4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
70 /* See "Frequency meter" comments, below. */
73 int cnt; /* unprocessed events count */
74 int val; /* most recent output value */
75 time64_t time; /* clock (secs) when val computed */
76 spinlock_t lock; /* guards read or write of above */
80 struct cgroup_subsys_state css;
82 unsigned long flags; /* "unsigned long" so bitops work */
85 * On default hierarchy:
87 * The user-configured masks can only be changed by writing to
88 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 * The effective masks is the real masks that apply to the tasks
92 * in the cpuset. They may be changed if the configured masks are
93 * changed or hotplug happens.
95 * effective_mask == configured_mask & parent's effective_mask,
96 * and if it ends up empty, it will inherit the parent's mask.
101 * The user-configured masks are always the same with effective masks.
104 /* user-configured CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t cpus_allowed;
106 nodemask_t mems_allowed;
108 /* effective CPUs and Memory Nodes allow to tasks */
109 cpumask_var_t effective_cpus;
110 nodemask_t effective_mems;
113 * CPUs allocated to child sub-partitions (default hierarchy only)
114 * - CPUs granted by the parent = effective_cpus U subparts_cpus
115 * - effective_cpus and subparts_cpus are mutually exclusive.
117 cpumask_var_t subparts_cpus;
120 * This is old Memory Nodes tasks took on.
122 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
123 * - A new cpuset's old_mems_allowed is initialized when some
124 * task is moved into it.
125 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
126 * cpuset.mems_allowed and have tasks' nodemask updated, and
127 * then old_mems_allowed is updated to mems_allowed.
129 nodemask_t old_mems_allowed;
131 struct fmeter fmeter; /* memory_pressure filter */
134 * Tasks are being attached to this cpuset. Used to prevent
135 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
137 int attach_in_progress;
139 /* partition number for rebuild_sched_domains() */
142 /* for custom sched domain */
143 int relax_domain_level;
145 /* number of CPUs in subparts_cpus */
146 int nr_subparts_cpus;
148 /* partition root state */
149 int partition_root_state;
152 * Default hierarchy only:
153 * use_parent_ecpus - set if using parent's effective_cpus
154 * child_ecpus_count - # of children with use_parent_ecpus set
156 int use_parent_ecpus;
157 int child_ecpus_count;
161 * Partition root states:
163 * 0 - not a partition root
167 * -1 - invalid partition root
168 * None of the cpus in cpus_allowed can be put into the parent's
169 * subparts_cpus. In this case, the cpuset is not a real partition
170 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
171 * and the cpuset can be restored back to a partition root if the
172 * parent cpuset can give more CPUs back to this child cpuset.
174 #define PRS_DISABLED 0
175 #define PRS_ENABLED 1
179 * Temporary cpumasks for working with partitions that are passed among
180 * functions to avoid memory allocation in inner functions.
183 cpumask_var_t addmask, delmask; /* For partition root */
184 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
187 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
189 return css ? container_of(css, struct cpuset, css) : NULL;
192 /* Retrieve the cpuset for a task */
193 static inline struct cpuset *task_cs(struct task_struct *task)
195 return css_cs(task_css(task, cpuset_cgrp_id));
198 static inline struct cpuset *parent_cs(struct cpuset *cs)
200 return css_cs(cs->css.parent);
204 static inline bool task_has_mempolicy(struct task_struct *task)
206 return task->mempolicy;
209 static inline bool task_has_mempolicy(struct task_struct *task)
216 /* bits in struct cpuset flags field */
223 CS_SCHED_LOAD_BALANCE,
228 /* convenient tests for these bits */
229 static inline bool is_cpuset_online(struct cpuset *cs)
231 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
234 static inline int is_cpu_exclusive(const struct cpuset *cs)
236 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
239 static inline int is_mem_exclusive(const struct cpuset *cs)
241 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
244 static inline int is_mem_hardwall(const struct cpuset *cs)
246 return test_bit(CS_MEM_HARDWALL, &cs->flags);
249 static inline int is_sched_load_balance(const struct cpuset *cs)
251 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
254 static inline int is_memory_migrate(const struct cpuset *cs)
256 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
259 static inline int is_spread_page(const struct cpuset *cs)
261 return test_bit(CS_SPREAD_PAGE, &cs->flags);
264 static inline int is_spread_slab(const struct cpuset *cs)
266 return test_bit(CS_SPREAD_SLAB, &cs->flags);
269 static inline int is_partition_root(const struct cpuset *cs)
271 return cs->partition_root_state > 0;
274 static struct cpuset top_cpuset = {
275 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
276 (1 << CS_MEM_EXCLUSIVE)),
277 .partition_root_state = PRS_ENABLED,
281 * cpuset_for_each_child - traverse online children of a cpuset
282 * @child_cs: loop cursor pointing to the current child
283 * @pos_css: used for iteration
284 * @parent_cs: target cpuset to walk children of
286 * Walk @child_cs through the online children of @parent_cs. Must be used
287 * with RCU read locked.
289 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
290 css_for_each_child((pos_css), &(parent_cs)->css) \
291 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
294 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
295 * @des_cs: loop cursor pointing to the current descendant
296 * @pos_css: used for iteration
297 * @root_cs: target cpuset to walk ancestor of
299 * Walk @des_cs through the online descendants of @root_cs. Must be used
300 * with RCU read locked. The caller may modify @pos_css by calling
301 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
302 * iteration and the first node to be visited.
304 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
305 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
306 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
309 * There are two global locks guarding cpuset structures - cpuset_mutex and
310 * callback_lock. We also require taking task_lock() when dereferencing a
311 * task's cpuset pointer. See "The task_lock() exception", at the end of this
314 * A task must hold both locks to modify cpusets. If a task holds
315 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
316 * is the only task able to also acquire callback_lock and be able to
317 * modify cpusets. It can perform various checks on the cpuset structure
318 * first, knowing nothing will change. It can also allocate memory while
319 * just holding cpuset_mutex. While it is performing these checks, various
320 * callback routines can briefly acquire callback_lock to query cpusets.
321 * Once it is ready to make the changes, it takes callback_lock, blocking
324 * Calls to the kernel memory allocator can not be made while holding
325 * callback_lock, as that would risk double tripping on callback_lock
326 * from one of the callbacks into the cpuset code from within
329 * If a task is only holding callback_lock, then it has read-only
332 * Now, the task_struct fields mems_allowed and mempolicy may be changed
333 * by other task, we use alloc_lock in the task_struct fields to protect
336 * The cpuset_common_file_read() handlers only hold callback_lock across
337 * small pieces of code, such as when reading out possibly multi-word
338 * cpumasks and nodemasks.
340 * Accessing a task's cpuset should be done in accordance with the
341 * guidelines for accessing subsystem state in kernel/cgroup.c
344 static DEFINE_MUTEX(cpuset_mutex);
345 static DEFINE_SPINLOCK(callback_lock);
347 static struct workqueue_struct *cpuset_migrate_mm_wq;
350 * CPU / memory hotplug is handled asynchronously.
352 static void cpuset_hotplug_workfn(struct work_struct *work);
353 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
355 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
358 * Cgroup v2 behavior is used when on default hierarchy or the
359 * cgroup_v2_mode flag is set.
361 static inline bool is_in_v2_mode(void)
363 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
364 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
368 * This is ugly, but preserves the userspace API for existing cpuset
369 * users. If someone tries to mount the "cpuset" filesystem, we
370 * silently switch it to mount "cgroup" instead
372 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
373 int flags, const char *unused_dev_name, void *data)
375 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
376 struct dentry *ret = ERR_PTR(-ENODEV);
380 "release_agent=/sbin/cpuset_release_agent";
381 ret = cgroup_fs->mount(cgroup_fs, flags,
382 unused_dev_name, mountopts);
383 put_filesystem(cgroup_fs);
388 static struct file_system_type cpuset_fs_type = {
390 .mount = cpuset_mount,
394 * Return in pmask the portion of a cpusets's cpus_allowed that
395 * are online. If none are online, walk up the cpuset hierarchy
396 * until we find one that does have some online cpus.
398 * One way or another, we guarantee to return some non-empty subset
399 * of cpu_online_mask.
401 * Call with callback_lock or cpuset_mutex held.
403 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
405 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
409 * The top cpuset doesn't have any online cpu as a
410 * consequence of a race between cpuset_hotplug_work
411 * and cpu hotplug notifier. But we know the top
412 * cpuset's effective_cpus is on its way to to be
413 * identical to cpu_online_mask.
415 cpumask_copy(pmask, cpu_online_mask);
419 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
423 * Return in *pmask the portion of a cpusets's mems_allowed that
424 * are online, with memory. If none are online with memory, walk
425 * up the cpuset hierarchy until we find one that does have some
426 * online mems. The top cpuset always has some mems online.
428 * One way or another, we guarantee to return some non-empty subset
429 * of node_states[N_MEMORY].
431 * Call with callback_lock or cpuset_mutex held.
433 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
435 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
437 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
441 * update task's spread flag if cpuset's page/slab spread flag is set
443 * Call with callback_lock or cpuset_mutex held.
445 static void cpuset_update_task_spread_flag(struct cpuset *cs,
446 struct task_struct *tsk)
448 if (is_spread_page(cs))
449 task_set_spread_page(tsk);
451 task_clear_spread_page(tsk);
453 if (is_spread_slab(cs))
454 task_set_spread_slab(tsk);
456 task_clear_spread_slab(tsk);
460 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
462 * One cpuset is a subset of another if all its allowed CPUs and
463 * Memory Nodes are a subset of the other, and its exclusive flags
464 * are only set if the other's are set. Call holding cpuset_mutex.
467 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
469 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
470 nodes_subset(p->mems_allowed, q->mems_allowed) &&
471 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
472 is_mem_exclusive(p) <= is_mem_exclusive(q);
476 * alloc_cpumasks - allocate three cpumasks for cpuset
477 * @cs: the cpuset that have cpumasks to be allocated.
