq)
2537                 ctx->nr_freq++;
2538
2539         if (event->attr.exclusive)
2540                 cpc->exclusive = 1;
2541
2542 out:
2543         perf_pmu_enable(event->pmu);
2544
2545         return ret;
2546 }
2547
2548 static int
2549 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2550 {
2551         struct perf_event *event, *partial_group = NULL;
2552         struct pmu *pmu = group_event->pmu_ctx->pmu;
2553
2554         if (group_event->state == PERF_EVENT_STATE_OFF)
2555                 return 0;
2556
2557         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2558
2559         if (event_sched_in(group_event, ctx))
2560                 goto error;
2561
2562         /*
2563          * Schedule in siblings as one group (if any):
2564          */
2565         for_each_sibling_event(event, group_event) {
2566                 if (event_sched_in(event, ctx)) {
2567                         partial_group = event;
2568                         goto group_error;
2569                 }
2570         }
2571
2572         if (!pmu->commit_txn(pmu))
2573                 return 0;
2574
2575 group_error:
2576         /*
2577          * Groups can be scheduled in as one unit only, so undo any
2578          * partial group before returning:
2579          * The events up to the failed event are scheduled out normally.
2580          */
2581         for_each_sibling_event(event, group_event) {
2582                 if (event == partial_group)
2583                         break;
2584
2585                 event_sched_out(event, ctx);
2586         }
2587         event_sched_out(group_event, ctx);
2588
2589 error:
2590         pmu->cancel_txn(pmu);
2591         return -EAGAIN;
2592 }
2593
2594 /*
2595  * Work out whether we can put this event group on the CPU now.
2596  */
2597 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2598 {
2599         struct perf_event_pmu_context *epc = event->pmu_ctx;
2600         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2601
2602         /*
2603          * Groups consisting entirely of software events can always go on.
2604          */
2605         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2606                 return 1;
2607         /*
2608          * If an exclusive group is already on, no other hardware
2609          * events can go on.
2610          */
2611         if (cpc->exclusive)
2612                 return 0;
2613         /*
2614          * If this group is exclusive and there are already
2615          * events on the CPU, it can't go on.
2616          */
2617         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2618                 return 0;
2619         /*
2620          * Otherwise, try to add it if all previous groups were able
2621          * to go on.
2622          */
2623         return can_add_hw;
2624 }
2625
2626 static void add_event_to_ctx(struct perf_event *event,
2627                                struct perf_event_context *ctx)
2628 {
2629         list_add_event(event, ctx);
2630         perf_group_attach(event);
2631 }
2632
2633 static void task_ctx_sched_out(struct perf_event_context *ctx,
2634                                 enum event_type_t event_type)
2635 {
2636         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2637
2638         if (!cpuctx->task_ctx)
2639                 return;
2640
2641         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2642                 return;
2643
2644         ctx_sched_out(ctx, event_type);
2645 }
2646
2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2648                                 struct perf_event_context *ctx)
2649 {
2650         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2651         if (ctx)
2652                  ctx_sched_in(ctx, EVENT_PINNED);
2653         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2654         if (ctx)
2655                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2656 }
2657
2658 /*
2659  * We want to maintain the following priority of scheduling:
2660  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2661  *  - task pinned (EVENT_PINNED)
2662  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2663  *  - task flexible (EVENT_FLEXIBLE).
2664  *
2665  * In order to avoid unscheduling and scheduling back in everything every
2666  * time an event is added, only do it for the groups of equal priority and
2667  * below.
2668  *
2669  * This can be called after a batch operation on task events, in which case
2670  * event_type is a bit mask of the types of events involved. For CPU events,
2671  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2672  */
2673 /*
2674  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2675  * event to the context or enabling existing event in the context. We can
2676  * probably optimize it by rescheduling only affected pmu_ctx.
2677  */
2678 static void ctx_resched(struct perf_cpu_context *cpuctx,
2679                         struct perf_event_context *task_ctx,
2680                         enum event_type_t event_type)
2681 {
2682         bool cpu_event = !!(event_type & EVENT_CPU);
2683
2684         /*
2685          * If pinned groups are involved, flexible groups also need to be
2686          * scheduled out.
2687          */
2688         if (event_type & EVENT_PINNED)
2689                 event_type |= EVENT_FLEXIBLE;
2690
2691         event_type &= EVENT_ALL;
2692
2693         perf_ctx_disable(&cpuctx->ctx, false);
2694         if (task_ctx) {
2695                 perf_ctx_disable(task_ctx, false);
2696                 task_ctx_sched_out(task_ctx, event_type);
2697         }
2698
2699         /*
2700          * Decide which cpu ctx groups to schedule out based on the types
2701          * of events that caused rescheduling:
2702          *  - EVENT_CPU: schedule out corresponding groups;
2703          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2704          *  - otherwise, do nothing more.
2705          */
2706         if (cpu_event)
2707                 ctx_sched_out(&cpuctx->ctx, event_type);
2708         else if (event_type & EVENT_PINNED)
2709                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2710
2711         perf_event_sched_in(cpuctx, task_ctx);
2712
2713         perf_ctx_enable(&cpuctx->ctx, false);
2714         if (task_ctx)
2715                 perf_ctx_enable(task_ctx, false);
2716 }
2717
2718 void perf_pmu_resched(struct pmu *pmu)
2719 {
2720         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2721         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2722
2723         perf_ctx_lock(cpuctx, task_ctx);
2724         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2725         perf_ctx_unlock(cpuctx, task_ctx);
2726 }
2727
2728 /*
2729  * Cross CPU call to install and enable a performance event
2730  *
2731  * Very similar to remote_function() + event_function() but cannot assume that
2732  * things like ctx->is_active and cpuctx->task_ctx are set.
2733  */
2734 static int  __perf_install_in_context(void *info)
2735 {
2736         struct perf_event *event = info;
2737         struct perf_event_context *ctx = event->ctx;
2738         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2739         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2740         bool reprogram = true;
2741         int ret = 0;
2742
2743         raw_spin_lock(&cpuctx->ctx.lock);
2744         if (ctx->task) {
2745                 raw_spin_lock(&ctx->lock);
2746                 task_ctx = ctx;
2747
2748                 reprogram = (ctx->task == current);
2749
2750                 /*
2751                  * If the task is running, it must be running on this CPU,
2752                  * otherwise we cannot reprogram things.
2753                  *
2754                  * If its not running, we don't care, ctx->lock will
2755                  * serialize against it becoming runnable.
2756                  */
2757                 if (task_curr(ctx->task) && !reprogram) {
2758                         ret = -ESRCH;
2759                         goto unlock;
2760                 }
2761
2762                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2763         } else if (task_ctx) {
2764                 raw_spin_lock(&task_ctx->lock);
2765         }
2766
2767 #ifdef CONFIG_CGROUP_PERF
2768         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2769                 /*
2770                  * If the current cgroup doesn't match the event's
2771                  * cgroup, we should not try to schedule it.
2772                  */
2773                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2774                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2775                                         event->cgrp->css.cgroup);
2776         }
2777 #endif
2778
2779         if (reprogram) {
2780                 ctx_sched_out(ctx, EVENT_TIME);
2781                 add_event_to_ctx(event, ctx);
2782                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2783         } else {
2784                 add_event_to_ctx(event, ctx);
2785         }
2786
2787 unlock:
2788         perf_ctx_unlock(cpuctx, task_ctx);
2789
2790         return ret;
2791 }
2792
2793 static bool exclusive_event_installable(struct perf_event *event,
2794                                         struct perf_event_context *ctx);
2795
2796 /*
2797  * Attach a performance event to a context.
2798  *
2799  * Very similar to event_function_call, see comment there.
2800  */
2801 static void
2802 perf_install_in_context(struct perf_event_context *ctx,
2803                         struct perf_event *event,
2804                         int cpu)
2805 {
2806         struct task_struct *task = READ_ONCE(ctx->task);
2807
2808         lockdep_assert_held(&ctx->mutex);
2809
2810         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2811
2812         if (event->cpu != -1)
2813                 WARN_ON_ONCE(event->cpu != cpu);
2814
2815         /*
2816          * Ensures that if we can observe event->ctx, both the event and ctx
2817          * will be 'complete'. See perf_iterate_sb_cpu().
2818          */
2819         smp_store_release(&event->ctx, ctx);
2820
2821         /*
2822          * perf_event_attr::disabled events will not run and can be initialized
2823          * without IPI. Except when this is the first event for the context, in
2824          * that case we need the magic of the IPI to set ctx->is_active.
2825          *
2826          * The IOC_ENABLE that is sure to follow the creation of a disabled
2827          * event will issue the IPI and reprogram the hardware.
2828          */
2829         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2830             ctx->nr_events && !is_cgroup_event(event)) {
2831                 raw_spin_lock_irq(&ctx->lock);
2832                 if (ctx->task == TASK_TOMBSTONE) {
2833                         raw_spin_unlock_irq(&ctx->lock);
2834                         return;
2835                 }
2836                 add_event_to_ctx(event, ctx);
2837                 raw_spin_unlock_irq(&ctx->lock);
2838                 return;
2839         }
2840
2841         if (!task) {
2842                 cpu_function_call(cpu, __perf_install_in_context, event);
2843                 return;
2844         }
2845
2846         /*
2847          * Should not happen, we validate the ctx is still alive before calling.
2848          */
2849         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2850                 return;
2851
2852         /*
2853          * Installing events is tricky because we cannot rely on ctx->is_active
2854          * to be set in case this is the nr_events 0 -> 1 transition.
2855          *
2856          * Instead we use task_curr(), which tells us if the task is running.
2857          * However, since we use task_curr() outside of rq::lock, we can race
2858          * against the actual state. This means the result can be wrong.
2859          *
2860          * If we get a false positive, we retry, this is harmless.
2861          *
2862          * If we get a false negative, things are complicated. If we are after
2863          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2864          * value must be correct. If we're before, it doesn't matter since
2865          * perf_event_context_sched_in() will program the counter.
2866          *
2867          * However, this hinges on the remote context switch having observed
2868          * our task->perf_event_ctxp[] store, such that it will in fact take
2869          * ctx::lock in perf_event_context_sched_in().
2870          *
2871          * We do this by task_function_call(), if the IPI fails to hit the task
2872          * we know any future context switch of task must see the
2873          * perf_event_ctpx[] store.
2874          */
2875
2876         /*
2877          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2878          * task_cpu() load, such that if the IPI then does not find the task
2879          * running, a future context switch of that task must observe the
2880          * store.
2881          */
2882         smp_mb();
2883 again:
2884         if (!task_function_call(task, __perf_install_in_context, event))
2885                 return;
2886
2887         raw_spin_lock_irq(&ctx->lock);
2888         task = ctx->task;
2889         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2890                 /*
2891                  * Cannot happen because we already checked above (which also
2892                  * cannot happen), and we hold ctx->mutex, which serializes us
2893                  * against perf_event_exit_task_context().
2894                  */
2895                 raw_spin_unlock_irq(&ctx->lock);
2896                 return;
2897         }
2898         /*
2899          * If the task is not running, ctx->lock will avoid it becoming so,
2900          * thus we can safely install the event.
2901          */
2902         if (task_curr(task)) {
2903                 raw_spin_unlock_irq(&ctx->lock);
2904                 goto again;
2905         }
2906         add_event_to_ctx(event, ctx);
2907         raw_spin_unlock_irq(&ctx->lock);
2908 }
2909
2910 /*
2911  * Cross CPU call to enable a performance event
2912  */
2913 static void __perf_event_enable(struct perf_event *event,
2914                                 struct perf_cpu_context *cpuctx,
2915                                 struct perf_event_context *ctx,
2916                                 void *info)
2917 {
2918         struct perf_event *leader = event->group_leader;
2919         struct perf_event_context *task_ctx;
2920
2921         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2922             event->state <= PERF_EVENT_STATE_ERROR)
2923                 return;
2924
2925         if (ctx->is_active)
2926                 ctx_sched_out(ctx, EVENT_TIME);
2927
2928         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2929         perf_cgroup_event_enable(event, ctx);
2930
2931         if (!ctx->is_active)
2932                 return;
2933
2934         if (!event_filter_match(event)) {
2935                 ctx_sched_in(ctx, EVENT_TIME);
2936                 return;
2937         }
2938
2939         /*
2940          * If the event is in a group and isn't the group leader,
2941          * then don't put it on unless the group is on.
2942          */
2943         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2944                 ctx_sched_in(ctx, EVENT_TIME);
2945                 return;
2946         }
2947
2948         task_ctx = cpuctx->task_ctx;
2949         if (ctx->task)
2950                 WARN_ON_ONCE(task_ctx != ctx);
2951
2952         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2953 }
2954
2955 /*
2956  * Enable an event.
2957  *
2958  * If event->ctx is a cloned context, callers must make sure that
2959  * every task struct that event->ctx->task could possibly point to
2960  * remains valid.  This condition is satisfied when called through
2961  * perf_event_for_each_child or perf_event_for_each as described
2962  * for perf_event_disable.
2963  */
2964 static void _perf_event_enable(struct perf_event *event)
2965 {
2966         struct perf_event_context *ctx = event->ctx;
2967
2968         raw_spin_lock_irq(&ctx->lock);
2969         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2970             event->state <  PERF_EVENT_STATE_ERROR) {
2971 out:
2972                 raw_spin_unlock_irq(&ctx->lock);
2973                 return;
2974         }
2975
2976         /*
2977          * If the event is in error state, clear that first.
2978          *
2979          * That way, if we see the event in error state below, we know that it
2980          * has gone back into error state, as distinct from the task having
2981          * been scheduled away before the cross-call arrived.
2982          */
2983         if (event->state == PERF_EVENT_STATE_ERROR) {
2984                 /*
2985                  * Detached SIBLING events cannot leave ERROR state.
2986                  */
2987                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2988                     event->group_leader == event)
2989                         goto out;
2990
2991                 event->state = PERF_EVENT_STATE_OFF;
2992         }
2993         raw_spin_unlock_irq(&ctx->lock);
2994
2995         event_function_call(event, __perf_event_enable, NULL);
2996 }
2997
2998 /*
2999  * See perf_event_disable();
3000  */
3001 void perf_event_enable(struct perf_event *event)
3002 {
3003         struct perf_event_context *ctx;
3004
3005         ctx = perf_event_ctx_lock(event);
3006         _perf_event_enable(event);
3007         perf_event_ctx_unlock(event, ctx);
3008 }
3009 EXPORT_SYMBOL_GPL(perf_event_enable);
3010
3011 struct stop_event_data {
3012         struct perf_event       *event;
3013         unsigned int            restart;
3014 };
3015
3016 static int __perf_event_stop(void *info)
3017 {
3018         struct stop_event_data *sd = info;
3019         struct perf_event *event = sd->event;
3020
3021         /* if it's already INACTIVE, do nothing */
3022         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3023                 return 0;
3024
3025         /* matches smp_wmb() in event_sched_in() */
3026         smp_rmb();
3027
3028         /*
3029          * There is a window with interrupts enabled before we get here,
3030          * so we need to check again lest we try to stop another CPU's event.
3031          */
3032         if (READ_ONCE(event->oncpu) != smp_processor_id())
3033                 return -EAGAIN;
3034
3035         event->pmu->stop(event, PERF_EF_UPDATE);
3036
3037         /*
3038          * May race with the actual stop (through perf_pmu_output_stop()),
3039          * but it is only used for events with AUX ring buffer, and such
3040          * events will refuse to restart because of rb::aux_mmap_count==0,
3041          * see comments in perf_aux_output_begin().
3042          *
3043          * Since this is happening on an event-local CPU, no trace is lost
3044          * while restarting.
3045          */
3046         if (sd->restart)
3047                 event->pmu->start(event, 0);
3048
3049         return 0;
3050 }
3051
3052 static int perf_event_stop(struct perf_event *event, int restart)
3053 {
3054         struct stop_event_data sd = {
3055                 .event          = event,
3056                 .restart        = restart,
3057         };
3058         int ret = 0;
3059
3060         do {
3061                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3062                         return 0;
3063
3064                 /* matches smp_wmb() in event_sched_in() */
3065                 smp_rmb();
3066
3067                 /*
3068                  * We only want to restart ACTIVE events, so if the event goes
3069                  * inactive here (event->oncpu==-1), there's nothing more to do;
3070                  * fall through with ret==-ENXIO.
3071                  */
3072                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3073                                         __perf_event_stop, &sd);
3074         } while (ret == -EAGAIN);
3075
3076         return ret;
3077 }
3078
3079 /*
3080  * In order to contain the amount of racy and tricky in the address filter
3081  * configuration management, it is a two part process:
3082  *
3083  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3084  *      we update the addresses of corresponding vmas in
3085  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3086  * (p2) when an event is scheduled in (pmu::add), it calls
3087  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3088  *      if the generation has changed since the previous call.
3089  *
3090  * If (p1) happens while the event is active, we restart it to force (p2).
3091  *
3092  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3093  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3094  *     ioctl;
3095  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3096  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3097  *     for reading;
3098  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3099  *     of exec.
3100  */
3101 void perf_event_addr_filters_sync(struct perf_event *event)
3102 {
3103         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3104
3105         if (!has_addr_filter(event))
3106                 return;
3107
3108         raw_spin_lock(&ifh->lock);
3109         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3110                 event->pmu->addr_filters_sync(event);
3111                 event->hw.addr_filters_gen = event->addr_filters_gen;
3112         }
3113         raw_spin_unlock(&ifh->lock);
3114 }
3115 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3116
3117 static int _perf_event_refresh(struct perf_event *event, int refresh)
3118 {
3119         /*
3120          * not supported on inherited events
3121          */
3122         if (event->attr.inherit || !is_sampling_event(event))
3123                 return -EINVAL;
3124
3125         atomic_add(refresh, &event->event_limit);
3126         _perf_event_enable(event);
3127
3128         return 0;
3129 }
3130
3131 /*
3132  * See perf_event_disable()
3133  */
3134 int perf_event_refresh(struct perf_event *event, int refresh)
3135 {
3136         struct perf_event_context *ctx;
3137         int ret;
3138
3139         ctx = perf_event_ctx_lock(event);
3140         ret = _perf_event_refresh(event, refresh);
3141         perf_event_ctx_unlock(event, ctx);
3142
3143         return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(perf_event_refresh);
3146
3147 static int perf_event_modify_breakpoint(struct perf_event *bp,
3148                                          struct perf_event_attr *attr)
3149 {
3150         int err;
3151
3152         _perf_event_disable(bp);
3153
3154         err = modify_user_hw_breakpoint_check(bp, attr, true);
3155
3156         if (!bp->attr.disabled)
3157                 _perf_event_enable(bp);
3158
3159         return err;
3160 }
3161
3162 /*
3163  * Copy event-type-independent attributes that may be modified.
3164  */
3165 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3166                                         const struct perf_event_attr *from)
3167 {
3168         to->sig_data = from->sig_data;
3169 }
3170
3171 static int perf_event_modify_attr(struct perf_event *event,
3172                                   struct perf_event_attr *attr)
3173 {
3174         int (*func)(struct perf_event *, struct perf_event_attr *);
3175         struct perf_event *child;
3176         int err;
3177
3178         if (event->attr.type != attr->type)
3179                 return -EINVAL;
3180
3181         switch (event->attr.type) {
3182         case PERF_TYPE_BREAKPOINT:
3183                 func = perf_event_modify_breakpoint;
3184                 break;
3185         default:
3186                 /* Place holder for future additions. */
3187                 return -EOPNOTSUPP;
3188         }
3189
3190         WARN_ON_ONCE(event->ctx->parent_ctx);
3191
3192         mutex_lock(&event->child_mutex);
3193         /*
3194          * Event-type-independent attributes must be copied before event-type
3195          * modification, which will validate that final attributes match the
3196          * source attributes after all relevant attributes have been copied.
3197          */
3198         perf_event_modify_copy_attr(&event->attr, attr);
3199         err = func(event, attr);
3200         if (err)
3201                 goto out;
3202         list_for_each_entry(child, &event->child_list, child_list) {
3203                 perf_event_modify_copy_attr(&child->attr, attr);
3204                 err = func(child, attr);
3205                 if (err)
3206                         goto out;
3207         }
3208 out:
3209         mutex_unlock(&event->child_mutex);
3210         return err;
3211 }
3212
3213 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3214                                 enum event_type_t event_type)
3215 {
3216         struct perf_event_context *ctx = pmu_ctx->ctx;
3217         struct perf_event *event, *tmp;
3218         struct pmu *pmu = pmu_ctx->pmu;
3219
3220         if (ctx->task && !ctx->is_active) {
3221                 struct perf_cpu_pmu_context *cpc;
3222
3223                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3224                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3225                 cpc->task_epc = NULL;
3226         }
3227
3228         if (!event_type)
3229                 return;
3230
3231         perf_pmu_disable(pmu);
3232         if (event_type & EVENT_PINNED) {
3233                 list_for_each_entry_safe(event, tmp,
3234                                          &pmu_ctx->pinned_active,
3235                                          active_list)
3236                         group_sched_out(event, ctx);
3237         }
3238
3239         if (event_type & EVENT_FLEXIBLE) {
3240                 list_for_each_entry_safe(event, tmp,
3241                                          &pmu_ctx->flexible_active,
3242                                          active_list)
3243                         group_sched_out(event, ctx);
3244                 /*
3245                  * Since we cleared EVENT_FLEXIBLE, also clear
3246                  * rotate_necessary, is will be reset by
3247                  * ctx_flexible_sched_in() when needed.
3248                  */
3249                 pmu_ctx->rotate_necessary = 0;
3250         }
3251         perf_pmu_enable(pmu);
3252 }
3253
3254 static void
3255 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3256 {
3257         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3258         struct perf_event_pmu_context *pmu_ctx;
3259         int is_active = ctx->is_active;
3260         bool cgroup = event_type & EVENT_CGROUP;
3261
3262         event_type &= ~EVENT_CGROUP;
3263
3264         lockdep_assert_held(&ctx->lock);
3265
3266         if (likely(!ctx->nr_events)) {
3267                 /*
3268                  * See __perf_remove_from_context().
3269                  */
3270                 WARN_ON_ONCE(ctx->is_active);
3271                 if (ctx->task)
3272                         WARN_ON_ONCE(cpuctx->task_ctx);
3273                 return;
3274         }
3275
3276         /*
3277          * Always update time if it was set; not only when it changes.
3278          * Otherwise we can 'forget' to update time for any but the last
3279          * context we sched out. For example:
3280          *
3281          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3282          *   ctx_sched_out(.event_type = EVENT_PINNED)
3283          *
3284          * would only update time for the pinned events.
3285          */
3286         if (is_active & EVENT_TIME) {
3287                 /* update (and stop) ctx time */
3288                 update_context_time(ctx);
3289                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3290                 /*
3291                  * CPU-release for the below ->is_active store,
3292                  * see __load_acquire() in perf_event_time_now()
3293                  */
3294                 barrier();
3295         }
3296
3297         ctx->is_active &= ~event_type;
3298         if (!(ctx->is_active & EVENT_ALL))
3299                 ctx->is_active = 0;
3300
3301         if (ctx->task) {
3302                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3303                 if (!ctx->is_active)
3304                         cpuctx->task_ctx = NULL;
3305         }
3306
3307         is_active ^= ctx->is_active; /* changed bits */
3308
3309         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3310                 if (cgroup && !pmu_ctx->nr_cgroups)
3311                         continue;
3312                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3313         }
3314 }
3315
3316 /*
3317  * Test whether two contexts are equivalent, i.e. whether they have both been
3318  * cloned from the same version of the same context.
3319  *
3320  * Equivalence is measured using a generation number in the context that is
3321  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3322  * and list_del_event().
3323  */
3324 static int context_equiv(struct perf_event_context *ctx1,
3325                          struct perf_event_context *ctx2)
3326 {
3327         lockdep_assert_held(&ctx1->lock);
3328         lockdep_assert_held(&ctx2->lock);
3329
3330         /* Pinning disables the swap optimization */
3331         if (ctx1->pin_count || ctx2->pin_count)
3332                 return 0;
3333
3334         /* If ctx1 is the parent of ctx2 */
3335         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3336                 return 1;
3337
3338         /* If ctx2 is the parent of ctx1 */
3339         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3340                 return 1;
3341
3342         /*
3343          * If ctx1 and ctx2 have the same parent; we flatten the parent
3344          * hierarchy, see perf_event_init_context().
3345          */
3346         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3347                         ctx1->parent_gen == ctx2->parent_gen)
3348                 return 1;
3349
3350         /* Unmatched */
3351         return 0;
3352 }
3353
3354 static void __perf_event_sync_stat(struct perf_event *event,
3355                                      struct perf_event *next_event)
3356 {
3357         u64 value;
3358
3359         if (!event->attr.inherit_stat)
3360                 return;
3361
3362         /*
3363          * Update the event value, we cannot use perf_event_read()
3364          * because we're in the middle of a context switch and have IRQs
3365          * disabled, which upsets smp_call_function_single(), however
3366          * we know the event must be on the current CPU, therefore we
3367          * don't need to use it.
3368          */
3369         if (event->state == PERF_EVENT_STATE_ACTIVE)
3370                 event->pmu->read(event);
3371
3372         perf_event_update_time(event);
3373
3374         /*
3375          * In order to keep per-task stats reliable we need to flip the event
3376          * values when we flip the contexts.
3377          */
3378         value = local64_read(&next_event->count);
3379         value = local64_xchg(&event->count, value);
3380         local64_set(&next_event->count, value);
3381
3382         swap(event->total_time_enabled, next_event->total_time_enabled);
3383         swap(event->total_time_running, next_event->total_time_running);
3384
3385         /*
3386          * Since we swizzled the values, update the user visible data too.
3387          */
3388         perf_event_update_userpage(event);
3389         perf_event_update_userpage(next_event);
3390 }
3391
3392 static void perf_event_sync_stat(struct perf_event_context *ctx,
3393                                    struct perf_event_context *next_ctx)
3394 {
3395         struct perf_event *event, *next_event;
3396
3397         if (!ctx->nr_stat)
3398                 return;
3399
3400         update_context_time(ctx);
3401
3402         event = list_first_entry(&ctx->event_list,
3403                                    struct perf_event, event_entry);
3404
3405         next_event = list_first_entry(&next_ctx->event_list,
3406                                         struct perf_event, event_entry);
3407
3408         while (&event->event_entry != &ctx->event_list &&
3409                &next_event->event_entry != &next_ctx->event_list) {
3410
3411                 __perf_event_sync_stat(event, next_event);
3412
3413                 event = list_next_entry(event, event_entry);
3414                 next_event = list_next_entry(next_event, event_entry);
3415         }
3416 }
3417
3418 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3419         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3420              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3421              !list_entry_is_head(pos1, head1, member) &&                \
3422              !list_entry_is_head(pos2, head2, member);                  \
3423              pos1 = list_next_entry(pos1, member),                      \
3424              pos2 = list_next_entry(pos2, member))
3425
3426 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3427                                           struct perf_event_context *next_ctx)
3428 {
3429         struct perf_event_pmu_context *prev_epc, *next_epc;
3430
3431         if (!prev_ctx->nr_task_data)
3432                 return;
3433
3434         double_list_for_each_entry(prev_epc, next_epc,
3435                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3436                                    pmu_ctx_entry) {
3437
3438                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3439                         continue;
3440
3441                 /*
3442                  * PMU specific parts of task perf context can require
3443                  * additional synchronization. As an example of such
3444                  * synchronization see implementation details of Intel
3445                  * LBR call stack data profiling;
3446                  */
3447                 if (prev_epc->pmu->swap_task_ctx)
3448                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3449                 else
3450                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3451         }
3452 }
3453
3454 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3455 {
3456         struct perf_event_pmu_context *pmu_ctx;
3457         struct perf_cpu_pmu_context *cpc;
3458
3459         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3460                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3461
3462                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3463                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3464         }
3465 }
3466
3467 static void
3468 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3469 {
3470         struct perf_event_context *ctx = task->perf_event_ctxp;
3471         struct perf_event_context *next_ctx;
3472         struct perf_event_context *parent, *next_parent;
3473         int do_switch = 1;
3474
3475         if (likely(!ctx))
3476                 return;
3477
3478         rcu_read_lock();
3479         next_ctx = rcu_dereference(next->perf_event_ctxp);
3480         if (!next_ctx)
3481                 goto unlock;
3482
3483         parent = rcu_dereference(ctx->parent_ctx);
3484         next_parent = rcu_dereference(next_ctx->parent_ctx);
3485
3486         /* If neither context have a parent context; they cannot be clones. */
3487         if (!parent && !next_parent)
3488                 goto unlock;
3489
3490         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3491                 /*
3492                  * Looks like the two contexts are clones, so we might be
3493                  * able to optimize the context switch.  We lock both
3494                  * contexts and check that they are clones under the
3495                  * lock (including re-checking that neither has been
3496                  * uncloned in the meantime).  It doesn't matter which
3497                  * order we take the locks because no other cpu could
3498                  * be trying to lock both of these tasks.
3499                  */
3500                 raw_spin_lock(&ctx->lock);
3501                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3502                 if (context_equiv(ctx, next_ctx)) {
3503
3504                         perf_ctx_disable(ctx, false);
3505
3506                         /* PMIs are disabled; ctx->nr_pending is stable. */
3507                         if (local_read(&ctx->nr_pending) ||
3508                             local_read(&next_ctx->nr_pending)) {
3509                                 /*
3510                                  * Must not swap out ctx when there's pending
3511                                  * events that rely on the ctx->task relation.
3512                                  */
3513                                 raw_spin_unlock(&next_ctx->lock);
3514                                 rcu_read_unlock();
3515                                 goto inside_switch;
3516                         }
3517
3518                         WRITE_ONCE(ctx->task, next);
3519                         WRITE_ONCE(next_ctx->task, task);
3520
3521                         perf_ctx_sched_task_cb(ctx, false);
3522                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3523
3524                         perf_ctx_enable(ctx, false);
3525
3526                         /*
3527                          * RCU_INIT_POINTER here is safe because we've not
3528                          * modified the ctx and the above modification of
3529                          * ctx->task and ctx->task_ctx_data are immaterial
3530                          * since those values are always verified under
3531                          * ctx->lock which we're now holding.
3532                          */
3533                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3534                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3535
3536                         do_switch = 0;
3537
3538                         perf_event_sync_stat(ctx, next_ctx);
3539                 }
3540                 raw_spin_unlock(&next_ctx->lock);
3541                 raw_spin_unlock(&ctx->lock);
3542         }
3543 unlock:
3544         rcu_read_unlock();
3545
3546         if (do_switch) {
3547                 raw_spin_lock(&ctx->lock);
3548                 perf_ctx_disable(ctx, false);
3549
3550 inside_switch:
3551                 perf_ctx_sched_task_cb(ctx, false);
3552                 task_ctx_sched_out(ctx, EVENT_ALL);
3553
3554                 perf_ctx_enable(ctx, false);
3555                 raw_spin_unlock(&ctx->lock);
3556         }
3557 }
3558
3559 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3560 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3561
3562 void perf_sched_cb_dec(struct pmu *pmu)
3563 {
3564         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3565
3566         this_cpu_dec(perf_sched_cb_usages);
3567         barrier();
3568
3569         if (!--cpc->sched_cb_usage)
3570                 list_del(&cpc->sched_cb_entry);
3571 }
3572
3573
3574 void perf_sched_cb_inc(struct pmu *pmu)
3575 {
3576         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3577
3578         if (!cpc->sched_cb_usage++)
3579                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3580
3581         barrier();
3582         this_cpu_inc(perf_sched_cb_usages);
3583 }
3584
3585 /*
3586  * This function provides the context switch callback to the lower code
3587  * layer. It is invoked ONLY when the context switch callback is enabled.
3588  *
3589  * This callback is relevant even to per-cpu events; for example multi event
3590  * PEBS requires this to provide PID/TID information. This requires we flush
3591  * all queued PEBS records before we context switch to a new task.
3592  */
3593 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3594 {
3595         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3596         struct pmu *pmu;
3597
3598         pmu = cpc->epc.pmu;
3599
3600         /* software PMUs will not have sched_task */
3601         if (WARN_ON_ONCE(!pmu->sched_task))
3602                 return;
3603
3604         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3605         perf_pmu_disable(pmu);
3606
3607         pmu->sched_task(cpc->task_epc, sched_in);
3608
3609         perf_pmu_enable(pmu);
3610         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3611 }
3612
3613 static void perf_pmu_sched_task(struct task_struct *prev,
3614                                 struct task_struct *next,
3615                                 bool sched_in)
3616 {
3617         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618         struct perf_cpu_pmu_context *cpc;
3619
3620         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3621         if (prev == next || cpuctx->task_ctx)
3622                 return;
3623
3624         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3625                 __perf_pmu_sched_task(cpc, sched_in);
3626 }
3627
3628 static void perf_event_switch(struct task_struct *task,
3629                               struct task_struct *next_prev, bool sched_in);
3630
3631 /*
3632  * Called from scheduler to remove the events of the current task,
3633  * with interrupts disabled.
3634  *
3635  * We stop each event and update the event value in event->count.
3636  *
3637  * This does not protect us against NMI, but disable()
3638  * sets the disabled bit in the control field of event _before_
3639  * accessing the event control register. If a NMI hits, then it will
3640  * not restart the event.
3641  */
3642 void __perf_event_task_sched_out(struct task_struct *task,
3643                                  struct task_struct *next)
3644 {
3645         if (__this_cpu_read(perf_sched_cb_usages))
3646                 perf_pmu_sched_task(task, next, false);
3647
3648         if (atomic_read(&nr_switch_events))
3649                 perf_event_switch(task, next, false);
3650
3651         perf_event_context_sched_out(task, next);
3652
3653         /*
3654          * if cgroup events exist on this CPU, then we need
3655          * to check if we have to switch out PMU state.
3656          * cgroup event are system-wide mode only
3657          */
3658         perf_cgroup_switch(next);
3659 }
3660
3661 static bool perf_less_group_idx(const void *l, const void *r)
3662 {
3663         const struct perf_event *le = *(const struct perf_event **)l;
3664         const struct perf_event *re = *(const struct perf_event **)r;
3665
3666         return le->group_index < re->group_index;
3667 }
3668
3669 static void swap_ptr(void *l, void *r)
3670 {
3671         void **lp = l, **rp = r;
3672
3673         swap(*lp, *rp);
3674 }
3675
3676 static const struct min_heap_callbacks perf_min_heap = {
3677         .elem_size = sizeof(struct perf_event *),
3678         .less = perf_less_group_idx,
3679         .swp = swap_ptr,
3680 };
3681
3682 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3683 {
3684         struct perf_event **itrs = heap->data;
3685
3686         if (event) {
3687                 itrs[heap->nr] = event;
3688                 heap->nr++;
3689         }
3690 }
3691
3692 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3693 {
3694         struct perf_cpu_pmu_context *cpc;
3695
3696         if (!pmu_ctx->ctx->task)
3697                 return;
3698
3699         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3700         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3701         cpc->task_epc = pmu_ctx;
3702 }
3703
3704 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3705                                 struct perf_event_groups *groups, int cpu,
3706                                 struct pmu *pmu,
3707                                 int (*func)(struct perf_event *, void *),
3708                                 void *data)
3709 {
3710 #ifdef CONFIG_CGROUP_PERF
3711         struct cgroup_subsys_state *css = NULL;
3712 #endif
3713         struct perf_cpu_context *cpuctx = NULL;
3714         /* Space for per CPU and/or any CPU event iterators. */
3715         struct perf_event *itrs[2];
3716         struct min_heap event_heap;
3717         struct perf_event **evt;
3718         int ret;
3719
3720         if (pmu->filter && pmu->filter(pmu, cpu))
3721                 return 0;
3722
3723         if (!ctx->task) {
3724                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3725                 event_heap = (struct min_heap){
3726                         .data = cpuctx->heap,
3727                         .nr = 0,
3728                         .size = cpuctx->heap_size,
3729                 };
3730
3731                 lockdep_assert_held(&cpuctx->ctx.lock);
3732
3733 #ifdef CONFIG_CGROUP_PERF
3734                 if (cpuctx->cgrp)
3735                         css = &cpuctx->cgrp->css;
3736 #endif
3737         } else {
3738                 event_heap = (struct min_heap){
3739                         .data = itrs,
3740                         .nr = 0,
3741                         .size = ARRAY_SIZE(itrs),
3742                 };
3743                 /* Events not within a CPU context may be on any CPU. */
3744                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3745         }
3746         evt = event_heap.data;
3747
3748         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3749
3750 #ifdef CONFIG_CGROUP_PERF
3751         for (; css; css = css->parent)
3752                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3753 #endif
3754
3755         if (event_heap.nr) {
3756                 __link_epc((*evt)->pmu_ctx);
3757                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3758         }
3759
3760         min_heapify_all(&event_heap, &perf_min_heap);
3761
3762         while (event_heap.nr) {
3763                 ret = func(*evt, data);
3764                 if (ret)
3765                         return ret;
3766
3767                 *evt = perf_event_groups_next(*evt, pmu);
3768                 if (*evt)
3769                         min_heapify(&event_heap, 0, &perf_min_heap);
3770                 else
3771                         min_heap_pop(&event_heap, &perf_min_heap);
3772         }
3773
3774         return 0;
3775 }
3776
3777 /*
3778  * Because the userpage is strictly per-event (there is no concept of context,
3779  * so there cannot be a context indirection), every userpage must be updated
3780  * when context time starts :-(
3781  *
3782  * IOW, we must not miss EVENT_TIME edges.
3783  */
3784 static inline bool event_update_userpage(struct perf_event *event)
3785 {
3786         if (likely(!atomic_read(&event->mmap_count)))
3787                 return false;
3788
3789         perf_event_update_time(event);
3790         perf_event_update_userpage(event);
3791
3792         return true;
3793 }
3794
3795 static inline void group_update_userpage(struct perf_event *group_event)
3796 {
3797         struct perf_event *event;
3798
3799         if (!event_update_userpage(group_event))
3800                 return;
3801
3802         for_each_sibling_event(event, group_event)
3803                 event_update_userpage(event);
3804 }
3805
3806 static int merge_sched_in(struct perf_event *event, void *data)
3807 {
3808         struct perf_event_context *ctx = event->ctx;
3809         int *can_add_hw = data;
3810
3811         if (event->state <= PERF_EVENT_STATE_OFF)
3812                 return 0;
3813
3814         if (!event_filter_match(event))
3815                 return 0;
3816
3817         if (group_can_go_on(event, *can_add_hw)) {
3818                 if (!group_sched_in(event, ctx))
3819                         list_add_tail(&event->active_list, get_event_list(event));
3820         }
3821
3822         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823                 *can_add_hw = 0;
3824                 if (event->attr.pinned) {
3825                         perf_cgroup_event_disable(event, ctx);
3826                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827                 } else {
3828                         struct perf_cpu_pmu_context *cpc;
3829
3830                         event->pmu_ctx->rotate_necessary = 1;
3831                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3832                         perf_mux_hrtimer_restart(cpc);
3833                         group_update_userpage(event);
3834                 }
3835         }
3836
3837         return 0;
3838 }
3839
3840 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3841                                 struct perf_event_groups *groups,
3842                                 struct pmu *pmu)
3843 {
3844         int can_add_hw = 1;
3845         visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3846                            merge_sched_in, &can_add_hw);
3847 }
3848
3849 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3850                                 struct perf_event_groups *groups,
3851                                 bool cgroup)
3852 {
3853         struct perf_event_pmu_context *pmu_ctx;
3854
3855         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3856                 if (cgroup && !pmu_ctx->nr_cgroups)
3857                         continue;
3858                 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3859         }
3860 }
3861
3862 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3863                                struct pmu *pmu)
3864 {
3865         pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3866 }
3867
3868 static void
3869 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3870 {
3871         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3872         int is_active = ctx->is_active;
3873         bool cgroup = event_type & EVENT_CGROUP;
3874
3875         event_type &= ~EVENT_CGROUP;
3876
3877         lockdep_assert_held(&ctx->lock);
3878
3879         if (likely(!ctx->nr_events))
3880                 return;
3881
3882         if (!(is_active & EVENT_TIME)) {
3883                 /* start ctx time */
3884                 __update_context_time(ctx, false);
3885                 perf_cgroup_set_timestamp(cpuctx);
3886                 /*
3887                  * CPU-release for the below ->is_active store,
3888                  * see __load_acquire() in perf_event_time_now()
3889                  */
3890                 barrier();
3891         }
3892
3893         ctx->is_active |= (event_type | EVENT_TIME);
3894         if (ctx->task) {
3895                 if (!is_active)
3896                         cpuctx->task_ctx = ctx;
3897                 else
3898                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3899         }
3900
3901         is_active ^= ctx->is_active; /* changed bits */
3902
3903         /*
3904          * First go through the list and put on any pinned groups
3905          * in order to give them the best chance of going on.
3906          */
3907         if (is_active & EVENT_PINNED)
3908                 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3909
3910         /* Then walk through the lower prio flexible groups */
3911         if (is_active & EVENT_FLEXIBLE)
3912                 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3913 }
3914
3915 static void perf_event_context_sched_in(struct task_struct *task)
3916 {
3917         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3918         struct perf_event_context *ctx;
3919
3920         rcu_read_lock();
3921         ctx = rcu_dereference(task->perf_event_ctxp);
3922         if (!ctx)
3923                 goto rcu_unlock;
3924
3925         if (cpuctx->task_ctx == ctx) {
3926                 perf_ctx_lock(cpuctx, ctx);
3927                 perf_ctx_disable(ctx, false);
3928
3929                 perf_ctx_sched_task_cb(ctx, true);
3930
3931                 perf_ctx_enable(ctx, false);
3932                 perf_ctx_unlock(cpuctx, ctx);
3933                 goto rcu_unlock;
3934         }
3935
3936         perf_ctx_lock(cpuctx, ctx);
3937         /*
3938          * We must check ctx->nr_events while holding ctx->lock, such
3939          * that we serialize against perf_install_in_context().
