Merge tag 'selinux-pr-20191126' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/vmalloc.h>
16 #include <linux/set_memory.h>
17 #include <linux/swiotlb.h>
18
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 unsigned int zone_dma_bits __ro_after_init = 24;
25
26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28         if (!dev->dma_mask) {
29                 dev_err_once(dev, "DMA map on device without dma_mask\n");
30         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_limit) {
31                 dev_err_once(dev,
32                         "overflow %pad+%zu of DMA mask %llx bus limit %llx\n",
33                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
34         }
35         WARN_ON_ONCE(1);
36 }
37
38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39                 phys_addr_t phys)
40 {
41         if (force_dma_unencrypted(dev))
42                 return __phys_to_dma(dev, phys);
43         return phys_to_dma(dev, phys);
44 }
45
46 static inline struct page *dma_direct_to_page(struct device *dev,
47                 dma_addr_t dma_addr)
48 {
49         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
50 }
51
52 u64 dma_direct_get_required_mask(struct device *dev)
53 {
54         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
55
56         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
57 }
58
59 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
60                 u64 *phys_limit)
61 {
62         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
63
64         if (force_dma_unencrypted(dev))
65                 *phys_limit = __dma_to_phys(dev, dma_limit);
66         else
67                 *phys_limit = dma_to_phys(dev, dma_limit);
68
69         /*
70          * Optimistically try the zone that the physical address mask falls
71          * into first.  If that returns memory that isn't actually addressable
72          * we will fallback to the next lower zone and try again.
73          *
74          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
75          * zones.
76          */
77         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
78                 return GFP_DMA;
79         if (*phys_limit <= DMA_BIT_MASK(32))
80                 return GFP_DMA32;
81         return 0;
82 }
83
84 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
85 {
86         return phys_to_dma_direct(dev, phys) + size - 1 <=
87                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
88 }
89
90 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
91                 gfp_t gfp, unsigned long attrs)
92 {
93         size_t alloc_size = PAGE_ALIGN(size);
94         int node = dev_to_node(dev);
95         struct page *page = NULL;
96         u64 phys_limit;
97
98         if (attrs & DMA_ATTR_NO_WARN)
99                 gfp |= __GFP_NOWARN;
100
101         /* we always manually zero the memory once we are done: */
102         gfp &= ~__GFP_ZERO;
103         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
104                         &phys_limit);
105         page = dma_alloc_contiguous(dev, alloc_size, gfp);
106         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
107                 dma_free_contiguous(dev, page, alloc_size);
108                 page = NULL;
109         }
110 again:
111         if (!page)
112                 page = alloc_pages_node(node, gfp, get_order(alloc_size));
113         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
114                 dma_free_contiguous(dev, page, size);
115                 page = NULL;
116
117                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
118                     phys_limit < DMA_BIT_MASK(64) &&
119                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
120                         gfp |= GFP_DMA32;
121                         goto again;
122                 }
123
124                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
125                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
126                         goto again;
127                 }
128         }
129
130         return page;
131 }
132
133 void *dma_direct_alloc_pages(struct device *dev, size_t size,
134                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135 {
136         struct page *page;
137         void *ret;
138
139         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
140             dma_alloc_need_uncached(dev, attrs) &&
141             !gfpflags_allow_blocking(gfp)) {
142                 ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
143                 if (!ret)
144                         return NULL;
145                 goto done;
146         }
147
148         page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
149         if (!page)
150                 return NULL;
151
152         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
153             !force_dma_unencrypted(dev)) {
154                 /* remove any dirty cache lines on the kernel alias */
155                 if (!PageHighMem(page))
156                         arch_dma_prep_coherent(page, size);
157                 /* return the page pointer as the opaque cookie */
158                 ret = page;
159                 goto done;
160         }
161
162         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
163              dma_alloc_need_uncached(dev, attrs)) ||
164             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
165                 /* remove any dirty cache lines on the kernel alias */
166                 arch_dma_prep_coherent(page, PAGE_ALIGN(size));
167
168                 /* create a coherent mapping */
169                 ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
170                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
171                                 __builtin_return_address(0));
172                 if (!ret) {
173                         dma_free_contiguous(dev, page, size);
174                         return ret;
175                 }
176
177                 memset(ret, 0, size);
178                 goto done;
179         }
180
181         if (PageHighMem(page)) {
182                 /*
183                  * Depending on the cma= arguments and per-arch setup
184                  * dma_alloc_contiguous could return highmem pages.
