58beaa9ddd27bf5891046837fa817570de05324f
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28         if (!dev->dma_mask) {
29                 dev_err_once(dev, "DMA map on device without dma_mask\n");
30         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31                 dev_err_once(dev,
32                         "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
34         }
35         WARN_ON_ONCE(1);
36 }
37
38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39                 phys_addr_t phys)
40 {
41         if (force_dma_unencrypted(dev))
42                 return __phys_to_dma(dev, phys);
43         return phys_to_dma(dev, phys);
44 }
45
46 static inline struct page *dma_direct_to_page(struct device *dev,
47                 dma_addr_t dma_addr)
48 {
49         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
50 }
51
52 u64 dma_direct_get_required_mask(struct device *dev)
53 {
54         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
55
56         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
57 }
58
59 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
60                 u64 *phys_mask)
61 {
62         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
63                 dma_mask = dev->bus_dma_mask;
64
65         if (force_dma_unencrypted(dev))
66                 *phys_mask = __dma_to_phys(dev, dma_mask);
67         else
68                 *phys_mask = dma_to_phys(dev, dma_mask);
69
70         /*
71          * Optimistically try the zone that the physical address mask falls
72          * into first.  If that returns memory that isn't actually addressable
73          * we will fallback to the next lower zone and try again.
74          *
75          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
76          * zones.
77          */
78         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
79                 return GFP_DMA;
80         if (*phys_mask <= DMA_BIT_MASK(32))
81                 return GFP_DMA32;
82         return 0;
83 }
84
85 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
86 {
87         return phys_to_dma_direct(dev, phys) + size - 1 <=
88                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
89 }
90
91 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
92                 gfp_t gfp, unsigned long attrs)
93 {
94         size_t alloc_size = PAGE_ALIGN(size);
95         int node = dev_to_node(dev);
96         struct page *page = NULL;
97         u64 phys_mask;
98
99         if (attrs & DMA_ATTR_NO_WARN)
100                 gfp |= __GFP_NOWARN;
101
102         /* we always manually zero the memory once we are done: */
103         gfp &= ~__GFP_ZERO;
104         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
105                         &phys_mask);
106         page = dma_alloc_contiguous(dev, alloc_size, gfp);
107         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
108                 dma_free_contiguous(dev, page, alloc_size);
109                 page = NULL;
110         }
111 again:
112         if (!page)
113                 page = alloc_pages_node(node, gfp, get_order(alloc_size));
114         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
115                 dma_free_contiguous(dev, page, size);
116                 page = NULL;
117
118                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
119                     phys_mask < DMA_BIT_MASK(64) &&
120                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
121                         gfp |= GFP_DMA32;
122                         goto again;
123                 }
124
125                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
126                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
127                         goto again;
128                 }
129         }
130
131         return page;
132 }
133
134 void *dma_direct_alloc_pages(struct device *dev, size_t size,
135                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
136 {
137         struct page *page;
138         void *ret;
139
140         page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
141         if (!page)
142                 return NULL;
143
144         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145             !force_dma_unencrypted(dev)) {
146                 /* remove any dirty cache lines on the kernel alias */
147                 if (!PageHighMem(page))
148                         arch_dma_prep_coherent(page, size);
149                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
150                 /* return the page pointer as the opaque cookie */
151                 return page;
152         }
153
154         if (PageHighMem(page)) {
155                 /*
156                  * Depending on the cma= arguments and per-arch setup
157                  * dma_alloc_contiguous could return highmem pages.
158                  * Without remapping there is no way to return them here,
159                  * so log an error and fail.