3940          */
3941         if (!ctx->nr_events)
3942                 goto unlock;
3943
3944         perf_ctx_disable(ctx, false);
3945         /*
3946          * We want to keep the following priority order:
3947          * cpu pinned (that don't need to move), task pinned,
3948          * cpu flexible, task flexible.
3949          *
3950          * However, if task's ctx is not carrying any pinned
3951          * events, no need to flip the cpuctx's events around.
3952          */
3953         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3954                 perf_ctx_disable(&cpuctx->ctx, false);
3955                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3956         }
3957
3958         perf_event_sched_in(cpuctx, ctx);
3959
3960         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3961
3962         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3963                 perf_ctx_enable(&cpuctx->ctx, false);
3964
3965         perf_ctx_enable(ctx, false);
3966
3967 unlock:
3968         perf_ctx_unlock(cpuctx, ctx);
3969 rcu_unlock:
3970         rcu_read_unlock();
3971 }
3972
3973 /*
3974  * Called from scheduler to add the events of the current task
3975  * with interrupts disabled.
3976  *
3977  * We restore the event value and then enable it.
3978  *
3979  * This does not protect us against NMI, but enable()
3980  * sets the enabled bit in the control field of event _before_
3981  * accessing the event control register. If a NMI hits, then it will
3982  * keep the event running.
3983  */
3984 void __perf_event_task_sched_in(struct task_struct *prev,
3985                                 struct task_struct *task)
3986 {
3987         perf_event_context_sched_in(task);
3988
3989         if (atomic_read(&nr_switch_events))
3990                 perf_event_switch(task, prev, true);
3991
3992         if (__this_cpu_read(perf_sched_cb_usages))
3993                 perf_pmu_sched_task(prev, task, true);
3994 }
3995
3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3997 {
3998         u64 frequency = event->attr.sample_freq;
3999         u64 sec = NSEC_PER_SEC;
4000         u64 divisor, dividend;
4001
4002         int count_fls, nsec_fls, frequency_fls, sec_fls;
4003
4004         count_fls = fls64(count);
4005         nsec_fls = fls64(nsec);
4006         frequency_fls = fls64(frequency);
4007         sec_fls = 30;
4008
4009         /*
4010          * We got @count in @nsec, with a target of sample_freq HZ
4011          * the target period becomes:
4012          *
4013          *             @count * 10^9
4014          * period = -------------------
4015          *          @nsec * sample_freq
4016          *
4017          */
4018
4019         /*
4020          * Reduce accuracy by one bit such that @a and @b converge
4021          * to a similar magnitude.
4022          */
4023 #define REDUCE_FLS(a, b)                \
4024 do {                                    \
4025         if (a##_fls > b##_fls) {        \
4026                 a >>= 1;                \
4027                 a##_fls--;              \
4028         } else {                        \
4029                 b >>= 1;                \
4030                 b##_fls--;              \
4031         }                               \
4032 } while (0)
4033
4034         /*
4035          * Reduce accuracy until either term fits in a u64, then proceed with
4036          * the other, so that finally we can do a u64/u64 division.
4037          */
4038         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4039                 REDUCE_FLS(nsec, frequency);
4040                 REDUCE_FLS(sec, count);
4041         }
4042
4043         if (count_fls + sec_fls > 64) {
4044                 divisor = nsec * frequency;
4045
4046                 while (count_fls + sec_fls > 64) {
4047                         REDUCE_FLS(count, sec);
4048                         divisor >>= 1;
4049                 }
4050
4051                 dividend = count * sec;
4052         } else {
4053                 dividend = count * sec;
4054
4055                 while (nsec_fls + frequency_fls > 64) {
4056                         REDUCE_FLS(nsec, frequency);
4057                         dividend >>= 1;
4058                 }
4059
4060                 divisor = nsec * frequency;
4061         }
4062
4063         if (!divisor)
4064                 return dividend;
4065
4066         return div64_u64(dividend, divisor);
4067 }
4068
4069 static DEFINE_PER_CPU(int, perf_throttled_count);
4070 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4071
4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4073 {
4074         struct hw_perf_event *hwc = &event->hw;
4075         s64 period, sample_period;
4076         s64 delta;
4077
4078         period = perf_calculate_period(event, nsec, count);
4079
4080         delta = (s64)(period - hwc->sample_period);
4081         delta = (delta + 7) / 8; /* low pass filter */
4082
4083         sample_period = hwc->sample_period + delta;
4084
4085         if (!sample_period)
4086                 sample_period = 1;
4087
4088         hwc->sample_period = sample_period;
4089
4090         if (local64_read(&hwc->period_left) > 8*sample_period) {
4091                 if (disable)
4092                         event->pmu->stop(event, PERF_EF_UPDATE);
4093
4094                 local64_set(&hwc->period_left, 0);
4095
4096                 if (disable)
4097                         event->pmu->start(event, PERF_EF_RELOAD);
4098         }
4099 }
4100
4101 /*
4102  * combine freq adjustment with unthrottling to avoid two passes over the
4103  * events. At the same time, make sure, having freq events does not change
4104  * the rate of unthrottling as that would introduce bias.
4105  */
4106 static void
4107 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4108 {
4109         struct perf_event *event;
4110         struct hw_perf_event *hwc;
4111         u64 now, period = TICK_NSEC;
4112         s64 delta;
4113
4114         /*
4115          * only need to iterate over all events iff:
4116          * - context have events in frequency mode (needs freq adjust)
4117          * - there are events to unthrottle on this cpu
4118          */
4119         if (!(ctx->nr_freq || unthrottle))
4120                 return;
4121
4122         raw_spin_lock(&ctx->lock);
4123
4124         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4125                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4126                         continue;
4127
4128                 // XXX use visit thingy to avoid the -1,cpu match
4129                 if (!event_filter_match(event))
4130                         continue;
4131
4132                 perf_pmu_disable(event->pmu);
4133
4134                 hwc = &event->hw;
4135
4136                 if (hwc->interrupts == MAX_INTERRUPTS) {
4137                         hwc->interrupts = 0;
4138                         perf_log_throttle(event, 1);
4139                         event->pmu->start(event, 0);
4140                 }
4141
4142                 if (!event->attr.freq || !event->attr.sample_freq)
4143                         goto next;
4144
4145                 /*
4146                  * stop the event and update event->count
4147                  */
4148                 event->pmu->stop(event, PERF_EF_UPDATE);
4149
4150                 now = local64_read(&event->count);
4151                 delta = now - hwc->freq_count_stamp;
4152                 hwc->freq_count_stamp = now;
4153
4154                 /*
4155                  * restart the event
4156                  * reload only if value has changed
4157                  * we have stopped the event so tell that
4158                  * to perf_adjust_period() to avoid stopping it
4159                  * twice.
4160                  */
4161                 if (delta > 0)
4162                         perf_adjust_period(event, period, delta, false);
4163
4164                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4165         next:
4166                 perf_pmu_enable(event->pmu);
4167         }
4168
4169         raw_spin_unlock(&ctx->lock);
4170 }
4171
4172 /*
4173  * Move @event to the tail of the @ctx's elegible events.
4174  */
4175 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4176 {
4177         /*
4178          * Rotate the first entry last of non-pinned groups. Rotation might be
4179          * disabled by the inheritance code.
4180          */
4181         if (ctx->rotate_disable)
4182                 return;
4183
4184         perf_event_groups_delete(&ctx->flexible_groups, event);
4185         perf_event_groups_insert(&ctx->flexible_groups, event);
4186 }
4187
4188 /* pick an event from the flexible_groups to rotate */
4189 static inline struct perf_event *
4190 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4191 {
4192         struct perf_event *event;
4193         struct rb_node *node;
4194         struct rb_root *tree;
4195         struct __group_key key = {
4196                 .pmu = pmu_ctx->pmu,
4197         };
4198
4199         /* pick the first active flexible event */
4200         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4201                                          struct perf_event, active_list);
4202         if (event)
4203                 goto out;
4204
4205         /* if no active flexible event, pick the first event */
4206         tree = &pmu_ctx->ctx->flexible_groups.tree;
4207
4208         if (!pmu_ctx->ctx->task) {
4209                 key.cpu = smp_processor_id();
4210
4211                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4212                 if (node)
4213                         event = __node_2_pe(node);
4214                 goto out;
4215         }
4216
4217         key.cpu = -1;
4218         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4219         if (node) {
4220                 event = __node_2_pe(node);
4221                 goto out;
4222         }
4223
4224         key.cpu = smp_processor_id();
4225         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4226         if (node)
4227                 event = __node_2_pe(node);
4228
4229 out:
4230         /*
4231          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4232          * finds there are unschedulable events, it will set it again.
4233          */
4234         pmu_ctx->rotate_necessary = 0;
4235
4236         return event;
4237 }
4238
4239 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4240 {
4241         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4242         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4243         struct perf_event *cpu_event = NULL, *task_event = NULL;
4244         int cpu_rotate, task_rotate;
4245         struct pmu *pmu;
4246
4247         /*
4248          * Since we run this from IRQ context, nobody can install new
4249          * events, thus the event count values are stable.
4250          */
4251
4252         cpu_epc = &cpc->epc;
4253         pmu = cpu_epc->pmu;
4254         task_epc = cpc->task_epc;
4255
4256         cpu_rotate = cpu_epc->rotate_necessary;
4257         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4258
4259         if (!(cpu_rotate || task_rotate))
4260                 return false;
4261
4262         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4263         perf_pmu_disable(pmu);
4264
4265         if (task_rotate)
4266                 task_event = ctx_event_to_rotate(task_epc);
4267         if (cpu_rotate)
4268                 cpu_event = ctx_event_to_rotate(cpu_epc);
4269
4270         /*
4271          * As per the order given at ctx_resched() first 'pop' task flexible
4272          * and then, if needed CPU flexible.
4273          */
4274         if (task_event || (task_epc && cpu_event)) {
4275                 update_context_time(task_epc->ctx);
4276                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4277         }
4278
4279         if (cpu_event) {
4280                 update_context_time(&cpuctx->ctx);
4281                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4282                 rotate_ctx(&cpuctx->ctx, cpu_event);
4283                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4284         }
4285
4286         if (task_event)
4287                 rotate_ctx(task_epc->ctx, task_event);
4288
4289         if (task_event || (task_epc && cpu_event))
4290                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4291
4292         perf_pmu_enable(pmu);
4293         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4294
4295         return true;
4296 }
4297
4298 void perf_event_task_tick(void)
4299 {
4300         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4301         struct perf_event_context *ctx;
4302         int throttled;
4303
4304         lockdep_assert_irqs_disabled();
4305
4306         __this_cpu_inc(perf_throttled_seq);
4307         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4308         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4309
4310         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4311
4312         rcu_read_lock();
4313         ctx = rcu_dereference(current->perf_event_ctxp);
4314         if (ctx)
4315                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4316         rcu_read_unlock();
4317 }
4318
4319 static int event_enable_on_exec(struct perf_event *event,
4320                                 struct perf_event_context *ctx)
4321 {
4322         if (!event->attr.enable_on_exec)
4323                 return 0;
4324
4325         event->attr.enable_on_exec = 0;
4326         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4327                 return 0;
4328
4329         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4330
4331         return 1;
4332 }
4333
4334 /*
4335  * Enable all of a task's events that have been marked enable-on-exec.
4336  * This expects task == current.
4337  */
4338 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4339 {
4340         struct perf_event_context *clone_ctx = NULL;
4341         enum event_type_t event_type = 0;
4342         struct perf_cpu_context *cpuctx;
4343         struct perf_event *event;
4344         unsigned long flags;
4345         int enabled = 0;
4346
4347         local_irq_save(flags);
4348         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4349                 goto out;
4350
4351         if (!ctx->nr_events)
4352                 goto out;
4353
4354         cpuctx = this_cpu_ptr(&perf_cpu_context);
4355         perf_ctx_lock(cpuctx, ctx);
4356         ctx_sched_out(ctx, EVENT_TIME);
4357
4358         list_for_each_entry(event, &ctx->event_list, event_entry) {
4359                 enabled |= event_enable_on_exec(event, ctx);
4360                 event_type |= get_event_type(event);
4361         }
4362
4363         /*
4364          * Unclone and reschedule this context if we enabled any event.
4365          */
4366         if (enabled) {
4367                 clone_ctx = unclone_ctx(ctx);
4368                 ctx_resched(cpuctx, ctx, event_type);
4369         } else {
4370                 ctx_sched_in(ctx, EVENT_TIME);
4371         }
4372         perf_ctx_unlock(cpuctx, ctx);
4373
4374 out:
4375         local_irq_restore(flags);
4376
4377         if (clone_ctx)
4378                 put_ctx(clone_ctx);
4379 }
4380
4381 static void perf_remove_from_owner(struct perf_event *event);
4382 static void perf_event_exit_event(struct perf_event *event,
4383                                   struct perf_event_context *ctx);
4384
4385 /*
4386  * Removes all events from the current task that have been marked
4387  * remove-on-exec, and feeds their values back to parent events.
4388  */
4389 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4390 {
4391         struct perf_event_context *clone_ctx = NULL;
4392         struct perf_event *event, *next;
4393         unsigned long flags;
4394         bool modified = false;
4395
4396         mutex_lock(&ctx->mutex);
4397
4398         if (WARN_ON_ONCE(ctx->task != current))
4399                 goto unlock;
4400
4401         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4402                 if (!event->attr.remove_on_exec)
4403                         continue;
4404
4405                 if (!is_kernel_event(event))
4406                         perf_remove_from_owner(event);
4407
4408                 modified = true;
4409
4410                 perf_event_exit_event(event, ctx);
4411         }
4412
4413         raw_spin_lock_irqsave(&ctx->lock, flags);
4414         if (modified)
4415                 clone_ctx = unclone_ctx(ctx);
4416         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417
4418 unlock:
4419         mutex_unlock(&ctx->mutex);
4420
4421         if (clone_ctx)
4422                 put_ctx(clone_ctx);
4423 }
4424
4425 struct perf_read_data {
4426         struct perf_event *event;
4427         bool group;
4428         int ret;
4429 };
4430
4431 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4432 {
4433         u16 local_pkg, event_pkg;
4434
4435         if ((unsigned)event_cpu >= nr_cpu_ids)
4436                 return event_cpu;
4437
4438         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4439                 int local_cpu = smp_processor_id();
4440
4441                 event_pkg = topology_physical_package_id(event_cpu);
4442                 local_pkg = topology_physical_package_id(local_cpu);
4443
4444                 if (event_pkg == local_pkg)
4445                         return local_cpu;
4446         }
4447
4448         return event_cpu;
4449 }
4450
4451 /*
4452  * Cross CPU call to read the hardware event
4453  */
4454 static void __perf_event_read(void *info)
4455 {
4456         struct perf_read_data *data = info;
4457         struct perf_event *sub, *event = data->event;
4458         struct perf_event_context *ctx = event->ctx;
4459         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4460         struct pmu *pmu = event->pmu;
4461
4462         /*
4463          * If this is a task context, we need to check whether it is
4464          * the current task context of this cpu.  If not it has been
4465          * scheduled out before the smp call arrived.  In that case
4466          * event->count would have been updated to a recent sample
4467          * when the event was scheduled out.
4468          */
4469         if (ctx->task && cpuctx->task_ctx != ctx)
4470                 return;
4471
4472         raw_spin_lock(&ctx->lock);
4473         if (ctx->is_active & EVENT_TIME) {
4474                 update_context_time(ctx);
4475                 update_cgrp_time_from_event(event);
4476         }
4477
4478         perf_event_update_time(event);
4479         if (data->group)
4480                 perf_event_update_sibling_time(event);
4481
4482         if (event->state != PERF_EVENT_STATE_ACTIVE)
4483                 goto unlock;
4484
4485         if (!data->group) {
4486                 pmu->read(event);
4487                 data->ret = 0;
4488                 goto unlock;
4489         }
4490
4491         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4492
4493         pmu->read(event);
4494
4495         for_each_sibling_event(sub, event) {
4496                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4497                         /*
4498                          * Use sibling's PMU rather than @event's since
4499                          * sibling could be on different (eg: software) PMU.
4500                          */
4501                         sub->pmu->read(sub);
4502                 }
4503         }
4504
4505         data->ret = pmu->commit_txn(pmu);
4506
4507 unlock:
4508         raw_spin_unlock(&ctx->lock);
4509 }
4510
4511 static inline u64 perf_event_count(struct perf_event *event)
4512 {
4513         return local64_read(&event->count) + atomic64_read(&event->child_count);
4514 }
4515
4516 static void calc_timer_values(struct perf_event *event,
4517                                 u64 *now,
4518                                 u64 *enabled,
4519                                 u64 *running)
4520 {
4521         u64 ctx_time;
4522
4523         *now = perf_clock();
4524         ctx_time = perf_event_time_now(event, *now);
4525         __perf_update_times(event, ctx_time, enabled, running);
4526 }
4527
4528 /*
4529  * NMI-safe method to read a local event, that is an event that
4530  * is:
4531  *   - either for the current task, or for this CPU
4532  *   - does not have inherit set, for inherited task events
4533  *     will not be local and we cannot read them atomically
4534  *   - must not have a pmu::count method
4535  */
4536 int perf_event_read_local(struct perf_event *event, u64 *value,
4537                           u64 *enabled, u64 *running)
4538 {
4539         unsigned long flags;
4540         int event_oncpu;
4541         int event_cpu;
4542         int ret = 0;
4543
4544         /*
4545          * Disabling interrupts avoids all counter scheduling (context
4546          * switches, timer based rotation and IPIs).
4547          */
4548         local_irq_save(flags);
4549
4550         /*
4551          * It must not be an event with inherit set, we cannot read
4552          * all child counters from atomic context.
4553          */
4554         if (event->attr.inherit) {
4555                 ret = -EOPNOTSUPP;
4556                 goto out;
4557         }
4558
4559         /* If this is a per-task event, it must be for current */
4560         if ((event->attach_state & PERF_ATTACH_TASK) &&
4561             event->hw.target != current) {
4562                 ret = -EINVAL;
4563                 goto out;
4564         }
4565
4566         /*
4567          * Get the event CPU numbers, and adjust them to local if the event is
4568          * a per-package event that can be read locally
4569          */
4570         event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4571         event_cpu = __perf_event_read_cpu(event, event->cpu);
4572
4573         /* If this is a per-CPU event, it must be for this CPU */
4574         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4575             event_cpu != smp_processor_id()) {
4576                 ret = -EINVAL;
4577                 goto out;
4578         }
4579
4580         /* If this is a pinned event it must be running on this CPU */
4581         if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4582                 ret = -EBUSY;
4583                 goto out;
4584         }
4585
4586         /*
4587          * If the event is currently on this CPU, its either a per-task event,
4588          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4589          * oncpu == -1).
4590          */
4591         if (event_oncpu == smp_processor_id())
4592                 event->pmu->read(event);
4593
4594         *value = local64_read(&event->count);
4595         if (enabled || running) {
4596                 u64 __enabled, __running, __now;
4597
4598                 calc_timer_values(event, &__now, &__enabled, &__running);
4599                 if (enabled)
4600                         *enabled = __enabled;
4601                 if (running)
4602                         *running = __running;
4603         }
4604 out:
4605         local_irq_restore(flags);
4606
4607         return ret;
4608 }
4609
4610 static int perf_event_read(struct perf_event *event, bool group)
4611 {
4612         enum perf_event_state state = READ_ONCE(event->state);
4613         int event_cpu, ret = 0;
4614
4615         /*
4616          * If event is enabled and currently active on a CPU, update the
4617          * value in the event structure:
4618          */
4619 again:
4620         if (state == PERF_EVENT_STATE_ACTIVE) {
4621                 struct perf_read_data data;
4622
4623                 /*
4624                  * Orders the ->state and ->oncpu loads such that if we see
4625                  * ACTIVE we must also see the right ->oncpu.
4626                  *
4627                  * Matches the smp_wmb() from event_sched_in().
4628                  */
4629                 smp_rmb();
4630
4631                 event_cpu = READ_ONCE(event->oncpu);
4632                 if ((unsigned)event_cpu >= nr_cpu_ids)
4633                         return 0;
4634
4635                 data = (struct perf_read_data){
4636                         .event = event,
4637                         .group = group,
4638                         .ret = 0,
4639                 };
4640
4641                 preempt_disable();
4642                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4643
4644                 /*
4645                  * Purposely ignore the smp_call_function_single() return
4646                  * value.
4647                  *
4648                  * If event_cpu isn't a valid CPU it means the event got
4649                  * scheduled out and that will have updated the event count.
4650                  *
4651                  * Therefore, either way, we'll have an up-to-date event count
4652                  * after this.
4653                  */
4654                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4655                 preempt_enable();
4656                 ret = data.ret;
4657
4658         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4659                 struct perf_event_context *ctx = event->ctx;
4660                 unsigned long flags;
4661
4662                 raw_spin_lock_irqsave(&ctx->lock, flags);
4663                 state = event->state;
4664                 if (state != PERF_EVENT_STATE_INACTIVE) {
4665                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4666                         goto again;
4667                 }
4668
4669                 /*
4670                  * May read while context is not active (e.g., thread is
4671                  * blocked), in that case we cannot update context time
4672                  */
4673                 if (ctx->is_active & EVENT_TIME) {
4674                         update_context_time(ctx);
4675                         update_cgrp_time_from_event(event);
4676                 }
4677
4678                 perf_event_update_time(event);
4679                 if (group)
4680                         perf_event_update_sibling_time(event);
4681                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4682         }
4683
4684         return ret;
4685 }
4686
4687 /*
4688  * Initialize the perf_event context in a task_struct:
4689  */
4690 static void __perf_event_init_context(struct perf_event_context *ctx)
4691 {
4692         raw_spin_lock_init(&ctx->lock);
4693         mutex_init(&ctx->mutex);
4694         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4695         perf_event_groups_init(&ctx->pinned_groups);
4696         perf_event_groups_init(&ctx->flexible_groups);
4697         INIT_LIST_HEAD(&ctx->event_list);
4698         refcount_set(&ctx->refcount, 1);
4699 }
4700
4701 static void
4702 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4703 {
4704         epc->pmu = pmu;
4705         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4706         INIT_LIST_HEAD(&epc->pinned_active);
4707         INIT_LIST_HEAD(&epc->flexible_active);
4708         atomic_set(&epc->refcount, 1);
4709 }
4710
4711 static struct perf_event_context *
4712 alloc_perf_context(struct task_struct *task)
4713 {
4714         struct perf_event_context *ctx;
4715
4716         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4717         if (!ctx)
4718                 return NULL;
4719
4720         __perf_event_init_context(ctx);
4721         if (task)
4722                 ctx->task = get_task_struct(task);
4723
4724         return ctx;
4725 }
4726
4727 static struct task_struct *
4728 find_lively_task_by_vpid(pid_t vpid)
4729 {
4730         struct task_struct *task;
4731
4732         rcu_read_lock();
4733         if (!vpid)
4734                 task = current;
4735         else
4736                 task = find_task_by_vpid(vpid);
4737         if (task)
4738                 get_task_struct(task);
4739         rcu_read_unlock();
4740
4741         if (!task)
4742                 return ERR_PTR(-ESRCH);
4743
4744         return task;
4745 }
4746
4747 /*
4748  * Returns a matching context with refcount and pincount.
4749  */
4750 static struct perf_event_context *
4751 find_get_context(struct task_struct *task, struct perf_event *event)
4752 {
4753         struct perf_event_context *ctx, *clone_ctx = NULL;
4754         struct perf_cpu_context *cpuctx;
4755         unsigned long flags;
4756         int err;
4757
4758         if (!task) {
4759                 /* Must be root to operate on a CPU event: */
4760                 err = perf_allow_cpu(&event->attr);
4761                 if (err)
4762                         return ERR_PTR(err);
4763
4764                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4765                 ctx = &cpuctx->ctx;
4766                 get_ctx(ctx);
4767                 raw_spin_lock_irqsave(&ctx->lock, flags);
4768                 ++ctx->pin_count;
4769                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4770
4771                 return ctx;
4772         }
4773
4774         err = -EINVAL;
4775 retry:
4776         ctx = perf_lock_task_context(task, &flags);
4777         if (ctx) {
4778                 clone_ctx = unclone_ctx(ctx);
4779                 ++ctx->pin_count;
4780
4781                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4782
4783                 if (clone_ctx)
4784                         put_ctx(clone_ctx);
4785         } else {
4786                 ctx = alloc_perf_context(task);
4787                 err = -ENOMEM;
4788                 if (!ctx)
4789                         goto errout;
4790
4791                 err = 0;
4792                 mutex_lock(&task->perf_event_mutex);
4793                 /*
4794                  * If it has already passed perf_event_exit_task().
4795                  * we must see PF_EXITING, it takes this mutex too.
4796                  */
4797                 if (task->flags & PF_EXITING)
4798                         err = -ESRCH;
4799                 else if (task->perf_event_ctxp)
4800                         err = -EAGAIN;
4801                 else {
4802                         get_ctx(ctx);
4803                         ++ctx->pin_count;
4804                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4805                 }
4806                 mutex_unlock(&task->perf_event_mutex);
4807
4808                 if (unlikely(err)) {
4809                         put_ctx(ctx);
4810
4811                         if (err == -EAGAIN)
4812                                 goto retry;
4813                         goto errout;
4814                 }
4815         }
4816
4817         return ctx;
4818
4819 errout:
4820         return ERR_PTR(err);
4821 }
4822
4823 static struct perf_event_pmu_context *
4824 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4825                      struct perf_event *event)
4826 {
4827         struct perf_event_pmu_context *new = NULL, *epc;
4828         void *task_ctx_data = NULL;
4829
4830         if (!ctx->task) {
4831                 /*
4832                  * perf_pmu_migrate_context() / __perf_pmu_install_event()
4833                  * relies on the fact that find_get_pmu_context() cannot fail
4834                  * for CPU contexts.
4835                  */
4836                 struct perf_cpu_pmu_context *cpc;
4837
4838                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4839                 epc = &cpc->epc;
4840                 raw_spin_lock_irq(&ctx->lock);
4841                 if (!epc->ctx) {
4842                         atomic_set(&epc->refcount, 1);
4843                         epc->embedded = 1;
4844                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4845                         epc->ctx = ctx;
4846                 } else {
4847                         WARN_ON_ONCE(epc->ctx != ctx);
4848                         atomic_inc(&epc->refcount);
4849                 }
4850                 raw_spin_unlock_irq(&ctx->lock);
4851                 return epc;
4852         }
4853
4854         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4855         if (!new)
4856                 return ERR_PTR(-ENOMEM);
4857
4858         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4859                 task_ctx_data = alloc_task_ctx_data(pmu);
4860                 if (!task_ctx_data) {
4861                         kfree(new);
4862                         return ERR_PTR(-ENOMEM);
4863                 }
4864         }
4865
4866         __perf_init_event_pmu_context(new, pmu);
4867
4868         /*
4869          * XXX
4870          *
4871          * lockdep_assert_held(&ctx->mutex);
4872          *
4873          * can't because perf_event_init_task() doesn't actually hold the
4874          * child_ctx->mutex.
4875          */
4876
4877         raw_spin_lock_irq(&ctx->lock);
4878         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4879                 if (epc->pmu == pmu) {
4880                         WARN_ON_ONCE(epc->ctx != ctx);
4881                         atomic_inc(&epc->refcount);
4882                         goto found_epc;
4883                 }
4884         }
4885
4886         epc = new;
4887         new = NULL;
4888
4889         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4890         epc->ctx = ctx;
4891
4892 found_epc:
4893         if (task_ctx_data && !epc->task_ctx_data) {
4894                 epc->task_ctx_data = task_ctx_data;
4895                 task_ctx_data = NULL;
4896                 ctx->nr_task_data++;
4897         }
4898         raw_spin_unlock_irq(&ctx->lock);
4899
4900         free_task_ctx_data(pmu, task_ctx_data);
4901         kfree(new);
4902
4903         return epc;
4904 }
4905
4906 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4907 {
4908         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4909 }
4910
4911 static void free_epc_rcu(struct rcu_head *head)
4912 {
4913         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4914
4915         kfree(epc->task_ctx_data);
4916         kfree(epc);
4917 }
4918
4919 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4920 {
4921         struct perf_event_context *ctx = epc->ctx;
4922         unsigned long flags;
4923
4924         /*
4925          * XXX
4926          *
4927          * lockdep_assert_held(&ctx->mutex);
4928          *
4929          * can't because of the call-site in _free_event()/put_event()
4930          * which isn't always called under ctx->mutex.
4931          */
4932         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4933                 return;
4934
4935         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4936
4937         list_del_init(&epc->pmu_ctx_entry);
4938         epc->ctx = NULL;
4939
4940         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4941         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4942
4943         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4944
4945         if (epc->embedded)
4946                 return;
4947
4948         call_rcu(&epc->rcu_head, free_epc_rcu);
4949 }
4950
4951 static void perf_event_free_filter(struct perf_event *event);
4952
4953 static void free_event_rcu(struct rcu_head *head)
4954 {
4955         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4956
4957         if (event->ns)
4958                 put_pid_ns(event->ns);
4959         perf_event_free_filter(event);
4960         kmem_cache_free(perf_event_cache, event);
4961 }
4962
4963 static void ring_buffer_attach(struct perf_event *event,
4964                                struct perf_buffer *rb);
4965
4966 static void detach_sb_event(struct perf_event *event)
4967 {
4968         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4969
4970         raw_spin_lock(&pel->lock);
4971         list_del_rcu(&event->sb_list);
4972         raw_spin_unlock(&pel->lock);
4973 }
4974
4975 static bool is_sb_event(struct perf_event *event)
4976 {
4977         struct perf_event_attr *attr = &event->attr;
4978
4979         if (event->parent)
4980                 return false;
4981
4982         if (event->attach_state & PERF_ATTACH_TASK)
4983                 return false;
4984
4985         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4986             attr->comm || attr->comm_exec ||
4987             attr->task || attr->ksymbol ||
4988             attr->context_switch || attr->text_poke ||
4989             attr->bpf_event)
4990                 return true;
4991         return false;
4992 }
4993
4994 static void unaccount_pmu_sb_event(struct perf_event *event)
4995 {
4996         if (is_sb_event(event))
4997                 detach_sb_event(event);
4998 }
4999
5000 #ifdef CONFIG_NO_HZ_FULL
5001 static DEFINE_SPINLOCK(nr_freq_lock);
5002 #endif
5003
5004 static void unaccount_freq_event_nohz(void)
5005 {
5006 #ifdef CONFIG_NO_HZ_FULL
5007         spin_lock(&nr_freq_lock);
5008         if (atomic_dec_and_test(&nr_freq_events))
5009                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5010         spin_unlock(&nr_freq_lock);
5011 #endif
5012 }
5013
5014 static void unaccount_freq_event(void)
5015 {
5016         if (tick_nohz_full_enabled())
5017                 unaccount_freq_event_nohz();
5018         else
5019                 atomic_dec(&nr_freq_events);
5020 }
5021
5022 static void unaccount_event(struct perf_event *event)
5023 {
5024         bool dec = false;
5025
5026         if (event->parent)
5027                 return;
5028
5029         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5030                 dec = true;
5031         if (event->attr.mmap || event->attr.mmap_data)
5032                 atomic_dec(&nr_mmap_events);
5033         if (event->attr.build_id)
5034                 atomic_dec(&nr_build_id_events);
5035         if (event->attr.comm)
5036                 atomic_dec(&nr_comm_events);
5037         if (event->attr.namespaces)
5038                 atomic_dec(&nr_namespaces_events);
5039         if (event->attr.cgroup)
5040                 atomic_dec(&nr_cgroup_events);
5041         if (event->attr.task)
5042                 atomic_dec(&nr_task_events);
5043         if (event->attr.freq)
5044                 unaccount_freq_event();
5045         if (event->attr.context_switch) {
5046                 dec = true;
5047                 atomic_dec(&nr_switch_events);
5048         }
5049         if (is_cgroup_event(event))
5050                 dec = true;
5051         if (has_branch_stack(event))
5052                 dec = true;
5053         if (event->attr.ksymbol)
5054                 atomic_dec(&nr_ksymbol_events);
5055         if (event->attr.bpf_event)
5056                 atomic_dec(&nr_bpf_events);
5057         if (event->attr.text_poke)
5058                 atomic_dec(&nr_text_poke_events);
5059
5060         if (dec) {
5061                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5062                         schedule_delayed_work(&perf_sched_work, HZ);
5063         }
5064
5065         unaccount_pmu_sb_event(event);
5066 }
5067
5068 static void perf_sched_delayed(struct work_struct *work)
5069 {
5070         mutex_lock(&perf_sched_mutex);
5071         if (atomic_dec_and_test(&perf_sched_count))
5072                 static_branch_disable(&perf_sched_events);
5073         mutex_unlock(&perf_sched_mutex);
5074 }
5075
5076 /*
5077  * The following implement mutual exclusion of events on "exclusive" pmus
5078  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5079  * at a time, so we disallow creating events that might conflict, namely:
5080  *
5081  *  1) cpu-wide events in the presence of per-task events,
5082  *  2) per-task events in the presence of cpu-wide events,
5083  *  3) two matching events on the same perf_event_context.
5084  *
5085  * The former two cases are handled in the allocation path (perf_event_alloc(),
5086  * _free_event()), the latter -- before the first perf_install_in_context().
5087  */
5088 static int exclusive_event_init(struct perf_event *event)
5089 {
5090         struct pmu *pmu = event->pmu;
5091
5092         if (!is_exclusive_pmu(pmu))
5093                 return 0;
5094
5095         /*
5096          * Prevent co-existence of per-task and cpu-wide events on the
5097          * same exclusive pmu.
5098          *
5099          * Negative pmu::exclusive_cnt means there are cpu-wide
5100          * events on this "exclusive" pmu, positive means there are
5101          * per-task events.
5102          *
5103          * Since this is called in perf_event_alloc() path, event::ctx
5104          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5105          * to mean "per-task event", because unlike other attach states it
5106          * never gets cleared.
5107          */
5108         if (event->attach_state & PERF_ATTACH_TASK) {
5109                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5110                         return -EBUSY;
5111         } else {
5112                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5113                         return -EBUSY;
5114         }
5115
5116         return 0;
5117 }
5118
5119 static void exclusive_event_destroy(struct perf_event *event)
5120 {
5121         struct pmu *pmu = event->pmu;
5122
5123         if (!is_exclusive_pmu(pmu))
5124                 return;
5125
5126         /* see comment in exclusive_event_init() */
5127         if (event->attach_state & PERF_ATTACH_TASK)
5128                 atomic_dec(&pmu->exclusive_cnt);
5129         else
5130                 atomic_inc(&pmu->exclusive_cnt);
5131 }
5132
5133 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5134 {
5135         if ((e1->pmu == e2->pmu) &&
5136             (e1->cpu == e2->cpu ||
5137              e1->cpu == -1 ||
5138              e2->cpu == -1))
5139                 return true;
5140         return false;
5141 }
5142
5143 static bool exclusive_event_installable(struct perf_event *event,
5144                                         struct perf_event_context *ctx)
5145 {
5146         struct perf_event *iter_event;
5147         struct pmu *pmu = event->pmu;
5148
5149         lockdep_assert_held(&ctx->mutex);
5150
5151         if (!is_exclusive_pmu(pmu))
5152                 return true;
5153
5154         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5155                 if (exclusive_event_match(iter_event, event))
5156                         return false;
5157         }
5158
5159         return true;
5160 }
5161
5162 static void perf_addr_filters_splice(struct perf_event *event,
5163                                        struct list_head *head);
5164
5165 static void _free_event(struct perf_event *event)
5166 {
5167         irq_work_sync(&event->pending_irq);
5168
5169         unaccount_event(event);
5170
5171         security_perf_event_free(event);
5172
5173         if (event->rb) {
5174                 /*
5175                  * Can happen when we close an event with re-directed output.
5176                  *
5177                  * Since we have a 0 refcount, perf_mmap_close() will skip
5178                  * over us; possibly making our ring_buffer_put() the last.
5179                  */
5180                 mutex_lock(&event->mmap_mutex);
5181                 ring_buffer_attach(event, NULL);
5182                 mutex_unlock(&event->mmap_mutex);
5183         }
5184
5185         if (is_cgroup_event(event))
5186                 perf_detach_cgroup(event);
5187
5188         if (!event->parent) {
5189                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5190                         put_callchain_buffers();
5191         }
5192
5193         perf_event_free_bpf_prog(event);
5194         perf_addr_filters_splice(event, NULL);
5195         kfree(event->addr_filter_ranges);
5196
5197         if (event->destroy)
5198                 event->destroy(event);
5199
5200         /*
5201          * Must be after ->destroy(), due to uprobe_perf_close() using
5202          * hw.target.
5203          */
5204         if (event->hw.target)
5205                 put_task_struct(event->hw.target);
5206
5207         if (event->pmu_ctx)
5208                 put_pmu_ctx(event->pmu_ctx);
5209
5210         /*
5211          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5212          * all task references must be cleaned up.
5213          */
5214         if (event->ctx)
5215                 put_ctx(event->ctx);
5216
5217         exclusive_event_destroy(event);
5218         module_put(event->pmu->module);
5219
5220         call_rcu(&event->rcu_head, free_event_rcu);
5221 }
5222
5223 /*
5224  * Used to free events which have a known refcount of 1, such as in error paths
5225  * where the event isn't exposed yet and inherited events.
5226  */
5227 static void free_event(struct perf_event *event)
5228 {
5229         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5230                                 "unexpected event refcount: %ld; ptr=%p\n",
5231                                 atomic_long_read(&event->refcount), event)) {
5232                 /* leak to avoid use-after-free */
5233                 return;
5234         }
5235
5236         _free_event(event);
5237 }
5238
5239 /*
5240  * Remove user event from the owner task.
5241  */
5242 static void perf_remove_from_owner(struct perf_event *event)
5243 {
5244         struct task_struct *owner;
5245
5246         rcu_read_lock();
5247         /*
5248          * Matches the smp_store_release() in perf_event_exit_task(). If we
5249          * observe !owner it means the list deletion is complete and we can
5250          * indeed free this event, otherwise we need to serialize on
5251          * owner->perf_event_mutex.
5252          */
5253         owner = READ_ONCE(event->owner);
5254         if (owner) {
5255                 /*
5256                  * Since delayed_put_task_struct() also drops the last
5257                  * task reference we can safely take a new reference
5258                  * while holding the rcu_read_lock().
5259                  */
5260                 get_task_struct(owner);
5261         }
5262         rcu_read_unlock();
5263
5264         if (owner) {
5265                 /*
5266                  * If we're here through perf_event_exit_task() we're already
5267                  * holding ctx->mutex which would be an inversion wrt. the
5268                  * normal lock order.
5269                  *
5270                  * However we can safely take this lock because its the child
5271                  * ctx->mutex.
5272                  */
5273                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5274
5275                 /*
5276                  * We have to re-check the event->owner field, if it is cleared
5277                  * we raced with perf_event_exit_task(), acquiring the mutex
5278                  * ensured they're done, and we can proceed with freeing the
5279                  * event.
5280                  */
5281                 if (event->owner) {
5282                         list_del_init(&event->owner_entry);
5283                         smp_store_release(&event->owner, NULL);
5284                 }
5285                 mutex_unlock(&owner->perf_event_mutex);
5286                 put_task_struct(owner);
5287         }
5288 }
5289
5290 static void put_event(struct perf_event *event)
5291 {
5292         if (!atomic_long_dec_and_test(&event->refcount))
5293                 return;
5294
5295         _free_event(event);
5296 }
5297
5298 /*
5299  * Kill an event dead; while event:refcount will preserve the event
5300  * object, it will not preserve its functionality. Once the last 'user'
5301  * gives up the object, we'll destroy the thing.
5302  */
5303 int perf_event_release_kernel(struct perf_event *event)
5304 {
5305         struct perf_event_context *ctx = event->ctx;
5306         struct perf_event *child, *tmp;
5307         LIST_HEAD(free_list);
5308
5309         /*
5310          * If we got here through err_alloc: free_event(event); we will not
5311          * have attached to a context yet.
5312          */
5313         if (!ctx) {
5314                 WARN_ON_ONCE(event->attach_state &
5315                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5316                 goto no_ctx;
5317         }
5318
5319         if (!is_kernel_event(event))
5320                 perf_remove_from_owner(event);
5321
5322         ctx = perf_event_ctx_lock(event);
5323         WARN_ON_ONCE(ctx->parent_ctx);
5324
5325         /*
5326          * Mark this event as STATE_DEAD, there is no external reference to it
5327          * anymore.
5328          *
5329          * Anybody acquiring event->child_mutex after the below loop _must_
5330          * also see this, most importantly inherit_event() which will avoid
5331          * placing more children on the list.
5332          *
5333          * Thus this guarantees that we will in fact observe and kill _ALL_
5334          * child events.
5335          */
5336         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5337
5338         perf_event_ctx_unlock(event, ctx);
5339
5340 again:
5341         mutex_lock(&event->child_mutex);
5342         list_for_each_entry(child, &event->child_list, child_list) {
5343
5344                 /*
5345                  * Cannot change, child events are not migrated, see the
5346                  * comment with perf_event_ctx_lock_nested().
5347                  */
5348                 ctx = READ_ONCE(child->ctx);
5349                 /*
5350                  * Since child_mutex nests inside ctx::mutex, we must jump
5351                  * through hoops. We start by grabbing a reference on the ctx.
