8cf5689a8c40445ec81df2a85fc35142d62bd411
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-map-ops.h>
12 #include <linux/scatterlist.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/pfn.h>
15 #include <linux/vmalloc.h>
16 #include <linux/set_memory.h>
17 #include <linux/slab.h>
18
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 unsigned int zone_dma_bits __ro_after_init = 24;
25
26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27                 phys_addr_t phys)
28 {
29         if (force_dma_unencrypted(dev))
30                 return phys_to_dma_unencrypted(dev, phys);
31         return phys_to_dma(dev, phys);
32 }
33
34 static inline struct page *dma_direct_to_page(struct device *dev,
35                 dma_addr_t dma_addr)
36 {
37         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39
40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43         u64 max_dma = phys_to_dma_direct(dev, phys);
44
45         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47
48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
49                                   u64 *phys_limit)
50 {
51         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
52
53         /*
54          * Optimistically try the zone that the physical address mask falls
55          * into first.  If that returns memory that isn't actually addressable
56          * we will fallback to the next lower zone and try again.
57          *
58          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59          * zones.
60          */
61         *phys_limit = dma_to_phys(dev, dma_limit);
62         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63                 return GFP_DMA;
64         if (*phys_limit <= DMA_BIT_MASK(32))
65                 return GFP_DMA32;
66         return 0;
67 }
68
69 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 {
71         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72
73         if (dma_addr == DMA_MAPPING_ERROR)
74                 return false;
75         return dma_addr + size - 1 <=
76                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78
79 /*
80  * Decrypting memory is allowed to block, so if this device requires
81  * unencrypted memory it must come from atomic pools.
82  */
83 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
84                                               unsigned long attrs)
85 {
86         if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
87                 return false;
88         if (gfpflags_allow_blocking(gfp))
89                 return false;
90         if (force_dma_unencrypted(dev))
91                 return true;
92         if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
93                 return false;
94         if (dma_alloc_need_uncached(dev, attrs))
95                 return true;
96         return false;
97 }
98
99 static inline bool dma_should_free_from_pool(struct device *dev,
100                                              unsigned long attrs)
101 {
102         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
103                 return true;
104         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
105             !force_dma_unencrypted(dev))
106                 return false;
107         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
108                 return true;
109         return false;
110 }
111
112 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
113                 gfp_t gfp)
114 {
115         int node = dev_to_node(dev);
116         struct page *page = NULL;
117         u64 phys_limit;
118
119         WARN_ON_ONCE(!PAGE_ALIGNED(size));
120
121         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
122                                            &phys_limit);
123         page = dma_alloc_contiguous(dev, size, gfp);
124         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
125                 dma_free_contiguous(dev, page, size);
126                 page = NULL;
127         }
128 again:
129         if (!page)
130                 page = alloc_pages_node(node, gfp, get_order(size));
131         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
132                 dma_free_contiguous(dev, page, size);
133                 page = NULL;
134
135                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
136                     phys_limit < DMA_BIT_MASK(64) &&
137                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
138                         gfp |= GFP_DMA32;
139                         goto again;
140                 }
141
142                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
143                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
144                         goto again;
145                 }
146         }
147
148         return page;
149 }
150
151 void *dma_direct_alloc(struct device *dev, size_t size,
152                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
153 {
154         struct page *page;
155         void *ret;
156         int err;
157
158         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
159             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
160             dma_alloc_need_uncached(dev, attrs))
161                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
162
163         size = PAGE_ALIGN(size);
164         if (attrs & DMA_ATTR_NO_WARN)
165                 gfp |= __GFP_NOWARN;
166
167         if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
168                 u64 phys_mask;
169
170                 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
171                                 &phys_mask);
172                 page = dma_alloc_from_pool(dev, size, &ret, gfp,
173                                 dma_coherent_ok);
174                 if (!page)
175                         return NULL;
176                 goto done;
177         }
178
179         /* we always manually zero the memory once we are done */
180         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
181         if (!page)
182                 return NULL;
183
184         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
185             !force_dma_unencrypted(dev)) {
186                 /* remove any dirty cache lines on the kernel alias */
187                 if (!PageHighMem(page))
188                         arch_dma_prep_coherent(page, size);
189                 /* return the page pointer as the opaque cookie */
190                 ret = page;
191                 goto done;
192         }
193
194         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
195              dma_alloc_need_uncached(dev, attrs)) ||
196             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
197                 /* remove any dirty cache lines on the kernel alias */
198                 arch_dma_prep_coherent(page, size);
199
200                 /* create a coherent mapping */
201                 ret = dma_common_contiguous_remap(page, size,
202                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
203                                 __builtin_return_address(0));
204                 if (!ret)
205                         goto out_free_pages;
206                 if (force_dma_unencrypted(dev)) {
207                         err = set_memory_decrypted((unsigned long)ret,
208                                                    1 << get_order(size));
209                         if (err)
210                                 goto out_free_pages;
211                 }
212                 memset(ret, 0, size);
213                 goto done;
214         }
215
216         if (PageHighMem(page)) {
217                 /*
218                  * Depending on the cma= arguments and per-arch setup
219                  * dma_alloc_contiguous could return highmem pages.
