Merge branch 'kvm-fixes' into 'next'
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/pfn.h>
14 #include <linux/vmalloc.h>
15 #include <linux/set_memory.h>
16
17 /*
18  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
19  * it for entirely different regions. In that case the arch code needs to
20  * override the variable below for dma-direct to work properly.
21  */
22 unsigned int zone_dma_bits __ro_after_init = 24;
23
24 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
25                 phys_addr_t phys)
26 {
27         if (force_dma_unencrypted(dev))
28                 return __phys_to_dma(dev, phys);
29         return phys_to_dma(dev, phys);
30 }
31
32 static inline struct page *dma_direct_to_page(struct device *dev,
33                 dma_addr_t dma_addr)
34 {
35         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
36 }
37
38 u64 dma_direct_get_required_mask(struct device *dev)
39 {
40         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
41         u64 max_dma = phys_to_dma_direct(dev, phys);
42
43         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
44 }
45
46 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
47                                   u64 *phys_limit)
48 {
49         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
50
51         if (force_dma_unencrypted(dev))
52                 *phys_limit = __dma_to_phys(dev, dma_limit);
53         else
54                 *phys_limit = dma_to_phys(dev, dma_limit);
55
56         /*
57          * Optimistically try the zone that the physical address mask falls
58          * into first.  If that returns memory that isn't actually addressable
59          * we will fallback to the next lower zone and try again.
60          *
61          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
62          * zones.
63          */
64         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
65                 return GFP_DMA;
66         if (*phys_limit <= DMA_BIT_MASK(32))
67                 return GFP_DMA32;
68         return 0;
69 }
70
71 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
72 {
73         return phys_to_dma_direct(dev, phys) + size - 1 <=
74                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
75 }
76
77 /*
78  * Decrypting memory is allowed to block, so if this device requires
79  * unencrypted memory it must come from atomic pools.
80  */
81 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
82                                               unsigned long attrs)
83 {
84         if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
85                 return false;
86         if (gfpflags_allow_blocking(gfp))
87                 return false;
88         if (force_dma_unencrypted(dev))
89                 return true;
90         if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
91                 return false;
92         if (dma_alloc_need_uncached(dev, attrs))
93                 return true;
94         return false;
95 }
96
97 static inline bool dma_should_free_from_pool(struct device *dev,
98                                              unsigned long attrs)
99 {
100         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
101                 return true;
102         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
103             !force_dma_unencrypted(dev))
104                 return false;
105         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
106                 return true;
107         return false;
108 }
109
110 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
111                 gfp_t gfp, unsigned long attrs)
112 {
113         int node = dev_to_node(dev);
114         struct page *page = NULL;
115         u64 phys_limit;
116
117         WARN_ON_ONCE(!PAGE_ALIGNED(size));
118
119         if (attrs & DMA_ATTR_NO_WARN)
120                 gfp |= __GFP_NOWARN;
121
122         /* we always manually zero the memory once we are done: */
123         gfp &= ~__GFP_ZERO;
124         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125                                            &phys_limit);
126         page = dma_alloc_contiguous(dev, size, gfp);
127         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
128                 dma_free_contiguous(dev, page, size);
129                 page = NULL;
130         }
131 again:
132         if (!page)
133                 page = alloc_pages_node(node, gfp, get_order(size));
134         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
135                 dma_free_contiguous(dev, page, size);
136                 page = NULL;
137
138                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
139                     phys_limit < DMA_BIT_MASK(64) &&
140                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
141                         gfp |= GFP_DMA32;
142                         goto again;
143                 }
144
145                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
146                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
147                         goto again;
148                 }
149         }
150
151         return page;
152 }
153
154 void *dma_direct_alloc_pages(struct device *dev, size_t size,
155                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
156 {
157         struct page *page;
158         void *ret;
159         int err;
160
161         size = PAGE_ALIGN(size);
162
163         if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
164                 u64 phys_mask;
165
166                 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
167                                 &phys_mask);
168                 page = dma_alloc_from_pool(dev, size, &ret, gfp,
169                                 dma_coherent_ok);
170                 if (!page)
171                         return NULL;
172                 goto done;
173         }
174
175         page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