5352                  *
5353                  * Since the event cannot get freed while we hold the
5354                  * child_mutex, the context must also exist and have a !0
5355                  * reference count.
5356                  */
5357                 get_ctx(ctx);
5358
5359                 /*
5360                  * Now that we have a ctx ref, we can drop child_mutex, and
5361                  * acquire ctx::mutex without fear of it going away. Then we
5362                  * can re-acquire child_mutex.
5363                  */
5364                 mutex_unlock(&event->child_mutex);
5365                 mutex_lock(&ctx->mutex);
5366                 mutex_lock(&event->child_mutex);
5367
5368                 /*
5369                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5370                  * state, if child is still the first entry, it didn't get freed
5371                  * and we can continue doing so.
5372                  */
5373                 tmp = list_first_entry_or_null(&event->child_list,
5374                                                struct perf_event, child_list);
5375                 if (tmp == child) {
5376                         perf_remove_from_context(child, DETACH_GROUP);
5377                         list_move(&child->child_list, &free_list);
5378                         /*
5379                          * This matches the refcount bump in inherit_event();
5380                          * this can't be the last reference.
5381                          */
5382                         put_event(event);
5383                 }
5384
5385                 mutex_unlock(&event->child_mutex);
5386                 mutex_unlock(&ctx->mutex);
5387                 put_ctx(ctx);
5388                 goto again;
5389         }
5390         mutex_unlock(&event->child_mutex);
5391
5392         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5393                 void *var = &child->ctx->refcount;
5394
5395                 list_del(&child->child_list);
5396                 free_event(child);
5397
5398                 /*
5399                  * Wake any perf_event_free_task() waiting for this event to be
5400                  * freed.
5401                  */
5402                 smp_mb(); /* pairs with wait_var_event() */
5403                 wake_up_var(var);
5404         }
5405
5406 no_ctx:
5407         put_event(event); /* Must be the 'last' reference */
5408         return 0;
5409 }
5410 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5411
5412 /*
5413  * Called when the last reference to the file is gone.
5414  */
5415 static int perf_release(struct inode *inode, struct file *file)
5416 {
5417         perf_event_release_kernel(file->private_data);
5418         return 0;
5419 }
5420
5421 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5422 {
5423         struct perf_event *child;
5424         u64 total = 0;
5425
5426         *enabled = 0;
5427         *running = 0;
5428
5429         mutex_lock(&event->child_mutex);
5430
5431         (void)perf_event_read(event, false);
5432         total += perf_event_count(event);
5433
5434         *enabled += event->total_time_enabled +
5435                         atomic64_read(&event->child_total_time_enabled);
5436         *running += event->total_time_running +
5437                         atomic64_read(&event->child_total_time_running);
5438
5439         list_for_each_entry(child, &event->child_list, child_list) {
5440                 (void)perf_event_read(child, false);
5441                 total += perf_event_count(child);
5442                 *enabled += child->total_time_enabled;
5443                 *running += child->total_time_running;
5444         }
5445         mutex_unlock(&event->child_mutex);
5446
5447         return total;
5448 }
5449
5450 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5451 {
5452         struct perf_event_context *ctx;
5453         u64 count;
5454
5455         ctx = perf_event_ctx_lock(event);
5456         count = __perf_event_read_value(event, enabled, running);
5457         perf_event_ctx_unlock(event, ctx);
5458
5459         return count;
5460 }
5461 EXPORT_SYMBOL_GPL(perf_event_read_value);
5462
5463 static int __perf_read_group_add(struct perf_event *leader,
5464                                         u64 read_format, u64 *values)
5465 {
5466         struct perf_event_context *ctx = leader->ctx;
5467         struct perf_event *sub, *parent;
5468         unsigned long flags;
5469         int n = 1; /* skip @nr */
5470         int ret;
5471
5472         ret = perf_event_read(leader, true);
5473         if (ret)
5474                 return ret;
5475
5476         raw_spin_lock_irqsave(&ctx->lock, flags);
5477         /*
5478          * Verify the grouping between the parent and child (inherited)
5479          * events is still in tact.
5480          *
5481          * Specifically:
5482          *  - leader->ctx->lock pins leader->sibling_list
5483          *  - parent->child_mutex pins parent->child_list
5484          *  - parent->ctx->mutex pins parent->sibling_list
5485          *
5486          * Because parent->ctx != leader->ctx (and child_list nests inside
5487          * ctx->mutex), group destruction is not atomic between children, also
5488          * see perf_event_release_kernel(). Additionally, parent can grow the
5489          * group.
5490          *
5491          * Therefore it is possible to have parent and child groups in a
5492          * different configuration and summing over such a beast makes no sense
5493          * what so ever.
5494          *
5495          * Reject this.
5496          */
5497         parent = leader->parent;
5498         if (parent &&
5499             (parent->group_generation != leader->group_generation ||
5500              parent->nr_siblings != leader->nr_siblings)) {
5501                 ret = -ECHILD;
5502                 goto unlock;
5503         }
5504
5505         /*
5506          * Since we co-schedule groups, {enabled,running} times of siblings
5507          * will be identical to those of the leader, so we only publish one
5508          * set.
5509          */
5510         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5511                 values[n++] += leader->total_time_enabled +
5512                         atomic64_read(&leader->child_total_time_enabled);
5513         }
5514
5515         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5516                 values[n++] += leader->total_time_running +
5517                         atomic64_read(&leader->child_total_time_running);
5518         }
5519
5520         /*
5521          * Write {count,id} tuples for every sibling.
5522          */
5523         values[n++] += perf_event_count(leader);
5524         if (read_format & PERF_FORMAT_ID)
5525                 values[n++] = primary_event_id(leader);
5526         if (read_format & PERF_FORMAT_LOST)
5527                 values[n++] = atomic64_read(&leader->lost_samples);
5528
5529         for_each_sibling_event(sub, leader) {
5530                 values[n++] += perf_event_count(sub);
5531                 if (read_format & PERF_FORMAT_ID)
5532                         values[n++] = primary_event_id(sub);
5533                 if (read_format & PERF_FORMAT_LOST)
5534                         values[n++] = atomic64_read(&sub->lost_samples);
5535         }
5536
5537 unlock:
5538         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5539         return ret;
5540 }
5541
5542 static int perf_read_group(struct perf_event *event,
5543                                    u64 read_format, char __user *buf)
5544 {
5545         struct perf_event *leader = event->group_leader, *child;
5546         struct perf_event_context *ctx = leader->ctx;
5547         int ret;
5548         u64 *values;
5549
5550         lockdep_assert_held(&ctx->mutex);
5551
5552         values = kzalloc(event->read_size, GFP_KERNEL);
5553         if (!values)
5554                 return -ENOMEM;
5555
5556         values[0] = 1 + leader->nr_siblings;
5557
5558         mutex_lock(&leader->child_mutex);
5559
5560         ret = __perf_read_group_add(leader, read_format, values);
5561         if (ret)
5562                 goto unlock;
5563
5564         list_for_each_entry(child, &leader->child_list, child_list) {
5565                 ret = __perf_read_group_add(child, read_format, values);
5566                 if (ret)
5567                         goto unlock;
5568         }
5569
5570         mutex_unlock(&leader->child_mutex);
5571
5572         ret = event->read_size;
5573         if (copy_to_user(buf, values, event->read_size))
5574                 ret = -EFAULT;
5575         goto out;
5576
5577 unlock:
5578         mutex_unlock(&leader->child_mutex);
5579 out:
5580         kfree(values);
5581         return ret;
5582 }
5583
5584 static int perf_read_one(struct perf_event *event,
5585                                  u64 read_format, char __user *buf)
5586 {
5587         u64 enabled, running;
5588         u64 values[5];
5589         int n = 0;
5590
5591         values[n++] = __perf_event_read_value(event, &enabled, &running);
5592         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5593                 values[n++] = enabled;
5594         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5595                 values[n++] = running;
5596         if (read_format & PERF_FORMAT_ID)
5597                 values[n++] = primary_event_id(event);
5598         if (read_format & PERF_FORMAT_LOST)
5599                 values[n++] = atomic64_read(&event->lost_samples);
5600
5601         if (copy_to_user(buf, values, n * sizeof(u64)))
5602                 return -EFAULT;
5603
5604         return n * sizeof(u64);
5605 }
5606
5607 static bool is_event_hup(struct perf_event *event)
5608 {
5609         bool no_children;
5610
5611         if (event->state > PERF_EVENT_STATE_EXIT)
5612                 return false;
5613
5614         mutex_lock(&event->child_mutex);
5615         no_children = list_empty(&event->child_list);
5616         mutex_unlock(&event->child_mutex);
5617         return no_children;
5618 }
5619
5620 /*
5621  * Read the performance event - simple non blocking version for now
5622  */
5623 static ssize_t
5624 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5625 {
5626         u64 read_format = event->attr.read_format;
5627         int ret;
5628
5629         /*
5630          * Return end-of-file for a read on an event that is in
5631          * error state (i.e. because it was pinned but it couldn't be
5632          * scheduled on to the CPU at some point).
5633          */
5634         if (event->state == PERF_EVENT_STATE_ERROR)
5635                 return 0;
5636
5637         if (count < event->read_size)
5638                 return -ENOSPC;
5639
5640         WARN_ON_ONCE(event->ctx->parent_ctx);
5641         if (read_format & PERF_FORMAT_GROUP)
5642                 ret = perf_read_group(event, read_format, buf);
5643         else
5644                 ret = perf_read_one(event, read_format, buf);
5645
5646         return ret;
5647 }
5648
5649 static ssize_t
5650 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5651 {
5652         struct perf_event *event = file->private_data;
5653         struct perf_event_context *ctx;
5654         int ret;
5655
5656         ret = security_perf_event_read(event);
5657         if (ret)
5658                 return ret;
5659
5660         ctx = perf_event_ctx_lock(event);
5661         ret = __perf_read(event, buf, count);
5662         perf_event_ctx_unlock(event, ctx);
5663
5664         return ret;
5665 }
5666
5667 static __poll_t perf_poll(struct file *file, poll_table *wait)
5668 {
5669         struct perf_event *event = file->private_data;
5670         struct perf_buffer *rb;
5671         __poll_t events = EPOLLHUP;
5672
5673         poll_wait(file, &event->waitq, wait);
5674
5675         if (is_event_hup(event))
5676                 return events;
5677
5678         /*
5679          * Pin the event->rb by taking event->mmap_mutex; otherwise
5680          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5681          */
5682         mutex_lock(&event->mmap_mutex);
5683         rb = event->rb;
5684         if (rb)
5685                 events = atomic_xchg(&rb->poll, 0);
5686         mutex_unlock(&event->mmap_mutex);
5687         return events;
5688 }
5689
5690 static void _perf_event_reset(struct perf_event *event)
5691 {
5692         (void)perf_event_read(event, false);
5693         local64_set(&event->count, 0);
5694         perf_event_update_userpage(event);
5695 }
5696
5697 /* Assume it's not an event with inherit set. */
5698 u64 perf_event_pause(struct perf_event *event, bool reset)
5699 {
5700         struct perf_event_context *ctx;
5701         u64 count;
5702
5703         ctx = perf_event_ctx_lock(event);
5704         WARN_ON_ONCE(event->attr.inherit);
5705         _perf_event_disable(event);
5706         count = local64_read(&event->count);
5707         if (reset)
5708                 local64_set(&event->count, 0);
5709         perf_event_ctx_unlock(event, ctx);
5710
5711         return count;
5712 }
5713 EXPORT_SYMBOL_GPL(perf_event_pause);
5714
5715 /*
5716  * Holding the top-level event's child_mutex means that any
5717  * descendant process that has inherited this event will block
5718  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5719  * task existence requirements of perf_event_enable/disable.
5720  */
5721 static void perf_event_for_each_child(struct perf_event *event,
5722                                         void (*func)(struct perf_event *))
5723 {
5724         struct perf_event *child;
5725
5726         WARN_ON_ONCE(event->ctx->parent_ctx);
5727
5728         mutex_lock(&event->child_mutex);
5729         func(event);
5730         list_for_each_entry(child, &event->child_list, child_list)
5731                 func(child);
5732         mutex_unlock(&event->child_mutex);
5733 }
5734
5735 static void perf_event_for_each(struct perf_event *event,
5736                                   void (*func)(struct perf_event *))
5737 {
5738         struct perf_event_context *ctx = event->ctx;
5739         struct perf_event *sibling;
5740
5741         lockdep_assert_held(&ctx->mutex);
5742
5743         event = event->group_leader;
5744
5745         perf_event_for_each_child(event, func);
5746         for_each_sibling_event(sibling, event)
5747                 perf_event_for_each_child(sibling, func);
5748 }
5749
5750 static void __perf_event_period(struct perf_event *event,
5751                                 struct perf_cpu_context *cpuctx,
5752                                 struct perf_event_context *ctx,
5753                                 void *info)
5754 {
5755         u64 value = *((u64 *)info);
5756         bool active;
5757
5758         if (event->attr.freq) {
5759                 event->attr.sample_freq = value;
5760         } else {
5761                 event->attr.sample_period = value;
5762                 event->hw.sample_period = value;
5763         }
5764
5765         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5766         if (active) {
5767                 perf_pmu_disable(event->pmu);
5768                 /*
5769                  * We could be throttled; unthrottle now to avoid the tick
5770                  * trying to unthrottle while we already re-started the event.
5771                  */
5772                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5773                         event->hw.interrupts = 0;
5774                         perf_log_throttle(event, 1);
5775                 }
5776                 event->pmu->stop(event, PERF_EF_UPDATE);
5777         }
5778
5779         local64_set(&event->hw.period_left, 0);
5780
5781         if (active) {
5782                 event->pmu->start(event, PERF_EF_RELOAD);
5783                 perf_pmu_enable(event->pmu);
5784         }
5785 }
5786
5787 static int perf_event_check_period(struct perf_event *event, u64 value)
5788 {
5789         return event->pmu->check_period(event, value);
5790 }
5791
5792 static int _perf_event_period(struct perf_event *event, u64 value)
5793 {
5794         if (!is_sampling_event(event))
5795                 return -EINVAL;
5796
5797         if (!value)
5798                 return -EINVAL;
5799
5800         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5801                 return -EINVAL;
5802
5803         if (perf_event_check_period(event, value))
5804                 return -EINVAL;
5805
5806         if (!event->attr.freq && (value & (1ULL << 63)))
5807                 return -EINVAL;
5808
5809         event_function_call(event, __perf_event_period, &value);
5810
5811         return 0;
5812 }
5813
5814 int perf_event_period(struct perf_event *event, u64 value)
5815 {
5816         struct perf_event_context *ctx;
5817         int ret;
5818
5819         ctx = perf_event_ctx_lock(event);
5820         ret = _perf_event_period(event, value);
5821         perf_event_ctx_unlock(event, ctx);
5822
5823         return ret;
5824 }
5825 EXPORT_SYMBOL_GPL(perf_event_period);
5826
5827 static const struct file_operations perf_fops;
5828
5829 static inline int perf_fget_light(int fd, struct fd *p)
5830 {
5831         struct fd f = fdget(fd);
5832         if (!f.file)
5833                 return -EBADF;
5834
5835         if (f.file->f_op != &perf_fops) {
5836                 fdput(f);
5837                 return -EBADF;
5838         }
5839         *p = f;
5840         return 0;
5841 }
5842
5843 static int perf_event_set_output(struct perf_event *event,
5844                                  struct perf_event *output_event);
5845 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5846 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5847                           struct perf_event_attr *attr);
5848
5849 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5850 {
5851         void (*func)(struct perf_event *);
5852         u32 flags = arg;
5853
5854         switch (cmd) {
5855         case PERF_EVENT_IOC_ENABLE:
5856                 func = _perf_event_enable;
5857                 break;
5858         case PERF_EVENT_IOC_DISABLE:
5859                 func = _perf_event_disable;
5860                 break;
5861         case PERF_EVENT_IOC_RESET:
5862                 func = _perf_event_reset;
5863                 break;
5864
5865         case PERF_EVENT_IOC_REFRESH:
5866                 return _perf_event_refresh(event, arg);
5867
5868         case PERF_EVENT_IOC_PERIOD:
5869         {
5870                 u64 value;
5871
5872                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5873                         return -EFAULT;
5874
5875                 return _perf_event_period(event, value);
5876         }
5877         case PERF_EVENT_IOC_ID:
5878         {
5879                 u64 id = primary_event_id(event);
5880
5881                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5882                         return -EFAULT;
5883                 return 0;
5884         }
5885
5886         case PERF_EVENT_IOC_SET_OUTPUT:
5887         {
5888                 int ret;
5889                 if (arg != -1) {
5890                         struct perf_event *output_event;
5891                         struct fd output;
5892                         ret = perf_fget_light(arg, &output);
5893                         if (ret)
5894                                 return ret;
5895                         output_event = output.file->private_data;
5896                         ret = perf_event_set_output(event, output_event);
5897                         fdput(output);
5898                 } else {
5899                         ret = perf_event_set_output(event, NULL);
5900                 }
5901                 return ret;
5902         }
5903
5904         case PERF_EVENT_IOC_SET_FILTER:
5905                 return perf_event_set_filter(event, (void __user *)arg);
5906
5907         case PERF_EVENT_IOC_SET_BPF:
5908         {
5909                 struct bpf_prog *prog;
5910                 int err;
5911
5912                 prog = bpf_prog_get(arg);
5913                 if (IS_ERR(prog))
5914                         return PTR_ERR(prog);
5915
5916                 err = perf_event_set_bpf_prog(event, prog, 0);
5917                 if (err) {
5918                         bpf_prog_put(prog);
5919                         return err;
5920                 }
5921
5922                 return 0;
5923         }
5924
5925         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5926                 struct perf_buffer *rb;
5927
5928                 rcu_read_lock();
5929                 rb = rcu_dereference(event->rb);
5930                 if (!rb || !rb->nr_pages) {
5931                         rcu_read_unlock();
5932                         return -EINVAL;
5933                 }
5934                 rb_toggle_paused(rb, !!arg);
5935                 rcu_read_unlock();
5936                 return 0;
5937         }
5938
5939         case PERF_EVENT_IOC_QUERY_BPF:
5940                 return perf_event_query_prog_array(event, (void __user *)arg);
5941
5942         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5943                 struct perf_event_attr new_attr;
5944                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5945                                          &new_attr);
5946
5947                 if (err)
5948                         return err;
5949
5950                 return perf_event_modify_attr(event,  &new_attr);
5951         }
5952         default:
5953                 return -ENOTTY;
5954         }
5955
5956         if (flags & PERF_IOC_FLAG_GROUP)
5957                 perf_event_for_each(event, func);
5958         else
5959                 perf_event_for_each_child(event, func);
5960
5961         return 0;
5962 }
5963
5964 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5965 {
5966         struct perf_event *event = file->private_data;
5967         struct perf_event_context *ctx;
5968         long ret;
5969
5970         /* Treat ioctl like writes as it is likely a mutating operation. */
5971         ret = security_perf_event_write(event);
5972         if (ret)
5973                 return ret;
5974
5975         ctx = perf_event_ctx_lock(event);
5976         ret = _perf_ioctl(event, cmd, arg);
5977         perf_event_ctx_unlock(event, ctx);
5978
5979         return ret;
5980 }
5981
5982 #ifdef CONFIG_COMPAT
5983 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5984                                 unsigned long arg)
5985 {
5986         switch (_IOC_NR(cmd)) {
5987         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5988         case _IOC_NR(PERF_EVENT_IOC_ID):
5989         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5990         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5991                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5992                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5993                         cmd &= ~IOCSIZE_MASK;
5994                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5995                 }
5996                 break;
5997         }
5998         return perf_ioctl(file, cmd, arg);
5999 }
6000 #else
6001 # define perf_compat_ioctl NULL
6002 #endif
6003
6004 int perf_event_task_enable(void)
6005 {
6006         struct perf_event_context *ctx;
6007         struct perf_event *event;
6008
6009         mutex_lock(&current->perf_event_mutex);
6010         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6011                 ctx = perf_event_ctx_lock(event);
6012                 perf_event_for_each_child(event, _perf_event_enable);
6013                 perf_event_ctx_unlock(event, ctx);
6014         }
6015         mutex_unlock(&current->perf_event_mutex);
6016
6017         return 0;
6018 }
6019
6020 int perf_event_task_disable(void)
6021 {
6022         struct perf_event_context *ctx;
6023         struct perf_event *event;
6024
6025         mutex_lock(&current->perf_event_mutex);
6026         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6027                 ctx = perf_event_ctx_lock(event);
6028                 perf_event_for_each_child(event, _perf_event_disable);
6029                 perf_event_ctx_unlock(event, ctx);
6030         }
6031         mutex_unlock(&current->perf_event_mutex);
6032
6033         return 0;
6034 }
6035
6036 static int perf_event_index(struct perf_event *event)
6037 {
6038         if (event->hw.state & PERF_HES_STOPPED)
6039                 return 0;
6040
6041         if (event->state != PERF_EVENT_STATE_ACTIVE)
6042                 return 0;
6043
6044         return event->pmu->event_idx(event);
6045 }
6046
6047 static void perf_event_init_userpage(struct perf_event *event)
6048 {
6049         struct perf_event_mmap_page *userpg;
6050         struct perf_buffer *rb;
6051
6052         rcu_read_lock();
6053         rb = rcu_dereference(event->rb);
6054         if (!rb)
6055                 goto unlock;
6056
6057         userpg = rb->user_page;
6058
6059         /* Allow new userspace to detect that bit 0 is deprecated */
6060         userpg->cap_bit0_is_deprecated = 1;
6061         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6062         userpg->data_offset = PAGE_SIZE;
6063         userpg->data_size = perf_data_size(rb);
6064
6065 unlock:
6066         rcu_read_unlock();
6067 }
6068
6069 void __weak arch_perf_update_userpage(
6070         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6071 {
6072 }
6073
6074 /*
6075  * Callers need to ensure there can be no nesting of this function, otherwise
6076  * the seqlock logic goes bad. We can not serialize this because the arch
6077  * code calls this from NMI context.
6078  */
6079 void perf_event_update_userpage(struct perf_event *event)
6080 {
6081         struct perf_event_mmap_page *userpg;
6082         struct perf_buffer *rb;
6083         u64 enabled, running, now;
6084
6085         rcu_read_lock();
6086         rb = rcu_dereference(event->rb);
6087         if (!rb)
6088                 goto unlock;
6089
6090         /*
6091          * compute total_time_enabled, total_time_running
6092          * based on snapshot values taken when the event
6093          * was last scheduled in.
6094          *
6095          * we cannot simply called update_context_time()
6096          * because of locking issue as we can be called in
6097          * NMI context
6098          */
6099         calc_timer_values(event, &now, &enabled, &running);
6100
6101         userpg = rb->user_page;
6102         /*
6103          * Disable preemption to guarantee consistent time stamps are stored to
6104          * the user page.
6105          */
6106         preempt_disable();
6107         ++userpg->lock;
6108         barrier();
6109         userpg->index = perf_event_index(event);
6110         userpg->offset = perf_event_count(event);
6111         if (userpg->index)
6112                 userpg->offset -= local64_read(&event->hw.prev_count);
6113
6114         userpg->time_enabled = enabled +
6115                         atomic64_read(&event->child_total_time_enabled);
6116
6117         userpg->time_running = running +
6118                         atomic64_read(&event->child_total_time_running);
6119
6120         arch_perf_update_userpage(event, userpg, now);
6121
6122         barrier();
6123         ++userpg->lock;
6124         preempt_enable();
6125 unlock:
6126         rcu_read_unlock();
6127 }
6128 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6129
6130 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6131 {
6132         struct perf_event *event = vmf->vma->vm_file->private_data;
6133         struct perf_buffer *rb;
6134         vm_fault_t ret = VM_FAULT_SIGBUS;
6135
6136         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6137                 if (vmf->pgoff == 0)
6138                         ret = 0;
6139                 return ret;
6140         }
6141
6142         rcu_read_lock();
6143         rb = rcu_dereference(event->rb);
6144         if (!rb)
6145                 goto unlock;
6146
6147         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6148                 goto unlock;
6149
6150         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6151         if (!vmf->page)
6152                 goto unlock;
6153
6154         get_page(vmf->page);
6155         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6156         vmf->page->index   = vmf->pgoff;
6157
6158         ret = 0;
6159 unlock:
6160         rcu_read_unlock();
6161
6162         return ret;
6163 }
6164
6165 static void ring_buffer_attach(struct perf_event *event,
6166                                struct perf_buffer *rb)
6167 {
6168         struct perf_buffer *old_rb = NULL;
6169         unsigned long flags;
6170
6171         WARN_ON_ONCE(event->parent);
6172
6173         if (event->rb) {
6174                 /*
6175                  * Should be impossible, we set this when removing
6176                  * event->rb_entry and wait/clear when adding event->rb_entry.
6177                  */
6178                 WARN_ON_ONCE(event->rcu_pending);
6179
6180                 old_rb = event->rb;
6181                 spin_lock_irqsave(&old_rb->event_lock, flags);
6182                 list_del_rcu(&event->rb_entry);
6183                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6184
6185                 event->rcu_batches = get_state_synchronize_rcu();
6186                 event->rcu_pending = 1;
6187         }
6188
6189         if (rb) {
6190                 if (event->rcu_pending) {
6191                         cond_synchronize_rcu(event->rcu_batches);
6192                         event->rcu_pending = 0;
6193                 }
6194
6195                 spin_lock_irqsave(&rb->event_lock, flags);
6196                 list_add_rcu(&event->rb_entry, &rb->event_list);
6197                 spin_unlock_irqrestore(&rb->event_lock, flags);
6198         }
6199
6200         /*
6201          * Avoid racing with perf_mmap_close(AUX): stop the event
6202          * before swizzling the event::rb pointer; if it's getting
6203          * unmapped, its aux_mmap_count will be 0 and it won't
6204          * restart. See the comment in __perf_pmu_output_stop().
6205          *
6206          * Data will inevitably be lost when set_output is done in
6207          * mid-air, but then again, whoever does it like this is
6208          * not in for the data anyway.
6209          */
6210         if (has_aux(event))
6211                 perf_event_stop(event, 0);
6212
6213         rcu_assign_pointer(event->rb, rb);
6214
6215         if (old_rb) {
6216                 ring_buffer_put(old_rb);
6217                 /*
6218                  * Since we detached before setting the new rb, so that we
6219                  * could attach the new rb, we could have missed a wakeup.
6220                  * Provide it now.
6221                  */
6222                 wake_up_all(&event->waitq);
6223         }
6224 }
6225
6226 static void ring_buffer_wakeup(struct perf_event *event)
6227 {
6228         struct perf_buffer *rb;
6229
6230         if (event->parent)
6231                 event = event->parent;
6232
6233         rcu_read_lock();
6234         rb = rcu_dereference(event->rb);
6235         if (rb) {
6236                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6237                         wake_up_all(&event->waitq);
6238         }
6239         rcu_read_unlock();
6240 }
6241
6242 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6243 {
6244         struct perf_buffer *rb;
6245
6246         if (event->parent)
6247                 event = event->parent;
6248
6249         rcu_read_lock();
6250         rb = rcu_dereference(event->rb);
6251         if (rb) {
6252                 if (!refcount_inc_not_zero(&rb->refcount))
6253                         rb = NULL;
6254         }
6255         rcu_read_unlock();
6256
6257         return rb;
6258 }
6259
6260 void ring_buffer_put(struct perf_buffer *rb)
6261 {
6262         if (!refcount_dec_and_test(&rb->refcount))
6263                 return;
6264
6265         WARN_ON_ONCE(!list_empty(&rb->event_list));
6266
6267         call_rcu(&rb->rcu_head, rb_free_rcu);
6268 }
6269
6270 static void perf_mmap_open(struct vm_area_struct *vma)
6271 {
6272         struct perf_event *event = vma->vm_file->private_data;
6273
6274         atomic_inc(&event->mmap_count);
6275         atomic_inc(&event->rb->mmap_count);
6276
6277         if (vma->vm_pgoff)
6278                 atomic_inc(&event->rb->aux_mmap_count);
6279
6280         if (event->pmu->event_mapped)
6281                 event->pmu->event_mapped(event, vma->vm_mm);
6282 }
6283
6284 static void perf_pmu_output_stop(struct perf_event *event);
6285
6286 /*
6287  * A buffer can be mmap()ed multiple times; either directly through the same
6288  * event, or through other events by use of perf_event_set_output().
6289  *
6290  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6291  * the buffer here, where we still have a VM context. This means we need
6292  * to detach all events redirecting to us.
6293  */
6294 static void perf_mmap_close(struct vm_area_struct *vma)
6295 {
6296         struct perf_event *event = vma->vm_file->private_data;
6297         struct perf_buffer *rb = ring_buffer_get(event);
6298         struct user_struct *mmap_user = rb->mmap_user;
6299         int mmap_locked = rb->mmap_locked;
6300         unsigned long size = perf_data_size(rb);
6301         bool detach_rest = false;
6302
6303         if (event->pmu->event_unmapped)
6304                 event->pmu->event_unmapped(event, vma->vm_mm);
6305
6306         /*
6307          * rb->aux_mmap_count will always drop before rb->mmap_count and
6308          * event->mmap_count, so it is ok to use event->mmap_mutex to
6309          * serialize with perf_mmap here.
6310          */
6311         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6312             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6313                 /*
6314                  * Stop all AUX events that are writing to this buffer,
6315                  * so that we can free its AUX pages and corresponding PMU
6316                  * data. Note that after rb::aux_mmap_count dropped to zero,
6317                  * they won't start any more (see perf_aux_output_begin()).
6318                  */
6319                 perf_pmu_output_stop(event);
6320
6321                 /* now it's safe to free the pages */
6322                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6323                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6324
6325                 /* this has to be the last one */
6326                 rb_free_aux(rb);
6327                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6328
6329                 mutex_unlock(&event->mmap_mutex);
6330         }
6331
6332         if (atomic_dec_and_test(&rb->mmap_count))
6333                 detach_rest = true;
6334
6335         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6336                 goto out_put;
6337
6338         ring_buffer_attach(event, NULL);
6339         mutex_unlock(&event->mmap_mutex);
6340
6341         /* If there's still other mmap()s of this buffer, we're done. */
6342         if (!detach_rest)
6343                 goto out_put;
6344
6345         /*
6346          * No other mmap()s, detach from all other events that might redirect
6347          * into the now unreachable buffer. Somewhat complicated by the
6348          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6349          */
6350 again:
6351         rcu_read_lock();
6352         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6353                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6354                         /*
6355                          * This event is en-route to free_event() which will
6356                          * detach it and remove it from the list.
6357                          */
6358                         continue;
6359                 }
6360                 rcu_read_unlock();
6361
6362                 mutex_lock(&event->mmap_mutex);
6363                 /*
6364                  * Check we didn't race with perf_event_set_output() which can
6365                  * swizzle the rb from under us while we were waiting to
6366                  * acquire mmap_mutex.
6367                  *
6368                  * If we find a different rb; ignore this event, a next
6369                  * iteration will no longer find it on the list. We have to
6370                  * still restart the iteration to make sure we're not now
6371                  * iterating the wrong list.
6372                  */
6373                 if (event->rb == rb)
6374                         ring_buffer_attach(event, NULL);
6375
6376                 mutex_unlock(&event->mmap_mutex);
6377                 put_event(event);
6378
6379                 /*
6380                  * Restart the iteration; either we're on the wrong list or
6381                  * destroyed its integrity by doing a deletion.
6382                  */
6383                 goto again;
6384         }
6385         rcu_read_unlock();
6386
6387         /*
6388          * It could be there's still a few 0-ref events on the list; they'll
6389          * get cleaned up by free_event() -- they'll also still have their
6390          * ref on the rb and will free it whenever they are done with it.
6391          *
6392          * Aside from that, this buffer is 'fully' detached and unmapped,
6393          * undo the VM accounting.
6394          */
6395
6396         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6397                         &mmap_user->locked_vm);
6398         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6399         free_uid(mmap_user);
6400
6401 out_put:
6402         ring_buffer_put(rb); /* could be last */
6403 }
6404
6405 static const struct vm_operations_struct perf_mmap_vmops = {
6406         .open           = perf_mmap_open,
6407         .close          = perf_mmap_close, /* non mergeable */
6408         .fault          = perf_mmap_fault,
6409         .page_mkwrite   = perf_mmap_fault,
6410 };
6411
6412 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6413 {
6414         struct perf_event *event = file->private_data;
6415         unsigned long user_locked, user_lock_limit;
6416         struct user_struct *user = current_user();
6417         struct perf_buffer *rb = NULL;
6418         unsigned long locked, lock_limit;
6419         unsigned long vma_size;
6420         unsigned long nr_pages;
6421         long user_extra = 0, extra = 0;
6422         int ret = 0, flags = 0;
6423
6424         /*
6425          * Don't allow mmap() of inherited per-task counters. This would
6426          * create a performance issue due to all children writing to the
6427          * same rb.
6428          */
6429         if (event->cpu == -1 && event->attr.inherit)
6430                 return -EINVAL;
6431
6432         if (!(vma->vm_flags & VM_SHARED))
6433                 return -EINVAL;
6434
6435         ret = security_perf_event_read(event);
6436         if (ret)
6437                 return ret;
6438
6439         vma_size = vma->vm_end - vma->vm_start;
6440
6441         if (vma->vm_pgoff == 0) {
6442                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6443         } else {
6444                 /*
6445                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6446                  * mapped, all subsequent mappings should have the same size
6447                  * and offset. Must be above the normal perf buffer.
6448                  */
6449                 u64 aux_offset, aux_size;
6450
6451                 if (!event->rb)
6452                         return -EINVAL;
6453
6454                 nr_pages = vma_size / PAGE_SIZE;
6455
6456                 mutex_lock(&event->mmap_mutex);
6457                 ret = -EINVAL;
6458
6459                 rb = event->rb;
6460                 if (!rb)
6461                         goto aux_unlock;
6462
6463                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6464                 aux_size = READ_ONCE(rb->user_page->aux_size);
6465
6466                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6467                         goto aux_unlock;
6468
6469                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6470                         goto aux_unlock;
6471
6472                 /* already mapped with a different offset */
6473                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6474                         goto aux_unlock;
6475
6476                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6477                         goto aux_unlock;
6478
6479                 /* already mapped with a different size */
6480                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6481                         goto aux_unlock;
6482
6483                 if (!is_power_of_2(nr_pages))
6484                         goto aux_unlock;
6485
6486                 if (!atomic_inc_not_zero(&rb->mmap_count))
6487                         goto aux_unlock;
6488
6489                 if (rb_has_aux(rb)) {
6490                         atomic_inc(&rb->aux_mmap_count);
6491                         ret = 0;
6492                         goto unlock;
6493                 }
6494
6495                 atomic_set(&rb->aux_mmap_count, 1);
6496                 user_extra = nr_pages;
6497
6498                 goto accounting;
6499         }
6500
6501         /*
6502          * If we have rb pages ensure they're a power-of-two number, so we
6503          * can do bitmasks instead of modulo.
6504          */
6505         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6506                 return -EINVAL;
6507
6508         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6509                 return -EINVAL;
6510
6511         WARN_ON_ONCE(event->ctx->parent_ctx);
6512 again:
6513         mutex_lock(&event->mmap_mutex);
6514         if (event->rb) {
6515                 if (data_page_nr(event->rb) != nr_pages) {
6516                         ret = -EINVAL;
6517                         goto unlock;
6518                 }
6519
6520                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6521                         /*
6522                          * Raced against perf_mmap_close(); remove the
6523                          * event and try again.
6524                          */
6525                         ring_buffer_attach(event, NULL);
6526                         mutex_unlock(&event->mmap_mutex);
6527                         goto again;
6528                 }
6529
6530                 goto unlock;
6531         }
6532
6533         user_extra = nr_pages + 1;
6534
6535 accounting:
6536         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6537
6538         /*
6539          * Increase the limit linearly with more CPUs:
6540          */
6541         user_lock_limit *= num_online_cpus();
6542
6543         user_locked = atomic_long_read(&user->locked_vm);
6544
6545         /*
6546          * sysctl_perf_event_mlock may have changed, so that
6547          *     user->locked_vm > user_lock_limit
6548          */
6549         if (user_locked > user_lock_limit)
6550                 user_locked = user_lock_limit;
6551         user_locked += user_extra;
6552
6553         if (user_locked > user_lock_limit) {
6554                 /*
6555                  * charge locked_vm until it hits user_lock_limit;
6556                  * charge the rest from pinned_vm
6557                  */
6558                 extra = user_locked - user_lock_limit;
6559                 user_extra -= extra;
6560         }
6561
6562         lock_limit = rlimit(RLIMIT_MEMLOCK);
6563         lock_limit >>= PAGE_SHIFT;
6564         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6565
6566         if ((locked > lock_limit) && perf_is_paranoid() &&
6567                 !capable(CAP_IPC_LOCK)) {
6568                 ret = -EPERM;
6569                 goto unlock;
6570         }
6571
6572         WARN_ON(!rb && event->rb);
6573
6574         if (vma->vm_flags & VM_WRITE)
6575                 flags |= RING_BUFFER_WRITABLE;
6576
6577         if (!rb) {
6578                 rb = rb_alloc(nr_pages,
6579                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6580                               event->cpu, flags);
6581
6582                 if (!rb) {
6583                         ret = -ENOMEM;
6584                         goto unlock;
6585                 }
6586
6587                 atomic_set(&rb->mmap_count, 1);
6588                 rb->mmap_user = get_current_user();
6589                 rb->mmap_locked = extra;
6590
6591                 ring_buffer_attach(event, rb);
6592
6593                 perf_event_update_time(event);
6594                 perf_event_init_userpage(event);
6595                 perf_event_update_userpage(event);
6596         } else {
6597                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6598                                    event->attr.aux_watermark, flags);
6599                 if (!ret)
6600                         rb->aux_mmap_locked = extra;
6601         }
6602
6603 unlock:
6604         if (!ret) {
6605                 atomic_long_add(user_extra, &user->locked_vm);
6606                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6607
6608                 atomic_inc(&event->mmap_count);
6609         } else if (rb) {
6610                 atomic_dec(&rb->mmap_count);
6611         }
6612 aux_unlock:
6613         mutex_unlock(&event->mmap_mutex);
6614
6615         /*
6616          * Since pinned accounting is per vm we cannot allow fork() to copy our
6617          * vma.
6618          */
6619         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6620         vma->vm_ops = &perf_mmap_vmops;
6621
6622         if (event->pmu->event_mapped)
6623                 event->pmu->event_mapped(event, vma->vm_mm);
6624
6625         return ret;
6626 }
6627
6628 static int perf_fasync(int fd, struct file *filp, int on)
6629 {
6630         struct inode *inode = file_inode(filp);
6631         struct perf_event *event = filp->private_data;
6632         int retval;
6633
6634         inode_lock(inode);
6635         retval = fasync_helper(fd, filp, on, &event->fasync);
6636         inode_unlock(inode);
6637
6638         if (retval < 0)
6639                 return retval;
6640
6641         return 0;
6642 }
6643
6644 static const struct file_operations perf_fops = {
6645         .llseek                 = no_llseek,
6646         .release                = perf_release,
6647         .read                   = perf_read,
6648         .poll                   = perf_poll,
6649         .unlocked_ioctl         = perf_ioctl,
6650         .compat_ioctl           = perf_compat_ioctl,
6651         .mmap                   = perf_mmap,
6652         .fasync                 = perf_fasync,
6653 };
6654
6655 /*
6656  * Perf event wakeup
6657  *
6658  * If there's data, ensure we set the poll() state and publish everything
6659  * to user-space before waking everybody up.
6660  */
6661
6662 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6663 {
6664         /* only the parent has fasync state */
6665         if (event->parent)
6666                 event = event->parent;
6667         return &event->fasync;
6668 }
6669
6670 void perf_event_wakeup(struct perf_event *event)
6671 {
6672         ring_buffer_wakeup(event);
6673
6674         if (event->pending_kill) {
6675                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6676                 event->pending_kill = 0;
6677         }
6678 }
6679
6680 static void perf_sigtrap(struct perf_event *event)
6681 {
6682         /*
6683          * We'd expect this to only occur if the irq_work is delayed and either
6684          * ctx->task or current has changed in the meantime. This can be the
6685          * case on architectures that do not implement arch_irq_work_raise().
6686          */
6687         if (WARN_ON_ONCE(event->ctx->task != current))
6688                 return;
6689
6690         /*
6691          * Both perf_pending_task() and perf_pending_irq() can race with the
6692          * task exiting.
6693          */
6694         if (current->flags & PF_EXITING)
6695                 return;
6696
6697         send_sig_perf((void __user *)event->pending_addr,
6698                       event->orig_type, event->attr.sig_data);
6699 }
6700
6701 /*
6702  * Deliver the pending work in-event-context or follow the context.
6703  */
6704 static void __perf_pending_irq(struct perf_event *event)
6705 {
6706         int cpu = READ_ONCE(event->oncpu);
6707
6708         /*
6709          * If the event isn't running; we done. event_sched_out() will have
6710          * taken care of things.
6711          */
6712         if (cpu < 0)
6713                 return;
6714
6715         /*
6716          * Yay, we hit home and are in the context of the event.