220                  * Without remapping there is no way to return them here,
221                  * so log an error and fail.
222                  */
223                 dev_info(dev, "Rejecting highmem page from CMA.\n");
224                 goto out_free_pages;
225         }
226
227         ret = page_address(page);
228         if (force_dma_unencrypted(dev)) {
229                 err = set_memory_decrypted((unsigned long)ret,
230                                            1 << get_order(size));
231                 if (err)
232                         goto out_free_pages;
233         }
234
235         memset(ret, 0, size);
236
237         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
238             dma_alloc_need_uncached(dev, attrs)) {
239                 arch_dma_prep_coherent(page, size);
240                 ret = arch_dma_set_uncached(ret, size);
241                 if (IS_ERR(ret))
242                         goto out_encrypt_pages;
243         }
244 done:
245         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
246         return ret;
247
248 out_encrypt_pages:
249         if (force_dma_unencrypted(dev)) {
250                 err = set_memory_encrypted((unsigned long)page_address(page),
251                                            1 << get_order(size));
252                 /* If memory cannot be re-encrypted, it must be leaked */
253                 if (err)
254                         return NULL;
255         }
256 out_free_pages:
257         dma_free_contiguous(dev, page, size);
258         return NULL;
259 }
260
261 void dma_direct_free(struct device *dev, size_t size,
262                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
263 {
264         unsigned int page_order = get_order(size);
265
266         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
267             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
268             dma_alloc_need_uncached(dev, attrs)) {
269                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
270                 return;
271         }
272
273         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
274         if (dma_should_free_from_pool(dev, attrs) &&
275             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
276                 return;
277
278         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
279             !force_dma_unencrypted(dev)) {
280                 /* cpu_addr is a struct page cookie, not a kernel address */
281                 dma_free_contiguous(dev, cpu_addr, size);
282                 return;
283         }
284
285         if (force_dma_unencrypted(dev))
286                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
287
288         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
289                 vunmap(cpu_addr);
290         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
291                 arch_dma_clear_uncached(cpu_addr, size);
292
293         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
294 }
295
296 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
297                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
298 {
299         struct page *page;
300         void *ret;
301
302         if (dma_should_alloc_from_pool(dev, gfp, 0)) {
303                 page = dma_alloc_from_pool(dev, size, &ret, gfp,
304                                 dma_coherent_ok);
305                 if (!page)
306                         return NULL;
307                 goto done;
308         }
309
310         page = __dma_direct_alloc_pages(dev, size, gfp);
311         if (!page)
312                 return NULL;
313         ret = page_address(page);
314         if (force_dma_unencrypted(dev)) {
315                 if (set_memory_decrypted((unsigned long)ret,
316                                 1 << get_order(size)))
317                         goto out_free_pages;
318         }
319         memset(ret, 0, size);
320 done:
321         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
322         return page;
323 out_free_pages:
324         dma_free_contiguous(dev, page, size);
325         return NULL;
326 }
327
328 void dma_direct_free_pages(struct device *dev, size_t size,
329                 struct page *page, dma_addr_t dma_addr,
330                 enum dma_data_direction dir)
331 {
332         unsigned int page_order = get_order(size);
333         void *vaddr = page_address(page);
334
335         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
336         if (dma_should_free_from_pool(dev, 0) &&
337             dma_free_from_pool(dev, vaddr, size))
338                 return;
339
340         if (force_dma_unencrypted(dev))
341                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
342
343         dma_free_contiguous(dev, page, size);
344 }
345
346 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
347     defined(CONFIG_SWIOTLB)
348 void dma_direct_sync_sg_for_device(struct device *dev,
349                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
350 {
351         struct scatterlist *sg;
352         int i;
353
354         for_each_sg(sgl, sg, nents, i) {
355                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
356
357                 if (unlikely(is_swiotlb_buffer(paddr)))
358                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
359                                         dir, SYNC_FOR_DEVICE);
360
361                 if (!dev_is_dma_coherent(dev))
362                         arch_sync_dma_for_device(paddr, sg->length,
363                                         dir);
364         }
365 }
366 #endif
367
368 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
369     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
370     defined(CONFIG_SWIOTLB)
371 void dma_direct_sync_sg_for_cpu(struct device *dev,
372                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
373 {
374         struct scatterlist *sg;
375         int i;
376
377         for_each_sg(sgl, sg, nents, i) {
378                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
379
380                 if (!dev_is_dma_coherent(dev))
381                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
382
383                 if (unlikely(is_swiotlb_buffer(paddr)))
384                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
385                                         SYNC_FOR_CPU);