185                  * Without remapping there is no way to return them here,
186                  * so log an error and fail.
187                  */
188                 dev_info(dev, "Rejecting highmem page from CMA.\n");
189                 dma_free_contiguous(dev, page, size);
190                 return NULL;
191         }
192
193         ret = page_address(page);
194         if (force_dma_unencrypted(dev))
195                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
196
197         memset(ret, 0, size);
198
199         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
200             dma_alloc_need_uncached(dev, attrs)) {
201                 arch_dma_prep_coherent(page, size);
202                 ret = uncached_kernel_address(ret);
203         }
204 done:
205         if (force_dma_unencrypted(dev))
206                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
207         else
208                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
209         return ret;
210 }
211
212 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
213                 dma_addr_t dma_addr, unsigned long attrs)
214 {
215         unsigned int page_order = get_order(size);
216
217         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
218             !force_dma_unencrypted(dev)) {
219                 /* cpu_addr is a struct page cookie, not a kernel address */
220                 dma_free_contiguous(dev, cpu_addr, size);
221                 return;
222         }
223
224         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
225             dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
226                 return;
227
228         if (force_dma_unencrypted(dev))
229                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
230
231         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
232                 vunmap(cpu_addr);
233
234         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
235 }
236
237 void *dma_direct_alloc(struct device *dev, size_t size,
238                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
239 {
240         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
241             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
242             dma_alloc_need_uncached(dev, attrs))
243                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
244         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
245 }
246
247 void dma_direct_free(struct device *dev, size_t size,
248                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
249 {
250         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
251             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
252             dma_alloc_need_uncached(dev, attrs))
253                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
254         else
255                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
256 }
257
258 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
259     defined(CONFIG_SWIOTLB)
260 void dma_direct_sync_single_for_device(struct device *dev,
261                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
262 {
263         phys_addr_t paddr = dma_to_phys(dev, addr);
264
265         if (unlikely(is_swiotlb_buffer(paddr)))
266                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
267
268         if (!dev_is_dma_coherent(dev))
269                 arch_sync_dma_for_device(paddr, size, dir);
270 }
271 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
272
273 void dma_direct_sync_sg_for_device(struct device *dev,
274                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
275 {
276         struct scatterlist *sg;
277         int i;
278
279         for_each_sg(sgl, sg, nents, i) {
280                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
281
282                 if (unlikely(is_swiotlb_buffer(paddr)))
283                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
284                                         dir, SYNC_FOR_DEVICE);
285
286                 if (!dev_is_dma_coherent(dev))
287                         arch_sync_dma_for_device(paddr, sg->length,
288                                         dir);
289         }
290 }
291 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
292 #endif
293
294 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
295     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
296     defined(CONFIG_SWIOTLB)
297 void dma_direct_sync_single_for_cpu(struct device *dev,
298                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
299 {
300         phys_addr_t paddr = dma_to_phys(dev, addr);
301
302         if (!dev_is_dma_coherent(dev)) {
303                 arch_sync_dma_for_cpu(paddr, size, dir);
304                 arch_sync_dma_for_cpu_all();
305         }
306
307         if (unlikely(is_swiotlb_buffer(paddr)))
308                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
309 }
310 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
311
312 void dma_direct_sync_sg_for_cpu(struct device *dev,
313                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
314 {
315         struct scatterlist *sg;
316         int i;
317
318         for_each_sg(sgl, sg, nents, i) {
319                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
320
321                 if (!dev_is_dma_coherent(dev))
322                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
323
324                 if (unlikely(is_swiotlb_buffer(paddr)))
325                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
326                                         SYNC_FOR_CPU);
327         }
328
329         if (!dev_is_dma_coherent(dev))
330                 arch_sync_dma_for_cpu_all();
331 }
332 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
333
334 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
335                 size_t size, enum dma_data_direction dir, unsigned long attrs)
336 {
337         phys_addr_t phys = dma_to_phys(dev, addr);
