RDMA/rtrs: client: main functionality
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/vmalloc.h>
16 #include <linux/set_memory.h>
17 #include <linux/swiotlb.h>
18
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 unsigned int zone_dma_bits __ro_after_init = 24;
25
26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27                 phys_addr_t phys)
28 {
29         if (force_dma_unencrypted(dev))
30                 return __phys_to_dma(dev, phys);
31         return phys_to_dma(dev, phys);
32 }
33
34 static inline struct page *dma_direct_to_page(struct device *dev,
35                 dma_addr_t dma_addr)
36 {
37         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39
40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43         u64 max_dma = phys_to_dma_direct(dev, phys);
44
45         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47
48 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
49                 u64 *phys_limit)
50 {
51         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
52
53         if (force_dma_unencrypted(dev))
54                 *phys_limit = __dma_to_phys(dev, dma_limit);
55         else
56                 *phys_limit = dma_to_phys(dev, dma_limit);
57
58         /*
59          * Optimistically try the zone that the physical address mask falls
60          * into first.  If that returns memory that isn't actually addressable
61          * we will fallback to the next lower zone and try again.
62          *
63          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
64          * zones.
65          */
66         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
67                 return GFP_DMA;
68         if (*phys_limit <= DMA_BIT_MASK(32))
69                 return GFP_DMA32;
70         return 0;
71 }
72
73 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
74 {
75         return phys_to_dma_direct(dev, phys) + size - 1 <=
76                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78
79 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
80                 gfp_t gfp, unsigned long attrs)
81 {
82         size_t alloc_size = PAGE_ALIGN(size);
83         int node = dev_to_node(dev);
84         struct page *page = NULL;
85         u64 phys_limit;
86
87         if (attrs & DMA_ATTR_NO_WARN)
88                 gfp |= __GFP_NOWARN;
89
90         /* we always manually zero the memory once we are done: */
91         gfp &= ~__GFP_ZERO;
92         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
93                         &phys_limit);
94         page = dma_alloc_contiguous(dev, alloc_size, gfp);
95         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
96                 dma_free_contiguous(dev, page, alloc_size);
97                 page = NULL;
98         }
99 again:
100         if (!page)
101                 page = alloc_pages_node(node, gfp, get_order(alloc_size));
102         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
103                 dma_free_contiguous(dev, page, size);
104                 page = NULL;
105
106                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
107                     phys_limit < DMA_BIT_MASK(64) &&
108                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
109                         gfp |= GFP_DMA32;
110                         goto again;
111                 }
112
113                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
114                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
115                         goto again;
116                 }
117         }
118
119         return page;
120 }
121
122 void *dma_direct_alloc_pages(struct device *dev, size_t size,
123                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
124 {
125         struct page *page;
126         void *ret;
127
128         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
129             dma_alloc_need_uncached(dev, attrs) &&
130             !gfpflags_allow_blocking(gfp)) {
131                 ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
132                 if (!ret)
133                         return NULL;
134                 goto done;
135         }
136
137         page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
138         if (!page)
139                 return NULL;
140
141         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
142             !force_dma_unencrypted(dev)) {
143                 /* remove any dirty cache lines on the kernel alias */
144                 if (!PageHighMem(page))
145                         arch_dma_prep_coherent(page, size);
146                 /* return the page pointer as the opaque cookie */
147                 ret = page;
148                 goto done;
149         }
150
151         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
152              dma_alloc_need_uncached(dev, attrs)) ||
153             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
154                 /* remove any dirty cache lines on the kernel alias */
155                 arch_dma_prep_coherent(page, PAGE_ALIGN(size));
156
157                 /* create a coherent mapping */
158                 ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
159                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
160                                 __builtin_return_address(0));
161                 if (!ret)
162                         goto out_free_pages;
163                 memset(ret, 0, size);
164                 goto done;
165         }
166
167         if (PageHighMem(page)) {
168                 /*
169                  * Depending on the cma= arguments and per-arch setup
170                  * dma_alloc_contiguous could return highmem pages.
171                  * Without remapping there is no way to return them here,
172                  * so log an error and fail.