478 * @tmp: the tmpmasks structure pointer
479 * Return: 0 if successful, -ENOMEM otherwise.
481 * Only one of the two input arguments should be non-NULL.
483 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
485 cpumask_var_t *pmask1, *pmask2, *pmask3;
488 pmask1 = &cs->cpus_allowed;
489 pmask2 = &cs->effective_cpus;
490 pmask3 = &cs->subparts_cpus;
492 pmask1 = &tmp->new_cpus;
493 pmask2 = &tmp->addmask;
494 pmask3 = &tmp->delmask;
497 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
500 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
503 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
509 free_cpumask_var(*pmask2);
511 free_cpumask_var(*pmask1);
516 * free_cpumasks - free cpumasks in a tmpmasks structure
517 * @cs: the cpuset that have cpumasks to be free.
518 * @tmp: the tmpmasks structure pointer
520 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
523 free_cpumask_var(cs->cpus_allowed);
524 free_cpumask_var(cs->effective_cpus);
525 free_cpumask_var(cs->subparts_cpus);
528 free_cpumask_var(tmp->new_cpus);
529 free_cpumask_var(tmp->addmask);
530 free_cpumask_var(tmp->delmask);
535 * alloc_trial_cpuset - allocate a trial cpuset
536 * @cs: the cpuset that the trial cpuset duplicates
538 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
540 struct cpuset *trial;
542 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
546 if (alloc_cpumasks(trial, NULL)) {
551 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
552 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
557 * free_cpuset - free the cpuset
558 * @cs: the cpuset to be freed
560 static inline void free_cpuset(struct cpuset *cs)
562 free_cpumasks(cs, NULL);
567 * validate_change() - Used to validate that any proposed cpuset change
568 * follows the structural rules for cpusets.
570 * If we replaced the flag and mask values of the current cpuset
571 * (cur) with those values in the trial cpuset (trial), would
572 * our various subset and exclusive rules still be valid? Presumes
575 * 'cur' is the address of an actual, in-use cpuset. Operations
576 * such as list traversal that depend on the actual address of the
577 * cpuset in the list must use cur below, not trial.
579 * 'trial' is the address of bulk structure copy of cur, with
580 * perhaps one or more of the fields cpus_allowed, mems_allowed,
581 * or flags changed to new, trial values.
583 * Return 0 if valid, -errno if not.
586 static int validate_change(struct cpuset *cur, struct cpuset *trial)
588 struct cgroup_subsys_state *css;
589 struct cpuset *c, *par;
594 /* Each of our child cpusets must be a subset of us */
596 cpuset_for_each_child(c, css, cur)
597 if (!is_cpuset_subset(c, trial))
600 /* Remaining checks don't apply to root cpuset */
602 if (cur == &top_cpuset)
605 par = parent_cs(cur);
607 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
609 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
613 * If either I or some sibling (!= me) is exclusive, we can't
617 cpuset_for_each_child(c, css, par) {
618 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
620 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
622 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
624 nodes_intersects(trial->mems_allowed, c->mems_allowed))
629 * Cpusets with tasks - existing or newly being attached - can't
630 * be changed to have empty cpus_allowed or mems_allowed.
633 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
634 if (!cpumask_empty(cur->cpus_allowed) &&
635 cpumask_empty(trial->cpus_allowed))
637 if (!nodes_empty(cur->mems_allowed) &&
638 nodes_empty(trial->mems_allowed))
643 * We can't shrink if we won't have enough room for SCHED_DEADLINE
647 if (is_cpu_exclusive(cur) &&
648 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
649 trial->cpus_allowed))
660 * Helper routine for generate_sched_domains().
661 * Do cpusets a, b have overlapping effective cpus_allowed masks?
663 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
665 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
669 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
671 if (dattr->relax_domain_level < c->relax_domain_level)
672 dattr->relax_domain_level = c->relax_domain_level;
676 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
677 struct cpuset *root_cs)
680 struct cgroup_subsys_state *pos_css;
683 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
684 /* skip the whole subtree if @cp doesn't have any CPU */
685 if (cpumask_empty(cp->cpus_allowed)) {
686 pos_css = css_rightmost_descendant(pos_css);
690 if (is_sched_load_balance(cp))
691 update_domain_attr(dattr, cp);
696 /* Must be called with cpuset_mutex held. */
697 static inline int nr_cpusets(void)
699 /* jump label reference count + the top-level cpuset */
700 return static_key_count(&cpusets_enabled_key.key) + 1;
704 * generate_sched_domains()
706 * This function builds a partial partition of the systems CPUs
707 * A 'partial partition' is a set of non-overlapping subsets whose
708 * union is a subset of that set.
709 * The output of this function needs to be passed to kernel/sched/core.c
710 * partition_sched_domains() routine, which will rebuild the scheduler's
711 * load balancing domains (sched domains) as specified by that partial
714 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
715 * for a background explanation of this.
717 * Does not return errors, on the theory that the callers of this
718 * routine would rather not worry about failures to rebuild sched
719 * domains when operating in the severe memory shortage situations
720 * that could cause allocation failures below.
722 * Must be called with cpuset_mutex held.
724 * The three key local variables below are:
725 * q - a linked-list queue of cpuset pointers, used to implement a
726 * top-down scan of all cpusets. This scan loads a pointer
727 * to each cpuset marked is_sched_load_balance into the
728 * array 'csa'. For our purposes, rebuilding the schedulers
729 * sched domains, we can ignore !is_sched_load_balance cpusets.
730 * csa - (for CpuSet Array) Array of pointers to all the cpusets
731 * that need to be load balanced, for convenient iterative
732 * access by the subsequent code that finds the best partition,
733 * i.e the set of domains (subsets) of CPUs such that the
734 * cpus_allowed of every cpuset marked is_sched_load_balance
735 * is a subset of one of these domains, while there are as
736 * many such domains as possible, each as small as possible.
737 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
738 * the kernel/sched/core.c routine partition_sched_domains() in a
739 * convenient format, that can be easily compared to the prior
740 * value to determine what partition elements (sched domains)
741 * were changed (added or removed.)
743 * Finding the best partition (set of domains):
744 * The triple nested loops below over i, j, k scan over the
745 * load balanced cpusets (using the array of cpuset pointers in
746 * csa[]) looking for pairs of cpusets that have overlapping
747 * cpus_allowed, but which don't have the same 'pn' partition
748 * number and gives them in the same partition number. It keeps
749 * looping on the 'restart' label until it can no longer find
752 * The union of the cpus_allowed masks from the set of
753 * all cpusets having the same 'pn' value then form the one
754 * element of the partition (one sched domain) to be passed to
755 * partition_sched_domains().
757 static int generate_sched_domains(cpumask_var_t **domains,
758 struct sched_domain_attr **attributes)
760 struct cpuset *cp; /* scans q */
761 struct cpuset **csa; /* array of all cpuset ptrs */
762 int csn; /* how many cpuset ptrs in csa so far */
763 int i, j, k; /* indices for partition finding loops */
764 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
765 struct sched_domain_attr *dattr; /* attributes for custom domains */
766 int ndoms = 0; /* number of sched domains in result */
767 int nslot; /* next empty doms[] struct cpumask slot */
768 struct cgroup_subsys_state *pos_css;
774 /* Special case for the 99% of systems with one, full, sched domain */
775 if (is_sched_load_balance(&top_cpuset)) {
777 doms = alloc_sched_domains(ndoms);
781 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
783 *dattr = SD_ATTR_INIT;
784 update_domain_attr_tree(dattr, &top_cpuset);
786 cpumask_and(doms[0], top_cpuset.effective_cpus,
787 housekeeping_cpumask(HK_FLAG_DOMAIN));
792 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
798 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
799 if (cp == &top_cpuset)
802 * Continue traversing beyond @cp iff @cp has some CPUs and
803 * isn't load balancing. The former is obvious. The
804 * latter: All child cpusets contain a subset of the
805 * parent's cpus, so just skip them, and then we call
806 * update_domain_attr_tree() to calc relax_domain_level of
807 * the corresponding sched domain.
809 if (!cpumask_empty(cp->cpus_allowed) &&
810 !(is_sched_load_balance(cp) &&
811 cpumask_intersects(cp->cpus_allowed,
812 housekeeping_cpumask(HK_FLAG_DOMAIN))))
815 if (is_sched_load_balance(cp))
818 /* skip @cp's subtree */
819 pos_css = css_rightmost_descendant(pos_css);
823 for (i = 0; i < csn; i++)
828 /* Find the best partition (set of sched domains) */
829 for (i = 0; i < csn; i++) {
830 struct cpuset *a = csa[i];
833 for (j = 0; j < csn; j++) {
834 struct cpuset *b = csa[j];
837 if (apn != bpn && cpusets_overlap(a, b)) {
838 for (k = 0; k < csn; k++) {
839 struct cpuset *c = csa[k];
844 ndoms--; /* one less element */
851 * Now we know how many domains to create.
852 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
854 doms = alloc_sched_domains(ndoms);
859 * The rest of the code, including the scheduler, can deal with
860 * dattr==NULL case. No need to abort if alloc fails.
862 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
865 for (nslot = 0, i = 0; i < csn; i++) {
866 struct cpuset *a = csa[i];
871 /* Skip completed partitions */
877 if (nslot == ndoms) {
878 static int warnings = 10;
880 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
881 nslot, ndoms, csn, i, apn);
889 *(dattr + nslot) = SD_ATTR_INIT;
890 for (j = i; j < csn; j++) {
891 struct cpuset *b = csa[j];
894 cpumask_or(dp, dp, b->effective_cpus);
895 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
897 update_domain_attr_tree(dattr + nslot, b);
899 /* Done with this partition */
905 BUG_ON(nslot != ndoms);
911 * Fallback to the default domain if kmalloc() failed.
912 * See comments in partition_sched_domains().
923 * Rebuild scheduler domains.
925 * If the flag 'sched_load_balance' of any cpuset with non-empty
926 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
927 * which has that flag enabled, or if any cpuset with a non-empty
928 * 'cpus' is removed, then call this routine to rebuild the
929 * scheduler's dynamic sched domains.