6717          */
6718         if (cpu == smp_processor_id()) {
6719                 if (event->pending_sigtrap) {
6720                         event->pending_sigtrap = 0;
6721                         perf_sigtrap(event);
6722                         local_dec(&event->ctx->nr_pending);
6723                 }
6724                 if (event->pending_disable) {
6725                         event->pending_disable = 0;
6726                         perf_event_disable_local(event);
6727                 }
6728                 return;
6729         }
6730
6731         /*
6732          *  CPU-A                       CPU-B
6733          *
6734          *  perf_event_disable_inatomic()
6735          *    @pending_disable = CPU-A;
6736          *    irq_work_queue();
6737          *
6738          *  sched-out
6739          *    @pending_disable = -1;
6740          *
6741          *                              sched-in
6742          *                              perf_event_disable_inatomic()
6743          *                                @pending_disable = CPU-B;
6744          *                                irq_work_queue(); // FAILS
6745          *
6746          *  irq_work_run()
6747          *    perf_pending_irq()
6748          *
6749          * But the event runs on CPU-B and wants disabling there.
6750          */
6751         irq_work_queue_on(&event->pending_irq, cpu);
6752 }
6753
6754 static void perf_pending_irq(struct irq_work *entry)
6755 {
6756         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6757         int rctx;
6758
6759         /*
6760          * If we 'fail' here, that's OK, it means recursion is already disabled
6761          * and we won't recurse 'further'.
6762          */
6763         rctx = perf_swevent_get_recursion_context();
6764
6765         /*
6766          * The wakeup isn't bound to the context of the event -- it can happen
6767          * irrespective of where the event is.
6768          */
6769         if (event->pending_wakeup) {
6770                 event->pending_wakeup = 0;
6771                 perf_event_wakeup(event);
6772         }
6773
6774         __perf_pending_irq(event);
6775
6776         if (rctx >= 0)
6777                 perf_swevent_put_recursion_context(rctx);
6778 }
6779
6780 static void perf_pending_task(struct callback_head *head)
6781 {
6782         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6783         int rctx;
6784
6785         /*
6786          * If we 'fail' here, that's OK, it means recursion is already disabled
6787          * and we won't recurse 'further'.
6788          */
6789         preempt_disable_notrace();
6790         rctx = perf_swevent_get_recursion_context();
6791
6792         if (event->pending_work) {
6793                 event->pending_work = 0;
6794                 perf_sigtrap(event);
6795                 local_dec(&event->ctx->nr_pending);
6796         }
6797
6798         if (rctx >= 0)
6799                 perf_swevent_put_recursion_context(rctx);
6800         preempt_enable_notrace();
6801
6802         put_event(event);
6803 }
6804
6805 #ifdef CONFIG_GUEST_PERF_EVENTS
6806 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6807
6808 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6809 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6810 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6811
6812 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6813 {
6814         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6815                 return;
6816
6817         rcu_assign_pointer(perf_guest_cbs, cbs);
6818         static_call_update(__perf_guest_state, cbs->state);
6819         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6820
6821         /* Implementing ->handle_intel_pt_intr is optional. */
6822         if (cbs->handle_intel_pt_intr)
6823                 static_call_update(__perf_guest_handle_intel_pt_intr,
6824                                    cbs->handle_intel_pt_intr);
6825 }
6826 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6827
6828 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6829 {
6830         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6831                 return;
6832
6833         rcu_assign_pointer(perf_guest_cbs, NULL);
6834         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6835         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6836         static_call_update(__perf_guest_handle_intel_pt_intr,
6837                            (void *)&__static_call_return0);
6838         synchronize_rcu();
6839 }
6840 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6841 #endif
6842
6843 static void
6844 perf_output_sample_regs(struct perf_output_handle *handle,
6845                         struct pt_regs *regs, u64 mask)
6846 {
6847         int bit;
6848         DECLARE_BITMAP(_mask, 64);
6849
6850         bitmap_from_u64(_mask, mask);
6851         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6852                 u64 val;
6853
6854                 val = perf_reg_value(regs, bit);
6855                 perf_output_put(handle, val);
6856         }
6857 }
6858
6859 static void perf_sample_regs_user(struct perf_regs *regs_user,
6860                                   struct pt_regs *regs)
6861 {
6862         if (user_mode(regs)) {
6863                 regs_user->abi = perf_reg_abi(current);
6864                 regs_user->regs = regs;
6865         } else if (!(current->flags & PF_KTHREAD)) {
6866                 perf_get_regs_user(regs_user, regs);
6867         } else {
6868                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6869                 regs_user->regs = NULL;
6870         }
6871 }
6872
6873 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6874                                   struct pt_regs *regs)
6875 {
6876         regs_intr->regs = regs;
6877         regs_intr->abi  = perf_reg_abi(current);
6878 }
6879
6880
6881 /*
6882  * Get remaining task size from user stack pointer.
6883  *
6884  * It'd be better to take stack vma map and limit this more
6885  * precisely, but there's no way to get it safely under interrupt,
6886  * so using TASK_SIZE as limit.
6887  */
6888 static u64 perf_ustack_task_size(struct pt_regs *regs)
6889 {
6890         unsigned long addr = perf_user_stack_pointer(regs);
6891
6892         if (!addr || addr >= TASK_SIZE)
6893                 return 0;
6894
6895         return TASK_SIZE - addr;
6896 }
6897
6898 static u16
6899 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6900                         struct pt_regs *regs)
6901 {
6902         u64 task_size;
6903
6904         /* No regs, no stack pointer, no dump. */
6905         if (!regs)
6906                 return 0;
6907
6908         /*
6909          * Check if we fit in with the requested stack size into the:
6910          * - TASK_SIZE
6911          *   If we don't, we limit the size to the TASK_SIZE.
6912          *
6913          * - remaining sample size
6914          *   If we don't, we customize the stack size to
6915          *   fit in to the remaining sample size.
6916          */
6917
6918         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6919         stack_size = min(stack_size, (u16) task_size);
6920
6921         /* Current header size plus static size and dynamic size. */
6922         header_size += 2 * sizeof(u64);
6923
6924         /* Do we fit in with the current stack dump size? */
6925         if ((u16) (header_size + stack_size) < header_size) {
6926                 /*
6927                  * If we overflow the maximum size for the sample,
6928                  * we customize the stack dump size to fit in.
6929                  */
6930                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6931                 stack_size = round_up(stack_size, sizeof(u64));
6932         }
6933
6934         return stack_size;
6935 }
6936
6937 static void
6938 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6939                           struct pt_regs *regs)
6940 {
6941         /* Case of a kernel thread, nothing to dump */
6942         if (!regs) {
6943                 u64 size = 0;
6944                 perf_output_put(handle, size);
6945         } else {
6946                 unsigned long sp;
6947                 unsigned int rem;
6948                 u64 dyn_size;
6949
6950                 /*
6951                  * We dump:
6952                  * static size
6953                  *   - the size requested by user or the best one we can fit
6954                  *     in to the sample max size
6955                  * data
6956                  *   - user stack dump data
6957                  * dynamic size
6958                  *   - the actual dumped size
6959                  */
6960
6961                 /* Static size. */
6962                 perf_output_put(handle, dump_size);
6963
6964                 /* Data. */
6965                 sp = perf_user_stack_pointer(regs);
6966                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6967                 dyn_size = dump_size - rem;
6968
6969                 perf_output_skip(handle, rem);
6970
6971                 /* Dynamic size. */
6972                 perf_output_put(handle, dyn_size);
6973         }
6974 }
6975
6976 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6977                                           struct perf_sample_data *data,
6978                                           size_t size)
6979 {
6980         struct perf_event *sampler = event->aux_event;
6981         struct perf_buffer *rb;
6982
6983         data->aux_size = 0;
6984
6985         if (!sampler)
6986                 goto out;
6987
6988         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6989                 goto out;
6990
6991         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6992                 goto out;
6993
6994         rb = ring_buffer_get(sampler);
6995         if (!rb)
6996                 goto out;
6997
6998         /*
6999          * If this is an NMI hit inside sampling code, don't take
7000          * the sample. See also perf_aux_sample_output().
7001          */
7002         if (READ_ONCE(rb->aux_in_sampling)) {
7003                 data->aux_size = 0;
7004         } else {
7005                 size = min_t(size_t, size, perf_aux_size(rb));
7006                 data->aux_size = ALIGN(size, sizeof(u64));
7007         }
7008         ring_buffer_put(rb);
7009
7010 out:
7011         return data->aux_size;
7012 }
7013
7014 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7015                                  struct perf_event *event,
7016                                  struct perf_output_handle *handle,
7017                                  unsigned long size)
7018 {
7019         unsigned long flags;
7020         long ret;
7021
7022         /*
7023          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7024          * paths. If we start calling them in NMI context, they may race with
7025          * the IRQ ones, that is, for example, re-starting an event that's just
7026          * been stopped, which is why we're using a separate callback that
7027          * doesn't change the event state.
7028          *
7029          * IRQs need to be disabled to prevent IPIs from racing with us.
7030          */
7031         local_irq_save(flags);
7032         /*
7033          * Guard against NMI hits inside the critical section;
7034          * see also perf_prepare_sample_aux().
7035          */
7036         WRITE_ONCE(rb->aux_in_sampling, 1);
7037         barrier();
7038
7039         ret = event->pmu->snapshot_aux(event, handle, size);
7040
7041         barrier();
7042         WRITE_ONCE(rb->aux_in_sampling, 0);
7043         local_irq_restore(flags);
7044
7045         return ret;
7046 }
7047
7048 static void perf_aux_sample_output(struct perf_event *event,
7049                                    struct perf_output_handle *handle,
7050                                    struct perf_sample_data *data)
7051 {
7052         struct perf_event *sampler = event->aux_event;
7053         struct perf_buffer *rb;
7054         unsigned long pad;
7055         long size;
7056
7057         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7058                 return;
7059
7060         rb = ring_buffer_get(sampler);
7061         if (!rb)
7062                 return;
7063
7064         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7065
7066         /*
7067          * An error here means that perf_output_copy() failed (returned a
7068          * non-zero surplus that it didn't copy), which in its current
7069          * enlightened implementation is not possible. If that changes, we'd
7070          * like to know.
7071          */
7072         if (WARN_ON_ONCE(size < 0))
7073                 goto out_put;
7074
7075         /*
7076          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7077          * perf_prepare_sample_aux(), so should not be more than that.
7078          */
7079         pad = data->aux_size - size;
7080         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7081                 pad = 8;
7082
7083         if (pad) {
7084                 u64 zero = 0;
7085                 perf_output_copy(handle, &zero, pad);
7086         }
7087
7088 out_put:
7089         ring_buffer_put(rb);
7090 }
7091
7092 /*
7093  * A set of common sample data types saved even for non-sample records
7094  * when event->attr.sample_id_all is set.
7095  */
7096 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7097                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7098                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7099
7100 static void __perf_event_header__init_id(struct perf_sample_data *data,
7101                                          struct perf_event *event,
7102                                          u64 sample_type)
7103 {
7104         data->type = event->attr.sample_type;
7105         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7106
7107         if (sample_type & PERF_SAMPLE_TID) {
7108                 /* namespace issues */
7109                 data->tid_entry.pid = perf_event_pid(event, current);
7110                 data->tid_entry.tid = perf_event_tid(event, current);
7111         }
7112
7113         if (sample_type & PERF_SAMPLE_TIME)
7114                 data->time = perf_event_clock(event);
7115
7116         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7117                 data->id = primary_event_id(event);
7118
7119         if (sample_type & PERF_SAMPLE_STREAM_ID)
7120                 data->stream_id = event->id;
7121
7122         if (sample_type & PERF_SAMPLE_CPU) {
7123                 data->cpu_entry.cpu      = raw_smp_processor_id();
7124                 data->cpu_entry.reserved = 0;
7125         }
7126 }
7127
7128 void perf_event_header__init_id(struct perf_event_header *header,
7129                                 struct perf_sample_data *data,
7130                                 struct perf_event *event)
7131 {
7132         if (event->attr.sample_id_all) {
7133                 header->size += event->id_header_size;
7134                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7135         }
7136 }
7137
7138 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7139                                            struct perf_sample_data *data)
7140 {
7141         u64 sample_type = data->type;
7142
7143         if (sample_type & PERF_SAMPLE_TID)
7144                 perf_output_put(handle, data->tid_entry);
7145
7146         if (sample_type & PERF_SAMPLE_TIME)
7147                 perf_output_put(handle, data->time);
7148
7149         if (sample_type & PERF_SAMPLE_ID)
7150                 perf_output_put(handle, data->id);
7151
7152         if (sample_type & PERF_SAMPLE_STREAM_ID)
7153                 perf_output_put(handle, data->stream_id);
7154
7155         if (sample_type & PERF_SAMPLE_CPU)
7156                 perf_output_put(handle, data->cpu_entry);
7157
7158         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7159                 perf_output_put(handle, data->id);
7160 }
7161
7162 void perf_event__output_id_sample(struct perf_event *event,
7163                                   struct perf_output_handle *handle,
7164                                   struct perf_sample_data *sample)
7165 {
7166         if (event->attr.sample_id_all)
7167                 __perf_event__output_id_sample(handle, sample);
7168 }
7169
7170 static void perf_output_read_one(struct perf_output_handle *handle,
7171                                  struct perf_event *event,
7172                                  u64 enabled, u64 running)
7173 {
7174         u64 read_format = event->attr.read_format;
7175         u64 values[5];
7176         int n = 0;
7177
7178         values[n++] = perf_event_count(event);
7179         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7180                 values[n++] = enabled +
7181                         atomic64_read(&event->child_total_time_enabled);
7182         }
7183         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7184                 values[n++] = running +
7185                         atomic64_read(&event->child_total_time_running);
7186         }
7187         if (read_format & PERF_FORMAT_ID)
7188                 values[n++] = primary_event_id(event);
7189         if (read_format & PERF_FORMAT_LOST)
7190                 values[n++] = atomic64_read(&event->lost_samples);
7191
7192         __output_copy(handle, values, n * sizeof(u64));
7193 }
7194
7195 static void perf_output_read_group(struct perf_output_handle *handle,
7196                             struct perf_event *event,
7197                             u64 enabled, u64 running)
7198 {
7199         struct perf_event *leader = event->group_leader, *sub;
7200         u64 read_format = event->attr.read_format;
7201         unsigned long flags;
7202         u64 values[6];
7203         int n = 0;
7204
7205         /*
7206          * Disabling interrupts avoids all counter scheduling
7207          * (context switches, timer based rotation and IPIs).
7208          */
7209         local_irq_save(flags);
7210
7211         values[n++] = 1 + leader->nr_siblings;
7212
7213         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7214                 values[n++] = enabled;
7215
7216         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7217                 values[n++] = running;
7218
7219         if ((leader != event) &&
7220             (leader->state == PERF_EVENT_STATE_ACTIVE))
7221                 leader->pmu->read(leader);
7222
7223         values[n++] = perf_event_count(leader);
7224         if (read_format & PERF_FORMAT_ID)
7225                 values[n++] = primary_event_id(leader);
7226         if (read_format & PERF_FORMAT_LOST)
7227                 values[n++] = atomic64_read(&leader->lost_samples);
7228
7229         __output_copy(handle, values, n * sizeof(u64));
7230
7231         for_each_sibling_event(sub, leader) {
7232                 n = 0;
7233
7234                 if ((sub != event) &&
7235                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7236                         sub->pmu->read(sub);
7237
7238                 values[n++] = perf_event_count(sub);
7239                 if (read_format & PERF_FORMAT_ID)
7240                         values[n++] = primary_event_id(sub);
7241                 if (read_format & PERF_FORMAT_LOST)
7242                         values[n++] = atomic64_read(&sub->lost_samples);
7243
7244                 __output_copy(handle, values, n * sizeof(u64));
7245         }
7246
7247         local_irq_restore(flags);
7248 }
7249
7250 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7251                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7252
7253 /*
7254  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7255  *
7256  * The problem is that its both hard and excessively expensive to iterate the
7257  * child list, not to mention that its impossible to IPI the children running
7258  * on another CPU, from interrupt/NMI context.
7259  */
7260 static void perf_output_read(struct perf_output_handle *handle,
7261                              struct perf_event *event)
7262 {
7263         u64 enabled = 0, running = 0, now;
7264         u64 read_format = event->attr.read_format;
7265
7266         /*
7267          * compute total_time_enabled, total_time_running
7268          * based on snapshot values taken when the event
7269          * was last scheduled in.
7270          *
7271          * we cannot simply called update_context_time()
7272          * because of locking issue as we are called in
7273          * NMI context
7274          */
7275         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7276                 calc_timer_values(event, &now, &enabled, &running);
7277
7278         if (event->attr.read_format & PERF_FORMAT_GROUP)
7279                 perf_output_read_group(handle, event, enabled, running);
7280         else
7281                 perf_output_read_one(handle, event, enabled, running);
7282 }
7283
7284 void perf_output_sample(struct perf_output_handle *handle,
7285                         struct perf_event_header *header,
7286                         struct perf_sample_data *data,
7287                         struct perf_event *event)
7288 {
7289         u64 sample_type = data->type;
7290
7291         perf_output_put(handle, *header);
7292
7293         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7294                 perf_output_put(handle, data->id);
7295
7296         if (sample_type & PERF_SAMPLE_IP)
7297                 perf_output_put(handle, data->ip);
7298
7299         if (sample_type & PERF_SAMPLE_TID)
7300                 perf_output_put(handle, data->tid_entry);
7301
7302         if (sample_type & PERF_SAMPLE_TIME)
7303                 perf_output_put(handle, data->time);
7304
7305         if (sample_type & PERF_SAMPLE_ADDR)
7306                 perf_output_put(handle, data->addr);
7307
7308         if (sample_type & PERF_SAMPLE_ID)
7309                 perf_output_put(handle, data->id);
7310
7311         if (sample_type & PERF_SAMPLE_STREAM_ID)
7312                 perf_output_put(handle, data->stream_id);
7313
7314         if (sample_type & PERF_SAMPLE_CPU)
7315                 perf_output_put(handle, data->cpu_entry);
7316
7317         if (sample_type & PERF_SAMPLE_PERIOD)
7318                 perf_output_put(handle, data->period);
7319
7320         if (sample_type & PERF_SAMPLE_READ)
7321                 perf_output_read(handle, event);
7322
7323         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7324                 int size = 1;
7325
7326                 size += data->callchain->nr;
7327                 size *= sizeof(u64);
7328                 __output_copy(handle, data->callchain, size);
7329         }
7330
7331         if (sample_type & PERF_SAMPLE_RAW) {
7332                 struct perf_raw_record *raw = data->raw;
7333
7334                 if (raw) {
7335                         struct perf_raw_frag *frag = &raw->frag;
7336
7337                         perf_output_put(handle, raw->size);
7338                         do {
7339                                 if (frag->copy) {
7340                                         __output_custom(handle, frag->copy,
7341                                                         frag->data, frag->size);
7342                                 } else {
7343                                         __output_copy(handle, frag->data,
7344                                                       frag->size);
7345                                 }
7346                                 if (perf_raw_frag_last(frag))
7347                                         break;
7348                                 frag = frag->next;
7349                         } while (1);
7350                         if (frag->pad)
7351                                 __output_skip(handle, NULL, frag->pad);
7352                 } else {
7353                         struct {
7354                                 u32     size;
7355                                 u32     data;
7356                         } raw = {
7357                                 .size = sizeof(u32),
7358                                 .data = 0,
7359                         };
7360                         perf_output_put(handle, raw);
7361                 }
7362         }
7363
7364         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7365                 if (data->br_stack) {
7366                         size_t size;
7367
7368                         size = data->br_stack->nr
7369                              * sizeof(struct perf_branch_entry);
7370
7371                         perf_output_put(handle, data->br_stack->nr);
7372                         if (branch_sample_hw_index(event))
7373                                 perf_output_put(handle, data->br_stack->hw_idx);
7374                         perf_output_copy(handle, data->br_stack->entries, size);
7375                         /*
7376                          * Add the extension space which is appended
7377                          * right after the struct perf_branch_stack.
7378                          */
7379                         if (data->br_stack_cntr) {
7380                                 size = data->br_stack->nr * sizeof(u64);
7381                                 perf_output_copy(handle, data->br_stack_cntr, size);
7382                         }
7383                 } else {
7384                         /*
7385                          * we always store at least the value of nr
7386                          */
7387                         u64 nr = 0;
7388                         perf_output_put(handle, nr);
7389                 }
7390         }
7391
7392         if (sample_type & PERF_SAMPLE_REGS_USER) {
7393                 u64 abi = data->regs_user.abi;
7394
7395                 /*
7396                  * If there are no regs to dump, notice it through
7397                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7398                  */
7399                 perf_output_put(handle, abi);
7400
7401                 if (abi) {
7402                         u64 mask = event->attr.sample_regs_user;
7403                         perf_output_sample_regs(handle,
7404                                                 data->regs_user.regs,
7405                                                 mask);
7406                 }
7407         }
7408
7409         if (sample_type & PERF_SAMPLE_STACK_USER) {
7410                 perf_output_sample_ustack(handle,
7411                                           data->stack_user_size,
7412                                           data->regs_user.regs);
7413         }
7414
7415         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7416                 perf_output_put(handle, data->weight.full);
7417
7418         if (sample_type & PERF_SAMPLE_DATA_SRC)
7419                 perf_output_put(handle, data->data_src.val);
7420
7421         if (sample_type & PERF_SAMPLE_TRANSACTION)
7422                 perf_output_put(handle, data->txn);
7423
7424         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7425                 u64 abi = data->regs_intr.abi;
7426                 /*
7427                  * If there are no regs to dump, notice it through
7428                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7429                  */
7430                 perf_output_put(handle, abi);
7431
7432                 if (abi) {
7433                         u64 mask = event->attr.sample_regs_intr;
7434
7435                         perf_output_sample_regs(handle,
7436                                                 data->regs_intr.regs,
7437                                                 mask);
7438                 }
7439         }
7440
7441         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7442                 perf_output_put(handle, data->phys_addr);
7443
7444         if (sample_type & PERF_SAMPLE_CGROUP)
7445                 perf_output_put(handle, data->cgroup);
7446
7447         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7448                 perf_output_put(handle, data->data_page_size);
7449
7450         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7451                 perf_output_put(handle, data->code_page_size);
7452
7453         if (sample_type & PERF_SAMPLE_AUX) {
7454                 perf_output_put(handle, data->aux_size);
7455
7456                 if (data->aux_size)
7457                         perf_aux_sample_output(event, handle, data);
7458         }
7459
7460         if (!event->attr.watermark) {
7461                 int wakeup_events = event->attr.wakeup_events;
7462
7463                 if (wakeup_events) {
7464                         struct perf_buffer *rb = handle->rb;
7465                         int events = local_inc_return(&rb->events);
7466
7467                         if (events >= wakeup_events) {
7468                                 local_sub(wakeup_events, &rb->events);
7469                                 local_inc(&rb->wakeup);
7470                         }
7471                 }
7472         }
7473 }
7474
7475 static u64 perf_virt_to_phys(u64 virt)
7476 {
7477         u64 phys_addr = 0;
7478
7479         if (!virt)
7480                 return 0;
7481
7482         if (virt >= TASK_SIZE) {
7483                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7484                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7485                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7486                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7487         } else {
7488                 /*
7489                  * Walking the pages tables for user address.
7490                  * Interrupts are disabled, so it prevents any tear down
7491                  * of the page tables.
7492                  * Try IRQ-safe get_user_page_fast_only first.
7493                  * If failed, leave phys_addr as 0.
7494                  */
7495                 if (current->mm != NULL) {
7496                         struct page *p;
7497
7498                         pagefault_disable();
7499                         if (get_user_page_fast_only(virt, 0, &p)) {
7500                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7501                                 put_page(p);
7502                         }
7503                         pagefault_enable();
7504                 }
7505         }
7506
7507         return phys_addr;
7508 }
7509
7510 /*
7511  * Return the pagetable size of a given virtual address.
7512  */
7513 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7514 {
7515         u64 size = 0;
7516
7517 #ifdef CONFIG_HAVE_FAST_GUP
7518         pgd_t *pgdp, pgd;
7519         p4d_t *p4dp, p4d;
7520         pud_t *pudp, pud;
7521         pmd_t *pmdp, pmd;
7522         pte_t *ptep, pte;
7523
7524         pgdp = pgd_offset(mm, addr);
7525         pgd = READ_ONCE(*pgdp);
7526         if (pgd_none(pgd))
7527                 return 0;
7528
7529         if (pgd_leaf(pgd))
7530                 return pgd_leaf_size(pgd);
7531
7532         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7533         p4d = READ_ONCE(*p4dp);
7534         if (!p4d_present(p4d))
7535                 return 0;
7536
7537         if (p4d_leaf(p4d))
7538                 return p4d_leaf_size(p4d);
7539
7540         pudp = pud_offset_lockless(p4dp, p4d, addr);
7541         pud = READ_ONCE(*pudp);
7542         if (!pud_present(pud))
7543                 return 0;
7544
7545         if (pud_leaf(pud))
7546                 return pud_leaf_size(pud);
7547
7548         pmdp = pmd_offset_lockless(pudp, pud, addr);
7549 again:
7550         pmd = pmdp_get_lockless(pmdp);
7551         if (!pmd_present(pmd))
7552                 return 0;
7553
7554         if (pmd_leaf(pmd))
7555                 return pmd_leaf_size(pmd);
7556
7557         ptep = pte_offset_map(&pmd, addr);
7558         if (!ptep)
7559                 goto again;
7560
7561         pte = ptep_get_lockless(ptep);
7562         if (pte_present(pte))
7563                 size = pte_leaf_size(pte);
7564         pte_unmap(ptep);
7565 #endif /* CONFIG_HAVE_FAST_GUP */
7566
7567         return size;
7568 }
7569
7570 static u64 perf_get_page_size(unsigned long addr)
7571 {
7572         struct mm_struct *mm;
7573         unsigned long flags;
7574         u64 size;
7575
7576         if (!addr)
7577                 return 0;
7578
7579         /*
7580          * Software page-table walkers must disable IRQs,
7581          * which prevents any tear down of the page tables.
7582          */
7583         local_irq_save(flags);
7584
7585         mm = current->mm;
7586         if (!mm) {
7587                 /*
7588                  * For kernel threads and the like, use init_mm so that
7589                  * we can find kernel memory.
7590                  */
7591                 mm = &init_mm;
7592         }
7593
7594         size = perf_get_pgtable_size(mm, addr);
7595
7596         local_irq_restore(flags);
7597
7598         return size;
7599 }
7600
7601 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7602
7603 struct perf_callchain_entry *
7604 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7605 {
7606         bool kernel = !event->attr.exclude_callchain_kernel;
7607         bool user   = !event->attr.exclude_callchain_user;
7608         /* Disallow cross-task user callchains. */
7609         bool crosstask = event->ctx->task && event->ctx->task != current;
7610         const u32 max_stack = event->attr.sample_max_stack;
7611         struct perf_callchain_entry *callchain;
7612
7613         if (!kernel && !user)
7614                 return &__empty_callchain;
7615
7616         callchain = get_perf_callchain(regs, 0, kernel, user,
7617                                        max_stack, crosstask, true);
7618         return callchain ?: &__empty_callchain;
7619 }
7620
7621 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7622 {
7623         return d * !!(flags & s);
7624 }
7625
7626 void perf_prepare_sample(struct perf_sample_data *data,
7627                          struct perf_event *event,
7628                          struct pt_regs *regs)
7629 {
7630         u64 sample_type = event->attr.sample_type;
7631         u64 filtered_sample_type;
7632
7633         /*
7634          * Add the sample flags that are dependent to others.  And clear the
7635          * sample flags that have already been done by the PMU driver.
7636          */
7637         filtered_sample_type = sample_type;
7638         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7639                                            PERF_SAMPLE_IP);
7640         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7641                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7642         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7643                                            PERF_SAMPLE_REGS_USER);
7644         filtered_sample_type &= ~data->sample_flags;
7645
7646         if (filtered_sample_type == 0) {
7647                 /* Make sure it has the correct data->type for output */
7648                 data->type = event->attr.sample_type;
7649                 return;
7650         }
7651
7652         __perf_event_header__init_id(data, event, filtered_sample_type);
7653
7654         if (filtered_sample_type & PERF_SAMPLE_IP) {
7655                 data->ip = perf_instruction_pointer(regs);
7656                 data->sample_flags |= PERF_SAMPLE_IP;
7657         }
7658
7659         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7660                 perf_sample_save_callchain(data, event, regs);
7661
7662         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7663                 data->raw = NULL;
7664                 data->dyn_size += sizeof(u64);
7665                 data->sample_flags |= PERF_SAMPLE_RAW;
7666         }
7667
7668         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7669                 data->br_stack = NULL;
7670                 data->dyn_size += sizeof(u64);
7671                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7672         }
7673
7674         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7675                 perf_sample_regs_user(&data->regs_user, regs);
7676
7677         /*
7678          * It cannot use the filtered_sample_type here as REGS_USER can be set
7679          * by STACK_USER (using __cond_set() above) and we don't want to update
7680          * the dyn_size if it's not requested by users.
7681          */
7682         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7683                 /* regs dump ABI info */
7684                 int size = sizeof(u64);
7685
7686                 if (data->regs_user.regs) {
7687                         u64 mask = event->attr.sample_regs_user;
7688                         size += hweight64(mask) * sizeof(u64);
7689                 }
7690
7691                 data->dyn_size += size;
7692                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7693         }
7694
7695         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7696                 /*
7697                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7698                  * processed as the last one or have additional check added
7699                  * in case new sample type is added, because we could eat
7700                  * up the rest of the sample size.
7701                  */
7702                 u16 stack_size = event->attr.sample_stack_user;
7703                 u16 header_size = perf_sample_data_size(data, event);
7704                 u16 size = sizeof(u64);
7705
7706                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7707                                                      data->regs_user.regs);
7708
7709                 /*
7710                  * If there is something to dump, add space for the dump
7711                  * itself and for the field that tells the dynamic size,
7712                  * which is how many have been actually dumped.
7713                  */
7714                 if (stack_size)
7715                         size += sizeof(u64) + stack_size;
7716
7717                 data->stack_user_size = stack_size;
7718                 data->dyn_size += size;
7719                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7720         }
7721
7722         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7723                 data->weight.full = 0;
7724                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7725         }
7726
7727         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7728                 data->data_src.val = PERF_MEM_NA;
7729                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7730         }
7731
7732         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7733                 data->txn = 0;
7734                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7735         }
7736
7737         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7738                 data->addr = 0;
7739                 data->sample_flags |= PERF_SAMPLE_ADDR;
7740         }
7741
7742         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7743                 /* regs dump ABI info */
7744                 int size = sizeof(u64);
7745
7746                 perf_sample_regs_intr(&data->regs_intr, regs);
7747
7748                 if (data->regs_intr.regs) {
7749                         u64 mask = event->attr.sample_regs_intr;
7750
7751                         size += hweight64(mask) * sizeof(u64);
7752                 }
7753
7754                 data->dyn_size += size;
7755                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7756         }
7757
7758         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7759                 data->phys_addr = perf_virt_to_phys(data->addr);
7760                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7761         }
7762
7763 #ifdef CONFIG_CGROUP_PERF
7764         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7765                 struct cgroup *cgrp;
7766
7767                 /* protected by RCU */
7768                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7769                 data->cgroup = cgroup_id(cgrp);
7770                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7771         }
7772 #endif
7773
7774         /*
7775          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7776          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7777          * but the value will not dump to the userspace.
7778          */
7779         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7780                 data->data_page_size = perf_get_page_size(data->addr);
7781                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7782         }
7783
7784         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7785                 data->code_page_size = perf_get_page_size(data->ip);
7786                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7787         }
7788
7789         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7790                 u64 size;
7791                 u16 header_size = perf_sample_data_size(data, event);
7792
7793                 header_size += sizeof(u64); /* size */
7794
7795                 /*
7796                  * Given the 16bit nature of header::size, an AUX sample can
7797                  * easily overflow it, what with all the preceding sample bits.
7798                  * Make sure this doesn't happen by using up to U16_MAX bytes
7799                  * per sample in total (rounded down to 8 byte boundary).
7800                  */
7801                 size = min_t(size_t, U16_MAX - header_size,
7802                              event->attr.aux_sample_size);
7803                 size = rounddown(size, 8);
7804                 size = perf_prepare_sample_aux(event, data, size);
7805
7806                 WARN_ON_ONCE(size + header_size > U16_MAX);
7807                 data->dyn_size += size + sizeof(u64); /* size above */
7808                 data->sample_flags |= PERF_SAMPLE_AUX;
7809         }
7810 }
7811
7812 void perf_prepare_header(struct perf_event_header *header,
7813                          struct perf_sample_data *data,
7814                          struct perf_event *event,
7815                          struct pt_regs *regs)
7816 {
7817         header->type = PERF_RECORD_SAMPLE;
7818         header->size = perf_sample_data_size(data, event);
7819         header->misc = perf_misc_flags(regs);
7820
7821         /*
7822          * If you're adding more sample types here, you likely need to do
7823          * something about the overflowing header::size, like repurpose the
7824          * lowest 3 bits of size, which should be always zero at the moment.
7825          * This raises a more important question, do we really need 512k sized
7826          * samples and why, so good argumentation is in order for whatever you
7827          * do here next.
7828          */
7829         WARN_ON_ONCE(header->size & 7);
7830 }
7831
7832 static __always_inline int
7833 __perf_event_output(struct perf_event *event,
7834                     struct perf_sample_data *data,
7835                     struct pt_regs *regs,
7836                     int (*output_begin)(struct perf_output_handle *,
7837                                         struct perf_sample_data *,
7838                                         struct perf_event *,
7839                                         unsigned int))
7840 {
7841         struct perf_output_handle handle;
7842         struct perf_event_header header;
7843         int err;
7844
7845         /* protect the callchain buffers */
7846         rcu_read_lock();
7847
7848         perf_prepare_sample(data, event, regs);
7849         perf_prepare_header(&header, data, event, regs);
7850
7851         err = output_begin(&handle, data, event, header.size);
7852         if (err)
7853                 goto exit;
7854
7855         perf_output_sample(&handle, &header, data, event);
7856
7857         perf_output_end(&handle);
7858
7859 exit:
7860         rcu_read_unlock();
7861         return err;
7862 }
7863
7864 void
7865 perf_event_output_forward(struct perf_event *event,
7866                          struct perf_sample_data *data,
7867                          struct pt_regs *regs)
7868 {
7869         __perf_event_output(event, data, regs, perf_output_begin_forward);
7870 }
7871
7872 void
7873 perf_event_output_backward(struct perf_event *event,
7874                            struct perf_sample_data *data,
7875                            struct pt_regs *regs)
7876 {
7877         __perf_event_output(event, data, regs, perf_output_begin_backward);
7878 }
7879
7880 int
7881 perf_event_output(struct perf_event *event,
7882                   struct perf_sample_data *data,
7883                   struct pt_regs *regs)
7884 {
7885         return __perf_event_output(event, data, regs, perf_output_begin);
7886 }
7887
7888 /*
7889  * read event_id
7890  */
7891
7892 struct perf_read_event {
7893         struct perf_event_header        header;
7894
7895         u32                             pid;
7896         u32                             tid;
7897 };
7898
7899 static void
7900 perf_event_read_event(struct perf_event *event,
7901                         struct task_struct *task)
7902 {
7903         struct perf_output_handle handle;
7904         struct perf_sample_data sample;
7905         struct perf_read_event read_event = {
7906                 .header = {
7907                         .type = PERF_RECORD_READ,
7908                         .misc = 0,
7909                         .size = sizeof(read_event) + event->read_size,
7910                 },
7911                 .pid = perf_event_pid(event, task),
7912                 .tid = perf_event_tid(event, task),
7913         };
7914         int ret;
7915
7916         perf_event_header__init_id(&read_event.header, &sample, event);
7917         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7918         if (ret)
7919                 return;
7920
7921         perf_output_put(&handle, read_event);
7922         perf_output_read(&handle, event);
7923         perf_event__output_id_sample(event, &handle, &sample);
7924
7925         perf_output_end(&handle);
7926 }
7927
7928 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7929
7930 static void
7931 perf_iterate_ctx(struct perf_event_context *ctx,
7932                    perf_iterate_f output,
7933                    void *data, bool all)
7934 {
7935         struct perf_event *event;
7936
7937         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7938                 if (!all) {
7939                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7940                                 continue;
7941                         if (!event_filter_match(event))
7942                                 continue;
7943                 }
7944
7945                 output(event, data);
7946         }
7947 }
7948
7949 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7950 {
7951         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7952         struct perf_event *event;
7953
7954         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7955                 /*
7956                  * Skip events that are not fully formed yet; ensure that
7957                  * if we observe event->ctx, both event and ctx will be
7958                  * complete enough. See perf_install_in_context().
7959                  */
7960                 if (!smp_load_acquire(&event->ctx))
7961                         continue;
7962
7963                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7964                         continue;
7965                 if (!event_filter_match(event))
7966                         continue;
7967                 output(event, data);
7968         }
7969 }
7970
7971 /*
7972  * Iterate all events that need to receive side-band events.
7973  *
7974  * For new callers; ensure that account_pmu_sb_event() includes
7975  * your event, otherwise it might not get delivered.
7976  */
7977 static void
7978 perf_iterate_sb(perf_iterate_f output, void *data,
7979                struct perf_event_context *task_ctx)
7980 {
7981         struct perf_event_context *ctx;
7982
7983         rcu_read_lock();
7984         preempt_disable();
7985
7986         /*
7987          * If we have task_ctx != NULL we only notify the task context itself.
7988          * The task_ctx is set only for EXIT events before releasing task
7989          * context.
7990          */
7991         if (task_ctx) {
7992                 perf_iterate_ctx(task_ctx, output, data, false);
7993                 goto done;
7994         }
7995
7996         perf_iterate_sb_cpu(output, data);
7997
7998         ctx = rcu_dereference(current->perf_event_ctxp);
7999         if (ctx)
8000                 perf_iterate_ctx(ctx, output, data, false);
8001 done:
8002         preempt_enable();
8003         rcu_read_unlock();
8004 }
8005
8006 /*
8007  * Clear all file-based filters at exec, they'll have to be
8008  * re-instated when/if these objects are mmapped again.
8009  */
8010 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8011 {
8012         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8013         struct perf_addr_filter *filter;
8014         unsigned int restart = 0, count = 0;
8015         unsigned long flags;
8016
8017         if (!has_addr_filter(event))
8018                 return;
8019
8020         raw_spin_lock_irqsave(&ifh->lock, flags);
8021         list_for_each_entry(filter, &ifh->list, entry) {
8022                 if (filter->path.dentry) {
8023                         event->addr_filter_ranges[count].start = 0;
8024                         event->addr_filter_ranges[count].size = 0;
8025                         restart++;
8026                 }
8027
8028                 count++;
8029         }
8030
8031         if (restart)
8032                 event->addr_filters_gen++;
8033         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8034
8035         if (restart)
8036                 perf_event_stop(event, 1);
8037 }
8038
8039 void perf_event_exec(void)
8040 {
8041         struct perf_event_context *ctx;
8042
8043         ctx = perf_pin_task_context(current);
8044         if (!ctx)
8045                 return;
8046
8047         perf_event_enable_on_exec(ctx);
8048         perf_event_remove_on_exec(ctx);
8049         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8050
8051         perf_unpin_context(ctx);
8052         put_ctx(ctx);
8053 }
8054
8055 struct remote_output {
8056         struct perf_buffer      *rb;
8057         int                     err;
8058 };
8059
8060 static void __perf_event_output_stop(struct perf_event *event, void *data)
8061 {
8062         struct perf_event *parent = event->parent;
8063         struct remote_output *ro = data;
8064         struct perf_buffer *rb = ro->rb;
8065         struct stop_event_data sd = {
8066                 .event  = event,
8067         };
8068
8069         if (!has_aux(event))
8070                 return;
8071
8072         if (!parent)
8073                 parent = event;
8074
8075         /*
8076          * In case of inheritance, it will be the parent that links to the
8077          * ring-buffer, but it will be the child that's actually using it.
8078          *
8079          * We are using event::rb to determine if the event should be stopped,
8080          * however this may race with ring_buffer_attach() (through set_output),
8081          * which will make us skip the event that actually needs to be stopped.
8082          * So ring_buffer_attach() has to stop an aux event before re-assigning
8083          * its rb pointer.
8084          */
8085         if (rcu_dereference(parent->rb) == rb)
8086                 ro->err = __perf_event_stop(&sd);
8087 }
8088
8089 static int __perf_pmu_output_stop(void *info)
8090 {
8091         struct perf_event *event = info;
8092         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8093         struct remote_output ro = {
8094                 .rb     = event->rb,
8095         };
8096
8097         rcu_read_lock();
8098         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8099         if (cpuctx->task_ctx)
8100                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8101                                    &ro, false);
8102         rcu_read_unlock();
8103
8104         return ro.err;
8105 }
8106
8107 static void perf_pmu_output_stop(struct perf_event *event)
8108 {
8109         struct perf_event *iter;
8110         int err, cpu;
8111
8112 restart:
8113         rcu_read_lock();
8114         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8115                 /*
8116                  * For per-CPU events, we need to make sure that neither they
8117                  * nor their children are running; for cpu==-1 events it's
8118                  * sufficient to stop the event itself if it's active, since
8119                  * it can't have children.
