kconfig: fix memory leak from range properties
[linux-2.6-microblaze.git] / kernel / bpf / verifier.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30
31 #include "disasm.h"
32
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35         [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171         /* verifer state is 'st'
172          * before processing instruction 'insn_idx'
173          * and after processing instruction 'prev_insn_idx'
174          */
175         struct bpf_verifier_state st;
176         int insn_idx;
177         int prev_insn_idx;
178         struct bpf_verifier_stack_elem *next;
179         /* length of verifier log at the time this state was pushed on stack */
180         u32 log_pos;
181 };
182
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ    8192
184 #define BPF_COMPLEXITY_LIMIT_STATES     64
185
186 #define BPF_MAP_KEY_POISON      (1ULL << 63)
187 #define BPF_MAP_KEY_SEEN        (1ULL << 62)
188
189 #define BPF_MAP_PTR_UNPRIV      1UL
190 #define BPF_MAP_PTR_POISON      ((void *)((0xeB9FUL << 1) +     \
191                                           POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)          ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199                               struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201                              u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206         return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211         return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215                               const struct bpf_map *map, bool unpriv)
216 {
217         BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218         unpriv |= bpf_map_ptr_unpriv(aux);
219         aux->map_ptr_state = (unsigned long)map |
220                              (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225         return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230         return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235         return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240         bool poisoned = bpf_map_key_poisoned(aux);
241
242         aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243                              (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248         return insn->code == (BPF_JMP | BPF_CALL) &&
249                insn->src_reg == 0;
250 }
251
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254         return insn->code == (BPF_JMP | BPF_CALL) &&
255                insn->src_reg == BPF_PSEUDO_CALL;
256 }
257
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260         return insn->code == (BPF_JMP | BPF_CALL) &&
261                insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263
264 struct bpf_call_arg_meta {
265         struct bpf_map *map_ptr;
266         bool raw_mode;
267         bool pkt_access;
268         u8 release_regno;
269         int regno;
270         int access_size;
271         int mem_size;
272         u64 msize_max_value;
273         int ref_obj_id;
274         int dynptr_id;
275         int map_uid;
276         int func_id;
277         struct btf *btf;
278         u32 btf_id;
279         struct btf *ret_btf;
280         u32 ret_btf_id;
281         u32 subprogno;
282         struct btf_field *kptr_field;
283 };
284
285 struct bpf_kfunc_call_arg_meta {
286         /* In parameters */
287         struct btf *btf;
288         u32 func_id;
289         u32 kfunc_flags;
290         const struct btf_type *func_proto;
291         const char *func_name;
292         /* Out parameters */
293         u32 ref_obj_id;
294         u8 release_regno;
295         bool r0_rdonly;
296         u32 ret_btf_id;
297         u64 r0_size;
298         u32 subprogno;
299         struct {
300                 u64 value;
301                 bool found;
302         } arg_constant;
303
304         /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305          * generally to pass info about user-defined local kptr types to later
306          * verification logic
307          *   bpf_obj_drop/bpf_percpu_obj_drop
308          *     Record the local kptr type to be drop'd
309          *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310          *     Record the local kptr type to be refcount_incr'd and use
311          *     arg_owning_ref to determine whether refcount_acquire should be
312          *     fallible
313          */
314         struct btf *arg_btf;
315         u32 arg_btf_id;
316         bool arg_owning_ref;
317
318         struct {
319                 struct btf_field *field;
320         } arg_list_head;
321         struct {
322                 struct btf_field *field;
323         } arg_rbtree_root;
324         struct {
325                 enum bpf_dynptr_type type;
326                 u32 id;
327                 u32 ref_obj_id;
328         } initialized_dynptr;
329         struct {
330                 u8 spi;
331                 u8 frameno;
332         } iter;
333         u64 mem_size;
334 };
335
336 struct btf *btf_vmlinux;
337
338 static DEFINE_MUTEX(bpf_verifier_lock);
339
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343         const struct bpf_line_info *linfo;
344         const struct bpf_prog *prog;
345         u32 i, nr_linfo;
346
347         prog = env->prog;
348         nr_linfo = prog->aux->nr_linfo;
349
350         if (!nr_linfo || insn_off >= prog->len)
351                 return NULL;
352
353         linfo = prog->aux->linfo;
354         for (i = 1; i < nr_linfo; i++)
355                 if (insn_off < linfo[i].insn_off)
356                         break;
357
358         return &linfo[i - 1];
359 }
360
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363         struct bpf_verifier_env *env = private_data;
364         va_list args;
365
366         if (!bpf_verifier_log_needed(&env->log))
367                 return;
368
369         va_start(args, fmt);
370         bpf_verifier_vlog(&env->log, fmt, args);
371         va_end(args);
372 }
373
374 static const char *ltrim(const char *s)
375 {
376         while (isspace(*s))
377                 s++;
378
379         return s;
380 }
381
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383                                          u32 insn_off,
384                                          const char *prefix_fmt, ...)
385 {
386         const struct bpf_line_info *linfo;
387
388         if (!bpf_verifier_log_needed(&env->log))
389                 return;
390
391         linfo = find_linfo(env, insn_off);
392         if (!linfo || linfo == env->prev_linfo)
393                 return;
394
395         if (prefix_fmt) {
396                 va_list args;
397
398                 va_start(args, prefix_fmt);
399                 bpf_verifier_vlog(&env->log, prefix_fmt, args);
400                 va_end(args);
401         }
402
403         verbose(env, "%s\n",
404                 ltrim(btf_name_by_offset(env->prog->aux->btf,
405                                          linfo->line_off)));
406
407         env->prev_linfo = linfo;
408 }
409
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411                                    struct bpf_reg_state *reg,
412                                    struct tnum *range, const char *ctx,
413                                    const char *reg_name)
414 {
415         char tn_buf[48];
416
417         verbose(env, "At %s the register %s ", ctx, reg_name);
418         if (!tnum_is_unknown(reg->var_off)) {
419                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420                 verbose(env, "has value %s", tn_buf);
421         } else {
422                 verbose(env, "has unknown scalar value");
423         }
424         tnum_strn(tn_buf, sizeof(tn_buf), *range);
425         verbose(env, " should have been in %s\n", tn_buf);
426 }
427
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430         type = base_type(type);
431         return type == PTR_TO_PACKET ||
432                type == PTR_TO_PACKET_META;
433 }
434
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437         return type == PTR_TO_SOCKET ||
438                 type == PTR_TO_SOCK_COMMON ||
439                 type == PTR_TO_TCP_SOCK ||
440                 type == PTR_TO_XDP_SOCK;
441 }
442
443 static bool type_may_be_null(u32 type)
444 {
445         return type & PTR_MAYBE_NULL;
446 }
447
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450         enum bpf_reg_type type;
451
452         type = reg->type;
453         if (type_may_be_null(type))
454                 return false;
455
456         type = base_type(type);
457         return type == PTR_TO_SOCKET ||
458                 type == PTR_TO_TCP_SOCK ||
459                 type == PTR_TO_MAP_VALUE ||
460                 type == PTR_TO_MAP_KEY ||
461                 type == PTR_TO_SOCK_COMMON ||
462                 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463                 type == PTR_TO_MEM;
464 }
465
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468         return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470
471 static bool type_is_non_owning_ref(u32 type)
472 {
473         return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478         struct btf_record *rec = NULL;
479         struct btf_struct_meta *meta;
480
481         if (reg->type == PTR_TO_MAP_VALUE) {
482                 rec = reg->map_ptr->record;
483         } else if (type_is_ptr_alloc_obj(reg->type)) {
484                 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485                 if (meta)
486                         rec = meta->record;
487         }
488         return rec;
489 }
490
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493         struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494
495         return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500         return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502
503 static bool type_is_rdonly_mem(u32 type)
504 {
505         return type & MEM_RDONLY;
506 }
507
508 static bool is_acquire_function(enum bpf_func_id func_id,
509                                 const struct bpf_map *map)
510 {
511         enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512
513         if (func_id == BPF_FUNC_sk_lookup_tcp ||
514             func_id == BPF_FUNC_sk_lookup_udp ||
515             func_id == BPF_FUNC_skc_lookup_tcp ||
516             func_id == BPF_FUNC_ringbuf_reserve ||
517             func_id == BPF_FUNC_kptr_xchg)
518                 return true;
519
520         if (func_id == BPF_FUNC_map_lookup_elem &&
521             (map_type == BPF_MAP_TYPE_SOCKMAP ||
522              map_type == BPF_MAP_TYPE_SOCKHASH))
523                 return true;
524
525         return false;
526 }
527
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530         return func_id == BPF_FUNC_tcp_sock ||
531                 func_id == BPF_FUNC_sk_fullsock ||
532                 func_id == BPF_FUNC_skc_to_tcp_sock ||
533                 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534                 func_id == BPF_FUNC_skc_to_udp6_sock ||
535                 func_id == BPF_FUNC_skc_to_mptcp_sock ||
536                 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537                 func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542         return func_id == BPF_FUNC_dynptr_data;
543 }
544
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
547
548 static bool is_callback_calling_function(enum bpf_func_id func_id)
549 {
550         return func_id == BPF_FUNC_for_each_map_elem ||
551                func_id == BPF_FUNC_timer_set_callback ||
552                func_id == BPF_FUNC_find_vma ||
553                func_id == BPF_FUNC_loop ||
554                func_id == BPF_FUNC_user_ringbuf_drain;
555 }
556
557 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
558 {
559         return func_id == BPF_FUNC_timer_set_callback;
560 }
561
562 static bool is_storage_get_function(enum bpf_func_id func_id)
563 {
564         return func_id == BPF_FUNC_sk_storage_get ||
565                func_id == BPF_FUNC_inode_storage_get ||
566                func_id == BPF_FUNC_task_storage_get ||
567                func_id == BPF_FUNC_cgrp_storage_get;
568 }
569
570 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
571                                         const struct bpf_map *map)
572 {
573         int ref_obj_uses = 0;
574
575         if (is_ptr_cast_function(func_id))
576                 ref_obj_uses++;
577         if (is_acquire_function(func_id, map))
578                 ref_obj_uses++;
579         if (is_dynptr_ref_function(func_id))
580                 ref_obj_uses++;
581
582         return ref_obj_uses > 1;
583 }
584
585 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
586 {
587         return BPF_CLASS(insn->code) == BPF_STX &&
588                BPF_MODE(insn->code) == BPF_ATOMIC &&
589                insn->imm == BPF_CMPXCHG;
590 }
591
592 /* string representation of 'enum bpf_reg_type'
593  *
594  * Note that reg_type_str() can not appear more than once in a single verbose()
595  * statement.
596  */
597 static const char *reg_type_str(struct bpf_verifier_env *env,
598                                 enum bpf_reg_type type)
599 {
600         char postfix[16] = {0}, prefix[64] = {0};
601         static const char * const str[] = {
602                 [NOT_INIT]              = "?",
603                 [SCALAR_VALUE]          = "scalar",
604                 [PTR_TO_CTX]            = "ctx",
605                 [CONST_PTR_TO_MAP]      = "map_ptr",
606                 [PTR_TO_MAP_VALUE]      = "map_value",
607                 [PTR_TO_STACK]          = "fp",
608                 [PTR_TO_PACKET]         = "pkt",
609                 [PTR_TO_PACKET_META]    = "pkt_meta",
610                 [PTR_TO_PACKET_END]     = "pkt_end",
611                 [PTR_TO_FLOW_KEYS]      = "flow_keys",
612                 [PTR_TO_SOCKET]         = "sock",
613                 [PTR_TO_SOCK_COMMON]    = "sock_common",
614                 [PTR_TO_TCP_SOCK]       = "tcp_sock",
615                 [PTR_TO_TP_BUFFER]      = "tp_buffer",
616                 [PTR_TO_XDP_SOCK]       = "xdp_sock",
617                 [PTR_TO_BTF_ID]         = "ptr_",
618                 [PTR_TO_MEM]            = "mem",
619                 [PTR_TO_BUF]            = "buf",
620                 [PTR_TO_FUNC]           = "func",
621                 [PTR_TO_MAP_KEY]        = "map_key",
622                 [CONST_PTR_TO_DYNPTR]   = "dynptr_ptr",
623         };
624
625         if (type & PTR_MAYBE_NULL) {
626                 if (base_type(type) == PTR_TO_BTF_ID)
627                         strncpy(postfix, "or_null_", 16);
628                 else
629                         strncpy(postfix, "_or_null", 16);
630         }
631
632         snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
633                  type & MEM_RDONLY ? "rdonly_" : "",
634                  type & MEM_RINGBUF ? "ringbuf_" : "",
635                  type & MEM_USER ? "user_" : "",
636                  type & MEM_PERCPU ? "percpu_" : "",
637                  type & MEM_RCU ? "rcu_" : "",
638                  type & PTR_UNTRUSTED ? "untrusted_" : "",
639                  type & PTR_TRUSTED ? "trusted_" : ""
640         );
641
642         snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
643                  prefix, str[base_type(type)], postfix);
644         return env->tmp_str_buf;
645 }
646
647 static char slot_type_char[] = {
648         [STACK_INVALID] = '?',
649         [STACK_SPILL]   = 'r',
650         [STACK_MISC]    = 'm',
651         [STACK_ZERO]    = '0',
652         [STACK_DYNPTR]  = 'd',
653         [STACK_ITER]    = 'i',
654 };
655
656 static void print_liveness(struct bpf_verifier_env *env,
657                            enum bpf_reg_liveness live)
658 {
659         if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
660             verbose(env, "_");
661         if (live & REG_LIVE_READ)
662                 verbose(env, "r");
663         if (live & REG_LIVE_WRITTEN)
664                 verbose(env, "w");
665         if (live & REG_LIVE_DONE)
666                 verbose(env, "D");
667 }
668
669 static int __get_spi(s32 off)
670 {
671         return (-off - 1) / BPF_REG_SIZE;
672 }
673
674 static struct bpf_func_state *func(struct bpf_verifier_env *env,
675                                    const struct bpf_reg_state *reg)
676 {
677         struct bpf_verifier_state *cur = env->cur_state;
678
679         return cur->frame[reg->frameno];
680 }
681
682 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
683 {
684        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
685
686        /* We need to check that slots between [spi - nr_slots + 1, spi] are
687         * within [0, allocated_stack).
688         *
689         * Please note that the spi grows downwards. For example, a dynptr
690         * takes the size of two stack slots; the first slot will be at
691         * spi and the second slot will be at spi - 1.
692         */
693        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
694 }
695
696 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
697                                   const char *obj_kind, int nr_slots)
698 {
699         int off, spi;
700
701         if (!tnum_is_const(reg->var_off)) {
702                 verbose(env, "%s has to be at a constant offset\n", obj_kind);
703                 return -EINVAL;
704         }
705
706         off = reg->off + reg->var_off.value;
707         if (off % BPF_REG_SIZE) {
708                 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
709                 return -EINVAL;
710         }
711
712         spi = __get_spi(off);
713         if (spi + 1 < nr_slots) {
714                 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
715                 return -EINVAL;
716         }
717
718         if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
719                 return -ERANGE;
720         return spi;
721 }
722
723 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
724 {
725         return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
726 }
727
728 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
729 {
730         return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
731 }
732
733 static const char *btf_type_name(const struct btf *btf, u32 id)
734 {
735         return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
736 }
737
738 static const char *dynptr_type_str(enum bpf_dynptr_type type)
739 {
740         switch (type) {
741         case BPF_DYNPTR_TYPE_LOCAL:
742                 return "local";
743         case BPF_DYNPTR_TYPE_RINGBUF:
744                 return "ringbuf";
745         case BPF_DYNPTR_TYPE_SKB:
746                 return "skb";
747         case BPF_DYNPTR_TYPE_XDP:
748                 return "xdp";
749         case BPF_DYNPTR_TYPE_INVALID:
750                 return "<invalid>";
751         default:
752                 WARN_ONCE(1, "unknown dynptr type %d\n", type);
753                 return "<unknown>";
754         }
755 }
756
757 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
758 {
759         if (!btf || btf_id == 0)
760                 return "<invalid>";
761
762         /* we already validated that type is valid and has conforming name */
763         return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
764 }
765
766 static const char *iter_state_str(enum bpf_iter_state state)
767 {
768         switch (state) {
769         case BPF_ITER_STATE_ACTIVE:
770                 return "active";
771         case BPF_ITER_STATE_DRAINED:
772                 return "drained";
773         case BPF_ITER_STATE_INVALID:
774                 return "<invalid>";
775         default:
776                 WARN_ONCE(1, "unknown iter state %d\n", state);
777                 return "<unknown>";
778         }
779 }
780
781 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
782 {
783         env->scratched_regs |= 1U << regno;
784 }
785
786 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
787 {
788         env->scratched_stack_slots |= 1ULL << spi;
789 }
790
791 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
792 {
793         return (env->scratched_regs >> regno) & 1;
794 }
795
796 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
797 {
798         return (env->scratched_stack_slots >> regno) & 1;
799 }
800
801 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
802 {
803         return env->scratched_regs || env->scratched_stack_slots;
804 }
805
806 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
807 {
808         env->scratched_regs = 0U;
809         env->scratched_stack_slots = 0ULL;
810 }
811
812 /* Used for printing the entire verifier state. */
813 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
814 {
815         env->scratched_regs = ~0U;
816         env->scratched_stack_slots = ~0ULL;
817 }
818
819 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
820 {
821         switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
822         case DYNPTR_TYPE_LOCAL:
823                 return BPF_DYNPTR_TYPE_LOCAL;
824         case DYNPTR_TYPE_RINGBUF:
825                 return BPF_DYNPTR_TYPE_RINGBUF;
826         case DYNPTR_TYPE_SKB:
827                 return BPF_DYNPTR_TYPE_SKB;
828         case DYNPTR_TYPE_XDP:
829                 return BPF_DYNPTR_TYPE_XDP;
830         default:
831                 return BPF_DYNPTR_TYPE_INVALID;
832         }
833 }
834
835 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
836 {
837         switch (type) {
838         case BPF_DYNPTR_TYPE_LOCAL:
839                 return DYNPTR_TYPE_LOCAL;
840         case BPF_DYNPTR_TYPE_RINGBUF:
841                 return DYNPTR_TYPE_RINGBUF;
842         case BPF_DYNPTR_TYPE_SKB:
843                 return DYNPTR_TYPE_SKB;
844         case BPF_DYNPTR_TYPE_XDP:
845                 return DYNPTR_TYPE_XDP;
846         default:
847                 return 0;
848         }
849 }
850
851 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
852 {
853         return type == BPF_DYNPTR_TYPE_RINGBUF;
854 }
855
856 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
857                               enum bpf_dynptr_type type,
858                               bool first_slot, int dynptr_id);
859
860 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
861                                 struct bpf_reg_state *reg);
862
863 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
864                                    struct bpf_reg_state *sreg1,
865                                    struct bpf_reg_state *sreg2,
866                                    enum bpf_dynptr_type type)
867 {
868         int id = ++env->id_gen;
869
870         __mark_dynptr_reg(sreg1, type, true, id);
871         __mark_dynptr_reg(sreg2, type, false, id);
872 }
873
874 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
875                                struct bpf_reg_state *reg,
876                                enum bpf_dynptr_type type)
877 {
878         __mark_dynptr_reg(reg, type, true, ++env->id_gen);
879 }
880
881 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
882                                         struct bpf_func_state *state, int spi);
883
884 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
885                                    enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
886 {
887         struct bpf_func_state *state = func(env, reg);
888         enum bpf_dynptr_type type;
889         int spi, i, err;
890
891         spi = dynptr_get_spi(env, reg);
892         if (spi < 0)
893                 return spi;
894
895         /* We cannot assume both spi and spi - 1 belong to the same dynptr,
896          * hence we need to call destroy_if_dynptr_stack_slot twice for both,
897          * to ensure that for the following example:
898          *      [d1][d1][d2][d2]
899          * spi    3   2   1   0
900          * So marking spi = 2 should lead to destruction of both d1 and d2. In
901          * case they do belong to same dynptr, second call won't see slot_type
902          * as STACK_DYNPTR and will simply skip destruction.
903          */
904         err = destroy_if_dynptr_stack_slot(env, state, spi);
905         if (err)
906                 return err;
907         err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
908         if (err)
909                 return err;
910
911         for (i = 0; i < BPF_REG_SIZE; i++) {
912                 state->stack[spi].slot_type[i] = STACK_DYNPTR;
913                 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
914         }
915
916         type = arg_to_dynptr_type(arg_type);
917         if (type == BPF_DYNPTR_TYPE_INVALID)
918                 return -EINVAL;
919
920         mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
921                                &state->stack[spi - 1].spilled_ptr, type);
922
923         if (dynptr_type_refcounted(type)) {
924                 /* The id is used to track proper releasing */
925                 int id;
926
927                 if (clone_ref_obj_id)
928                         id = clone_ref_obj_id;
929                 else
930                         id = acquire_reference_state(env, insn_idx);
931
932                 if (id < 0)
933                         return id;
934
935                 state->stack[spi].spilled_ptr.ref_obj_id = id;
936                 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
937         }
938
939         state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
940         state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
941
942         return 0;
943 }
944
945 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
946 {
947         int i;
948
949         for (i = 0; i < BPF_REG_SIZE; i++) {
950                 state->stack[spi].slot_type[i] = STACK_INVALID;
951                 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
952         }
953
954         __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
955         __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
956
957         /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
958          *
959          * While we don't allow reading STACK_INVALID, it is still possible to
960          * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
961          * helpers or insns can do partial read of that part without failing,
962          * but check_stack_range_initialized, check_stack_read_var_off, and
963          * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
964          * the slot conservatively. Hence we need to prevent those liveness
965          * marking walks.
966          *
967          * This was not a problem before because STACK_INVALID is only set by
968          * default (where the default reg state has its reg->parent as NULL), or
969          * in clean_live_states after REG_LIVE_DONE (at which point
970          * mark_reg_read won't walk reg->parent chain), but not randomly during
971          * verifier state exploration (like we did above). Hence, for our case
972          * parentage chain will still be live (i.e. reg->parent may be
973          * non-NULL), while earlier reg->parent was NULL, so we need
974          * REG_LIVE_WRITTEN to screen off read marker propagation when it is
975          * done later on reads or by mark_dynptr_read as well to unnecessary
976          * mark registers in verifier state.
977          */
978         state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
979         state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
980 }
981
982 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
983 {
984         struct bpf_func_state *state = func(env, reg);
985         int spi, ref_obj_id, i;
986
987         spi = dynptr_get_spi(env, reg);
988         if (spi < 0)
989                 return spi;
990
991         if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
992                 invalidate_dynptr(env, state, spi);
993                 return 0;
994         }
995
996         ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
997
998         /* If the dynptr has a ref_obj_id, then we need to invalidate
999          * two things:
1000          *
1001          * 1) Any dynptrs with a matching ref_obj_id (clones)
1002          * 2) Any slices derived from this dynptr.
1003          */
1004
1005         /* Invalidate any slices associated with this dynptr */
1006         WARN_ON_ONCE(release_reference(env, ref_obj_id));
1007
1008         /* Invalidate any dynptr clones */
1009         for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1010                 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1011                         continue;
1012
1013                 /* it should always be the case that if the ref obj id
1014                  * matches then the stack slot also belongs to a
1015                  * dynptr
1016                  */
1017                 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1018                         verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1019                         return -EFAULT;
1020                 }
1021                 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1022                         invalidate_dynptr(env, state, i);
1023         }
1024
1025         return 0;
1026 }
1027
1028 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1029                                struct bpf_reg_state *reg);
1030
1031 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1032 {
1033         if (!env->allow_ptr_leaks)
1034                 __mark_reg_not_init(env, reg);
1035         else
1036                 __mark_reg_unknown(env, reg);
1037 }
1038
1039 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1040                                         struct bpf_func_state *state, int spi)
1041 {
1042         struct bpf_func_state *fstate;
1043         struct bpf_reg_state *dreg;
1044         int i, dynptr_id;
1045
1046         /* We always ensure that STACK_DYNPTR is never set partially,
1047          * hence just checking for slot_type[0] is enough. This is
1048          * different for STACK_SPILL, where it may be only set for
1049          * 1 byte, so code has to use is_spilled_reg.
1050          */
1051         if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1052                 return 0;
1053
1054         /* Reposition spi to first slot */
1055         if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1056                 spi = spi + 1;
1057
1058         if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1059                 verbose(env, "cannot overwrite referenced dynptr\n");
1060                 return -EINVAL;
1061         }
1062
1063         mark_stack_slot_scratched(env, spi);
1064         mark_stack_slot_scratched(env, spi - 1);
1065
1066         /* Writing partially to one dynptr stack slot destroys both. */
1067         for (i = 0; i < BPF_REG_SIZE; i++) {
1068                 state->stack[spi].slot_type[i] = STACK_INVALID;
1069                 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1070         }
1071
1072         dynptr_id = state->stack[spi].spilled_ptr.id;
1073         /* Invalidate any slices associated with this dynptr */
1074         bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1075                 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1076                 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1077                         continue;
1078                 if (dreg->dynptr_id == dynptr_id)
1079                         mark_reg_invalid(env, dreg);
1080         }));
1081
1082         /* Do not release reference state, we are destroying dynptr on stack,
1083          * not using some helper to release it. Just reset register.
1084          */
1085         __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1086         __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1087
1088         /* Same reason as unmark_stack_slots_dynptr above */
1089         state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090         state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1091
1092         return 0;
1093 }
1094
1095 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1096 {
1097         int spi;
1098
1099         if (reg->type == CONST_PTR_TO_DYNPTR)
1100                 return false;
1101
1102         spi = dynptr_get_spi(env, reg);
1103
1104         /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1105          * error because this just means the stack state hasn't been updated yet.
1106          * We will do check_mem_access to check and update stack bounds later.
1107          */
1108         if (spi < 0 && spi != -ERANGE)
1109                 return false;
1110
1111         /* We don't need to check if the stack slots are marked by previous
1112          * dynptr initializations because we allow overwriting existing unreferenced
1113          * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1114          * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1115          * touching are completely destructed before we reinitialize them for a new
1116          * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1117          * instead of delaying it until the end where the user will get "Unreleased
1118          * reference" error.
1119          */
1120         return true;
1121 }
1122
1123 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1124 {
1125         struct bpf_func_state *state = func(env, reg);
1126         int i, spi;
1127
1128         /* This already represents first slot of initialized bpf_dynptr.
1129          *
1130          * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1131          * check_func_arg_reg_off's logic, so we don't need to check its
1132          * offset and alignment.
1133          */
1134         if (reg->type == CONST_PTR_TO_DYNPTR)
1135                 return true;
1136
1137         spi = dynptr_get_spi(env, reg);
1138         if (spi < 0)
1139                 return false;
1140         if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1141                 return false;
1142
1143         for (i = 0; i < BPF_REG_SIZE; i++) {
1144                 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1145                     state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1146                         return false;
1147         }
1148
1149         return true;
1150 }
1151
1152 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1153                                     enum bpf_arg_type arg_type)
1154 {
1155         struct bpf_func_state *state = func(env, reg);
1156         enum bpf_dynptr_type dynptr_type;
1157         int spi;
1158
1159         /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1160         if (arg_type == ARG_PTR_TO_DYNPTR)
1161                 return true;
1162
1163         dynptr_type = arg_to_dynptr_type(arg_type);
1164         if (reg->type == CONST_PTR_TO_DYNPTR) {
1165                 return reg->dynptr.type == dynptr_type;
1166         } else {
1167                 spi = dynptr_get_spi(env, reg);
1168                 if (spi < 0)
1169                         return false;
1170                 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1171         }
1172 }
1173
1174 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1175
1176 static bool in_rcu_cs(struct bpf_verifier_env *env);
1177
1178 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1179
1180 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1181                                  struct bpf_kfunc_call_arg_meta *meta,
1182                                  struct bpf_reg_state *reg, int insn_idx,
1183                                  struct btf *btf, u32 btf_id, int nr_slots)
1184 {
1185         struct bpf_func_state *state = func(env, reg);
1186         int spi, i, j, id;
1187
1188         spi = iter_get_spi(env, reg, nr_slots);
1189         if (spi < 0)
1190                 return spi;
1191
1192         id = acquire_reference_state(env, insn_idx);
1193         if (id < 0)
1194                 return id;
1195
1196         for (i = 0; i < nr_slots; i++) {
1197                 struct bpf_stack_state *slot = &state->stack[spi - i];
1198                 struct bpf_reg_state *st = &slot->spilled_ptr;
1199
1200                 __mark_reg_known_zero(st);
1201                 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1202                 if (is_kfunc_rcu_protected(meta)) {
1203                         if (in_rcu_cs(env))
1204                                 st->type |= MEM_RCU;
1205                         else
1206                                 st->type |= PTR_UNTRUSTED;
1207                 }
1208                 st->live |= REG_LIVE_WRITTEN;
1209                 st->ref_obj_id = i == 0 ? id : 0;
1210                 st->iter.btf = btf;
1211                 st->iter.btf_id = btf_id;
1212                 st->iter.state = BPF_ITER_STATE_ACTIVE;
1213                 st->iter.depth = 0;
1214
1215                 for (j = 0; j < BPF_REG_SIZE; j++)
1216                         slot->slot_type[j] = STACK_ITER;
1217
1218                 mark_stack_slot_scratched(env, spi - i);
1219         }
1220
1221         return 0;
1222 }
1223
1224 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1225                                    struct bpf_reg_state *reg, int nr_slots)
1226 {
1227         struct bpf_func_state *state = func(env, reg);
1228         int spi, i, j;
1229
1230         spi = iter_get_spi(env, reg, nr_slots);
1231         if (spi < 0)
1232                 return spi;
1233
1234         for (i = 0; i < nr_slots; i++) {
1235                 struct bpf_stack_state *slot = &state->stack[spi - i];
1236                 struct bpf_reg_state *st = &slot->spilled_ptr;
1237
1238                 if (i == 0)
1239                         WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1240
1241                 __mark_reg_not_init(env, st);
1242
1243                 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1244                 st->live |= REG_LIVE_WRITTEN;
1245
1246                 for (j = 0; j < BPF_REG_SIZE; j++)
1247                         slot->slot_type[j] = STACK_INVALID;
1248
1249                 mark_stack_slot_scratched(env, spi - i);
1250         }
1251
1252         return 0;
1253 }
1254
1255 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1256                                      struct bpf_reg_state *reg, int nr_slots)
1257 {
1258         struct bpf_func_state *state = func(env, reg);
1259         int spi, i, j;
1260
1261         /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1262          * will do check_mem_access to check and update stack bounds later, so
1263          * return true for that case.
1264          */
1265         spi = iter_get_spi(env, reg, nr_slots);
1266         if (spi == -ERANGE)
1267                 return true;
1268         if (spi < 0)
1269                 return false;
1270
1271         for (i = 0; i < nr_slots; i++) {
1272                 struct bpf_stack_state *slot = &state->stack[spi - i];
1273
1274                 for (j = 0; j < BPF_REG_SIZE; j++)
1275                         if (slot->slot_type[j] == STACK_ITER)
1276                                 return false;
1277         }
1278
1279         return true;
1280 }
1281
1282 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1283                                    struct btf *btf, u32 btf_id, int nr_slots)
1284 {
1285         struct bpf_func_state *state = func(env, reg);
1286         int spi, i, j;
1287
1288         spi = iter_get_spi(env, reg, nr_slots);
1289         if (spi < 0)
1290                 return -EINVAL;
1291
1292         for (i = 0; i < nr_slots; i++) {
1293                 struct bpf_stack_state *slot = &state->stack[spi - i];
1294                 struct bpf_reg_state *st = &slot->spilled_ptr;
1295
1296                 if (st->type & PTR_UNTRUSTED)
1297                         return -EPROTO;
1298                 /* only main (first) slot has ref_obj_id set */
1299                 if (i == 0 && !st->ref_obj_id)
1300                         return -EINVAL;
1301                 if (i != 0 && st->ref_obj_id)
1302                         return -EINVAL;
1303                 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1304                         return -EINVAL;
1305
1306                 for (j = 0; j < BPF_REG_SIZE; j++)
1307                         if (slot->slot_type[j] != STACK_ITER)
1308                                 return -EINVAL;
1309         }
1310
1311         return 0;
1312 }
1313
1314 /* Check if given stack slot is "special":
1315  *   - spilled register state (STACK_SPILL);
1316  *   - dynptr state (STACK_DYNPTR);
1317  *   - iter state (STACK_ITER).
1318  */
1319 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1320 {
1321         enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1322
1323         switch (type) {
1324         case STACK_SPILL:
1325         case STACK_DYNPTR:
1326         case STACK_ITER:
1327                 return true;
1328         case STACK_INVALID:
1329         case STACK_MISC:
1330         case STACK_ZERO:
1331                 return false;
1332         default:
1333                 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1334                 return true;
1335         }
1336 }
1337
1338 /* The reg state of a pointer or a bounded scalar was saved when
1339  * it was spilled to the stack.
1340  */
1341 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1342 {
1343         return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1344 }
1345
1346 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1347 {
1348         return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1349                stack->spilled_ptr.type == SCALAR_VALUE;
1350 }
1351
1352 static void scrub_spilled_slot(u8 *stype)
1353 {
1354         if (*stype != STACK_INVALID)
1355                 *stype = STACK_MISC;
1356 }
1357
1358 static void print_scalar_ranges(struct bpf_verifier_env *env,
1359                                 const struct bpf_reg_state *reg,
1360                                 const char **sep)
1361 {
1362         struct {
1363                 const char *name;
1364                 u64 val;
1365                 bool omit;
1366         } minmaxs[] = {
1367                 {"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
1368                 {"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
1369                 {"umin",   reg->umin_value,         reg->umin_value == 0},
1370                 {"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
1371                 {"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN},
1372                 {"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX},
1373                 {"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
1374                 {"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
1375         }, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
1376         bool neg1, neg2;
1377
1378         for (m1 = &minmaxs[0]; m1 < mend; m1++) {
1379                 if (m1->omit)
1380                         continue;
1381
1382                 neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
1383
1384                 verbose(env, "%s%s=", *sep, m1->name);
1385                 *sep = ",";
1386
1387                 for (m2 = m1 + 2; m2 < mend; m2 += 2) {
1388                         if (m2->omit || m2->val != m1->val)
1389                                 continue;
1390                         /* don't mix negatives with positives */
1391                         neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
1392                         if (neg2 != neg1)
1393                                 continue;
1394                         m2->omit = true;
1395                         verbose(env, "%s=", m2->name);
1396                 }
1397
1398                 verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val);
1399         }
1400 }
1401
1402 static void print_verifier_state(struct bpf_verifier_env *env,
1403                                  const struct bpf_func_state *state,
1404                                  bool print_all)
1405 {
1406         const struct bpf_reg_state *reg;
1407         enum bpf_reg_type t;
1408         int i;
1409
1410         if (state->frameno)
1411                 verbose(env, " frame%d:", state->frameno);
1412         for (i = 0; i < MAX_BPF_REG; i++) {
1413                 reg = &state->regs[i];
1414                 t = reg->type;
1415                 if (t == NOT_INIT)
1416                         continue;
1417                 if (!print_all && !reg_scratched(env, i))
1418                         continue;
1419                 verbose(env, " R%d", i);
1420                 print_liveness(env, reg->live);
1421                 verbose(env, "=");
1422                 if (t == SCALAR_VALUE && reg->precise)
1423                         verbose(env, "P");
1424                 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1425                     tnum_is_const(reg->var_off)) {
1426                         /* reg->off should be 0 for SCALAR_VALUE */
1427                         verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1428                         verbose(env, "%lld", reg->var_off.value + reg->off);
1429                 } else {
1430                         const char *sep = "";
1431
1432                         verbose(env, "%s", reg_type_str(env, t));
1433                         if (base_type(t) == PTR_TO_BTF_ID)
1434                                 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1435                         verbose(env, "(");
1436 /*
1437  * _a stands for append, was shortened to avoid multiline statements below.