173                  */
174                 dev_info(dev, "Rejecting highmem page from CMA.\n");
175                 goto out_free_pages;
176         }
177
178         ret = page_address(page);
179         if (force_dma_unencrypted(dev))
180                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
181
182         memset(ret, 0, size);
183
184         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
185             dma_alloc_need_uncached(dev, attrs)) {
186                 arch_dma_prep_coherent(page, size);
187                 ret = arch_dma_set_uncached(ret, size);
188                 if (IS_ERR(ret))
189                         goto out_free_pages;
190         }
191 done:
192         if (force_dma_unencrypted(dev))
193                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
194         else
195                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
196         return ret;
197 out_free_pages:
198         dma_free_contiguous(dev, page, size);
199         return NULL;
200 }
201
202 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
203                 dma_addr_t dma_addr, unsigned long attrs)
204 {
205         unsigned int page_order = get_order(size);
206
207         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
208             !force_dma_unencrypted(dev)) {
209                 /* cpu_addr is a struct page cookie, not a kernel address */
210                 dma_free_contiguous(dev, cpu_addr, size);
211                 return;
212         }
213
214         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
215             dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
216                 return;
217
218         if (force_dma_unencrypted(dev))
219                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
220
221         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
222                 vunmap(cpu_addr);
223         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
224                 arch_dma_clear_uncached(cpu_addr, size);
225
226         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
227 }
228
229 void *dma_direct_alloc(struct device *dev, size_t size,
230                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
231 {
232         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
233             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
234             dma_alloc_need_uncached(dev, attrs))
235                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
236         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
237 }
238
239 void dma_direct_free(struct device *dev, size_t size,
240                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
241 {
242         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
243             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
244             dma_alloc_need_uncached(dev, attrs))
245                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
246         else
247                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
248 }
249
250 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
251     defined(CONFIG_SWIOTLB)
252 void dma_direct_sync_single_for_device(struct device *dev,
253                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
254 {
255         phys_addr_t paddr = dma_to_phys(dev, addr);
256
257         if (unlikely(is_swiotlb_buffer(paddr)))
258                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
259
260         if (!dev_is_dma_coherent(dev))
261                 arch_sync_dma_for_device(paddr, size, dir);
262 }
263 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
264
265 void dma_direct_sync_sg_for_device(struct device *dev,
266                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
267 {
268         struct scatterlist *sg;
269         int i;
270
271         for_each_sg(sgl, sg, nents, i) {
272                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
273
274                 if (unlikely(is_swiotlb_buffer(paddr)))
275                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
276                                         dir, SYNC_FOR_DEVICE);
277
278                 if (!dev_is_dma_coherent(dev))
279                         arch_sync_dma_for_device(paddr, sg->length,
280                                         dir);
281         }
282 }
283 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
284 #endif
285
286 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
287     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
288     defined(CONFIG_SWIOTLB)
289 void dma_direct_sync_single_for_cpu(struct device *dev,
290                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
291 {
292         phys_addr_t paddr = dma_to_phys(dev, addr);
293
294         if (!dev_is_dma_coherent(dev)) {
295                 arch_sync_dma_for_cpu(paddr, size, dir);
296                 arch_sync_dma_for_cpu_all();
297         }
298
299         if (unlikely(is_swiotlb_buffer(paddr)))
300                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
301 }
302 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
303
304 void dma_direct_sync_sg_for_cpu(struct device *dev,
305                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
306 {
307         struct scatterlist *sg;
308         int i;
309
310         for_each_sg(sgl, sg, nents, i) {
311                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
312
313                 if (!dev_is_dma_coherent(dev))
314                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
315
316                 if (unlikely(is_swiotlb_buffer(paddr)))
317                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
318                                         SYNC_FOR_CPU);
319         }
320
321         if (!dev_is_dma_coherent(dev))
322                 arch_sync_dma_for_cpu_all();
323 }
324 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
325
326 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
327                 size_t size, enum dma_data_direction dir, unsigned long attrs)
328 {
329         phys_addr_t phys = dma_to_phys(dev, addr);
330
331         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