8120                  */
8121                 cpu = iter->cpu;
8122                 if (cpu == -1)
8123                         cpu = READ_ONCE(iter->oncpu);
8124
8125                 if (cpu == -1)
8126                         continue;
8127
8128                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8129                 if (err == -EAGAIN) {
8130                         rcu_read_unlock();
8131                         goto restart;
8132                 }
8133         }
8134         rcu_read_unlock();
8135 }
8136
8137 /*
8138  * task tracking -- fork/exit
8139  *
8140  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8141  */
8142
8143 struct perf_task_event {
8144         struct task_struct              *task;
8145         struct perf_event_context       *task_ctx;
8146
8147         struct {
8148                 struct perf_event_header        header;
8149
8150                 u32                             pid;
8151                 u32                             ppid;
8152                 u32                             tid;
8153                 u32                             ptid;
8154                 u64                             time;
8155         } event_id;
8156 };
8157
8158 static int perf_event_task_match(struct perf_event *event)
8159 {
8160         return event->attr.comm  || event->attr.mmap ||
8161                event->attr.mmap2 || event->attr.mmap_data ||
8162                event->attr.task;
8163 }
8164
8165 static void perf_event_task_output(struct perf_event *event,
8166                                    void *data)
8167 {
8168         struct perf_task_event *task_event = data;
8169         struct perf_output_handle handle;
8170         struct perf_sample_data sample;
8171         struct task_struct *task = task_event->task;
8172         int ret, size = task_event->event_id.header.size;
8173
8174         if (!perf_event_task_match(event))
8175                 return;
8176
8177         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8178
8179         ret = perf_output_begin(&handle, &sample, event,
8180                                 task_event->event_id.header.size);
8181         if (ret)
8182                 goto out;
8183
8184         task_event->event_id.pid = perf_event_pid(event, task);
8185         task_event->event_id.tid = perf_event_tid(event, task);
8186
8187         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8188                 task_event->event_id.ppid = perf_event_pid(event,
8189                                                         task->real_parent);
8190                 task_event->event_id.ptid = perf_event_pid(event,
8191                                                         task->real_parent);
8192         } else {  /* PERF_RECORD_FORK */
8193                 task_event->event_id.ppid = perf_event_pid(event, current);
8194                 task_event->event_id.ptid = perf_event_tid(event, current);
8195         }
8196
8197         task_event->event_id.time = perf_event_clock(event);
8198
8199         perf_output_put(&handle, task_event->event_id);
8200
8201         perf_event__output_id_sample(event, &handle, &sample);
8202
8203         perf_output_end(&handle);
8204 out:
8205         task_event->event_id.header.size = size;
8206 }
8207
8208 static void perf_event_task(struct task_struct *task,
8209                               struct perf_event_context *task_ctx,
8210                               int new)
8211 {
8212         struct perf_task_event task_event;
8213
8214         if (!atomic_read(&nr_comm_events) &&
8215             !atomic_read(&nr_mmap_events) &&
8216             !atomic_read(&nr_task_events))
8217                 return;
8218
8219         task_event = (struct perf_task_event){
8220                 .task     = task,
8221                 .task_ctx = task_ctx,
8222                 .event_id    = {
8223                         .header = {
8224                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8225                                 .misc = 0,
8226                                 .size = sizeof(task_event.event_id),
8227                         },
8228                         /* .pid  */
8229                         /* .ppid */
8230                         /* .tid  */
8231                         /* .ptid */
8232                         /* .time */
8233                 },
8234         };
8235
8236         perf_iterate_sb(perf_event_task_output,
8237                        &task_event,
8238                        task_ctx);
8239 }
8240
8241 void perf_event_fork(struct task_struct *task)
8242 {
8243         perf_event_task(task, NULL, 1);
8244         perf_event_namespaces(task);
8245 }
8246
8247 /*
8248  * comm tracking
8249  */
8250
8251 struct perf_comm_event {
8252         struct task_struct      *task;
8253         char                    *comm;
8254         int                     comm_size;
8255
8256         struct {
8257                 struct perf_event_header        header;
8258
8259                 u32                             pid;
8260                 u32                             tid;
8261         } event_id;
8262 };
8263
8264 static int perf_event_comm_match(struct perf_event *event)
8265 {
8266         return event->attr.comm;
8267 }
8268
8269 static void perf_event_comm_output(struct perf_event *event,
8270                                    void *data)
8271 {
8272         struct perf_comm_event *comm_event = data;
8273         struct perf_output_handle handle;
8274         struct perf_sample_data sample;
8275         int size = comm_event->event_id.header.size;
8276         int ret;
8277
8278         if (!perf_event_comm_match(event))
8279                 return;
8280
8281         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8282         ret = perf_output_begin(&handle, &sample, event,
8283                                 comm_event->event_id.header.size);
8284
8285         if (ret)
8286                 goto out;
8287
8288         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8289         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8290
8291         perf_output_put(&handle, comm_event->event_id);
8292         __output_copy(&handle, comm_event->comm,
8293                                    comm_event->comm_size);
8294
8295         perf_event__output_id_sample(event, &handle, &sample);
8296
8297         perf_output_end(&handle);
8298 out:
8299         comm_event->event_id.header.size = size;
8300 }
8301
8302 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8303 {
8304         char comm[TASK_COMM_LEN];
8305         unsigned int size;
8306
8307         memset(comm, 0, sizeof(comm));
8308         strscpy(comm, comm_event->task->comm, sizeof(comm));
8309         size = ALIGN(strlen(comm)+1, sizeof(u64));
8310
8311         comm_event->comm = comm;
8312         comm_event->comm_size = size;
8313
8314         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8315
8316         perf_iterate_sb(perf_event_comm_output,
8317                        comm_event,
8318                        NULL);
8319 }
8320
8321 void perf_event_comm(struct task_struct *task, bool exec)
8322 {
8323         struct perf_comm_event comm_event;
8324
8325         if (!atomic_read(&nr_comm_events))
8326                 return;
8327
8328         comm_event = (struct perf_comm_event){
8329                 .task   = task,
8330                 /* .comm      */
8331                 /* .comm_size */
8332                 .event_id  = {
8333                         .header = {
8334                                 .type = PERF_RECORD_COMM,
8335                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8336                                 /* .size */
8337                         },
8338                         /* .pid */
8339                         /* .tid */
8340                 },
8341         };
8342
8343         perf_event_comm_event(&comm_event);
8344 }
8345
8346 /*
8347  * namespaces tracking
8348  */
8349
8350 struct perf_namespaces_event {
8351         struct task_struct              *task;
8352
8353         struct {
8354                 struct perf_event_header        header;
8355
8356                 u32                             pid;
8357                 u32                             tid;
8358                 u64                             nr_namespaces;
8359                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8360         } event_id;
8361 };
8362
8363 static int perf_event_namespaces_match(struct perf_event *event)
8364 {
8365         return event->attr.namespaces;
8366 }
8367
8368 static void perf_event_namespaces_output(struct perf_event *event,
8369                                          void *data)
8370 {
8371         struct perf_namespaces_event *namespaces_event = data;
8372         struct perf_output_handle handle;
8373         struct perf_sample_data sample;
8374         u16 header_size = namespaces_event->event_id.header.size;
8375         int ret;
8376
8377         if (!perf_event_namespaces_match(event))
8378                 return;
8379
8380         perf_event_header__init_id(&namespaces_event->event_id.header,
8381                                    &sample, event);
8382         ret = perf_output_begin(&handle, &sample, event,
8383                                 namespaces_event->event_id.header.size);
8384         if (ret)
8385                 goto out;
8386
8387         namespaces_event->event_id.pid = perf_event_pid(event,
8388                                                         namespaces_event->task);
8389         namespaces_event->event_id.tid = perf_event_tid(event,
8390                                                         namespaces_event->task);
8391
8392         perf_output_put(&handle, namespaces_event->event_id);
8393
8394         perf_event__output_id_sample(event, &handle, &sample);
8395
8396         perf_output_end(&handle);
8397 out:
8398         namespaces_event->event_id.header.size = header_size;
8399 }
8400
8401 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8402                                    struct task_struct *task,
8403                                    const struct proc_ns_operations *ns_ops)
8404 {
8405         struct path ns_path;
8406         struct inode *ns_inode;
8407         int error;
8408
8409         error = ns_get_path(&ns_path, task, ns_ops);
8410         if (!error) {
8411                 ns_inode = ns_path.dentry->d_inode;
8412                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8413                 ns_link_info->ino = ns_inode->i_ino;
8414                 path_put(&ns_path);
8415         }
8416 }
8417
8418 void perf_event_namespaces(struct task_struct *task)
8419 {
8420         struct perf_namespaces_event namespaces_event;
8421         struct perf_ns_link_info *ns_link_info;
8422
8423         if (!atomic_read(&nr_namespaces_events))
8424                 return;
8425
8426         namespaces_event = (struct perf_namespaces_event){
8427                 .task   = task,
8428                 .event_id  = {
8429                         .header = {
8430                                 .type = PERF_RECORD_NAMESPACES,
8431                                 .misc = 0,
8432                                 .size = sizeof(namespaces_event.event_id),
8433                         },
8434                         /* .pid */
8435                         /* .tid */
8436                         .nr_namespaces = NR_NAMESPACES,
8437                         /* .link_info[NR_NAMESPACES] */
8438                 },
8439         };
8440
8441         ns_link_info = namespaces_event.event_id.link_info;
8442
8443         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8444                                task, &mntns_operations);
8445
8446 #ifdef CONFIG_USER_NS
8447         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8448                                task, &userns_operations);
8449 #endif
8450 #ifdef CONFIG_NET_NS
8451         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8452                                task, &netns_operations);
8453 #endif
8454 #ifdef CONFIG_UTS_NS
8455         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8456                                task, &utsns_operations);
8457 #endif
8458 #ifdef CONFIG_IPC_NS
8459         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8460                                task, &ipcns_operations);
8461 #endif
8462 #ifdef CONFIG_PID_NS
8463         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8464                                task, &pidns_operations);
8465 #endif
8466 #ifdef CONFIG_CGROUPS
8467         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8468                                task, &cgroupns_operations);
8469 #endif
8470
8471         perf_iterate_sb(perf_event_namespaces_output,
8472                         &namespaces_event,
8473                         NULL);
8474 }
8475
8476 /*
8477  * cgroup tracking
8478  */
8479 #ifdef CONFIG_CGROUP_PERF
8480
8481 struct perf_cgroup_event {
8482         char                            *path;
8483         int                             path_size;
8484         struct {
8485                 struct perf_event_header        header;
8486                 u64                             id;
8487                 char                            path[];
8488         } event_id;
8489 };
8490
8491 static int perf_event_cgroup_match(struct perf_event *event)
8492 {
8493         return event->attr.cgroup;
8494 }
8495
8496 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8497 {
8498         struct perf_cgroup_event *cgroup_event = data;
8499         struct perf_output_handle handle;
8500         struct perf_sample_data sample;
8501         u16 header_size = cgroup_event->event_id.header.size;
8502         int ret;
8503
8504         if (!perf_event_cgroup_match(event))
8505                 return;
8506
8507         perf_event_header__init_id(&cgroup_event->event_id.header,
8508                                    &sample, event);
8509         ret = perf_output_begin(&handle, &sample, event,
8510                                 cgroup_event->event_id.header.size);
8511         if (ret)
8512                 goto out;
8513
8514         perf_output_put(&handle, cgroup_event->event_id);
8515         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8516
8517         perf_event__output_id_sample(event, &handle, &sample);
8518
8519         perf_output_end(&handle);
8520 out:
8521         cgroup_event->event_id.header.size = header_size;
8522 }
8523
8524 static void perf_event_cgroup(struct cgroup *cgrp)
8525 {
8526         struct perf_cgroup_event cgroup_event;
8527         char path_enomem[16] = "//enomem";
8528         char *pathname;
8529         size_t size;
8530
8531         if (!atomic_read(&nr_cgroup_events))
8532                 return;
8533
8534         cgroup_event = (struct perf_cgroup_event){
8535                 .event_id  = {
8536                         .header = {
8537                                 .type = PERF_RECORD_CGROUP,
8538                                 .misc = 0,
8539                                 .size = sizeof(cgroup_event.event_id),
8540                         },
8541                         .id = cgroup_id(cgrp),
8542                 },
8543         };
8544
8545         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8546         if (pathname == NULL) {
8547                 cgroup_event.path = path_enomem;
8548         } else {
8549                 /* just to be sure to have enough space for alignment */
8550                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8551                 cgroup_event.path = pathname;
8552         }
8553
8554         /*
8555          * Since our buffer works in 8 byte units we need to align our string
8556          * size to a multiple of 8. However, we must guarantee the tail end is
8557          * zero'd out to avoid leaking random bits to userspace.
8558          */
8559         size = strlen(cgroup_event.path) + 1;
8560         while (!IS_ALIGNED(size, sizeof(u64)))
8561                 cgroup_event.path[size++] = '\0';
8562
8563         cgroup_event.event_id.header.size += size;
8564         cgroup_event.path_size = size;
8565
8566         perf_iterate_sb(perf_event_cgroup_output,
8567                         &cgroup_event,
8568                         NULL);
8569
8570         kfree(pathname);
8571 }
8572
8573 #endif
8574
8575 /*
8576  * mmap tracking
8577  */
8578
8579 struct perf_mmap_event {
8580         struct vm_area_struct   *vma;
8581
8582         const char              *file_name;
8583         int                     file_size;
8584         int                     maj, min;
8585         u64                     ino;
8586         u64                     ino_generation;
8587         u32                     prot, flags;
8588         u8                      build_id[BUILD_ID_SIZE_MAX];
8589         u32                     build_id_size;
8590
8591         struct {
8592                 struct perf_event_header        header;
8593
8594                 u32                             pid;
8595                 u32                             tid;
8596                 u64                             start;
8597                 u64                             len;
8598                 u64                             pgoff;
8599         } event_id;
8600 };
8601
8602 static int perf_event_mmap_match(struct perf_event *event,
8603                                  void *data)
8604 {
8605         struct perf_mmap_event *mmap_event = data;
8606         struct vm_area_struct *vma = mmap_event->vma;
8607         int executable = vma->vm_flags & VM_EXEC;
8608
8609         return (!executable && event->attr.mmap_data) ||
8610                (executable && (event->attr.mmap || event->attr.mmap2));
8611 }
8612
8613 static void perf_event_mmap_output(struct perf_event *event,
8614                                    void *data)
8615 {
8616         struct perf_mmap_event *mmap_event = data;
8617         struct perf_output_handle handle;
8618         struct perf_sample_data sample;
8619         int size = mmap_event->event_id.header.size;
8620         u32 type = mmap_event->event_id.header.type;
8621         bool use_build_id;
8622         int ret;
8623
8624         if (!perf_event_mmap_match(event, data))
8625                 return;
8626
8627         if (event->attr.mmap2) {
8628                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8629                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8630                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8631                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8632                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8633                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8634                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8635         }
8636
8637         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8638         ret = perf_output_begin(&handle, &sample, event,
8639                                 mmap_event->event_id.header.size);
8640         if (ret)
8641                 goto out;
8642
8643         mmap_event->event_id.pid = perf_event_pid(event, current);
8644         mmap_event->event_id.tid = perf_event_tid(event, current);
8645
8646         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8647
8648         if (event->attr.mmap2 && use_build_id)
8649                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8650
8651         perf_output_put(&handle, mmap_event->event_id);
8652
8653         if (event->attr.mmap2) {
8654                 if (use_build_id) {
8655                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8656
8657                         __output_copy(&handle, size, 4);
8658                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8659                 } else {
8660                         perf_output_put(&handle, mmap_event->maj);
8661                         perf_output_put(&handle, mmap_event->min);
8662                         perf_output_put(&handle, mmap_event->ino);
8663                         perf_output_put(&handle, mmap_event->ino_generation);
8664                 }
8665                 perf_output_put(&handle, mmap_event->prot);
8666                 perf_output_put(&handle, mmap_event->flags);
8667         }
8668
8669         __output_copy(&handle, mmap_event->file_name,
8670                                    mmap_event->file_size);
8671
8672         perf_event__output_id_sample(event, &handle, &sample);
8673
8674         perf_output_end(&handle);
8675 out:
8676         mmap_event->event_id.header.size = size;
8677         mmap_event->event_id.header.type = type;
8678 }
8679
8680 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8681 {
8682         struct vm_area_struct *vma = mmap_event->vma;
8683         struct file *file = vma->vm_file;
8684         int maj = 0, min = 0;
8685         u64 ino = 0, gen = 0;
8686         u32 prot = 0, flags = 0;
8687         unsigned int size;
8688         char tmp[16];
8689         char *buf = NULL;
8690         char *name = NULL;
8691
8692         if (vma->vm_flags & VM_READ)
8693                 prot |= PROT_READ;
8694         if (vma->vm_flags & VM_WRITE)
8695                 prot |= PROT_WRITE;
8696         if (vma->vm_flags & VM_EXEC)
8697                 prot |= PROT_EXEC;
8698
8699         if (vma->vm_flags & VM_MAYSHARE)
8700                 flags = MAP_SHARED;
8701         else
8702                 flags = MAP_PRIVATE;
8703
8704         if (vma->vm_flags & VM_LOCKED)
8705                 flags |= MAP_LOCKED;
8706         if (is_vm_hugetlb_page(vma))
8707                 flags |= MAP_HUGETLB;
8708
8709         if (file) {
8710                 struct inode *inode;
8711                 dev_t dev;
8712
8713                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8714                 if (!buf) {
8715                         name = "//enomem";
8716                         goto cpy_name;
8717                 }
8718                 /*
8719                  * d_path() works from the end of the rb backwards, so we
8720                  * need to add enough zero bytes after the string to handle
8721                  * the 64bit alignment we do later.
8722                  */
8723                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8724                 if (IS_ERR(name)) {
8725                         name = "//toolong";
8726                         goto cpy_name;
8727                 }
8728                 inode = file_inode(vma->vm_file);
8729                 dev = inode->i_sb->s_dev;
8730                 ino = inode->i_ino;
8731                 gen = inode->i_generation;
8732                 maj = MAJOR(dev);
8733                 min = MINOR(dev);
8734
8735                 goto got_name;
8736         } else {
8737                 if (vma->vm_ops && vma->vm_ops->name)
8738                         name = (char *) vma->vm_ops->name(vma);
8739                 if (!name)
8740                         name = (char *)arch_vma_name(vma);
8741                 if (!name) {
8742                         if (vma_is_initial_heap(vma))
8743                                 name = "[heap]";
8744                         else if (vma_is_initial_stack(vma))
8745                                 name = "[stack]";
8746                         else
8747                                 name = "//anon";
8748                 }
8749         }
8750
8751 cpy_name:
8752         strscpy(tmp, name, sizeof(tmp));
8753         name = tmp;
8754 got_name:
8755         /*
8756          * Since our buffer works in 8 byte units we need to align our string
8757          * size to a multiple of 8. However, we must guarantee the tail end is
8758          * zero'd out to avoid leaking random bits to userspace.
8759          */
8760         size = strlen(name)+1;
8761         while (!IS_ALIGNED(size, sizeof(u64)))
8762                 name[size++] = '\0';
8763
8764         mmap_event->file_name = name;
8765         mmap_event->file_size = size;
8766         mmap_event->maj = maj;
8767         mmap_event->min = min;
8768         mmap_event->ino = ino;
8769         mmap_event->ino_generation = gen;
8770         mmap_event->prot = prot;
8771         mmap_event->flags = flags;
8772
8773         if (!(vma->vm_flags & VM_EXEC))
8774                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8775
8776         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8777
8778         if (atomic_read(&nr_build_id_events))
8779                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8780
8781         perf_iterate_sb(perf_event_mmap_output,
8782                        mmap_event,
8783                        NULL);
8784
8785         kfree(buf);
8786 }
8787
8788 /*
8789  * Check whether inode and address range match filter criteria.
8790  */
8791 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8792                                      struct file *file, unsigned long offset,
8793                                      unsigned long size)
8794 {
8795         /* d_inode(NULL) won't be equal to any mapped user-space file */
8796         if (!filter->path.dentry)
8797                 return false;
8798
8799         if (d_inode(filter->path.dentry) != file_inode(file))
8800                 return false;
8801
8802         if (filter->offset > offset + size)
8803                 return false;
8804
8805         if (filter->offset + filter->size < offset)
8806                 return false;
8807
8808         return true;
8809 }
8810
8811 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8812                                         struct vm_area_struct *vma,
8813                                         struct perf_addr_filter_range *fr)
8814 {
8815         unsigned long vma_size = vma->vm_end - vma->vm_start;
8816         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8817         struct file *file = vma->vm_file;
8818
8819         if (!perf_addr_filter_match(filter, file, off, vma_size))
8820                 return false;
8821
8822         if (filter->offset < off) {
8823                 fr->start = vma->vm_start;
8824                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8825         } else {
8826                 fr->start = vma->vm_start + filter->offset - off;
8827                 fr->size = min(vma->vm_end - fr->start, filter->size);
8828         }
8829
8830         return true;
8831 }
8832
8833 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8834 {
8835         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8836         struct vm_area_struct *vma = data;
8837         struct perf_addr_filter *filter;
8838         unsigned int restart = 0, count = 0;
8839         unsigned long flags;
8840
8841         if (!has_addr_filter(event))
8842                 return;
8843
8844         if (!vma->vm_file)
8845                 return;
8846
8847         raw_spin_lock_irqsave(&ifh->lock, flags);
8848         list_for_each_entry(filter, &ifh->list, entry) {
8849                 if (perf_addr_filter_vma_adjust(filter, vma,
8850                                                 &event->addr_filter_ranges[count]))
8851                         restart++;
8852
8853                 count++;
8854         }
8855
8856         if (restart)
8857                 event->addr_filters_gen++;
8858         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8859
8860         if (restart)
8861                 perf_event_stop(event, 1);
8862 }
8863
8864 /*
8865  * Adjust all task's events' filters to the new vma
8866  */
8867 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8868 {
8869         struct perf_event_context *ctx;
8870
8871         /*
8872          * Data tracing isn't supported yet and as such there is no need
8873          * to keep track of anything that isn't related to executable code:
8874          */
8875         if (!(vma->vm_flags & VM_EXEC))
8876                 return;
8877
8878         rcu_read_lock();
8879         ctx = rcu_dereference(current->perf_event_ctxp);
8880         if (ctx)
8881                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8882         rcu_read_unlock();
8883 }
8884
8885 void perf_event_mmap(struct vm_area_struct *vma)
8886 {
8887         struct perf_mmap_event mmap_event;
8888
8889         if (!atomic_read(&nr_mmap_events))
8890                 return;
8891
8892         mmap_event = (struct perf_mmap_event){
8893                 .vma    = vma,
8894                 /* .file_name */
8895                 /* .file_size */
8896                 .event_id  = {
8897                         .header = {
8898                                 .type = PERF_RECORD_MMAP,
8899                                 .misc = PERF_RECORD_MISC_USER,
8900                                 /* .size */
8901                         },
8902                         /* .pid */
8903                         /* .tid */
8904                         .start  = vma->vm_start,
8905                         .len    = vma->vm_end - vma->vm_start,
8906                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8907                 },
8908                 /* .maj (attr_mmap2 only) */
8909                 /* .min (attr_mmap2 only) */
8910                 /* .ino (attr_mmap2 only) */
8911                 /* .ino_generation (attr_mmap2 only) */
8912                 /* .prot (attr_mmap2 only) */
8913                 /* .flags (attr_mmap2 only) */
8914         };
8915
8916         perf_addr_filters_adjust(vma);
8917         perf_event_mmap_event(&mmap_event);
8918 }
8919
8920 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8921                           unsigned long size, u64 flags)
8922 {
8923         struct perf_output_handle handle;
8924         struct perf_sample_data sample;
8925         struct perf_aux_event {
8926                 struct perf_event_header        header;
8927                 u64                             offset;
8928                 u64                             size;
8929                 u64                             flags;
8930         } rec = {
8931                 .header = {
8932                         .type = PERF_RECORD_AUX,
8933                         .misc = 0,
8934                         .size = sizeof(rec),
8935                 },
8936                 .offset         = head,
8937                 .size           = size,
8938                 .flags          = flags,
8939         };
8940         int ret;
8941
8942         perf_event_header__init_id(&rec.header, &sample, event);
8943         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8944
8945         if (ret)
8946                 return;
8947
8948         perf_output_put(&handle, rec);
8949         perf_event__output_id_sample(event, &handle, &sample);
8950
8951         perf_output_end(&handle);
8952 }
8953
8954 /*
8955  * Lost/dropped samples logging
8956  */
8957 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8958 {
8959         struct perf_output_handle handle;
8960         struct perf_sample_data sample;
8961         int ret;
8962
8963         struct {
8964                 struct perf_event_header        header;
8965                 u64                             lost;
8966         } lost_samples_event = {
8967                 .header = {
8968                         .type = PERF_RECORD_LOST_SAMPLES,
8969                         .misc = 0,
8970                         .size = sizeof(lost_samples_event),
8971                 },
8972                 .lost           = lost,
8973         };
8974
8975         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8976
8977         ret = perf_output_begin(&handle, &sample, event,
8978                                 lost_samples_event.header.size);
8979         if (ret)
8980                 return;
8981
8982         perf_output_put(&handle, lost_samples_event);
8983         perf_event__output_id_sample(event, &handle, &sample);
8984         perf_output_end(&handle);
8985 }
8986
8987 /*
8988  * context_switch tracking
8989  */
8990
8991 struct perf_switch_event {
8992         struct task_struct      *task;
8993         struct task_struct      *next_prev;
8994
8995         struct {
8996                 struct perf_event_header        header;
8997                 u32                             next_prev_pid;
8998                 u32                             next_prev_tid;
8999         } event_id;
9000 };
9001
9002 static int perf_event_switch_match(struct perf_event *event)
9003 {
9004         return event->attr.context_switch;
9005 }
9006
9007 static void perf_event_switch_output(struct perf_event *event, void *data)
9008 {
9009         struct perf_switch_event *se = data;
9010         struct perf_output_handle handle;
9011         struct perf_sample_data sample;
9012         int ret;
9013
9014         if (!perf_event_switch_match(event))
9015                 return;
9016
9017         /* Only CPU-wide events are allowed to see next/prev pid/tid */
9018         if (event->ctx->task) {
9019                 se->event_id.header.type = PERF_RECORD_SWITCH;
9020                 se->event_id.header.size = sizeof(se->event_id.header);
9021         } else {
9022                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9023                 se->event_id.header.size = sizeof(se->event_id);
9024                 se->event_id.next_prev_pid =
9025                                         perf_event_pid(event, se->next_prev);
9026                 se->event_id.next_prev_tid =
9027                                         perf_event_tid(event, se->next_prev);
9028         }
9029
9030         perf_event_header__init_id(&se->event_id.header, &sample, event);
9031
9032         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9033         if (ret)
9034                 return;
9035
9036         if (event->ctx->task)
9037                 perf_output_put(&handle, se->event_id.header);
9038         else
9039                 perf_output_put(&handle, se->event_id);
9040
9041         perf_event__output_id_sample(event, &handle, &sample);
9042
9043         perf_output_end(&handle);
9044 }
9045
9046 static void perf_event_switch(struct task_struct *task,
9047                               struct task_struct *next_prev, bool sched_in)
9048 {
9049         struct perf_switch_event switch_event;
9050
9051         /* N.B. caller checks nr_switch_events != 0 */
9052
9053         switch_event = (struct perf_switch_event){
9054                 .task           = task,
9055                 .next_prev      = next_prev,
9056                 .event_id       = {
9057                         .header = {
9058                                 /* .type */
9059                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9060                                 /* .size */
9061                         },
9062                         /* .next_prev_pid */
9063                         /* .next_prev_tid */
9064                 },
9065         };
9066
9067         if (!sched_in && task->on_rq) {
9068                 switch_event.event_id.header.misc |=
9069                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9070         }
9071
9072         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9073 }
9074
9075 /*
9076  * IRQ throttle logging
9077  */
9078
9079 static void perf_log_throttle(struct perf_event *event, int enable)
9080 {
9081         struct perf_output_handle handle;
9082         struct perf_sample_data sample;
9083         int ret;
9084
9085         struct {
9086                 struct perf_event_header        header;
9087                 u64                             time;
9088                 u64                             id;
9089                 u64                             stream_id;
9090         } throttle_event = {
9091                 .header = {
9092                         .type = PERF_RECORD_THROTTLE,
9093                         .misc = 0,
9094                         .size = sizeof(throttle_event),
9095                 },
9096                 .time           = perf_event_clock(event),
9097                 .id             = primary_event_id(event),
9098                 .stream_id      = event->id,
9099         };
9100
9101         if (enable)
9102                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9103
9104         perf_event_header__init_id(&throttle_event.header, &sample, event);
9105
9106         ret = perf_output_begin(&handle, &sample, event,
9107                                 throttle_event.header.size);
9108         if (ret)
9109                 return;
9110
9111         perf_output_put(&handle, throttle_event);
9112         perf_event__output_id_sample(event, &handle, &sample);
9113         perf_output_end(&handle);
9114 }
9115
9116 /*
9117  * ksymbol register/unregister tracking
9118  */
9119
9120 struct perf_ksymbol_event {
9121         const char      *name;
9122         int             name_len;
9123         struct {
9124                 struct perf_event_header        header;
9125                 u64                             addr;
9126                 u32                             len;
9127                 u16                             ksym_type;
9128                 u16                             flags;
9129         } event_id;
9130 };
9131
9132 static int perf_event_ksymbol_match(struct perf_event *event)
9133 {
9134         return event->attr.ksymbol;
9135 }
9136
9137 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9138 {
9139         struct perf_ksymbol_event *ksymbol_event = data;
9140         struct perf_output_handle handle;
9141         struct perf_sample_data sample;
9142         int ret;
9143
9144         if (!perf_event_ksymbol_match(event))
9145                 return;
9146
9147         perf_event_header__init_id(&ksymbol_event->event_id.header,
9148                                    &sample, event);
9149         ret = perf_output_begin(&handle, &sample, event,
9150                                 ksymbol_event->event_id.header.size);
9151         if (ret)
9152                 return;
9153
9154         perf_output_put(&handle, ksymbol_event->event_id);
9155         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9156         perf_event__output_id_sample(event, &handle, &sample);
9157
9158         perf_output_end(&handle);
9159 }
9160
9161 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9162                         const char *sym)
9163 {
9164         struct perf_ksymbol_event ksymbol_event;
9165         char name[KSYM_NAME_LEN];
9166         u16 flags = 0;
9167         int name_len;
9168
9169         if (!atomic_read(&nr_ksymbol_events))
9170                 return;
9171
9172         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9173             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9174                 goto err;
9175
9176         strscpy(name, sym, KSYM_NAME_LEN);
9177         name_len = strlen(name) + 1;
9178         while (!IS_ALIGNED(name_len, sizeof(u64)))
9179                 name[name_len++] = '\0';
9180         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9181
9182         if (unregister)
9183                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9184
9185         ksymbol_event = (struct perf_ksymbol_event){
9186                 .name = name,
9187                 .name_len = name_len,
9188                 .event_id = {
9189                         .header = {
9190                                 .type = PERF_RECORD_KSYMBOL,
9191                                 .size = sizeof(ksymbol_event.event_id) +
9192                                         name_len,
9193                         },
9194                         .addr = addr,
9195                         .len = len,
9196                         .ksym_type = ksym_type,
9197                         .flags = flags,
9198                 },
9199         };
9200
9201         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9202         return;
9203 err:
9204         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9205 }
9206
9207 /*
9208  * bpf program load/unload tracking
9209  */
9210
9211 struct perf_bpf_event {
9212         struct bpf_prog *prog;
9213         struct {
9214                 struct perf_event_header        header;
9215                 u16                             type;
9216                 u16                             flags;
9217                 u32                             id;
9218                 u8                              tag[BPF_TAG_SIZE];
9219         } event_id;
9220 };
9221
9222 static int perf_event_bpf_match(struct perf_event *event)
9223 {
9224         return event->attr.bpf_event;
9225 }
9226
9227 static void perf_event_bpf_output(struct perf_event *event, void *data)
9228 {
9229         struct perf_bpf_event *bpf_event = data;
9230         struct perf_output_handle handle;
9231         struct perf_sample_data sample;
9232         int ret;
9233
9234         if (!perf_event_bpf_match(event))
9235                 return;
9236
9237         perf_event_header__init_id(&bpf_event->event_id.header,
9238                                    &sample, event);
9239         ret = perf_output_begin(&handle, &sample, event,
9240                                 bpf_event->event_id.header.size);
9241         if (ret)
9242                 return;
9243
9244         perf_output_put(&handle, bpf_event->event_id);
9245         perf_event__output_id_sample(event, &handle, &sample);
9246
9247         perf_output_end(&handle);
9248 }
9249
9250 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9251                                          enum perf_bpf_event_type type)
9252 {
9253         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9254         int i;
9255
9256         if (prog->aux->func_cnt == 0) {
9257                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9258                                    (u64)(unsigned long)prog->bpf_func,
9259                                    prog->jited_len, unregister,
9260                                    prog->aux->ksym.name);
9261         } else {
9262                 for (i = 0; i < prog->aux->func_cnt; i++) {
9263                         struct bpf_prog *subprog = prog->aux->func[i];
9264
9265                         perf_event_ksymbol(
9266                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9267                                 (u64)(unsigned long)subprog->bpf_func,
9268                                 subprog->jited_len, unregister,
9269                                 subprog->aux->ksym.name);
9270                 }
9271         }
9272 }
9273
9274 void perf_event_bpf_event(struct bpf_prog *prog,
9275                           enum perf_bpf_event_type type,
9276                           u16 flags)
9277 {
9278         struct perf_bpf_event bpf_event;
9279
9280         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9281             type >= PERF_BPF_EVENT_MAX)
9282                 return;
9283
9284         switch (type) {
9285         case PERF_BPF_EVENT_PROG_LOAD:
9286         case PERF_BPF_EVENT_PROG_UNLOAD:
9287                 if (atomic_read(&nr_ksymbol_events))
9288                         perf_event_bpf_emit_ksymbols(prog, type);
9289                 break;
9290         default:
9291                 break;
9292         }
9293
9294         if (!atomic_read(&nr_bpf_events))
9295                 return;
9296
9297         bpf_event = (struct perf_bpf_event){
9298                 .prog = prog,
9299                 .event_id = {
9300                         .header = {
9301                                 .type = PERF_RECORD_BPF_EVENT,
9302                                 .size = sizeof(bpf_event.event_id),
9303                         },
9304                         .type = type,
9305                         .flags = flags,
9306                         .id = prog->aux->id,
9307                 },
9308         };
9309
9310         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9311
9312         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9313         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9314 }
9315
9316 struct perf_text_poke_event {
9317         const void              *old_bytes;
9318         const void              *new_bytes;
9319         size_t                  pad;
9320         u16                     old_len;
9321         u16                     new_len;
9322
9323         struct {
9324                 struct perf_event_header        header;
9325
9326                 u64                             addr;
9327         } event_id;
9328 };
9329
9330 static int perf_event_text_poke_match(struct perf_event *event)
9331 {
9332         return event->attr.text_poke;
9333 }
9334
9335 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9336 {
9337         struct perf_text_poke_event *text_poke_event = data;
9338         struct perf_output_handle handle;
9339         struct perf_sample_data sample;
9340         u64 padding = 0;
9341         int ret;
9342
9343         if (!perf_event_text_poke_match(event))
9344                 return;
9345
9346         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9347
9348         ret = perf_output_begin(&handle, &sample, event,
9349                                 text_poke_event->event_id.header.size);
9350         if (ret)
9351                 return;
9352
9353         perf_output_put(&handle, text_poke_event->event_id);
9354         perf_output_put(&handle, text_poke_event->old_len);
9355         perf_output_put(&handle, text_poke_event->new_len);
9356
9357         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9358         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9359
9360         if (text_poke_event->pad)
9361                 __output_copy(&handle, &padding, text_poke_event->pad);
9362
9363         perf_event__output_id_sample(event, &handle, &sample);
9364
9365         perf_output_end(&handle);
9366 }
9367
9368 void perf_event_text_poke(const void *addr, const void *old_bytes,
9369                           size_t old_len, const void *new_bytes, size_t new_len)
9370 {
9371         struct perf_text_poke_event text_poke_event;
9372         size_t tot, pad;
9373
9374         if (!atomic_read(&nr_text_poke_events))
9375                 return;
9376
9377         tot  = sizeof(text_poke_event.old_len) + old_len;
9378         tot += sizeof(text_poke_event.new_len) + new_len;
9379         pad  = ALIGN(tot, sizeof(u64)) - tot;
9380
9381         text_poke_event = (struct perf_text_poke_event){
9382                 .old_bytes    = old_bytes,
9383                 .new_bytes    = new_bytes,
9384                 .pad          = pad,
9385                 .old_len      = old_len,
9386                 .new_len      = new_len,
9387                 .event_id  = {
9388                         .header = {
9389                                 .type = PERF_RECORD_TEXT_POKE,
9390                                 .misc = PERF_RECORD_MISC_KERNEL,
9391                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9392                         },
9393                         .addr = (unsigned long)addr,
9394                 },
9395         };
9396
9397         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9398 }
9399
9400 void perf_event_itrace_started(struct perf_event *event)
9401 {
9402         event->attach_state |= PERF_ATTACH_ITRACE;
9403 }
9404
9405 static void perf_log_itrace_start(struct perf_event *event)
9406 {
9407         struct perf_output_handle handle;
9408         struct perf_sample_data sample;
9409         struct perf_aux_event {
9410                 struct perf_event_header        header;
9411                 u32                             pid;
9412                 u32                             tid;
9413         } rec;
9414         int ret;
9415
9416         if (event->parent)
9417                 event = event->parent;
9418
9419         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9420             event->attach_state & PERF_ATTACH_ITRACE)
9421                 return;
9422
9423         rec.header.type = PERF_RECORD_ITRACE_START;
9424         rec.header.misc = 0;
9425         rec.header.size = sizeof(rec);
9426         rec.pid = perf_event_pid(event, current);
9427         rec.tid = perf_event_tid(event, current);
9428
9429         perf_event_header__init_id(&rec.header, &sample, event);
9430         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9431
9432         if (ret)
9433                 return;
9434
9435         perf_output_put(&handle, rec);
9436         perf_event__output_id_sample(event, &handle, &sample);
9437
9438         perf_output_end(&handle);
9439 }
9440
9441 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9442 {
9443         struct perf_output_handle handle;
9444         struct perf_sample_data sample;
9445         struct perf_aux_event {
9446                 struct perf_event_header        header;
9447                 u64                             hw_id;
9448         } rec;
9449         int ret;
9450
9451         if (event->parent)
9452                 event = event->parent;
9453
9454         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9455         rec.header.misc = 0;
9456         rec.header.size = sizeof(rec);
9457         rec.hw_id       = hw_id;
9458
9459         perf_event_header__init_id(&rec.header, &sample, event);
9460         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9461
9462         if (ret)
9463                 return;
9464
9465         perf_output_put(&handle, rec);
9466         perf_event__output_id_sample(event, &handle, &sample);
9467
9468         perf_output_end(&handle);
9469 }
9470 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9471
9472 static int
9473 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9474 {
9475         struct hw_perf_event *hwc = &event->hw;
9476         int ret = 0;
9477         u64 seq;
9478
9479         seq = __this_cpu_read(perf_throttled_seq);
9480         if (seq != hwc->interrupts_seq) {
9481                 hwc->interrupts_seq = seq;
9482                 hwc->interrupts = 1;
9483         } else {
9484                 hwc->interrupts++;
9485                 if (unlikely(throttle &&
9486                              hwc->interrupts > max_samples_per_tick)) {
9487                         __this_cpu_inc(perf_throttled_count);
9488                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9489                         hwc->interrupts = MAX_INTERRUPTS;
9490                         perf_log_throttle(event, 0);
9491                         ret = 1;
9492                 }
9493         }
9494
9495         if (event->attr.freq) {
9496                 u64 now = perf_clock();
9497                 s64 delta = now - hwc->freq_time_stamp;
9498
9499                 hwc->freq_time_stamp = now;
9500
9501                 if (delta > 0 && delta < 2*TICK_NSEC)
9502                         perf_adjust_period(event, delta, hwc->last_period, true);
9503         }
9504
9505         return ret;
9506 }
9507
9508 int perf_event_account_interrupt(struct perf_event *event)
9509 {
9510         return __perf_event_account_interrupt(event, 1);
9511 }
9512
9513 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9514 {
9515         /*
9516          * Due to interrupt latency (AKA "skid"), we may enter the
9517          * kernel before taking an overflow, even if the PMU is only
9518          * counting user events.
9519          */
9520         if (event->attr.exclude_kernel && !user_mode(regs))
9521                 return false;
9522
9523         return true;
9524 }
9525
9526 /*
9527  * Generic event overflow handling, sampling.
9528  */
9529
9530 static int __perf_event_overflow(struct perf_event *event,
9531                                  int throttle, struct perf_sample_data *data,
9532                                  struct pt_regs *regs)
9533 {
9534         int events = atomic_read(&event->event_limit);
9535         int ret = 0;
9536
9537         /*
9538          * Non-sampling counters might still use the PMI to fold short
9539          * hardware counters, ignore those.
9540          */
9541         if (unlikely(!is_sampling_event(event)))
9542                 return 0;
9543
9544         ret = __perf_event_account_interrupt(event, throttle);
9545
9546         /*
9547          * XXX event_limit might not quite work as expected on inherited
9548          * events
9549          */
9550
9551         event->pending_kill = POLL_IN;
9552         if (events && atomic_dec_and_test(&event->event_limit)) {
9553                 ret = 1;
9554                 event->pending_kill = POLL_HUP;
9555                 perf_event_disable_inatomic(event);
9556         }
9557
9558         if (event->attr.sigtrap) {
9559                 /*
9560                  * The desired behaviour of sigtrap vs invalid samples is a bit
9561                  * tricky; on the one hand, one should not loose the SIGTRAP if
9562                  * it is the first event, on the other hand, we should also not
9563                  * trigger the WARN or override the data address.