1438  * This macro is used to output a comma separated list of attributes.
1439  */
1440 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1441
1442                         if (reg->id)
1443                                 verbose_a("id=%d", reg->id);
1444                         if (reg->ref_obj_id)
1445                                 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1446                         if (type_is_non_owning_ref(reg->type))
1447                                 verbose_a("%s", "non_own_ref");
1448                         if (t != SCALAR_VALUE)
1449                                 verbose_a("off=%d", reg->off);
1450                         if (type_is_pkt_pointer(t))
1451                                 verbose_a("r=%d", reg->range);
1452                         else if (base_type(t) == CONST_PTR_TO_MAP ||
1453                                  base_type(t) == PTR_TO_MAP_KEY ||
1454                                  base_type(t) == PTR_TO_MAP_VALUE)
1455                                 verbose_a("ks=%d,vs=%d",
1456                                           reg->map_ptr->key_size,
1457                                           reg->map_ptr->value_size);
1458                         if (tnum_is_const(reg->var_off)) {
1459                                 /* Typically an immediate SCALAR_VALUE, but
1460                                  * could be a pointer whose offset is too big
1461                                  * for reg->off
1462                                  */
1463                                 verbose_a("imm=%llx", reg->var_off.value);
1464                         } else {
1465                                 print_scalar_ranges(env, reg, &sep);
1466                                 if (!tnum_is_unknown(reg->var_off)) {
1467                                         char tn_buf[48];
1468
1469                                         tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1470                                         verbose_a("var_off=%s", tn_buf);
1471                                 }
1472                         }
1473 #undef verbose_a
1474
1475                         verbose(env, ")");
1476                 }
1477         }
1478         for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1479                 char types_buf[BPF_REG_SIZE + 1];
1480                 bool valid = false;
1481                 int j;
1482
1483                 for (j = 0; j < BPF_REG_SIZE; j++) {
1484                         if (state->stack[i].slot_type[j] != STACK_INVALID)
1485                                 valid = true;
1486                         types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1487                 }
1488                 types_buf[BPF_REG_SIZE] = 0;
1489                 if (!valid)
1490                         continue;
1491                 if (!print_all && !stack_slot_scratched(env, i))
1492                         continue;
1493                 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1494                 case STACK_SPILL:
1495                         reg = &state->stack[i].spilled_ptr;
1496                         t = reg->type;
1497
1498                         verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1499                         print_liveness(env, reg->live);
1500                         verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1501                         if (t == SCALAR_VALUE && reg->precise)
1502                                 verbose(env, "P");
1503                         if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1504                                 verbose(env, "%lld", reg->var_off.value + reg->off);
1505                         break;
1506                 case STACK_DYNPTR:
1507                         i += BPF_DYNPTR_NR_SLOTS - 1;
1508                         reg = &state->stack[i].spilled_ptr;
1509
1510                         verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1511                         print_liveness(env, reg->live);
1512                         verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1513                         if (reg->ref_obj_id)
1514                                 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1515                         break;
1516                 case STACK_ITER:
1517                         /* only main slot has ref_obj_id set; skip others */
1518                         reg = &state->stack[i].spilled_ptr;
1519                         if (!reg->ref_obj_id)
1520                                 continue;
1521
1522                         verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1523                         print_liveness(env, reg->live);
1524                         verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1525                                 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1526                                 reg->ref_obj_id, iter_state_str(reg->iter.state),
1527                                 reg->iter.depth);
1528                         break;
1529                 case STACK_MISC:
1530                 case STACK_ZERO:
1531                 default:
1532                         reg = &state->stack[i].spilled_ptr;
1533
1534                         for (j = 0; j < BPF_REG_SIZE; j++)
1535                                 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1536                         types_buf[BPF_REG_SIZE] = 0;
1537
1538                         verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1539                         print_liveness(env, reg->live);
1540                         verbose(env, "=%s", types_buf);
1541                         break;
1542                 }
1543         }
1544         if (state->acquired_refs && state->refs[0].id) {
1545                 verbose(env, " refs=%d", state->refs[0].id);
1546                 for (i = 1; i < state->acquired_refs; i++)
1547                         if (state->refs[i].id)
1548                                 verbose(env, ",%d", state->refs[i].id);
1549         }
1550         if (state->in_callback_fn)
1551                 verbose(env, " cb");
1552         if (state->in_async_callback_fn)
1553                 verbose(env, " async_cb");
1554         verbose(env, "\n");
1555         if (!print_all)
1556                 mark_verifier_state_clean(env);
1557 }
1558
1559 static inline u32 vlog_alignment(u32 pos)
1560 {
1561         return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1562                         BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1563 }
1564
1565 static void print_insn_state(struct bpf_verifier_env *env,
1566                              const struct bpf_func_state *state)
1567 {
1568         if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1569                 /* remove new line character */
1570                 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1571                 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1572         } else {
1573                 verbose(env, "%d:", env->insn_idx);
1574         }
1575         print_verifier_state(env, state, false);
1576 }
1577
1578 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1579  * small to hold src. This is different from krealloc since we don't want to preserve
1580  * the contents of dst.
1581  *
1582  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1583  * not be allocated.
1584  */
1585 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1586 {
1587         size_t alloc_bytes;
1588         void *orig = dst;
1589         size_t bytes;
1590
1591         if (ZERO_OR_NULL_PTR(src))
1592                 goto out;
1593
1594         if (unlikely(check_mul_overflow(n, size, &bytes)))
1595                 return NULL;
1596
1597         alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1598         dst = krealloc(orig, alloc_bytes, flags);
1599         if (!dst) {
1600                 kfree(orig);
1601                 return NULL;
1602         }
1603
1604         memcpy(dst, src, bytes);
1605 out:
1606         return dst ? dst : ZERO_SIZE_PTR;
1607 }
1608
1609 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1610  * small to hold new_n items. new items are zeroed out if the array grows.
1611  *
1612  * Contrary to krealloc_array, does not free arr if new_n is zero.
1613  */
1614 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1615 {
1616         size_t alloc_size;
1617         void *new_arr;
1618
1619         if (!new_n || old_n == new_n)
1620                 goto out;
1621
1622         alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1623         new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1624         if (!new_arr) {
1625                 kfree(arr);
1626                 return NULL;
1627         }
1628         arr = new_arr;
1629
1630         if (new_n > old_n)
1631                 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1632
1633 out:
1634         return arr ? arr : ZERO_SIZE_PTR;
1635 }
1636
1637 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1638 {
1639         dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1640                                sizeof(struct bpf_reference_state), GFP_KERNEL);
1641         if (!dst->refs)
1642                 return -ENOMEM;
1643
1644         dst->acquired_refs = src->acquired_refs;
1645         return 0;
1646 }
1647
1648 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1649 {
1650         size_t n = src->allocated_stack / BPF_REG_SIZE;
1651
1652         dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1653                                 GFP_KERNEL);
1654         if (!dst->stack)
1655                 return -ENOMEM;
1656
1657         dst->allocated_stack = src->allocated_stack;
1658         return 0;
1659 }
1660
1661 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1662 {
1663         state->refs = realloc_array(state->refs, state->acquired_refs, n,
1664                                     sizeof(struct bpf_reference_state));
1665         if (!state->refs)
1666                 return -ENOMEM;
1667
1668         state->acquired_refs = n;
1669         return 0;
1670 }
1671
1672 static int grow_stack_state(struct bpf_func_state *state, int size)
1673 {
1674         size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1675
1676         if (old_n >= n)
1677                 return 0;
1678
1679         state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1680         if (!state->stack)
1681                 return -ENOMEM;
1682
1683         state->allocated_stack = size;
1684         return 0;
1685 }
1686
1687 /* Acquire a pointer id from the env and update the state->refs to include
1688  * this new pointer reference.
1689  * On success, returns a valid pointer id to associate with the register
1690  * On failure, returns a negative errno.
1691  */
1692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1693 {
1694         struct bpf_func_state *state = cur_func(env);
1695         int new_ofs = state->acquired_refs;
1696         int id, err;
1697
1698         err = resize_reference_state(state, state->acquired_refs + 1);
1699         if (err)
1700                 return err;
1701         id = ++env->id_gen;
1702         state->refs[new_ofs].id = id;
1703         state->refs[new_ofs].insn_idx = insn_idx;
1704         state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1705
1706         return id;
1707 }
1708
1709 /* release function corresponding to acquire_reference_state(). Idempotent. */
1710 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1711 {
1712         int i, last_idx;
1713
1714         last_idx = state->acquired_refs - 1;
1715         for (i = 0; i < state->acquired_refs; i++) {
1716                 if (state->refs[i].id == ptr_id) {
1717                         /* Cannot release caller references in callbacks */
1718                         if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1719                                 return -EINVAL;
1720                         if (last_idx && i != last_idx)
1721                                 memcpy(&state->refs[i], &state->refs[last_idx],
1722                                        sizeof(*state->refs));
1723                         memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1724                         state->acquired_refs--;
1725                         return 0;
1726                 }
1727         }
1728         return -EINVAL;
1729 }
1730
1731 static void free_func_state(struct bpf_func_state *state)
1732 {
1733         if (!state)
1734                 return;
1735         kfree(state->refs);
1736         kfree(state->stack);
1737         kfree(state);
1738 }
1739
1740 static void clear_jmp_history(struct bpf_verifier_state *state)
1741 {
1742         kfree(state->jmp_history);
1743         state->jmp_history = NULL;
1744         state->jmp_history_cnt = 0;
1745 }
1746
1747 static void free_verifier_state(struct bpf_verifier_state *state,
1748                                 bool free_self)
1749 {
1750         int i;
1751
1752         for (i = 0; i <= state->curframe; i++) {
1753                 free_func_state(state->frame[i]);
1754                 state->frame[i] = NULL;
1755         }
1756         clear_jmp_history(state);
1757         if (free_self)
1758                 kfree(state);
1759 }
1760
1761 /* copy verifier state from src to dst growing dst stack space
1762  * when necessary to accommodate larger src stack
1763  */
1764 static int copy_func_state(struct bpf_func_state *dst,
1765                            const struct bpf_func_state *src)
1766 {
1767         int err;
1768
1769         memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1770         err = copy_reference_state(dst, src);
1771         if (err)
1772                 return err;
1773         return copy_stack_state(dst, src);
1774 }
1775
1776 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1777                                const struct bpf_verifier_state *src)
1778 {
1779         struct bpf_func_state *dst;
1780         int i, err;
1781
1782         dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1783                                             src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1784                                             GFP_USER);
1785         if (!dst_state->jmp_history)
1786                 return -ENOMEM;
1787         dst_state->jmp_history_cnt = src->jmp_history_cnt;
1788
1789         /* if dst has more stack frames then src frame, free them, this is also
1790          * necessary in case of exceptional exits using bpf_throw.
1791          */
1792         for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1793                 free_func_state(dst_state->frame[i]);
1794                 dst_state->frame[i] = NULL;
1795         }
1796         dst_state->speculative = src->speculative;
1797         dst_state->active_rcu_lock = src->active_rcu_lock;
1798         dst_state->curframe = src->curframe;
1799         dst_state->active_lock.ptr = src->active_lock.ptr;
1800         dst_state->active_lock.id = src->active_lock.id;
1801         dst_state->branches = src->branches;
1802         dst_state->parent = src->parent;
1803         dst_state->first_insn_idx = src->first_insn_idx;
1804         dst_state->last_insn_idx = src->last_insn_idx;
1805         dst_state->dfs_depth = src->dfs_depth;
1806         dst_state->used_as_loop_entry = src->used_as_loop_entry;
1807         for (i = 0; i <= src->curframe; i++) {
1808                 dst = dst_state->frame[i];
1809                 if (!dst) {
1810                         dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1811                         if (!dst)
1812                                 return -ENOMEM;
1813                         dst_state->frame[i] = dst;
1814                 }
1815                 err = copy_func_state(dst, src->frame[i]);
1816                 if (err)
1817                         return err;
1818         }
1819         return 0;
1820 }
1821
1822 static u32 state_htab_size(struct bpf_verifier_env *env)
1823 {
1824         return env->prog->len;
1825 }
1826
1827 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1828 {
1829         struct bpf_verifier_state *cur = env->cur_state;
1830         struct bpf_func_state *state = cur->frame[cur->curframe];
1831
1832         return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1833 }
1834
1835 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1836 {
1837         int fr;
1838
1839         if (a->curframe != b->curframe)
1840                 return false;
1841
1842         for (fr = a->curframe; fr >= 0; fr--)
1843                 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1844                         return false;
1845
1846         return true;
1847 }
1848
1849 /* Open coded iterators allow back-edges in the state graph in order to
1850  * check unbounded loops that iterators.
1851  *
1852  * In is_state_visited() it is necessary to know if explored states are
1853  * part of some loops in order to decide whether non-exact states
1854  * comparison could be used:
1855  * - non-exact states comparison establishes sub-state relation and uses
1856  *   read and precision marks to do so, these marks are propagated from
1857  *   children states and thus are not guaranteed to be final in a loop;
1858  * - exact states comparison just checks if current and explored states
1859  *   are identical (and thus form a back-edge).
1860  *
1861  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1862  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1863  * algorithm for loop structure detection and gives an overview of
1864  * relevant terminology. It also has helpful illustrations.
1865  *
1866  * [1] https://api.semanticscholar.org/CorpusID:15784067
1867  *
1868  * We use a similar algorithm but because loop nested structure is
1869  * irrelevant for verifier ours is significantly simpler and resembles
1870  * strongly connected components algorithm from Sedgewick's textbook.
1871  *
1872  * Define topmost loop entry as a first node of the loop traversed in a
1873  * depth first search starting from initial state. The goal of the loop
1874  * tracking algorithm is to associate topmost loop entries with states
1875  * derived from these entries.
1876  *
1877  * For each step in the DFS states traversal algorithm needs to identify
1878  * the following situations:
1879  *
1880  *          initial                     initial                   initial
1881  *            |                           |                         |
1882  *            V                           V                         V
1883  *           ...                         ...           .---------> hdr
1884  *            |                           |            |            |
1885  *            V                           V            |            V
1886  *           cur                     .-> succ          |    .------...
1887  *            |                      |    |            |    |       |
1888  *            V                      |    V            |    V       V
1889  *           succ                    '-- cur           |   ...     ...
1890  *                                                     |    |       |
1891  *                                                     |    V       V
1892  *                                                     |   succ <- cur
1893  *                                                     |    |
1894  *                                                     |    V
1895  *                                                     |   ...
1896  *                                                     |    |
1897  *                                                     '----'
1898  *
1899  *  (A) successor state of cur   (B) successor state of cur or it's entry
1900  *      not yet traversed            are in current DFS path, thus cur and succ
1901  *                                   are members of the same outermost loop
1902  *
1903  *                      initial                  initial
1904  *                        |                        |
1905  *                        V                        V
1906  *                       ...                      ...
1907  *                        |                        |
1908  *                        V                        V
1909  *                .------...               .------...
1910  *                |       |                |       |
1911  *                V       V                V       V
1912  *           .-> hdr     ...              ...     ...
1913  *           |    |       |                |       |
1914  *           |    V       V                V       V
1915  *           |   succ <- cur              succ <- cur
1916  *           |    |                        |
1917  *           |    V                        V
1918  *           |   ...                      ...
1919  *           |    |                        |
1920  *           '----'                       exit
1921  *
1922  * (C) successor state of cur is a part of some loop but this loop
1923  *     does not include cur or successor state is not in a loop at all.
1924  *
1925  * Algorithm could be described as the following python code:
1926  *
1927  *     traversed = set()   # Set of traversed nodes
1928  *     entries = {}        # Mapping from node to loop entry
1929  *     depths = {}         # Depth level assigned to graph node
1930  *     path = set()        # Current DFS path
1931  *
1932  *     # Find outermost loop entry known for n
1933  *     def get_loop_entry(n):
1934  *         h = entries.get(n, None)
1935  *         while h in entries and entries[h] != h:
1936  *             h = entries[h]
1937  *         return h
1938  *
1939  *     # Update n's loop entry if h's outermost entry comes
1940  *     # before n's outermost entry in current DFS path.
1941  *     def update_loop_entry(n, h):
1942  *         n1 = get_loop_entry(n) or n
1943  *         h1 = get_loop_entry(h) or h
1944  *         if h1 in path and depths[h1] <= depths[n1]:
1945  *             entries[n] = h1
1946  *
1947  *     def dfs(n, depth):
1948  *         traversed.add(n)
1949  *         path.add(n)
1950  *         depths[n] = depth
1951  *         for succ in G.successors(n):
1952  *             if succ not in traversed:
1953  *                 # Case A: explore succ and update cur's loop entry
1954  *                 #         only if succ's entry is in current DFS path.
1955  *                 dfs(succ, depth + 1)
1956  *                 h = get_loop_entry(succ)
1957  *                 update_loop_entry(n, h)
1958  *             else:
1959  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1960  *                 update_loop_entry(n, succ)
1961  *         path.remove(n)
1962  *
1963  * To adapt this algorithm for use with verifier:
1964  * - use st->branch == 0 as a signal that DFS of succ had been finished
1965  *   and cur's loop entry has to be updated (case A), handle this in
1966  *   update_branch_counts();
1967  * - use st->branch > 0 as a signal that st is in the current DFS path;
1968  * - handle cases B and C in is_state_visited();
1969  * - update topmost loop entry for intermediate states in get_loop_entry().
1970  */
1971 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1972 {
1973         struct bpf_verifier_state *topmost = st->loop_entry, *old;
1974
1975         while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1976                 topmost = topmost->loop_entry;
1977         /* Update loop entries for intermediate states to avoid this
1978          * traversal in future get_loop_entry() calls.
1979          */
1980         while (st && st->loop_entry != topmost) {
1981                 old = st->loop_entry;
1982                 st->loop_entry = topmost;
1983                 st = old;
1984         }
1985         return topmost;
1986 }
1987
1988 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1989 {
1990         struct bpf_verifier_state *cur1, *hdr1;
1991
1992         cur1 = get_loop_entry(cur) ?: cur;
1993         hdr1 = get_loop_entry(hdr) ?: hdr;
1994         /* The head1->branches check decides between cases B and C in
1995          * comment for get_loop_entry(). If hdr1->branches == 0 then
1996          * head's topmost loop entry is not in current DFS path,
1997          * hence 'cur' and 'hdr' are not in the same loop and there is
1998          * no need to update cur->loop_entry.
1999          */
2000         if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
2001                 cur->loop_entry = hdr;
2002                 hdr->used_as_loop_entry = true;
2003         }
2004 }
2005
2006 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2007 {
2008         while (st) {
2009                 u32 br = --st->branches;
2010
2011                 /* br == 0 signals that DFS exploration for 'st' is finished,
2012                  * thus it is necessary to update parent's loop entry if it
2013                  * turned out that st is a part of some loop.
2014                  * This is a part of 'case A' in get_loop_entry() comment.
2015                  */
2016                 if (br == 0 && st->parent && st->loop_entry)
2017                         update_loop_entry(st->parent, st->loop_entry);
2018
2019                 /* WARN_ON(br > 1) technically makes sense here,
2020                  * but see comment in push_stack(), hence:
2021                  */
2022                 WARN_ONCE((int)br < 0,
2023                           "BUG update_branch_counts:branches_to_explore=%d\n",
2024                           br);
2025                 if (br)
2026                         break;
2027                 st = st->parent;
2028         }
2029 }
2030
2031 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2032                      int *insn_idx, bool pop_log)
2033 {
2034         struct bpf_verifier_state *cur = env->cur_state;
2035         struct bpf_verifier_stack_elem *elem, *head = env->head;
2036         int err;
2037
2038         if (env->head == NULL)
2039                 return -ENOENT;
2040
2041         if (cur) {
2042                 err = copy_verifier_state(cur, &head->st);
2043                 if (err)
2044                         return err;
2045         }
2046         if (pop_log)
2047                 bpf_vlog_reset(&env->log, head->log_pos);
2048         if (insn_idx)
2049                 *insn_idx = head->insn_idx;
2050         if (prev_insn_idx)
2051                 *prev_insn_idx = head->prev_insn_idx;
2052         elem = head->next;
2053         free_verifier_state(&head->st, false);
2054         kfree(head);
2055         env->head = elem;
2056         env->stack_size--;
2057         return 0;
2058 }
2059
2060 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2061                                              int insn_idx, int prev_insn_idx,
2062                                              bool speculative)
2063 {
2064         struct bpf_verifier_state *cur = env->cur_state;
2065         struct bpf_verifier_stack_elem *elem;
2066         int err;
2067
2068         elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2069         if (!elem)
2070                 goto err;
2071
2072         elem->insn_idx = insn_idx;
2073         elem->prev_insn_idx = prev_insn_idx;
2074         elem->next = env->head;
2075         elem->log_pos = env->log.end_pos;
2076         env->head = elem;
2077         env->stack_size++;
2078         err = copy_verifier_state(&elem->st, cur);
2079         if (err)
2080                 goto err;
2081         elem->st.speculative |= speculative;
2082         if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2083                 verbose(env, "The sequence of %d jumps is too complex.\n",
2084                         env->stack_size);
2085                 goto err;
2086         }
2087         if (elem->st.parent) {
2088                 ++elem->st.parent->branches;
2089                 /* WARN_ON(branches > 2) technically makes sense here,
2090                  * but
2091                  * 1. speculative states will bump 'branches' for non-branch
2092                  * instructions
2093                  * 2. is_state_visited() heuristics may decide not to create
2094                  * a new state for a sequence of branches and all such current
2095                  * and cloned states will be pointing to a single parent state
2096                  * which might have large 'branches' count.
2097                  */
2098         }
2099         return &elem->st;
2100 err:
2101         free_verifier_state(env->cur_state, true);
2102         env->cur_state = NULL;
2103         /* pop all elements and return */
2104         while (!pop_stack(env, NULL, NULL, false));
2105         return NULL;
2106 }
2107
2108 #define CALLER_SAVED_REGS 6
2109 static const int caller_saved[CALLER_SAVED_REGS] = {
2110         BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2111 };
2112
2113 /* This helper doesn't clear reg->id */
2114 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2115 {
2116         reg->var_off = tnum_const(imm);
2117         reg->smin_value = (s64)imm;
2118         reg->smax_value = (s64)imm;
2119         reg->umin_value = imm;
2120         reg->umax_value = imm;
2121
2122         reg->s32_min_value = (s32)imm;
2123         reg->s32_max_value = (s32)imm;
2124         reg->u32_min_value = (u32)imm;
2125         reg->u32_max_value = (u32)imm;
2126 }
2127
2128 /* Mark the unknown part of a register (variable offset or scalar value) as
2129  * known to have the value @imm.
2130  */
2131 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2132 {
2133         /* Clear off and union(map_ptr, range) */
2134         memset(((u8 *)reg) + sizeof(reg->type), 0,
2135                offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2136         reg->id = 0;
2137         reg->ref_obj_id = 0;
2138         ___mark_reg_known(reg, imm);
2139 }
2140
2141 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2142 {
2143         reg->var_off = tnum_const_subreg(reg->var_off, imm);
2144         reg->s32_min_value = (s32)imm;
2145         reg->s32_max_value = (s32)imm;
2146         reg->u32_min_value = (u32)imm;
2147         reg->u32_max_value = (u32)imm;
2148 }
2149
2150 /* Mark the 'variable offset' part of a register as zero.  This should be
2151  * used only on registers holding a pointer type.
2152  */
2153 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2154 {
2155         __mark_reg_known(reg, 0);
2156 }
2157
2158 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2159 {
2160         __mark_reg_known(reg, 0);
2161         reg->type = SCALAR_VALUE;
2162 }
2163
2164 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2165                                 struct bpf_reg_state *regs, u32 regno)
2166 {
2167         if (WARN_ON(regno >= MAX_BPF_REG)) {
2168                 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2169                 /* Something bad happened, let's kill all regs */
2170                 for (regno = 0; regno < MAX_BPF_REG; regno++)
2171                         __mark_reg_not_init(env, regs + regno);
2172                 return;
2173         }
2174         __mark_reg_known_zero(regs + regno);
2175 }
2176
2177 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2178                               bool first_slot, int dynptr_id)
2179 {
2180         /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2181          * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2182          * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2183          */
2184         __mark_reg_known_zero(reg);
2185         reg->type = CONST_PTR_TO_DYNPTR;
2186         /* Give each dynptr a unique id to uniquely associate slices to it. */
2187         reg->id = dynptr_id;
2188         reg->dynptr.type = type;
2189         reg->dynptr.first_slot = first_slot;
2190 }
2191
2192 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2193 {
2194         if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2195                 const struct bpf_map *map = reg->map_ptr;
2196
2197                 if (map->inner_map_meta) {
2198                         reg->type = CONST_PTR_TO_MAP;
2199                         reg->map_ptr = map->inner_map_meta;
2200                         /* transfer reg's id which is unique for every map_lookup_elem
2201                          * as UID of the inner map.
2202                          */
2203                         if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2204                                 reg->map_uid = reg->id;
2205                 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2206                         reg->type = PTR_TO_XDP_SOCK;
2207                 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2208                            map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2209                         reg->type = PTR_TO_SOCKET;
2210                 } else {
2211                         reg->type = PTR_TO_MAP_VALUE;
2212                 }
2213                 return;
2214         }
2215
2216         reg->type &= ~PTR_MAYBE_NULL;
2217 }
2218
2219 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2220                                 struct btf_field_graph_root *ds_head)
2221 {
2222         __mark_reg_known_zero(&regs[regno]);
2223         regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2224         regs[regno].btf = ds_head->btf;
2225         regs[regno].btf_id = ds_head->value_btf_id;
2226         regs[regno].off = ds_head->node_offset;
2227 }
2228
2229 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2230 {
2231         return type_is_pkt_pointer(reg->type);
2232 }
2233
2234 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2235 {
2236         return reg_is_pkt_pointer(reg) ||
2237                reg->type == PTR_TO_PACKET_END;
2238 }
2239
2240 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2241 {
2242         return base_type(reg->type) == PTR_TO_MEM &&
2243                 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2244 }
2245
2246 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2247 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2248                                     enum bpf_reg_type which)
2249 {
2250         /* The register can already have a range from prior markings.
2251          * This is fine as long as it hasn't been advanced from its
2252          * origin.
2253          */
2254         return reg->type == which &&
2255                reg->id == 0 &&
2256                reg->off == 0 &&
2257                tnum_equals_const(reg->var_off, 0);
2258 }
2259
2260 /* Reset the min/max bounds of a register */
2261 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2262 {
2263         reg->smin_value = S64_MIN;
2264         reg->smax_value = S64_MAX;
2265         reg->umin_value = 0;
2266         reg->umax_value = U64_MAX;
2267
2268         reg->s32_min_value = S32_MIN;
2269         reg->s32_max_value = S32_MAX;
2270         reg->u32_min_value = 0;
2271         reg->u32_max_value = U32_MAX;
2272 }
2273
2274 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2275 {
2276         reg->smin_value = S64_MIN;
2277         reg->smax_value = S64_MAX;
2278         reg->umin_value = 0;
2279         reg->umax_value = U64_MAX;
2280 }
2281
2282 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2283 {
2284         reg->s32_min_value = S32_MIN;
2285         reg->s32_max_value = S32_MAX;
2286         reg->u32_min_value = 0;
2287         reg->u32_max_value = U32_MAX;
2288 }
2289
2290 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2291 {
2292         struct tnum var32_off = tnum_subreg(reg->var_off);
2293
2294         /* min signed is max(sign bit) | min(other bits) */
2295         reg->s32_min_value = max_t(s32, reg->s32_min_value,
2296                         var32_off.value | (var32_off.mask & S32_MIN));
2297         /* max signed is min(sign bit) | max(other bits) */
2298         reg->s32_max_value = min_t(s32, reg->s32_max_value,
2299                         var32_off.value | (var32_off.mask & S32_MAX));
2300         reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2301         reg->u32_max_value = min(reg->u32_max_value,
2302                                  (u32)(var32_off.value | var32_off.mask));
2303 }
2304
2305 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2306 {
2307         /* min signed is max(sign bit) | min(other bits) */
2308         reg->smin_value = max_t(s64, reg->smin_value,
2309                                 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2310         /* max signed is min(sign bit) | max(other bits) */
2311         reg->smax_value = min_t(s64, reg->smax_value,
2312                                 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2313         reg->umin_value = max(reg->umin_value, reg->var_off.value);
2314         reg->umax_value = min(reg->umax_value,
2315                               reg->var_off.value | reg->var_off.mask);
2316 }
2317
2318 static void __update_reg_bounds(struct bpf_reg_state *reg)
2319 {
2320         __update_reg32_bounds(reg);
2321         __update_reg64_bounds(reg);
2322 }
2323
2324 /* Uses signed min/max values to inform unsigned, and vice-versa */
2325 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2326 {
2327         /* Learn sign from signed bounds.
2328          * If we cannot cross the sign boundary, then signed and unsigned bounds
2329          * are the same, so combine.  This works even in the negative case, e.g.
2330          * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2331          */
2332         if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2333                 reg->s32_min_value = reg->u32_min_value =
2334                         max_t(u32, reg->s32_min_value, reg->u32_min_value);
2335                 reg->s32_max_value = reg->u32_max_value =
2336                         min_t(u32, reg->s32_max_value, reg->u32_max_value);
2337                 return;
2338         }
2339         /* Learn sign from unsigned bounds.  Signed bounds cross the sign
2340          * boundary, so we must be careful.
2341          */
2342         if ((s32)reg->u32_max_value >= 0) {
2343                 /* Positive.  We can't learn anything from the smin, but smax
2344                  * is positive, hence safe.
2345                  */
2346                 reg->s32_min_value = reg->u32_min_value;
2347                 reg->s32_max_value = reg->u32_max_value =
2348                         min_t(u32, reg->s32_max_value, reg->u32_max_value);
2349         } else if ((s32)reg->u32_min_value < 0) {
2350                 /* Negative.  We can't learn anything from the smax, but smin
2351                  * is negative, hence safe.
2352                  */
2353                 reg->s32_min_value = reg->u32_min_value =
2354                         max_t(u32, reg->s32_min_value, reg->u32_min_value);
2355                 reg->s32_max_value = reg->u32_max_value;
2356         }
2357 }
2358
2359 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2360 {
2361         /* Learn sign from signed bounds.
2362          * If we cannot cross the sign boundary, then signed and unsigned bounds
2363          * are the same, so combine.  This works even in the negative case, e.g.
2364          * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2365          */
2366         if (reg->smin_value >= 0 || reg->smax_value < 0) {
2367                 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2368                                                           reg->umin_value);
2369                 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2370                                                           reg->umax_value);
2371                 return;
2372         }
2373         /* Learn sign from unsigned bounds.  Signed bounds cross the sign
2374          * boundary, so we must be careful.
2375          */
2376         if ((s64)reg->umax_value >= 0) {
2377                 /* Positive.  We can't learn anything from the smin, but smax
2378                  * is positive, hence safe.
2379                  */
2380                 reg->smin_value = reg->umin_value;
2381                 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2382                                                           reg->umax_value);
2383         } else if ((s64)reg->umin_value < 0) {
2384                 /* Negative.  We can't learn anything from the smax, but smin
2385                  * is negative, hence safe.
2386                  */
2387                 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2388                                                           reg->umin_value);
2389                 reg->smax_value = reg->umax_value;
2390         }
2391 }
2392
2393 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2394 {
2395         __reg32_deduce_bounds(reg);
2396         __reg64_deduce_bounds(reg);
2397 }
2398
2399 /* Attempts to improve var_off based on unsigned min/max information */
2400 static void __reg_bound_offset(struct bpf_reg_state *reg)
2401 {
2402         struct tnum var64_off = tnum_intersect(reg->var_off,
2403                                                tnum_range(reg->umin_value,
2404                                                           reg->umax_value));
2405         struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2406                                                tnum_range(reg->u32_min_value,
2407                                                           reg->u32_max_value));
2408
2409         reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2410 }
2411
2412 static void reg_bounds_sync(struct bpf_reg_state *reg)
2413 {
2414         /* We might have learned new bounds from the var_off. */
2415         __update_reg_bounds(reg);
2416         /* We might have learned something about the sign bit. */
2417         __reg_deduce_bounds(reg);
2418         /* We might have learned some bits from the bounds. */
2419         __reg_bound_offset(reg);
2420         /* Intersecting with the old var_off might have improved our bounds
2421          * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2422          * then new var_off is (0; 0x7f...fc) which improves our umax.
2423          */
2424         __update_reg_bounds(reg);
2425 }
2426
2427 static bool __reg32_bound_s64(s32 a)
2428 {
2429         return a >= 0 && a <= S32_MAX;
2430 }
2431
2432 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2433 {
2434         reg->umin_value = reg->u32_min_value;
2435         reg->umax_value = reg->u32_max_value;
2436
2437         /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2438          * be positive otherwise set to worse case bounds and refine later
2439          * from tnum.
2440          */
2441         if (__reg32_bound_s64(reg->s32_min_value) &&
2442             __reg32_bound_s64(reg->s32_max_value)) {
2443                 reg->smin_value = reg->s32_min_value;
2444                 reg->smax_value = reg->s32_max_value;
2445         } else {
2446                 reg->smin_value = 0;
2447                 reg->smax_value = U32_MAX;
2448         }
2449 }
2450
2451 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2452 {
2453         /* special case when 64-bit register has upper 32-bit register
2454          * zeroed. Typically happens after zext or <<32, >>32 sequence
2455          * allowing us to use 32-bit bounds directly,
2456          */
2457         if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2458                 __reg_assign_32_into_64(reg);
2459         } else {
2460                 /* Otherwise the best we can do is push lower 32bit known and
2461                  * unknown bits into register (var_off set from jmp logic)
2462                  * then learn as much as possible from the 64-bit tnum
2463                  * known and unknown bits. The previous smin/smax bounds are
2464                  * invalid here because of jmp32 compare so mark them unknown
2465                  * so they do not impact tnum bounds calculation.