931 * Call with cpuset_mutex held. Takes get_online_cpus().
933 static void rebuild_sched_domains_locked(void)
935 struct sched_domain_attr *attr;
939 lockdep_assert_held(&cpuset_mutex);
943 * We have raced with CPU hotplug. Don't do anything to avoid
944 * passing doms with offlined cpu to partition_sched_domains().
945 * Anyways, hotplug work item will rebuild sched domains.
947 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
950 /* Generate domain masks and attrs */
951 ndoms = generate_sched_domains(&doms, &attr);
953 /* Have scheduler rebuild the domains */
954 partition_sched_domains(ndoms, doms, attr);
958 #else /* !CONFIG_SMP */
959 static void rebuild_sched_domains_locked(void)
962 #endif /* CONFIG_SMP */
964 void rebuild_sched_domains(void)
966 mutex_lock(&cpuset_mutex);
967 rebuild_sched_domains_locked();
968 mutex_unlock(&cpuset_mutex);
972 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
973 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
975 * Iterate through each task of @cs updating its cpus_allowed to the
976 * effective cpuset's. As this function is called with cpuset_mutex held,
977 * cpuset membership stays stable.
979 static void update_tasks_cpumask(struct cpuset *cs)
981 struct css_task_iter it;
982 struct task_struct *task;
984 css_task_iter_start(&cs->css, 0, &it);
985 while ((task = css_task_iter_next(&it)))
986 set_cpus_allowed_ptr(task, cs->effective_cpus);
987 css_task_iter_end(&it);
991 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
992 * @new_cpus: the temp variable for the new effective_cpus mask
993 * @cs: the cpuset the need to recompute the new effective_cpus mask
994 * @parent: the parent cpuset
996 * If the parent has subpartition CPUs, include them in the list of
997 * allowable CPUs in computing the new effective_cpus mask.
999 static void compute_effective_cpumask(struct cpumask *new_cpus,
1000 struct cpuset *cs, struct cpuset *parent)
1002 if (parent->nr_subparts_cpus) {
1003 cpumask_or(new_cpus, parent->effective_cpus,
1004 parent->subparts_cpus);
1005 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1007 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1012 * Commands for update_parent_subparts_cpumask
1015 partcmd_enable, /* Enable partition root */
1016 partcmd_disable, /* Disable partition root */
1017 partcmd_update, /* Update parent's subparts_cpus */
1021 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1022 * @cpuset: The cpuset that requests change in partition root state
1023 * @cmd: Partition root state change command
1024 * @newmask: Optional new cpumask for partcmd_update
1025 * @tmp: Temporary addmask and delmask
1026 * Return: 0, 1 or an error code
1028 * For partcmd_enable, the cpuset is being transformed from a non-partition
1029 * root to a partition root. The cpus_allowed mask of the given cpuset will
1030 * be put into parent's subparts_cpus and taken away from parent's
1031 * effective_cpus. The function will return 0 if all the CPUs listed in
1032 * cpus_allowed can be granted or an error code will be returned.
1034 * For partcmd_disable, the cpuset is being transofrmed from a partition
1035 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1036 * parent's subparts_cpus will be taken away from that cpumask and put back
1037 * into parent's effective_cpus. 0 should always be returned.
1039 * For partcmd_update, if the optional newmask is specified, the cpu
1040 * list is to be changed from cpus_allowed to newmask. Otherwise,
1041 * cpus_allowed is assumed to remain the same. The cpuset should either
1042 * be a partition root or an invalid partition root. The partition root
1043 * state may change if newmask is NULL and none of the requested CPUs can
1044 * be granted by the parent. The function will return 1 if changes to
1045 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1046 * Error code should only be returned when newmask is non-NULL.
1048 * The partcmd_enable and partcmd_disable commands are used by
1049 * update_prstate(). The partcmd_update command is used by
1050 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1053 * The checking is more strict when enabling partition root than the
1054 * other two commands.
1056 * Because of the implicit cpu exclusive nature of a partition root,
1057 * cpumask changes that violates the cpu exclusivity rule will not be
1058 * permitted when checked by validate_change(). The validate_change()
1059 * function will also prevent any changes to the cpu list if it is not
1060 * a superset of children's cpu lists.
1062 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1063 struct cpumask *newmask,
1064 struct tmpmasks *tmp)
1066 struct cpuset *parent = parent_cs(cpuset);
1067 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1068 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1069 bool part_error = false; /* Partition error? */
1071 lockdep_assert_held(&cpuset_mutex);
1074 * The parent must be a partition root.
1075 * The new cpumask, if present, or the current cpus_allowed must
1078 if (!is_partition_root(parent) ||
1079 (newmask && cpumask_empty(newmask)) ||
1080 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1084 * Enabling/disabling partition root is not allowed if there are
1087 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1091 * Enabling partition root is not allowed if not all the CPUs
1092 * can be granted from parent's effective_cpus or at least one
1093 * CPU will be left after that.
1095 if ((cmd == partcmd_enable) &&
1096 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1097 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1101 * A cpumask update cannot make parent's effective_cpus become empty.
1103 adding = deleting = false;
1104 if (cmd == partcmd_enable) {
1105 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1107 } else if (cmd == partcmd_disable) {
1108 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1109 parent->subparts_cpus);
1110 } else if (newmask) {
1112 * partcmd_update with newmask:
1114 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1115 * addmask = newmask & parent->effective_cpus
1116 * & ~parent->subparts_cpus
1118 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1119 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1120 parent->subparts_cpus);
1122 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1123 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1124 parent->subparts_cpus);
1126 * Return error if the new effective_cpus could become empty.
1128 if (adding && !deleting &&
1129 cpumask_equal(parent->effective_cpus, tmp->addmask))
1133 * partcmd_update w/o newmask:
1135 * addmask = cpus_allowed & parent->effectiveb_cpus
1137 * Note that parent's subparts_cpus may have been
1138 * pre-shrunk in case there is a change in the cpu list.
1139 * So no deletion is needed.
1141 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1142 parent->effective_cpus);
1143 part_error = cpumask_equal(tmp->addmask,
1144 parent->effective_cpus);
1147 if (cmd == partcmd_update) {
1148 int prev_prs = cpuset->partition_root_state;
1151 * Check for possible transition between PRS_ENABLED
1154 switch (cpuset->partition_root_state) {
1157 cpuset->partition_root_state = PRS_ERROR;
1161 cpuset->partition_root_state = PRS_ENABLED;
1165 * Set part_error if previously in invalid state.
1167 part_error = (prev_prs == PRS_ERROR);
1170 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1171 return 0; /* Nothing need to be done */
1173 if (cpuset->partition_root_state == PRS_ERROR) {
1175 * Remove all its cpus from parent's subparts_cpus.
1178 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1179 parent->subparts_cpus);
1182 if (!adding && !deleting)
1186 * Change the parent's subparts_cpus.
1187 * Newly added CPUs will be removed from effective_cpus and
1188 * newly deleted ones will be added back to effective_cpus.
1190 spin_lock_irq(&callback_lock);
1192 cpumask_or(parent->subparts_cpus,
1193 parent->subparts_cpus, tmp->addmask);
1194 cpumask_andnot(parent->effective_cpus,
1195 parent->effective_cpus, tmp->addmask);
1198 cpumask_andnot(parent->subparts_cpus,
1199 parent->subparts_cpus, tmp->delmask);
1200 cpumask_or(parent->effective_cpus,
1201 parent->effective_cpus, tmp->delmask);
1204 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1205 spin_unlock_irq(&callback_lock);
1207 return cmd == partcmd_update;
1211 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1212 * @cs: the cpuset to consider
1213 * @tmp: temp variables for calculating effective_cpus & partition setup
1215 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1216 * and all its descendants need to be updated.
1218 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1220 * Called with cpuset_mutex held
1222 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1225 struct cgroup_subsys_state *pos_css;
1226 bool need_rebuild_sched_domains = false;
1229 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1230 struct cpuset *parent = parent_cs(cp);
1232 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1235 * If it becomes empty, inherit the effective mask of the
1236 * parent, which is guaranteed to have some CPUs.
1238 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1239 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1240 if (!cp->use_parent_ecpus) {
1241 cp->use_parent_ecpus = true;
1242 parent->child_ecpus_count++;
1244 } else if (cp->use_parent_ecpus) {
1245 cp->use_parent_ecpus = false;
1246 WARN_ON_ONCE(!parent->child_ecpus_count);
1247 parent->child_ecpus_count--;
1251 * Skip the whole subtree if the cpumask remains the same
1252 * and has no partition root state.
1254 if (!cp->partition_root_state &&
1255 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1256 pos_css = css_rightmost_descendant(pos_css);
1261 * update_parent_subparts_cpumask() should have been called
1262 * for cs already in update_cpumask(). We should also call
1263 * update_tasks_cpumask() again for tasks in the parent
1264 * cpuset if the parent's subparts_cpus changes.
1266 if ((cp != cs) && cp->partition_root_state) {
1267 switch (parent->partition_root_state) {
1270 * If parent is not a partition root or an
1271 * invalid partition root, clear the state
1272 * state and the CS_CPU_EXCLUSIVE flag.
1274 WARN_ON_ONCE(cp->partition_root_state
1276 cp->partition_root_state = 0;
1279 * clear_bit() is an atomic operation and
1280 * readers aren't interested in the state
1281 * of CS_CPU_EXCLUSIVE anyway. So we can
1282 * just update the flag without holding
1283 * the callback_lock.
1285 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1289 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1290 update_tasks_cpumask(parent);
1295 * When parent is invalid, it has to be too.