160                  */
161                 dev_info(dev, "Rejecting highmem page from CMA.\n");
162                 dma_free_contiguous(dev, page, size);
163                 return NULL;
164         }
165
166         ret = page_address(page);
167         if (force_dma_unencrypted(dev)) {
168                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
169                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
170         } else {
171                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
172         }
173         memset(ret, 0, size);
174
175         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
176             dma_alloc_need_uncached(dev, attrs)) {
177                 arch_dma_prep_coherent(page, size);
178                 ret = uncached_kernel_address(ret);
179         }
180
181         return ret;
182 }
183
184 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
185                 dma_addr_t dma_addr, unsigned long attrs)
186 {
187         unsigned int page_order = get_order(size);
188
189         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
190             !force_dma_unencrypted(dev)) {
191                 /* cpu_addr is a struct page cookie, not a kernel address */
192                 dma_free_contiguous(dev, cpu_addr, size);
193                 return;
194         }
195
196         if (force_dma_unencrypted(dev))
197                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
198
199         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
200             dma_alloc_need_uncached(dev, attrs))
201                 cpu_addr = cached_kernel_address(cpu_addr);
202         dma_free_contiguous(dev, virt_to_page(cpu_addr), size);
203 }
204
205 void *dma_direct_alloc(struct device *dev, size_t size,
206                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
207 {
208         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
209             dma_alloc_need_uncached(dev, attrs))
210                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
211         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
212 }
213
214 void dma_direct_free(struct device *dev, size_t size,
215                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
216 {
217         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
218             dma_alloc_need_uncached(dev, attrs))
219                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
220         else
221                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
222 }
223
224 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
225     defined(CONFIG_SWIOTLB)
226 void dma_direct_sync_single_for_device(struct device *dev,
227                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
228 {
229         phys_addr_t paddr = dma_to_phys(dev, addr);
230
231         if (unlikely(is_swiotlb_buffer(paddr)))
232                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
233
234         if (!dev_is_dma_coherent(dev))
235                 arch_sync_dma_for_device(dev, paddr, size, dir);
236 }
237 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
238
239 void dma_direct_sync_sg_for_device(struct device *dev,
240                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
241 {
242         struct scatterlist *sg;
243         int i;
244
245         for_each_sg(sgl, sg, nents, i) {
246                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
247
248                 if (unlikely(is_swiotlb_buffer(paddr)))
249                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
250                                         dir, SYNC_FOR_DEVICE);
251
252                 if (!dev_is_dma_coherent(dev))
253                         arch_sync_dma_for_device(dev, paddr, sg->length,
254                                         dir);
255         }
256 }
257 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
258 #endif
259
260 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
261     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
262     defined(CONFIG_SWIOTLB)
263 void dma_direct_sync_single_for_cpu(struct device *dev,
264                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
265 {
266         phys_addr_t paddr = dma_to_phys(dev, addr);
267
268         if (!dev_is_dma_coherent(dev)) {
269                 arch_sync_dma_for_cpu(dev, paddr, size, dir);
270                 arch_sync_dma_for_cpu_all(dev);
271         }
272
273         if (unlikely(is_swiotlb_buffer(paddr)))
274                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
275 }
276 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
277
278 void dma_direct_sync_sg_for_cpu(struct device *dev,
279                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
280 {
281         struct scatterlist *sg;
282         int i;
283
284         for_each_sg(sgl, sg, nents, i) {
285                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
286
287                 if (!dev_is_dma_coherent(dev))
288                         arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
289
290                 if (unlikely(is_swiotlb_buffer(paddr)))
291                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
292                                         SYNC_FOR_CPU);
293         }
294
295         if (!dev_is_dma_coherent(dev))
296                 arch_sync_dma_for_cpu_all(dev);
297 }
298 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
299
300 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
301                 size_t size, enum dma_data_direction dir, unsigned long attrs)
302 {
303         phys_addr_t phys = dma_to_phys(dev, addr);
304
305         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
306                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
307