2466                  */
2467                 __mark_reg64_unbounded(reg);
2468         }
2469         reg_bounds_sync(reg);
2470 }
2471
2472 static bool __reg64_bound_s32(s64 a)
2473 {
2474         return a >= S32_MIN && a <= S32_MAX;
2475 }
2476
2477 static bool __reg64_bound_u32(u64 a)
2478 {
2479         return a >= U32_MIN && a <= U32_MAX;
2480 }
2481
2482 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2483 {
2484         __mark_reg32_unbounded(reg);
2485         if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2486                 reg->s32_min_value = (s32)reg->smin_value;
2487                 reg->s32_max_value = (s32)reg->smax_value;
2488         }
2489         if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2490                 reg->u32_min_value = (u32)reg->umin_value;
2491                 reg->u32_max_value = (u32)reg->umax_value;
2492         }
2493         reg_bounds_sync(reg);
2494 }
2495
2496 /* Mark a register as having a completely unknown (scalar) value. */
2497 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2498                                struct bpf_reg_state *reg)
2499 {
2500         /*
2501          * Clear type, off, and union(map_ptr, range) and
2502          * padding between 'type' and union
2503          */
2504         memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2505         reg->type = SCALAR_VALUE;
2506         reg->id = 0;
2507         reg->ref_obj_id = 0;
2508         reg->var_off = tnum_unknown;
2509         reg->frameno = 0;
2510         reg->precise = !env->bpf_capable;
2511         __mark_reg_unbounded(reg);
2512 }
2513
2514 static void mark_reg_unknown(struct bpf_verifier_env *env,
2515                              struct bpf_reg_state *regs, u32 regno)
2516 {
2517         if (WARN_ON(regno >= MAX_BPF_REG)) {
2518                 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2519                 /* Something bad happened, let's kill all regs except FP */
2520                 for (regno = 0; regno < BPF_REG_FP; regno++)
2521                         __mark_reg_not_init(env, regs + regno);
2522                 return;
2523         }
2524         __mark_reg_unknown(env, regs + regno);
2525 }
2526
2527 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2528                                 struct bpf_reg_state *reg)
2529 {
2530         __mark_reg_unknown(env, reg);
2531         reg->type = NOT_INIT;
2532 }
2533
2534 static void mark_reg_not_init(struct bpf_verifier_env *env,
2535                               struct bpf_reg_state *regs, u32 regno)
2536 {
2537         if (WARN_ON(regno >= MAX_BPF_REG)) {
2538                 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2539                 /* Something bad happened, let's kill all regs except FP */
2540                 for (regno = 0; regno < BPF_REG_FP; regno++)
2541                         __mark_reg_not_init(env, regs + regno);
2542                 return;
2543         }
2544         __mark_reg_not_init(env, regs + regno);
2545 }
2546
2547 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2548                             struct bpf_reg_state *regs, u32 regno,
2549                             enum bpf_reg_type reg_type,
2550                             struct btf *btf, u32 btf_id,
2551                             enum bpf_type_flag flag)
2552 {
2553         if (reg_type == SCALAR_VALUE) {
2554                 mark_reg_unknown(env, regs, regno);
2555                 return;
2556         }
2557         mark_reg_known_zero(env, regs, regno);
2558         regs[regno].type = PTR_TO_BTF_ID | flag;
2559         regs[regno].btf = btf;
2560         regs[regno].btf_id = btf_id;
2561 }
2562
2563 #define DEF_NOT_SUBREG  (0)
2564 static void init_reg_state(struct bpf_verifier_env *env,
2565                            struct bpf_func_state *state)
2566 {
2567         struct bpf_reg_state *regs = state->regs;
2568         int i;
2569
2570         for (i = 0; i < MAX_BPF_REG; i++) {
2571                 mark_reg_not_init(env, regs, i);
2572                 regs[i].live = REG_LIVE_NONE;
2573                 regs[i].parent = NULL;
2574                 regs[i].subreg_def = DEF_NOT_SUBREG;
2575         }
2576
2577         /* frame pointer */
2578         regs[BPF_REG_FP].type = PTR_TO_STACK;
2579         mark_reg_known_zero(env, regs, BPF_REG_FP);
2580         regs[BPF_REG_FP].frameno = state->frameno;
2581 }
2582
2583 #define BPF_MAIN_FUNC (-1)
2584 static void init_func_state(struct bpf_verifier_env *env,
2585                             struct bpf_func_state *state,
2586                             int callsite, int frameno, int subprogno)
2587 {
2588         state->callsite = callsite;
2589         state->frameno = frameno;
2590         state->subprogno = subprogno;
2591         state->callback_ret_range = tnum_range(0, 0);
2592         init_reg_state(env, state);
2593         mark_verifier_state_scratched(env);
2594 }
2595
2596 /* Similar to push_stack(), but for async callbacks */
2597 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2598                                                 int insn_idx, int prev_insn_idx,
2599                                                 int subprog)
2600 {
2601         struct bpf_verifier_stack_elem *elem;
2602         struct bpf_func_state *frame;
2603
2604         elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2605         if (!elem)
2606                 goto err;
2607
2608         elem->insn_idx = insn_idx;
2609         elem->prev_insn_idx = prev_insn_idx;
2610         elem->next = env->head;
2611         elem->log_pos = env->log.end_pos;
2612         env->head = elem;
2613         env->stack_size++;
2614         if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2615                 verbose(env,
2616                         "The sequence of %d jumps is too complex for async cb.\n",
2617                         env->stack_size);
2618                 goto err;
2619         }
2620         /* Unlike push_stack() do not copy_verifier_state().
2621          * The caller state doesn't matter.
2622          * This is async callback. It starts in a fresh stack.
2623          * Initialize it similar to do_check_common().
2624          */
2625         elem->st.branches = 1;
2626         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2627         if (!frame)
2628                 goto err;
2629         init_func_state(env, frame,
2630                         BPF_MAIN_FUNC /* callsite */,
2631                         0 /* frameno within this callchain */,
2632                         subprog /* subprog number within this prog */);
2633         elem->st.frame[0] = frame;
2634         return &elem->st;
2635 err:
2636         free_verifier_state(env->cur_state, true);
2637         env->cur_state = NULL;
2638         /* pop all elements and return */
2639         while (!pop_stack(env, NULL, NULL, false));
2640         return NULL;
2641 }
2642
2643
2644 enum reg_arg_type {
2645         SRC_OP,         /* register is used as source operand */
2646         DST_OP,         /* register is used as destination operand */
2647         DST_OP_NO_MARK  /* same as above, check only, don't mark */
2648 };
2649
2650 static int cmp_subprogs(const void *a, const void *b)
2651 {
2652         return ((struct bpf_subprog_info *)a)->start -
2653                ((struct bpf_subprog_info *)b)->start;
2654 }
2655
2656 static int find_subprog(struct bpf_verifier_env *env, int off)
2657 {
2658         struct bpf_subprog_info *p;
2659
2660         p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2661                     sizeof(env->subprog_info[0]), cmp_subprogs);
2662         if (!p)
2663                 return -ENOENT;
2664         return p - env->subprog_info;
2665
2666 }
2667
2668 static int add_subprog(struct bpf_verifier_env *env, int off)
2669 {
2670         int insn_cnt = env->prog->len;
2671         int ret;
2672
2673         if (off >= insn_cnt || off < 0) {
2674                 verbose(env, "call to invalid destination\n");
2675                 return -EINVAL;
2676         }
2677         ret = find_subprog(env, off);
2678         if (ret >= 0)
2679                 return ret;
2680         if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2681                 verbose(env, "too many subprograms\n");
2682                 return -E2BIG;
2683         }
2684         /* determine subprog starts. The end is one before the next starts */
2685         env->subprog_info[env->subprog_cnt++].start = off;
2686         sort(env->subprog_info, env->subprog_cnt,
2687              sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2688         return env->subprog_cnt - 1;
2689 }
2690
2691 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2692 {
2693         struct bpf_prog_aux *aux = env->prog->aux;
2694         struct btf *btf = aux->btf;
2695         const struct btf_type *t;
2696         u32 main_btf_id, id;
2697         const char *name;
2698         int ret, i;
2699
2700         /* Non-zero func_info_cnt implies valid btf */
2701         if (!aux->func_info_cnt)
2702                 return 0;
2703         main_btf_id = aux->func_info[0].type_id;
2704
2705         t = btf_type_by_id(btf, main_btf_id);
2706         if (!t) {
2707                 verbose(env, "invalid btf id for main subprog in func_info\n");
2708                 return -EINVAL;
2709         }
2710
2711         name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2712         if (IS_ERR(name)) {
2713                 ret = PTR_ERR(name);
2714                 /* If there is no tag present, there is no exception callback */
2715                 if (ret == -ENOENT)
2716                         ret = 0;
2717                 else if (ret == -EEXIST)
2718                         verbose(env, "multiple exception callback tags for main subprog\n");
2719                 return ret;
2720         }
2721
2722         ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2723         if (ret < 0) {
2724                 verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2725                 return ret;
2726         }
2727         id = ret;
2728         t = btf_type_by_id(btf, id);
2729         if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2730                 verbose(env, "exception callback '%s' must have global linkage\n", name);
2731                 return -EINVAL;
2732         }
2733         ret = 0;
2734         for (i = 0; i < aux->func_info_cnt; i++) {
2735                 if (aux->func_info[i].type_id != id)
2736                         continue;
2737                 ret = aux->func_info[i].insn_off;
2738                 /* Further func_info and subprog checks will also happen
2739                  * later, so assume this is the right insn_off for now.
2740                  */
2741                 if (!ret) {
2742                         verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2743                         ret = -EINVAL;
2744                 }
2745         }
2746         if (!ret) {
2747                 verbose(env, "exception callback type id not found in func_info\n");
2748                 ret = -EINVAL;
2749         }
2750         return ret;
2751 }
2752
2753 #define MAX_KFUNC_DESCS 256
2754 #define MAX_KFUNC_BTFS  256
2755
2756 struct bpf_kfunc_desc {
2757         struct btf_func_model func_model;
2758         u32 func_id;
2759         s32 imm;
2760         u16 offset;
2761         unsigned long addr;
2762 };
2763
2764 struct bpf_kfunc_btf {
2765         struct btf *btf;
2766         struct module *module;
2767         u16 offset;
2768 };
2769
2770 struct bpf_kfunc_desc_tab {
2771         /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2772          * verification. JITs do lookups by bpf_insn, where func_id may not be
2773          * available, therefore at the end of verification do_misc_fixups()
2774          * sorts this by imm and offset.
2775          */
2776         struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2777         u32 nr_descs;
2778 };
2779
2780 struct bpf_kfunc_btf_tab {
2781         struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2782         u32 nr_descs;
2783 };
2784
2785 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2786 {
2787         const struct bpf_kfunc_desc *d0 = a;
2788         const struct bpf_kfunc_desc *d1 = b;
2789
2790         /* func_id is not greater than BTF_MAX_TYPE */
2791         return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2792 }
2793
2794 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2795 {
2796         const struct bpf_kfunc_btf *d0 = a;
2797         const struct bpf_kfunc_btf *d1 = b;
2798
2799         return d0->offset - d1->offset;
2800 }
2801
2802 static const struct bpf_kfunc_desc *
2803 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2804 {
2805         struct bpf_kfunc_desc desc = {
2806                 .func_id = func_id,
2807                 .offset = offset,
2808         };
2809         struct bpf_kfunc_desc_tab *tab;
2810
2811         tab = prog->aux->kfunc_tab;
2812         return bsearch(&desc, tab->descs, tab->nr_descs,
2813                        sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2814 }
2815
2816 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2817                        u16 btf_fd_idx, u8 **func_addr)
2818 {
2819         const struct bpf_kfunc_desc *desc;
2820
2821         desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2822         if (!desc)
2823                 return -EFAULT;
2824
2825         *func_addr = (u8 *)desc->addr;
2826         return 0;
2827 }
2828
2829 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2830                                          s16 offset)
2831 {
2832         struct bpf_kfunc_btf kf_btf = { .offset = offset };
2833         struct bpf_kfunc_btf_tab *tab;
2834         struct bpf_kfunc_btf *b;
2835         struct module *mod;
2836         struct btf *btf;
2837         int btf_fd;
2838
2839         tab = env->prog->aux->kfunc_btf_tab;
2840         b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2841                     sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2842         if (!b) {
2843                 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2844                         verbose(env, "too many different module BTFs\n");
2845                         return ERR_PTR(-E2BIG);
2846                 }
2847
2848                 if (bpfptr_is_null(env->fd_array)) {
2849                         verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2850                         return ERR_PTR(-EPROTO);
2851                 }
2852
2853                 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2854                                             offset * sizeof(btf_fd),
2855                                             sizeof(btf_fd)))
2856                         return ERR_PTR(-EFAULT);
2857
2858                 btf = btf_get_by_fd(btf_fd);
2859                 if (IS_ERR(btf)) {
2860                         verbose(env, "invalid module BTF fd specified\n");
2861                         return btf;
2862                 }
2863
2864                 if (!btf_is_module(btf)) {
2865                         verbose(env, "BTF fd for kfunc is not a module BTF\n");
2866                         btf_put(btf);
2867                         return ERR_PTR(-EINVAL);
2868                 }
2869
2870                 mod = btf_try_get_module(btf);
2871                 if (!mod) {
2872                         btf_put(btf);
2873                         return ERR_PTR(-ENXIO);
2874                 }
2875
2876                 b = &tab->descs[tab->nr_descs++];
2877                 b->btf = btf;
2878                 b->module = mod;
2879                 b->offset = offset;
2880
2881                 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2882                      kfunc_btf_cmp_by_off, NULL);
2883         }
2884         return b->btf;
2885 }
2886
2887 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2888 {
2889         if (!tab)
2890                 return;
2891
2892         while (tab->nr_descs--) {
2893                 module_put(tab->descs[tab->nr_descs].module);
2894                 btf_put(tab->descs[tab->nr_descs].btf);
2895         }
2896         kfree(tab);
2897 }
2898
2899 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2900 {
2901         if (offset) {
2902                 if (offset < 0) {
2903                         /* In the future, this can be allowed to increase limit
2904                          * of fd index into fd_array, interpreted as u16.
2905                          */
2906                         verbose(env, "negative offset disallowed for kernel module function call\n");
2907                         return ERR_PTR(-EINVAL);
2908                 }
2909
2910                 return __find_kfunc_desc_btf(env, offset);
2911         }
2912         return btf_vmlinux ?: ERR_PTR(-ENOENT);
2913 }
2914
2915 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2916 {
2917         const struct btf_type *func, *func_proto;
2918         struct bpf_kfunc_btf_tab *btf_tab;
2919         struct bpf_kfunc_desc_tab *tab;
2920         struct bpf_prog_aux *prog_aux;
2921         struct bpf_kfunc_desc *desc;
2922         const char *func_name;
2923         struct btf *desc_btf;
2924         unsigned long call_imm;
2925         unsigned long addr;
2926         int err;
2927
2928         prog_aux = env->prog->aux;
2929         tab = prog_aux->kfunc_tab;
2930         btf_tab = prog_aux->kfunc_btf_tab;
2931         if (!tab) {
2932                 if (!btf_vmlinux) {
2933                         verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2934                         return -ENOTSUPP;
2935                 }
2936
2937                 if (!env->prog->jit_requested) {
2938                         verbose(env, "JIT is required for calling kernel function\n");
2939                         return -ENOTSUPP;
2940                 }
2941
2942                 if (!bpf_jit_supports_kfunc_call()) {
2943                         verbose(env, "JIT does not support calling kernel function\n");
2944                         return -ENOTSUPP;
2945                 }
2946
2947                 if (!env->prog->gpl_compatible) {
2948                         verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2949                         return -EINVAL;
2950                 }
2951
2952                 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2953                 if (!tab)
2954                         return -ENOMEM;
2955                 prog_aux->kfunc_tab = tab;
2956         }
2957
2958         /* func_id == 0 is always invalid, but instead of returning an error, be
2959          * conservative and wait until the code elimination pass before returning
2960          * error, so that invalid calls that get pruned out can be in BPF programs
2961          * loaded from userspace.  It is also required that offset be untouched
2962          * for such calls.
2963          */
2964         if (!func_id && !offset)
2965                 return 0;
2966
2967         if (!btf_tab && offset) {
2968                 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2969                 if (!btf_tab)
2970                         return -ENOMEM;
2971                 prog_aux->kfunc_btf_tab = btf_tab;
2972         }
2973
2974         desc_btf = find_kfunc_desc_btf(env, offset);
2975         if (IS_ERR(desc_btf)) {
2976                 verbose(env, "failed to find BTF for kernel function\n");
2977                 return PTR_ERR(desc_btf);
2978         }
2979
2980         if (find_kfunc_desc(env->prog, func_id, offset))
2981                 return 0;
2982
2983         if (tab->nr_descs == MAX_KFUNC_DESCS) {
2984                 verbose(env, "too many different kernel function calls\n");
2985                 return -E2BIG;
2986         }
2987
2988         func = btf_type_by_id(desc_btf, func_id);
2989         if (!func || !btf_type_is_func(func)) {
2990                 verbose(env, "kernel btf_id %u is not a function\n",
2991                         func_id);
2992                 return -EINVAL;
2993         }
2994         func_proto = btf_type_by_id(desc_btf, func->type);
2995         if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2996                 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2997                         func_id);
2998                 return -EINVAL;
2999         }
3000
3001         func_name = btf_name_by_offset(desc_btf, func->name_off);
3002         addr = kallsyms_lookup_name(func_name);
3003         if (!addr) {
3004                 verbose(env, "cannot find address for kernel function %s\n",
3005                         func_name);
3006                 return -EINVAL;
3007         }
3008         specialize_kfunc(env, func_id, offset, &addr);
3009
3010         if (bpf_jit_supports_far_kfunc_call()) {
3011                 call_imm = func_id;
3012         } else {
3013                 call_imm = BPF_CALL_IMM(addr);
3014                 /* Check whether the relative offset overflows desc->imm */
3015                 if ((unsigned long)(s32)call_imm != call_imm) {
3016                         verbose(env, "address of kernel function %s is out of range\n",
3017                                 func_name);
3018                         return -EINVAL;
3019                 }
3020         }
3021
3022         if (bpf_dev_bound_kfunc_id(func_id)) {
3023                 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3024                 if (err)
3025                         return err;
3026         }
3027
3028         desc = &tab->descs[tab->nr_descs++];
3029         desc->func_id = func_id;
3030         desc->imm = call_imm;
3031         desc->offset = offset;
3032         desc->addr = addr;
3033         err = btf_distill_func_proto(&env->log, desc_btf,
3034                                      func_proto, func_name,
3035                                      &desc->func_model);
3036         if (!err)
3037                 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3038                      kfunc_desc_cmp_by_id_off, NULL);
3039         return err;
3040 }
3041
3042 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3043 {
3044         const struct bpf_kfunc_desc *d0 = a;
3045         const struct bpf_kfunc_desc *d1 = b;
3046
3047         if (d0->imm != d1->imm)
3048                 return d0->imm < d1->imm ? -1 : 1;
3049         if (d0->offset != d1->offset)
3050                 return d0->offset < d1->offset ? -1 : 1;
3051         return 0;
3052 }
3053
3054 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3055 {
3056         struct bpf_kfunc_desc_tab *tab;
3057
3058         tab = prog->aux->kfunc_tab;
3059         if (!tab)
3060                 return;
3061
3062         sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3063              kfunc_desc_cmp_by_imm_off, NULL);
3064 }
3065
3066 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3067 {
3068         return !!prog->aux->kfunc_tab;
3069 }
3070
3071 const struct btf_func_model *
3072 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3073                          const struct bpf_insn *insn)
3074 {
3075         const struct bpf_kfunc_desc desc = {
3076                 .imm = insn->imm,
3077                 .offset = insn->off,
3078         };
3079         const struct bpf_kfunc_desc *res;
3080         struct bpf_kfunc_desc_tab *tab;
3081
3082         tab = prog->aux->kfunc_tab;
3083         res = bsearch(&desc, tab->descs, tab->nr_descs,
3084                       sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3085
3086         return res ? &res->func_model : NULL;
3087 }
3088
3089 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3090 {
3091         struct bpf_subprog_info *subprog = env->subprog_info;
3092         int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3093         struct bpf_insn *insn = env->prog->insnsi;
3094
3095         /* Add entry function. */
3096         ret = add_subprog(env, 0);
3097         if (ret)
3098                 return ret;
3099
3100         for (i = 0; i < insn_cnt; i++, insn++) {
3101                 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3102                     !bpf_pseudo_kfunc_call(insn))
3103                         continue;
3104
3105                 if (!env->bpf_capable) {
3106                         verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3107                         return -EPERM;
3108                 }
3109
3110                 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3111                         ret = add_subprog(env, i + insn->imm + 1);
3112                 else
3113                         ret = add_kfunc_call(env, insn->imm, insn->off);
3114
3115                 if (ret < 0)
3116                         return ret;
3117         }
3118
3119         ret = bpf_find_exception_callback_insn_off(env);
3120         if (ret < 0)
3121                 return ret;
3122         ex_cb_insn = ret;
3123
3124         /* If ex_cb_insn > 0, this means that the main program has a subprog
3125          * marked using BTF decl tag to serve as the exception callback.
3126          */
3127         if (ex_cb_insn) {
3128                 ret = add_subprog(env, ex_cb_insn);
3129                 if (ret < 0)
3130                         return ret;
3131                 for (i = 1; i < env->subprog_cnt; i++) {
3132                         if (env->subprog_info[i].start != ex_cb_insn)
3133                                 continue;
3134                         env->exception_callback_subprog = i;
3135                         break;
3136                 }
3137         }
3138
3139         /* Add a fake 'exit' subprog which could simplify subprog iteration
3140          * logic. 'subprog_cnt' should not be increased.
3141          */
3142         subprog[env->subprog_cnt].start = insn_cnt;
3143
3144         if (env->log.level & BPF_LOG_LEVEL2)
3145                 for (i = 0; i < env->subprog_cnt; i++)
3146                         verbose(env, "func#%d @%d\n", i, subprog[i].start);
3147
3148         return 0;
3149 }
3150
3151 static int check_subprogs(struct bpf_verifier_env *env)
3152 {
3153         int i, subprog_start, subprog_end, off, cur_subprog = 0;
3154         struct bpf_subprog_info *subprog = env->subprog_info;
3155         struct bpf_insn *insn = env->prog->insnsi;
3156         int insn_cnt = env->prog->len;
3157
3158         /* now check that all jumps are within the same subprog */
3159         subprog_start = subprog[cur_subprog].start;
3160         subprog_end = subprog[cur_subprog + 1].start;
3161         for (i = 0; i < insn_cnt; i++) {
3162                 u8 code = insn[i].code;
3163
3164                 if (code == (BPF_JMP | BPF_CALL) &&
3165                     insn[i].src_reg == 0 &&
3166                     insn[i].imm == BPF_FUNC_tail_call)
3167                         subprog[cur_subprog].has_tail_call = true;
3168                 if (BPF_CLASS(code) == BPF_LD &&
3169                     (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3170                         subprog[cur_subprog].has_ld_abs = true;
3171                 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3172                         goto next;
3173                 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3174                         goto next;
3175                 if (code == (BPF_JMP32 | BPF_JA))
3176                         off = i + insn[i].imm + 1;
3177                 else
3178                         off = i + insn[i].off + 1;
3179                 if (off < subprog_start || off >= subprog_end) {
3180                         verbose(env, "jump out of range from insn %d to %d\n", i, off);
3181                         return -EINVAL;
3182                 }
3183 next:
3184                 if (i == subprog_end - 1) {
3185                         /* to avoid fall-through from one subprog into another
3186                          * the last insn of the subprog should be either exit
3187                          * or unconditional jump back or bpf_throw call
3188                          */
3189                         if (code != (BPF_JMP | BPF_EXIT) &&
3190                             code != (BPF_JMP32 | BPF_JA) &&
3191                             code != (BPF_JMP | BPF_JA)) {
3192                                 verbose(env, "last insn is not an exit or jmp\n");
3193                                 return -EINVAL;
3194                         }
3195                         subprog_start = subprog_end;
3196                         cur_subprog++;
3197                         if (cur_subprog < env->subprog_cnt)
3198                                 subprog_end = subprog[cur_subprog + 1].start;
3199                 }
3200         }
3201         return 0;
3202 }
3203
3204 /* Parentage chain of this register (or stack slot) should take care of all
3205  * issues like callee-saved registers, stack slot allocation time, etc.
3206  */
3207 static int mark_reg_read(struct bpf_verifier_env *env,
3208                          const struct bpf_reg_state *state,
3209                          struct bpf_reg_state *parent, u8 flag)
3210 {
3211         bool writes = parent == state->parent; /* Observe write marks */
3212         int cnt = 0;
3213
3214         while (parent) {
3215                 /* if read wasn't screened by an earlier write ... */
3216                 if (writes && state->live & REG_LIVE_WRITTEN)
3217                         break;
3218                 if (parent->live & REG_LIVE_DONE) {
3219                         verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3220                                 reg_type_str(env, parent->type),
3221                                 parent->var_off.value, parent->off);
3222                         return -EFAULT;
3223                 }
3224                 /* The first condition is more likely to be true than the
3225                  * second, checked it first.
3226                  */
3227                 if ((parent->live & REG_LIVE_READ) == flag ||
3228                     parent->live & REG_LIVE_READ64)
3229                         /* The parentage chain never changes and
3230                          * this parent was already marked as LIVE_READ.
3231                          * There is no need to keep walking the chain again and
3232                          * keep re-marking all parents as LIVE_READ.
3233                          * This case happens when the same register is read
3234                          * multiple times without writes into it in-between.
3235                          * Also, if parent has the stronger REG_LIVE_READ64 set,
3236                          * then no need to set the weak REG_LIVE_READ32.
3237                          */
3238                         break;
3239                 /* ... then we depend on parent's value */
3240                 parent->live |= flag;
3241                 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3242                 if (flag == REG_LIVE_READ64)
3243                         parent->live &= ~REG_LIVE_READ32;
3244                 state = parent;
3245                 parent = state->parent;
3246                 writes = true;
3247                 cnt++;
3248         }
3249
3250         if (env->longest_mark_read_walk < cnt)
3251                 env->longest_mark_read_walk = cnt;
3252         return 0;
3253 }
3254
3255 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3256 {
3257         struct bpf_func_state *state = func(env, reg);
3258         int spi, ret;
3259
3260         /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3261          * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3262          * check_kfunc_call.
3263          */
3264         if (reg->type == CONST_PTR_TO_DYNPTR)
3265                 return 0;
3266         spi = dynptr_get_spi(env, reg);
3267         if (spi < 0)
3268                 return spi;
3269         /* Caller ensures dynptr is valid and initialized, which means spi is in
3270          * bounds and spi is the first dynptr slot. Simply mark stack slot as
3271          * read.
3272          */
3273         ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3274                             state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3275         if (ret)
3276                 return ret;
3277         return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3278                              state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3279 }
3280
3281 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3282                           int spi, int nr_slots)
3283 {
3284         struct bpf_func_state *state = func(env, reg);
3285         int err, i;
3286
3287         for (i = 0; i < nr_slots; i++) {
3288                 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3289
3290                 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3291                 if (err)
3292                         return err;
3293
3294                 mark_stack_slot_scratched(env, spi - i);
3295         }
3296
3297         return 0;
3298 }
3299
3300 /* This function is supposed to be used by the following 32-bit optimization
3301  * code only. It returns TRUE if the source or destination register operates
3302  * on 64-bit, otherwise return FALSE.
3303  */
3304 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3305                      u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3306 {
3307         u8 code, class, op;
3308
3309         code = insn->code;
3310         class = BPF_CLASS(code);
3311         op = BPF_OP(code);
3312         if (class == BPF_JMP) {
3313                 /* BPF_EXIT for "main" will reach here. Return TRUE
3314                  * conservatively.
3315                  */
3316                 if (op == BPF_EXIT)
3317                         return true;
3318                 if (op == BPF_CALL) {
3319                         /* BPF to BPF call will reach here because of marking
3320                          * caller saved clobber with DST_OP_NO_MARK for which we
3321                          * don't care the register def because they are anyway
3322                          * marked as NOT_INIT already.
3323                          */
3324                         if (insn->src_reg == BPF_PSEUDO_CALL)
3325                                 return false;
3326                         /* Helper call will reach here because of arg type
3327                          * check, conservatively return TRUE.
3328                          */
3329                         if (t == SRC_OP)
3330                                 return true;
3331
3332                         return false;
3333                 }
3334         }
3335
3336         if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3337                 return false;
3338
3339         if (class == BPF_ALU64 || class == BPF_JMP ||
3340             (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3341                 return true;
3342
3343         if (class == BPF_ALU || class == BPF_JMP32)
3344                 return false;
3345
3346         if (class == BPF_LDX) {
3347                 if (t != SRC_OP)
3348                         return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3349                 /* LDX source must be ptr. */
3350                 return true;
3351         }
3352
3353         if (class == BPF_STX) {
3354                 /* BPF_STX (including atomic variants) has multiple source
3355                  * operands, one of which is a ptr. Check whether the caller is
3356                  * asking about it.
3357                  */
3358                 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3359                         return true;
3360                 return BPF_SIZE(code) == BPF_DW;
3361         }
3362
3363         if (class == BPF_LD) {
3364                 u8 mode = BPF_MODE(code);
3365
3366                 /* LD_IMM64 */
3367                 if (mode == BPF_IMM)
3368                         return true;
3369
3370                 /* Both LD_IND and LD_ABS return 32-bit data. */
3371                 if (t != SRC_OP)
3372                         return  false;
3373
3374                 /* Implicit ctx ptr. */
3375                 if (regno == BPF_REG_6)
3376                         return true;
3377
3378                 /* Explicit source could be any width. */
3379                 return true;
3380         }
3381
3382         if (class == BPF_ST)
3383                 /* The only source register for BPF_ST is a ptr. */
3384                 return true;
3385
3386         /* Conservatively return true at default. */
3387         return true;
3388 }
3389
3390 /* Return the regno defined by the insn, or -1. */
3391 static int insn_def_regno(const struct bpf_insn *insn)
3392 {
3393         switch (BPF_CLASS(insn->code)) {
3394         case BPF_JMP:
3395         case BPF_JMP32:
3396         case BPF_ST:
3397                 return -1;
3398         case BPF_STX:
3399                 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3400                     (insn->imm & BPF_FETCH)) {
3401                         if (insn->imm == BPF_CMPXCHG)
3402                                 return BPF_REG_0;
3403                         else
3404                                 return insn->src_reg;
3405                 } else {
3406                         return -1;
3407                 }
3408         default:
3409                 return insn->dst_reg;
3410         }
3411 }
3412
3413 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3414 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3415 {
3416         int dst_reg = insn_def_regno(insn);
3417
3418         if (dst_reg == -1)
3419                 return false;
3420
3421         return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3422 }
3423
3424 static void mark_insn_zext(struct bpf_verifier_env *env,
3425                            struct bpf_reg_state *reg)
3426 {
3427         s32 def_idx = reg->subreg_def;
3428
3429         if (def_idx == DEF_NOT_SUBREG)
3430                 return;
3431
3432         env->insn_aux_data[def_idx - 1].zext_dst = true;
3433         /* The dst will be zero extended, so won't be sub-register anymore. */
3434         reg->subreg_def = DEF_NOT_SUBREG;
3435 }
3436
3437 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3438                          enum reg_arg_type t)
3439 {
3440         struct bpf_verifier_state *vstate = env->cur_state;
3441         struct bpf_func_state *state = vstate->frame[vstate->curframe];
3442         struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3443         struct bpf_reg_state *reg, *regs = state->regs;
3444         bool rw64;
3445
3446         if (regno >= MAX_BPF_REG) {
3447                 verbose(env, "R%d is invalid\n", regno);
3448                 return -EINVAL;
3449         }
3450
3451         mark_reg_scratched(env, regno);
3452
3453         reg = &regs[regno];
3454         rw64 = is_reg64(env, insn, regno, reg, t);
3455         if (t == SRC_OP) {
3456                 /* check whether register used as source operand can be read */
3457                 if (reg->type == NOT_INIT) {
3458                         verbose(env, "R%d !read_ok\n", regno);
3459                         return -EACCES;
3460                 }
3461                 /* We don't need to worry about FP liveness because it's read-only */
3462                 if (regno == BPF_REG_FP)
3463                         return 0;
3464
3465                 if (rw64)
3466                         mark_insn_zext(env, reg);
3467
3468                 return mark_reg_read(env, reg, reg->parent,
3469                                      rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3470         } else {
3471                 /* check whether register used as dest operand can be written to */
3472                 if (regno == BPF_REG_FP) {
3473                         verbose(env, "frame pointer is read only\n");
3474                         return -EACCES;
3475                 }
3476                 reg->live |= REG_LIVE_WRITTEN;
3477                 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3478                 if (t == DST_OP)
3479                         mark_reg_unknown(env, regs, regno);
3480         }
3481         return 0;
3482 }
3483
3484 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3485 {
3486         env->insn_aux_data[idx].jmp_point = true;
3487 }
3488
3489 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3490 {
3491         return env->insn_aux_data[insn_idx].jmp_point;
3492 }
3493
3494 /* for any branch, call, exit record the history of jmps in the given state */
3495 static int push_jmp_history(struct bpf_verifier_env *env,
3496                             struct bpf_verifier_state *cur)
3497 {
3498         u32 cnt = cur->jmp_history_cnt;
3499         struct bpf_idx_pair *p;
3500         size_t alloc_size;
3501
3502         if (!is_jmp_point(env, env->insn_idx))
3503                 return 0;
3504
3505         cnt++;
3506         alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3507         p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3508         if (!p)
3509                 return -ENOMEM;
3510         p[cnt - 1].idx = env->insn_idx;
3511         p[cnt - 1].prev_idx = env->prev_insn_idx;
3512         cur->jmp_history = p;
3513         cur->jmp_history_cnt = cnt;
3514         return 0;
3515 }
3516
3517 /* Backtrack one insn at a time. If idx is not at the top of recorded
3518  * history then previous instruction came from straight line execution.