176         if (!page)
177                 return NULL;
178
179         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
180             !force_dma_unencrypted(dev)) {
181                 /* remove any dirty cache lines on the kernel alias */
182                 if (!PageHighMem(page))
183                         arch_dma_prep_coherent(page, size);
184                 /* return the page pointer as the opaque cookie */
185                 ret = page;
186                 goto done;
187         }
188
189         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
190              dma_alloc_need_uncached(dev, attrs)) ||
191             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
192                 /* remove any dirty cache lines on the kernel alias */
193                 arch_dma_prep_coherent(page, size);
194
195                 /* create a coherent mapping */
196                 ret = dma_common_contiguous_remap(page, size,
197                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
198                                 __builtin_return_address(0));
199                 if (!ret)
200                         goto out_free_pages;
201                 if (force_dma_unencrypted(dev)) {
202                         err = set_memory_decrypted((unsigned long)ret,
203                                                    1 << get_order(size));
204                         if (err)
205                                 goto out_free_pages;
206                 }
207                 memset(ret, 0, size);
208                 goto done;
209         }
210
211         if (PageHighMem(page)) {
212                 /*
213                  * Depending on the cma= arguments and per-arch setup
214                  * dma_alloc_contiguous could return highmem pages.
215                  * Without remapping there is no way to return them here,
216                  * so log an error and fail.
217                  */
218                 dev_info(dev, "Rejecting highmem page from CMA.\n");
219                 goto out_free_pages;
220         }
221
222         ret = page_address(page);
223         if (force_dma_unencrypted(dev)) {
224                 err = set_memory_decrypted((unsigned long)ret,
225                                            1 << get_order(size));
226                 if (err)
227                         goto out_free_pages;
228         }
229
230         memset(ret, 0, size);
231
232         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
233             dma_alloc_need_uncached(dev, attrs)) {
234                 arch_dma_prep_coherent(page, size);
235                 ret = arch_dma_set_uncached(ret, size);
236                 if (IS_ERR(ret))
237                         goto out_encrypt_pages;
238         }
239 done:
240         if (force_dma_unencrypted(dev))
241                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
242         else
243                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
244         return ret;
245
246 out_encrypt_pages:
247         if (force_dma_unencrypted(dev)) {
248                 err = set_memory_encrypted((unsigned long)page_address(page),
249                                            1 << get_order(size));
250                 /* If memory cannot be re-encrypted, it must be leaked */
251                 if (err)
252                         return NULL;
253         }
254 out_free_pages:
255         dma_free_contiguous(dev, page, size);
256         return NULL;
257 }
258
259 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
260                 dma_addr_t dma_addr, unsigned long attrs)
261 {
262         unsigned int page_order = get_order(size);
263
264         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
265         if (dma_should_free_from_pool(dev, attrs) &&
266             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
267                 return;
268
269         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
270             !force_dma_unencrypted(dev)) {
271                 /* cpu_addr is a struct page cookie, not a kernel address */
272                 dma_free_contiguous(dev, cpu_addr, size);
273                 return;
274         }
275
276         if (force_dma_unencrypted(dev))
277                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
278
279         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
280                 vunmap(cpu_addr);
281         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
282                 arch_dma_clear_uncached(cpu_addr, size);
283
284         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
285 }
286
287 void *dma_direct_alloc(struct device *dev, size_t size,
288                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
289 {
290         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
291             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
292             dma_alloc_need_uncached(dev, attrs))
293                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
294         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
295 }
296
297 void dma_direct_free(struct device *dev, size_t size,
298                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
299 {
300         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
301             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
302             dma_alloc_need_uncached(dev, attrs))
303                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
304         else
305                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
306 }
307
308 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
309     defined(CONFIG_SWIOTLB)
310 void dma_direct_sync_sg_for_device(struct device *dev,
311                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
312 {
313         struct scatterlist *sg;
314         int i;
315
316         for_each_sg(sgl, sg, nents, i) {