338
339         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
340                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
341
342         if (unlikely(is_swiotlb_buffer(phys)))
343                 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
344 }
345 EXPORT_SYMBOL(dma_direct_unmap_page);
346
347 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
348                 int nents, enum dma_data_direction dir, unsigned long attrs)
349 {
350         struct scatterlist *sg;
351         int i;
352
353         for_each_sg(sgl, sg, nents, i)
354                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
355                              attrs);
356 }
357 EXPORT_SYMBOL(dma_direct_unmap_sg);
358 #endif
359
360 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
361                 size_t size)
362 {
363         return swiotlb_force != SWIOTLB_FORCE &&
364                 dma_capable(dev, dma_addr, size, true);
365 }
366
367 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
368                 unsigned long offset, size_t size, enum dma_data_direction dir,
369                 unsigned long attrs)
370 {
371         phys_addr_t phys = page_to_phys(page) + offset;
372         dma_addr_t dma_addr = phys_to_dma(dev, phys);
373
374         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
375             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
376                 report_addr(dev, dma_addr, size);
377                 return DMA_MAPPING_ERROR;
378         }
379
380         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
381                 arch_sync_dma_for_device(phys, size, dir);
382         return dma_addr;
383 }
384 EXPORT_SYMBOL(dma_direct_map_page);
385
386 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
387                 enum dma_data_direction dir, unsigned long attrs)
388 {
389         int i;
390         struct scatterlist *sg;
391
392         for_each_sg(sgl, sg, nents, i) {
393                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
394                                 sg->offset, sg->length, dir, attrs);
395                 if (sg->dma_address == DMA_MAPPING_ERROR)
396                         goto out_unmap;
397                 sg_dma_len(sg) = sg->length;
398         }
399
400         return nents;
401
402 out_unmap:
403         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
404         return 0;
405 }
406 EXPORT_SYMBOL(dma_direct_map_sg);
407
408 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
409                 size_t size, enum dma_data_direction dir, unsigned long attrs)
410 {
411         dma_addr_t dma_addr = paddr;
412
413         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
414                 report_addr(dev, dma_addr, size);
415                 return DMA_MAPPING_ERROR;
416         }
417
418         return dma_addr;
419 }
420 EXPORT_SYMBOL(dma_direct_map_resource);
421
422 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
423                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
424                 unsigned long attrs)
425 {
426         struct page *page = dma_direct_to_page(dev, dma_addr);
427         int ret;
428
429         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
430         if (!ret)
431                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
432         return ret;
433 }
434
435 #ifdef CONFIG_MMU
436 bool dma_direct_can_mmap(struct device *dev)
437 {
438         return dev_is_dma_coherent(dev) ||
439                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
440 }
441
442 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
443                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
444                 unsigned long attrs)
445 {
446         unsigned long user_count = vma_pages(vma);
447         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
448         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
449         int ret = -ENXIO;
450
451         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
452
453         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
454                 return ret;
455
456         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
457                 return -ENXIO;
458         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
459                         user_count << PAGE_SHIFT, vma->vm_page_prot);
460 }
461 #else /* CONFIG_MMU */
462 bool dma_direct_can_mmap(struct device *dev)
463 {
464         return false;
465 }
466
467 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
468                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
469                 unsigned long attrs)
470 {
471         return -ENXIO;
472 }
473 #endif /* CONFIG_MMU */
474
475 /*
476  * Because 32-bit DMA masks are so common we expect every architecture to be
477  * able to satisfy them - either by not supporting more physical memory, or by
478  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
479  * use an IOMMU instead of the direct mapping.
480  */
481 int dma_direct_supported(struct device *dev, u64 mask)
482 {
483         u64 min_mask;
484
485         if (IS_ENABLED(CONFIG_ZONE_DMA))
486                 min_mask = DMA_BIT_MASK(zone_dma_bits);
487         else
488                 min_mask = DMA_BIT_MASK(32);
489
490         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
491
492         /*
493          * This check needs to be against the actual bit mask value, so
494          * use __phys_to_dma() here so that the SME encryption mask isn't
495          * part of the check.
496          */
497         return mask >= __phys_to_dma(dev, min_mask);
498 }
499
500 size_t dma_direct_max_mapping_size(struct device *dev)
501 {
502         /* If SWIOTLB is active, use its maximum mapping size */
503         if (is_swiotlb_active() &&
504             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
505                 return swiotlb_max_mapping_size(dev);
506         return SIZE_MAX;
507 }