3519  */
3520 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3521                              u32 *history)
3522 {
3523         u32 cnt = *history;
3524
3525         if (cnt && st->jmp_history[cnt - 1].idx == i) {
3526                 i = st->jmp_history[cnt - 1].prev_idx;
3527                 (*history)--;
3528         } else {
3529                 i--;
3530         }
3531         return i;
3532 }
3533
3534 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3535 {
3536         const struct btf_type *func;
3537         struct btf *desc_btf;
3538
3539         if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3540                 return NULL;
3541
3542         desc_btf = find_kfunc_desc_btf(data, insn->off);
3543         if (IS_ERR(desc_btf))
3544                 return "<error>";
3545
3546         func = btf_type_by_id(desc_btf, insn->imm);
3547         return btf_name_by_offset(desc_btf, func->name_off);
3548 }
3549
3550 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3551 {
3552         bt->frame = frame;
3553 }
3554
3555 static inline void bt_reset(struct backtrack_state *bt)
3556 {
3557         struct bpf_verifier_env *env = bt->env;
3558
3559         memset(bt, 0, sizeof(*bt));
3560         bt->env = env;
3561 }
3562
3563 static inline u32 bt_empty(struct backtrack_state *bt)
3564 {
3565         u64 mask = 0;
3566         int i;
3567
3568         for (i = 0; i <= bt->frame; i++)
3569                 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3570
3571         return mask == 0;
3572 }
3573
3574 static inline int bt_subprog_enter(struct backtrack_state *bt)
3575 {
3576         if (bt->frame == MAX_CALL_FRAMES - 1) {
3577                 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3578                 WARN_ONCE(1, "verifier backtracking bug");
3579                 return -EFAULT;
3580         }
3581         bt->frame++;
3582         return 0;
3583 }
3584
3585 static inline int bt_subprog_exit(struct backtrack_state *bt)
3586 {
3587         if (bt->frame == 0) {
3588                 verbose(bt->env, "BUG subprog exit from frame 0\n");
3589                 WARN_ONCE(1, "verifier backtracking bug");
3590                 return -EFAULT;
3591         }
3592         bt->frame--;
3593         return 0;
3594 }
3595
3596 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3597 {
3598         bt->reg_masks[frame] |= 1 << reg;
3599 }
3600
3601 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3602 {
3603         bt->reg_masks[frame] &= ~(1 << reg);
3604 }
3605
3606 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3607 {
3608         bt_set_frame_reg(bt, bt->frame, reg);
3609 }
3610
3611 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3612 {
3613         bt_clear_frame_reg(bt, bt->frame, reg);
3614 }
3615
3616 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3617 {
3618         bt->stack_masks[frame] |= 1ull << slot;
3619 }
3620
3621 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3622 {
3623         bt->stack_masks[frame] &= ~(1ull << slot);
3624 }
3625
3626 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3627 {
3628         bt_set_frame_slot(bt, bt->frame, slot);
3629 }
3630
3631 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3632 {
3633         bt_clear_frame_slot(bt, bt->frame, slot);
3634 }
3635
3636 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3637 {
3638         return bt->reg_masks[frame];
3639 }
3640
3641 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3642 {
3643         return bt->reg_masks[bt->frame];
3644 }
3645
3646 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3647 {
3648         return bt->stack_masks[frame];
3649 }
3650
3651 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3652 {
3653         return bt->stack_masks[bt->frame];
3654 }
3655
3656 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3657 {
3658         return bt->reg_masks[bt->frame] & (1 << reg);
3659 }
3660
3661 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3662 {
3663         return bt->stack_masks[bt->frame] & (1ull << slot);
3664 }
3665
3666 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3667 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3668 {
3669         DECLARE_BITMAP(mask, 64);
3670         bool first = true;
3671         int i, n;
3672
3673         buf[0] = '\0';
3674
3675         bitmap_from_u64(mask, reg_mask);
3676         for_each_set_bit(i, mask, 32) {
3677                 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3678                 first = false;
3679                 buf += n;
3680                 buf_sz -= n;
3681                 if (buf_sz < 0)
3682                         break;
3683         }
3684 }
3685 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3686 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3687 {
3688         DECLARE_BITMAP(mask, 64);
3689         bool first = true;
3690         int i, n;
3691
3692         buf[0] = '\0';
3693
3694         bitmap_from_u64(mask, stack_mask);
3695         for_each_set_bit(i, mask, 64) {
3696                 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3697                 first = false;
3698                 buf += n;
3699                 buf_sz -= n;
3700                 if (buf_sz < 0)
3701                         break;
3702         }
3703 }
3704
3705 /* For given verifier state backtrack_insn() is called from the last insn to
3706  * the first insn. Its purpose is to compute a bitmask of registers and
3707  * stack slots that needs precision in the parent verifier state.
3708  *
3709  * @idx is an index of the instruction we are currently processing;
3710  * @subseq_idx is an index of the subsequent instruction that:
3711  *   - *would be* executed next, if jump history is viewed in forward order;
3712  *   - *was* processed previously during backtracking.
3713  */
3714 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3715                           struct backtrack_state *bt)
3716 {
3717         const struct bpf_insn_cbs cbs = {
3718                 .cb_call        = disasm_kfunc_name,
3719                 .cb_print       = verbose,
3720                 .private_data   = env,
3721         };
3722         struct bpf_insn *insn = env->prog->insnsi + idx;
3723         u8 class = BPF_CLASS(insn->code);
3724         u8 opcode = BPF_OP(insn->code);
3725         u8 mode = BPF_MODE(insn->code);
3726         u32 dreg = insn->dst_reg;
3727         u32 sreg = insn->src_reg;
3728         u32 spi, i;
3729
3730         if (insn->code == 0)
3731                 return 0;
3732         if (env->log.level & BPF_LOG_LEVEL2) {
3733                 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3734                 verbose(env, "mark_precise: frame%d: regs=%s ",
3735                         bt->frame, env->tmp_str_buf);
3736                 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3737                 verbose(env, "stack=%s before ", env->tmp_str_buf);
3738                 verbose(env, "%d: ", idx);
3739                 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3740         }
3741
3742         if (class == BPF_ALU || class == BPF_ALU64) {
3743                 if (!bt_is_reg_set(bt, dreg))
3744                         return 0;
3745                 if (opcode == BPF_END || opcode == BPF_NEG) {
3746                         /* sreg is reserved and unused
3747                          * dreg still need precision before this insn
3748                          */
3749                         return 0;
3750                 } else if (opcode == BPF_MOV) {
3751                         if (BPF_SRC(insn->code) == BPF_X) {
3752                                 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3753                                  * dreg needs precision after this insn
3754                                  * sreg needs precision before this insn
3755                                  */
3756                                 bt_clear_reg(bt, dreg);
3757                                 bt_set_reg(bt, sreg);
3758                         } else {
3759                                 /* dreg = K
3760                                  * dreg needs precision after this insn.
3761                                  * Corresponding register is already marked
3762                                  * as precise=true in this verifier state.
3763                                  * No further markings in parent are necessary
3764                                  */
3765                                 bt_clear_reg(bt, dreg);
3766                         }
3767                 } else {
3768                         if (BPF_SRC(insn->code) == BPF_X) {
3769                                 /* dreg += sreg
3770                                  * both dreg and sreg need precision
3771                                  * before this insn
3772                                  */
3773                                 bt_set_reg(bt, sreg);
3774                         } /* else dreg += K
3775                            * dreg still needs precision before this insn
3776                            */
3777                 }
3778         } else if (class == BPF_LDX) {
3779                 if (!bt_is_reg_set(bt, dreg))
3780                         return 0;
3781                 bt_clear_reg(bt, dreg);
3782
3783                 /* scalars can only be spilled into stack w/o losing precision.
3784                  * Load from any other memory can be zero extended.
3785                  * The desire to keep that precision is already indicated
3786                  * by 'precise' mark in corresponding register of this state.
3787                  * No further tracking necessary.
3788                  */
3789                 if (insn->src_reg != BPF_REG_FP)
3790                         return 0;
3791
3792                 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3793                  * that [fp - off] slot contains scalar that needs to be
3794                  * tracked with precision
3795                  */
3796                 spi = (-insn->off - 1) / BPF_REG_SIZE;
3797                 if (spi >= 64) {
3798                         verbose(env, "BUG spi %d\n", spi);
3799                         WARN_ONCE(1, "verifier backtracking bug");
3800                         return -EFAULT;
3801                 }
3802                 bt_set_slot(bt, spi);
3803         } else if (class == BPF_STX || class == BPF_ST) {
3804                 if (bt_is_reg_set(bt, dreg))
3805                         /* stx & st shouldn't be using _scalar_ dst_reg
3806                          * to access memory. It means backtracking
3807                          * encountered a case of pointer subtraction.
3808                          */
3809                         return -ENOTSUPP;
3810                 /* scalars can only be spilled into stack */
3811                 if (insn->dst_reg != BPF_REG_FP)
3812                         return 0;
3813                 spi = (-insn->off - 1) / BPF_REG_SIZE;
3814                 if (spi >= 64) {
3815                         verbose(env, "BUG spi %d\n", spi);
3816                         WARN_ONCE(1, "verifier backtracking bug");
3817                         return -EFAULT;
3818                 }
3819                 if (!bt_is_slot_set(bt, spi))
3820                         return 0;
3821                 bt_clear_slot(bt, spi);
3822                 if (class == BPF_STX)
3823                         bt_set_reg(bt, sreg);
3824         } else if (class == BPF_JMP || class == BPF_JMP32) {
3825                 if (bpf_pseudo_call(insn)) {
3826                         int subprog_insn_idx, subprog;
3827
3828                         subprog_insn_idx = idx + insn->imm + 1;
3829                         subprog = find_subprog(env, subprog_insn_idx);
3830                         if (subprog < 0)
3831                                 return -EFAULT;
3832
3833                         if (subprog_is_global(env, subprog)) {
3834                                 /* check that jump history doesn't have any
3835                                  * extra instructions from subprog; the next
3836                                  * instruction after call to global subprog
3837                                  * should be literally next instruction in
3838                                  * caller program
3839                                  */
3840                                 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3841                                 /* r1-r5 are invalidated after subprog call,
3842                                  * so for global func call it shouldn't be set
3843                                  * anymore
3844                                  */
3845                                 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3846                                         verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3847                                         WARN_ONCE(1, "verifier backtracking bug");
3848                                         return -EFAULT;
3849                                 }
3850                                 /* global subprog always sets R0 */
3851                                 bt_clear_reg(bt, BPF_REG_0);
3852                                 return 0;
3853                         } else {
3854                                 /* static subprog call instruction, which
3855                                  * means that we are exiting current subprog,
3856                                  * so only r1-r5 could be still requested as
3857                                  * precise, r0 and r6-r10 or any stack slot in
3858                                  * the current frame should be zero by now
3859                                  */
3860                                 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3861                                         verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3862                                         WARN_ONCE(1, "verifier backtracking bug");
3863                                         return -EFAULT;
3864                                 }
3865                                 /* we don't track register spills perfectly,
3866                                  * so fallback to force-precise instead of failing */
3867                                 if (bt_stack_mask(bt) != 0)
3868                                         return -ENOTSUPP;
3869                                 /* propagate r1-r5 to the caller */
3870                                 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3871                                         if (bt_is_reg_set(bt, i)) {
3872                                                 bt_clear_reg(bt, i);
3873                                                 bt_set_frame_reg(bt, bt->frame - 1, i);
3874                                         }
3875                                 }
3876                                 if (bt_subprog_exit(bt))
3877                                         return -EFAULT;
3878                                 return 0;
3879                         }
3880                 } else if ((bpf_helper_call(insn) &&
3881                             is_callback_calling_function(insn->imm) &&
3882                             !is_async_callback_calling_function(insn->imm)) ||
3883                            (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3884                         /* callback-calling helper or kfunc call, which means
3885                          * we are exiting from subprog, but unlike the subprog
3886                          * call handling above, we shouldn't propagate
3887                          * precision of r1-r5 (if any requested), as they are
3888                          * not actually arguments passed directly to callback
3889                          * subprogs
3890                          */
3891                         if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3892                                 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3893                                 WARN_ONCE(1, "verifier backtracking bug");
3894                                 return -EFAULT;
3895                         }
3896                         if (bt_stack_mask(bt) != 0)
3897                                 return -ENOTSUPP;
3898                         /* clear r1-r5 in callback subprog's mask */
3899                         for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3900                                 bt_clear_reg(bt, i);
3901                         if (bt_subprog_exit(bt))
3902                                 return -EFAULT;
3903                         return 0;
3904                 } else if (opcode == BPF_CALL) {
3905                         /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3906                          * catch this error later. Make backtracking conservative
3907                          * with ENOTSUPP.
3908                          */
3909                         if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3910                                 return -ENOTSUPP;
3911                         /* regular helper call sets R0 */
3912                         bt_clear_reg(bt, BPF_REG_0);
3913                         if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3914                                 /* if backtracing was looking for registers R1-R5
3915                                  * they should have been found already.
3916                                  */
3917                                 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3918                                 WARN_ONCE(1, "verifier backtracking bug");
3919                                 return -EFAULT;
3920                         }
3921                 } else if (opcode == BPF_EXIT) {
3922                         bool r0_precise;
3923
3924                         if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3925                                 /* if backtracing was looking for registers R1-R5
3926                                  * they should have been found already.
3927                                  */
3928                                 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3929                                 WARN_ONCE(1, "verifier backtracking bug");
3930                                 return -EFAULT;
3931                         }
3932
3933                         /* BPF_EXIT in subprog or callback always returns
3934                          * right after the call instruction, so by checking
3935                          * whether the instruction at subseq_idx-1 is subprog
3936                          * call or not we can distinguish actual exit from
3937                          * *subprog* from exit from *callback*. In the former
3938                          * case, we need to propagate r0 precision, if
3939                          * necessary. In the former we never do that.
3940                          */
3941                         r0_precise = subseq_idx - 1 >= 0 &&
3942                                      bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3943                                      bt_is_reg_set(bt, BPF_REG_0);
3944
3945                         bt_clear_reg(bt, BPF_REG_0);
3946                         if (bt_subprog_enter(bt))
3947                                 return -EFAULT;
3948
3949                         if (r0_precise)
3950                                 bt_set_reg(bt, BPF_REG_0);
3951                         /* r6-r9 and stack slots will stay set in caller frame
3952                          * bitmasks until we return back from callee(s)
3953                          */
3954                         return 0;
3955                 } else if (BPF_SRC(insn->code) == BPF_X) {
3956                         if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3957                                 return 0;
3958                         /* dreg <cond> sreg
3959                          * Both dreg and sreg need precision before
3960                          * this insn. If only sreg was marked precise
3961                          * before it would be equally necessary to
3962                          * propagate it to dreg.
3963                          */
3964                         bt_set_reg(bt, dreg);
3965                         bt_set_reg(bt, sreg);
3966                          /* else dreg <cond> K
3967                           * Only dreg still needs precision before
3968                           * this insn, so for the K-based conditional
3969                           * there is nothing new to be marked.
3970                           */
3971                 }
3972         } else if (class == BPF_LD) {
3973                 if (!bt_is_reg_set(bt, dreg))
3974                         return 0;
3975                 bt_clear_reg(bt, dreg);
3976                 /* It's ld_imm64 or ld_abs or ld_ind.
3977                  * For ld_imm64 no further tracking of precision
3978                  * into parent is necessary
3979                  */
3980                 if (mode == BPF_IND || mode == BPF_ABS)
3981                         /* to be analyzed */
3982                         return -ENOTSUPP;
3983         }
3984         return 0;
3985 }
3986
3987 /* the scalar precision tracking algorithm:
3988  * . at the start all registers have precise=false.
3989  * . scalar ranges are tracked as normal through alu and jmp insns.
3990  * . once precise value of the scalar register is used in:
3991  *   .  ptr + scalar alu
3992  *   . if (scalar cond K|scalar)
3993  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3994  *   backtrack through the verifier states and mark all registers and
3995  *   stack slots with spilled constants that these scalar regisers
3996  *   should be precise.
3997  * . during state pruning two registers (or spilled stack slots)
3998  *   are equivalent if both are not precise.
3999  *
4000  * Note the verifier cannot simply walk register parentage chain,
4001  * since many different registers and stack slots could have been
4002  * used to compute single precise scalar.
4003  *
4004  * The approach of starting with precise=true for all registers and then
4005  * backtrack to mark a register as not precise when the verifier detects
4006  * that program doesn't care about specific value (e.g., when helper
4007  * takes register as ARG_ANYTHING parameter) is not safe.
4008  *
4009  * It's ok to walk single parentage chain of the verifier states.
4010  * It's possible that this backtracking will go all the way till 1st insn.
4011  * All other branches will be explored for needing precision later.
4012  *
4013  * The backtracking needs to deal with cases like:
4014  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4015  * r9 -= r8
4016  * r5 = r9
4017  * if r5 > 0x79f goto pc+7
4018  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4019  * r5 += 1
4020  * ...
4021  * call bpf_perf_event_output#25
4022  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4023  *
4024  * and this case:
4025  * r6 = 1
4026  * call foo // uses callee's r6 inside to compute r0
4027  * r0 += r6
4028  * if r0 == 0 goto
4029  *
4030  * to track above reg_mask/stack_mask needs to be independent for each frame.
4031  *
4032  * Also if parent's curframe > frame where backtracking started,
4033  * the verifier need to mark registers in both frames, otherwise callees
4034  * may incorrectly prune callers. This is similar to
4035  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4036  *
4037  * For now backtracking falls back into conservative marking.
4038  */
4039 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4040                                      struct bpf_verifier_state *st)
4041 {
4042         struct bpf_func_state *func;
4043         struct bpf_reg_state *reg;
4044         int i, j;
4045
4046         if (env->log.level & BPF_LOG_LEVEL2) {
4047                 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4048                         st->curframe);
4049         }
4050
4051         /* big hammer: mark all scalars precise in this path.
4052          * pop_stack may still get !precise scalars.
4053          * We also skip current state and go straight to first parent state,
4054          * because precision markings in current non-checkpointed state are
4055          * not needed. See why in the comment in __mark_chain_precision below.
4056          */
4057         for (st = st->parent; st; st = st->parent) {
4058                 for (i = 0; i <= st->curframe; i++) {
4059                         func = st->frame[i];
4060                         for (j = 0; j < BPF_REG_FP; j++) {
4061                                 reg = &func->regs[j];
4062                                 if (reg->type != SCALAR_VALUE || reg->precise)
4063                                         continue;
4064                                 reg->precise = true;
4065                                 if (env->log.level & BPF_LOG_LEVEL2) {
4066                                         verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4067                                                 i, j);
4068                                 }
4069                         }
4070                         for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4071                                 if (!is_spilled_reg(&func->stack[j]))
4072                                         continue;
4073                                 reg = &func->stack[j].spilled_ptr;
4074                                 if (reg->type != SCALAR_VALUE || reg->precise)
4075                                         continue;
4076                                 reg->precise = true;
4077                                 if (env->log.level & BPF_LOG_LEVEL2) {
4078                                         verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4079                                                 i, -(j + 1) * 8);
4080                                 }
4081                         }
4082                 }
4083         }
4084 }
4085
4086 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4087 {
4088         struct bpf_func_state *func;
4089         struct bpf_reg_state *reg;
4090         int i, j;
4091
4092         for (i = 0; i <= st->curframe; i++) {
4093                 func = st->frame[i];
4094                 for (j = 0; j < BPF_REG_FP; j++) {
4095                         reg = &func->regs[j];
4096                         if (reg->type != SCALAR_VALUE)
4097                                 continue;
4098                         reg->precise = false;
4099                 }
4100                 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4101                         if (!is_spilled_reg(&func->stack[j]))
4102                                 continue;
4103                         reg = &func->stack[j].spilled_ptr;
4104                         if (reg->type != SCALAR_VALUE)
4105                                 continue;
4106                         reg->precise = false;
4107                 }
4108         }
4109 }
4110
4111 static bool idset_contains(struct bpf_idset *s, u32 id)
4112 {
4113         u32 i;
4114
4115         for (i = 0; i < s->count; ++i)
4116                 if (s->ids[i] == id)
4117                         return true;
4118
4119         return false;
4120 }
4121
4122 static int idset_push(struct bpf_idset *s, u32 id)
4123 {
4124         if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4125                 return -EFAULT;
4126         s->ids[s->count++] = id;
4127         return 0;
4128 }
4129
4130 static void idset_reset(struct bpf_idset *s)
4131 {
4132         s->count = 0;
4133 }
4134
4135 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4136  * Mark all registers with these IDs as precise.
4137  */
4138 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4139 {
4140         struct bpf_idset *precise_ids = &env->idset_scratch;
4141         struct backtrack_state *bt = &env->bt;
4142         struct bpf_func_state *func;
4143         struct bpf_reg_state *reg;
4144         DECLARE_BITMAP(mask, 64);
4145         int i, fr;
4146
4147         idset_reset(precise_ids);
4148
4149         for (fr = bt->frame; fr >= 0; fr--) {
4150                 func = st->frame[fr];
4151
4152                 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4153                 for_each_set_bit(i, mask, 32) {
4154                         reg = &func->regs[i];
4155                         if (!reg->id || reg->type != SCALAR_VALUE)
4156                                 continue;
4157                         if (idset_push(precise_ids, reg->id))
4158                                 return -EFAULT;
4159                 }
4160
4161                 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4162                 for_each_set_bit(i, mask, 64) {
4163                         if (i >= func->allocated_stack / BPF_REG_SIZE)
4164                                 break;
4165                         if (!is_spilled_scalar_reg(&func->stack[i]))
4166                                 continue;
4167                         reg = &func->stack[i].spilled_ptr;
4168                         if (!reg->id)
4169                                 continue;
4170                         if (idset_push(precise_ids, reg->id))
4171                                 return -EFAULT;
4172                 }
4173         }
4174
4175         for (fr = 0; fr <= st->curframe; ++fr) {
4176                 func = st->frame[fr];
4177
4178                 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4179                         reg = &func->regs[i];
4180                         if (!reg->id)
4181                                 continue;
4182                         if (!idset_contains(precise_ids, reg->id))
4183                                 continue;
4184                         bt_set_frame_reg(bt, fr, i);
4185                 }
4186                 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4187                         if (!is_spilled_scalar_reg(&func->stack[i]))
4188                                 continue;
4189                         reg = &func->stack[i].spilled_ptr;
4190                         if (!reg->id)
4191                                 continue;
4192                         if (!idset_contains(precise_ids, reg->id))
4193                                 continue;
4194                         bt_set_frame_slot(bt, fr, i);
4195                 }
4196         }
4197
4198         return 0;
4199 }
4200
4201 /*
4202  * __mark_chain_precision() backtracks BPF program instruction sequence and
4203  * chain of verifier states making sure that register *regno* (if regno >= 0)
4204  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4205  * SCALARS, as well as any other registers and slots that contribute to
4206  * a tracked state of given registers/stack slots, depending on specific BPF
4207  * assembly instructions (see backtrack_insns() for exact instruction handling
4208  * logic). This backtracking relies on recorded jmp_history and is able to
4209  * traverse entire chain of parent states. This process ends only when all the
4210  * necessary registers/slots and their transitive dependencies are marked as
4211  * precise.
4212  *
4213  * One important and subtle aspect is that precise marks *do not matter* in
4214  * the currently verified state (current state). It is important to understand
4215  * why this is the case.
4216  *
4217  * First, note that current state is the state that is not yet "checkpointed",
4218  * i.e., it is not yet put into env->explored_states, and it has no children
4219  * states as well. It's ephemeral, and can end up either a) being discarded if
4220  * compatible explored state is found at some point or BPF_EXIT instruction is
4221  * reached or b) checkpointed and put into env->explored_states, branching out
4222  * into one or more children states.
4223  *
4224  * In the former case, precise markings in current state are completely
4225  * ignored by state comparison code (see regsafe() for details). Only
4226  * checkpointed ("old") state precise markings are important, and if old
4227  * state's register/slot is precise, regsafe() assumes current state's
4228  * register/slot as precise and checks value ranges exactly and precisely. If
4229  * states turn out to be compatible, current state's necessary precise
4230  * markings and any required parent states' precise markings are enforced
4231  * after the fact with propagate_precision() logic, after the fact. But it's
4232  * important to realize that in this case, even after marking current state
4233  * registers/slots as precise, we immediately discard current state. So what
4234  * actually matters is any of the precise markings propagated into current
4235  * state's parent states, which are always checkpointed (due to b) case above).
4236  * As such, for scenario a) it doesn't matter if current state has precise
4237  * markings set or not.
4238  *
4239  * Now, for the scenario b), checkpointing and forking into child(ren)
4240  * state(s). Note that before current state gets to checkpointing step, any
4241  * processed instruction always assumes precise SCALAR register/slot
4242  * knowledge: if precise value or range is useful to prune jump branch, BPF
4243  * verifier takes this opportunity enthusiastically. Similarly, when
4244  * register's value is used to calculate offset or memory address, exact
4245  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4246  * what we mentioned above about state comparison ignoring precise markings
4247  * during state comparison, BPF verifier ignores and also assumes precise
4248  * markings *at will* during instruction verification process. But as verifier
4249  * assumes precision, it also propagates any precision dependencies across
4250  * parent states, which are not yet finalized, so can be further restricted
4251  * based on new knowledge gained from restrictions enforced by their children
4252  * states. This is so that once those parent states are finalized, i.e., when
4253  * they have no more active children state, state comparison logic in
4254  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4255  * required for correctness.
4256  *
4257  * To build a bit more intuition, note also that once a state is checkpointed,
4258  * the path we took to get to that state is not important. This is crucial
4259  * property for state pruning. When state is checkpointed and finalized at
4260  * some instruction index, it can be correctly and safely used to "short
4261  * circuit" any *compatible* state that reaches exactly the same instruction
4262  * index. I.e., if we jumped to that instruction from a completely different
4263  * code path than original finalized state was derived from, it doesn't
4264  * matter, current state can be discarded because from that instruction
4265  * forward having a compatible state will ensure we will safely reach the
4266  * exit. States describe preconditions for further exploration, but completely
4267  * forget the history of how we got here.
4268  *
4269  * This also means that even if we needed precise SCALAR range to get to
4270  * finalized state, but from that point forward *that same* SCALAR register is
4271  * never used in a precise context (i.e., it's precise value is not needed for
4272  * correctness), it's correct and safe to mark such register as "imprecise"
4273  * (i.e., precise marking set to false). This is what we rely on when we do
4274  * not set precise marking in current state. If no child state requires
4275  * precision for any given SCALAR register, it's safe to dictate that it can
4276  * be imprecise. If any child state does require this register to be precise,
4277  * we'll mark it precise later retroactively during precise markings
4278  * propagation from child state to parent states.
4279  *
4280  * Skipping precise marking setting in current state is a mild version of
4281  * relying on the above observation. But we can utilize this property even
4282  * more aggressively by proactively forgetting any precise marking in the
4283  * current state (which we inherited from the parent state), right before we
4284  * checkpoint it and branch off into new child state. This is done by
4285  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4286  * finalized states which help in short circuiting more future states.
4287  */
4288 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4289 {
4290         struct backtrack_state *bt = &env->bt;
4291         struct bpf_verifier_state *st = env->cur_state;
4292         int first_idx = st->first_insn_idx;
4293         int last_idx = env->insn_idx;
4294         int subseq_idx = -1;
4295         struct bpf_func_state *func;
4296         struct bpf_reg_state *reg;
4297         bool skip_first = true;
4298         int i, fr, err;
4299
4300         if (!env->bpf_capable)
4301                 return 0;
4302
4303         /* set frame number from which we are starting to backtrack */
4304         bt_init(bt, env->cur_state->curframe);
4305
4306         /* Do sanity checks against current state of register and/or stack
4307          * slot, but don't set precise flag in current state, as precision
4308          * tracking in the current state is unnecessary.
4309          */
4310         func = st->frame[bt->frame];
4311         if (regno >= 0) {
4312                 reg = &func->regs[regno];
4313                 if (reg->type != SCALAR_VALUE) {
4314                         WARN_ONCE(1, "backtracing misuse");
4315                         return -EFAULT;
4316                 }
4317                 bt_set_reg(bt, regno);
4318         }
4319
4320         if (bt_empty(bt))
4321                 return 0;
4322
4323         for (;;) {
4324                 DECLARE_BITMAP(mask, 64);
4325                 u32 history = st->jmp_history_cnt;
4326
4327                 if (env->log.level & BPF_LOG_LEVEL2) {
4328                         verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4329                                 bt->frame, last_idx, first_idx, subseq_idx);
4330                 }
4331
4332                 /* If some register with scalar ID is marked as precise,
4333                  * make sure that all registers sharing this ID are also precise.
4334                  * This is needed to estimate effect of find_equal_scalars().
4335                  * Do this at the last instruction of each state,
4336                  * bpf_reg_state::id fields are valid for these instructions.
4337                  *
4338                  * Allows to track precision in situation like below:
4339                  *
4340                  *     r2 = unknown value
4341                  *     ...
4342                  *   --- state #0 ---
4343                  *     ...
4344                  *     r1 = r2                 // r1 and r2 now share the same ID
4345                  *     ...
4346                  *   --- state #1 {r1.id = A, r2.id = A} ---
4347                  *     ...
4348                  *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4349                  *     ...
4350                  *   --- state #2 {r1.id = A, r2.id = A} ---
4351                  *     r3 = r10
4352                  *     r3 += r1                // need to mark both r1 and r2
4353                  */
4354                 if (mark_precise_scalar_ids(env, st))
4355                         return -EFAULT;
4356
4357                 if (last_idx < 0) {
4358                         /* we are at the entry into subprog, which
4359                          * is expected for global funcs, but only if
4360                          * requested precise registers are R1-R5
4361                          * (which are global func's input arguments)
4362                          */
4363                         if (st->curframe == 0 &&
4364                             st->frame[0]->subprogno > 0 &&
4365                             st->frame[0]->callsite == BPF_MAIN_FUNC &&
4366                             bt_stack_mask(bt) == 0 &&
4367                             (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4368                                 bitmap_from_u64(mask, bt_reg_mask(bt));
4369                                 for_each_set_bit(i, mask, 32) {
4370                                         reg = &st->frame[0]->regs[i];
4371                                         bt_clear_reg(bt, i);
4372                                         if (reg->type == SCALAR_VALUE)
4373                                                 reg->precise = true;
4374                                 }
4375                                 return 0;
4376                         }
4377
4378                         verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4379                                 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4380                         WARN_ONCE(1, "verifier backtracking bug");
4381                         return -EFAULT;
4382                 }
4383
4384                 for (i = last_idx;;) {
4385                         if (skip_first) {
4386                                 err = 0;
4387                                 skip_first = false;
4388                         } else {
4389                                 err = backtrack_insn(env, i, subseq_idx, bt);
4390                         }
4391                         if (err == -ENOTSUPP) {
4392                                 mark_all_scalars_precise(env, env->cur_state);
4393                                 bt_reset(bt);
4394                                 return 0;
4395                         } else if (err) {
4396                                 return err;
4397                         }
4398                         if (bt_empty(bt))
4399                                 /* Found assignment(s) into tracked register in this state.
4400                                  * Since this state is already marked, just return.
4401                                  * Nothing to be tracked further in the parent state.
4402                                  */
4403                                 return 0;
4404                         if (i == first_idx)
4405                                 break;
4406                         subseq_idx = i;
4407                         i = get_prev_insn_idx(st, i, &history);
4408                         if (i >= env->prog->len) {
4409                                 /* This can happen if backtracking reached insn 0
4410                                  * and there are still reg_mask or stack_mask
4411                                  * to backtrack.
4412                                  * It means the backtracking missed the spot where
4413                                  * particular register was initialized with a constant.
4414                                  */
4415                                 verbose(env, "BUG backtracking idx %d\n", i);
4416                                 WARN_ONCE(1, "verifier backtracking bug");
4417                                 return -EFAULT;
4418                         }
4419                 }
4420                 st = st->parent;
4421                 if (!st)
4422                         break;
4423
4424                 for (fr = bt->frame; fr >= 0; fr--) {
4425                         func = st->frame[fr];
4426                         bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4427                         for_each_set_bit(i, mask, 32) {
4428                                 reg = &func->regs[i];
4429                                 if (reg->type != SCALAR_VALUE) {
4430                                         bt_clear_frame_reg(bt, fr, i);
4431                                         continue;
4432                                 }
4433                                 if (reg->precise)
4434                                         bt_clear_frame_reg(bt, fr, i);
4435                                 else
4436                                         reg->precise = true;
4437                         }
4438
4439                         bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4440                         for_each_set_bit(i, mask, 64) {
4441                                 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4442                                         /* the sequence of instructions:
4443                                          * 2: (bf) r3 = r10
4444                                          * 3: (7b) *(u64 *)(r3 -8) = r0
4445                                          * 4: (79) r4 = *(u64 *)(r10 -8)
4446                                          * doesn't contain jmps. It's backtracked
4447                                          * as a single block.
4448                                          * During backtracking insn 3 is not recognized as
4449                                          * stack access, so at the end of backtracking
4450                                          * stack slot fp-8 is still marked in stack_mask.
4451                                          * However the parent state may not have accessed
4452                                          * fp-8 and it's "unallocated" stack space.
4453                                          * In such case fallback to conservative.