1297 cp->partition_root_state = PRS_ERROR;
1298 if (cp->nr_subparts_cpus) {
1299 cp->nr_subparts_cpus = 0;
1300 cpumask_clear(cp->subparts_cpus);
1306 if (!css_tryget_online(&cp->css))
1310 spin_lock_irq(&callback_lock);
1312 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1313 if (cp->nr_subparts_cpus &&
1314 (cp->partition_root_state != PRS_ENABLED)) {
1315 cp->nr_subparts_cpus = 0;
1316 cpumask_clear(cp->subparts_cpus);
1317 } else if (cp->nr_subparts_cpus) {
1319 * Make sure that effective_cpus & subparts_cpus
1320 * are mutually exclusive.
1322 * In the unlikely event that effective_cpus
1323 * becomes empty. we clear cp->nr_subparts_cpus and
1324 * let its child partition roots to compete for
1327 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1329 if (cpumask_empty(cp->effective_cpus)) {
1330 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1331 cpumask_clear(cp->subparts_cpus);
1332 cp->nr_subparts_cpus = 0;
1333 } else if (!cpumask_subset(cp->subparts_cpus,
1335 cpumask_andnot(cp->subparts_cpus,
1336 cp->subparts_cpus, tmp->new_cpus);
1337 cp->nr_subparts_cpus
1338 = cpumask_weight(cp->subparts_cpus);
1341 spin_unlock_irq(&callback_lock);
1343 WARN_ON(!is_in_v2_mode() &&
1344 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1346 update_tasks_cpumask(cp);
1349 * If the effective cpumask of any non-empty cpuset is changed,
1350 * we need to rebuild sched domains.
1352 if (!cpumask_empty(cp->cpus_allowed) &&
1353 is_sched_load_balance(cp))
1354 need_rebuild_sched_domains = true;
1361 if (need_rebuild_sched_domains)
1362 rebuild_sched_domains_locked();
1366 * update_sibling_cpumasks - Update siblings cpumasks
1367 * @parent: Parent cpuset
1368 * @cs: Current cpuset
1369 * @tmp: Temp variables
1371 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1372 struct tmpmasks *tmp)
1374 struct cpuset *sibling;
1375 struct cgroup_subsys_state *pos_css;
1378 * Check all its siblings and call update_cpumasks_hier()
1379 * if their use_parent_ecpus flag is set in order for them
1380 * to use the right effective_cpus value.
1383 cpuset_for_each_child(sibling, pos_css, parent) {
1386 if (!sibling->use_parent_ecpus)
1389 update_cpumasks_hier(sibling, tmp);
1395 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1396 * @cs: the cpuset to consider
1397 * @trialcs: trial cpuset
1398 * @buf: buffer of cpu numbers written to this cpuset
1400 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1404 struct tmpmasks tmp;
1406 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1407 if (cs == &top_cpuset)
1411 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1412 * Since cpulist_parse() fails on an empty mask, we special case
1413 * that parsing. The validate_change() call ensures that cpusets
1414 * with tasks have cpus.
1417 cpumask_clear(trialcs->cpus_allowed);
1419 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1423 if (!cpumask_subset(trialcs->cpus_allowed,
1424 top_cpuset.cpus_allowed))
1428 /* Nothing to do if the cpus didn't change */
1429 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1432 retval = validate_change(cs, trialcs);
1436 #ifdef CONFIG_CPUMASK_OFFSTACK
1438 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1439 * to allocated cpumasks.
1441 tmp.addmask = trialcs->subparts_cpus;
1442 tmp.delmask = trialcs->effective_cpus;
1443 tmp.new_cpus = trialcs->cpus_allowed;
1446 if (cs->partition_root_state) {
1447 /* Cpumask of a partition root cannot be empty */
1448 if (cpumask_empty(trialcs->cpus_allowed))
1450 if (update_parent_subparts_cpumask(cs, partcmd_update,
1451 trialcs->cpus_allowed, &tmp) < 0)
1455 spin_lock_irq(&callback_lock);
1456 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1459 * Make sure that subparts_cpus is a subset of cpus_allowed.
1461 if (cs->nr_subparts_cpus) {
1462 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1464 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1466 spin_unlock_irq(&callback_lock);
1468 update_cpumasks_hier(cs, &tmp);
1470 if (cs->partition_root_state) {
1471 struct cpuset *parent = parent_cs(cs);
1474 * For partition root, update the cpumasks of sibling
1475 * cpusets if they use parent's effective_cpus.
1477 if (parent->child_ecpus_count)
1478 update_sibling_cpumasks(parent, cs, &tmp);
1484 * Migrate memory region from one set of nodes to another. This is
1485 * performed asynchronously as it can be called from process migration path
1486 * holding locks involved in process management. All mm migrations are
1487 * performed in the queued order and can be waited for by flushing
1488 * cpuset_migrate_mm_wq.
1491 struct cpuset_migrate_mm_work {
1492 struct work_struct work;
1493 struct mm_struct *mm;
1498 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1500 struct cpuset_migrate_mm_work *mwork =
1501 container_of(work, struct cpuset_migrate_mm_work, work);
1503 /* on a wq worker, no need to worry about %current's mems_allowed */
1504 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1509 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1510 const nodemask_t *to)
1512 struct cpuset_migrate_mm_work *mwork;
1514 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1517 mwork->from = *from;
1519 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1520 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1526 static void cpuset_post_attach(void)
1528 flush_workqueue(cpuset_migrate_mm_wq);
1532 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1533 * @tsk: the task to change
1534 * @newmems: new nodes that the task will be set
1536 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1537 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1538 * parallel, it might temporarily see an empty intersection, which results in
1539 * a seqlock check and retry before OOM or allocation failure.
1541 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1542 nodemask_t *newmems)
1546 local_irq_disable();
1547 write_seqcount_begin(&tsk->mems_allowed_seq);
1549 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1550 mpol_rebind_task(tsk, newmems);
1551 tsk->mems_allowed = *newmems;
1553 write_seqcount_end(&tsk->mems_allowed_seq);
1559 static void *cpuset_being_rebound;
1562 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1563 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1565 * Iterate through each task of @cs updating its mems_allowed to the
1566 * effective cpuset's. As this function is called with cpuset_mutex held,
1567 * cpuset membership stays stable.
1569 static void update_tasks_nodemask(struct cpuset *cs)
1571 static nodemask_t newmems; /* protected by cpuset_mutex */
1572 struct css_task_iter it;
1573 struct task_struct *task;
1575 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1577 guarantee_online_mems(cs, &newmems);
1580 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1581 * take while holding tasklist_lock. Forks can happen - the
1582 * mpol_dup() cpuset_being_rebound check will catch such forks,
1583 * and rebind their vma mempolicies too. Because we still hold
1584 * the global cpuset_mutex, we know that no other rebind effort
1585 * will be contending for the global variable cpuset_being_rebound.
1586 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1587 * is idempotent. Also migrate pages in each mm to new nodes.
1589 css_task_iter_start(&cs->css, 0, &it);
1590 while ((task = css_task_iter_next(&it))) {
1591 struct mm_struct *mm;
1594 cpuset_change_task_nodemask(task, &newmems);
1596 mm = get_task_mm(task);
1600 migrate = is_memory_migrate(cs);
1602 mpol_rebind_mm(mm, &cs->mems_allowed);
1604 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1608 css_task_iter_end(&it);
1611 * All the tasks' nodemasks have been updated, update
1612 * cs->old_mems_allowed.
1614 cs->old_mems_allowed = newmems;
1616 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1617 cpuset_being_rebound = NULL;
1621 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1622 * @cs: the cpuset to consider
1623 * @new_mems: a temp variable for calculating new effective_mems
1625 * When configured nodemask is changed, the effective nodemasks of this cpuset
1626 * and all its descendants need to be updated.
1628 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1630 * Called with cpuset_mutex held
1632 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1635 struct cgroup_subsys_state *pos_css;
1638 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1639 struct cpuset *parent = parent_cs(cp);
1641 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1644 * If it becomes empty, inherit the effective mask of the
1645 * parent, which is guaranteed to have some MEMs.
1647 if (is_in_v2_mode() && nodes_empty(*new_mems))
1648 *new_mems = parent->effective_mems;
1650 /* Skip the whole subtree if the nodemask remains the same. */
1651 if (nodes_equal(*new_mems, cp->effective_mems)) {
1652 pos_css = css_rightmost_descendant(pos_css);
1656 if (!css_tryget_online(&cp->css))
1660 spin_lock_irq(&callback_lock);
1661 cp->effective_mems = *new_mems;
1662 spin_unlock_irq(&callback_lock);
1664 WARN_ON(!is_in_v2_mode() &&
1665 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1667 update_tasks_nodemask(cp);
1676 * Handle user request to change the 'mems' memory placement
1677 * of a cpuset. Needs to validate the request, update the
1678 * cpusets mems_allowed, and for each task in the cpuset,
1679 * update mems_allowed and rebind task's mempolicy and any vma
1680 * mempolicies and if the cpuset is marked 'memory_migrate',
1681 * migrate the tasks pages to the new memory.
1683 * Call with cpuset_mutex held. May take callback_lock during call.
1684 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1685 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1686 * their mempolicies to the cpusets new mems_allowed.
1688 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1694 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1697 if (cs == &top_cpuset) {
1703 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1704 * Since nodelist_parse() fails on an empty mask, we special case
1705 * that parsing. The validate_change() call ensures that cpusets
1706 * with tasks have memory.