317                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
318
319                 if (unlikely(is_swiotlb_buffer(paddr)))
320                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
321                                         dir, SYNC_FOR_DEVICE);
322
323                 if (!dev_is_dma_coherent(dev))
324                         arch_sync_dma_for_device(paddr, sg->length,
325                                         dir);
326         }
327 }
328 #endif
329
330 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
331     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
332     defined(CONFIG_SWIOTLB)
333 void dma_direct_sync_sg_for_cpu(struct device *dev,
334                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
335 {
336         struct scatterlist *sg;
337         int i;
338
339         for_each_sg(sgl, sg, nents, i) {
340                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
341
342                 if (!dev_is_dma_coherent(dev))
343                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
344
345                 if (unlikely(is_swiotlb_buffer(paddr)))
346                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
347                                         SYNC_FOR_CPU);
348         }
349
350         if (!dev_is_dma_coherent(dev))
351                 arch_sync_dma_for_cpu_all();
352 }
353
354 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
355                 int nents, enum dma_data_direction dir, unsigned long attrs)
356 {
357         struct scatterlist *sg;
358         int i;
359
360         for_each_sg(sgl, sg, nents, i)
361                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
362                              attrs);
363 }
364 #endif
365
366 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
367                 enum dma_data_direction dir, unsigned long attrs)
368 {
369         int i;
370         struct scatterlist *sg;
371
372         for_each_sg(sgl, sg, nents, i) {
373                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
374                                 sg->offset, sg->length, dir, attrs);
375                 if (sg->dma_address == DMA_MAPPING_ERROR)
376                         goto out_unmap;
377                 sg_dma_len(sg) = sg->length;
378         }
379
380         return nents;
381
382 out_unmap:
383         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
384         return 0;
385 }
386
387 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
388                 size_t size, enum dma_data_direction dir, unsigned long attrs)
389 {
390         dma_addr_t dma_addr = paddr;
391
392         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
393                 dev_err_once(dev,
394                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
395                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
396                 WARN_ON_ONCE(1);
397                 return DMA_MAPPING_ERROR;
398         }
399
400         return dma_addr;
401 }
402
403 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
404                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
405                 unsigned long attrs)
406 {
407         struct page *page = dma_direct_to_page(dev, dma_addr);
408         int ret;
409
410         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
411         if (!ret)
412                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
413         return ret;
414 }
415
416 bool dma_direct_can_mmap(struct device *dev)
417 {
418         return dev_is_dma_coherent(dev) ||
419                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
420 }
421
422 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
423                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
424                 unsigned long attrs)
425 {
426         unsigned long user_count = vma_pages(vma);
427         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
428         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
429         int ret = -ENXIO;
430
431         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
432
433         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
434                 return ret;
435
436         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
437                 return -ENXIO;
438         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
439                         user_count << PAGE_SHIFT, vma->vm_page_prot);
440 }
441
442 int dma_direct_supported(struct device *dev, u64 mask)
443 {
444         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
445
446         /*
447          * Because 32-bit DMA masks are so common we expect every architecture
448          * to be able to satisfy them - either by not supporting more physical
449          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
450          * architecture needs to use an IOMMU instead of the direct mapping.
451          */
452         if (mask >= DMA_BIT_MASK(32))
453                 return 1;
454
455         /*
456          * This check needs to be against the actual bit mask value, so
457          * use __phys_to_dma() here so that the SME encryption mask isn't
458          * part of the check.
459          */
460         if (IS_ENABLED(CONFIG_ZONE_DMA))
461                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
462         return mask >= __phys_to_dma(dev, min_mask);
463 }
464
465 size_t dma_direct_max_mapping_size(struct device *dev)
466 {
467         /* If SWIOTLB is active, use its maximum mapping size */
468         if (is_swiotlb_active() &&
469             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
470                 return swiotlb_max_mapping_size(dev);
471         return SIZE_MAX;
472 }
473
474 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
475 {
476         return !dev_is_dma_coherent(dev) ||
477                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
478 }