4454                                          */
4455                                         mark_all_scalars_precise(env, env->cur_state);
4456                                         bt_reset(bt);
4457                                         return 0;
4458                                 }
4459
4460                                 if (!is_spilled_scalar_reg(&func->stack[i])) {
4461                                         bt_clear_frame_slot(bt, fr, i);
4462                                         continue;
4463                                 }
4464                                 reg = &func->stack[i].spilled_ptr;
4465                                 if (reg->precise)
4466                                         bt_clear_frame_slot(bt, fr, i);
4467                                 else
4468                                         reg->precise = true;
4469                         }
4470                         if (env->log.level & BPF_LOG_LEVEL2) {
4471                                 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4472                                              bt_frame_reg_mask(bt, fr));
4473                                 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4474                                         fr, env->tmp_str_buf);
4475                                 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4476                                                bt_frame_stack_mask(bt, fr));
4477                                 verbose(env, "stack=%s: ", env->tmp_str_buf);
4478                                 print_verifier_state(env, func, true);
4479                         }
4480                 }
4481
4482                 if (bt_empty(bt))
4483                         return 0;
4484
4485                 subseq_idx = first_idx;
4486                 last_idx = st->last_insn_idx;
4487                 first_idx = st->first_insn_idx;
4488         }
4489
4490         /* if we still have requested precise regs or slots, we missed
4491          * something (e.g., stack access through non-r10 register), so
4492          * fallback to marking all precise
4493          */
4494         if (!bt_empty(bt)) {
4495                 mark_all_scalars_precise(env, env->cur_state);
4496                 bt_reset(bt);
4497         }
4498
4499         return 0;
4500 }
4501
4502 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4503 {
4504         return __mark_chain_precision(env, regno);
4505 }
4506
4507 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4508  * desired reg and stack masks across all relevant frames
4509  */
4510 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4511 {
4512         return __mark_chain_precision(env, -1);
4513 }
4514
4515 static bool is_spillable_regtype(enum bpf_reg_type type)
4516 {
4517         switch (base_type(type)) {
4518         case PTR_TO_MAP_VALUE:
4519         case PTR_TO_STACK:
4520         case PTR_TO_CTX:
4521         case PTR_TO_PACKET:
4522         case PTR_TO_PACKET_META:
4523         case PTR_TO_PACKET_END:
4524         case PTR_TO_FLOW_KEYS:
4525         case CONST_PTR_TO_MAP:
4526         case PTR_TO_SOCKET:
4527         case PTR_TO_SOCK_COMMON:
4528         case PTR_TO_TCP_SOCK:
4529         case PTR_TO_XDP_SOCK:
4530         case PTR_TO_BTF_ID:
4531         case PTR_TO_BUF:
4532         case PTR_TO_MEM:
4533         case PTR_TO_FUNC:
4534         case PTR_TO_MAP_KEY:
4535                 return true;
4536         default:
4537                 return false;
4538         }
4539 }
4540
4541 /* Does this register contain a constant zero? */
4542 static bool register_is_null(struct bpf_reg_state *reg)
4543 {
4544         return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4545 }
4546
4547 static bool register_is_const(struct bpf_reg_state *reg)
4548 {
4549         return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4550 }
4551
4552 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4553 {
4554         return tnum_is_unknown(reg->var_off) &&
4555                reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4556                reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4557                reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4558                reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4559 }
4560
4561 static bool register_is_bounded(struct bpf_reg_state *reg)
4562 {
4563         return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4564 }
4565
4566 static bool __is_pointer_value(bool allow_ptr_leaks,
4567                                const struct bpf_reg_state *reg)
4568 {
4569         if (allow_ptr_leaks)
4570                 return false;
4571
4572         return reg->type != SCALAR_VALUE;
4573 }
4574
4575 /* Copy src state preserving dst->parent and dst->live fields */
4576 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4577 {
4578         struct bpf_reg_state *parent = dst->parent;
4579         enum bpf_reg_liveness live = dst->live;
4580
4581         *dst = *src;
4582         dst->parent = parent;
4583         dst->live = live;
4584 }
4585
4586 static void save_register_state(struct bpf_func_state *state,
4587                                 int spi, struct bpf_reg_state *reg,
4588                                 int size)
4589 {
4590         int i;
4591
4592         copy_register_state(&state->stack[spi].spilled_ptr, reg);
4593         if (size == BPF_REG_SIZE)
4594                 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4595
4596         for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4597                 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4598
4599         /* size < 8 bytes spill */
4600         for (; i; i--)
4601                 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4602 }
4603
4604 static bool is_bpf_st_mem(struct bpf_insn *insn)
4605 {
4606         return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4607 }
4608
4609 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4610  * stack boundary and alignment are checked in check_mem_access()
4611  */
4612 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4613                                        /* stack frame we're writing to */
4614                                        struct bpf_func_state *state,
4615                                        int off, int size, int value_regno,
4616                                        int insn_idx)
4617 {
4618         struct bpf_func_state *cur; /* state of the current function */
4619         int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4620         struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4621         struct bpf_reg_state *reg = NULL;
4622         u32 dst_reg = insn->dst_reg;
4623
4624         err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4625         if (err)
4626                 return err;
4627         /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4628          * so it's aligned access and [off, off + size) are within stack limits
4629          */
4630         if (!env->allow_ptr_leaks &&
4631             state->stack[spi].slot_type[0] == STACK_SPILL &&
4632             size != BPF_REG_SIZE) {
4633                 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4634                 return -EACCES;
4635         }
4636
4637         cur = env->cur_state->frame[env->cur_state->curframe];
4638         if (value_regno >= 0)
4639                 reg = &cur->regs[value_regno];
4640         if (!env->bypass_spec_v4) {
4641                 bool sanitize = reg && is_spillable_regtype(reg->type);
4642
4643                 for (i = 0; i < size; i++) {
4644                         u8 type = state->stack[spi].slot_type[i];
4645
4646                         if (type != STACK_MISC && type != STACK_ZERO) {
4647                                 sanitize = true;
4648                                 break;
4649                         }
4650                 }
4651
4652                 if (sanitize)
4653                         env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4654         }
4655
4656         err = destroy_if_dynptr_stack_slot(env, state, spi);
4657         if (err)
4658                 return err;
4659
4660         mark_stack_slot_scratched(env, spi);
4661         if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4662             !register_is_null(reg) && env->bpf_capable) {
4663                 if (dst_reg != BPF_REG_FP) {
4664                         /* The backtracking logic can only recognize explicit
4665                          * stack slot address like [fp - 8]. Other spill of
4666                          * scalar via different register has to be conservative.
4667                          * Backtrack from here and mark all registers as precise
4668                          * that contributed into 'reg' being a constant.
4669                          */
4670                         err = mark_chain_precision(env, value_regno);
4671                         if (err)
4672                                 return err;
4673                 }
4674                 save_register_state(state, spi, reg, size);
4675                 /* Break the relation on a narrowing spill. */
4676                 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4677                         state->stack[spi].spilled_ptr.id = 0;
4678         } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4679                    insn->imm != 0 && env->bpf_capable) {
4680                 struct bpf_reg_state fake_reg = {};
4681
4682                 __mark_reg_known(&fake_reg, insn->imm);
4683                 fake_reg.type = SCALAR_VALUE;
4684                 save_register_state(state, spi, &fake_reg, size);
4685         } else if (reg && is_spillable_regtype(reg->type)) {
4686                 /* register containing pointer is being spilled into stack */
4687                 if (size != BPF_REG_SIZE) {
4688                         verbose_linfo(env, insn_idx, "; ");
4689                         verbose(env, "invalid size of register spill\n");
4690                         return -EACCES;
4691                 }
4692                 if (state != cur && reg->type == PTR_TO_STACK) {
4693                         verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4694                         return -EINVAL;
4695                 }
4696                 save_register_state(state, spi, reg, size);
4697         } else {
4698                 u8 type = STACK_MISC;
4699
4700                 /* regular write of data into stack destroys any spilled ptr */
4701                 state->stack[spi].spilled_ptr.type = NOT_INIT;
4702                 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4703                 if (is_stack_slot_special(&state->stack[spi]))
4704                         for (i = 0; i < BPF_REG_SIZE; i++)
4705                                 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4706
4707                 /* only mark the slot as written if all 8 bytes were written
4708                  * otherwise read propagation may incorrectly stop too soon
4709                  * when stack slots are partially written.
4710                  * This heuristic means that read propagation will be
4711                  * conservative, since it will add reg_live_read marks
4712                  * to stack slots all the way to first state when programs
4713                  * writes+reads less than 8 bytes
4714                  */
4715                 if (size == BPF_REG_SIZE)
4716                         state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4717
4718                 /* when we zero initialize stack slots mark them as such */
4719                 if ((reg && register_is_null(reg)) ||
4720                     (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4721                         /* backtracking doesn't work for STACK_ZERO yet. */
4722                         err = mark_chain_precision(env, value_regno);
4723                         if (err)
4724                                 return err;
4725                         type = STACK_ZERO;
4726                 }
4727
4728                 /* Mark slots affected by this stack write. */
4729                 for (i = 0; i < size; i++)
4730                         state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4731                                 type;
4732         }
4733         return 0;
4734 }
4735
4736 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4737  * known to contain a variable offset.
4738  * This function checks whether the write is permitted and conservatively
4739  * tracks the effects of the write, considering that each stack slot in the
4740  * dynamic range is potentially written to.
4741  *
4742  * 'off' includes 'regno->off'.
4743  * 'value_regno' can be -1, meaning that an unknown value is being written to
4744  * the stack.
4745  *
4746  * Spilled pointers in range are not marked as written because we don't know
4747  * what's going to be actually written. This means that read propagation for
4748  * future reads cannot be terminated by this write.
4749  *
4750  * For privileged programs, uninitialized stack slots are considered
4751  * initialized by this write (even though we don't know exactly what offsets
4752  * are going to be written to). The idea is that we don't want the verifier to
4753  * reject future reads that access slots written to through variable offsets.
4754  */
4755 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4756                                      /* func where register points to */
4757                                      struct bpf_func_state *state,
4758                                      int ptr_regno, int off, int size,
4759                                      int value_regno, int insn_idx)
4760 {
4761         struct bpf_func_state *cur; /* state of the current function */
4762         int min_off, max_off;
4763         int i, err;
4764         struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4765         struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4766         bool writing_zero = false;
4767         /* set if the fact that we're writing a zero is used to let any
4768          * stack slots remain STACK_ZERO
4769          */
4770         bool zero_used = false;
4771
4772         cur = env->cur_state->frame[env->cur_state->curframe];
4773         ptr_reg = &cur->regs[ptr_regno];
4774         min_off = ptr_reg->smin_value + off;
4775         max_off = ptr_reg->smax_value + off + size;
4776         if (value_regno >= 0)
4777                 value_reg = &cur->regs[value_regno];
4778         if ((value_reg && register_is_null(value_reg)) ||
4779             (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4780                 writing_zero = true;
4781
4782         err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4783         if (err)
4784                 return err;
4785
4786         for (i = min_off; i < max_off; i++) {
4787                 int spi;
4788
4789                 spi = __get_spi(i);
4790                 err = destroy_if_dynptr_stack_slot(env, state, spi);
4791                 if (err)
4792                         return err;
4793         }
4794
4795         /* Variable offset writes destroy any spilled pointers in range. */
4796         for (i = min_off; i < max_off; i++) {
4797                 u8 new_type, *stype;
4798                 int slot, spi;
4799
4800                 slot = -i - 1;
4801                 spi = slot / BPF_REG_SIZE;
4802                 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4803                 mark_stack_slot_scratched(env, spi);
4804
4805                 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4806                         /* Reject the write if range we may write to has not
4807                          * been initialized beforehand. If we didn't reject
4808                          * here, the ptr status would be erased below (even
4809                          * though not all slots are actually overwritten),
4810                          * possibly opening the door to leaks.
4811                          *
4812                          * We do however catch STACK_INVALID case below, and
4813                          * only allow reading possibly uninitialized memory
4814                          * later for CAP_PERFMON, as the write may not happen to
4815                          * that slot.
4816                          */
4817                         verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4818                                 insn_idx, i);
4819                         return -EINVAL;
4820                 }
4821
4822                 /* Erase all spilled pointers. */
4823                 state->stack[spi].spilled_ptr.type = NOT_INIT;
4824
4825                 /* Update the slot type. */
4826                 new_type = STACK_MISC;
4827                 if (writing_zero && *stype == STACK_ZERO) {
4828                         new_type = STACK_ZERO;
4829                         zero_used = true;
4830                 }
4831                 /* If the slot is STACK_INVALID, we check whether it's OK to
4832                  * pretend that it will be initialized by this write. The slot
4833                  * might not actually be written to, and so if we mark it as
4834                  * initialized future reads might leak uninitialized memory.
4835                  * For privileged programs, we will accept such reads to slots
4836                  * that may or may not be written because, if we're reject
4837                  * them, the error would be too confusing.
4838                  */
4839                 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4840                         verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4841                                         insn_idx, i);
4842                         return -EINVAL;
4843                 }
4844                 *stype = new_type;
4845         }
4846         if (zero_used) {
4847                 /* backtracking doesn't work for STACK_ZERO yet. */
4848                 err = mark_chain_precision(env, value_regno);
4849                 if (err)
4850                         return err;
4851         }
4852         return 0;
4853 }
4854
4855 /* When register 'dst_regno' is assigned some values from stack[min_off,
4856  * max_off), we set the register's type according to the types of the
4857  * respective stack slots. If all the stack values are known to be zeros, then
4858  * so is the destination reg. Otherwise, the register is considered to be
4859  * SCALAR. This function does not deal with register filling; the caller must
4860  * ensure that all spilled registers in the stack range have been marked as
4861  * read.
4862  */
4863 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4864                                 /* func where src register points to */
4865                                 struct bpf_func_state *ptr_state,
4866                                 int min_off, int max_off, int dst_regno)
4867 {
4868         struct bpf_verifier_state *vstate = env->cur_state;
4869         struct bpf_func_state *state = vstate->frame[vstate->curframe];
4870         int i, slot, spi;
4871         u8 *stype;
4872         int zeros = 0;
4873
4874         for (i = min_off; i < max_off; i++) {
4875                 slot = -i - 1;
4876                 spi = slot / BPF_REG_SIZE;
4877                 mark_stack_slot_scratched(env, spi);
4878                 stype = ptr_state->stack[spi].slot_type;
4879                 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4880                         break;
4881                 zeros++;
4882         }
4883         if (zeros == max_off - min_off) {
4884                 /* any access_size read into register is zero extended,
4885                  * so the whole register == const_zero
4886                  */
4887                 __mark_reg_const_zero(&state->regs[dst_regno]);
4888                 /* backtracking doesn't support STACK_ZERO yet,
4889                  * so mark it precise here, so that later
4890                  * backtracking can stop here.
4891                  * Backtracking may not need this if this register
4892                  * doesn't participate in pointer adjustment.
4893                  * Forward propagation of precise flag is not
4894                  * necessary either. This mark is only to stop
4895                  * backtracking. Any register that contributed
4896                  * to const 0 was marked precise before spill.
4897                  */
4898                 state->regs[dst_regno].precise = true;
4899         } else {
4900                 /* have read misc data from the stack */
4901                 mark_reg_unknown(env, state->regs, dst_regno);
4902         }
4903         state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4904 }
4905
4906 /* Read the stack at 'off' and put the results into the register indicated by
4907  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4908  * spilled reg.
4909  *
4910  * 'dst_regno' can be -1, meaning that the read value is not going to a
4911  * register.
4912  *
4913  * The access is assumed to be within the current stack bounds.
4914  */
4915 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4916                                       /* func where src register points to */
4917                                       struct bpf_func_state *reg_state,
4918                                       int off, int size, int dst_regno)
4919 {
4920         struct bpf_verifier_state *vstate = env->cur_state;
4921         struct bpf_func_state *state = vstate->frame[vstate->curframe];
4922         int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4923         struct bpf_reg_state *reg;
4924         u8 *stype, type;
4925
4926         stype = reg_state->stack[spi].slot_type;
4927         reg = &reg_state->stack[spi].spilled_ptr;
4928
4929         mark_stack_slot_scratched(env, spi);
4930
4931         if (is_spilled_reg(&reg_state->stack[spi])) {
4932                 u8 spill_size = 1;
4933
4934                 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4935                         spill_size++;
4936
4937                 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4938                         if (reg->type != SCALAR_VALUE) {
4939                                 verbose_linfo(env, env->insn_idx, "; ");
4940                                 verbose(env, "invalid size of register fill\n");
4941                                 return -EACCES;
4942                         }
4943
4944                         mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4945                         if (dst_regno < 0)
4946                                 return 0;
4947
4948                         if (!(off % BPF_REG_SIZE) && size == spill_size) {
4949                                 /* The earlier check_reg_arg() has decided the
4950                                  * subreg_def for this insn.  Save it first.
4951                                  */
4952                                 s32 subreg_def = state->regs[dst_regno].subreg_def;
4953
4954                                 copy_register_state(&state->regs[dst_regno], reg);
4955                                 state->regs[dst_regno].subreg_def = subreg_def;
4956                         } else {
4957                                 for (i = 0; i < size; i++) {
4958                                         type = stype[(slot - i) % BPF_REG_SIZE];
4959                                         if (type == STACK_SPILL)
4960                                                 continue;
4961                                         if (type == STACK_MISC)
4962                                                 continue;
4963                                         if (type == STACK_INVALID && env->allow_uninit_stack)
4964                                                 continue;
4965                                         verbose(env, "invalid read from stack off %d+%d size %d\n",
4966                                                 off, i, size);
4967                                         return -EACCES;
4968                                 }
4969                                 mark_reg_unknown(env, state->regs, dst_regno);
4970                         }
4971                         state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4972                         return 0;
4973                 }
4974
4975                 if (dst_regno >= 0) {
4976                         /* restore register state from stack */
4977                         copy_register_state(&state->regs[dst_regno], reg);
4978                         /* mark reg as written since spilled pointer state likely
4979                          * has its liveness marks cleared by is_state_visited()
4980                          * which resets stack/reg liveness for state transitions
4981                          */
4982                         state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4983                 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4984                         /* If dst_regno==-1, the caller is asking us whether
4985                          * it is acceptable to use this value as a SCALAR_VALUE
4986                          * (e.g. for XADD).
4987                          * We must not allow unprivileged callers to do that
4988                          * with spilled pointers.
4989                          */
4990                         verbose(env, "leaking pointer from stack off %d\n",
4991                                 off);
4992                         return -EACCES;
4993                 }
4994                 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4995         } else {
4996                 for (i = 0; i < size; i++) {
4997                         type = stype[(slot - i) % BPF_REG_SIZE];
4998                         if (type == STACK_MISC)
4999                                 continue;
5000                         if (type == STACK_ZERO)
5001                                 continue;
5002                         if (type == STACK_INVALID && env->allow_uninit_stack)
5003                                 continue;
5004                         verbose(env, "invalid read from stack off %d+%d size %d\n",
5005                                 off, i, size);
5006                         return -EACCES;
5007                 }
5008                 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5009                 if (dst_regno >= 0)
5010                         mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5011         }
5012         return 0;
5013 }
5014
5015 enum bpf_access_src {
5016         ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5017         ACCESS_HELPER = 2,  /* the access is performed by a helper */
5018 };
5019
5020 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5021                                          int regno, int off, int access_size,
5022                                          bool zero_size_allowed,
5023                                          enum bpf_access_src type,
5024                                          struct bpf_call_arg_meta *meta);
5025
5026 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5027 {
5028         return cur_regs(env) + regno;
5029 }
5030
5031 /* Read the stack at 'ptr_regno + off' and put the result into the register
5032  * 'dst_regno'.
5033  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5034  * but not its variable offset.
5035  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5036  *
5037  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5038  * filling registers (i.e. reads of spilled register cannot be detected when
5039  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5040  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5041  * offset; for a fixed offset check_stack_read_fixed_off should be used
5042  * instead.
5043  */
5044 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5045                                     int ptr_regno, int off, int size, int dst_regno)
5046 {
5047         /* The state of the source register. */
5048         struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5049         struct bpf_func_state *ptr_state = func(env, reg);
5050         int err;
5051         int min_off, max_off;
5052
5053         /* Note that we pass a NULL meta, so raw access will not be permitted.
5054          */
5055         err = check_stack_range_initialized(env, ptr_regno, off, size,
5056                                             false, ACCESS_DIRECT, NULL);
5057         if (err)
5058                 return err;
5059
5060         min_off = reg->smin_value + off;
5061         max_off = reg->smax_value + off;
5062         mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5063         return 0;
5064 }
5065
5066 /* check_stack_read dispatches to check_stack_read_fixed_off or
5067  * check_stack_read_var_off.
5068  *
5069  * The caller must ensure that the offset falls within the allocated stack
5070  * bounds.
5071  *
5072  * 'dst_regno' is a register which will receive the value from the stack. It
5073  * can be -1, meaning that the read value is not going to a register.
5074  */
5075 static int check_stack_read(struct bpf_verifier_env *env,
5076                             int ptr_regno, int off, int size,
5077                             int dst_regno)
5078 {
5079         struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5080         struct bpf_func_state *state = func(env, reg);
5081         int err;
5082         /* Some accesses are only permitted with a static offset. */
5083         bool var_off = !tnum_is_const(reg->var_off);
5084
5085         /* The offset is required to be static when reads don't go to a
5086          * register, in order to not leak pointers (see
5087          * check_stack_read_fixed_off).
5088          */
5089         if (dst_regno < 0 && var_off) {
5090                 char tn_buf[48];
5091
5092                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5093                 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5094                         tn_buf, off, size);
5095                 return -EACCES;
5096         }
5097         /* Variable offset is prohibited for unprivileged mode for simplicity
5098          * since it requires corresponding support in Spectre masking for stack
5099          * ALU. See also retrieve_ptr_limit(). The check in
5100          * check_stack_access_for_ptr_arithmetic() called by
5101          * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5102          * with variable offsets, therefore no check is required here. Further,
5103          * just checking it here would be insufficient as speculative stack
5104          * writes could still lead to unsafe speculative behaviour.
5105          */
5106         if (!var_off) {
5107                 off += reg->var_off.value;
5108                 err = check_stack_read_fixed_off(env, state, off, size,
5109                                                  dst_regno);
5110         } else {
5111                 /* Variable offset stack reads need more conservative handling
5112                  * than fixed offset ones. Note that dst_regno >= 0 on this
5113                  * branch.
5114                  */
5115                 err = check_stack_read_var_off(env, ptr_regno, off, size,
5116                                                dst_regno);
5117         }
5118         return err;
5119 }
5120
5121
5122 /* check_stack_write dispatches to check_stack_write_fixed_off or
5123  * check_stack_write_var_off.
5124  *
5125  * 'ptr_regno' is the register used as a pointer into the stack.
5126  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5127  * 'value_regno' is the register whose value we're writing to the stack. It can
5128  * be -1, meaning that we're not writing from a register.
5129  *
5130  * The caller must ensure that the offset falls within the maximum stack size.
5131  */
5132 static int check_stack_write(struct bpf_verifier_env *env,
5133                              int ptr_regno, int off, int size,
5134                              int value_regno, int insn_idx)
5135 {
5136         struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5137         struct bpf_func_state *state = func(env, reg);
5138         int err;
5139
5140         if (tnum_is_const(reg->var_off)) {
5141                 off += reg->var_off.value;
5142                 err = check_stack_write_fixed_off(env, state, off, size,
5143                                                   value_regno, insn_idx);
5144         } else {
5145                 /* Variable offset stack reads need more conservative handling
5146                  * than fixed offset ones.
5147                  */
5148                 err = check_stack_write_var_off(env, state,
5149                                                 ptr_regno, off, size,
5150                                                 value_regno, insn_idx);
5151         }
5152         return err;
5153 }
5154
5155 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5156                                  int off, int size, enum bpf_access_type type)
5157 {
5158         struct bpf_reg_state *regs = cur_regs(env);
5159         struct bpf_map *map = regs[regno].map_ptr;
5160         u32 cap = bpf_map_flags_to_cap(map);
5161
5162         if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5163                 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5164                         map->value_size, off, size);
5165                 return -EACCES;
5166         }
5167
5168         if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5169                 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5170                         map->value_size, off, size);
5171                 return -EACCES;
5172         }
5173
5174         return 0;
5175 }
5176
5177 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5178 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5179                               int off, int size, u32 mem_size,
5180                               bool zero_size_allowed)
5181 {
5182         bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5183         struct bpf_reg_state *reg;
5184
5185         if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5186                 return 0;
5187
5188         reg = &cur_regs(env)[regno];
5189         switch (reg->type) {
5190         case PTR_TO_MAP_KEY:
5191                 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5192                         mem_size, off, size);
5193                 break;
5194         case PTR_TO_MAP_VALUE:
5195                 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5196                         mem_size, off, size);
5197                 break;
5198         case PTR_TO_PACKET:
5199         case PTR_TO_PACKET_META:
5200         case PTR_TO_PACKET_END:
5201                 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5202                         off, size, regno, reg->id, off, mem_size);
5203                 break;
5204         case PTR_TO_MEM:
5205         default:
5206                 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5207                         mem_size, off, size);
5208         }
5209
5210         return -EACCES;
5211 }
5212
5213 /* check read/write into a memory region with possible variable offset */
5214 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5215                                    int off, int size, u32 mem_size,
5216                                    bool zero_size_allowed)
5217 {
5218         struct bpf_verifier_state *vstate = env->cur_state;
5219         struct bpf_func_state *state = vstate->frame[vstate->curframe];
5220         struct bpf_reg_state *reg = &state->regs[regno];
5221         int err;
5222
5223         /* We may have adjusted the register pointing to memory region, so we
5224          * need to try adding each of min_value and max_value to off
5225          * to make sure our theoretical access will be safe.
5226          *
5227          * The minimum value is only important with signed
5228          * comparisons where we can't assume the floor of a
5229          * value is 0.  If we are using signed variables for our
5230          * index'es we need to make sure that whatever we use
5231          * will have a set floor within our range.
5232          */
5233         if (reg->smin_value < 0 &&
5234             (reg->smin_value == S64_MIN ||
5235              (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5236               reg->smin_value + off < 0)) {
5237                 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5238                         regno);
5239                 return -EACCES;
5240         }
5241         err = __check_mem_access(env, regno, reg->smin_value + off, size,
5242                                  mem_size, zero_size_allowed);
5243         if (err) {
5244                 verbose(env, "R%d min value is outside of the allowed memory range\n",
5245                         regno);
5246                 return err;
5247         }
5248
5249         /* If we haven't set a max value then we need to bail since we can't be
5250          * sure we won't do bad things.
5251          * If reg->umax_value + off could overflow, treat that as unbounded too.
5252          */
5253         if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5254                 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5255                         regno);
5256                 return -EACCES;
5257         }
5258         err = __check_mem_access(env, regno, reg->umax_value + off, size,
5259                                  mem_size, zero_size_allowed);
5260         if (err) {
5261                 verbose(env, "R%d max value is outside of the allowed memory range\n",
5262                         regno);
5263                 return err;
5264         }
5265
5266         return 0;
5267 }
5268
5269 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5270                                const struct bpf_reg_state *reg, int regno,
5271                                bool fixed_off_ok)
5272 {
5273         /* Access to this pointer-typed register or passing it to a helper
5274          * is only allowed in its original, unmodified form.
5275          */
5276
5277         if (reg->off < 0) {
5278                 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5279                         reg_type_str(env, reg->type), regno, reg->off);
5280                 return -EACCES;
5281         }
5282
5283         if (!fixed_off_ok && reg->off) {
5284                 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5285                         reg_type_str(env, reg->type), regno, reg->off);
5286                 return -EACCES;
5287         }
5288
5289         if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5290                 char tn_buf[48];
5291
5292                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5293                 verbose(env, "variable %s access var_off=%s disallowed\n",
5294                         reg_type_str(env, reg->type), tn_buf);
5295                 return -EACCES;
5296         }
5297
5298         return 0;
5299 }
5300
5301 int check_ptr_off_reg(struct bpf_verifier_env *env,
5302                       const struct bpf_reg_state *reg, int regno)
5303 {
5304         return __check_ptr_off_reg(env, reg, regno, false);
5305 }
5306
5307 static int map_kptr_match_type(struct bpf_verifier_env *env,
5308                                struct btf_field *kptr_field,
5309                                struct bpf_reg_state *reg, u32 regno)
5310 {
5311         const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5312         int perm_flags;
5313         const char *reg_name = "";
5314
5315         if (btf_is_kernel(reg->btf)) {
5316                 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5317
5318                 /* Only unreferenced case accepts untrusted pointers */
5319                 if (kptr_field->type == BPF_KPTR_UNREF)
5320                         perm_flags |= PTR_UNTRUSTED;
5321         } else {
5322                 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5323                 if (kptr_field->type == BPF_KPTR_PERCPU)
5324                         perm_flags |= MEM_PERCPU;
5325         }
5326
5327         if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5328                 goto bad_type;
5329
5330         /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5331         reg_name = btf_type_name(reg->btf, reg->btf_id);
5332
5333         /* For ref_ptr case, release function check should ensure we get one
5334          * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5335          * normal store of unreferenced kptr, we must ensure var_off is zero.
5336          * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5337          * reg->off and reg->ref_obj_id are not needed here.
5338          */
5339         if (__check_ptr_off_reg(env, reg, regno, true))
5340                 return -EACCES;
5341
5342         /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5343          * we also need to take into account the reg->off.
5344          *
5345          * We want to support cases like:
5346          *
5347          * struct foo {
5348          *         struct bar br;
5349          *         struct baz bz;
5350          * };
5351          *
5352          * struct foo *v;
5353          * v = func();        // PTR_TO_BTF_ID
5354          * val->foo = v;      // reg->off is zero, btf and btf_id match type
5355          * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5356          *                    // first member type of struct after comparison fails
5357          * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5358          *                    // to match type
5359          *
5360          * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5361          * is zero. We must also ensure that btf_struct_ids_match does not walk
5362          * the struct to match type against first member of struct, i.e. reject
5363          * second case from above. Hence, when type is BPF_KPTR_REF, we set
5364          * strict mode to true for type match.
5365          */
5366         if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5367                                   kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5368                                   kptr_field->type != BPF_KPTR_UNREF))
5369                 goto bad_type;
5370         return 0;
5371 bad_type:
5372         verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5373                 reg_type_str(env, reg->type), reg_name);
5374         verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5375         if (kptr_field->type == BPF_KPTR_UNREF)
5376                 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5377                         targ_name);
5378         else
5379                 verbose(env, "\n");
5380         return -EINVAL;
5381 }
5382
5383 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5384  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5385  */
5386 static bool in_rcu_cs(struct bpf_verifier_env *env)
5387 {
5388         return env->cur_state->active_rcu_lock ||
5389                env->cur_state->active_lock.ptr ||
5390                !env->prog->aux->sleepable;
5391 }
5392
5393 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5394 BTF_SET_START(rcu_protected_types)
5395 BTF_ID(struct, prog_test_ref_kfunc)
5396 #ifdef CONFIG_CGROUPS
5397 BTF_ID(struct, cgroup)
5398 #endif
5399 BTF_ID(struct, bpf_cpumask)
5400 BTF_ID(struct, task_struct)
5401 BTF_SET_END(rcu_protected_types)
5402
5403 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5404 {
5405         if (!btf_is_kernel(btf))
5406                 return false;
5407         return btf_id_set_contains(&rcu_protected_types, btf_id);
5408 }
5409
5410 static bool rcu_safe_kptr(const struct btf_field *field)
5411 {
5412         const struct btf_field_kptr *kptr = &field->kptr;
5413
5414         return field->type == BPF_KPTR_PERCPU ||
5415                (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5416 }
5417
5418 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5419 {
5420         if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5421                 if (kptr_field->type != BPF_KPTR_PERCPU)
5422                         return PTR_MAYBE_NULL | MEM_RCU;
5423                 return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU;
5424         }
5425         return PTR_MAYBE_NULL | PTR_UNTRUSTED;
5426 }
5427
5428 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5429                                  int value_regno, int insn_idx,
5430                                  struct btf_field *kptr_field)
5431 {
5432         struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5433         int class = BPF_CLASS(insn->code);
5434         struct bpf_reg_state *val_reg;
5435
5436         /* Things we already checked for in check_map_access and caller:
5437          *  - Reject cases where variable offset may touch kptr
5438          *  - size of access (must be BPF_DW)
5439          *  - tnum_is_const(reg->var_off)
5440          *  - kptr_field->offset == off + reg->var_off.value
5441          */
5442         /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5443         if (BPF_MODE(insn->code) != BPF_MEM) {
5444                 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5445                 return -EACCES;
5446         }
5447
5448         /* We only allow loading referenced kptr, since it will be marked as
5449          * untrusted, similar to unreferenced kptr.
5450          */
5451         if (class != BPF_LDX &&
5452             (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5453                 verbose(env, "store to referenced kptr disallowed\n");
5454                 return -EACCES;
5455         }
5456
5457         if (class == BPF_LDX) {
5458                 val_reg = reg_state(env, value_regno);
5459                 /* We can simply mark the value_regno receiving the pointer
5460                  * value from map as PTR_TO_BTF_ID, with the correct type.
5461                  */
5462                 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5463                                 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5464                 /* For mark_ptr_or_null_reg */
5465                 val_reg->id = ++env->id_gen;
5466         } else if (class == BPF_STX) {
5467                 val_reg = reg_state(env, value_regno);
5468                 if (!register_is_null(val_reg) &&
5469                     map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5470                         return -EACCES;
5471         } else if (class == BPF_ST) {
5472                 if (insn->imm) {
5473                         verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5474                                 kptr_field->offset);
5475                         return -EACCES;
5476                 }
5477         } else {
5478                 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5479                 return -EACCES;
5480         }
5481         return 0;
5482 }
5483
5484 /* check read/write into a map element with possible variable offset */
5485 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5486                             int off, int size, bool zero_size_allowed,
5487                             enum bpf_access_src src)
5488 {
5489         struct bpf_verifier_state *vstate = env->cur_state;
5490         struct bpf_func_state *state = vstate->frame[vstate->curframe];
5491         struct bpf_reg_state *reg = &state->regs[regno];
5492         struct bpf_map *map = reg->map_ptr;
5493         struct btf_record *rec;
5494         int err, i;
5495
5496         err = check_mem_region_access(env, regno, off, size, map->value_size,
5497                                       zero_size_allowed);
5498         if (err)
5499                 return err;
5500
5501         if (IS_ERR_OR_NULL(map->record))
5502                 return 0;
5503         rec = map->record;
5504         for (i = 0; i < rec->cnt; i++) {
5505                 struct btf_field *field = &rec->fields[i];
5506                 u32 p = field->offset;
5507
5508                 /* If any part of a field  can be touched by load/store, reject
5509                  * this program. To check that [x1, x2) overlaps with [y1, y2),
5510                  * it is sufficient to check x1 < y2 && y1 < x2.
5511                  */
5512                 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5513                     p < reg->umax_value + off + size) {
5514                         switch (field->type) {
5515                         case BPF_KPTR_UNREF:
5516                         case BPF_KPTR_REF:
5517                         case BPF_KPTR_PERCPU:
5518                                 if (src != ACCESS_DIRECT) {
5519                                         verbose(env, "kptr cannot be accessed indirectly by helper\n");
5520                                         return -EACCES;
5521                                 }
5522                                 if (!tnum_is_const(reg->var_off)) {
5523                                         verbose(env, "kptr access cannot have variable offset\n");
5524                                         return -EACCES;
5525                                 }
5526                                 if (p != off + reg->var_off.value) {
5527                                         verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5528                                                 p, off + reg->var_off.value);
5529                                         return -EACCES;
5530                                 }
5531                                 if (size != bpf_size_to_bytes(BPF_DW)) {
5532                                         verbose(env, "kptr access size must be BPF_DW\n");
5533                                         return -EACCES;
5534                                 }
5535                                 break;
5536                         default:
5537                                 verbose(env, "%s cannot be accessed directly by load/store\n",
5538                                         btf_field_type_name(field->type));
5539                                 return -EACCES;
5540                         }
5541                 }
5542         }
5543         return 0;
5544 }
5545
5546 #define MAX_PACKET_OFF 0xffff
5547
5548 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5549                                        const struct bpf_call_arg_meta *meta,
5550                                        enum bpf_access_type t)
5551 {
5552         enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5553
5554         switch (prog_type) {
5555         /* Program types only with direct read access go here! */
5556         case BPF_PROG_TYPE_LWT_IN:
5557         case BPF_PROG_TYPE_LWT_OUT:
5558         case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5559         case BPF_PROG_TYPE_SK_REUSEPORT:
5560         case BPF_PROG_TYPE_FLOW_DISSECTOR:
5561         case BPF_PROG_TYPE_CGROUP_SKB:
5562                 if (t == BPF_WRITE)
5563                         return false;
5564                 fallthrough;
5565
5566         /* Program types with direct read + write access go here! */
5567         case BPF_PROG_TYPE_SCHED_CLS:
5568         case BPF_PROG_TYPE_SCHED_ACT:
5569         case BPF_PROG_TYPE_XDP:
5570         case BPF_PROG_TYPE_LWT_XMIT:
5571         case BPF_PROG_TYPE_SK_SKB:
5572         case BPF_PROG_TYPE_SK_MSG:
5573                 if (meta)
5574                         return meta->pkt_access;
5575
5576                 env->seen_direct_write = true;
5577                 return true;
5578
5579         case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5580                 if (t == BPF_WRITE)
5581                         env->seen_direct_write = true;
5582
5583                 return true;
5584
5585         default:
5586                 return false;
5587         }
5588 }
5589
5590 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5591                                int size, bool zero_size_allowed)
5592 {
5593         struct bpf_reg_state *regs = cur_regs(env);
5594         struct bpf_reg_state *reg = &regs[regno];
5595         int err;
5596
5597         /* We may have added a variable offset to the packet pointer; but any
5598          * reg->range we have comes after that.  We are only checking the fixed
5599          * offset.