1709 nodes_clear(trialcs->mems_allowed);
1711 retval = nodelist_parse(buf, trialcs->mems_allowed);
1715 if (!nodes_subset(trialcs->mems_allowed,
1716 top_cpuset.mems_allowed)) {
1722 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1723 retval = 0; /* Too easy - nothing to do */
1726 retval = validate_change(cs, trialcs);
1730 spin_lock_irq(&callback_lock);
1731 cs->mems_allowed = trialcs->mems_allowed;
1732 spin_unlock_irq(&callback_lock);
1734 /* use trialcs->mems_allowed as a temp variable */
1735 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1740 bool current_cpuset_is_being_rebound(void)
1745 ret = task_cs(current) == cpuset_being_rebound;
1751 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1754 if (val < -1 || val >= sched_domain_level_max)
1758 if (val != cs->relax_domain_level) {
1759 cs->relax_domain_level = val;
1760 if (!cpumask_empty(cs->cpus_allowed) &&
1761 is_sched_load_balance(cs))
1762 rebuild_sched_domains_locked();
1769 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1770 * @cs: the cpuset in which each task's spread flags needs to be changed
1772 * Iterate through each task of @cs updating its spread flags. As this
1773 * function is called with cpuset_mutex held, cpuset membership stays
1776 static void update_tasks_flags(struct cpuset *cs)
1778 struct css_task_iter it;
1779 struct task_struct *task;
1781 css_task_iter_start(&cs->css, 0, &it);
1782 while ((task = css_task_iter_next(&it)))
1783 cpuset_update_task_spread_flag(cs, task);
1784 css_task_iter_end(&it);
1788 * update_flag - read a 0 or a 1 in a file and update associated flag
1789 * bit: the bit to update (see cpuset_flagbits_t)
1790 * cs: the cpuset to update
1791 * turning_on: whether the flag is being set or cleared
1793 * Call with cpuset_mutex held.
1796 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1799 struct cpuset *trialcs;
1800 int balance_flag_changed;
1801 int spread_flag_changed;
1804 trialcs = alloc_trial_cpuset(cs);
1809 set_bit(bit, &trialcs->flags);
1811 clear_bit(bit, &trialcs->flags);
1813 err = validate_change(cs, trialcs);
1817 balance_flag_changed = (is_sched_load_balance(cs) !=
1818 is_sched_load_balance(trialcs));
1820 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1821 || (is_spread_page(cs) != is_spread_page(trialcs)));
1823 spin_lock_irq(&callback_lock);
1824 cs->flags = trialcs->flags;
1825 spin_unlock_irq(&callback_lock);
1827 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1828 rebuild_sched_domains_locked();
1830 if (spread_flag_changed)
1831 update_tasks_flags(cs);
1833 free_cpuset(trialcs);
1838 * update_prstate - update partititon_root_state
1839 * cs: the cpuset to update
1840 * val: 0 - disabled, 1 - enabled
1842 * Call with cpuset_mutex held.
1844 static int update_prstate(struct cpuset *cs, int val)
1847 struct cpuset *parent = parent_cs(cs);
1848 struct tmpmasks tmp;
1850 if ((val != 0) && (val != 1))
1852 if (val == cs->partition_root_state)
1856 * Cannot force a partial or invalid partition root to a full
1859 if (val && cs->partition_root_state)
1862 if (alloc_cpumasks(NULL, &tmp))
1866 if (!cs->partition_root_state) {
1868 * Turning on partition root requires setting the
1869 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1872 if (cpumask_empty(cs->cpus_allowed))
1875 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1879 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1882 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1885 cs->partition_root_state = PRS_ENABLED;
1888 * Turning off partition root will clear the
1889 * CS_CPU_EXCLUSIVE bit.
1891 if (cs->partition_root_state == PRS_ERROR) {
1892 cs->partition_root_state = 0;
1893 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1898 err = update_parent_subparts_cpumask(cs, partcmd_disable,
1903 cs->partition_root_state = 0;
1905 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1906 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1910 * Update cpumask of parent's tasks except when it is the top
1911 * cpuset as some system daemons cannot be mapped to other CPUs.
1913 if (parent != &top_cpuset)
1914 update_tasks_cpumask(parent);
1916 if (parent->child_ecpus_count)
1917 update_sibling_cpumasks(parent, cs, &tmp);
1919 rebuild_sched_domains_locked();
1921 free_cpumasks(NULL, &tmp);
1926 * Frequency meter - How fast is some event occurring?
1928 * These routines manage a digitally filtered, constant time based,
1929 * event frequency meter. There are four routines:
1930 * fmeter_init() - initialize a frequency meter.
1931 * fmeter_markevent() - called each time the event happens.
1932 * fmeter_getrate() - returns the recent rate of such events.
1933 * fmeter_update() - internal routine used to update fmeter.
1935 * A common data structure is passed to each of these routines,
1936 * which is used to keep track of the state required to manage the
1937 * frequency meter and its digital filter.
1939 * The filter works on the number of events marked per unit time.
1940 * The filter is single-pole low-pass recursive (IIR). The time unit
1941 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1942 * simulate 3 decimal digits of precision (multiplied by 1000).
1944 * With an FM_COEF of 933, and a time base of 1 second, the filter
1945 * has a half-life of 10 seconds, meaning that if the events quit
1946 * happening, then the rate returned from the fmeter_getrate()
1947 * will be cut in half each 10 seconds, until it converges to zero.
1949 * It is not worth doing a real infinitely recursive filter. If more
1950 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1951 * just compute FM_MAXTICKS ticks worth, by which point the level
1954 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1955 * arithmetic overflow in the fmeter_update() routine.
1957 * Given the simple 32 bit integer arithmetic used, this meter works
1958 * best for reporting rates between one per millisecond (msec) and
1959 * one per 32 (approx) seconds. At constant rates faster than one
1960 * per msec it maxes out at values just under 1,000,000. At constant
1961 * rates between one per msec, and one per second it will stabilize
1962 * to a value N*1000, where N is the rate of events per second.
1963 * At constant rates between one per second and one per 32 seconds,
1964 * it will be choppy, moving up on the seconds that have an event,
1965 * and then decaying until the next event. At rates slower than
1966 * about one in 32 seconds, it decays all the way back to zero between
1970 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1971 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1972 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1973 #define FM_SCALE 1000 /* faux fixed point scale */
1975 /* Initialize a frequency meter */
1976 static void fmeter_init(struct fmeter *fmp)
1981 spin_lock_init(&fmp->lock);
1984 /* Internal meter update - process cnt events and update value */
1985 static void fmeter_update(struct fmeter *fmp)
1990 now = ktime_get_seconds();
1991 ticks = now - fmp->time;
1996 ticks = min(FM_MAXTICKS, ticks);
1998 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2001 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2005 /* Process any previous ticks, then bump cnt by one (times scale). */
2006 static void fmeter_markevent(struct fmeter *fmp)
2008 spin_lock(&fmp->lock);
2010 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2011 spin_unlock(&fmp->lock);
2014 /* Process any previous ticks, then return current value. */
2015 static int fmeter_getrate(struct fmeter *fmp)
2019 spin_lock(&fmp->lock);
2022 spin_unlock(&fmp->lock);
2026 static struct cpuset *cpuset_attach_old_cs;
2028 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2029 static int cpuset_can_attach(struct cgroup_taskset *tset)
2031 struct cgroup_subsys_state *css;
2033 struct task_struct *task;
2036 /* used later by cpuset_attach() */
2037 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2040 mutex_lock(&cpuset_mutex);
2042 /* allow moving tasks into an empty cpuset if on default hierarchy */
2044 if (!is_in_v2_mode() &&
2045 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2048 cgroup_taskset_for_each(task, css, tset) {
2049 ret = task_can_attach(task, cs->cpus_allowed);
2052 ret = security_task_setscheduler(task);
2058 * Mark attach is in progress. This makes validate_change() fail
2059 * changes which zero cpus/mems_allowed.
2061 cs->attach_in_progress++;
2064 mutex_unlock(&cpuset_mutex);
2068 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2070 struct cgroup_subsys_state *css;
2073 cgroup_taskset_first(tset, &css);
2076 mutex_lock(&cpuset_mutex);
2077 css_cs(css)->attach_in_progress--;
2078 mutex_unlock(&cpuset_mutex);
2082 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2083 * but we can't allocate it dynamically there. Define it global and
2084 * allocate from cpuset_init().
2086 static cpumask_var_t cpus_attach;
2088 static void cpuset_attach(struct cgroup_taskset *tset)
2090 /* static buf protected by cpuset_mutex */
2091 static nodemask_t cpuset_attach_nodemask_to;
2092 struct task_struct *task;
2093 struct task_struct *leader;
2094 struct cgroup_subsys_state *css;
2096 struct cpuset *oldcs = cpuset_attach_old_cs;
2098 cgroup_taskset_first(tset, &css);
2101 mutex_lock(&cpuset_mutex);
2103 /* prepare for attach */
2104 if (cs == &top_cpuset)
2105 cpumask_copy(cpus_attach, cpu_possible_mask);
2107 guarantee_online_cpus(cs, cpus_attach);
2109 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2111 cgroup_taskset_for_each(task, css, tset) {
2113 * can_attach beforehand should guarantee that this doesn't
2114 * fail. TODO: have a better way to handle failure here
2116 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2118 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2119 cpuset_update_task_spread_flag(cs, task);
2123 * Change mm for all threadgroup leaders. This is expensive and may
2124 * sleep and should be moved outside migration path proper.
2126 cpuset_attach_nodemask_to = cs->effective_mems;
2127 cgroup_taskset_for_each_leader(leader, css, tset) {
2128 struct mm_struct *mm = get_task_mm(leader);
2131 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2134 * old_mems_allowed is the same with mems_allowed
2135 * here, except if this task is being moved
2136 * automatically due to hotplug. In that case
2137 * @mems_allowed has been updated and is empty, so
2138 * @old_mems_allowed is the right nodesets that we
2141 if (is_memory_migrate(cs))
2142 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2143 &cpuset_attach_nodemask_to);
2149 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2151 cs->attach_in_progress--;
2152 if (!cs->attach_in_progress)
2153 wake_up(&cpuset_attach_wq);
2155 mutex_unlock(&cpuset_mutex);
2158 /* The various types of files and directories in a cpuset file system */
2161 FILE_MEMORY_MIGRATE,
2164 FILE_EFFECTIVE_CPULIST,
2165 FILE_EFFECTIVE_MEMLIST,
2169 FILE_SCHED_LOAD_BALANCE,
2170 FILE_PARTITION_ROOT,
2171 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2172 FILE_MEMORY_PRESSURE_ENABLED,
2173 FILE_MEMORY_PRESSURE,
2176 } cpuset_filetype_t;
2178 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2181 struct cpuset *cs = css_cs(css);
2182 cpuset_filetype_t type = cft->private;
2185 mutex_lock(&cpuset_mutex);
2186 if (!is_cpuset_online(cs)) {
2192 case FILE_CPU_EXCLUSIVE:
2193 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2195 case FILE_MEM_EXCLUSIVE:
2196 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2198 case FILE_MEM_HARDWALL:
2199 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2201 case FILE_SCHED_LOAD_BALANCE:
2202 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2204 case FILE_MEMORY_MIGRATE:
2205 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2207 case FILE_MEMORY_PRESSURE_ENABLED:
2208 cpuset_memory_pressure_enabled = !!val;
2210 case FILE_SPREAD_PAGE:
2211 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2213 case FILE_SPREAD_SLAB:
2214 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2221 mutex_unlock(&cpuset_mutex);
2225 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2228 struct cpuset *cs = css_cs(css);
2229 cpuset_filetype_t type = cft->private;
2230 int retval = -ENODEV;
2232 mutex_lock(&cpuset_mutex);
2233 if (!is_cpuset_online(cs))
2237 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2238 retval = update_relax_domain_level(cs, val);
2240 case FILE_PARTITION_ROOT:
2241 retval = update_prstate(cs, val);
2248 mutex_unlock(&cpuset_mutex);
2253 * Common handling for a write to a "cpus" or "mems" file.