308         if (unlikely(is_swiotlb_buffer(phys)))
309                 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
310 }
311 EXPORT_SYMBOL(dma_direct_unmap_page);
312
313 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
314                 int nents, enum dma_data_direction dir, unsigned long attrs)
315 {
316         struct scatterlist *sg;
317         int i;
318
319         for_each_sg(sgl, sg, nents, i)
320                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
321                              attrs);
322 }
323 EXPORT_SYMBOL(dma_direct_unmap_sg);
324 #endif
325
326 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
327                 size_t size)
328 {
329         return swiotlb_force != SWIOTLB_FORCE &&
330                 dma_capable(dev, dma_addr, size);
331 }
332
333 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
334                 unsigned long offset, size_t size, enum dma_data_direction dir,
335                 unsigned long attrs)
336 {
337         phys_addr_t phys = page_to_phys(page) + offset;
338         dma_addr_t dma_addr = phys_to_dma(dev, phys);
339
340         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
341             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
342                 report_addr(dev, dma_addr, size);
343                 return DMA_MAPPING_ERROR;
344         }
345
346         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
347                 arch_sync_dma_for_device(dev, phys, size, dir);
348         return dma_addr;
349 }
350 EXPORT_SYMBOL(dma_direct_map_page);
351
352 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
353                 enum dma_data_direction dir, unsigned long attrs)
354 {
355         int i;
356         struct scatterlist *sg;
357
358         for_each_sg(sgl, sg, nents, i) {
359                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
360                                 sg->offset, sg->length, dir, attrs);
361                 if (sg->dma_address == DMA_MAPPING_ERROR)
362                         goto out_unmap;
363                 sg_dma_len(sg) = sg->length;
364         }
365
366         return nents;
367
368 out_unmap:
369         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
370         return 0;
371 }
372 EXPORT_SYMBOL(dma_direct_map_sg);
373
374 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
375                 size_t size, enum dma_data_direction dir, unsigned long attrs)
376 {
377         dma_addr_t dma_addr = paddr;
378
379         if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
380                 report_addr(dev, dma_addr, size);
381                 return DMA_MAPPING_ERROR;
382         }
383
384         return dma_addr;
385 }
386 EXPORT_SYMBOL(dma_direct_map_resource);
387
388 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
389                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
390                 unsigned long attrs)
391 {
392         struct page *page = dma_direct_to_page(dev, dma_addr);
393         int ret;
394
395         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
396         if (!ret)
397                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
398         return ret;
399 }
400
401 #ifdef CONFIG_MMU
402 bool dma_direct_can_mmap(struct device *dev)
403 {
404         return dev_is_dma_coherent(dev) ||
405                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
406 }
407
408 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
409                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
410                 unsigned long attrs)
411 {
412         unsigned long user_count = vma_pages(vma);
413         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
414         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
415         int ret = -ENXIO;
416
417         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
418
419         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
420                 return ret;
421
422         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
423                 return -ENXIO;
424         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
425                         user_count << PAGE_SHIFT, vma->vm_page_prot);
426 }
427 #else /* CONFIG_MMU */
428 bool dma_direct_can_mmap(struct device *dev)
429 {
430         return false;
431 }
432
433 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
434                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
435                 unsigned long attrs)
436 {
437         return -ENXIO;
438 }
439 #endif /* CONFIG_MMU */
440
441 /*
442  * Because 32-bit DMA masks are so common we expect every architecture to be
443  * able to satisfy them - either by not supporting more physical memory, or by
444  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
445  * use an IOMMU instead of the direct mapping.
446  */
447 int dma_direct_supported(struct device *dev, u64 mask)
448 {
449         u64 min_mask;
450
451         if (IS_ENABLED(CONFIG_ZONE_DMA))
452                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
453         else
454                 min_mask = DMA_BIT_MASK(32);
455
456         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
457
458         /*
459          * This check needs to be against the actual bit mask value, so
460          * use __phys_to_dma() here so that the SME encryption mask isn't
461          * part of the check.
462          */
463         return mask >= __phys_to_dma(dev, min_mask);
464 }
465
466 size_t dma_direct_max_mapping_size(struct device *dev)
467 {
468         /* If SWIOTLB is active, use its maximum mapping size */
469         if (is_swiotlb_active() &&
470             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
471                 return swiotlb_max_mapping_size(dev);
472         return SIZE_MAX;
473 }