5600          */
5601
5602         /* We don't allow negative numbers, because we aren't tracking enough
5603          * detail to prove they're safe.
5604          */
5605         if (reg->smin_value < 0) {
5606                 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5607                         regno);
5608                 return -EACCES;
5609         }
5610
5611         err = reg->range < 0 ? -EINVAL :
5612               __check_mem_access(env, regno, off, size, reg->range,
5613                                  zero_size_allowed);
5614         if (err) {
5615                 verbose(env, "R%d offset is outside of the packet\n", regno);
5616                 return err;
5617         }
5618
5619         /* __check_mem_access has made sure "off + size - 1" is within u16.
5620          * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5621          * otherwise find_good_pkt_pointers would have refused to set range info
5622          * that __check_mem_access would have rejected this pkt access.
5623          * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5624          */
5625         env->prog->aux->max_pkt_offset =
5626                 max_t(u32, env->prog->aux->max_pkt_offset,
5627                       off + reg->umax_value + size - 1);
5628
5629         return err;
5630 }
5631
5632 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5633 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5634                             enum bpf_access_type t, enum bpf_reg_type *reg_type,
5635                             struct btf **btf, u32 *btf_id)
5636 {
5637         struct bpf_insn_access_aux info = {
5638                 .reg_type = *reg_type,
5639                 .log = &env->log,
5640         };
5641
5642         if (env->ops->is_valid_access &&
5643             env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5644                 /* A non zero info.ctx_field_size indicates that this field is a
5645                  * candidate for later verifier transformation to load the whole
5646                  * field and then apply a mask when accessed with a narrower
5647                  * access than actual ctx access size. A zero info.ctx_field_size
5648                  * will only allow for whole field access and rejects any other
5649                  * type of narrower access.
5650                  */
5651                 *reg_type = info.reg_type;
5652
5653                 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5654                         *btf = info.btf;
5655                         *btf_id = info.btf_id;
5656                 } else {
5657                         env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5658                 }
5659                 /* remember the offset of last byte accessed in ctx */
5660                 if (env->prog->aux->max_ctx_offset < off + size)
5661                         env->prog->aux->max_ctx_offset = off + size;
5662                 return 0;
5663         }
5664
5665         verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5666         return -EACCES;
5667 }
5668
5669 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5670                                   int size)
5671 {
5672         if (size < 0 || off < 0 ||
5673             (u64)off + size > sizeof(struct bpf_flow_keys)) {
5674                 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5675                         off, size);
5676                 return -EACCES;
5677         }
5678         return 0;
5679 }
5680
5681 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5682                              u32 regno, int off, int size,
5683                              enum bpf_access_type t)
5684 {
5685         struct bpf_reg_state *regs = cur_regs(env);
5686         struct bpf_reg_state *reg = &regs[regno];
5687         struct bpf_insn_access_aux info = {};
5688         bool valid;
5689
5690         if (reg->smin_value < 0) {
5691                 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5692                         regno);
5693                 return -EACCES;
5694         }
5695
5696         switch (reg->type) {
5697         case PTR_TO_SOCK_COMMON:
5698                 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5699                 break;
5700         case PTR_TO_SOCKET:
5701                 valid = bpf_sock_is_valid_access(off, size, t, &info);
5702                 break;
5703         case PTR_TO_TCP_SOCK:
5704                 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5705                 break;
5706         case PTR_TO_XDP_SOCK:
5707                 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5708                 break;
5709         default:
5710                 valid = false;
5711         }
5712
5713
5714         if (valid) {
5715                 env->insn_aux_data[insn_idx].ctx_field_size =
5716                         info.ctx_field_size;
5717                 return 0;
5718         }
5719
5720         verbose(env, "R%d invalid %s access off=%d size=%d\n",
5721                 regno, reg_type_str(env, reg->type), off, size);
5722
5723         return -EACCES;
5724 }
5725
5726 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5727 {
5728         return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5729 }
5730
5731 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5732 {
5733         const struct bpf_reg_state *reg = reg_state(env, regno);
5734
5735         return reg->type == PTR_TO_CTX;
5736 }
5737
5738 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5739 {
5740         const struct bpf_reg_state *reg = reg_state(env, regno);
5741
5742         return type_is_sk_pointer(reg->type);
5743 }
5744
5745 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5746 {
5747         const struct bpf_reg_state *reg = reg_state(env, regno);
5748
5749         return type_is_pkt_pointer(reg->type);
5750 }
5751
5752 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5753 {
5754         const struct bpf_reg_state *reg = reg_state(env, regno);
5755
5756         /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5757         return reg->type == PTR_TO_FLOW_KEYS;
5758 }
5759
5760 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5761 #ifdef CONFIG_NET
5762         [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5763         [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5764         [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5765 #endif
5766         [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5767 };
5768
5769 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5770 {
5771         /* A referenced register is always trusted. */
5772         if (reg->ref_obj_id)
5773                 return true;
5774
5775         /* Types listed in the reg2btf_ids are always trusted */
5776         if (reg2btf_ids[base_type(reg->type)])
5777                 return true;
5778
5779         /* If a register is not referenced, it is trusted if it has the
5780          * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5781          * other type modifiers may be safe, but we elect to take an opt-in
5782          * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5783          * not.
5784          *
5785          * Eventually, we should make PTR_TRUSTED the single source of truth
5786          * for whether a register is trusted.
5787          */
5788         return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5789                !bpf_type_has_unsafe_modifiers(reg->type);
5790 }
5791
5792 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5793 {
5794         return reg->type & MEM_RCU;
5795 }
5796
5797 static void clear_trusted_flags(enum bpf_type_flag *flag)
5798 {
5799         *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5800 }
5801
5802 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5803                                    const struct bpf_reg_state *reg,
5804                                    int off, int size, bool strict)
5805 {
5806         struct tnum reg_off;
5807         int ip_align;
5808
5809         /* Byte size accesses are always allowed. */
5810         if (!strict || size == 1)
5811                 return 0;
5812
5813         /* For platforms that do not have a Kconfig enabling
5814          * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5815          * NET_IP_ALIGN is universally set to '2'.  And on platforms
5816          * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5817          * to this code only in strict mode where we want to emulate
5818          * the NET_IP_ALIGN==2 checking.  Therefore use an
5819          * unconditional IP align value of '2'.
5820          */
5821         ip_align = 2;
5822
5823         reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5824         if (!tnum_is_aligned(reg_off, size)) {
5825                 char tn_buf[48];
5826
5827                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5828                 verbose(env,
5829                         "misaligned packet access off %d+%s+%d+%d size %d\n",
5830                         ip_align, tn_buf, reg->off, off, size);
5831                 return -EACCES;
5832         }
5833
5834         return 0;
5835 }
5836
5837 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5838                                        const struct bpf_reg_state *reg,
5839                                        const char *pointer_desc,
5840                                        int off, int size, bool strict)
5841 {
5842         struct tnum reg_off;
5843
5844         /* Byte size accesses are always allowed. */
5845         if (!strict || size == 1)
5846                 return 0;
5847
5848         reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5849         if (!tnum_is_aligned(reg_off, size)) {
5850                 char tn_buf[48];
5851
5852                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5853                 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5854                         pointer_desc, tn_buf, reg->off, off, size);
5855                 return -EACCES;
5856         }
5857
5858         return 0;
5859 }
5860
5861 static int check_ptr_alignment(struct bpf_verifier_env *env,
5862                                const struct bpf_reg_state *reg, int off,
5863                                int size, bool strict_alignment_once)
5864 {
5865         bool strict = env->strict_alignment || strict_alignment_once;
5866         const char *pointer_desc = "";
5867
5868         switch (reg->type) {
5869         case PTR_TO_PACKET:
5870         case PTR_TO_PACKET_META:
5871                 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5872                  * right in front, treat it the very same way.
5873                  */
5874                 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5875         case PTR_TO_FLOW_KEYS:
5876                 pointer_desc = "flow keys ";
5877                 break;
5878         case PTR_TO_MAP_KEY:
5879                 pointer_desc = "key ";
5880                 break;
5881         case PTR_TO_MAP_VALUE:
5882                 pointer_desc = "value ";
5883                 break;
5884         case PTR_TO_CTX:
5885                 pointer_desc = "context ";
5886                 break;
5887         case PTR_TO_STACK:
5888                 pointer_desc = "stack ";
5889                 /* The stack spill tracking logic in check_stack_write_fixed_off()
5890                  * and check_stack_read_fixed_off() relies on stack accesses being
5891                  * aligned.
5892                  */
5893                 strict = true;
5894                 break;
5895         case PTR_TO_SOCKET:
5896                 pointer_desc = "sock ";
5897                 break;
5898         case PTR_TO_SOCK_COMMON:
5899                 pointer_desc = "sock_common ";
5900                 break;
5901         case PTR_TO_TCP_SOCK:
5902                 pointer_desc = "tcp_sock ";
5903                 break;
5904         case PTR_TO_XDP_SOCK:
5905                 pointer_desc = "xdp_sock ";
5906                 break;
5907         default:
5908                 break;
5909         }
5910         return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5911                                            strict);
5912 }
5913
5914 static int update_stack_depth(struct bpf_verifier_env *env,
5915                               const struct bpf_func_state *func,
5916                               int off)
5917 {
5918         u16 stack = env->subprog_info[func->subprogno].stack_depth;
5919
5920         if (stack >= -off)
5921                 return 0;
5922
5923         /* update known max for given subprogram */
5924         env->subprog_info[func->subprogno].stack_depth = -off;
5925         return 0;
5926 }
5927
5928 /* starting from main bpf function walk all instructions of the function
5929  * and recursively walk all callees that given function can call.
5930  * Ignore jump and exit insns.
5931  * Since recursion is prevented by check_cfg() this algorithm
5932  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5933  */
5934 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5935 {
5936         struct bpf_subprog_info *subprog = env->subprog_info;
5937         struct bpf_insn *insn = env->prog->insnsi;
5938         int depth = 0, frame = 0, i, subprog_end;
5939         bool tail_call_reachable = false;
5940         int ret_insn[MAX_CALL_FRAMES];
5941         int ret_prog[MAX_CALL_FRAMES];
5942         int j;
5943
5944         i = subprog[idx].start;
5945 process_func:
5946         /* protect against potential stack overflow that might happen when
5947          * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5948          * depth for such case down to 256 so that the worst case scenario
5949          * would result in 8k stack size (32 which is tailcall limit * 256 =
5950          * 8k).
5951          *
5952          * To get the idea what might happen, see an example:
5953          * func1 -> sub rsp, 128
5954          *  subfunc1 -> sub rsp, 256
5955          *  tailcall1 -> add rsp, 256
5956          *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5957          *   subfunc2 -> sub rsp, 64
5958          *   subfunc22 -> sub rsp, 128
5959          *   tailcall2 -> add rsp, 128
5960          *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5961          *
5962          * tailcall will unwind the current stack frame but it will not get rid
5963          * of caller's stack as shown on the example above.
5964          */
5965         if (idx && subprog[idx].has_tail_call && depth >= 256) {
5966                 verbose(env,
5967                         "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5968                         depth);
5969                 return -EACCES;
5970         }
5971         /* round up to 32-bytes, since this is granularity
5972          * of interpreter stack size
5973          */
5974         depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5975         if (depth > MAX_BPF_STACK) {
5976                 verbose(env, "combined stack size of %d calls is %d. Too large\n",
5977                         frame + 1, depth);
5978                 return -EACCES;
5979         }
5980 continue_func:
5981         subprog_end = subprog[idx + 1].start;
5982         for (; i < subprog_end; i++) {
5983                 int next_insn, sidx;
5984
5985                 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5986                         bool err = false;
5987
5988                         if (!is_bpf_throw_kfunc(insn + i))
5989                                 continue;
5990                         if (subprog[idx].is_cb)
5991                                 err = true;
5992                         for (int c = 0; c < frame && !err; c++) {
5993                                 if (subprog[ret_prog[c]].is_cb) {
5994                                         err = true;
5995                                         break;
5996                                 }
5997                         }
5998                         if (!err)
5999                                 continue;
6000                         verbose(env,
6001                                 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6002                                 i, idx);
6003                         return -EINVAL;
6004                 }
6005
6006                 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6007                         continue;
6008                 /* remember insn and function to return to */
6009                 ret_insn[frame] = i + 1;
6010                 ret_prog[frame] = idx;
6011
6012                 /* find the callee */
6013                 next_insn = i + insn[i].imm + 1;
6014                 sidx = find_subprog(env, next_insn);
6015                 if (sidx < 0) {
6016                         WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6017                                   next_insn);
6018                         return -EFAULT;
6019                 }
6020                 if (subprog[sidx].is_async_cb) {
6021                         if (subprog[sidx].has_tail_call) {
6022                                 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6023                                 return -EFAULT;
6024                         }
6025                         /* async callbacks don't increase bpf prog stack size unless called directly */
6026                         if (!bpf_pseudo_call(insn + i))
6027                                 continue;
6028                         if (subprog[sidx].is_exception_cb) {
6029                                 verbose(env, "insn %d cannot call exception cb directly\n", i);
6030                                 return -EINVAL;
6031                         }
6032                 }
6033                 i = next_insn;
6034                 idx = sidx;
6035
6036                 if (subprog[idx].has_tail_call)
6037                         tail_call_reachable = true;
6038
6039                 frame++;
6040                 if (frame >= MAX_CALL_FRAMES) {
6041                         verbose(env, "the call stack of %d frames is too deep !\n",
6042                                 frame);
6043                         return -E2BIG;
6044                 }
6045                 goto process_func;
6046         }
6047         /* if tail call got detected across bpf2bpf calls then mark each of the
6048          * currently present subprog frames as tail call reachable subprogs;
6049          * this info will be utilized by JIT so that we will be preserving the
6050          * tail call counter throughout bpf2bpf calls combined with tailcalls
6051          */
6052         if (tail_call_reachable)
6053                 for (j = 0; j < frame; j++) {
6054                         if (subprog[ret_prog[j]].is_exception_cb) {
6055                                 verbose(env, "cannot tail call within exception cb\n");
6056                                 return -EINVAL;
6057                         }
6058                         subprog[ret_prog[j]].tail_call_reachable = true;
6059                 }
6060         if (subprog[0].tail_call_reachable)
6061                 env->prog->aux->tail_call_reachable = true;
6062
6063         /* end of for() loop means the last insn of the 'subprog'
6064          * was reached. Doesn't matter whether it was JA or EXIT
6065          */
6066         if (frame == 0)
6067                 return 0;
6068         depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
6069         frame--;
6070         i = ret_insn[frame];
6071         idx = ret_prog[frame];
6072         goto continue_func;
6073 }
6074
6075 static int check_max_stack_depth(struct bpf_verifier_env *env)
6076 {
6077         struct bpf_subprog_info *si = env->subprog_info;
6078         int ret;
6079
6080         for (int i = 0; i < env->subprog_cnt; i++) {
6081                 if (!i || si[i].is_async_cb) {
6082                         ret = check_max_stack_depth_subprog(env, i);
6083                         if (ret < 0)
6084                                 return ret;
6085                 }
6086                 continue;
6087         }
6088         return 0;
6089 }
6090
6091 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6092 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6093                                   const struct bpf_insn *insn, int idx)
6094 {
6095         int start = idx + insn->imm + 1, subprog;
6096
6097         subprog = find_subprog(env, start);
6098         if (subprog < 0) {
6099                 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6100                           start);
6101                 return -EFAULT;
6102         }
6103         return env->subprog_info[subprog].stack_depth;
6104 }
6105 #endif
6106
6107 static int __check_buffer_access(struct bpf_verifier_env *env,
6108                                  const char *buf_info,
6109                                  const struct bpf_reg_state *reg,
6110                                  int regno, int off, int size)
6111 {
6112         if (off < 0) {
6113                 verbose(env,
6114                         "R%d invalid %s buffer access: off=%d, size=%d\n",
6115                         regno, buf_info, off, size);
6116                 return -EACCES;
6117         }
6118         if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6119                 char tn_buf[48];
6120
6121                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6122                 verbose(env,
6123                         "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6124                         regno, off, tn_buf);
6125                 return -EACCES;
6126         }
6127
6128         return 0;
6129 }
6130
6131 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6132                                   const struct bpf_reg_state *reg,
6133                                   int regno, int off, int size)
6134 {
6135         int err;
6136
6137         err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6138         if (err)
6139                 return err;
6140
6141         if (off + size > env->prog->aux->max_tp_access)
6142                 env->prog->aux->max_tp_access = off + size;
6143
6144         return 0;
6145 }
6146
6147 static int check_buffer_access(struct bpf_verifier_env *env,
6148                                const struct bpf_reg_state *reg,
6149                                int regno, int off, int size,
6150                                bool zero_size_allowed,
6151                                u32 *max_access)
6152 {
6153         const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6154         int err;
6155
6156         err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6157         if (err)
6158                 return err;
6159
6160         if (off + size > *max_access)
6161                 *max_access = off + size;
6162
6163         return 0;
6164 }
6165
6166 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6167 static void zext_32_to_64(struct bpf_reg_state *reg)
6168 {
6169         reg->var_off = tnum_subreg(reg->var_off);
6170         __reg_assign_32_into_64(reg);
6171 }
6172
6173 /* truncate register to smaller size (in bytes)
6174  * must be called with size < BPF_REG_SIZE
6175  */
6176 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6177 {
6178         u64 mask;
6179
6180         /* clear high bits in bit representation */
6181         reg->var_off = tnum_cast(reg->var_off, size);
6182
6183         /* fix arithmetic bounds */
6184         mask = ((u64)1 << (size * 8)) - 1;
6185         if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6186                 reg->umin_value &= mask;
6187                 reg->umax_value &= mask;
6188         } else {
6189                 reg->umin_value = 0;
6190                 reg->umax_value = mask;
6191         }
6192         reg->smin_value = reg->umin_value;
6193         reg->smax_value = reg->umax_value;
6194
6195         /* If size is smaller than 32bit register the 32bit register
6196          * values are also truncated so we push 64-bit bounds into
6197          * 32-bit bounds. Above were truncated < 32-bits already.
6198          */
6199         if (size >= 4)
6200                 return;
6201         __reg_combine_64_into_32(reg);
6202 }
6203
6204 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6205 {
6206         if (size == 1) {
6207                 reg->smin_value = reg->s32_min_value = S8_MIN;
6208                 reg->smax_value = reg->s32_max_value = S8_MAX;
6209         } else if (size == 2) {
6210                 reg->smin_value = reg->s32_min_value = S16_MIN;
6211                 reg->smax_value = reg->s32_max_value = S16_MAX;
6212         } else {
6213                 /* size == 4 */
6214                 reg->smin_value = reg->s32_min_value = S32_MIN;
6215                 reg->smax_value = reg->s32_max_value = S32_MAX;
6216         }
6217         reg->umin_value = reg->u32_min_value = 0;
6218         reg->umax_value = U64_MAX;
6219         reg->u32_max_value = U32_MAX;
6220         reg->var_off = tnum_unknown;
6221 }
6222
6223 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6224 {
6225         s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6226         u64 top_smax_value, top_smin_value;
6227         u64 num_bits = size * 8;
6228
6229         if (tnum_is_const(reg->var_off)) {
6230                 u64_cval = reg->var_off.value;
6231                 if (size == 1)
6232                         reg->var_off = tnum_const((s8)u64_cval);
6233                 else if (size == 2)
6234                         reg->var_off = tnum_const((s16)u64_cval);
6235                 else
6236                         /* size == 4 */
6237                         reg->var_off = tnum_const((s32)u64_cval);
6238
6239                 u64_cval = reg->var_off.value;
6240                 reg->smax_value = reg->smin_value = u64_cval;
6241                 reg->umax_value = reg->umin_value = u64_cval;
6242                 reg->s32_max_value = reg->s32_min_value = u64_cval;
6243                 reg->u32_max_value = reg->u32_min_value = u64_cval;
6244                 return;
6245         }
6246
6247         top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6248         top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6249
6250         if (top_smax_value != top_smin_value)
6251                 goto out;
6252
6253         /* find the s64_min and s64_min after sign extension */
6254         if (size == 1) {
6255                 init_s64_max = (s8)reg->smax_value;
6256                 init_s64_min = (s8)reg->smin_value;
6257         } else if (size == 2) {
6258                 init_s64_max = (s16)reg->smax_value;
6259                 init_s64_min = (s16)reg->smin_value;
6260         } else {
6261                 init_s64_max = (s32)reg->smax_value;
6262                 init_s64_min = (s32)reg->smin_value;
6263         }
6264
6265         s64_max = max(init_s64_max, init_s64_min);
6266         s64_min = min(init_s64_max, init_s64_min);
6267
6268         /* both of s64_max/s64_min positive or negative */
6269         if ((s64_max >= 0) == (s64_min >= 0)) {
6270                 reg->smin_value = reg->s32_min_value = s64_min;
6271                 reg->smax_value = reg->s32_max_value = s64_max;
6272                 reg->umin_value = reg->u32_min_value = s64_min;
6273                 reg->umax_value = reg->u32_max_value = s64_max;
6274                 reg->var_off = tnum_range(s64_min, s64_max);
6275                 return;
6276         }
6277
6278 out:
6279         set_sext64_default_val(reg, size);
6280 }
6281
6282 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6283 {
6284         if (size == 1) {
6285                 reg->s32_min_value = S8_MIN;
6286                 reg->s32_max_value = S8_MAX;
6287         } else {
6288                 /* size == 2 */
6289                 reg->s32_min_value = S16_MIN;
6290                 reg->s32_max_value = S16_MAX;
6291         }
6292         reg->u32_min_value = 0;
6293         reg->u32_max_value = U32_MAX;
6294 }
6295
6296 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6297 {
6298         s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6299         u32 top_smax_value, top_smin_value;
6300         u32 num_bits = size * 8;
6301
6302         if (tnum_is_const(reg->var_off)) {
6303                 u32_val = reg->var_off.value;
6304                 if (size == 1)
6305                         reg->var_off = tnum_const((s8)u32_val);
6306                 else
6307                         reg->var_off = tnum_const((s16)u32_val);
6308
6309                 u32_val = reg->var_off.value;
6310                 reg->s32_min_value = reg->s32_max_value = u32_val;
6311                 reg->u32_min_value = reg->u32_max_value = u32_val;
6312                 return;
6313         }
6314
6315         top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6316         top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6317
6318         if (top_smax_value != top_smin_value)
6319                 goto out;
6320
6321         /* find the s32_min and s32_min after sign extension */
6322         if (size == 1) {
6323                 init_s32_max = (s8)reg->s32_max_value;
6324                 init_s32_min = (s8)reg->s32_min_value;
6325         } else {
6326                 /* size == 2 */
6327                 init_s32_max = (s16)reg->s32_max_value;
6328                 init_s32_min = (s16)reg->s32_min_value;
6329         }
6330         s32_max = max(init_s32_max, init_s32_min);
6331         s32_min = min(init_s32_max, init_s32_min);
6332
6333         if ((s32_min >= 0) == (s32_max >= 0)) {
6334                 reg->s32_min_value = s32_min;
6335                 reg->s32_max_value = s32_max;
6336                 reg->u32_min_value = (u32)s32_min;
6337                 reg->u32_max_value = (u32)s32_max;
6338                 return;
6339         }
6340
6341 out:
6342         set_sext32_default_val(reg, size);
6343 }
6344
6345 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6346 {
6347         /* A map is considered read-only if the following condition are true:
6348          *
6349          * 1) BPF program side cannot change any of the map content. The
6350          *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6351          *    and was set at map creation time.
6352          * 2) The map value(s) have been initialized from user space by a
6353          *    loader and then "frozen", such that no new map update/delete
6354          *    operations from syscall side are possible for the rest of
6355          *    the map's lifetime from that point onwards.
6356          * 3) Any parallel/pending map update/delete operations from syscall
6357          *    side have been completed. Only after that point, it's safe to
6358          *    assume that map value(s) are immutable.
6359          */
6360         return (map->map_flags & BPF_F_RDONLY_PROG) &&
6361                READ_ONCE(map->frozen) &&
6362                !bpf_map_write_active(map);
6363 }
6364
6365 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6366                                bool is_ldsx)
6367 {
6368         void *ptr;
6369         u64 addr;
6370         int err;
6371
6372         err = map->ops->map_direct_value_addr(map, &addr, off);
6373         if (err)
6374                 return err;
6375         ptr = (void *)(long)addr + off;
6376
6377         switch (size) {
6378         case sizeof(u8):
6379                 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6380                 break;
6381         case sizeof(u16):
6382                 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6383                 break;
6384         case sizeof(u32):
6385                 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6386                 break;
6387         case sizeof(u64):
6388                 *val = *(u64 *)ptr;
6389                 break;
6390         default:
6391                 return -EINVAL;
6392         }
6393         return 0;
6394 }
6395
6396 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6397 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6398 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6399
6400 /*
6401  * Allow list few fields as RCU trusted or full trusted.
6402  * This logic doesn't allow mix tagging and will be removed once GCC supports
6403  * btf_type_tag.
6404  */
6405
6406 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6407 BTF_TYPE_SAFE_RCU(struct task_struct) {
6408         const cpumask_t *cpus_ptr;
6409         struct css_set __rcu *cgroups;
6410         struct task_struct __rcu *real_parent;
6411         struct task_struct *group_leader;
6412 };
6413
6414 BTF_TYPE_SAFE_RCU(struct cgroup) {
6415         /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6416         struct kernfs_node *kn;
6417 };
6418
6419 BTF_TYPE_SAFE_RCU(struct css_set) {
6420         struct cgroup *dfl_cgrp;
6421 };
6422
6423 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6424 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6425         struct file __rcu *exe_file;
6426 };
6427
6428 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6429  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6430  */
6431 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6432         struct sock *sk;
6433 };
6434
6435 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6436         struct sock *sk;
6437 };
6438
6439 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6440 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6441         struct seq_file *seq;
6442 };
6443
6444 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6445         struct bpf_iter_meta *meta;
6446         struct task_struct *task;
6447 };
6448
6449 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6450         struct file *file;
6451 };
6452
6453 BTF_TYPE_SAFE_TRUSTED(struct file) {
6454         struct inode *f_inode;
6455 };
6456
6457 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6458         /* no negative dentry-s in places where bpf can see it */
6459         struct inode *d_inode;
6460 };
6461
6462 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6463         struct sock *sk;
6464 };
6465
6466 static bool type_is_rcu(struct bpf_verifier_env *env,
6467                         struct bpf_reg_state *reg,
6468                         const char *field_name, u32 btf_id)
6469 {
6470         BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6471         BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6472         BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6473
6474         return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6475 }
6476
6477 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6478                                 struct bpf_reg_state *reg,
6479                                 const char *field_name, u32 btf_id)
6480 {
6481         BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6482         BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6483         BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6484
6485         return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6486 }
6487
6488 static bool type_is_trusted(struct bpf_verifier_env *env,
6489                             struct bpf_reg_state *reg,
6490                             const char *field_name, u32 btf_id)
6491 {
6492         BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6493         BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6494         BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6495         BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6496         BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6497         BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6498
6499         return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6500 }
6501
6502 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6503                                    struct bpf_reg_state *regs,
6504                                    int regno, int off, int size,
6505                                    enum bpf_access_type atype,
6506                                    int value_regno)
6507 {
6508         struct bpf_reg_state *reg = regs + regno;
6509         const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6510         const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6511         const char *field_name = NULL;
6512         enum bpf_type_flag flag = 0;
6513         u32 btf_id = 0;
6514         int ret;
6515
6516         if (!env->allow_ptr_leaks) {
6517                 verbose(env,
6518                         "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6519                         tname);
6520                 return -EPERM;
6521         }
6522         if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6523                 verbose(env,
6524                         "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6525                         tname);
6526                 return -EINVAL;
6527         }
6528         if (off < 0) {
6529                 verbose(env,
6530                         "R%d is ptr_%s invalid negative access: off=%d\n",
6531                         regno, tname, off);
6532                 return -EACCES;
6533         }
6534         if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6535                 char tn_buf[48];
6536
6537                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6538                 verbose(env,
6539                         "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6540                         regno, tname, off, tn_buf);
6541                 return -EACCES;
6542         }
6543
6544         if (reg->type & MEM_USER) {
6545                 verbose(env,
6546                         "R%d is ptr_%s access user memory: off=%d\n",
6547                         regno, tname, off);
6548                 return -EACCES;
6549         }
6550
6551         if (reg->type & MEM_PERCPU) {
6552                 verbose(env,
6553                         "R%d is ptr_%s access percpu memory: off=%d\n",
6554                         regno, tname, off);
6555                 return -EACCES;
6556         }
6557
6558         if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6559                 if (!btf_is_kernel(reg->btf)) {
6560                         verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6561                         return -EFAULT;
6562                 }
6563                 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6564         } else {
6565                 /* Writes are permitted with default btf_struct_access for
6566                  * program allocated objects (which always have ref_obj_id > 0),
6567                  * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6568                  */
6569                 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6570                         verbose(env, "only read is supported\n");
6571                         return -EACCES;
6572                 }
6573
6574                 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6575                     !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6576                         verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6577                         return -EFAULT;
6578                 }
6579
6580                 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6581         }
6582
6583         if (ret < 0)
6584                 return ret;
6585
6586         if (ret != PTR_TO_BTF_ID) {
6587                 /* just mark; */
6588
6589         } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6590                 /* If this is an untrusted pointer, all pointers formed by walking it
6591                  * also inherit the untrusted flag.
6592                  */
6593                 flag = PTR_UNTRUSTED;
6594
6595         } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6596                 /* By default any pointer obtained from walking a trusted pointer is no
6597                  * longer trusted, unless the field being accessed has explicitly been
6598                  * marked as inheriting its parent's state of trust (either full or RCU).
6599                  * For example:
6600                  * 'cgroups' pointer is untrusted if task->cgroups dereference
6601                  * happened in a sleepable program outside of bpf_rcu_read_lock()
6602                  * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6603                  * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6604                  *
6605                  * A regular RCU-protected pointer with __rcu tag can also be deemed
6606                  * trusted if we are in an RCU CS. Such pointer can be NULL.
6607                  */
6608                 if (type_is_trusted(env, reg, field_name, btf_id)) {
6609                         flag |= PTR_TRUSTED;
6610                 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6611                         if (type_is_rcu(env, reg, field_name, btf_id)) {
6612                                 /* ignore __rcu tag and mark it MEM_RCU */
6613                                 flag |= MEM_RCU;
6614                         } else if (flag & MEM_RCU ||
6615                                    type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6616                                 /* __rcu tagged pointers can be NULL */
6617                                 flag |= MEM_RCU | PTR_MAYBE_NULL;
6618
6619                                 /* We always trust them */
6620                                 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6621                                     flag & PTR_UNTRUSTED)
6622                                         flag &= ~PTR_UNTRUSTED;
6623                         } else if (flag & (MEM_PERCPU | MEM_USER)) {
6624                                 /* keep as-is */
6625                         } else {
6626                                 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6627                                 clear_trusted_flags(&flag);
6628                         }
6629                 } else {
6630                         /*
6631                          * If not in RCU CS or MEM_RCU pointer can be NULL then
6632                          * aggressively mark as untrusted otherwise such
6633                          * pointers will be plain PTR_TO_BTF_ID without flags
6634                          * and will be allowed to be passed into helpers for
6635                          * compat reasons.
6636                          */
6637                         flag = PTR_UNTRUSTED;
6638                 }
6639         } else {
6640                 /* Old compat. Deprecated */
6641                 clear_trusted_flags(&flag);
6642         }
6643
6644         if (atype == BPF_READ && value_regno >= 0)
6645                 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6646
6647         return 0;
6648 }
6649
6650 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6651                                    struct bpf_reg_state *regs,
6652                                    int regno, int off, int size,
6653                                    enum bpf_access_type atype,
6654                                    int value_regno)
6655 {
6656         struct bpf_reg_state *reg = regs + regno;
6657         struct bpf_map *map = reg->map_ptr;
6658         struct bpf_reg_state map_reg;
6659         enum bpf_type_flag flag = 0;
6660         const struct btf_type *t;
6661         const char *tname;
6662         u32 btf_id;
6663         int ret;
6664
6665         if (!btf_vmlinux) {
6666                 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6667                 return -ENOTSUPP;
6668         }
6669
6670         if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6671                 verbose(env, "map_ptr access not supported for map type %d\n",
6672                         map->map_type);
6673                 return -ENOTSUPP;
6674         }
6675
6676         t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6677         tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6678
6679         if (!env->allow_ptr_leaks) {
6680                 verbose(env,
6681                         "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6682                         tname);
6683                 return -EPERM;
6684         }
6685
6686         if (off < 0) {
6687                 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6688                         regno, tname, off);
6689                 return -EACCES;
6690         }
6691
6692         if (atype != BPF_READ) {
6693                 verbose(env, "only read from %s is supported\n", tname);
6694                 return -EACCES;
6695         }
6696
6697         /* Simulate access to a PTR_TO_BTF_ID */
6698         memset(&map_reg, 0, sizeof(map_reg));
6699         mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6700         ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6701         if (ret < 0)
6702                 return ret;
6703
6704         if (value_regno >= 0)
6705                 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6706
6707         return 0;
6708 }
6709
6710 /* Check that the stack access at the given offset is within bounds. The
6711  * maximum valid offset is -1.
6712  *
6713  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6714  * -state->allocated_stack for reads.
6715  */
6716 static int check_stack_slot_within_bounds(int off,
6717                                           struct bpf_func_state *state,
6718                                           enum bpf_access_type t)
6719 {
6720         int min_valid_off;
6721
6722         if (t == BPF_WRITE)
6723                 min_valid_off = -MAX_BPF_STACK;
6724         else
6725                 min_valid_off = -state->allocated_stack;
6726
6727         if (off < min_valid_off || off > -1)
6728                 return -EACCES;
6729         return 0;
6730 }
6731
6732 /* Check that the stack access at 'regno + off' falls within the maximum stack
6733  * bounds.