9564                  */
9565                 bool valid_sample = sample_is_allowed(event, regs);
9566                 unsigned int pending_id = 1;
9567
9568                 if (regs)
9569                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9570                 if (!event->pending_sigtrap) {
9571                         event->pending_sigtrap = pending_id;
9572                         local_inc(&event->ctx->nr_pending);
9573                 } else if (event->attr.exclude_kernel && valid_sample) {
9574                         /*
9575                          * Should not be able to return to user space without
9576                          * consuming pending_sigtrap; with exceptions:
9577                          *
9578                          *  1. Where !exclude_kernel, events can overflow again
9579                          *     in the kernel without returning to user space.
9580                          *
9581                          *  2. Events that can overflow again before the IRQ-
9582                          *     work without user space progress (e.g. hrtimer).
9583                          *     To approximate progress (with false negatives),
9584                          *     check 32-bit hash of the current IP.
9585                          */
9586                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9587                 }
9588
9589                 event->pending_addr = 0;
9590                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9591                         event->pending_addr = data->addr;
9592                 irq_work_queue(&event->pending_irq);
9593         }
9594
9595         READ_ONCE(event->overflow_handler)(event, data, regs);
9596
9597         if (*perf_event_fasync(event) && event->pending_kill) {
9598                 event->pending_wakeup = 1;
9599                 irq_work_queue(&event->pending_irq);
9600         }
9601
9602         return ret;
9603 }
9604
9605 int perf_event_overflow(struct perf_event *event,
9606                         struct perf_sample_data *data,
9607                         struct pt_regs *regs)
9608 {
9609         return __perf_event_overflow(event, 1, data, regs);
9610 }
9611
9612 /*
9613  * Generic software event infrastructure
9614  */
9615
9616 struct swevent_htable {
9617         struct swevent_hlist            *swevent_hlist;
9618         struct mutex                    hlist_mutex;
9619         int                             hlist_refcount;
9620
9621         /* Recursion avoidance in each contexts */
9622         int                             recursion[PERF_NR_CONTEXTS];
9623 };
9624
9625 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9626
9627 /*
9628  * We directly increment event->count and keep a second value in
9629  * event->hw.period_left to count intervals. This period event
9630  * is kept in the range [-sample_period, 0] so that we can use the
9631  * sign as trigger.
9632  */
9633
9634 u64 perf_swevent_set_period(struct perf_event *event)
9635 {
9636         struct hw_perf_event *hwc = &event->hw;
9637         u64 period = hwc->last_period;
9638         u64 nr, offset;
9639         s64 old, val;
9640
9641         hwc->last_period = hwc->sample_period;
9642
9643         old = local64_read(&hwc->period_left);
9644         do {
9645                 val = old;
9646                 if (val < 0)
9647                         return 0;
9648
9649                 nr = div64_u64(period + val, period);
9650                 offset = nr * period;
9651                 val -= offset;
9652         } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9653
9654         return nr;
9655 }
9656
9657 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9658                                     struct perf_sample_data *data,
9659                                     struct pt_regs *regs)
9660 {
9661         struct hw_perf_event *hwc = &event->hw;
9662         int throttle = 0;
9663
9664         if (!overflow)
9665                 overflow = perf_swevent_set_period(event);
9666
9667         if (hwc->interrupts == MAX_INTERRUPTS)
9668                 return;
9669
9670         for (; overflow; overflow--) {
9671                 if (__perf_event_overflow(event, throttle,
9672                                             data, regs)) {
9673                         /*
9674                          * We inhibit the overflow from happening when
9675                          * hwc->interrupts == MAX_INTERRUPTS.
9676                          */
9677                         break;
9678                 }
9679                 throttle = 1;
9680         }
9681 }
9682
9683 static void perf_swevent_event(struct perf_event *event, u64 nr,
9684                                struct perf_sample_data *data,
9685                                struct pt_regs *regs)
9686 {
9687         struct hw_perf_event *hwc = &event->hw;
9688
9689         local64_add(nr, &event->count);
9690
9691         if (!regs)
9692                 return;
9693
9694         if (!is_sampling_event(event))
9695                 return;
9696
9697         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9698                 data->period = nr;
9699                 return perf_swevent_overflow(event, 1, data, regs);
9700         } else
9701                 data->period = event->hw.last_period;
9702
9703         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9704                 return perf_swevent_overflow(event, 1, data, regs);
9705
9706         if (local64_add_negative(nr, &hwc->period_left))
9707                 return;
9708
9709         perf_swevent_overflow(event, 0, data, regs);
9710 }
9711
9712 static int perf_exclude_event(struct perf_event *event,
9713                               struct pt_regs *regs)
9714 {
9715         if (event->hw.state & PERF_HES_STOPPED)
9716                 return 1;
9717
9718         if (regs) {
9719                 if (event->attr.exclude_user && user_mode(regs))
9720                         return 1;
9721
9722                 if (event->attr.exclude_kernel && !user_mode(regs))
9723                         return 1;
9724         }
9725
9726         return 0;
9727 }
9728
9729 static int perf_swevent_match(struct perf_event *event,
9730                                 enum perf_type_id type,
9731                                 u32 event_id,
9732                                 struct perf_sample_data *data,
9733                                 struct pt_regs *regs)
9734 {
9735         if (event->attr.type != type)
9736                 return 0;
9737
9738         if (event->attr.config != event_id)
9739                 return 0;
9740
9741         if (perf_exclude_event(event, regs))
9742                 return 0;
9743
9744         return 1;
9745 }
9746
9747 static inline u64 swevent_hash(u64 type, u32 event_id)
9748 {
9749         u64 val = event_id | (type << 32);
9750
9751         return hash_64(val, SWEVENT_HLIST_BITS);
9752 }
9753
9754 static inline struct hlist_head *
9755 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9756 {
9757         u64 hash = swevent_hash(type, event_id);
9758
9759         return &hlist->heads[hash];
9760 }
9761
9762 /* For the read side: events when they trigger */
9763 static inline struct hlist_head *
9764 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9765 {
9766         struct swevent_hlist *hlist;
9767
9768         hlist = rcu_dereference(swhash->swevent_hlist);
9769         if (!hlist)
9770                 return NULL;
9771
9772         return __find_swevent_head(hlist, type, event_id);
9773 }
9774
9775 /* For the event head insertion and removal in the hlist */
9776 static inline struct hlist_head *
9777 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9778 {
9779         struct swevent_hlist *hlist;
9780         u32 event_id = event->attr.config;
9781         u64 type = event->attr.type;
9782
9783         /*
9784          * Event scheduling is always serialized against hlist allocation
9785          * and release. Which makes the protected version suitable here.
9786          * The context lock guarantees that.
9787          */
9788         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9789                                           lockdep_is_held(&event->ctx->lock));
9790         if (!hlist)
9791                 return NULL;
9792
9793         return __find_swevent_head(hlist, type, event_id);
9794 }
9795
9796 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9797                                     u64 nr,
9798                                     struct perf_sample_data *data,
9799                                     struct pt_regs *regs)
9800 {
9801         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9802         struct perf_event *event;
9803         struct hlist_head *head;
9804
9805         rcu_read_lock();
9806         head = find_swevent_head_rcu(swhash, type, event_id);
9807         if (!head)
9808                 goto end;
9809
9810         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9811                 if (perf_swevent_match(event, type, event_id, data, regs))
9812                         perf_swevent_event(event, nr, data, regs);
9813         }
9814 end:
9815         rcu_read_unlock();
9816 }
9817
9818 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9819
9820 int perf_swevent_get_recursion_context(void)
9821 {
9822         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9823
9824         return get_recursion_context(swhash->recursion);
9825 }
9826 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9827
9828 void perf_swevent_put_recursion_context(int rctx)
9829 {
9830         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9831
9832         put_recursion_context(swhash->recursion, rctx);
9833 }
9834
9835 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9836 {
9837         struct perf_sample_data data;
9838
9839         if (WARN_ON_ONCE(!regs))
9840                 return;
9841
9842         perf_sample_data_init(&data, addr, 0);
9843         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9844 }
9845
9846 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9847 {
9848         int rctx;
9849
9850         preempt_disable_notrace();
9851         rctx = perf_swevent_get_recursion_context();
9852         if (unlikely(rctx < 0))
9853                 goto fail;
9854
9855         ___perf_sw_event(event_id, nr, regs, addr);
9856
9857         perf_swevent_put_recursion_context(rctx);
9858 fail:
9859         preempt_enable_notrace();
9860 }
9861
9862 static void perf_swevent_read(struct perf_event *event)
9863 {
9864 }
9865
9866 static int perf_swevent_add(struct perf_event *event, int flags)
9867 {
9868         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9869         struct hw_perf_event *hwc = &event->hw;
9870         struct hlist_head *head;
9871
9872         if (is_sampling_event(event)) {
9873                 hwc->last_period = hwc->sample_period;
9874                 perf_swevent_set_period(event);
9875         }
9876
9877         hwc->state = !(flags & PERF_EF_START);
9878
9879         head = find_swevent_head(swhash, event);
9880         if (WARN_ON_ONCE(!head))
9881                 return -EINVAL;
9882
9883         hlist_add_head_rcu(&event->hlist_entry, head);
9884         perf_event_update_userpage(event);
9885
9886         return 0;
9887 }
9888
9889 static void perf_swevent_del(struct perf_event *event, int flags)
9890 {
9891         hlist_del_rcu(&event->hlist_entry);
9892 }
9893
9894 static void perf_swevent_start(struct perf_event *event, int flags)
9895 {
9896         event->hw.state = 0;
9897 }
9898
9899 static void perf_swevent_stop(struct perf_event *event, int flags)
9900 {
9901         event->hw.state = PERF_HES_STOPPED;
9902 }
9903
9904 /* Deref the hlist from the update side */
9905 static inline struct swevent_hlist *
9906 swevent_hlist_deref(struct swevent_htable *swhash)
9907 {
9908         return rcu_dereference_protected(swhash->swevent_hlist,
9909                                          lockdep_is_held(&swhash->hlist_mutex));
9910 }
9911
9912 static void swevent_hlist_release(struct swevent_htable *swhash)
9913 {
9914         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9915
9916         if (!hlist)
9917                 return;
9918
9919         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9920         kfree_rcu(hlist, rcu_head);
9921 }
9922
9923 static void swevent_hlist_put_cpu(int cpu)
9924 {
9925         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9926
9927         mutex_lock(&swhash->hlist_mutex);
9928
9929         if (!--swhash->hlist_refcount)
9930                 swevent_hlist_release(swhash);
9931
9932         mutex_unlock(&swhash->hlist_mutex);
9933 }
9934
9935 static void swevent_hlist_put(void)
9936 {
9937         int cpu;
9938
9939         for_each_possible_cpu(cpu)
9940                 swevent_hlist_put_cpu(cpu);
9941 }
9942
9943 static int swevent_hlist_get_cpu(int cpu)
9944 {
9945         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9946         int err = 0;
9947
9948         mutex_lock(&swhash->hlist_mutex);
9949         if (!swevent_hlist_deref(swhash) &&
9950             cpumask_test_cpu(cpu, perf_online_mask)) {
9951                 struct swevent_hlist *hlist;
9952
9953                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9954                 if (!hlist) {
9955                         err = -ENOMEM;
9956                         goto exit;
9957                 }
9958                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9959         }
9960         swhash->hlist_refcount++;
9961 exit:
9962         mutex_unlock(&swhash->hlist_mutex);
9963
9964         return err;
9965 }
9966
9967 static int swevent_hlist_get(void)
9968 {
9969         int err, cpu, failed_cpu;
9970
9971         mutex_lock(&pmus_lock);
9972         for_each_possible_cpu(cpu) {
9973                 err = swevent_hlist_get_cpu(cpu);
9974                 if (err) {
9975                         failed_cpu = cpu;
9976                         goto fail;
9977                 }
9978         }
9979         mutex_unlock(&pmus_lock);
9980         return 0;
9981 fail:
9982         for_each_possible_cpu(cpu) {
9983                 if (cpu == failed_cpu)
9984                         break;
9985                 swevent_hlist_put_cpu(cpu);
9986         }
9987         mutex_unlock(&pmus_lock);
9988         return err;
9989 }
9990
9991 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9992
9993 static void sw_perf_event_destroy(struct perf_event *event)
9994 {
9995         u64 event_id = event->attr.config;
9996
9997         WARN_ON(event->parent);
9998
9999         static_key_slow_dec(&perf_swevent_enabled[event_id]);
10000         swevent_hlist_put();
10001 }
10002
10003 static struct pmu perf_cpu_clock; /* fwd declaration */
10004 static struct pmu perf_task_clock;
10005
10006 static int perf_swevent_init(struct perf_event *event)
10007 {
10008         u64 event_id = event->attr.config;
10009
10010         if (event->attr.type != PERF_TYPE_SOFTWARE)
10011                 return -ENOENT;
10012
10013         /*
10014          * no branch sampling for software events
10015          */
10016         if (has_branch_stack(event))
10017                 return -EOPNOTSUPP;
10018
10019         switch (event_id) {
10020         case PERF_COUNT_SW_CPU_CLOCK:
10021                 event->attr.type = perf_cpu_clock.type;
10022                 return -ENOENT;
10023         case PERF_COUNT_SW_TASK_CLOCK:
10024                 event->attr.type = perf_task_clock.type;
10025                 return -ENOENT;
10026
10027         default:
10028                 break;
10029         }
10030
10031         if (event_id >= PERF_COUNT_SW_MAX)
10032                 return -ENOENT;
10033
10034         if (!event->parent) {
10035                 int err;
10036
10037                 err = swevent_hlist_get();
10038                 if (err)
10039                         return err;
10040
10041                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10042                 event->destroy = sw_perf_event_destroy;
10043         }
10044
10045         return 0;
10046 }
10047
10048 static struct pmu perf_swevent = {
10049         .task_ctx_nr    = perf_sw_context,
10050
10051         .capabilities   = PERF_PMU_CAP_NO_NMI,
10052
10053         .event_init     = perf_swevent_init,
10054         .add            = perf_swevent_add,
10055         .del            = perf_swevent_del,
10056         .start          = perf_swevent_start,
10057         .stop           = perf_swevent_stop,
10058         .read           = perf_swevent_read,
10059 };
10060
10061 #ifdef CONFIG_EVENT_TRACING
10062
10063 static void tp_perf_event_destroy(struct perf_event *event)
10064 {
10065         perf_trace_destroy(event);
10066 }
10067
10068 static int perf_tp_event_init(struct perf_event *event)
10069 {
10070         int err;
10071
10072         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10073                 return -ENOENT;
10074
10075         /*
10076          * no branch sampling for tracepoint events
10077          */
10078         if (has_branch_stack(event))
10079                 return -EOPNOTSUPP;
10080
10081         err = perf_trace_init(event);
10082         if (err)
10083                 return err;
10084
10085         event->destroy = tp_perf_event_destroy;
10086
10087         return 0;
10088 }
10089
10090 static struct pmu perf_tracepoint = {
10091         .task_ctx_nr    = perf_sw_context,
10092
10093         .event_init     = perf_tp_event_init,
10094         .add            = perf_trace_add,
10095         .del            = perf_trace_del,
10096         .start          = perf_swevent_start,
10097         .stop           = perf_swevent_stop,
10098         .read           = perf_swevent_read,
10099 };
10100
10101 static int perf_tp_filter_match(struct perf_event *event,
10102                                 struct perf_sample_data *data)
10103 {
10104         void *record = data->raw->frag.data;
10105
10106         /* only top level events have filters set */
10107         if (event->parent)
10108                 event = event->parent;
10109
10110         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10111                 return 1;
10112         return 0;
10113 }
10114
10115 static int perf_tp_event_match(struct perf_event *event,
10116                                 struct perf_sample_data *data,
10117                                 struct pt_regs *regs)
10118 {
10119         if (event->hw.state & PERF_HES_STOPPED)
10120                 return 0;
10121         /*
10122          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10123          */
10124         if (event->attr.exclude_kernel && !user_mode(regs))
10125                 return 0;
10126
10127         if (!perf_tp_filter_match(event, data))
10128                 return 0;
10129
10130         return 1;
10131 }
10132
10133 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10134                                struct trace_event_call *call, u64 count,
10135                                struct pt_regs *regs, struct hlist_head *head,
10136                                struct task_struct *task)
10137 {
10138         if (bpf_prog_array_valid(call)) {
10139                 *(struct pt_regs **)raw_data = regs;
10140                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10141                         perf_swevent_put_recursion_context(rctx);
10142                         return;
10143                 }
10144         }
10145         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10146                       rctx, task);
10147 }
10148 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10149
10150 static void __perf_tp_event_target_task(u64 count, void *record,
10151                                         struct pt_regs *regs,
10152                                         struct perf_sample_data *data,
10153                                         struct perf_event *event)
10154 {
10155         struct trace_entry *entry = record;
10156
10157         if (event->attr.config != entry->type)
10158                 return;
10159         /* Cannot deliver synchronous signal to other task. */
10160         if (event->attr.sigtrap)
10161                 return;
10162         if (perf_tp_event_match(event, data, regs))
10163                 perf_swevent_event(event, count, data, regs);
10164 }
10165
10166 static void perf_tp_event_target_task(u64 count, void *record,
10167                                       struct pt_regs *regs,
10168                                       struct perf_sample_data *data,
10169                                       struct perf_event_context *ctx)
10170 {
10171         unsigned int cpu = smp_processor_id();
10172         struct pmu *pmu = &perf_tracepoint;
10173         struct perf_event *event, *sibling;
10174
10175         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10176                 __perf_tp_event_target_task(count, record, regs, data, event);
10177                 for_each_sibling_event(sibling, event)
10178                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10179         }
10180
10181         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10182                 __perf_tp_event_target_task(count, record, regs, data, event);
10183                 for_each_sibling_event(sibling, event)
10184                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10185         }
10186 }
10187
10188 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10189                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10190                    struct task_struct *task)
10191 {
10192         struct perf_sample_data data;
10193         struct perf_event *event;
10194
10195         struct perf_raw_record raw = {
10196                 .frag = {
10197                         .size = entry_size,
10198                         .data = record,
10199                 },
10200         };
10201
10202         perf_sample_data_init(&data, 0, 0);
10203         perf_sample_save_raw_data(&data, &raw);
10204
10205         perf_trace_buf_update(record, event_type);
10206
10207         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10208                 if (perf_tp_event_match(event, &data, regs)) {
10209                         perf_swevent_event(event, count, &data, regs);
10210
10211                         /*
10212                          * Here use the same on-stack perf_sample_data,
10213                          * some members in data are event-specific and
10214                          * need to be re-computed for different sweveents.
10215                          * Re-initialize data->sample_flags safely to avoid
10216                          * the problem that next event skips preparing data
10217                          * because data->sample_flags is set.
10218                          */
10219                         perf_sample_data_init(&data, 0, 0);
10220                         perf_sample_save_raw_data(&data, &raw);
10221                 }
10222         }
10223
10224         /*
10225          * If we got specified a target task, also iterate its context and
10226          * deliver this event there too.
10227          */
10228         if (task && task != current) {
10229                 struct perf_event_context *ctx;
10230
10231                 rcu_read_lock();
10232                 ctx = rcu_dereference(task->perf_event_ctxp);
10233                 if (!ctx)
10234                         goto unlock;
10235
10236                 raw_spin_lock(&ctx->lock);
10237                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10238                 raw_spin_unlock(&ctx->lock);
10239 unlock:
10240                 rcu_read_unlock();
10241         }
10242
10243         perf_swevent_put_recursion_context(rctx);
10244 }
10245 EXPORT_SYMBOL_GPL(perf_tp_event);
10246
10247 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10248 /*
10249  * Flags in config, used by dynamic PMU kprobe and uprobe
10250  * The flags should match following PMU_FORMAT_ATTR().
10251  *
10252  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10253  *                               if not set, create kprobe/uprobe
10254  *
10255  * The following values specify a reference counter (or semaphore in the
10256  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10257  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10258  *
10259  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10260  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10261  */
10262 enum perf_probe_config {
10263         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10264         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10265         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10266 };
10267
10268 PMU_FORMAT_ATTR(retprobe, "config:0");
10269 #endif
10270
10271 #ifdef CONFIG_KPROBE_EVENTS
10272 static struct attribute *kprobe_attrs[] = {
10273         &format_attr_retprobe.attr,
10274         NULL,
10275 };
10276
10277 static struct attribute_group kprobe_format_group = {
10278         .name = "format",
10279         .attrs = kprobe_attrs,
10280 };
10281
10282 static const struct attribute_group *kprobe_attr_groups[] = {
10283         &kprobe_format_group,
10284         NULL,
10285 };
10286
10287 static int perf_kprobe_event_init(struct perf_event *event);
10288 static struct pmu perf_kprobe = {
10289         .task_ctx_nr    = perf_sw_context,
10290         .event_init     = perf_kprobe_event_init,
10291         .add            = perf_trace_add,
10292         .del            = perf_trace_del,
10293         .start          = perf_swevent_start,
10294         .stop           = perf_swevent_stop,
10295         .read           = perf_swevent_read,
10296         .attr_groups    = kprobe_attr_groups,
10297 };
10298
10299 static int perf_kprobe_event_init(struct perf_event *event)
10300 {
10301         int err;
10302         bool is_retprobe;
10303
10304         if (event->attr.type != perf_kprobe.type)
10305                 return -ENOENT;
10306
10307         if (!perfmon_capable())
10308                 return -EACCES;
10309
10310         /*
10311          * no branch sampling for probe events
10312          */
10313         if (has_branch_stack(event))
10314                 return -EOPNOTSUPP;
10315
10316         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10317         err = perf_kprobe_init(event, is_retprobe);
10318         if (err)
10319                 return err;
10320
10321         event->destroy = perf_kprobe_destroy;
10322
10323         return 0;
10324 }
10325 #endif /* CONFIG_KPROBE_EVENTS */
10326
10327 #ifdef CONFIG_UPROBE_EVENTS
10328 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10329
10330 static struct attribute *uprobe_attrs[] = {
10331         &format_attr_retprobe.attr,
10332         &format_attr_ref_ctr_offset.attr,
10333         NULL,
10334 };
10335
10336 static struct attribute_group uprobe_format_group = {
10337         .name = "format",
10338         .attrs = uprobe_attrs,
10339 };
10340
10341 static const struct attribute_group *uprobe_attr_groups[] = {
10342         &uprobe_format_group,
10343         NULL,
10344 };
10345
10346 static int perf_uprobe_event_init(struct perf_event *event);
10347 static struct pmu perf_uprobe = {
10348         .task_ctx_nr    = perf_sw_context,
10349         .event_init     = perf_uprobe_event_init,
10350         .add            = perf_trace_add,
10351         .del            = perf_trace_del,
10352         .start          = perf_swevent_start,
10353         .stop           = perf_swevent_stop,
10354         .read           = perf_swevent_read,
10355         .attr_groups    = uprobe_attr_groups,
10356 };
10357
10358 static int perf_uprobe_event_init(struct perf_event *event)
10359 {
10360         int err;
10361         unsigned long ref_ctr_offset;
10362         bool is_retprobe;
10363
10364         if (event->attr.type != perf_uprobe.type)
10365                 return -ENOENT;
10366
10367         if (!perfmon_capable())
10368                 return -EACCES;
10369
10370         /*
10371          * no branch sampling for probe events
10372          */
10373         if (has_branch_stack(event))
10374                 return -EOPNOTSUPP;
10375
10376         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10377         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10378         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10379         if (err)
10380                 return err;
10381
10382         event->destroy = perf_uprobe_destroy;
10383
10384         return 0;
10385 }
10386 #endif /* CONFIG_UPROBE_EVENTS */
10387
10388 static inline void perf_tp_register(void)
10389 {
10390         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10391 #ifdef CONFIG_KPROBE_EVENTS
10392         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10393 #endif
10394 #ifdef CONFIG_UPROBE_EVENTS
10395         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10396 #endif
10397 }
10398
10399 static void perf_event_free_filter(struct perf_event *event)
10400 {
10401         ftrace_profile_free_filter(event);
10402 }
10403
10404 #ifdef CONFIG_BPF_SYSCALL
10405 static void bpf_overflow_handler(struct perf_event *event,
10406                                  struct perf_sample_data *data,
10407                                  struct pt_regs *regs)
10408 {
10409         struct bpf_perf_event_data_kern ctx = {
10410                 .data = data,
10411                 .event = event,
10412         };
10413         struct bpf_prog *prog;
10414         int ret = 0;
10415
10416         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10417         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10418                 goto out;
10419         rcu_read_lock();
10420         prog = READ_ONCE(event->prog);
10421         if (prog) {
10422                 perf_prepare_sample(data, event, regs);
10423                 ret = bpf_prog_run(prog, &ctx);
10424         }
10425         rcu_read_unlock();
10426 out:
10427         __this_cpu_dec(bpf_prog_active);
10428         if (!ret)
10429                 return;
10430
10431         event->orig_overflow_handler(event, data, regs);
10432 }
10433
10434 static int perf_event_set_bpf_handler(struct perf_event *event,
10435                                       struct bpf_prog *prog,
10436                                       u64 bpf_cookie)
10437 {
10438         if (event->overflow_handler_context)
10439                 /* hw breakpoint or kernel counter */
10440                 return -EINVAL;
10441
10442         if (event->prog)
10443                 return -EEXIST;
10444
10445         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10446                 return -EINVAL;
10447
10448         if (event->attr.precise_ip &&
10449             prog->call_get_stack &&
10450             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10451              event->attr.exclude_callchain_kernel ||
10452              event->attr.exclude_callchain_user)) {
10453                 /*
10454                  * On perf_event with precise_ip, calling bpf_get_stack()
10455                  * may trigger unwinder warnings and occasional crashes.
10456                  * bpf_get_[stack|stackid] works around this issue by using
10457                  * callchain attached to perf_sample_data. If the
10458                  * perf_event does not full (kernel and user) callchain
10459                  * attached to perf_sample_data, do not allow attaching BPF
10460                  * program that calls bpf_get_[stack|stackid].
10461                  */
10462                 return -EPROTO;
10463         }
10464
10465         event->prog = prog;
10466         event->bpf_cookie = bpf_cookie;
10467         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10468         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10469         return 0;
10470 }
10471
10472 static void perf_event_free_bpf_handler(struct perf_event *event)
10473 {
10474         struct bpf_prog *prog = event->prog;
10475
10476         if (!prog)
10477                 return;
10478
10479         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10480         event->prog = NULL;
10481         bpf_prog_put(prog);
10482 }
10483 #else
10484 static int perf_event_set_bpf_handler(struct perf_event *event,
10485                                       struct bpf_prog *prog,
10486                                       u64 bpf_cookie)
10487 {
10488         return -EOPNOTSUPP;
10489 }
10490 static void perf_event_free_bpf_handler(struct perf_event *event)
10491 {
10492 }
10493 #endif
10494
10495 /*
10496  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10497  * with perf_event_open()
10498  */
10499 static inline bool perf_event_is_tracing(struct perf_event *event)
10500 {
10501         if (event->pmu == &perf_tracepoint)
10502                 return true;
10503 #ifdef CONFIG_KPROBE_EVENTS
10504         if (event->pmu == &perf_kprobe)
10505                 return true;
10506 #endif
10507 #ifdef CONFIG_UPROBE_EVENTS
10508         if (event->pmu == &perf_uprobe)
10509                 return true;
10510 #endif
10511         return false;
10512 }
10513
10514 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10515                             u64 bpf_cookie)
10516 {
10517         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10518
10519         if (!perf_event_is_tracing(event))
10520                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10521
10522         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10523         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10524         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10525         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10526         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10527                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10528                 return -EINVAL;
10529
10530         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10531             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10532             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10533                 return -EINVAL;
10534
10535         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10536                 /* only uprobe programs are allowed to be sleepable */
10537                 return -EINVAL;
10538
10539         /* Kprobe override only works for kprobes, not uprobes. */
10540         if (prog->kprobe_override && !is_kprobe)
10541                 return -EINVAL;
10542
10543         if (is_tracepoint || is_syscall_tp) {
10544                 int off = trace_event_get_offsets(event->tp_event);
10545
10546                 if (prog->aux->max_ctx_offset > off)
10547                         return -EACCES;
10548         }
10549
10550         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10551 }
10552
10553 void perf_event_free_bpf_prog(struct perf_event *event)
10554 {
10555         if (!perf_event_is_tracing(event)) {
10556                 perf_event_free_bpf_handler(event);
10557                 return;
10558         }
10559         perf_event_detach_bpf_prog(event);
10560 }
10561
10562 #else
10563
10564 static inline void perf_tp_register(void)
10565 {
10566 }
10567
10568 static void perf_event_free_filter(struct perf_event *event)
10569 {
10570 }
10571
10572 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10573                             u64 bpf_cookie)
10574 {
10575         return -ENOENT;
10576 }
10577
10578 void perf_event_free_bpf_prog(struct perf_event *event)
10579 {
10580 }
10581 #endif /* CONFIG_EVENT_TRACING */
10582
10583 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10584 void perf_bp_event(struct perf_event *bp, void *data)
10585 {
10586         struct perf_sample_data sample;
10587         struct pt_regs *regs = data;
10588
10589         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10590
10591         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10592                 perf_swevent_event(bp, 1, &sample, regs);
10593 }
10594 #endif
10595
10596 /*
10597  * Allocate a new address filter
10598  */
10599 static struct perf_addr_filter *
10600 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10601 {
10602         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10603         struct perf_addr_filter *filter;
10604
10605         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10606         if (!filter)
10607                 return NULL;
10608
10609         INIT_LIST_HEAD(&filter->entry);
10610         list_add_tail(&filter->entry, filters);
10611
10612         return filter;
10613 }
10614
10615 static void free_filters_list(struct list_head *filters)
10616 {
10617         struct perf_addr_filter *filter, *iter;
10618
10619         list_for_each_entry_safe(filter, iter, filters, entry) {
10620                 path_put(&filter->path);
10621                 list_del(&filter->entry);
10622                 kfree(filter);
10623         }
10624 }
10625
10626 /*
10627  * Free existing address filters and optionally install new ones
10628  */
10629 static void perf_addr_filters_splice(struct perf_event *event,
10630                                      struct list_head *head)
10631 {
10632         unsigned long flags;
10633         LIST_HEAD(list);
10634
10635         if (!has_addr_filter(event))
10636                 return;
10637
10638         /* don't bother with children, they don't have their own filters */
10639         if (event->parent)
10640                 return;
10641
10642         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10643
10644         list_splice_init(&event->addr_filters.list, &list);
10645         if (head)
10646                 list_splice(head, &event->addr_filters.list);
10647
10648         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10649
10650         free_filters_list(&list);
10651 }
10652
10653 /*
10654  * Scan through mm's vmas and see if one of them matches the
10655  * @filter; if so, adjust filter's address range.
10656  * Called with mm::mmap_lock down for reading.
10657  */
10658 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10659                                    struct mm_struct *mm,
10660                                    struct perf_addr_filter_range *fr)
10661 {
10662         struct vm_area_struct *vma;
10663         VMA_ITERATOR(vmi, mm, 0);
10664
10665         for_each_vma(vmi, vma) {
10666                 if (!vma->vm_file)
10667                         continue;
10668
10669                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10670                         return;
10671         }
10672 }
10673
10674 /*
10675  * Update event's address range filters based on the
10676  * task's existing mappings, if any.
10677  */
10678 static void perf_event_addr_filters_apply(struct perf_event *event)
10679 {
10680         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10681         struct task_struct *task = READ_ONCE(event->ctx->task);
10682         struct perf_addr_filter *filter;
10683         struct mm_struct *mm = NULL;
10684         unsigned int count = 0;
10685         unsigned long flags;
10686
10687         /*
10688          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10689          * will stop on the parent's child_mutex that our caller is also holding
10690          */
10691         if (task == TASK_TOMBSTONE)
10692                 return;
10693
10694         if (ifh->nr_file_filters) {
10695                 mm = get_task_mm(task);
10696                 if (!mm)
10697                         goto restart;
10698
10699                 mmap_read_lock(mm);
10700         }
10701
10702         raw_spin_lock_irqsave(&ifh->lock, flags);
10703         list_for_each_entry(filter, &ifh->list, entry) {
10704                 if (filter->path.dentry) {
10705                         /*
10706                          * Adjust base offset if the filter is associated to a
10707                          * binary that needs to be mapped:
10708                          */
10709                         event->addr_filter_ranges[count].start = 0;
10710                         event->addr_filter_ranges[count].size = 0;
10711
10712                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10713                 } else {
10714                         event->addr_filter_ranges[count].start = filter->offset;
10715                         event->addr_filter_ranges[count].size  = filter->size;
10716                 }
10717
10718                 count++;
10719         }
10720
10721         event->addr_filters_gen++;
10722         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10723
10724         if (ifh->nr_file_filters) {
10725                 mmap_read_unlock(mm);
10726
10727                 mmput(mm);
10728         }
10729
10730 restart:
10731         perf_event_stop(event, 1);
10732 }
10733
10734 /*
10735  * Address range filtering: limiting the data to certain
10736  * instruction address ranges. Filters are ioctl()ed to us from
10737  * userspace as ascii strings.
10738  *
10739  * Filter string format:
10740  *
10741  * ACTION RANGE_SPEC
10742  * where ACTION is one of the
10743  *  * "filter": limit the trace to this region
10744  *  * "start": start tracing from this address
10745  *  * "stop": stop tracing at this address/region;
10746  * RANGE_SPEC is
10747  *  * for kernel addresses: <start address>[/<size>]
10748  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10749  *
10750  * if <size> is not specified or is zero, the range is treated as a single
10751  * address; not valid for ACTION=="filter".
10752  */
10753 enum {
10754         IF_ACT_NONE = -1,
10755         IF_ACT_FILTER,
10756         IF_ACT_START,
10757         IF_ACT_STOP,
10758         IF_SRC_FILE,
10759         IF_SRC_KERNEL,
10760         IF_SRC_FILEADDR,
10761         IF_SRC_KERNELADDR,
10762 };
10763
10764 enum {
10765         IF_STATE_ACTION = 0,
10766         IF_STATE_SOURCE,
10767         IF_STATE_END,
10768 };
10769
10770 static const match_table_t if_tokens = {
10771         { IF_ACT_FILTER,        "filter" },
10772         { IF_ACT_START,         "start" },
10773         { IF_ACT_STOP,          "stop" },
10774         { IF_SRC_FILE,          "%u/%u@%s" },
10775         { IF_SRC_KERNEL,        "%u/%u" },
10776         { IF_SRC_FILEADDR,      "%u@%s" },
10777         { IF_SRC_KERNELADDR,    "%u" },
10778         { IF_ACT_NONE,          NULL },
10779 };
10780
10781 /*
10782  * Address filter string parser
10783  */
10784 static int
10785 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10786                              struct list_head *filters)
10787 {
10788         struct perf_addr_filter *filter = NULL;
10789         char *start, *orig, *filename = NULL;
10790         substring_t args[MAX_OPT_ARGS];
10791         int state = IF_STATE_ACTION, token;
10792         unsigned int kernel = 0;
10793         int ret = -EINVAL;
10794
10795         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10796         if (!fstr)
10797                 return -ENOMEM;
10798
10799         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10800                 static const enum perf_addr_filter_action_t actions[] = {
10801                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10802                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10803                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10804                 };
10805                 ret = -EINVAL;
10806
10807                 if (!*start)
10808                         continue;
10809
10810                 /* filter definition begins */
10811                 if (state == IF_STATE_ACTION) {
10812                         filter = perf_addr_filter_new(event, filters);
10813                         if (!filter)
10814                                 goto fail;
10815                 }
10816
10817                 token = match_token(start, if_tokens, args);
10818                 switch (token) {
10819                 case IF_ACT_FILTER:
10820                 case IF_ACT_START:
10821                 case IF_ACT_STOP:
10822                         if (state != IF_STATE_ACTION)
10823                                 goto fail;
10824
10825                         filter->action = actions[token];
10826                         state = IF_STATE_SOURCE;
10827                         break;
10828
10829                 case IF_SRC_KERNELADDR:
10830                 case IF_SRC_KERNEL:
10831                         kernel = 1;
10832                         fallthrough;
10833
10834                 case IF_SRC_FILEADDR:
10835                 case IF_SRC_FILE:
10836                         if (state != IF_STATE_SOURCE)
10837                                 goto fail;
10838
10839                         *args[0].to = 0;
10840                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10841                         if (ret)
10842                                 goto fail;
10843
10844                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10845                                 *args[1].to = 0;
10846                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10847                                 if (ret)
10848                                         goto fail;
10849                         }
10850
10851                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10852                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10853
10854                                 kfree(filename);
10855                                 filename = match_strdup(&args[fpos]);
10856                                 if (!filename) {
10857                                         ret = -ENOMEM;
10858                                         goto fail;
10859                                 }
10860                         }
10861
10862                         state = IF_STATE_END;
10863                         break;
10864
10865                 default:
10866                         goto fail;
10867                 }
10868
10869                 /*
10870                  * Filter definition is fully parsed, validate and install it.
10871                  * Make sure that it doesn't contradict itself or the event's
10872                  * attribute.
10873                  */
10874                 if (state == IF_STATE_END) {
10875                         ret = -EINVAL;
10876
10877                         /*
10878                          * ACTION "filter" must have a non-zero length region
10879                          * specified.
10880                          */
10881                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10882                             !filter->size)
10883                                 goto fail;
10884
10885                         if (!kernel) {
10886                                 if (!filename)
10887                                         goto fail;
10888
10889                                 /*
10890                                  * For now, we only support file-based filters
10891                                  * in per-task events; doing so for CPU-wide
10892                                  * events requires additional context switching
10893                                  * trickery, since same object code will be
10894                                  * mapped at different virtual addresses in
10895                                  * different processes.
10896                                  */
10897                                 ret = -EOPNOTSUPP;
10898                                 if (!event->ctx->task)
10899                                         goto fail;
10900
10901                                 /* look up the path and grab its inode */
10902                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10903                                                 &filter->path);
10904                                 if (ret)
10905                                         goto fail;
10906
10907                                 ret = -EINVAL;
10908                                 if (!filter->path.dentry ||
10909                                     !S_ISREG(d_inode(filter->path.dentry)
10910                                              ->i_mode))
10911                                         goto fail;
10912
10913                                 event->addr_filters.nr_file_filters++;
10914                         }
10915
10916                         /* ready to consume more filters */
10917                         kfree(filename);
10918                         filename = NULL;
10919                         state = IF_STATE_ACTION;
10920                         filter = NULL;
10921                         kernel = 0;
10922                 }
10923         }
10924
10925         if (state != IF_STATE_ACTION)
10926                 goto fail;
10927
10928         kfree(filename);
10929         kfree(orig);
10930
10931         return 0;
10932
10933 fail:
10934         kfree(filename);
10935         free_filters_list(filters);
10936         kfree(orig);
10937
10938         return ret;
10939 }
10940
10941 static int
10942 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10943 {
10944         LIST_HEAD(filters);
10945         int ret;
10946
10947         /*
10948          * Since this is called in perf_ioctl() path, we're already holding
10949          * ctx::mutex.
10950          */
10951         lockdep_assert_held(&event->ctx->mutex);
10952
10953         if (WARN_ON_ONCE(event->parent))
10954                 return -EINVAL;
10955
10956         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10957         if (ret)
10958                 goto fail_clear_files;
10959
10960         ret = event->pmu->addr_filters_validate(&filters);
10961         if (ret)
10962                 goto fail_free_filters;
10963
10964         /* remove existing filters, if any */
10965         perf_addr_filters_splice(event, &filters);
10966
10967         /* install new filters */
10968         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10969
10970         return ret;
10971
10972 fail_free_filters:
10973         free_filters_list(&filters);
10974
10975 fail_clear_files:
10976         event->addr_filters.nr_file_filters = 0;
10977
10978         return ret;
10979 }
10980
10981 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10982 {
10983         int ret = -EINVAL;
10984         char *filter_str;
10985
10986         filter_str = strndup_user(arg, PAGE_SIZE);
10987         if (IS_ERR(filter_str))
10988                 return PTR_ERR(filter_str);
10989
10990 #ifdef CONFIG_EVENT_TRACING
10991         if (perf_event_is_tracing(event)) {
10992                 struct perf_event_context *ctx = event->ctx;
10993
10994                 /*
10995                  * Beware, here be dragons!!
10996                  *
10997                  * the tracepoint muck will deadlock against ctx->mutex, but
10998                  * the tracepoint stuff does not actually need it. So
10999                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11000                  * already have a reference on ctx.
11001                  *
11002                  * This can result in event getting moved to a different ctx,
11003                  * but that does not affect the tracepoint state.