332                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
333
334         if (unlikely(is_swiotlb_buffer(phys)))
335                 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
336 }
337 EXPORT_SYMBOL(dma_direct_unmap_page);
338
339 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
340                 int nents, enum dma_data_direction dir, unsigned long attrs)
341 {
342         struct scatterlist *sg;
343         int i;
344
345         for_each_sg(sgl, sg, nents, i)
346                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
347                              attrs);
348 }
349 EXPORT_SYMBOL(dma_direct_unmap_sg);
350 #endif
351
352 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
353                 unsigned long offset, size_t size, enum dma_data_direction dir,
354                 unsigned long attrs)
355 {
356         phys_addr_t phys = page_to_phys(page) + offset;
357         dma_addr_t dma_addr = phys_to_dma(dev, phys);
358
359         if (unlikely(swiotlb_force == SWIOTLB_FORCE))
360                 return swiotlb_map(dev, phys, size, dir, attrs);
361
362         if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
363                 if (swiotlb_force != SWIOTLB_NO_FORCE)
364                         return swiotlb_map(dev, phys, size, dir, attrs);
365
366                 dev_WARN_ONCE(dev, 1,
367                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
368                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
369                 return DMA_MAPPING_ERROR;
370         }
371
372         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
373                 arch_sync_dma_for_device(phys, size, dir);
374         return dma_addr;
375 }
376 EXPORT_SYMBOL(dma_direct_map_page);
377
378 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
379                 enum dma_data_direction dir, unsigned long attrs)
380 {
381         int i;
382         struct scatterlist *sg;
383
384         for_each_sg(sgl, sg, nents, i) {
385                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
386                                 sg->offset, sg->length, dir, attrs);
387                 if (sg->dma_address == DMA_MAPPING_ERROR)
388                         goto out_unmap;
389                 sg_dma_len(sg) = sg->length;
390         }
391
392         return nents;
393
394 out_unmap:
395         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
396         return 0;
397 }
398 EXPORT_SYMBOL(dma_direct_map_sg);
399
400 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
401                 size_t size, enum dma_data_direction dir, unsigned long attrs)
402 {
403         dma_addr_t dma_addr = paddr;
404
405         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
406                 dev_err_once(dev,
407                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
408                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
409                 WARN_ON_ONCE(1);
410                 return DMA_MAPPING_ERROR;
411         }
412
413         return dma_addr;
414 }
415 EXPORT_SYMBOL(dma_direct_map_resource);
416
417 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
418                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
419                 unsigned long attrs)
420 {
421         struct page *page = dma_direct_to_page(dev, dma_addr);
422         int ret;
423
424         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
425         if (!ret)
426                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
427         return ret;
428 }
429
430 #ifdef CONFIG_MMU
431 bool dma_direct_can_mmap(struct device *dev)
432 {
433         return dev_is_dma_coherent(dev) ||
434                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
435 }
436
437 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
438                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
439                 unsigned long attrs)
440 {
441         unsigned long user_count = vma_pages(vma);
442         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
443         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
444         int ret = -ENXIO;
445
446         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
447
448         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
449                 return ret;
450
451         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
452                 return -ENXIO;
453         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
454                         user_count << PAGE_SHIFT, vma->vm_page_prot);
455 }
456 #else /* CONFIG_MMU */
457 bool dma_direct_can_mmap(struct device *dev)
458 {
459         return false;
460 }
461
462 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
463                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
464                 unsigned long attrs)
465 {
466         return -ENXIO;
467 }
468 #endif /* CONFIG_MMU */
469
470 int dma_direct_supported(struct device *dev, u64 mask)
471 {
472         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
473
474         /*
475          * Because 32-bit DMA masks are so common we expect every architecture
476          * to be able to satisfy them - either by not supporting more physical
477          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
478          * architecture needs to use an IOMMU instead of the direct mapping.
479          */
480         if (mask >= DMA_BIT_MASK(32))
481                 return 1;
482
483         /*
484          * This check needs to be against the actual bit mask value, so
485          * use __phys_to_dma() here so that the SME encryption mask isn't
486          * part of the check.
487          */
488         if (IS_ENABLED(CONFIG_ZONE_DMA))
489                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
490         return mask >= __phys_to_dma(dev, min_mask);
491 }
492
493 size_t dma_direct_max_mapping_size(struct device *dev)
494 {
495         /* If SWIOTLB is active, use its maximum mapping size */
496         if (is_swiotlb_active() &&
497             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
498                 return swiotlb_max_mapping_size(dev);
499         return SIZE_MAX;
500 }