2255 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2256 char *buf, size_t nbytes, loff_t off)
2258 struct cpuset *cs = css_cs(of_css(of));
2259 struct cpuset *trialcs;
2260 int retval = -ENODEV;
2262 buf = strstrip(buf);
2265 * CPU or memory hotunplug may leave @cs w/o any execution
2266 * resources, in which case the hotplug code asynchronously updates
2267 * configuration and transfers all tasks to the nearest ancestor
2268 * which can execute.
2270 * As writes to "cpus" or "mems" may restore @cs's execution
2271 * resources, wait for the previously scheduled operations before
2272 * proceeding, so that we don't end up keep removing tasks added
2273 * after execution capability is restored.
2275 * cpuset_hotplug_work calls back into cgroup core via
2276 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2277 * operation like this one can lead to a deadlock through kernfs
2278 * active_ref protection. Let's break the protection. Losing the
2279 * protection is okay as we check whether @cs is online after
2280 * grabbing cpuset_mutex anyway. This only happens on the legacy
2284 kernfs_break_active_protection(of->kn);
2285 flush_work(&cpuset_hotplug_work);
2287 mutex_lock(&cpuset_mutex);
2288 if (!is_cpuset_online(cs))
2291 trialcs = alloc_trial_cpuset(cs);
2297 switch (of_cft(of)->private) {
2299 retval = update_cpumask(cs, trialcs, buf);
2302 retval = update_nodemask(cs, trialcs, buf);
2309 free_cpuset(trialcs);
2311 mutex_unlock(&cpuset_mutex);
2312 kernfs_unbreak_active_protection(of->kn);
2314 flush_workqueue(cpuset_migrate_mm_wq);
2315 return retval ?: nbytes;
2319 * These ascii lists should be read in a single call, by using a user
2320 * buffer large enough to hold the entire map. If read in smaller
2321 * chunks, there is no guarantee of atomicity. Since the display format
2322 * used, list of ranges of sequential numbers, is variable length,
2323 * and since these maps can change value dynamically, one could read
2324 * gibberish by doing partial reads while a list was changing.
2326 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2328 struct cpuset *cs = css_cs(seq_css(sf));
2329 cpuset_filetype_t type = seq_cft(sf)->private;
2332 spin_lock_irq(&callback_lock);
2336 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2339 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2341 case FILE_EFFECTIVE_CPULIST:
2342 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2344 case FILE_EFFECTIVE_MEMLIST:
2345 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2351 spin_unlock_irq(&callback_lock);
2355 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2357 struct cpuset *cs = css_cs(css);
2358 cpuset_filetype_t type = cft->private;
2360 case FILE_CPU_EXCLUSIVE:
2361 return is_cpu_exclusive(cs);
2362 case FILE_MEM_EXCLUSIVE:
2363 return is_mem_exclusive(cs);
2364 case FILE_MEM_HARDWALL:
2365 return is_mem_hardwall(cs);
2366 case FILE_SCHED_LOAD_BALANCE:
2367 return is_sched_load_balance(cs);
2368 case FILE_MEMORY_MIGRATE:
2369 return is_memory_migrate(cs);
2370 case FILE_MEMORY_PRESSURE_ENABLED:
2371 return cpuset_memory_pressure_enabled;
2372 case FILE_MEMORY_PRESSURE:
2373 return fmeter_getrate(&cs->fmeter);
2374 case FILE_SPREAD_PAGE:
2375 return is_spread_page(cs);
2376 case FILE_SPREAD_SLAB:
2377 return is_spread_slab(cs);
2382 /* Unreachable but makes gcc happy */
2386 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2388 struct cpuset *cs = css_cs(css);
2389 cpuset_filetype_t type = cft->private;
2391 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2392 return cs->relax_domain_level;
2393 case FILE_PARTITION_ROOT:
2394 return cs->partition_root_state;
2399 /* Unrechable but makes gcc happy */
2404 * for the common functions, 'private' gives the type of file
2407 static struct cftype legacy_files[] = {
2410 .seq_show = cpuset_common_seq_show,
2411 .write = cpuset_write_resmask,
2412 .max_write_len = (100U + 6 * NR_CPUS),
2413 .private = FILE_CPULIST,
2418 .seq_show = cpuset_common_seq_show,
2419 .write = cpuset_write_resmask,
2420 .max_write_len = (100U + 6 * MAX_NUMNODES),
2421 .private = FILE_MEMLIST,
2425 .name = "effective_cpus",
2426 .seq_show = cpuset_common_seq_show,
2427 .private = FILE_EFFECTIVE_CPULIST,
2431 .name = "effective_mems",
2432 .seq_show = cpuset_common_seq_show,
2433 .private = FILE_EFFECTIVE_MEMLIST,
2437 .name = "cpu_exclusive",
2438 .read_u64 = cpuset_read_u64,
2439 .write_u64 = cpuset_write_u64,
2440 .private = FILE_CPU_EXCLUSIVE,
2444 .name = "mem_exclusive",
2445 .read_u64 = cpuset_read_u64,
2446 .write_u64 = cpuset_write_u64,
2447 .private = FILE_MEM_EXCLUSIVE,
2451 .name = "mem_hardwall",
2452 .read_u64 = cpuset_read_u64,
2453 .write_u64 = cpuset_write_u64,
2454 .private = FILE_MEM_HARDWALL,
2458 .name = "sched_load_balance",
2459 .read_u64 = cpuset_read_u64,
2460 .write_u64 = cpuset_write_u64,
2461 .private = FILE_SCHED_LOAD_BALANCE,
2465 .name = "sched_relax_domain_level",
2466 .read_s64 = cpuset_read_s64,
2467 .write_s64 = cpuset_write_s64,
2468 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2472 .name = "memory_migrate",
2473 .read_u64 = cpuset_read_u64,
2474 .write_u64 = cpuset_write_u64,
2475 .private = FILE_MEMORY_MIGRATE,
2479 .name = "memory_pressure",
2480 .read_u64 = cpuset_read_u64,
2481 .private = FILE_MEMORY_PRESSURE,
2485 .name = "memory_spread_page",
2486 .read_u64 = cpuset_read_u64,
2487 .write_u64 = cpuset_write_u64,
2488 .private = FILE_SPREAD_PAGE,
2492 .name = "memory_spread_slab",
2493 .read_u64 = cpuset_read_u64,
2494 .write_u64 = cpuset_write_u64,
2495 .private = FILE_SPREAD_SLAB,
2499 .name = "memory_pressure_enabled",
2500 .flags = CFTYPE_ONLY_ON_ROOT,
2501 .read_u64 = cpuset_read_u64,
2502 .write_u64 = cpuset_write_u64,
2503 .private = FILE_MEMORY_PRESSURE_ENABLED,
2510 * This is currently a minimal set for the default hierarchy. It can be
2511 * expanded later on by migrating more features and control files from v1.
2513 static struct cftype dfl_files[] = {
2516 .seq_show = cpuset_common_seq_show,
2517 .write = cpuset_write_resmask,
2518 .max_write_len = (100U + 6 * NR_CPUS),
2519 .private = FILE_CPULIST,
2520 .flags = CFTYPE_NOT_ON_ROOT,
2525 .seq_show = cpuset_common_seq_show,
2526 .write = cpuset_write_resmask,
2527 .max_write_len = (100U + 6 * MAX_NUMNODES),
2528 .private = FILE_MEMLIST,
2529 .flags = CFTYPE_NOT_ON_ROOT,
2533 .name = "cpus.effective",
2534 .seq_show = cpuset_common_seq_show,
2535 .private = FILE_EFFECTIVE_CPULIST,
2536 .flags = CFTYPE_NOT_ON_ROOT,
2540 .name = "mems.effective",
2541 .seq_show = cpuset_common_seq_show,
2542 .private = FILE_EFFECTIVE_MEMLIST,
2543 .flags = CFTYPE_NOT_ON_ROOT,
2547 .name = "sched.partition",
2548 .read_s64 = cpuset_read_s64,
2549 .write_s64 = cpuset_write_s64,
2550 .private = FILE_PARTITION_ROOT,
2551 .flags = CFTYPE_NOT_ON_ROOT,
2559 * cpuset_css_alloc - allocate a cpuset css
2560 * cgrp: control group that the new cpuset will be part of
2563 static struct cgroup_subsys_state *
2564 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2569 return &top_cpuset.css;
2571 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2573 return ERR_PTR(-ENOMEM);
2575 if (alloc_cpumasks(cs, NULL)) {
2577 return ERR_PTR(-ENOMEM);
2580 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2581 nodes_clear(cs->mems_allowed);
2582 nodes_clear(cs->effective_mems);
2583 fmeter_init(&cs->fmeter);
2584 cs->relax_domain_level = -1;
2589 static int cpuset_css_online(struct cgroup_subsys_state *css)
2591 struct cpuset *cs = css_cs(css);
2592 struct cpuset *parent = parent_cs(cs);
2593 struct cpuset *tmp_cs;
2594 struct cgroup_subsys_state *pos_css;
2599 mutex_lock(&cpuset_mutex);
2601 set_bit(CS_ONLINE, &cs->flags);
2602 if (is_spread_page(parent))
2603 set_bit(CS_SPREAD_PAGE, &cs->flags);
2604 if (is_spread_slab(parent))
2605 set_bit(CS_SPREAD_SLAB, &cs->flags);
2609 spin_lock_irq(&callback_lock);
2610 if (is_in_v2_mode()) {
2611 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2612 cs->effective_mems = parent->effective_mems;
2613 cs->use_parent_ecpus = true;
2614 parent->child_ecpus_count++;
2616 spin_unlock_irq(&callback_lock);
2618 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2622 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2623 * set. This flag handling is implemented in cgroup core for
2624 * histrical reasons - the flag may be specified during mount.