11004                  */
11005                 mutex_unlock(&ctx->mutex);
11006                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11007                 mutex_lock(&ctx->mutex);
11008         } else
11009 #endif
11010         if (has_addr_filter(event))
11011                 ret = perf_event_set_addr_filter(event, filter_str);
11012
11013         kfree(filter_str);
11014         return ret;
11015 }
11016
11017 /*
11018  * hrtimer based swevent callback
11019  */
11020
11021 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11022 {
11023         enum hrtimer_restart ret = HRTIMER_RESTART;
11024         struct perf_sample_data data;
11025         struct pt_regs *regs;
11026         struct perf_event *event;
11027         u64 period;
11028
11029         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11030
11031         if (event->state != PERF_EVENT_STATE_ACTIVE)
11032                 return HRTIMER_NORESTART;
11033
11034         event->pmu->read(event);
11035
11036         perf_sample_data_init(&data, 0, event->hw.last_period);
11037         regs = get_irq_regs();
11038
11039         if (regs && !perf_exclude_event(event, regs)) {
11040                 if (!(event->attr.exclude_idle && is_idle_task(current)))
11041                         if (__perf_event_overflow(event, 1, &data, regs))
11042                                 ret = HRTIMER_NORESTART;
11043         }
11044
11045         period = max_t(u64, 10000, event->hw.sample_period);
11046         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11047
11048         return ret;
11049 }
11050
11051 static void perf_swevent_start_hrtimer(struct perf_event *event)
11052 {
11053         struct hw_perf_event *hwc = &event->hw;
11054         s64 period;
11055
11056         if (!is_sampling_event(event))
11057                 return;
11058
11059         period = local64_read(&hwc->period_left);
11060         if (period) {
11061                 if (period < 0)
11062                         period = 10000;
11063
11064                 local64_set(&hwc->period_left, 0);
11065         } else {
11066                 period = max_t(u64, 10000, hwc->sample_period);
11067         }
11068         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11069                       HRTIMER_MODE_REL_PINNED_HARD);
11070 }
11071
11072 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11073 {
11074         struct hw_perf_event *hwc = &event->hw;
11075
11076         if (is_sampling_event(event)) {
11077                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11078                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11079
11080                 hrtimer_cancel(&hwc->hrtimer);
11081         }
11082 }
11083
11084 static void perf_swevent_init_hrtimer(struct perf_event *event)
11085 {
11086         struct hw_perf_event *hwc = &event->hw;
11087
11088         if (!is_sampling_event(event))
11089                 return;
11090
11091         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11092         hwc->hrtimer.function = perf_swevent_hrtimer;
11093
11094         /*
11095          * Since hrtimers have a fixed rate, we can do a static freq->period
11096          * mapping and avoid the whole period adjust feedback stuff.
11097          */
11098         if (event->attr.freq) {
11099                 long freq = event->attr.sample_freq;
11100
11101                 event->attr.sample_period = NSEC_PER_SEC / freq;
11102                 hwc->sample_period = event->attr.sample_period;
11103                 local64_set(&hwc->period_left, hwc->sample_period);
11104                 hwc->last_period = hwc->sample_period;
11105                 event->attr.freq = 0;
11106         }
11107 }
11108
11109 /*
11110  * Software event: cpu wall time clock
11111  */
11112
11113 static void cpu_clock_event_update(struct perf_event *event)
11114 {
11115         s64 prev;
11116         u64 now;
11117
11118         now = local_clock();
11119         prev = local64_xchg(&event->hw.prev_count, now);
11120         local64_add(now - prev, &event->count);
11121 }
11122
11123 static void cpu_clock_event_start(struct perf_event *event, int flags)
11124 {
11125         local64_set(&event->hw.prev_count, local_clock());
11126         perf_swevent_start_hrtimer(event);
11127 }
11128
11129 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11130 {
11131         perf_swevent_cancel_hrtimer(event);
11132         cpu_clock_event_update(event);
11133 }
11134
11135 static int cpu_clock_event_add(struct perf_event *event, int flags)
11136 {
11137         if (flags & PERF_EF_START)
11138                 cpu_clock_event_start(event, flags);
11139         perf_event_update_userpage(event);
11140
11141         return 0;
11142 }
11143
11144 static void cpu_clock_event_del(struct perf_event *event, int flags)
11145 {
11146         cpu_clock_event_stop(event, flags);
11147 }
11148
11149 static void cpu_clock_event_read(struct perf_event *event)
11150 {
11151         cpu_clock_event_update(event);
11152 }
11153
11154 static int cpu_clock_event_init(struct perf_event *event)
11155 {
11156         if (event->attr.type != perf_cpu_clock.type)
11157                 return -ENOENT;
11158
11159         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11160                 return -ENOENT;
11161
11162         /*
11163          * no branch sampling for software events
11164          */
11165         if (has_branch_stack(event))
11166                 return -EOPNOTSUPP;
11167
11168         perf_swevent_init_hrtimer(event);
11169
11170         return 0;
11171 }
11172
11173 static struct pmu perf_cpu_clock = {
11174         .task_ctx_nr    = perf_sw_context,
11175
11176         .capabilities   = PERF_PMU_CAP_NO_NMI,
11177         .dev            = PMU_NULL_DEV,
11178
11179         .event_init     = cpu_clock_event_init,
11180         .add            = cpu_clock_event_add,
11181         .del            = cpu_clock_event_del,
11182         .start          = cpu_clock_event_start,
11183         .stop           = cpu_clock_event_stop,
11184         .read           = cpu_clock_event_read,
11185 };
11186
11187 /*
11188  * Software event: task time clock
11189  */
11190
11191 static void task_clock_event_update(struct perf_event *event, u64 now)
11192 {
11193         u64 prev;
11194         s64 delta;
11195
11196         prev = local64_xchg(&event->hw.prev_count, now);
11197         delta = now - prev;
11198         local64_add(delta, &event->count);
11199 }
11200
11201 static void task_clock_event_start(struct perf_event *event, int flags)
11202 {
11203         local64_set(&event->hw.prev_count, event->ctx->time);
11204         perf_swevent_start_hrtimer(event);
11205 }
11206
11207 static void task_clock_event_stop(struct perf_event *event, int flags)
11208 {
11209         perf_swevent_cancel_hrtimer(event);
11210         task_clock_event_update(event, event->ctx->time);
11211 }
11212
11213 static int task_clock_event_add(struct perf_event *event, int flags)
11214 {
11215         if (flags & PERF_EF_START)
11216                 task_clock_event_start(event, flags);
11217         perf_event_update_userpage(event);
11218
11219         return 0;
11220 }
11221
11222 static void task_clock_event_del(struct perf_event *event, int flags)
11223 {
11224         task_clock_event_stop(event, PERF_EF_UPDATE);
11225 }
11226
11227 static void task_clock_event_read(struct perf_event *event)
11228 {
11229         u64 now = perf_clock();
11230         u64 delta = now - event->ctx->timestamp;
11231         u64 time = event->ctx->time + delta;
11232
11233         task_clock_event_update(event, time);
11234 }
11235
11236 static int task_clock_event_init(struct perf_event *event)
11237 {
11238         if (event->attr.type != perf_task_clock.type)
11239                 return -ENOENT;
11240
11241         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11242                 return -ENOENT;
11243
11244         /*
11245          * no branch sampling for software events
11246          */
11247         if (has_branch_stack(event))
11248                 return -EOPNOTSUPP;
11249
11250         perf_swevent_init_hrtimer(event);
11251
11252         return 0;
11253 }
11254
11255 static struct pmu perf_task_clock = {
11256         .task_ctx_nr    = perf_sw_context,
11257
11258         .capabilities   = PERF_PMU_CAP_NO_NMI,
11259         .dev            = PMU_NULL_DEV,
11260
11261         .event_init     = task_clock_event_init,
11262         .add            = task_clock_event_add,
11263         .del            = task_clock_event_del,
11264         .start          = task_clock_event_start,
11265         .stop           = task_clock_event_stop,
11266         .read           = task_clock_event_read,
11267 };
11268
11269 static void perf_pmu_nop_void(struct pmu *pmu)
11270 {
11271 }
11272
11273 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11274 {
11275 }
11276
11277 static int perf_pmu_nop_int(struct pmu *pmu)
11278 {
11279         return 0;
11280 }
11281
11282 static int perf_event_nop_int(struct perf_event *event, u64 value)
11283 {
11284         return 0;
11285 }
11286
11287 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11288
11289 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11290 {
11291         __this_cpu_write(nop_txn_flags, flags);
11292
11293         if (flags & ~PERF_PMU_TXN_ADD)
11294                 return;
11295
11296         perf_pmu_disable(pmu);
11297 }
11298
11299 static int perf_pmu_commit_txn(struct pmu *pmu)
11300 {
11301         unsigned int flags = __this_cpu_read(nop_txn_flags);
11302
11303         __this_cpu_write(nop_txn_flags, 0);
11304
11305         if (flags & ~PERF_PMU_TXN_ADD)
11306                 return 0;
11307
11308         perf_pmu_enable(pmu);
11309         return 0;
11310 }
11311
11312 static void perf_pmu_cancel_txn(struct pmu *pmu)
11313 {
11314         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11315
11316         __this_cpu_write(nop_txn_flags, 0);
11317
11318         if (flags & ~PERF_PMU_TXN_ADD)
11319                 return;
11320
11321         perf_pmu_enable(pmu);
11322 }
11323
11324 static int perf_event_idx_default(struct perf_event *event)
11325 {
11326         return 0;
11327 }
11328
11329 static void free_pmu_context(struct pmu *pmu)
11330 {
11331         free_percpu(pmu->cpu_pmu_context);
11332 }
11333
11334 /*
11335  * Let userspace know that this PMU supports address range filtering:
11336  */
11337 static ssize_t nr_addr_filters_show(struct device *dev,
11338                                     struct device_attribute *attr,
11339                                     char *page)
11340 {
11341         struct pmu *pmu = dev_get_drvdata(dev);
11342
11343         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11344 }
11345 DEVICE_ATTR_RO(nr_addr_filters);
11346
11347 static struct idr pmu_idr;
11348
11349 static ssize_t
11350 type_show(struct device *dev, struct device_attribute *attr, char *page)
11351 {
11352         struct pmu *pmu = dev_get_drvdata(dev);
11353
11354         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11355 }
11356 static DEVICE_ATTR_RO(type);
11357
11358 static ssize_t
11359 perf_event_mux_interval_ms_show(struct device *dev,
11360                                 struct device_attribute *attr,
11361                                 char *page)
11362 {
11363         struct pmu *pmu = dev_get_drvdata(dev);
11364
11365         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11366 }
11367
11368 static DEFINE_MUTEX(mux_interval_mutex);
11369
11370 static ssize_t
11371 perf_event_mux_interval_ms_store(struct device *dev,
11372                                  struct device_attribute *attr,
11373                                  const char *buf, size_t count)
11374 {
11375         struct pmu *pmu = dev_get_drvdata(dev);
11376         int timer, cpu, ret;
11377
11378         ret = kstrtoint(buf, 0, &timer);
11379         if (ret)
11380                 return ret;
11381
11382         if (timer < 1)
11383                 return -EINVAL;
11384
11385         /* same value, noting to do */
11386         if (timer == pmu->hrtimer_interval_ms)
11387                 return count;
11388
11389         mutex_lock(&mux_interval_mutex);
11390         pmu->hrtimer_interval_ms = timer;
11391
11392         /* update all cpuctx for this PMU */
11393         cpus_read_lock();
11394         for_each_online_cpu(cpu) {
11395                 struct perf_cpu_pmu_context *cpc;
11396                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11397                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11398
11399                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11400         }
11401         cpus_read_unlock();
11402         mutex_unlock(&mux_interval_mutex);
11403
11404         return count;
11405 }
11406 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11407
11408 static struct attribute *pmu_dev_attrs[] = {
11409         &dev_attr_type.attr,
11410         &dev_attr_perf_event_mux_interval_ms.attr,
11411         NULL,
11412 };
11413 ATTRIBUTE_GROUPS(pmu_dev);
11414
11415 static int pmu_bus_running;
11416 static struct bus_type pmu_bus = {
11417         .name           = "event_source",
11418         .dev_groups     = pmu_dev_groups,
11419 };
11420
11421 static void pmu_dev_release(struct device *dev)
11422 {
11423         kfree(dev);
11424 }
11425
11426 static int pmu_dev_alloc(struct pmu *pmu)
11427 {
11428         int ret = -ENOMEM;
11429
11430         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11431         if (!pmu->dev)
11432                 goto out;
11433
11434         pmu->dev->groups = pmu->attr_groups;
11435         device_initialize(pmu->dev);
11436
11437         dev_set_drvdata(pmu->dev, pmu);
11438         pmu->dev->bus = &pmu_bus;
11439         pmu->dev->parent = pmu->parent;
11440         pmu->dev->release = pmu_dev_release;
11441
11442         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11443         if (ret)
11444                 goto free_dev;
11445
11446         ret = device_add(pmu->dev);
11447         if (ret)
11448                 goto free_dev;
11449
11450         /* For PMUs with address filters, throw in an extra attribute: */
11451         if (pmu->nr_addr_filters)
11452                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11453
11454         if (ret)
11455                 goto del_dev;
11456
11457         if (pmu->attr_update)
11458                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11459
11460         if (ret)
11461                 goto del_dev;
11462
11463 out:
11464         return ret;
11465
11466 del_dev:
11467         device_del(pmu->dev);
11468
11469 free_dev:
11470         put_device(pmu->dev);
11471         goto out;
11472 }
11473
11474 static struct lock_class_key cpuctx_mutex;
11475 static struct lock_class_key cpuctx_lock;
11476
11477 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11478 {
11479         int cpu, ret, max = PERF_TYPE_MAX;
11480
11481         mutex_lock(&pmus_lock);
11482         ret = -ENOMEM;
11483         pmu->pmu_disable_count = alloc_percpu(int);
11484         if (!pmu->pmu_disable_count)
11485                 goto unlock;
11486
11487         pmu->type = -1;
11488         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11489                 ret = -EINVAL;
11490                 goto free_pdc;
11491         }
11492
11493         pmu->name = name;
11494
11495         if (type >= 0)
11496                 max = type;
11497
11498         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11499         if (ret < 0)
11500                 goto free_pdc;
11501
11502         WARN_ON(type >= 0 && ret != type);
11503
11504         type = ret;
11505         pmu->type = type;
11506
11507         if (pmu_bus_running && !pmu->dev) {
11508                 ret = pmu_dev_alloc(pmu);
11509                 if (ret)
11510                         goto free_idr;
11511         }
11512
11513         ret = -ENOMEM;
11514         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11515         if (!pmu->cpu_pmu_context)
11516                 goto free_dev;
11517
11518         for_each_possible_cpu(cpu) {
11519                 struct perf_cpu_pmu_context *cpc;
11520
11521                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11522                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11523                 __perf_mux_hrtimer_init(cpc, cpu);
11524         }
11525
11526         if (!pmu->start_txn) {
11527                 if (pmu->pmu_enable) {
11528                         /*
11529                          * If we have pmu_enable/pmu_disable calls, install
11530                          * transaction stubs that use that to try and batch
11531                          * hardware accesses.
11532                          */
11533                         pmu->start_txn  = perf_pmu_start_txn;
11534                         pmu->commit_txn = perf_pmu_commit_txn;
11535                         pmu->cancel_txn = perf_pmu_cancel_txn;
11536                 } else {
11537                         pmu->start_txn  = perf_pmu_nop_txn;
11538                         pmu->commit_txn = perf_pmu_nop_int;
11539                         pmu->cancel_txn = perf_pmu_nop_void;
11540                 }
11541         }
11542
11543         if (!pmu->pmu_enable) {
11544                 pmu->pmu_enable  = perf_pmu_nop_void;
11545                 pmu->pmu_disable = perf_pmu_nop_void;
11546         }
11547
11548         if (!pmu->check_period)
11549                 pmu->check_period = perf_event_nop_int;
11550
11551         if (!pmu->event_idx)
11552                 pmu->event_idx = perf_event_idx_default;
11553
11554         list_add_rcu(&pmu->entry, &pmus);
11555         atomic_set(&pmu->exclusive_cnt, 0);
11556         ret = 0;
11557 unlock:
11558         mutex_unlock(&pmus_lock);
11559
11560         return ret;
11561
11562 free_dev:
11563         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11564                 device_del(pmu->dev);
11565                 put_device(pmu->dev);
11566         }
11567
11568 free_idr:
11569         idr_remove(&pmu_idr, pmu->type);
11570
11571 free_pdc:
11572         free_percpu(pmu->pmu_disable_count);
11573         goto unlock;
11574 }
11575 EXPORT_SYMBOL_GPL(perf_pmu_register);
11576
11577 void perf_pmu_unregister(struct pmu *pmu)
11578 {
11579         mutex_lock(&pmus_lock);
11580         list_del_rcu(&pmu->entry);
11581
11582         /*
11583          * We dereference the pmu list under both SRCU and regular RCU, so
11584          * synchronize against both of those.
11585          */
11586         synchronize_srcu(&pmus_srcu);
11587         synchronize_rcu();
11588
11589         free_percpu(pmu->pmu_disable_count);
11590         idr_remove(&pmu_idr, pmu->type);
11591         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11592                 if (pmu->nr_addr_filters)
11593                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11594                 device_del(pmu->dev);
11595                 put_device(pmu->dev);
11596         }
11597         free_pmu_context(pmu);
11598         mutex_unlock(&pmus_lock);
11599 }
11600 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11601
11602 static inline bool has_extended_regs(struct perf_event *event)
11603 {
11604         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11605                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11606 }
11607
11608 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11609 {
11610         struct perf_event_context *ctx = NULL;
11611         int ret;
11612
11613         if (!try_module_get(pmu->module))
11614                 return -ENODEV;
11615
11616         /*
11617          * A number of pmu->event_init() methods iterate the sibling_list to,
11618          * for example, validate if the group fits on the PMU. Therefore,
11619          * if this is a sibling event, acquire the ctx->mutex to protect
11620          * the sibling_list.
11621          */
11622         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11623                 /*
11624                  * This ctx->mutex can nest when we're called through
11625                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11626                  */
11627                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11628                                                  SINGLE_DEPTH_NESTING);
11629                 BUG_ON(!ctx);
11630         }
11631
11632         event->pmu = pmu;
11633         ret = pmu->event_init(event);
11634
11635         if (ctx)
11636                 perf_event_ctx_unlock(event->group_leader, ctx);
11637
11638         if (!ret) {
11639                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11640                     has_extended_regs(event))
11641                         ret = -EOPNOTSUPP;
11642
11643                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11644                     event_has_any_exclude_flag(event))
11645                         ret = -EINVAL;
11646
11647                 if (ret && event->destroy)
11648                         event->destroy(event);
11649         }
11650
11651         if (ret)
11652                 module_put(pmu->module);
11653
11654         return ret;
11655 }
11656
11657 static struct pmu *perf_init_event(struct perf_event *event)
11658 {
11659         bool extended_type = false;
11660         int idx, type, ret;
11661         struct pmu *pmu;
11662
11663         idx = srcu_read_lock(&pmus_srcu);
11664
11665         /*
11666          * Save original type before calling pmu->event_init() since certain
11667          * pmus overwrites event->attr.type to forward event to another pmu.
11668          */
11669         event->orig_type = event->attr.type;
11670
11671         /* Try parent's PMU first: */
11672         if (event->parent && event->parent->pmu) {
11673                 pmu = event->parent->pmu;
11674                 ret = perf_try_init_event(pmu, event);
11675                 if (!ret)
11676                         goto unlock;
11677         }
11678
11679         /*
11680          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11681          * are often aliases for PERF_TYPE_RAW.
11682          */
11683         type = event->attr.type;
11684         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11685                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11686                 if (!type) {
11687                         type = PERF_TYPE_RAW;
11688                 } else {
11689                         extended_type = true;
11690                         event->attr.config &= PERF_HW_EVENT_MASK;
11691                 }
11692         }
11693
11694 again:
11695         rcu_read_lock();
11696         pmu = idr_find(&pmu_idr, type);
11697         rcu_read_unlock();
11698         if (pmu) {
11699                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11700                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11701                         goto fail;
11702
11703                 ret = perf_try_init_event(pmu, event);
11704                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11705                         type = event->attr.type;
11706                         goto again;
11707                 }
11708
11709                 if (ret)
11710                         pmu = ERR_PTR(ret);
11711
11712                 goto unlock;
11713         }
11714
11715         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11716                 ret = perf_try_init_event(pmu, event);
11717                 if (!ret)
11718                         goto unlock;
11719
11720                 if (ret != -ENOENT) {
11721                         pmu = ERR_PTR(ret);
11722                         goto unlock;
11723                 }
11724         }
11725 fail:
11726         pmu = ERR_PTR(-ENOENT);
11727 unlock:
11728         srcu_read_unlock(&pmus_srcu, idx);
11729
11730         return pmu;
11731 }
11732
11733 static void attach_sb_event(struct perf_event *event)
11734 {
11735         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11736
11737         raw_spin_lock(&pel->lock);
11738         list_add_rcu(&event->sb_list, &pel->list);
11739         raw_spin_unlock(&pel->lock);
11740 }
11741
11742 /*
11743  * We keep a list of all !task (and therefore per-cpu) events
11744  * that need to receive side-band records.
11745  *
11746  * This avoids having to scan all the various PMU per-cpu contexts
11747  * looking for them.
11748  */
11749 static void account_pmu_sb_event(struct perf_event *event)
11750 {
11751         if (is_sb_event(event))
11752                 attach_sb_event(event);
11753 }
11754
11755 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11756 static void account_freq_event_nohz(void)
11757 {
11758 #ifdef CONFIG_NO_HZ_FULL
11759         /* Lock so we don't race with concurrent unaccount */
11760         spin_lock(&nr_freq_lock);
11761         if (atomic_inc_return(&nr_freq_events) == 1)
11762                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11763         spin_unlock(&nr_freq_lock);
11764 #endif
11765 }
11766
11767 static void account_freq_event(void)
11768 {
11769         if (tick_nohz_full_enabled())
11770                 account_freq_event_nohz();
11771         else
11772                 atomic_inc(&nr_freq_events);
11773 }
11774
11775
11776 static void account_event(struct perf_event *event)
11777 {
11778         bool inc = false;
11779
11780         if (event->parent)
11781                 return;
11782
11783         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11784                 inc = true;
11785         if (event->attr.mmap || event->attr.mmap_data)
11786                 atomic_inc(&nr_mmap_events);
11787         if (event->attr.build_id)
11788                 atomic_inc(&nr_build_id_events);
11789         if (event->attr.comm)
11790                 atomic_inc(&nr_comm_events);
11791         if (event->attr.namespaces)
11792                 atomic_inc(&nr_namespaces_events);
11793         if (event->attr.cgroup)
11794                 atomic_inc(&nr_cgroup_events);
11795         if (event->attr.task)
11796                 atomic_inc(&nr_task_events);
11797         if (event->attr.freq)
11798                 account_freq_event();
11799         if (event->attr.context_switch) {
11800                 atomic_inc(&nr_switch_events);
11801                 inc = true;
11802         }
11803         if (has_branch_stack(event))
11804                 inc = true;
11805         if (is_cgroup_event(event))
11806                 inc = true;
11807         if (event->attr.ksymbol)
11808                 atomic_inc(&nr_ksymbol_events);
11809         if (event->attr.bpf_event)
11810                 atomic_inc(&nr_bpf_events);
11811         if (event->attr.text_poke)
11812                 atomic_inc(&nr_text_poke_events);
11813
11814         if (inc) {
11815                 /*
11816                  * We need the mutex here because static_branch_enable()
11817                  * must complete *before* the perf_sched_count increment
11818                  * becomes visible.
11819                  */
11820                 if (atomic_inc_not_zero(&perf_sched_count))
11821                         goto enabled;
11822
11823                 mutex_lock(&perf_sched_mutex);
11824                 if (!atomic_read(&perf_sched_count)) {
11825                         static_branch_enable(&perf_sched_events);
11826                         /*
11827                          * Guarantee that all CPUs observe they key change and
11828                          * call the perf scheduling hooks before proceeding to
11829                          * install events that need them.
11830                          */
11831                         synchronize_rcu();
11832                 }
11833                 /*
11834                  * Now that we have waited for the sync_sched(), allow further
11835                  * increments to by-pass the mutex.
11836                  */
11837                 atomic_inc(&perf_sched_count);
11838                 mutex_unlock(&perf_sched_mutex);
11839         }
11840 enabled:
11841
11842         account_pmu_sb_event(event);
11843 }
11844
11845 /*
11846  * Allocate and initialize an event structure
11847  */
11848 static struct perf_event *
11849 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11850                  struct task_struct *task,
11851                  struct perf_event *group_leader,
11852                  struct perf_event *parent_event,
11853                  perf_overflow_handler_t overflow_handler,
11854                  void *context, int cgroup_fd)
11855 {
11856         struct pmu *pmu;
11857         struct perf_event *event;
11858         struct hw_perf_event *hwc;
11859         long err = -EINVAL;
11860         int node;
11861
11862         if ((unsigned)cpu >= nr_cpu_ids) {
11863                 if (!task || cpu != -1)
11864                         return ERR_PTR(-EINVAL);
11865         }
11866         if (attr->sigtrap && !task) {
11867                 /* Requires a task: avoid signalling random tasks. */
11868                 return ERR_PTR(-EINVAL);
11869         }
11870
11871         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11872         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11873                                       node);
11874         if (!event)
11875                 return ERR_PTR(-ENOMEM);
11876
11877         /*
11878          * Single events are their own group leaders, with an
11879          * empty sibling list:
11880          */
11881         if (!group_leader)
11882                 group_leader = event;
11883
11884         mutex_init(&event->child_mutex);
11885         INIT_LIST_HEAD(&event->child_list);
11886
11887         INIT_LIST_HEAD(&event->event_entry);
11888         INIT_LIST_HEAD(&event->sibling_list);
11889         INIT_LIST_HEAD(&event->active_list);
11890         init_event_group(event);
11891         INIT_LIST_HEAD(&event->rb_entry);
11892         INIT_LIST_HEAD(&event->active_entry);
11893         INIT_LIST_HEAD(&event->addr_filters.list);
11894         INIT_HLIST_NODE(&event->hlist_entry);
11895
11896
11897         init_waitqueue_head(&event->waitq);
11898         init_irq_work(&event->pending_irq, perf_pending_irq);
11899         init_task_work(&event->pending_task, perf_pending_task);
11900
11901         mutex_init(&event->mmap_mutex);
11902         raw_spin_lock_init(&event->addr_filters.lock);
11903
11904         atomic_long_set(&event->refcount, 1);
11905         event->cpu              = cpu;
11906         event->attr             = *attr;
11907         event->group_leader     = group_leader;
11908         event->pmu              = NULL;
11909         event->oncpu            = -1;
11910
11911         event->parent           = parent_event;
11912
11913         event->ns               = get_pid_ns(task_active_pid_ns(current));
11914         event->id               = atomic64_inc_return(&perf_event_id);
11915
11916         event->state            = PERF_EVENT_STATE_INACTIVE;
11917
11918         if (parent_event)
11919                 event->event_caps = parent_event->event_caps;
11920
11921         if (task) {
11922                 event->attach_state = PERF_ATTACH_TASK;
11923                 /*
11924                  * XXX pmu::event_init needs to know what task to account to
11925                  * and we cannot use the ctx information because we need the
11926                  * pmu before we get a ctx.
11927                  */
11928                 event->hw.target = get_task_struct(task);
11929         }
11930
11931         event->clock = &local_clock;
11932         if (parent_event)
11933                 event->clock = parent_event->clock;
11934
11935         if (!overflow_handler && parent_event) {
11936                 overflow_handler = parent_event->overflow_handler;
11937                 context = parent_event->overflow_handler_context;
11938 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11939                 if (overflow_handler == bpf_overflow_handler) {
11940                         struct bpf_prog *prog = parent_event->prog;
11941
11942                         bpf_prog_inc(prog);
11943                         event->prog = prog;
11944                         event->orig_overflow_handler =
11945                                 parent_event->orig_overflow_handler;
11946                 }
11947 #endif
11948         }
11949
11950         if (overflow_handler) {
11951                 event->overflow_handler = overflow_handler;
11952                 event->overflow_handler_context = context;
11953         } else if (is_write_backward(event)){
11954                 event->overflow_handler = perf_event_output_backward;
11955                 event->overflow_handler_context = NULL;
11956         } else {
11957                 event->overflow_handler = perf_event_output_forward;
11958                 event->overflow_handler_context = NULL;
11959         }
11960
11961         perf_event__state_init(event);
11962
11963         pmu = NULL;
11964
11965         hwc = &event->hw;
11966         hwc->sample_period = attr->sample_period;
11967         if (attr->freq && attr->sample_freq)
11968                 hwc->sample_period = 1;
11969         hwc->last_period = hwc->sample_period;
11970
11971         local64_set(&hwc->period_left, hwc->sample_period);
11972
11973         /*
11974          * We currently do not support PERF_SAMPLE_READ on inherited events.
11975          * See perf_output_read().
11976          */
11977         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11978                 goto err_ns;
11979
11980         if (!has_branch_stack(event))
11981                 event->attr.branch_sample_type = 0;
11982
11983         pmu = perf_init_event(event);
11984         if (IS_ERR(pmu)) {
11985                 err = PTR_ERR(pmu);
11986                 goto err_ns;
11987         }
11988
11989         /*
11990          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11991          * events (they don't make sense as the cgroup will be different
11992          * on other CPUs in the uncore mask).
11993          */
11994         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11995                 err = -EINVAL;
11996                 goto err_pmu;
11997         }
11998
11999         if (event->attr.aux_output &&
12000             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12001                 err = -EOPNOTSUPP;
12002                 goto err_pmu;
12003         }
12004
12005         if (cgroup_fd != -1) {
12006                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12007                 if (err)
12008                         goto err_pmu;
12009         }
12010
12011         err = exclusive_event_init(event);
12012         if (err)
12013                 goto err_pmu;
12014
12015         if (has_addr_filter(event)) {
12016                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12017                                                     sizeof(struct perf_addr_filter_range),
12018                                                     GFP_KERNEL);
12019                 if (!event->addr_filter_ranges) {
12020                         err = -ENOMEM;
12021                         goto err_per_task;
12022                 }
12023
12024                 /*
12025                  * Clone the parent's vma offsets: they are valid until exec()
12026                  * even if the mm is not shared with the parent.
12027                  */
12028                 if (event->parent) {
12029                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12030
12031                         raw_spin_lock_irq(&ifh->lock);
12032                         memcpy(event->addr_filter_ranges,
12033                                event->parent->addr_filter_ranges,
12034                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12035                         raw_spin_unlock_irq(&ifh->lock);
12036                 }
12037
12038                 /* force hw sync on the address filters */
12039                 event->addr_filters_gen = 1;
12040         }
12041
12042         if (!event->parent) {
12043                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12044                         err = get_callchain_buffers(attr->sample_max_stack);
12045                         if (err)
12046                                 goto err_addr_filters;
12047                 }
12048         }
12049
12050         err = security_perf_event_alloc(event);
12051         if (err)
12052                 goto err_callchain_buffer;
12053
12054         /* symmetric to unaccount_event() in _free_event() */
12055         account_event(event);
12056
12057         return event;
12058
12059 err_callchain_buffer:
12060         if (!event->parent) {
12061                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12062                         put_callchain_buffers();
12063         }
12064 err_addr_filters:
12065         kfree(event->addr_filter_ranges);
12066
12067 err_per_task:
12068         exclusive_event_destroy(event);
12069
12070 err_pmu:
12071         if (is_cgroup_event(event))
12072                 perf_detach_cgroup(event);
12073         if (event->destroy)
12074                 event->destroy(event);
12075         module_put(pmu->module);
12076 err_ns:
12077         if (event->hw.target)
12078                 put_task_struct(event->hw.target);
12079         call_rcu(&event->rcu_head, free_event_rcu);
12080
12081         return ERR_PTR(err);
12082 }
12083
12084 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12085                           struct perf_event_attr *attr)
12086 {
12087         u32 size;
12088         int ret;
12089
12090         /* Zero the full structure, so that a short copy will be nice. */
12091         memset(attr, 0, sizeof(*attr));
12092
12093         ret = get_user(size, &uattr->size);
12094         if (ret)
12095                 return ret;
12096
12097         /* ABI compatibility quirk: */
12098         if (!size)
12099                 size = PERF_ATTR_SIZE_VER0;
12100         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12101                 goto err_size;
12102
12103         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12104         if (ret) {
12105                 if (ret == -E2BIG)
12106                         goto err_size;
12107                 return ret;
12108         }
12109
12110         attr->size = size;
12111
12112         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12113                 return -EINVAL;
12114
12115         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12116                 return -EINVAL;
12117
12118         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12119                 return -EINVAL;
12120
12121         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12122                 u64 mask = attr->branch_sample_type;
12123
12124                 /* only using defined bits */
12125                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12126                         return -EINVAL;
12127
12128                 /* at least one branch bit must be set */
12129                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12130                         return -EINVAL;
12131
12132                 /* propagate priv level, when not set for branch */
12133                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12134
12135                         /* exclude_kernel checked on syscall entry */
12136                         if (!attr->exclude_kernel)
12137                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12138
12139                         if (!attr->exclude_user)
12140                                 mask |= PERF_SAMPLE_BRANCH_USER;
12141
12142                         if (!attr->exclude_hv)
12143                                 mask |= PERF_SAMPLE_BRANCH_HV;
12144                         /*
12145                          * adjust user setting (for HW filter setup)
12146                          */
12147                         attr->branch_sample_type = mask;
12148                 }
12149                 /* privileged levels capture (kernel, hv): check permissions */
12150                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12151                         ret = perf_allow_kernel(attr);
12152                         if (ret)
12153                                 return ret;
12154                 }
12155         }
12156
12157         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12158                 ret = perf_reg_validate(attr->sample_regs_user);
12159                 if (ret)
12160                         return ret;
12161         }
12162
12163         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12164                 if (!arch_perf_have_user_stack_dump())
12165                         return -ENOSYS;
12166
12167                 /*
12168                  * We have __u32 type for the size, but so far
12169                  * we can only use __u16 as maximum due to the
12170                  * __u16 sample size limit.
12171                  */
12172                 if (attr->sample_stack_user >= USHRT_MAX)
12173                         return -EINVAL;
12174                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12175                         return -EINVAL;
12176         }
12177
12178         if (!attr->sample_max_stack)
12179                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12180
12181         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12182                 ret = perf_reg_validate(attr->sample_regs_intr);
12183
12184 #ifndef CONFIG_CGROUP_PERF
12185         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12186                 return -EINVAL;
12187 #endif
12188         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12189             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12190                 return -EINVAL;
12191
12192         if (!attr->inherit && attr->inherit_thread)
12193                 return -EINVAL;
12194
12195         if (attr->remove_on_exec && attr->enable_on_exec)
12196                 return -EINVAL;
12197
12198         if (attr->sigtrap && !attr->remove_on_exec)
12199                 return -EINVAL;
12200
12201 out:
12202         return ret;
12203
12204 err_size:
12205         put_user(sizeof(*attr), &uattr->size);
12206         ret = -E2BIG;
12207         goto out;
12208 }
12209
12210 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12211 {
12212         if (b < a)
12213                 swap(a, b);
12214
12215         mutex_lock(a);
12216         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12217 }
12218
12219 static int
12220 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12221 {
12222         struct perf_buffer *rb = NULL;
12223         int ret = -EINVAL;
12224
12225         if (!output_event) {
12226                 mutex_lock(&event->mmap_mutex);
12227                 goto set;
12228         }
12229
12230         /* don't allow circular references */
12231         if (event == output_event)
12232                 goto out;
12233
12234         /*
12235          * Don't allow cross-cpu buffers
12236          */
12237         if (output_event->cpu != event->cpu)
12238                 goto out;
12239
12240         /*
12241          * If its not a per-cpu rb, it must be the same task.
12242          */
12243         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12244                 goto out;
12245
12246         /*
12247          * Mixing clocks in the same buffer is trouble you don't need.
12248          */
12249         if (output_event->clock != event->clock)
12250                 goto out;
12251
12252         /*
12253          * Either writing ring buffer from beginning or from end.
12254          * Mixing is not allowed.
12255          */
12256         if (is_write_backward(output_event) != is_write_backward(event))
12257                 goto out;
12258
12259         /*
12260          * If both events generate aux data, they must be on the same PMU
12261          */
12262         if (has_aux(event) && has_aux(output_event) &&
12263             event->pmu != output_event->pmu)
12264                 goto out;
12265
12266         /*
12267          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12268          * output_event is already on rb->event_list, and the list iteration
12269          * restarts after every removal, it is guaranteed this new event is
12270          * observed *OR* if output_event is already removed, it's guaranteed we
12271          * observe !rb->mmap_count.
12272          */
12273         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12274 set:
12275         /* Can't redirect output if we've got an active mmap() */
12276         if (atomic_read(&event->mmap_count))
12277                 goto unlock;
12278
12279         if (output_event) {
12280                 /* get the rb we want to redirect to */
12281                 rb = ring_buffer_get(output_event);
12282                 if (!rb)
12283                         goto unlock;
12284
12285                 /* did we race against perf_mmap_close() */
12286                 if (!atomic_read(&rb->mmap_count)) {
12287                         ring_buffer_put(rb);
12288                         goto unlock;
12289                 }
12290         }
12291
12292         ring_buffer_attach(event, rb);
12293
12294         ret = 0;
12295 unlock:
12296         mutex_unlock(&event->mmap_mutex);
12297         if (output_event)
12298                 mutex_unlock(&output_event->mmap_mutex);
12299
12300 out:
12301         return ret;
12302 }
12303
12304 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12305 {
12306         bool nmi_safe = false;
12307
12308         switch (clk_id) {
12309         case CLOCK_MONOTONIC:
12310                 event->clock = &ktime_get_mono_fast_ns;
12311                 nmi_safe = true;
12312                 break;
12313
12314         case CLOCK_MONOTONIC_RAW:
12315                 event->clock = &ktime_get_raw_fast_ns;
12316                 nmi_safe = true;
12317                 break;
12318
12319         case CLOCK_REALTIME:
12320                 event->clock = &ktime_get_real_ns;
12321                 break;
12322
12323         case CLOCK_BOOTTIME:
12324                 event->clock = &ktime_get_boottime_ns;
12325                 break;
12326
12327         case CLOCK_TAI:
12328                 event->clock = &ktime_get_clocktai_ns;
12329                 break;
12330
12331         default:
12332                 return -EINVAL;
12333         }
12334
12335         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12336                 return -EINVAL;
12337
12338         return 0;
12339 }
12340
12341 static bool
12342 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12343 {
12344         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12345         bool is_capable = perfmon_capable();
12346
12347         if (attr->sigtrap) {
12348                 /*
12349                  * perf_event_attr::sigtrap sends signals to the other task.
12350                  * Require the current task to also have CAP_KILL.
12351                  */
12352                 rcu_read_lock();
12353                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12354                 rcu_read_unlock();
12355
12356                 /*
12357                  * If the required capabilities aren't available, checks for
12358                  * ptrace permissions: upgrade to ATTACH, since sending signals
12359                  * can effectively change the target task.
12360                  */
12361                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12362         }
12363
12364         /*
12365          * Preserve ptrace permission check for backwards compatibility. The
12366          * ptrace check also includes checks that the current task and other
12367          * task have matching uids, and is therefore not done here explicitly.
12368          */
12369         return is_capable || ptrace_may_access(task, ptrace_mode);
12370 }
12371
12372 /**
12373  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12374  *
12375  * @attr_uptr:  event_id type attributes for monitoring/sampling
12376  * @pid:                target pid
12377  * @cpu:                target cpu
12378  * @group_fd:           group leader event fd
12379  * @flags:              perf event open flags
12380  */
12381 SYSCALL_DEFINE5(perf_event_open,
12382                 struct perf_event_attr __user *, attr_uptr,
12383                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12384 {
12385         struct perf_event *group_leader = NULL, *output_event = NULL;
12386         struct perf_event_pmu_context *pmu_ctx;
12387         struct perf_event *event, *sibling;
12388         struct perf_event_attr attr;
12389         struct perf_event_context *ctx;
12390         struct file *event_file = NULL;
12391         struct fd group = {NULL, 0};
12392         struct task_struct *task = NULL;
12393         struct pmu *pmu;
12394         int event_fd;
12395         int move_group = 0;
12396         int err;
12397         int f_flags = O_RDWR;
12398         int cgroup_fd = -1;
12399
12400         /* for future expandability... */
12401         if (flags & ~PERF_FLAG_ALL)
12402                 return -EINVAL;
12403
12404         err = perf_copy_attr(attr_uptr, &attr);
12405         if (err)
12406                 return err;
12407
12408         /* Do we allow access to perf_event_open(2) ? */
12409         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12410         if (err)
12411                 return err;
12412
12413         if (!attr.exclude_kernel) {
12414                 err = perf_allow_kernel(&attr);
12415                 if (err)
12416                         return err;
12417         }
12418
12419         if (attr.namespaces) {
12420                 if (!perfmon_capable())
12421                         return -EACCES;
12422         }
12423
12424         if (attr.freq) {
12425                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12426                         return -EINVAL;
12427         } else {
12428                 if (attr.sample_period & (1ULL << 63))
12429                         return -EINVAL;
12430         }
12431
12432         /* Only privileged users can get physical addresses */
12433         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12434                 err = perf_allow_kernel(&attr);
12435                 if (err)
12436                         return err;
12437         }
12438
12439         /* REGS_INTR can leak data, lockdown must prevent this */
12440         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12441                 err = security_locked_down(LOCKDOWN_PERF);
12442                 if (err)
12443                         return err;
12444         }
12445
12446         /*
12447          * In cgroup mode, the pid argument is used to pass the fd
12448          * opened to the cgroup directory in cgroupfs. The cpu argument
12449          * designates the cpu on which to monitor threads from that
12450          * cgroup.
12451          */
12452         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12453                 return -EINVAL;
12454
12455         if (flags & PERF_FLAG_FD_CLOEXEC)
12456                 f_flags |= O_CLOEXEC;
12457
12458         event_fd = get_unused_fd_flags(f_flags);
12459         if (event_fd < 0)
12460                 return event_fd;
12461
12462         if (group_fd != -1) {
12463                 err = perf_fget_light(group_fd, &group);
12464                 if (err)
12465                         goto err_fd;
12466                 group_leader = group.file->private_data;
12467                 if (flags & PERF_FLAG_FD_OUTPUT)
12468                         output_event = group_leader;
12469                 if (flags & PERF_FLAG_FD_NO_GROUP)
12470                         group_leader = NULL;
12471         }
12472
12473         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12474                 task = find_lively_task_by_vpid(pid);
12475                 if (IS_ERR(task)) {
12476                         err = PTR_ERR(task);
12477                         goto err_group_fd;
12478                 }
12479         }
12480
12481         if (task && group_leader &&
12482             group_leader->attr.inherit != attr.inherit) {
12483                 err = -EINVAL;
12484                 goto err_task;
12485         }
12486
12487         if (flags & PERF_FLAG_PID_CGROUP)
12488                 cgroup_fd = pid;
12489
12490         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12491                                  NULL, NULL, cgroup_fd);
12492         if (IS_ERR(event)) {
12493                 err = PTR_ERR(event);
12494                 goto err_task;
12495         }
12496
12497         if (is_sampling_event(event)) {
12498                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12499                         err = -EOPNOTSUPP;
12500                         goto err_alloc;
12501                 }
12502         }
12503
12504         /*
12505          * Special case software events and allow them to be part of
12506          * any hardware group.