6734  *
6735  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6736  */
6737 static int check_stack_access_within_bounds(
6738                 struct bpf_verifier_env *env,
6739                 int regno, int off, int access_size,
6740                 enum bpf_access_src src, enum bpf_access_type type)
6741 {
6742         struct bpf_reg_state *regs = cur_regs(env);
6743         struct bpf_reg_state *reg = regs + regno;
6744         struct bpf_func_state *state = func(env, reg);
6745         int min_off, max_off;
6746         int err;
6747         char *err_extra;
6748
6749         if (src == ACCESS_HELPER)
6750                 /* We don't know if helpers are reading or writing (or both). */
6751                 err_extra = " indirect access to";
6752         else if (type == BPF_READ)
6753                 err_extra = " read from";
6754         else
6755                 err_extra = " write to";
6756
6757         if (tnum_is_const(reg->var_off)) {
6758                 min_off = reg->var_off.value + off;
6759                 if (access_size > 0)
6760                         max_off = min_off + access_size - 1;
6761                 else
6762                         max_off = min_off;
6763         } else {
6764                 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6765                     reg->smin_value <= -BPF_MAX_VAR_OFF) {
6766                         verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6767                                 err_extra, regno);
6768                         return -EACCES;
6769                 }
6770                 min_off = reg->smin_value + off;
6771                 if (access_size > 0)
6772                         max_off = reg->smax_value + off + access_size - 1;
6773                 else
6774                         max_off = min_off;
6775         }
6776
6777         err = check_stack_slot_within_bounds(min_off, state, type);
6778         if (!err)
6779                 err = check_stack_slot_within_bounds(max_off, state, type);
6780
6781         if (err) {
6782                 if (tnum_is_const(reg->var_off)) {
6783                         verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6784                                 err_extra, regno, off, access_size);
6785                 } else {
6786                         char tn_buf[48];
6787
6788                         tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6789                         verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6790                                 err_extra, regno, tn_buf, access_size);
6791                 }
6792         }
6793         return err;
6794 }
6795
6796 /* check whether memory at (regno + off) is accessible for t = (read | write)
6797  * if t==write, value_regno is a register which value is stored into memory
6798  * if t==read, value_regno is a register which will receive the value from memory
6799  * if t==write && value_regno==-1, some unknown value is stored into memory
6800  * if t==read && value_regno==-1, don't care what we read from memory
6801  */
6802 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6803                             int off, int bpf_size, enum bpf_access_type t,
6804                             int value_regno, bool strict_alignment_once, bool is_ldsx)
6805 {
6806         struct bpf_reg_state *regs = cur_regs(env);
6807         struct bpf_reg_state *reg = regs + regno;
6808         struct bpf_func_state *state;
6809         int size, err = 0;
6810
6811         size = bpf_size_to_bytes(bpf_size);
6812         if (size < 0)
6813                 return size;
6814
6815         /* alignment checks will add in reg->off themselves */
6816         err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6817         if (err)
6818                 return err;
6819
6820         /* for access checks, reg->off is just part of off */
6821         off += reg->off;
6822
6823         if (reg->type == PTR_TO_MAP_KEY) {
6824                 if (t == BPF_WRITE) {
6825                         verbose(env, "write to change key R%d not allowed\n", regno);
6826                         return -EACCES;
6827                 }
6828
6829                 err = check_mem_region_access(env, regno, off, size,
6830                                               reg->map_ptr->key_size, false);
6831                 if (err)
6832                         return err;
6833                 if (value_regno >= 0)
6834                         mark_reg_unknown(env, regs, value_regno);
6835         } else if (reg->type == PTR_TO_MAP_VALUE) {
6836                 struct btf_field *kptr_field = NULL;
6837
6838                 if (t == BPF_WRITE && value_regno >= 0 &&
6839                     is_pointer_value(env, value_regno)) {
6840                         verbose(env, "R%d leaks addr into map\n", value_regno);
6841                         return -EACCES;
6842                 }
6843                 err = check_map_access_type(env, regno, off, size, t);
6844                 if (err)
6845                         return err;
6846                 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6847                 if (err)
6848                         return err;
6849                 if (tnum_is_const(reg->var_off))
6850                         kptr_field = btf_record_find(reg->map_ptr->record,
6851                                                      off + reg->var_off.value, BPF_KPTR);
6852                 if (kptr_field) {
6853                         err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6854                 } else if (t == BPF_READ && value_regno >= 0) {
6855                         struct bpf_map *map = reg->map_ptr;
6856
6857                         /* if map is read-only, track its contents as scalars */
6858                         if (tnum_is_const(reg->var_off) &&
6859                             bpf_map_is_rdonly(map) &&
6860                             map->ops->map_direct_value_addr) {
6861                                 int map_off = off + reg->var_off.value;
6862                                 u64 val = 0;
6863
6864                                 err = bpf_map_direct_read(map, map_off, size,
6865                                                           &val, is_ldsx);
6866                                 if (err)
6867                                         return err;
6868
6869                                 regs[value_regno].type = SCALAR_VALUE;
6870                                 __mark_reg_known(&regs[value_regno], val);
6871                         } else {
6872                                 mark_reg_unknown(env, regs, value_regno);
6873                         }
6874                 }
6875         } else if (base_type(reg->type) == PTR_TO_MEM) {
6876                 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6877
6878                 if (type_may_be_null(reg->type)) {
6879                         verbose(env, "R%d invalid mem access '%s'\n", regno,
6880                                 reg_type_str(env, reg->type));
6881                         return -EACCES;
6882                 }
6883
6884                 if (t == BPF_WRITE && rdonly_mem) {
6885                         verbose(env, "R%d cannot write into %s\n",
6886                                 regno, reg_type_str(env, reg->type));
6887                         return -EACCES;
6888                 }
6889
6890                 if (t == BPF_WRITE && value_regno >= 0 &&
6891                     is_pointer_value(env, value_regno)) {
6892                         verbose(env, "R%d leaks addr into mem\n", value_regno);
6893                         return -EACCES;
6894                 }
6895
6896                 err = check_mem_region_access(env, regno, off, size,
6897                                               reg->mem_size, false);
6898                 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6899                         mark_reg_unknown(env, regs, value_regno);
6900         } else if (reg->type == PTR_TO_CTX) {
6901                 enum bpf_reg_type reg_type = SCALAR_VALUE;
6902                 struct btf *btf = NULL;
6903                 u32 btf_id = 0;
6904
6905                 if (t == BPF_WRITE && value_regno >= 0 &&
6906                     is_pointer_value(env, value_regno)) {
6907                         verbose(env, "R%d leaks addr into ctx\n", value_regno);
6908                         return -EACCES;
6909                 }
6910
6911                 err = check_ptr_off_reg(env, reg, regno);
6912                 if (err < 0)
6913                         return err;
6914
6915                 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6916                                        &btf_id);
6917                 if (err)
6918                         verbose_linfo(env, insn_idx, "; ");
6919                 if (!err && t == BPF_READ && value_regno >= 0) {
6920                         /* ctx access returns either a scalar, or a
6921                          * PTR_TO_PACKET[_META,_END]. In the latter
6922                          * case, we know the offset is zero.
6923                          */
6924                         if (reg_type == SCALAR_VALUE) {
6925                                 mark_reg_unknown(env, regs, value_regno);
6926                         } else {
6927                                 mark_reg_known_zero(env, regs,
6928                                                     value_regno);
6929                                 if (type_may_be_null(reg_type))
6930                                         regs[value_regno].id = ++env->id_gen;
6931                                 /* A load of ctx field could have different
6932                                  * actual load size with the one encoded in the
6933                                  * insn. When the dst is PTR, it is for sure not
6934                                  * a sub-register.
6935                                  */
6936                                 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6937                                 if (base_type(reg_type) == PTR_TO_BTF_ID) {
6938                                         regs[value_regno].btf = btf;
6939                                         regs[value_regno].btf_id = btf_id;
6940                                 }
6941                         }
6942                         regs[value_regno].type = reg_type;
6943                 }
6944
6945         } else if (reg->type == PTR_TO_STACK) {
6946                 /* Basic bounds checks. */
6947                 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6948                 if (err)
6949                         return err;
6950
6951                 state = func(env, reg);
6952                 err = update_stack_depth(env, state, off);
6953                 if (err)
6954                         return err;
6955
6956                 if (t == BPF_READ)
6957                         err = check_stack_read(env, regno, off, size,
6958                                                value_regno);
6959                 else
6960                         err = check_stack_write(env, regno, off, size,
6961                                                 value_regno, insn_idx);
6962         } else if (reg_is_pkt_pointer(reg)) {
6963                 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6964                         verbose(env, "cannot write into packet\n");
6965                         return -EACCES;
6966                 }
6967                 if (t == BPF_WRITE && value_regno >= 0 &&
6968                     is_pointer_value(env, value_regno)) {
6969                         verbose(env, "R%d leaks addr into packet\n",
6970                                 value_regno);
6971                         return -EACCES;
6972                 }
6973                 err = check_packet_access(env, regno, off, size, false);
6974                 if (!err && t == BPF_READ && value_regno >= 0)
6975                         mark_reg_unknown(env, regs, value_regno);
6976         } else if (reg->type == PTR_TO_FLOW_KEYS) {
6977                 if (t == BPF_WRITE && value_regno >= 0 &&
6978                     is_pointer_value(env, value_regno)) {
6979                         verbose(env, "R%d leaks addr into flow keys\n",
6980                                 value_regno);
6981                         return -EACCES;
6982                 }
6983
6984                 err = check_flow_keys_access(env, off, size);
6985                 if (!err && t == BPF_READ && value_regno >= 0)
6986                         mark_reg_unknown(env, regs, value_regno);
6987         } else if (type_is_sk_pointer(reg->type)) {
6988                 if (t == BPF_WRITE) {
6989                         verbose(env, "R%d cannot write into %s\n",
6990                                 regno, reg_type_str(env, reg->type));
6991                         return -EACCES;
6992                 }
6993                 err = check_sock_access(env, insn_idx, regno, off, size, t);
6994                 if (!err && value_regno >= 0)
6995                         mark_reg_unknown(env, regs, value_regno);
6996         } else if (reg->type == PTR_TO_TP_BUFFER) {
6997                 err = check_tp_buffer_access(env, reg, regno, off, size);
6998                 if (!err && t == BPF_READ && value_regno >= 0)
6999                         mark_reg_unknown(env, regs, value_regno);
7000         } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7001                    !type_may_be_null(reg->type)) {
7002                 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7003                                               value_regno);
7004         } else if (reg->type == CONST_PTR_TO_MAP) {
7005                 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7006                                               value_regno);
7007         } else if (base_type(reg->type) == PTR_TO_BUF) {
7008                 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7009                 u32 *max_access;
7010
7011                 if (rdonly_mem) {
7012                         if (t == BPF_WRITE) {
7013                                 verbose(env, "R%d cannot write into %s\n",
7014                                         regno, reg_type_str(env, reg->type));
7015                                 return -EACCES;
7016                         }
7017                         max_access = &env->prog->aux->max_rdonly_access;
7018                 } else {
7019                         max_access = &env->prog->aux->max_rdwr_access;
7020                 }
7021
7022                 err = check_buffer_access(env, reg, regno, off, size, false,
7023                                           max_access);
7024
7025                 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7026                         mark_reg_unknown(env, regs, value_regno);
7027         } else {
7028                 verbose(env, "R%d invalid mem access '%s'\n", regno,
7029                         reg_type_str(env, reg->type));
7030                 return -EACCES;
7031         }
7032
7033         if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7034             regs[value_regno].type == SCALAR_VALUE) {
7035                 if (!is_ldsx)
7036                         /* b/h/w load zero-extends, mark upper bits as known 0 */
7037                         coerce_reg_to_size(&regs[value_regno], size);
7038                 else
7039                         coerce_reg_to_size_sx(&regs[value_regno], size);
7040         }
7041         return err;
7042 }
7043
7044 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7045 {
7046         int load_reg;
7047         int err;
7048
7049         switch (insn->imm) {
7050         case BPF_ADD:
7051         case BPF_ADD | BPF_FETCH:
7052         case BPF_AND:
7053         case BPF_AND | BPF_FETCH:
7054         case BPF_OR:
7055         case BPF_OR | BPF_FETCH:
7056         case BPF_XOR:
7057         case BPF_XOR | BPF_FETCH:
7058         case BPF_XCHG:
7059         case BPF_CMPXCHG:
7060                 break;
7061         default:
7062                 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7063                 return -EINVAL;
7064         }
7065
7066         if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7067                 verbose(env, "invalid atomic operand size\n");
7068                 return -EINVAL;
7069         }
7070
7071         /* check src1 operand */
7072         err = check_reg_arg(env, insn->src_reg, SRC_OP);
7073         if (err)
7074                 return err;
7075
7076         /* check src2 operand */
7077         err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7078         if (err)
7079                 return err;
7080
7081         if (insn->imm == BPF_CMPXCHG) {
7082                 /* Check comparison of R0 with memory location */
7083                 const u32 aux_reg = BPF_REG_0;
7084
7085                 err = check_reg_arg(env, aux_reg, SRC_OP);
7086                 if (err)
7087                         return err;
7088
7089                 if (is_pointer_value(env, aux_reg)) {
7090                         verbose(env, "R%d leaks addr into mem\n", aux_reg);
7091                         return -EACCES;
7092                 }
7093         }
7094
7095         if (is_pointer_value(env, insn->src_reg)) {
7096                 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7097                 return -EACCES;
7098         }
7099
7100         if (is_ctx_reg(env, insn->dst_reg) ||
7101             is_pkt_reg(env, insn->dst_reg) ||
7102             is_flow_key_reg(env, insn->dst_reg) ||
7103             is_sk_reg(env, insn->dst_reg)) {
7104                 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7105                         insn->dst_reg,
7106                         reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7107                 return -EACCES;
7108         }
7109
7110         if (insn->imm & BPF_FETCH) {
7111                 if (insn->imm == BPF_CMPXCHG)
7112                         load_reg = BPF_REG_0;
7113                 else
7114                         load_reg = insn->src_reg;
7115
7116                 /* check and record load of old value */
7117                 err = check_reg_arg(env, load_reg, DST_OP);
7118                 if (err)
7119                         return err;
7120         } else {
7121                 /* This instruction accesses a memory location but doesn't
7122                  * actually load it into a register.
7123                  */
7124                 load_reg = -1;
7125         }
7126
7127         /* Check whether we can read the memory, with second call for fetch
7128          * case to simulate the register fill.
7129          */
7130         err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7131                                BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7132         if (!err && load_reg >= 0)
7133                 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7134                                        BPF_SIZE(insn->code), BPF_READ, load_reg,
7135                                        true, false);
7136         if (err)
7137                 return err;
7138
7139         /* Check whether we can write into the same memory. */
7140         err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7141                                BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7142         if (err)
7143                 return err;
7144
7145         return 0;
7146 }
7147
7148 /* When register 'regno' is used to read the stack (either directly or through
7149  * a helper function) make sure that it's within stack boundary and, depending
7150  * on the access type, that all elements of the stack are initialized.
7151  *
7152  * 'off' includes 'regno->off', but not its dynamic part (if any).
7153  *
7154  * All registers that have been spilled on the stack in the slots within the
7155  * read offsets are marked as read.
7156  */
7157 static int check_stack_range_initialized(
7158                 struct bpf_verifier_env *env, int regno, int off,
7159                 int access_size, bool zero_size_allowed,
7160                 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7161 {
7162         struct bpf_reg_state *reg = reg_state(env, regno);
7163         struct bpf_func_state *state = func(env, reg);
7164         int err, min_off, max_off, i, j, slot, spi;
7165         char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7166         enum bpf_access_type bounds_check_type;
7167         /* Some accesses can write anything into the stack, others are
7168          * read-only.
7169          */
7170         bool clobber = false;
7171
7172         if (access_size == 0 && !zero_size_allowed) {
7173                 verbose(env, "invalid zero-sized read\n");
7174                 return -EACCES;
7175         }
7176
7177         if (type == ACCESS_HELPER) {
7178                 /* The bounds checks for writes are more permissive than for
7179                  * reads. However, if raw_mode is not set, we'll do extra
7180                  * checks below.
7181                  */
7182                 bounds_check_type = BPF_WRITE;
7183                 clobber = true;
7184         } else {
7185                 bounds_check_type = BPF_READ;
7186         }
7187         err = check_stack_access_within_bounds(env, regno, off, access_size,
7188                                                type, bounds_check_type);
7189         if (err)
7190                 return err;
7191
7192
7193         if (tnum_is_const(reg->var_off)) {
7194                 min_off = max_off = reg->var_off.value + off;
7195         } else {
7196                 /* Variable offset is prohibited for unprivileged mode for
7197                  * simplicity since it requires corresponding support in
7198                  * Spectre masking for stack ALU.
7199                  * See also retrieve_ptr_limit().
7200                  */
7201                 if (!env->bypass_spec_v1) {
7202                         char tn_buf[48];
7203
7204                         tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7205                         verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7206                                 regno, err_extra, tn_buf);
7207                         return -EACCES;
7208                 }
7209                 /* Only initialized buffer on stack is allowed to be accessed
7210                  * with variable offset. With uninitialized buffer it's hard to
7211                  * guarantee that whole memory is marked as initialized on
7212                  * helper return since specific bounds are unknown what may
7213                  * cause uninitialized stack leaking.
7214                  */
7215                 if (meta && meta->raw_mode)
7216                         meta = NULL;
7217
7218                 min_off = reg->smin_value + off;
7219                 max_off = reg->smax_value + off;
7220         }
7221
7222         if (meta && meta->raw_mode) {
7223                 /* Ensure we won't be overwriting dynptrs when simulating byte
7224                  * by byte access in check_helper_call using meta.access_size.
7225                  * This would be a problem if we have a helper in the future
7226                  * which takes:
7227                  *
7228                  *      helper(uninit_mem, len, dynptr)
7229                  *
7230                  * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7231                  * may end up writing to dynptr itself when touching memory from
7232                  * arg 1. This can be relaxed on a case by case basis for known
7233                  * safe cases, but reject due to the possibilitiy of aliasing by
7234                  * default.
7235                  */
7236                 for (i = min_off; i < max_off + access_size; i++) {
7237                         int stack_off = -i - 1;
7238
7239                         spi = __get_spi(i);
7240                         /* raw_mode may write past allocated_stack */
7241                         if (state->allocated_stack <= stack_off)
7242                                 continue;
7243                         if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7244                                 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7245                                 return -EACCES;
7246                         }
7247                 }
7248                 meta->access_size = access_size;
7249                 meta->regno = regno;
7250                 return 0;
7251         }
7252
7253         for (i = min_off; i < max_off + access_size; i++) {
7254                 u8 *stype;
7255
7256                 slot = -i - 1;
7257                 spi = slot / BPF_REG_SIZE;
7258                 if (state->allocated_stack <= slot)
7259                         goto err;
7260                 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7261                 if (*stype == STACK_MISC)
7262                         goto mark;
7263                 if ((*stype == STACK_ZERO) ||
7264                     (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7265                         if (clobber) {
7266                                 /* helper can write anything into the stack */
7267                                 *stype = STACK_MISC;
7268                         }
7269                         goto mark;
7270                 }
7271
7272                 if (is_spilled_reg(&state->stack[spi]) &&
7273                     (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7274                      env->allow_ptr_leaks)) {
7275                         if (clobber) {
7276                                 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7277                                 for (j = 0; j < BPF_REG_SIZE; j++)
7278                                         scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7279                         }
7280                         goto mark;
7281                 }
7282
7283 err:
7284                 if (tnum_is_const(reg->var_off)) {
7285                         verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7286                                 err_extra, regno, min_off, i - min_off, access_size);
7287                 } else {
7288                         char tn_buf[48];
7289
7290                         tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7291                         verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7292                                 err_extra, regno, tn_buf, i - min_off, access_size);
7293                 }
7294                 return -EACCES;
7295 mark:
7296                 /* reading any byte out of 8-byte 'spill_slot' will cause
7297                  * the whole slot to be marked as 'read'
7298                  */
7299                 mark_reg_read(env, &state->stack[spi].spilled_ptr,
7300                               state->stack[spi].spilled_ptr.parent,
7301                               REG_LIVE_READ64);
7302                 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7303                  * be sure that whether stack slot is written to or not. Hence,
7304                  * we must still conservatively propagate reads upwards even if
7305                  * helper may write to the entire memory range.
7306                  */
7307         }
7308         return update_stack_depth(env, state, min_off);
7309 }
7310
7311 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7312                                    int access_size, bool zero_size_allowed,
7313                                    struct bpf_call_arg_meta *meta)
7314 {
7315         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7316         u32 *max_access;
7317
7318         switch (base_type(reg->type)) {
7319         case PTR_TO_PACKET:
7320         case PTR_TO_PACKET_META:
7321                 return check_packet_access(env, regno, reg->off, access_size,
7322                                            zero_size_allowed);
7323         case PTR_TO_MAP_KEY:
7324                 if (meta && meta->raw_mode) {
7325                         verbose(env, "R%d cannot write into %s\n", regno,
7326                                 reg_type_str(env, reg->type));
7327                         return -EACCES;
7328                 }
7329                 return check_mem_region_access(env, regno, reg->off, access_size,
7330                                                reg->map_ptr->key_size, false);
7331         case PTR_TO_MAP_VALUE:
7332                 if (check_map_access_type(env, regno, reg->off, access_size,
7333                                           meta && meta->raw_mode ? BPF_WRITE :
7334                                           BPF_READ))
7335                         return -EACCES;
7336                 return check_map_access(env, regno, reg->off, access_size,
7337                                         zero_size_allowed, ACCESS_HELPER);
7338         case PTR_TO_MEM:
7339                 if (type_is_rdonly_mem(reg->type)) {
7340                         if (meta && meta->raw_mode) {
7341                                 verbose(env, "R%d cannot write into %s\n", regno,
7342                                         reg_type_str(env, reg->type));
7343                                 return -EACCES;
7344                         }
7345                 }
7346                 return check_mem_region_access(env, regno, reg->off,
7347                                                access_size, reg->mem_size,
7348                                                zero_size_allowed);
7349         case PTR_TO_BUF:
7350                 if (type_is_rdonly_mem(reg->type)) {
7351                         if (meta && meta->raw_mode) {
7352                                 verbose(env, "R%d cannot write into %s\n", regno,
7353                                         reg_type_str(env, reg->type));
7354                                 return -EACCES;
7355                         }
7356
7357                         max_access = &env->prog->aux->max_rdonly_access;
7358                 } else {
7359                         max_access = &env->prog->aux->max_rdwr_access;
7360                 }
7361                 return check_buffer_access(env, reg, regno, reg->off,
7362                                            access_size, zero_size_allowed,
7363                                            max_access);
7364         case PTR_TO_STACK:
7365                 return check_stack_range_initialized(
7366                                 env,
7367                                 regno, reg->off, access_size,
7368                                 zero_size_allowed, ACCESS_HELPER, meta);
7369         case PTR_TO_BTF_ID:
7370                 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7371                                                access_size, BPF_READ, -1);
7372         case PTR_TO_CTX:
7373                 /* in case the function doesn't know how to access the context,
7374                  * (because we are in a program of type SYSCALL for example), we
7375                  * can not statically check its size.
7376                  * Dynamically check it now.
7377                  */
7378                 if (!env->ops->convert_ctx_access) {
7379                         enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7380                         int offset = access_size - 1;
7381
7382                         /* Allow zero-byte read from PTR_TO_CTX */
7383                         if (access_size == 0)
7384                                 return zero_size_allowed ? 0 : -EACCES;
7385
7386                         return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7387                                                 atype, -1, false, false);
7388                 }
7389
7390                 fallthrough;
7391         default: /* scalar_value or invalid ptr */
7392                 /* Allow zero-byte read from NULL, regardless of pointer type */
7393                 if (zero_size_allowed && access_size == 0 &&
7394                     register_is_null(reg))
7395                         return 0;
7396
7397                 verbose(env, "R%d type=%s ", regno,
7398                         reg_type_str(env, reg->type));
7399                 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7400                 return -EACCES;
7401         }
7402 }
7403
7404 static int check_mem_size_reg(struct bpf_verifier_env *env,
7405                               struct bpf_reg_state *reg, u32 regno,
7406                               bool zero_size_allowed,
7407                               struct bpf_call_arg_meta *meta)
7408 {
7409         int err;
7410
7411         /* This is used to refine r0 return value bounds for helpers
7412          * that enforce this value as an upper bound on return values.
7413          * See do_refine_retval_range() for helpers that can refine
7414          * the return value. C type of helper is u32 so we pull register
7415          * bound from umax_value however, if negative verifier errors
7416          * out. Only upper bounds can be learned because retval is an
7417          * int type and negative retvals are allowed.
7418          */
7419         meta->msize_max_value = reg->umax_value;
7420
7421         /* The register is SCALAR_VALUE; the access check
7422          * happens using its boundaries.
7423          */
7424         if (!tnum_is_const(reg->var_off))
7425                 /* For unprivileged variable accesses, disable raw
7426                  * mode so that the program is required to
7427                  * initialize all the memory that the helper could
7428                  * just partially fill up.
7429                  */
7430                 meta = NULL;
7431
7432         if (reg->smin_value < 0) {
7433                 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7434                         regno);
7435                 return -EACCES;
7436         }
7437
7438         if (reg->umin_value == 0) {
7439                 err = check_helper_mem_access(env, regno - 1, 0,
7440                                               zero_size_allowed,
7441                                               meta);
7442                 if (err)
7443                         return err;
7444         }
7445
7446         if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7447                 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7448                         regno);
7449                 return -EACCES;
7450         }
7451         err = check_helper_mem_access(env, regno - 1,
7452                                       reg->umax_value,
7453                                       zero_size_allowed, meta);
7454         if (!err)
7455                 err = mark_chain_precision(env, regno);
7456         return err;
7457 }
7458
7459 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7460                    u32 regno, u32 mem_size)
7461 {
7462         bool may_be_null = type_may_be_null(reg->type);
7463         struct bpf_reg_state saved_reg;
7464         struct bpf_call_arg_meta meta;
7465         int err;
7466
7467         if (register_is_null(reg))
7468                 return 0;
7469
7470         memset(&meta, 0, sizeof(meta));
7471         /* Assuming that the register contains a value check if the memory
7472          * access is safe. Temporarily save and restore the register's state as
7473          * the conversion shouldn't be visible to a caller.
7474          */
7475         if (may_be_null) {
7476                 saved_reg = *reg;
7477                 mark_ptr_not_null_reg(reg);
7478         }
7479
7480         err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7481         /* Check access for BPF_WRITE */
7482         meta.raw_mode = true;
7483         err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7484
7485         if (may_be_null)
7486                 *reg = saved_reg;
7487
7488         return err;
7489 }
7490
7491 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7492                                     u32 regno)
7493 {
7494         struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7495         bool may_be_null = type_may_be_null(mem_reg->type);
7496         struct bpf_reg_state saved_reg;
7497         struct bpf_call_arg_meta meta;
7498         int err;
7499
7500         WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7501
7502         memset(&meta, 0, sizeof(meta));
7503
7504         if (may_be_null) {
7505                 saved_reg = *mem_reg;
7506                 mark_ptr_not_null_reg(mem_reg);
7507         }
7508
7509         err = check_mem_size_reg(env, reg, regno, true, &meta);
7510         /* Check access for BPF_WRITE */
7511         meta.raw_mode = true;
7512         err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7513
7514         if (may_be_null)
7515                 *mem_reg = saved_reg;
7516         return err;
7517 }
7518
7519 /* Implementation details:
7520  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7521  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7522  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7523  * Two separate bpf_obj_new will also have different reg->id.
7524  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7525  * clears reg->id after value_or_null->value transition, since the verifier only
7526  * cares about the range of access to valid map value pointer and doesn't care
7527  * about actual address of the map element.
7528  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7529  * reg->id > 0 after value_or_null->value transition. By doing so
7530  * two bpf_map_lookups will be considered two different pointers that
7531  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7532  * returned from bpf_obj_new.
7533  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7534  * dead-locks.
7535  * Since only one bpf_spin_lock is allowed the checks are simpler than
7536  * reg_is_refcounted() logic. The verifier needs to remember only
7537  * one spin_lock instead of array of acquired_refs.
7538  * cur_state->active_lock remembers which map value element or allocated
7539  * object got locked and clears it after bpf_spin_unlock.
7540  */
7541 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7542                              bool is_lock)
7543 {
7544         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7545         struct bpf_verifier_state *cur = env->cur_state;
7546         bool is_const = tnum_is_const(reg->var_off);
7547         u64 val = reg->var_off.value;
7548         struct bpf_map *map = NULL;
7549         struct btf *btf = NULL;
7550         struct btf_record *rec;
7551
7552         if (!is_const) {
7553                 verbose(env,
7554                         "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7555                         regno);
7556                 return -EINVAL;
7557         }
7558         if (reg->type == PTR_TO_MAP_VALUE) {
7559                 map = reg->map_ptr;
7560                 if (!map->btf) {
7561                         verbose(env,
7562                                 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7563                                 map->name);
7564                         return -EINVAL;
7565                 }
7566         } else {
7567                 btf = reg->btf;
7568         }
7569
7570         rec = reg_btf_record(reg);
7571         if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7572                 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7573                         map ? map->name : "kptr");
7574                 return -EINVAL;
7575         }
7576         if (rec->spin_lock_off != val + reg->off) {
7577                 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7578                         val + reg->off, rec->spin_lock_off);
7579                 return -EINVAL;
7580         }
7581         if (is_lock) {
7582                 if (cur->active_lock.ptr) {
7583                         verbose(env,
7584                                 "Locking two bpf_spin_locks are not allowed\n");
7585                         return -EINVAL;
7586                 }
7587                 if (map)
7588                         cur->active_lock.ptr = map;
7589                 else
7590                         cur->active_lock.ptr = btf;
7591                 cur->active_lock.id = reg->id;
7592         } else {
7593                 void *ptr;
7594
7595                 if (map)
7596                         ptr = map;
7597                 else
7598                         ptr = btf;
7599
7600                 if (!cur->active_lock.ptr) {
7601                         verbose(env, "bpf_spin_unlock without taking a lock\n");
7602                         return -EINVAL;
7603                 }
7604                 if (cur->active_lock.ptr != ptr ||
7605                     cur->active_lock.id != reg->id) {
7606                         verbose(env, "bpf_spin_unlock of different lock\n");
7607                         return -EINVAL;
7608                 }
7609
7610                 invalidate_non_owning_refs(env);
7611
7612                 cur->active_lock.ptr = NULL;
7613                 cur->active_lock.id = 0;
7614         }
7615         return 0;
7616 }
7617
7618 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7619                               struct bpf_call_arg_meta *meta)
7620 {
7621         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7622         bool is_const = tnum_is_const(reg->var_off);
7623         struct bpf_map *map = reg->map_ptr;
7624         u64 val = reg->var_off.value;
7625
7626         if (!is_const) {
7627                 verbose(env,
7628                         "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7629                         regno);
7630                 return -EINVAL;
7631         }
7632         if (!map->btf) {
7633                 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7634                         map->name);
7635                 return -EINVAL;
7636         }
7637         if (!btf_record_has_field(map->record, BPF_TIMER)) {
7638                 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7639                 return -EINVAL;
7640         }
7641         if (map->record->timer_off != val + reg->off) {
7642                 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7643                         val + reg->off, map->record->timer_off);
7644                 return -EINVAL;
7645         }
7646         if (meta->map_ptr) {
7647                 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7648                 return -EFAULT;
7649         }
7650         meta->map_uid = reg->map_uid;
7651         meta->map_ptr = map;
7652         return 0;
7653 }
7654
7655 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7656                              struct bpf_call_arg_meta *meta)
7657 {
7658         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7659         struct bpf_map *map_ptr = reg->map_ptr;
7660         struct btf_field *kptr_field;
7661         u32 kptr_off;
7662
7663         if (!tnum_is_const(reg->var_off)) {
7664                 verbose(env,
7665                         "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7666                         regno);
7667                 return -EINVAL;
7668         }
7669         if (!map_ptr->btf) {
7670                 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7671                         map_ptr->name);
7672                 return -EINVAL;
7673         }
7674         if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7675                 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7676                 return -EINVAL;
7677         }
7678
7679         meta->map_ptr = map_ptr;
7680         kptr_off = reg->off + reg->var_off.value;
7681         kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7682         if (!kptr_field) {
7683                 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7684                 return -EACCES;
7685         }
7686         if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7687                 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7688                 return -EACCES;
7689         }
7690         meta->kptr_field = kptr_field;
7691         return 0;
7692 }
7693
7694 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7695  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7696  *
7697  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7698  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7699  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7700  *
7701  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7702  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7703  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7704  * mutate the view of the dynptr and also possibly destroy it. In the latter
7705  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7706  * memory that dynptr points to.
7707  *
7708  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7709  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7710  * readonly dynptr view yet, hence only the first case is tracked and checked.
7711  *
7712  * This is consistent with how C applies the const modifier to a struct object,
7713  * where the pointer itself inside bpf_dynptr becomes const but not what it
7714  * points to.
7715  *
7716  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7717  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7718  */
7719 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7720                                enum bpf_arg_type arg_type, int clone_ref_obj_id)
7721 {
7722         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7723         int err;
7724
7725         /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7726          * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7727          */
7728         if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7729                 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7730                 return -EFAULT;
7731         }
7732
7733         /*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7734          *               constructing a mutable bpf_dynptr object.
7735          *
7736          *               Currently, this is only possible with PTR_TO_STACK
7737          *               pointing to a region of at least 16 bytes which doesn't
7738          *               contain an existing bpf_dynptr.
7739          *
7740          *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7741          *               mutated or destroyed. However, the memory it points to
7742          *               may be mutated.
7743          *
7744          *  None       - Points to a initialized dynptr that can be mutated and
7745          *               destroyed, including mutation of the memory it points
7746          *               to.
7747          */
7748         if (arg_type & MEM_UNINIT) {
7749                 int i;
7750
7751                 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7752                         verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7753                         return -EINVAL;
7754                 }
7755
7756                 /* we write BPF_DW bits (8 bytes) at a time */
7757                 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7758                         err = check_mem_access(env, insn_idx, regno,
7759                                                i, BPF_DW, BPF_WRITE, -1, false, false);
7760                         if (err)
7761                                 return err;
7762                 }
7763
7764                 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7765         } else /* MEM_RDONLY and None case from above */ {
7766                 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7767                 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7768                         verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7769                         return -EINVAL;
7770                 }
7771
7772                 if (!is_dynptr_reg_valid_init(env, reg)) {
7773                         verbose(env,
7774                                 "Expected an initialized dynptr as arg #%d\n",
7775                                 regno);
7776                         return -EINVAL;
7777                 }
7778
7779                 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7780                 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7781                         verbose(env,
7782                                 "Expected a dynptr of type %s as arg #%d\n",
7783                                 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7784                         return -EINVAL;
7785                 }
7786
7787                 err = mark_dynptr_read(env, reg);
7788         }
7789         return err;
7790 }
7791
7792 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7793 {
7794         struct bpf_func_state *state = func(env, reg);
7795
7796         return state->stack[spi].spilled_ptr.ref_obj_id;
7797 }
7798
7799 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7800 {
7801         return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7802 }
7803
7804 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7805 {
7806         return meta->kfunc_flags & KF_ITER_NEW;
7807 }
7808
7809 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7810 {
7811         return meta->kfunc_flags & KF_ITER_NEXT;
7812 }
7813
7814 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7815 {
7816         return meta->kfunc_flags & KF_ITER_DESTROY;
7817 }
7818
7819 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7820 {
7821         /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7822          * kfunc is iter state pointer
7823          */
7824         return arg == 0 && is_iter_kfunc(meta);
7825 }
7826
7827 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7828                             struct bpf_kfunc_call_arg_meta *meta)
7829 {
7830         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7831         const struct btf_type *t;
7832         const struct btf_param *arg;
7833         int spi, err, i, nr_slots;
7834         u32 btf_id;
7835
7836         /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7837         arg = &btf_params(meta->func_proto)[0];
7838         t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);        /* PTR */
7839         t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);       /* STRUCT */
7840         nr_slots = t->size / BPF_REG_SIZE;
7841
7842         if (is_iter_new_kfunc(meta)) {
7843                 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7844                 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7845                         verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7846                                 iter_type_str(meta->btf, btf_id), regno);
7847                         return -EINVAL;
7848                 }
7849
7850                 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7851                         err = check_mem_access(env, insn_idx, regno,
7852                                                i, BPF_DW, BPF_WRITE, -1, false, false);
7853                         if (err)
7854                                 return err;
7855                 }
7856
7857                 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7858                 if (err)
7859                         return err;
7860         } else {
7861                 /* iter_next() or iter_destroy() expect initialized iter state*/
7862                 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7863                 switch (err) {
7864                 case 0:
7865                         break;
7866                 case -EINVAL:
7867                         verbose(env, "expected an initialized iter_%s as arg #%d\n",
7868                                 iter_type_str(meta->btf, btf_id), regno);
7869                         return err;
7870                 case -EPROTO:
7871                         verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7872                         return err;
7873                 default:
7874                         return err;
7875                 }
7876
7877                 spi = iter_get_spi(env, reg, nr_slots);
7878                 if (spi < 0)
7879                         return spi;
7880
7881                 err = mark_iter_read(env, reg, spi, nr_slots);
7882                 if (err)
7883                         return err;
7884
7885                 /* remember meta->iter info for process_iter_next_call() */
7886                 meta->iter.spi = spi;
7887                 meta->iter.frameno = reg->frameno;
7888                 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7889
7890                 if (is_iter_destroy_kfunc(meta)) {
7891                         err = unmark_stack_slots_iter(env, reg, nr_slots);
7892                         if (err)
7893                                 return err;
7894                 }
7895         }
7896
7897         return 0;
7898 }
7899
7900 /* Look for a previous loop entry at insn_idx: nearest parent state
7901  * stopped at insn_idx with callsites matching those in cur->frame.