2626 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2627 * refuse to clone the configuration - thereby refusing the task to
2628 * be entered, and as a result refusing the sys_unshare() or
2629 * clone() which initiated it. If this becomes a problem for some
2630 * users who wish to allow that scenario, then this could be
2631 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2632 * (and likewise for mems) to the new cgroup.
2635 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2636 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2643 spin_lock_irq(&callback_lock);
2644 cs->mems_allowed = parent->mems_allowed;
2645 cs->effective_mems = parent->mems_allowed;
2646 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2647 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2648 spin_unlock_irq(&callback_lock);
2650 mutex_unlock(&cpuset_mutex);
2655 * If the cpuset being removed has its flag 'sched_load_balance'
2656 * enabled, then simulate turning sched_load_balance off, which
2657 * will call rebuild_sched_domains_locked(). That is not needed
2658 * in the default hierarchy where only changes in partition
2659 * will cause repartitioning.
2661 * If the cpuset has the 'sched.partition' flag enabled, simulate
2662 * turning 'sched.partition" off.
2665 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2667 struct cpuset *cs = css_cs(css);
2669 mutex_lock(&cpuset_mutex);
2671 if (is_partition_root(cs))
2672 update_prstate(cs, 0);
2674 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2675 is_sched_load_balance(cs))
2676 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2678 if (cs->use_parent_ecpus) {
2679 struct cpuset *parent = parent_cs(cs);
2681 cs->use_parent_ecpus = false;
2682 parent->child_ecpus_count--;
2686 clear_bit(CS_ONLINE, &cs->flags);
2688 mutex_unlock(&cpuset_mutex);
2691 static void cpuset_css_free(struct cgroup_subsys_state *css)
2693 struct cpuset *cs = css_cs(css);
2698 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2700 mutex_lock(&cpuset_mutex);
2701 spin_lock_irq(&callback_lock);
2703 if (is_in_v2_mode()) {
2704 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2705 top_cpuset.mems_allowed = node_possible_map;
2707 cpumask_copy(top_cpuset.cpus_allowed,
2708 top_cpuset.effective_cpus);
2709 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2712 spin_unlock_irq(&callback_lock);
2713 mutex_unlock(&cpuset_mutex);
2717 * Make sure the new task conform to the current state of its parent,
2718 * which could have been changed by cpuset just after it inherits the
2719 * state from the parent and before it sits on the cgroup's task list.
2721 static void cpuset_fork(struct task_struct *task)
2723 if (task_css_is_root(task, cpuset_cgrp_id))
2726 set_cpus_allowed_ptr(task, ¤t->cpus_allowed);
2727 task->mems_allowed = current->mems_allowed;
2730 struct cgroup_subsys cpuset_cgrp_subsys = {
2731 .css_alloc = cpuset_css_alloc,
2732 .css_online = cpuset_css_online,
2733 .css_offline = cpuset_css_offline,
2734 .css_free = cpuset_css_free,
2735 .can_attach = cpuset_can_attach,
2736 .cancel_attach = cpuset_cancel_attach,
2737 .attach = cpuset_attach,
2738 .post_attach = cpuset_post_attach,
2739 .bind = cpuset_bind,
2740 .fork = cpuset_fork,
2741 .legacy_cftypes = legacy_files,
2742 .dfl_cftypes = dfl_files,
2748 * cpuset_init - initialize cpusets at system boot
2750 * Description: Initialize top_cpuset and the cpuset internal file system,
2753 int __init cpuset_init(void)
2757 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2758 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2759 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2761 cpumask_setall(top_cpuset.cpus_allowed);
2762 nodes_setall(top_cpuset.mems_allowed);
2763 cpumask_setall(top_cpuset.effective_cpus);
2764 nodes_setall(top_cpuset.effective_mems);
2766 fmeter_init(&top_cpuset.fmeter);
2767 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2768 top_cpuset.relax_domain_level = -1;
2770 err = register_filesystem(&cpuset_fs_type);
2774 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2780 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2781 * or memory nodes, we need to walk over the cpuset hierarchy,
2782 * removing that CPU or node from all cpusets. If this removes the
2783 * last CPU or node from a cpuset, then move the tasks in the empty
2784 * cpuset to its next-highest non-empty parent.
2786 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2788 struct cpuset *parent;
2791 * Find its next-highest non-empty parent, (top cpuset
2792 * has online cpus, so can't be empty).
2794 parent = parent_cs(cs);
2795 while (cpumask_empty(parent->cpus_allowed) ||
2796 nodes_empty(parent->mems_allowed))
2797 parent = parent_cs(parent);
2799 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2800 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2801 pr_cont_cgroup_name(cs->css.cgroup);
2807 hotplug_update_tasks_legacy(struct cpuset *cs,
2808 struct cpumask *new_cpus, nodemask_t *new_mems,
2809 bool cpus_updated, bool mems_updated)
2813 spin_lock_irq(&callback_lock);
2814 cpumask_copy(cs->cpus_allowed, new_cpus);
2815 cpumask_copy(cs->effective_cpus, new_cpus);
2816 cs->mems_allowed = *new_mems;
2817 cs->effective_mems = *new_mems;
2818 spin_unlock_irq(&callback_lock);
2821 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2822 * as the tasks will be migratecd to an ancestor.
2824 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2825 update_tasks_cpumask(cs);
2826 if (mems_updated && !nodes_empty(cs->mems_allowed))
2827 update_tasks_nodemask(cs);
2829 is_empty = cpumask_empty(cs->cpus_allowed) ||
2830 nodes_empty(cs->mems_allowed);
2832 mutex_unlock(&cpuset_mutex);
2835 * Move tasks to the nearest ancestor with execution resources,
2836 * This is full cgroup operation which will also call back into
2837 * cpuset. Should be done outside any lock.
2840 remove_tasks_in_empty_cpuset(cs);
2842 mutex_lock(&cpuset_mutex);
2846 hotplug_update_tasks(struct cpuset *cs,
2847 struct cpumask *new_cpus, nodemask_t *new_mems,
2848 bool cpus_updated, bool mems_updated)
2850 if (cpumask_empty(new_cpus))
2851 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2852 if (nodes_empty(*new_mems))
2853 *new_mems = parent_cs(cs)->effective_mems;
2855 spin_lock_irq(&callback_lock);
2856 cpumask_copy(cs->effective_cpus, new_cpus);
2857 cs->effective_mems = *new_mems;
2858 spin_unlock_irq(&callback_lock);
2861 update_tasks_cpumask(cs);
2863 update_tasks_nodemask(cs);
2867 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2868 * @cs: cpuset in interest
2870 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2871 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2872 * all its tasks are moved to the nearest ancestor with both resources.
2874 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2876 static cpumask_t new_cpus;
2877 static nodemask_t new_mems;
2881 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2883 mutex_lock(&cpuset_mutex);
2886 * We have raced with task attaching. We wait until attaching
2887 * is finished, so we won't attach a task to an empty cpuset.
2889 if (cs->attach_in_progress) {
2890 mutex_unlock(&cpuset_mutex);
2894 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2895 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2897 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2898 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2900 if (is_in_v2_mode())
2901 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2902 cpus_updated, mems_updated);
2904 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2905 cpus_updated, mems_updated);
2907 mutex_unlock(&cpuset_mutex);
2910 static bool force_rebuild;
2912 void cpuset_force_rebuild(void)
2914 force_rebuild = true;
2918 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2920 * This function is called after either CPU or memory configuration has
2921 * changed and updates cpuset accordingly. The top_cpuset is always
2922 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2923 * order to make cpusets transparent (of no affect) on systems that are
2924 * actively using CPU hotplug but making no active use of cpusets.
2926 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2927 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2930 * Note that CPU offlining during suspend is ignored. We don't modify
2931 * cpusets across suspend/resume cycles at all.
2933 static void cpuset_hotplug_workfn(struct work_struct *work)
2935 static cpumask_t new_cpus;
2936 static nodemask_t new_mems;
2937 bool cpus_updated, mems_updated;
2938 bool on_dfl = is_in_v2_mode();
2940 mutex_lock(&cpuset_mutex);
2942 /* fetch the available cpus/mems and find out which changed how */
2943 cpumask_copy(&new_cpus, cpu_active_mask);
2944 new_mems = node_states[N_MEMORY];
2946 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2947 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2949 /* synchronize cpus_allowed to cpu_active_mask */
2951 spin_lock_irq(&callback_lock);
2953 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2954 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2955 spin_unlock_irq(&callback_lock);
2956 /* we don't mess with cpumasks of tasks in top_cpuset */
2959 /* synchronize mems_allowed to N_MEMORY */
2961 spin_lock_irq(&callback_lock);
2963 top_cpuset.mems_allowed = new_mems;
2964 top_cpuset.effective_mems = new_mems;
2965 spin_unlock_irq(&callback_lock);
2966 update_tasks_nodemask(&top_cpuset);
2969 mutex_unlock(&cpuset_mutex);
2971 /* if cpus or mems changed, we need to propagate to descendants */
2972 if (cpus_updated || mems_updated) {
2974 struct cgroup_subsys_state *pos_css;
2977 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2978 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2982 cpuset_hotplug_update_tasks(cs);
2990 /* rebuild sched domains if cpus_allowed has changed */
2991 if (cpus_updated || force_rebuild) {
2992 force_rebuild = false;
2993 rebuild_sched_domains();
2997 void cpuset_update_active_cpus(void)
3000 * We're inside cpu hotplug critical region which usually nests
3001 * inside cgroup synchronization. Bounce actual hotplug processing
3002 * to a work item to avoid reverse locking order.