12507          */
12508         pmu = event->pmu;
12509
12510         if (attr.use_clockid) {
12511                 err = perf_event_set_clock(event, attr.clockid);
12512                 if (err)
12513                         goto err_alloc;
12514         }
12515
12516         if (pmu->task_ctx_nr == perf_sw_context)
12517                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12518
12519         if (task) {
12520                 err = down_read_interruptible(&task->signal->exec_update_lock);
12521                 if (err)
12522                         goto err_alloc;
12523
12524                 /*
12525                  * We must hold exec_update_lock across this and any potential
12526                  * perf_install_in_context() call for this new event to
12527                  * serialize against exec() altering our credentials (and the
12528                  * perf_event_exit_task() that could imply).
12529                  */
12530                 err = -EACCES;
12531                 if (!perf_check_permission(&attr, task))
12532                         goto err_cred;
12533         }
12534
12535         /*
12536          * Get the target context (task or percpu):
12537          */
12538         ctx = find_get_context(task, event);
12539         if (IS_ERR(ctx)) {
12540                 err = PTR_ERR(ctx);
12541                 goto err_cred;
12542         }
12543
12544         mutex_lock(&ctx->mutex);
12545
12546         if (ctx->task == TASK_TOMBSTONE) {
12547                 err = -ESRCH;
12548                 goto err_locked;
12549         }
12550
12551         if (!task) {
12552                 /*
12553                  * Check if the @cpu we're creating an event for is online.
12554                  *
12555                  * We use the perf_cpu_context::ctx::mutex to serialize against
12556                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12557                  */
12558                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12559
12560                 if (!cpuctx->online) {
12561                         err = -ENODEV;
12562                         goto err_locked;
12563                 }
12564         }
12565
12566         if (group_leader) {
12567                 err = -EINVAL;
12568
12569                 /*
12570                  * Do not allow a recursive hierarchy (this new sibling
12571                  * becoming part of another group-sibling):
12572                  */
12573                 if (group_leader->group_leader != group_leader)
12574                         goto err_locked;
12575
12576                 /* All events in a group should have the same clock */
12577                 if (group_leader->clock != event->clock)
12578                         goto err_locked;
12579
12580                 /*
12581                  * Make sure we're both events for the same CPU;
12582                  * grouping events for different CPUs is broken; since
12583                  * you can never concurrently schedule them anyhow.
12584                  */
12585                 if (group_leader->cpu != event->cpu)
12586                         goto err_locked;
12587
12588                 /*
12589                  * Make sure we're both on the same context; either task or cpu.
12590                  */
12591                 if (group_leader->ctx != ctx)
12592                         goto err_locked;
12593
12594                 /*
12595                  * Only a group leader can be exclusive or pinned
12596                  */
12597                 if (attr.exclusive || attr.pinned)
12598                         goto err_locked;
12599
12600                 if (is_software_event(event) &&
12601                     !in_software_context(group_leader)) {
12602                         /*
12603                          * If the event is a sw event, but the group_leader
12604                          * is on hw context.
12605                          *
12606                          * Allow the addition of software events to hw
12607                          * groups, this is safe because software events
12608                          * never fail to schedule.
12609                          *
12610                          * Note the comment that goes with struct
12611                          * perf_event_pmu_context.
12612                          */
12613                         pmu = group_leader->pmu_ctx->pmu;
12614                 } else if (!is_software_event(event)) {
12615                         if (is_software_event(group_leader) &&
12616                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12617                                 /*
12618                                  * In case the group is a pure software group, and we
12619                                  * try to add a hardware event, move the whole group to
12620                                  * the hardware context.
12621                                  */
12622                                 move_group = 1;
12623                         }
12624
12625                         /* Don't allow group of multiple hw events from different pmus */
12626                         if (!in_software_context(group_leader) &&
12627                             group_leader->pmu_ctx->pmu != pmu)
12628                                 goto err_locked;
12629                 }
12630         }
12631
12632         /*
12633          * Now that we're certain of the pmu; find the pmu_ctx.
12634          */
12635         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12636         if (IS_ERR(pmu_ctx)) {
12637                 err = PTR_ERR(pmu_ctx);
12638                 goto err_locked;
12639         }
12640         event->pmu_ctx = pmu_ctx;
12641
12642         if (output_event) {
12643                 err = perf_event_set_output(event, output_event);
12644                 if (err)
12645                         goto err_context;
12646         }
12647
12648         if (!perf_event_validate_size(event)) {
12649                 err = -E2BIG;
12650                 goto err_context;
12651         }
12652
12653         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12654                 err = -EINVAL;
12655                 goto err_context;
12656         }
12657
12658         /*
12659          * Must be under the same ctx::mutex as perf_install_in_context(),
12660          * because we need to serialize with concurrent event creation.
12661          */
12662         if (!exclusive_event_installable(event, ctx)) {
12663                 err = -EBUSY;
12664                 goto err_context;
12665         }
12666
12667         WARN_ON_ONCE(ctx->parent_ctx);
12668
12669         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12670         if (IS_ERR(event_file)) {
12671                 err = PTR_ERR(event_file);
12672                 event_file = NULL;
12673                 goto err_context;
12674         }
12675
12676         /*
12677          * This is the point on no return; we cannot fail hereafter. This is
12678          * where we start modifying current state.
12679          */
12680
12681         if (move_group) {
12682                 perf_remove_from_context(group_leader, 0);
12683                 put_pmu_ctx(group_leader->pmu_ctx);
12684
12685                 for_each_sibling_event(sibling, group_leader) {
12686                         perf_remove_from_context(sibling, 0);
12687                         put_pmu_ctx(sibling->pmu_ctx);
12688                 }
12689
12690                 /*
12691                  * Install the group siblings before the group leader.
12692                  *
12693                  * Because a group leader will try and install the entire group
12694                  * (through the sibling list, which is still in-tact), we can
12695                  * end up with siblings installed in the wrong context.
12696                  *
12697                  * By installing siblings first we NO-OP because they're not
12698                  * reachable through the group lists.
12699                  */
12700                 for_each_sibling_event(sibling, group_leader) {
12701                         sibling->pmu_ctx = pmu_ctx;
12702                         get_pmu_ctx(pmu_ctx);
12703                         perf_event__state_init(sibling);
12704                         perf_install_in_context(ctx, sibling, sibling->cpu);
12705                 }
12706
12707                 /*
12708                  * Removing from the context ends up with disabled
12709                  * event. What we want here is event in the initial
12710                  * startup state, ready to be add into new context.
12711                  */
12712                 group_leader->pmu_ctx = pmu_ctx;
12713                 get_pmu_ctx(pmu_ctx);
12714                 perf_event__state_init(group_leader);
12715                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12716         }
12717
12718         /*
12719          * Precalculate sample_data sizes; do while holding ctx::mutex such
12720          * that we're serialized against further additions and before
12721          * perf_install_in_context() which is the point the event is active and
12722          * can use these values.
12723          */
12724         perf_event__header_size(event);
12725         perf_event__id_header_size(event);
12726
12727         event->owner = current;
12728
12729         perf_install_in_context(ctx, event, event->cpu);
12730         perf_unpin_context(ctx);
12731
12732         mutex_unlock(&ctx->mutex);
12733
12734         if (task) {
12735                 up_read(&task->signal->exec_update_lock);
12736                 put_task_struct(task);
12737         }
12738
12739         mutex_lock(&current->perf_event_mutex);
12740         list_add_tail(&event->owner_entry, &current->perf_event_list);
12741         mutex_unlock(&current->perf_event_mutex);
12742
12743         /*
12744          * Drop the reference on the group_event after placing the
12745          * new event on the sibling_list. This ensures destruction
12746          * of the group leader will find the pointer to itself in
12747          * perf_group_detach().
12748          */
12749         fdput(group);
12750         fd_install(event_fd, event_file);
12751         return event_fd;
12752
12753 err_context:
12754         put_pmu_ctx(event->pmu_ctx);
12755         event->pmu_ctx = NULL; /* _free_event() */
12756 err_locked:
12757         mutex_unlock(&ctx->mutex);
12758         perf_unpin_context(ctx);
12759         put_ctx(ctx);
12760 err_cred:
12761         if (task)
12762                 up_read(&task->signal->exec_update_lock);
12763 err_alloc:
12764         free_event(event);
12765 err_task:
12766         if (task)
12767                 put_task_struct(task);
12768 err_group_fd:
12769         fdput(group);
12770 err_fd:
12771         put_unused_fd(event_fd);
12772         return err;
12773 }
12774
12775 /**
12776  * perf_event_create_kernel_counter
12777  *
12778  * @attr: attributes of the counter to create
12779  * @cpu: cpu in which the counter is bound
12780  * @task: task to profile (NULL for percpu)
12781  * @overflow_handler: callback to trigger when we hit the event
12782  * @context: context data could be used in overflow_handler callback
12783  */
12784 struct perf_event *
12785 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12786                                  struct task_struct *task,
12787                                  perf_overflow_handler_t overflow_handler,
12788                                  void *context)
12789 {
12790         struct perf_event_pmu_context *pmu_ctx;
12791         struct perf_event_context *ctx;
12792         struct perf_event *event;
12793         struct pmu *pmu;
12794         int err;
12795
12796         /*
12797          * Grouping is not supported for kernel events, neither is 'AUX',
12798          * make sure the caller's intentions are adjusted.
12799          */
12800         if (attr->aux_output)
12801                 return ERR_PTR(-EINVAL);
12802
12803         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12804                                  overflow_handler, context, -1);
12805         if (IS_ERR(event)) {
12806                 err = PTR_ERR(event);
12807                 goto err;
12808         }
12809
12810         /* Mark owner so we could distinguish it from user events. */
12811         event->owner = TASK_TOMBSTONE;
12812         pmu = event->pmu;
12813
12814         if (pmu->task_ctx_nr == perf_sw_context)
12815                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12816
12817         /*
12818          * Get the target context (task or percpu):
12819          */
12820         ctx = find_get_context(task, event);
12821         if (IS_ERR(ctx)) {
12822                 err = PTR_ERR(ctx);
12823                 goto err_alloc;
12824         }
12825
12826         WARN_ON_ONCE(ctx->parent_ctx);
12827         mutex_lock(&ctx->mutex);
12828         if (ctx->task == TASK_TOMBSTONE) {
12829                 err = -ESRCH;
12830                 goto err_unlock;
12831         }
12832
12833         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12834         if (IS_ERR(pmu_ctx)) {
12835                 err = PTR_ERR(pmu_ctx);
12836                 goto err_unlock;
12837         }
12838         event->pmu_ctx = pmu_ctx;
12839
12840         if (!task) {
12841                 /*
12842                  * Check if the @cpu we're creating an event for is online.
12843                  *
12844                  * We use the perf_cpu_context::ctx::mutex to serialize against
12845                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12846                  */
12847                 struct perf_cpu_context *cpuctx =
12848                         container_of(ctx, struct perf_cpu_context, ctx);
12849                 if (!cpuctx->online) {
12850                         err = -ENODEV;
12851                         goto err_pmu_ctx;
12852                 }
12853         }
12854
12855         if (!exclusive_event_installable(event, ctx)) {
12856                 err = -EBUSY;
12857                 goto err_pmu_ctx;
12858         }
12859
12860         perf_install_in_context(ctx, event, event->cpu);
12861         perf_unpin_context(ctx);
12862         mutex_unlock(&ctx->mutex);
12863
12864         return event;
12865
12866 err_pmu_ctx:
12867         put_pmu_ctx(pmu_ctx);
12868         event->pmu_ctx = NULL; /* _free_event() */
12869 err_unlock:
12870         mutex_unlock(&ctx->mutex);
12871         perf_unpin_context(ctx);
12872         put_ctx(ctx);
12873 err_alloc:
12874         free_event(event);
12875 err:
12876         return ERR_PTR(err);
12877 }
12878 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12879
12880 static void __perf_pmu_remove(struct perf_event_context *ctx,
12881                               int cpu, struct pmu *pmu,
12882                               struct perf_event_groups *groups,
12883                               struct list_head *events)
12884 {
12885         struct perf_event *event, *sibling;
12886
12887         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12888                 perf_remove_from_context(event, 0);
12889                 put_pmu_ctx(event->pmu_ctx);
12890                 list_add(&event->migrate_entry, events);
12891
12892                 for_each_sibling_event(sibling, event) {
12893                         perf_remove_from_context(sibling, 0);
12894                         put_pmu_ctx(sibling->pmu_ctx);
12895                         list_add(&sibling->migrate_entry, events);
12896                 }
12897         }
12898 }
12899
12900 static void __perf_pmu_install_event(struct pmu *pmu,
12901                                      struct perf_event_context *ctx,
12902                                      int cpu, struct perf_event *event)
12903 {
12904         struct perf_event_pmu_context *epc;
12905         struct perf_event_context *old_ctx = event->ctx;
12906
12907         get_ctx(ctx); /* normally find_get_context() */
12908
12909         event->cpu = cpu;
12910         epc = find_get_pmu_context(pmu, ctx, event);
12911         event->pmu_ctx = epc;
12912
12913         if (event->state >= PERF_EVENT_STATE_OFF)
12914                 event->state = PERF_EVENT_STATE_INACTIVE;
12915         perf_install_in_context(ctx, event, cpu);
12916
12917         /*
12918          * Now that event->ctx is updated and visible, put the old ctx.
12919          */
12920         put_ctx(old_ctx);
12921 }
12922
12923 static void __perf_pmu_install(struct perf_event_context *ctx,
12924                                int cpu, struct pmu *pmu, struct list_head *events)
12925 {
12926         struct perf_event *event, *tmp;
12927
12928         /*
12929          * Re-instate events in 2 passes.
12930          *
12931          * Skip over group leaders and only install siblings on this first
12932          * pass, siblings will not get enabled without a leader, however a
12933          * leader will enable its siblings, even if those are still on the old
12934          * context.
12935          */
12936         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12937                 if (event->group_leader == event)
12938                         continue;
12939
12940                 list_del(&event->migrate_entry);
12941                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12942         }
12943
12944         /*
12945          * Once all the siblings are setup properly, install the group leaders
12946          * to make it go.
12947          */
12948         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12949                 list_del(&event->migrate_entry);
12950                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12951         }
12952 }
12953
12954 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12955 {
12956         struct perf_event_context *src_ctx, *dst_ctx;
12957         LIST_HEAD(events);
12958
12959         /*
12960          * Since per-cpu context is persistent, no need to grab an extra
12961          * reference.
12962          */
12963         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12964         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12965
12966         /*
12967          * See perf_event_ctx_lock() for comments on the details
12968          * of swizzling perf_event::ctx.
12969          */
12970         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12971
12972         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12973         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12974
12975         if (!list_empty(&events)) {
12976                 /*
12977                  * Wait for the events to quiesce before re-instating them.
12978                  */
12979                 synchronize_rcu();
12980
12981                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12982         }
12983
12984         mutex_unlock(&dst_ctx->mutex);
12985         mutex_unlock(&src_ctx->mutex);
12986 }
12987 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12988
12989 static void sync_child_event(struct perf_event *child_event)
12990 {
12991         struct perf_event *parent_event = child_event->parent;
12992         u64 child_val;
12993
12994         if (child_event->attr.inherit_stat) {
12995                 struct task_struct *task = child_event->ctx->task;
12996
12997                 if (task && task != TASK_TOMBSTONE)
12998                         perf_event_read_event(child_event, task);
12999         }
13000
13001         child_val = perf_event_count(child_event);
13002
13003         /*
13004          * Add back the child's count to the parent's count:
13005          */
13006         atomic64_add(child_val, &parent_event->child_count);
13007         atomic64_add(child_event->total_time_enabled,
13008                      &parent_event->child_total_time_enabled);
13009         atomic64_add(child_event->total_time_running,
13010                      &parent_event->child_total_time_running);
13011 }
13012
13013 static void
13014 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13015 {
13016         struct perf_event *parent_event = event->parent;
13017         unsigned long detach_flags = 0;
13018
13019         if (parent_event) {
13020                 /*
13021                  * Do not destroy the 'original' grouping; because of the
13022                  * context switch optimization the original events could've
13023                  * ended up in a random child task.
13024                  *
13025                  * If we were to destroy the original group, all group related
13026                  * operations would cease to function properly after this
13027                  * random child dies.
13028                  *
13029                  * Do destroy all inherited groups, we don't care about those
13030                  * and being thorough is better.
13031                  */
13032                 detach_flags = DETACH_GROUP | DETACH_CHILD;
13033                 mutex_lock(&parent_event->child_mutex);
13034         }
13035
13036         perf_remove_from_context(event, detach_flags);
13037
13038         raw_spin_lock_irq(&ctx->lock);
13039         if (event->state > PERF_EVENT_STATE_EXIT)
13040                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13041         raw_spin_unlock_irq(&ctx->lock);
13042
13043         /*
13044          * Child events can be freed.
13045          */
13046         if (parent_event) {
13047                 mutex_unlock(&parent_event->child_mutex);
13048                 /*
13049                  * Kick perf_poll() for is_event_hup();
13050                  */
13051                 perf_event_wakeup(parent_event);
13052                 free_event(event);
13053                 put_event(parent_event);
13054                 return;
13055         }
13056
13057         /*
13058          * Parent events are governed by their filedesc, retain them.
13059          */
13060         perf_event_wakeup(event);
13061 }
13062
13063 static void perf_event_exit_task_context(struct task_struct *child)
13064 {
13065         struct perf_event_context *child_ctx, *clone_ctx = NULL;
13066         struct perf_event *child_event, *next;
13067
13068         WARN_ON_ONCE(child != current);
13069
13070         child_ctx = perf_pin_task_context(child);
13071         if (!child_ctx)
13072                 return;
13073
13074         /*
13075          * In order to reduce the amount of tricky in ctx tear-down, we hold
13076          * ctx::mutex over the entire thing. This serializes against almost
13077          * everything that wants to access the ctx.
13078          *
13079          * The exception is sys_perf_event_open() /
13080          * perf_event_create_kernel_count() which does find_get_context()
13081          * without ctx::mutex (it cannot because of the move_group double mutex
13082          * lock thing). See the comments in perf_install_in_context().
13083          */
13084         mutex_lock(&child_ctx->mutex);
13085
13086         /*
13087          * In a single ctx::lock section, de-schedule the events and detach the
13088          * context from the task such that we cannot ever get it scheduled back
13089          * in.
13090          */
13091         raw_spin_lock_irq(&child_ctx->lock);
13092         task_ctx_sched_out(child_ctx, EVENT_ALL);
13093
13094         /*
13095          * Now that the context is inactive, destroy the task <-> ctx relation
13096          * and mark the context dead.
13097          */
13098         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13099         put_ctx(child_ctx); /* cannot be last */
13100         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13101         put_task_struct(current); /* cannot be last */
13102
13103         clone_ctx = unclone_ctx(child_ctx);
13104         raw_spin_unlock_irq(&child_ctx->lock);
13105
13106         if (clone_ctx)
13107                 put_ctx(clone_ctx);
13108
13109         /*
13110          * Report the task dead after unscheduling the events so that we
13111          * won't get any samples after PERF_RECORD_EXIT. We can however still
13112          * get a few PERF_RECORD_READ events.
13113          */
13114         perf_event_task(child, child_ctx, 0);
13115
13116         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13117                 perf_event_exit_event(child_event, child_ctx);
13118
13119         mutex_unlock(&child_ctx->mutex);
13120
13121         put_ctx(child_ctx);
13122 }
13123
13124 /*
13125  * When a child task exits, feed back event values to parent events.
13126  *
13127  * Can be called with exec_update_lock held when called from
13128  * setup_new_exec().
13129  */
13130 void perf_event_exit_task(struct task_struct *child)
13131 {
13132         struct perf_event *event, *tmp;
13133
13134         mutex_lock(&child->perf_event_mutex);
13135         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13136                                  owner_entry) {
13137                 list_del_init(&event->owner_entry);
13138
13139                 /*
13140                  * Ensure the list deletion is visible before we clear
13141                  * the owner, closes a race against perf_release() where
13142                  * we need to serialize on the owner->perf_event_mutex.
13143                  */
13144                 smp_store_release(&event->owner, NULL);
13145         }
13146         mutex_unlock(&child->perf_event_mutex);
13147
13148         perf_event_exit_task_context(child);
13149
13150         /*
13151          * The perf_event_exit_task_context calls perf_event_task
13152          * with child's task_ctx, which generates EXIT events for
13153          * child contexts and sets child->perf_event_ctxp[] to NULL.
13154          * At this point we need to send EXIT events to cpu contexts.
13155          */
13156         perf_event_task(child, NULL, 0);
13157 }
13158
13159 static void perf_free_event(struct perf_event *event,
13160                             struct perf_event_context *ctx)
13161 {
13162         struct perf_event *parent = event->parent;
13163
13164         if (WARN_ON_ONCE(!parent))
13165                 return;
13166
13167         mutex_lock(&parent->child_mutex);
13168         list_del_init(&event->child_list);
13169         mutex_unlock(&parent->child_mutex);
13170
13171         put_event(parent);
13172
13173         raw_spin_lock_irq(&ctx->lock);
13174         perf_group_detach(event);
13175         list_del_event(event, ctx);
13176         raw_spin_unlock_irq(&ctx->lock);
13177         free_event(event);
13178 }
13179
13180 /*
13181  * Free a context as created by inheritance by perf_event_init_task() below,
13182  * used by fork() in case of fail.
13183  *
13184  * Even though the task has never lived, the context and events have been
13185  * exposed through the child_list, so we must take care tearing it all down.
13186  */
13187 void perf_event_free_task(struct task_struct *task)
13188 {
13189         struct perf_event_context *ctx;
13190         struct perf_event *event, *tmp;
13191
13192         ctx = rcu_access_pointer(task->perf_event_ctxp);
13193         if (!ctx)
13194                 return;
13195
13196         mutex_lock(&ctx->mutex);
13197         raw_spin_lock_irq(&ctx->lock);
13198         /*
13199          * Destroy the task <-> ctx relation and mark the context dead.
13200          *
13201          * This is important because even though the task hasn't been
13202          * exposed yet the context has been (through child_list).
13203          */
13204         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13205         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13206         put_task_struct(task); /* cannot be last */
13207         raw_spin_unlock_irq(&ctx->lock);
13208
13209
13210         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13211                 perf_free_event(event, ctx);
13212
13213         mutex_unlock(&ctx->mutex);
13214
13215         /*
13216          * perf_event_release_kernel() could've stolen some of our
13217          * child events and still have them on its free_list. In that
13218          * case we must wait for these events to have been freed (in
13219          * particular all their references to this task must've been
13220          * dropped).
13221          *
13222          * Without this copy_process() will unconditionally free this
13223          * task (irrespective of its reference count) and
13224          * _free_event()'s put_task_struct(event->hw.target) will be a
13225          * use-after-free.
13226          *
13227          * Wait for all events to drop their context reference.
13228          */
13229         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13230         put_ctx(ctx); /* must be last */
13231 }
13232
13233 void perf_event_delayed_put(struct task_struct *task)
13234 {
13235         WARN_ON_ONCE(task->perf_event_ctxp);
13236 }
13237
13238 struct file *perf_event_get(unsigned int fd)
13239 {
13240         struct file *file = fget(fd);
13241         if (!file)
13242                 return ERR_PTR(-EBADF);
13243
13244         if (file->f_op != &perf_fops) {
13245                 fput(file);
13246                 return ERR_PTR(-EBADF);
13247         }
13248
13249         return file;
13250 }
13251
13252 const struct perf_event *perf_get_event(struct file *file)
13253 {
13254         if (file->f_op != &perf_fops)
13255                 return ERR_PTR(-EINVAL);
13256
13257         return file->private_data;
13258 }
13259
13260 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13261 {
13262         if (!event)
13263                 return ERR_PTR(-EINVAL);
13264
13265         return &event->attr;
13266 }
13267
13268 /*
13269  * Inherit an event from parent task to child task.
13270  *
13271  * Returns:
13272  *  - valid pointer on success
13273  *  - NULL for orphaned events
13274  *  - IS_ERR() on error
13275  */
13276 static struct perf_event *
13277 inherit_event(struct perf_event *parent_event,
13278               struct task_struct *parent,
13279               struct perf_event_context *parent_ctx,
13280               struct task_struct *child,
13281               struct perf_event *group_leader,
13282               struct perf_event_context *child_ctx)
13283 {
13284         enum perf_event_state parent_state = parent_event->state;
13285         struct perf_event_pmu_context *pmu_ctx;
13286         struct perf_event *child_event;
13287         unsigned long flags;
13288
13289         /*
13290          * Instead of creating recursive hierarchies of events,
13291          * we link inherited events back to the original parent,
13292          * which has a filp for sure, which we use as the reference
13293          * count:
13294          */
13295         if (parent_event->parent)
13296                 parent_event = parent_event->parent;
13297
13298         child_event = perf_event_alloc(&parent_event->attr,
13299                                            parent_event->cpu,
13300                                            child,
13301                                            group_leader, parent_event,
13302                                            NULL, NULL, -1);
13303         if (IS_ERR(child_event))
13304                 return child_event;
13305
13306         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13307         if (IS_ERR(pmu_ctx)) {
13308                 free_event(child_event);
13309                 return ERR_CAST(pmu_ctx);
13310         }
13311         child_event->pmu_ctx = pmu_ctx;
13312
13313         /*
13314          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13315          * must be under the same lock in order to serialize against
13316          * perf_event_release_kernel(), such that either we must observe
13317          * is_orphaned_event() or they will observe us on the child_list.
13318          */
13319         mutex_lock(&parent_event->child_mutex);
13320         if (is_orphaned_event(parent_event) ||
13321             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13322                 mutex_unlock(&parent_event->child_mutex);
13323                 /* task_ctx_data is freed with child_ctx */
13324                 free_event(child_event);
13325                 return NULL;
13326         }
13327
13328         get_ctx(child_ctx);
13329
13330         /*
13331          * Make the child state follow the state of the parent event,
13332          * not its attr.disabled bit.  We hold the parent's mutex,
13333          * so we won't race with perf_event_{en, dis}able_family.
13334          */
13335         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13336                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13337         else
13338                 child_event->state = PERF_EVENT_STATE_OFF;
13339
13340         if (parent_event->attr.freq) {
13341                 u64 sample_period = parent_event->hw.sample_period;
13342                 struct hw_perf_event *hwc = &child_event->hw;
13343
13344                 hwc->sample_period = sample_period;
13345                 hwc->last_period   = sample_period;
13346
13347                 local64_set(&hwc->period_left, sample_period);
13348         }
13349
13350         child_event->ctx = child_ctx;
13351         child_event->overflow_handler = parent_event->overflow_handler;
13352         child_event->overflow_handler_context
13353                 = parent_event->overflow_handler_context;
13354
13355         /*
13356          * Precalculate sample_data sizes
13357          */
13358         perf_event__header_size(child_event);
13359         perf_event__id_header_size(child_event);
13360
13361         /*
13362          * Link it up in the child's context:
13363          */
13364         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13365         add_event_to_ctx(child_event, child_ctx);
13366         child_event->attach_state |= PERF_ATTACH_CHILD;
13367         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13368
13369         /*
13370          * Link this into the parent event's child list
13371          */
13372         list_add_tail(&child_event->child_list, &parent_event->child_list);
13373         mutex_unlock(&parent_event->child_mutex);
13374
13375         return child_event;
13376 }
13377
13378 /*
13379  * Inherits an event group.
13380  *
13381  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13382  * This matches with perf_event_release_kernel() removing all child events.
13383  *
13384  * Returns:
13385  *  - 0 on success
13386  *  - <0 on error
13387  */
13388 static int inherit_group(struct perf_event *parent_event,
13389               struct task_struct *parent,
13390               struct perf_event_context *parent_ctx,
13391               struct task_struct *child,
13392               struct perf_event_context *child_ctx)
13393 {
13394         struct perf_event *leader;
13395         struct perf_event *sub;
13396         struct perf_event *child_ctr;
13397
13398         leader = inherit_event(parent_event, parent, parent_ctx,
13399                                  child, NULL, child_ctx);
13400         if (IS_ERR(leader))
13401                 return PTR_ERR(leader);
13402         /*
13403          * @leader can be NULL here because of is_orphaned_event(). In this
13404          * case inherit_event() will create individual events, similar to what
13405          * perf_group_detach() would do anyway.
13406          */
13407         for_each_sibling_event(sub, parent_event) {
13408                 child_ctr = inherit_event(sub, parent, parent_ctx,
13409                                             child, leader, child_ctx);
13410                 if (IS_ERR(child_ctr))
13411                         return PTR_ERR(child_ctr);
13412
13413                 if (sub->aux_event == parent_event && child_ctr &&
13414                     !perf_get_aux_event(child_ctr, leader))
13415                         return -EINVAL;
13416         }
13417         if (leader)
13418                 leader->group_generation = parent_event->group_generation;
13419         return 0;
13420 }
13421
13422 /*
13423  * Creates the child task context and tries to inherit the event-group.
13424  *
13425  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13426  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13427  * consistent with perf_event_release_kernel() removing all child events.
13428  *
13429  * Returns:
13430  *  - 0 on success
13431  *  - <0 on error
13432  */
13433 static int
13434 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13435                    struct perf_event_context *parent_ctx,
13436                    struct task_struct *child,
13437                    u64 clone_flags, int *inherited_all)
13438 {
13439         struct perf_event_context *child_ctx;
13440         int ret;
13441
13442         if (!event->attr.inherit ||
13443             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13444             /* Do not inherit if sigtrap and signal handlers were cleared. */
13445             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13446                 *inherited_all = 0;
13447                 return 0;
13448         }
13449
13450         child_ctx = child->perf_event_ctxp;
13451         if (!child_ctx) {
13452                 /*
13453                  * This is executed from the parent task context, so
13454                  * inherit events that have been marked for cloning.
13455                  * First allocate and initialize a context for the
13456                  * child.
13457                  */
13458                 child_ctx = alloc_perf_context(child);
13459                 if (!child_ctx)
13460                         return -ENOMEM;
13461
13462                 child->perf_event_ctxp = child_ctx;
13463         }
13464
13465         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13466         if (ret)
13467                 *inherited_all = 0;
13468
13469         return ret;
13470 }
13471
13472 /*
13473  * Initialize the perf_event context in task_struct
13474  */
13475 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13476 {
13477         struct perf_event_context *child_ctx, *parent_ctx;
13478         struct perf_event_context *cloned_ctx;
13479         struct perf_event *event;
13480         struct task_struct *parent = current;
13481         int inherited_all = 1;
13482         unsigned long flags;
13483         int ret = 0;
13484
13485         if (likely(!parent->perf_event_ctxp))
13486                 return 0;
13487
13488         /*
13489          * If the parent's context is a clone, pin it so it won't get
13490          * swapped under us.
13491          */
13492         parent_ctx = perf_pin_task_context(parent);
13493         if (!parent_ctx)
13494                 return 0;
13495
13496         /*
13497          * No need to check if parent_ctx != NULL here; since we saw
13498          * it non-NULL earlier, the only reason for it to become NULL
13499          * is if we exit, and since we're currently in the middle of
13500          * a fork we can't be exiting at the same time.
13501          */
13502
13503         /*
13504          * Lock the parent list. No need to lock the child - not PID
13505          * hashed yet and not running, so nobody can access it.
13506          */
13507         mutex_lock(&parent_ctx->mutex);
13508
13509         /*
13510          * We dont have to disable NMIs - we are only looking at
13511          * the list, not manipulating it:
13512          */
13513         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13514                 ret = inherit_task_group(event, parent, parent_ctx,
13515                                          child, clone_flags, &inherited_all);
13516                 if (ret)
13517                         goto out_unlock;
13518         }
13519
13520         /*
13521          * We can't hold ctx->lock when iterating the ->flexible_group list due
13522          * to allocations, but we need to prevent rotation because
13523          * rotate_ctx() will change the list from interrupt context.
13524          */
13525         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13526         parent_ctx->rotate_disable = 1;
13527         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13528
13529         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13530                 ret = inherit_task_group(event, parent, parent_ctx,
13531                                          child, clone_flags, &inherited_all);
13532                 if (ret)
13533                         goto out_unlock;
13534         }
13535
13536         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13537         parent_ctx->rotate_disable = 0;
13538
13539         child_ctx = child->perf_event_ctxp;
13540
13541         if (child_ctx && inherited_all) {
13542                 /*
13543                  * Mark the child context as a clone of the parent
13544                  * context, or of whatever the parent is a clone of.
13545                  *
13546                  * Note that if the parent is a clone, the holding of
13547                  * parent_ctx->lock avoids it from being uncloned.
13548                  */
13549                 cloned_ctx = parent_ctx->parent_ctx;
13550                 if (cloned_ctx) {
13551                         child_ctx->parent_ctx = cloned_ctx;
13552                         child_ctx->parent_gen = parent_ctx->parent_gen;
13553                 } else {
13554                         child_ctx->parent_ctx = parent_ctx;
13555                         child_ctx->parent_gen = parent_ctx->generation;
13556                 }
13557                 get_ctx(child_ctx->parent_ctx);
13558         }
13559
13560         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13561 out_unlock:
13562         mutex_unlock(&parent_ctx->mutex);
13563
13564         perf_unpin_context(parent_ctx);
13565         put_ctx(parent_ctx);
13566
13567         return ret;
13568 }
13569
13570 /*
13571  * Initialize the perf_event context in task_struct
13572  */
13573 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13574 {
13575         int ret;
13576
13577         child->perf_event_ctxp = NULL;
13578         mutex_init(&child->perf_event_mutex);
13579         INIT_LIST_HEAD(&child->perf_event_list);
13580
13581         ret = perf_event_init_context(child, clone_flags);
13582         if (ret) {
13583                 perf_event_free_task(child);
13584                 return ret;
13585         }
13586
13587         return 0;
13588 }
13589
13590 static void __init perf_event_init_all_cpus(void)
13591 {
13592         struct swevent_htable *swhash;
13593         struct perf_cpu_context *cpuctx;
13594         int cpu;
13595
13596         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13597
13598         for_each_possible_cpu(cpu) {
13599                 swhash = &per_cpu(swevent_htable, cpu);
13600                 mutex_init(&swhash->hlist_mutex);
13601
13602                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13603                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13604
13605                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13606
13607                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13608                 __perf_event_init_context(&cpuctx->ctx);
13609                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13610                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13611                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13612                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13613                 cpuctx->heap = cpuctx->heap_default;
13614         }
13615 }
13616
13617 static void perf_swevent_init_cpu(unsigned int cpu)
13618 {
13619         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13620
13621         mutex_lock(&swhash->hlist_mutex);
13622         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13623                 struct swevent_hlist *hlist;
13624
13625                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13626                 WARN_ON(!hlist);
13627                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13628         }
13629         mutex_unlock(&swhash->hlist_mutex);
13630 }
13631
13632 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13633 static void __perf_event_exit_context(void *__info)
13634 {
13635         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13636         struct perf_event_context *ctx = __info;
13637         struct perf_event *event;
13638
13639         raw_spin_lock(&ctx->lock);
13640         ctx_sched_out(ctx, EVENT_TIME);
13641         list_for_each_entry(event, &ctx->event_list, event_entry)
13642                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13643         raw_spin_unlock(&ctx->lock);
13644 }
13645
13646 static void perf_event_exit_cpu_context(int cpu)
13647 {
13648         struct perf_cpu_context *cpuctx;
13649         struct perf_event_context *ctx;
13650
13651         // XXX simplify cpuctx->online
13652         mutex_lock(&pmus_lock);
13653         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13654         ctx = &cpuctx->ctx;
13655
13656         mutex_lock(&ctx->mutex);
13657         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13658         cpuctx->online = 0;
13659         mutex_unlock(&ctx->mutex);
13660         cpumask_clear_cpu(cpu, perf_online_mask);
13661         mutex_unlock(&pmus_lock);
13662 }
13663 #else
13664
13665 static void perf_event_exit_cpu_context(int cpu) { }
13666
13667 #endif
13668
13669 int perf_event_init_cpu(unsigned int cpu)
13670 {
13671         struct perf_cpu_context *cpuctx;
13672         struct perf_event_context *ctx;
13673
13674         perf_swevent_init_cpu(cpu);
13675
13676         mutex_lock(&pmus_lock);
13677         cpumask_set_cpu(cpu, perf_online_mask);
13678         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13679         ctx = &cpuctx->ctx;
13680
13681         mutex_lock(&ctx->mutex);
13682         cpuctx->online = 1;
13683         mutex_unlock(&ctx->mutex);
13684         mutex_unlock(&pmus_lock);
13685
13686         return 0;
13687 }
13688
13689 int perf_event_exit_cpu(unsigned int cpu)
13690 {
13691         perf_event_exit_cpu_context(cpu);
13692         return 0;
13693 }
13694
13695 static int
13696 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13697 {
13698         int cpu;
13699
13700         for_each_online_cpu(cpu)
13701                 perf_event_exit_cpu(cpu);
13702
13703         return NOTIFY_OK;
13704 }
13705
13706 /*
13707  * Run the perf reboot notifier at the very last possible moment so that
13708  * the generic watchdog code runs as long as possible.
13709  */
13710 static struct notifier_block perf_reboot_notifier = {
13711         .notifier_call = perf_reboot,
13712         .priority = INT_MIN,
13713 };
13714
13715 void __init perf_event_init(void)
13716 {
13717         int ret;
13718
13719         idr_init(&pmu_idr);
13720
13721         perf_event_init_all_cpus();
13722         init_srcu_struct(&pmus_srcu);
13723         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13724         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13725         perf_pmu_register(&perf_task_clock, "task_clock", -1);
13726         perf_tp_register();
13727         perf_event_init_cpu(smp_processor_id());
13728         register_reboot_notifier(&perf_reboot_notifier);
13729
13730         ret = init_hw_breakpoint();
13731         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13732
13733         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13734
13735         /*
13736          * Build time assertion that we keep the data_head at the intended
13737          * location.  IOW, validation we got the __reserved[] size right.
13738          */
13739         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13740                      != 1024);
13741 }
13742
13743 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13744                               char *page)
13745 {
13746         struct perf_pmu_events_attr *pmu_attr =
13747                 container_of(attr, struct perf_pmu_events_attr, attr);
13748
13749         if (pmu_attr->event_str)
13750                 return sprintf(page, "%s\n", pmu_attr->event_str);
13751
13752         return 0;
13753 }
13754 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13755
13756 static int __init perf_event_sysfs_init(void)
13757 {
13758         struct pmu *pmu;
13759         int ret;
13760
13761         mutex_lock(&pmus_lock);
13762
13763         ret = bus_register(&pmu_bus);
13764         if (ret)
13765                 goto unlock;
13766
13767         list_for_each_entry(pmu, &pmus, entry) {
13768                 if (pmu->dev)
13769                         continue;
13770
13771                 ret = pmu_dev_alloc(pmu);
13772                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13773         }
13774         pmu_bus_running = 1;
13775         ret = 0;
13776
13777 unlock:
13778         mutex_unlock(&pmus_lock);
13779
13780         return ret;
13781 }
13782 device_initcall(perf_event_sysfs_init);
13783
13784 #ifdef CONFIG_CGROUP_PERF
13785 static struct cgroup_subsys_state *
13786 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13787 {
13788         struct perf_cgroup *jc;
13789
13790         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13791         if (!jc)
13792                 return ERR_PTR(-ENOMEM);
13793
13794         jc->info = alloc_percpu(struct perf_cgroup_info);
13795         if (!jc->info) {
13796                 kfree(jc);
13797                 return ERR_PTR(-ENOMEM);
13798         }
13799
13800         return &jc->css;
13801 }
13802
13803 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13804 {
13805         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13806
13807         free_percpu(jc->info);
13808         kfree(jc);
13809 }
13810
13811 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13812 {
13813         perf_event_cgroup(css->cgroup);
13814         return 0;
13815 }
13816
13817 static int __perf_cgroup_move(void *info)
13818 {
13819         struct task_struct *task = info;
13820
13821         preempt_disable();
13822         perf_cgroup_switch(task);
13823         preempt_enable();
13824
13825         return 0;
13826 }
13827
13828 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13829 {
13830         struct task_struct *task;
13831         struct cgroup_subsys_state *css;
13832
13833         cgroup_taskset_for_each(task, css, tset)
13834                 task_function_call(task, __perf_cgroup_move, task);
13835 }
13836
13837 struct cgroup_subsys perf_event_cgrp_subsys = {
13838         .css_alloc      = perf_cgroup_css_alloc,
13839         .css_free       = perf_cgroup_css_free,
13840         .css_online     = perf_cgroup_css_online,
13841         .attach         = perf_cgroup_attach,
13842         /*
13843          * Implicitly enable on dfl hierarchy so that perf events can
13844          * always be filtered by cgroup2 path as long as perf_event
13845          * controller is not mounted on a legacy hierarchy.
13846          */
13847         .implicit_on_dfl = true,
13848         .threaded       = true,
13849 };
13850 #endif /* CONFIG_CGROUP_PERF */
13851
13852 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);