386
387                 if (dir == DMA_FROM_DEVICE)
388                         arch_dma_mark_clean(paddr, sg->length);
389         }
390
391         if (!dev_is_dma_coherent(dev))
392                 arch_sync_dma_for_cpu_all();
393 }
394
395 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
396                 int nents, enum dma_data_direction dir, unsigned long attrs)
397 {
398         struct scatterlist *sg;
399         int i;
400
401         for_each_sg(sgl, sg, nents, i)
402                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
403                              attrs);
404 }
405 #endif
406
407 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
408                 enum dma_data_direction dir, unsigned long attrs)
409 {
410         int i;
411         struct scatterlist *sg;
412
413         for_each_sg(sgl, sg, nents, i) {
414                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
415                                 sg->offset, sg->length, dir, attrs);
416                 if (sg->dma_address == DMA_MAPPING_ERROR)
417                         goto out_unmap;
418                 sg_dma_len(sg) = sg->length;
419         }
420
421         return nents;
422
423 out_unmap:
424         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
425         return 0;
426 }
427
428 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
429                 size_t size, enum dma_data_direction dir, unsigned long attrs)
430 {
431         dma_addr_t dma_addr = paddr;
432
433         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
434                 dev_err_once(dev,
435                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
436                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
437                 WARN_ON_ONCE(1);
438                 return DMA_MAPPING_ERROR;
439         }
440
441         return dma_addr;
442 }
443
444 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
445                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
446                 unsigned long attrs)
447 {
448         struct page *page = dma_direct_to_page(dev, dma_addr);
449         int ret;
450
451         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
452         if (!ret)
453                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
454         return ret;
455 }
456
457 bool dma_direct_can_mmap(struct device *dev)
458 {
459         return dev_is_dma_coherent(dev) ||
460                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
461 }
462
463 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
464                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
465                 unsigned long attrs)
466 {
467         unsigned long user_count = vma_pages(vma);
468         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
469         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
470         int ret = -ENXIO;
471
472         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
473
474         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
475                 return ret;
476
477         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
478                 return -ENXIO;
479         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
480                         user_count << PAGE_SHIFT, vma->vm_page_prot);
481 }
482
483 int dma_direct_supported(struct device *dev, u64 mask)
484 {
485         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
486
487         /*
488          * Because 32-bit DMA masks are so common we expect every architecture
489          * to be able to satisfy them - either by not supporting more physical
490          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
491          * architecture needs to use an IOMMU instead of the direct mapping.
492          */
493         if (mask >= DMA_BIT_MASK(32))
494                 return 1;
495
496         /*
497          * This check needs to be against the actual bit mask value, so use
498          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
499          * part of the check.
500          */
501         if (IS_ENABLED(CONFIG_ZONE_DMA))
502                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
503         return mask >= phys_to_dma_unencrypted(dev, min_mask);
504 }
505
506 size_t dma_direct_max_mapping_size(struct device *dev)
507 {
508         /* If SWIOTLB is active, use its maximum mapping size */
509         if (is_swiotlb_active() &&
510             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
511                 return swiotlb_max_mapping_size(dev);
512         return SIZE_MAX;
513 }
514
515 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
516 {
517         return !dev_is_dma_coherent(dev) ||
518                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
519 }
520
521 /**
522  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
523  * @dev:        device pointer; needed to "own" the alloced memory.
524  * @cpu_start:  beginning of memory region covered by this offset.
525  * @dma_start:  beginning of DMA/PCI region covered by this offset.
526  * @size:       size of the region.
527  *
528  * This is for the simple case of a uniform offset which cannot
529  * be discovered by "dma-ranges".
530  *
531  * It returns -ENOMEM if out of memory, -EINVAL if a map
532  * already exists, 0 otherwise.
533  *
534  * Note: any call to this from a driver is a bug.  The mapping needs
535  * to be described by the device tree or other firmware interfaces.
536  */
537 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
538                          dma_addr_t dma_start, u64 size)
539 {
540         struct bus_dma_region *map;
541         u64 offset = (u64)cpu_start - (u64)dma_start;
542
543         if (dev->dma_range_map) {
544                 dev_err(dev, "attempt to add DMA range to existing map\n");
545                 return -EINVAL;
546         }
547
548         if (!offset)
549                 return 0;
550
551         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
552         if (!map)
553                 return -ENOMEM;
554         map[0].cpu_start = cpu_start;
555         map[0].dma_start = dma_start;
556         map[0].offset = offset;
557         map[0].size = size;
558         dev->dma_range_map = map;
559         return 0;
560 }
561 EXPORT_SYMBOL_GPL(dma_direct_set_offset);