3004 schedule_work(&cpuset_hotplug_work);
3007 void cpuset_wait_for_hotplug(void)
3009 flush_work(&cpuset_hotplug_work);
3013 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3014 * Call this routine anytime after node_states[N_MEMORY] changes.
3015 * See cpuset_update_active_cpus() for CPU hotplug handling.
3017 static int cpuset_track_online_nodes(struct notifier_block *self,
3018 unsigned long action, void *arg)
3020 schedule_work(&cpuset_hotplug_work);
3024 static struct notifier_block cpuset_track_online_nodes_nb = {
3025 .notifier_call = cpuset_track_online_nodes,
3026 .priority = 10, /* ??! */
3030 * cpuset_init_smp - initialize cpus_allowed
3032 * Description: Finish top cpuset after cpu, node maps are initialized
3034 void __init cpuset_init_smp(void)
3036 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3037 top_cpuset.mems_allowed = node_states[N_MEMORY];
3038 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3040 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3041 top_cpuset.effective_mems = node_states[N_MEMORY];
3043 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3045 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3046 BUG_ON(!cpuset_migrate_mm_wq);
3050 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3051 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3052 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3054 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3055 * attached to the specified @tsk. Guaranteed to return some non-empty
3056 * subset of cpu_online_mask, even if this means going outside the
3060 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3062 unsigned long flags;
3064 spin_lock_irqsave(&callback_lock, flags);
3066 guarantee_online_cpus(task_cs(tsk), pmask);
3068 spin_unlock_irqrestore(&callback_lock, flags);
3071 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3074 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
3078 * We own tsk->cpus_allowed, nobody can change it under us.
3080 * But we used cs && cs->cpus_allowed lockless and thus can
3081 * race with cgroup_attach_task() or update_cpumask() and get
3082 * the wrong tsk->cpus_allowed. However, both cases imply the
3083 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3084 * which takes task_rq_lock().
3086 * If we are called after it dropped the lock we must see all
3087 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3088 * set any mask even if it is not right from task_cs() pov,
3089 * the pending set_cpus_allowed_ptr() will fix things.
3091 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3096 void __init cpuset_init_current_mems_allowed(void)
3098 nodes_setall(current->mems_allowed);
3102 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3103 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3105 * Description: Returns the nodemask_t mems_allowed of the cpuset
3106 * attached to the specified @tsk. Guaranteed to return some non-empty
3107 * subset of node_states[N_MEMORY], even if this means going outside the
3111 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3114 unsigned long flags;
3116 spin_lock_irqsave(&callback_lock, flags);
3118 guarantee_online_mems(task_cs(tsk), &mask);
3120 spin_unlock_irqrestore(&callback_lock, flags);
3126 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3127 * @nodemask: the nodemask to be checked
3129 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3131 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3133 return nodes_intersects(*nodemask, current->mems_allowed);
3137 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3138 * mem_hardwall ancestor to the specified cpuset. Call holding
3139 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3140 * (an unusual configuration), then returns the root cpuset.
3142 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3144 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3150 * cpuset_node_allowed - Can we allocate on a memory node?
3151 * @node: is this an allowed node?
3152 * @gfp_mask: memory allocation flags
3154 * If we're in interrupt, yes, we can always allocate. If @node is set in
3155 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3156 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3157 * yes. If current has access to memory reserves as an oom victim, yes.
3160 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3161 * and do not allow allocations outside the current tasks cpuset
3162 * unless the task has been OOM killed.
3163 * GFP_KERNEL allocations are not so marked, so can escape to the
3164 * nearest enclosing hardwalled ancestor cpuset.
3166 * Scanning up parent cpusets requires callback_lock. The
3167 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3168 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3169 * current tasks mems_allowed came up empty on the first pass over
3170 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3171 * cpuset are short of memory, might require taking the callback_lock.
3173 * The first call here from mm/page_alloc:get_page_from_freelist()
3174 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3175 * so no allocation on a node outside the cpuset is allowed (unless
3176 * in interrupt, of course).
3178 * The second pass through get_page_from_freelist() doesn't even call
3179 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3180 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3181 * in alloc_flags. That logic and the checks below have the combined
3183 * in_interrupt - any node ok (current task context irrelevant)
3184 * GFP_ATOMIC - any node ok
3185 * tsk_is_oom_victim - any node ok
3186 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3187 * GFP_USER - only nodes in current tasks mems allowed ok.
3189 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3191 struct cpuset *cs; /* current cpuset ancestors */
3192 int allowed; /* is allocation in zone z allowed? */
3193 unsigned long flags;
3197 if (node_isset(node, current->mems_allowed))
3200 * Allow tasks that have access to memory reserves because they have
3201 * been OOM killed to get memory anywhere.
3203 if (unlikely(tsk_is_oom_victim(current)))
3205 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3208 if (current->flags & PF_EXITING) /* Let dying task have memory */
3211 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3212 spin_lock_irqsave(&callback_lock, flags);
3215 cs = nearest_hardwall_ancestor(task_cs(current));
3216 allowed = node_isset(node, cs->mems_allowed);
3219 spin_unlock_irqrestore(&callback_lock, flags);
3224 * cpuset_mem_spread_node() - On which node to begin search for a file page
3225 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3227 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3228 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3229 * and if the memory allocation used cpuset_mem_spread_node()
3230 * to determine on which node to start looking, as it will for
3231 * certain page cache or slab cache pages such as used for file
3232 * system buffers and inode caches, then instead of starting on the
3233 * local node to look for a free page, rather spread the starting
3234 * node around the tasks mems_allowed nodes.
3236 * We don't have to worry about the returned node being offline
3237 * because "it can't happen", and even if it did, it would be ok.
3239 * The routines calling guarantee_online_mems() are careful to
3240 * only set nodes in task->mems_allowed that are online. So it
3241 * should not be possible for the following code to return an
3242 * offline node. But if it did, that would be ok, as this routine
3243 * is not returning the node where the allocation must be, only
3244 * the node where the search should start. The zonelist passed to
3245 * __alloc_pages() will include all nodes. If the slab allocator
3246 * is passed an offline node, it will fall back to the local node.
3247 * See kmem_cache_alloc_node().
3250 static int cpuset_spread_node(int *rotor)
3252 return *rotor = next_node_in(*rotor, current->mems_allowed);
3255 int cpuset_mem_spread_node(void)
3257 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3258 current->cpuset_mem_spread_rotor =
3259 node_random(¤t->mems_allowed);
3261 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3264 int cpuset_slab_spread_node(void)
3266 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3267 current->cpuset_slab_spread_rotor =
3268 node_random(¤t->mems_allowed);
3270 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3273 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3276 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3277 * @tsk1: pointer to task_struct of some task.
3278 * @tsk2: pointer to task_struct of some other task.
3280 * Description: Return true if @tsk1's mems_allowed intersects the
3281 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3282 * one of the task's memory usage might impact the memory available
3286 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3287 const struct task_struct *tsk2)
3289 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3293 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3295 * Description: Prints current's name, cpuset name, and cached copy of its
3296 * mems_allowed to the kernel log.
3298 void cpuset_print_current_mems_allowed(void)
3300 struct cgroup *cgrp;
3304 cgrp = task_cs(current)->css.cgroup;
3305 pr_info("%s cpuset=", current->comm);
3306 pr_cont_cgroup_name(cgrp);
3307 pr_cont(" mems_allowed=%*pbl\n",
3308 nodemask_pr_args(¤t->mems_allowed));
3314 * Collection of memory_pressure is suppressed unless
3315 * this flag is enabled by writing "1" to the special
3316 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3319 int cpuset_memory_pressure_enabled __read_mostly;
3322 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3324 * Keep a running average of the rate of synchronous (direct)
3325 * page reclaim efforts initiated by tasks in each cpuset.
3327 * This represents the rate at which some task in the cpuset
3328 * ran low on memory on all nodes it was allowed to use, and
3329 * had to enter the kernels page reclaim code in an effort to
3330 * create more free memory by tossing clean pages or swapping
3331 * or writing dirty pages.
3333 * Display to user space in the per-cpuset read-only file
3334 * "memory_pressure". Value displayed is an integer
3335 * representing the recent rate of entry into the synchronous
3336 * (direct) page reclaim by any task attached to the cpuset.
3339 void __cpuset_memory_pressure_bump(void)
3342 fmeter_markevent(&task_cs(current)->fmeter);
3346 #ifdef CONFIG_PROC_PID_CPUSET
3348 * proc_cpuset_show()
3349 * - Print tasks cpuset path into seq_file.
3350 * - Used for /proc/<pid>/cpuset.
3351 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3352 * doesn't really matter if tsk->cpuset changes after we read it,
3353 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3356 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3357 struct pid *pid, struct task_struct *tsk)
3360 struct cgroup_subsys_state *css;
3364 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3368 css = task_get_css(tsk, cpuset_cgrp_id);
3369 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3370 current->nsproxy->cgroup_ns);
3372 if (retval >= PATH_MAX)
3373 retval = -ENAMETOOLONG;
3384 #endif /* CONFIG_PROC_PID_CPUSET */
3386 /* Display task mems_allowed in /proc/<pid>/status file. */
3387 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3389 seq_printf(m, "Mems_allowed:\t%*pb\n",
3390 nodemask_pr_args(&task->mems_allowed));
3391 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3392 nodemask_pr_args(&task->mems_allowed));