7902  */
7903 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7904                                                   struct bpf_verifier_state *cur,
7905                                                   int insn_idx)
7906 {
7907         struct bpf_verifier_state_list *sl;
7908         struct bpf_verifier_state *st;
7909
7910         /* Explored states are pushed in stack order, most recent states come first */
7911         sl = *explored_state(env, insn_idx);
7912         for (; sl; sl = sl->next) {
7913                 /* If st->branches != 0 state is a part of current DFS verification path,
7914                  * hence cur & st for a loop.
7915                  */
7916                 st = &sl->state;
7917                 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7918                     st->dfs_depth < cur->dfs_depth)
7919                         return st;
7920         }
7921
7922         return NULL;
7923 }
7924
7925 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7926 static bool regs_exact(const struct bpf_reg_state *rold,
7927                        const struct bpf_reg_state *rcur,
7928                        struct bpf_idmap *idmap);
7929
7930 static void maybe_widen_reg(struct bpf_verifier_env *env,
7931                             struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7932                             struct bpf_idmap *idmap)
7933 {
7934         if (rold->type != SCALAR_VALUE)
7935                 return;
7936         if (rold->type != rcur->type)
7937                 return;
7938         if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7939                 return;
7940         __mark_reg_unknown(env, rcur);
7941 }
7942
7943 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7944                                    struct bpf_verifier_state *old,
7945                                    struct bpf_verifier_state *cur)
7946 {
7947         struct bpf_func_state *fold, *fcur;
7948         int i, fr;
7949
7950         reset_idmap_scratch(env);
7951         for (fr = old->curframe; fr >= 0; fr--) {
7952                 fold = old->frame[fr];
7953                 fcur = cur->frame[fr];
7954
7955                 for (i = 0; i < MAX_BPF_REG; i++)
7956                         maybe_widen_reg(env,
7957                                         &fold->regs[i],
7958                                         &fcur->regs[i],
7959                                         &env->idmap_scratch);
7960
7961                 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7962                         if (!is_spilled_reg(&fold->stack[i]) ||
7963                             !is_spilled_reg(&fcur->stack[i]))
7964                                 continue;
7965
7966                         maybe_widen_reg(env,
7967                                         &fold->stack[i].spilled_ptr,
7968                                         &fcur->stack[i].spilled_ptr,
7969                                         &env->idmap_scratch);
7970                 }
7971         }
7972         return 0;
7973 }
7974
7975 /* process_iter_next_call() is called when verifier gets to iterator's next
7976  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7977  * to it as just "iter_next()" in comments below.
7978  *
7979  * BPF verifier relies on a crucial contract for any iter_next()
7980  * implementation: it should *eventually* return NULL, and once that happens
7981  * it should keep returning NULL. That is, once iterator exhausts elements to
7982  * iterate, it should never reset or spuriously return new elements.
7983  *
7984  * With the assumption of such contract, process_iter_next_call() simulates
7985  * a fork in the verifier state to validate loop logic correctness and safety
7986  * without having to simulate infinite amount of iterations.
7987  *
7988  * In current state, we first assume that iter_next() returned NULL and
7989  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7990  * conditions we should not form an infinite loop and should eventually reach
7991  * exit.
7992  *
7993  * Besides that, we also fork current state and enqueue it for later
7994  * verification. In a forked state we keep iterator state as ACTIVE
7995  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7996  * also bump iteration depth to prevent erroneous infinite loop detection
7997  * later on (see iter_active_depths_differ() comment for details). In this
7998  * state we assume that we'll eventually loop back to another iter_next()
7999  * calls (it could be in exactly same location or in some other instruction,
8000  * it doesn't matter, we don't make any unnecessary assumptions about this,
8001  * everything revolves around iterator state in a stack slot, not which
8002  * instruction is calling iter_next()). When that happens, we either will come
8003  * to iter_next() with equivalent state and can conclude that next iteration
8004  * will proceed in exactly the same way as we just verified, so it's safe to
8005  * assume that loop converges. If not, we'll go on another iteration
8006  * simulation with a different input state, until all possible starting states
8007  * are validated or we reach maximum number of instructions limit.
8008  *
8009  * This way, we will either exhaustively discover all possible input states
8010  * that iterator loop can start with and eventually will converge, or we'll
8011  * effectively regress into bounded loop simulation logic and either reach
8012  * maximum number of instructions if loop is not provably convergent, or there
8013  * is some statically known limit on number of iterations (e.g., if there is
8014  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8015  *
8016  * Iteration convergence logic in is_state_visited() relies on exact
8017  * states comparison, which ignores read and precision marks.
8018  * This is necessary because read and precision marks are not finalized
8019  * while in the loop. Exact comparison might preclude convergence for
8020  * simple programs like below:
8021  *
8022  *     i = 0;
8023  *     while(iter_next(&it))
8024  *       i++;
8025  *
8026  * At each iteration step i++ would produce a new distinct state and
8027  * eventually instruction processing limit would be reached.
8028  *
8029  * To avoid such behavior speculatively forget (widen) range for
8030  * imprecise scalar registers, if those registers were not precise at the
8031  * end of the previous iteration and do not match exactly.
8032  *
8033  * This is a conservative heuristic that allows to verify wide range of programs,
8034  * however it precludes verification of programs that conjure an
8035  * imprecise value on the first loop iteration and use it as precise on a second.
8036  * For example, the following safe program would fail to verify:
8037  *
8038  *     struct bpf_num_iter it;
8039  *     int arr[10];
8040  *     int i = 0, a = 0;
8041  *     bpf_iter_num_new(&it, 0, 10);
8042  *     while (bpf_iter_num_next(&it)) {
8043  *       if (a == 0) {
8044  *         a = 1;
8045  *         i = 7; // Because i changed verifier would forget
8046  *                // it's range on second loop entry.
8047  *       } else {
8048  *         arr[i] = 42; // This would fail to verify.
8049  *       }
8050  *     }
8051  *     bpf_iter_num_destroy(&it);
8052  */
8053 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8054                                   struct bpf_kfunc_call_arg_meta *meta)
8055 {
8056         struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8057         struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8058         struct bpf_reg_state *cur_iter, *queued_iter;
8059         int iter_frameno = meta->iter.frameno;
8060         int iter_spi = meta->iter.spi;
8061
8062         BTF_TYPE_EMIT(struct bpf_iter);
8063
8064         cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8065
8066         if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8067             cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8068                 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8069                         cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8070                 return -EFAULT;
8071         }
8072
8073         if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8074                 /* Because iter_next() call is a checkpoint is_state_visitied()
8075                  * should guarantee parent state with same call sites and insn_idx.
8076                  */
8077                 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8078                     !same_callsites(cur_st->parent, cur_st)) {
8079                         verbose(env, "bug: bad parent state for iter next call");
8080                         return -EFAULT;
8081                 }
8082                 /* Note cur_st->parent in the call below, it is necessary to skip
8083                  * checkpoint created for cur_st by is_state_visited()
8084                  * right at this instruction.
8085                  */
8086                 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8087                 /* branch out active iter state */
8088                 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8089                 if (!queued_st)
8090                         return -ENOMEM;
8091
8092                 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8093                 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8094                 queued_iter->iter.depth++;
8095                 if (prev_st)
8096                         widen_imprecise_scalars(env, prev_st, queued_st);
8097
8098                 queued_fr = queued_st->frame[queued_st->curframe];
8099                 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8100         }
8101
8102         /* switch to DRAINED state, but keep the depth unchanged */
8103         /* mark current iter state as drained and assume returned NULL */
8104         cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8105         __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8106
8107         return 0;
8108 }
8109
8110 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8111 {
8112         return type == ARG_CONST_SIZE ||
8113                type == ARG_CONST_SIZE_OR_ZERO;
8114 }
8115
8116 static bool arg_type_is_release(enum bpf_arg_type type)
8117 {
8118         return type & OBJ_RELEASE;
8119 }
8120
8121 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8122 {
8123         return base_type(type) == ARG_PTR_TO_DYNPTR;
8124 }
8125
8126 static int int_ptr_type_to_size(enum bpf_arg_type type)
8127 {
8128         if (type == ARG_PTR_TO_INT)
8129                 return sizeof(u32);
8130         else if (type == ARG_PTR_TO_LONG)
8131                 return sizeof(u64);
8132
8133         return -EINVAL;
8134 }
8135
8136 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8137                                  const struct bpf_call_arg_meta *meta,
8138                                  enum bpf_arg_type *arg_type)
8139 {
8140         if (!meta->map_ptr) {
8141                 /* kernel subsystem misconfigured verifier */
8142                 verbose(env, "invalid map_ptr to access map->type\n");
8143                 return -EACCES;
8144         }
8145
8146         switch (meta->map_ptr->map_type) {
8147         case BPF_MAP_TYPE_SOCKMAP:
8148         case BPF_MAP_TYPE_SOCKHASH:
8149                 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8150                         *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8151                 } else {
8152                         verbose(env, "invalid arg_type for sockmap/sockhash\n");
8153                         return -EINVAL;
8154                 }
8155                 break;
8156         case BPF_MAP_TYPE_BLOOM_FILTER:
8157                 if (meta->func_id == BPF_FUNC_map_peek_elem)
8158                         *arg_type = ARG_PTR_TO_MAP_VALUE;
8159                 break;
8160         default:
8161                 break;
8162         }
8163         return 0;
8164 }
8165
8166 struct bpf_reg_types {
8167         const enum bpf_reg_type types[10];
8168         u32 *btf_id;
8169 };
8170
8171 static const struct bpf_reg_types sock_types = {
8172         .types = {
8173                 PTR_TO_SOCK_COMMON,
8174                 PTR_TO_SOCKET,
8175                 PTR_TO_TCP_SOCK,
8176                 PTR_TO_XDP_SOCK,
8177         },
8178 };
8179
8180 #ifdef CONFIG_NET
8181 static const struct bpf_reg_types btf_id_sock_common_types = {
8182         .types = {
8183                 PTR_TO_SOCK_COMMON,
8184                 PTR_TO_SOCKET,
8185                 PTR_TO_TCP_SOCK,
8186                 PTR_TO_XDP_SOCK,
8187                 PTR_TO_BTF_ID,
8188                 PTR_TO_BTF_ID | PTR_TRUSTED,
8189         },
8190         .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8191 };
8192 #endif
8193
8194 static const struct bpf_reg_types mem_types = {
8195         .types = {
8196                 PTR_TO_STACK,
8197                 PTR_TO_PACKET,
8198                 PTR_TO_PACKET_META,
8199                 PTR_TO_MAP_KEY,
8200                 PTR_TO_MAP_VALUE,
8201                 PTR_TO_MEM,
8202                 PTR_TO_MEM | MEM_RINGBUF,
8203                 PTR_TO_BUF,
8204                 PTR_TO_BTF_ID | PTR_TRUSTED,
8205         },
8206 };
8207
8208 static const struct bpf_reg_types int_ptr_types = {
8209         .types = {
8210                 PTR_TO_STACK,
8211                 PTR_TO_PACKET,
8212                 PTR_TO_PACKET_META,
8213                 PTR_TO_MAP_KEY,
8214                 PTR_TO_MAP_VALUE,
8215         },
8216 };
8217
8218 static const struct bpf_reg_types spin_lock_types = {
8219         .types = {
8220                 PTR_TO_MAP_VALUE,
8221                 PTR_TO_BTF_ID | MEM_ALLOC,
8222         }
8223 };
8224
8225 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8226 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8227 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8228 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8229 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8230 static const struct bpf_reg_types btf_ptr_types = {
8231         .types = {
8232                 PTR_TO_BTF_ID,
8233                 PTR_TO_BTF_ID | PTR_TRUSTED,
8234                 PTR_TO_BTF_ID | MEM_RCU,
8235         },
8236 };
8237 static const struct bpf_reg_types percpu_btf_ptr_types = {
8238         .types = {
8239                 PTR_TO_BTF_ID | MEM_PERCPU,
8240                 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8241                 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8242         }
8243 };
8244 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8245 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8246 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8247 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8248 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8249 static const struct bpf_reg_types dynptr_types = {
8250         .types = {
8251                 PTR_TO_STACK,
8252                 CONST_PTR_TO_DYNPTR,
8253         }
8254 };
8255
8256 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8257         [ARG_PTR_TO_MAP_KEY]            = &mem_types,
8258         [ARG_PTR_TO_MAP_VALUE]          = &mem_types,
8259         [ARG_CONST_SIZE]                = &scalar_types,
8260         [ARG_CONST_SIZE_OR_ZERO]        = &scalar_types,
8261         [ARG_CONST_ALLOC_SIZE_OR_ZERO]  = &scalar_types,
8262         [ARG_CONST_MAP_PTR]             = &const_map_ptr_types,
8263         [ARG_PTR_TO_CTX]                = &context_types,
8264         [ARG_PTR_TO_SOCK_COMMON]        = &sock_types,
8265 #ifdef CONFIG_NET
8266         [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
8267 #endif
8268         [ARG_PTR_TO_SOCKET]             = &fullsock_types,
8269         [ARG_PTR_TO_BTF_ID]             = &btf_ptr_types,
8270         [ARG_PTR_TO_SPIN_LOCK]          = &spin_lock_types,
8271         [ARG_PTR_TO_MEM]                = &mem_types,
8272         [ARG_PTR_TO_RINGBUF_MEM]        = &ringbuf_mem_types,
8273         [ARG_PTR_TO_INT]                = &int_ptr_types,
8274         [ARG_PTR_TO_LONG]               = &int_ptr_types,
8275         [ARG_PTR_TO_PERCPU_BTF_ID]      = &percpu_btf_ptr_types,
8276         [ARG_PTR_TO_FUNC]               = &func_ptr_types,
8277         [ARG_PTR_TO_STACK]              = &stack_ptr_types,
8278         [ARG_PTR_TO_CONST_STR]          = &const_str_ptr_types,
8279         [ARG_PTR_TO_TIMER]              = &timer_types,
8280         [ARG_PTR_TO_KPTR]               = &kptr_types,
8281         [ARG_PTR_TO_DYNPTR]             = &dynptr_types,
8282 };
8283
8284 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8285                           enum bpf_arg_type arg_type,
8286                           const u32 *arg_btf_id,
8287                           struct bpf_call_arg_meta *meta)
8288 {
8289         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8290         enum bpf_reg_type expected, type = reg->type;
8291         const struct bpf_reg_types *compatible;
8292         int i, j;
8293
8294         compatible = compatible_reg_types[base_type(arg_type)];
8295         if (!compatible) {
8296                 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8297                 return -EFAULT;
8298         }
8299
8300         /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8301          * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8302          *
8303          * Same for MAYBE_NULL:
8304          *
8305          * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8306          * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8307          *
8308          * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8309          *
8310          * Therefore we fold these flags depending on the arg_type before comparison.
8311          */
8312         if (arg_type & MEM_RDONLY)
8313                 type &= ~MEM_RDONLY;
8314         if (arg_type & PTR_MAYBE_NULL)
8315                 type &= ~PTR_MAYBE_NULL;
8316         if (base_type(arg_type) == ARG_PTR_TO_MEM)
8317                 type &= ~DYNPTR_TYPE_FLAG_MASK;
8318
8319         if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8320                 type &= ~MEM_ALLOC;
8321                 type &= ~MEM_PERCPU;
8322         }
8323
8324         for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8325                 expected = compatible->types[i];
8326                 if (expected == NOT_INIT)
8327                         break;
8328
8329                 if (type == expected)
8330                         goto found;
8331         }
8332
8333         verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8334         for (j = 0; j + 1 < i; j++)
8335                 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8336         verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8337         return -EACCES;
8338
8339 found:
8340         if (base_type(reg->type) != PTR_TO_BTF_ID)
8341                 return 0;
8342
8343         if (compatible == &mem_types) {
8344                 if (!(arg_type & MEM_RDONLY)) {
8345                         verbose(env,
8346                                 "%s() may write into memory pointed by R%d type=%s\n",
8347                                 func_id_name(meta->func_id),
8348                                 regno, reg_type_str(env, reg->type));
8349                         return -EACCES;
8350                 }
8351                 return 0;
8352         }
8353
8354         switch ((int)reg->type) {
8355         case PTR_TO_BTF_ID:
8356         case PTR_TO_BTF_ID | PTR_TRUSTED:
8357         case PTR_TO_BTF_ID | MEM_RCU:
8358         case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8359         case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8360         {
8361                 /* For bpf_sk_release, it needs to match against first member
8362                  * 'struct sock_common', hence make an exception for it. This
8363                  * allows bpf_sk_release to work for multiple socket types.
8364                  */
8365                 bool strict_type_match = arg_type_is_release(arg_type) &&
8366                                          meta->func_id != BPF_FUNC_sk_release;
8367
8368                 if (type_may_be_null(reg->type) &&
8369                     (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8370                         verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8371                         return -EACCES;
8372                 }
8373
8374                 if (!arg_btf_id) {
8375                         if (!compatible->btf_id) {
8376                                 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8377                                 return -EFAULT;
8378                         }
8379                         arg_btf_id = compatible->btf_id;
8380                 }
8381
8382                 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8383                         if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8384                                 return -EACCES;
8385                 } else {
8386                         if (arg_btf_id == BPF_PTR_POISON) {
8387                                 verbose(env, "verifier internal error:");
8388                                 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8389                                         regno);
8390                                 return -EACCES;
8391                         }
8392
8393                         if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8394                                                   btf_vmlinux, *arg_btf_id,
8395                                                   strict_type_match)) {
8396                                 verbose(env, "R%d is of type %s but %s is expected\n",
8397                                         regno, btf_type_name(reg->btf, reg->btf_id),
8398                                         btf_type_name(btf_vmlinux, *arg_btf_id));
8399                                 return -EACCES;
8400                         }
8401                 }
8402                 break;
8403         }
8404         case PTR_TO_BTF_ID | MEM_ALLOC:
8405         case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8406                 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8407                     meta->func_id != BPF_FUNC_kptr_xchg) {
8408                         verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8409                         return -EFAULT;
8410                 }
8411                 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8412                         if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8413                                 return -EACCES;
8414                 }
8415                 break;
8416         case PTR_TO_BTF_ID | MEM_PERCPU:
8417         case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8418         case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8419                 /* Handled by helper specific checks */
8420                 break;
8421         default:
8422                 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8423                 return -EFAULT;
8424         }
8425         return 0;
8426 }
8427
8428 static struct btf_field *
8429 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8430 {
8431         struct btf_field *field;
8432         struct btf_record *rec;
8433
8434         rec = reg_btf_record(reg);
8435         if (!rec)
8436                 return NULL;
8437
8438         field = btf_record_find(rec, off, fields);
8439         if (!field)
8440                 return NULL;
8441
8442         return field;
8443 }
8444
8445 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8446                            const struct bpf_reg_state *reg, int regno,
8447                            enum bpf_arg_type arg_type)
8448 {
8449         u32 type = reg->type;
8450
8451         /* When referenced register is passed to release function, its fixed
8452          * offset must be 0.
8453          *
8454          * We will check arg_type_is_release reg has ref_obj_id when storing
8455          * meta->release_regno.
8456          */
8457         if (arg_type_is_release(arg_type)) {
8458                 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8459                  * may not directly point to the object being released, but to
8460                  * dynptr pointing to such object, which might be at some offset
8461                  * on the stack. In that case, we simply to fallback to the
8462                  * default handling.
8463                  */
8464                 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8465                         return 0;
8466
8467                 /* Doing check_ptr_off_reg check for the offset will catch this
8468                  * because fixed_off_ok is false, but checking here allows us
8469                  * to give the user a better error message.
8470                  */
8471                 if (reg->off) {
8472                         verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8473                                 regno);
8474                         return -EINVAL;
8475                 }
8476                 return __check_ptr_off_reg(env, reg, regno, false);
8477         }
8478
8479         switch (type) {
8480         /* Pointer types where both fixed and variable offset is explicitly allowed: */
8481         case PTR_TO_STACK:
8482         case PTR_TO_PACKET:
8483         case PTR_TO_PACKET_META:
8484         case PTR_TO_MAP_KEY:
8485         case PTR_TO_MAP_VALUE:
8486         case PTR_TO_MEM:
8487         case PTR_TO_MEM | MEM_RDONLY:
8488         case PTR_TO_MEM | MEM_RINGBUF:
8489         case PTR_TO_BUF:
8490         case PTR_TO_BUF | MEM_RDONLY:
8491         case SCALAR_VALUE:
8492                 return 0;
8493         /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8494          * fixed offset.
8495          */
8496         case PTR_TO_BTF_ID:
8497         case PTR_TO_BTF_ID | MEM_ALLOC:
8498         case PTR_TO_BTF_ID | PTR_TRUSTED:
8499         case PTR_TO_BTF_ID | MEM_RCU:
8500         case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8501         case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8502                 /* When referenced PTR_TO_BTF_ID is passed to release function,
8503                  * its fixed offset must be 0. In the other cases, fixed offset
8504                  * can be non-zero. This was already checked above. So pass
8505                  * fixed_off_ok as true to allow fixed offset for all other
8506                  * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8507                  * still need to do checks instead of returning.
8508                  */
8509                 return __check_ptr_off_reg(env, reg, regno, true);
8510         default:
8511                 return __check_ptr_off_reg(env, reg, regno, false);
8512         }
8513 }
8514
8515 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8516                                                 const struct bpf_func_proto *fn,
8517                                                 struct bpf_reg_state *regs)
8518 {
8519         struct bpf_reg_state *state = NULL;
8520         int i;
8521
8522         for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8523                 if (arg_type_is_dynptr(fn->arg_type[i])) {
8524                         if (state) {
8525                                 verbose(env, "verifier internal error: multiple dynptr args\n");
8526                                 return NULL;
8527                         }
8528                         state = &regs[BPF_REG_1 + i];
8529                 }
8530
8531         if (!state)
8532                 verbose(env, "verifier internal error: no dynptr arg found\n");
8533
8534         return state;
8535 }
8536
8537 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8538 {
8539         struct bpf_func_state *state = func(env, reg);
8540         int spi;
8541
8542         if (reg->type == CONST_PTR_TO_DYNPTR)
8543                 return reg->id;
8544         spi = dynptr_get_spi(env, reg);
8545         if (spi < 0)
8546                 return spi;
8547         return state->stack[spi].spilled_ptr.id;
8548 }
8549
8550 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8551 {
8552         struct bpf_func_state *state = func(env, reg);
8553         int spi;
8554
8555         if (reg->type == CONST_PTR_TO_DYNPTR)
8556                 return reg->ref_obj_id;
8557         spi = dynptr_get_spi(env, reg);
8558         if (spi < 0)
8559                 return spi;
8560         return state->stack[spi].spilled_ptr.ref_obj_id;
8561 }
8562
8563 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8564                                             struct bpf_reg_state *reg)
8565 {
8566         struct bpf_func_state *state = func(env, reg);
8567         int spi;
8568
8569         if (reg->type == CONST_PTR_TO_DYNPTR)
8570                 return reg->dynptr.type;
8571
8572         spi = __get_spi(reg->off);
8573         if (spi < 0) {
8574                 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8575                 return BPF_DYNPTR_TYPE_INVALID;
8576         }
8577
8578         return state->stack[spi].spilled_ptr.dynptr.type;
8579 }
8580
8581 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8582                           struct bpf_call_arg_meta *meta,
8583                           const struct bpf_func_proto *fn,
8584                           int insn_idx)
8585 {
8586         u32 regno = BPF_REG_1 + arg;
8587         struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8588         enum bpf_arg_type arg_type = fn->arg_type[arg];
8589         enum bpf_reg_type type = reg->type;
8590         u32 *arg_btf_id = NULL;
8591         int err = 0;
8592
8593         if (arg_type == ARG_DONTCARE)
8594                 return 0;
8595
8596         err = check_reg_arg(env, regno, SRC_OP);
8597         if (err)
8598                 return err;
8599
8600         if (arg_type == ARG_ANYTHING) {
8601                 if (is_pointer_value(env, regno)) {
8602                         verbose(env, "R%d leaks addr into helper function\n",
8603                                 regno);
8604                         return -EACCES;
8605                 }
8606                 return 0;
8607         }
8608
8609         if (type_is_pkt_pointer(type) &&
8610             !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8611                 verbose(env, "helper access to the packet is not allowed\n");
8612                 return -EACCES;
8613         }
8614
8615         if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8616                 err = resolve_map_arg_type(env, meta, &arg_type);
8617                 if (err)
8618                         return err;
8619         }
8620
8621         if (register_is_null(reg) && type_may_be_null(arg_type))
8622                 /* A NULL register has a SCALAR_VALUE type, so skip
8623                  * type checking.
8624                  */
8625                 goto skip_type_check;
8626
8627         /* arg_btf_id and arg_size are in a union. */
8628         if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8629             base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8630                 arg_btf_id = fn->arg_btf_id[arg];
8631
8632         err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8633         if (err)
8634                 return err;
8635
8636         err = check_func_arg_reg_off(env, reg, regno, arg_type);
8637         if (err)
8638                 return err;
8639
8640 skip_type_check:
8641         if (arg_type_is_release(arg_type)) {
8642                 if (arg_type_is_dynptr(arg_type)) {
8643                         struct bpf_func_state *state = func(env, reg);
8644                         int spi;
8645
8646                         /* Only dynptr created on stack can be released, thus
8647                          * the get_spi and stack state checks for spilled_ptr
8648                          * should only be done before process_dynptr_func for
8649                          * PTR_TO_STACK.
8650                          */
8651                         if (reg->type == PTR_TO_STACK) {
8652                                 spi = dynptr_get_spi(env, reg);
8653                                 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8654                                         verbose(env, "arg %d is an unacquired reference\n", regno);
8655                                         return -EINVAL;
8656                                 }
8657                         } else {
8658                                 verbose(env, "cannot release unowned const bpf_dynptr\n");
8659                                 return -EINVAL;
8660                         }
8661                 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8662                         verbose(env, "R%d must be referenced when passed to release function\n",
8663                                 regno);
8664                         return -EINVAL;
8665                 }
8666                 if (meta->release_regno) {
8667                         verbose(env, "verifier internal error: more than one release argument\n");
8668                         return -EFAULT;
8669                 }
8670                 meta->release_regno = regno;
8671         }
8672
8673         if (reg->ref_obj_id) {
8674                 if (meta->ref_obj_id) {
8675                         verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8676                                 regno, reg->ref_obj_id,
8677                                 meta->ref_obj_id);
8678                         return -EFAULT;
8679                 }
8680                 meta->ref_obj_id = reg->ref_obj_id;
8681         }
8682
8683         switch (base_type(arg_type)) {
8684         case ARG_CONST_MAP_PTR:
8685                 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8686                 if (meta->map_ptr) {
8687                         /* Use map_uid (which is unique id of inner map) to reject:
8688                          * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8689                          * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8690                          * if (inner_map1 && inner_map2) {
8691                          *     timer = bpf_map_lookup_elem(inner_map1);
8692                          *     if (timer)
8693                          *         // mismatch would have been allowed
8694                          *         bpf_timer_init(timer, inner_map2);
8695                          * }
8696                          *
8697                          * Comparing map_ptr is enough to distinguish normal and outer maps.
8698                          */
8699                         if (meta->map_ptr != reg->map_ptr ||
8700                             meta->map_uid != reg->map_uid) {
8701                                 verbose(env,
8702                                         "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8703                                         meta->map_uid, reg->map_uid);
8704                                 return -EINVAL;
8705                         }
8706                 }
8707                 meta->map_ptr = reg->map_ptr;
8708                 meta->map_uid = reg->map_uid;
8709                 break;
8710         case ARG_PTR_TO_MAP_KEY:
8711                 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8712                  * check that [key, key + map->key_size) are within
8713                  * stack limits and initialized
8714                  */
8715                 if (!meta->map_ptr) {
8716                         /* in function declaration map_ptr must come before
8717                          * map_key, so that it's verified and known before
8718                          * we have to check map_key here. Otherwise it means
8719                          * that kernel subsystem misconfigured verifier
8720                          */
8721                         verbose(env, "invalid map_ptr to access map->key\n");
8722                         return -EACCES;
8723                 }
8724                 err = check_helper_mem_access(env, regno,
8725                                               meta->map_ptr->key_size, false,
8726                                               NULL);
8727                 break;
8728         case ARG_PTR_TO_MAP_VALUE:
8729                 if (type_may_be_null(arg_type) && register_is_null(reg))
8730                         return 0;
8731
8732                 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8733                  * check [value, value + map->value_size) validity
8734                  */
8735                 if (!meta->map_ptr) {
8736                         /* kernel subsystem misconfigured verifier */
8737                         verbose(env, "invalid map_ptr to access map->value\n");
8738                         return -EACCES;
8739                 }
8740                 meta->raw_mode = arg_type & MEM_UNINIT;
8741                 err = check_helper_mem_access(env, regno,
8742                                               meta->map_ptr->value_size, false,
8743                                               meta);
8744                 break;
8745         case ARG_PTR_TO_PERCPU_BTF_ID:
8746                 if (!reg->btf_id) {
8747                         verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8748                         return -EACCES;
8749                 }
8750                 meta->ret_btf = reg->btf;
8751                 meta->ret_btf_id = reg->btf_id;
8752                 break;
8753         case ARG_PTR_TO_SPIN_LOCK:
8754                 if (in_rbtree_lock_required_cb(env)) {
8755                         verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8756                         return -EACCES;
8757                 }
8758                 if (meta->func_id == BPF_FUNC_spin_lock) {
8759                         err = process_spin_lock(env, regno, true);
8760                         if (err)
8761                                 return err;
8762                 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8763                         err = process_spin_lock(env, regno, false);
8764                         if (err)
8765                                 return err;
8766                 } else {
8767                         verbose(env, "verifier internal error\n");
8768                         return -EFAULT;
8769                 }
8770                 break;
8771         case ARG_PTR_TO_TIMER:
8772                 err = process_timer_func(env, regno, meta);
8773                 if (err)
8774                         return err;
8775                 break;
8776         case ARG_PTR_TO_FUNC:
8777                 meta->subprogno = reg->subprogno;
8778                 break;
8779         case ARG_PTR_TO_MEM:
8780                 /* The access to this pointer is only checked when we hit the
8781                  * next is_mem_size argument below.
8782                  */
8783                 meta->raw_mode = arg_type & MEM_UNINIT;
8784                 if (arg_type & MEM_FIXED_SIZE) {
8785                         err = check_helper_mem_access(env, regno,
8786                                                       fn->arg_size[arg], false,
8787                                                       meta);
8788                 }
8789                 break;
8790         case ARG_CONST_SIZE:
8791                 err = check_mem_size_reg(env, reg, regno, false, meta);
8792                 break;
8793         case ARG_CONST_SIZE_OR_ZERO:
8794                 err = check_mem_size_reg(env, reg, regno, true, meta);
8795                 break;
8796         case ARG_PTR_TO_DYNPTR:
8797                 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8798                 if (err)
8799                         return err;
8800                 break;
8801         case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8802                 if (!tnum_is_const(reg->var_off)) {
8803                         verbose(env, "R%d is not a known constant'\n",
8804                                 regno);
8805                         return -EACCES;
8806                 }
8807                 meta->mem_size = reg->var_off.value;
8808                 err = mark_chain_precision(env, regno);
8809                 if (err)
8810                         return err;
8811                 break;
8812         case ARG_PTR_TO_INT:
8813         case ARG_PTR_TO_LONG:
8814         {
8815                 int size = int_ptr_type_to_size(arg_type);
8816
8817                 err = check_helper_mem_access(env, regno, size, false, meta);
8818                 if (err)
8819                         return err;
8820                 err = check_ptr_alignment(env, reg, 0, size, true);
8821                 break;
8822         }
8823         case ARG_PTR_TO_CONST_STR:
8824         {
8825                 struct bpf_map *map = reg->map_ptr;
8826                 int map_off;
8827                 u64 map_addr;
8828                 char *str_ptr;
8829
8830                 if (!bpf_map_is_rdonly(map)) {
8831                         verbose(env, "R%d does not point to a readonly map'\n", regno);
8832                         return -EACCES;
8833                 }
8834
8835                 if (!tnum_is_const(reg->var_off)) {
8836                         verbose(env, "R%d is not a constant address'\n", regno);
8837                         return -EACCES;
8838                 }
8839
8840                 if (!map->ops->map_direct_value_addr) {
8841                         verbose(env, "no direct value access support for this map type\n");
8842                         return -EACCES;
8843                 }
8844
8845                 err = check_map_access(env, regno, reg->off,
8846                                        map->value_size - reg->off, false,
8847                                        ACCESS_HELPER);
8848                 if (err)
8849                         return err;
8850
8851                 map_off = reg->off + reg->var_off.value;
8852                 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8853                 if (err) {
8854                         verbose(env, "direct value access on string failed\n");
8855                         return err;
8856                 }
8857
8858                 str_ptr = (char *)(long)(map_addr);
8859                 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8860                         verbose(env, "string is not zero-terminated\n");
8861                         return -EINVAL;
8862                 }
8863                 break;
8864         }
8865         case ARG_PTR_TO_KPTR:
8866                 err = process_kptr_func(env, regno, meta);
8867                 if (err)
8868                         return err;
8869                 break;
8870         }
8871
8872         return err;
8873 }
8874
8875 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8876 {
8877         enum bpf_attach_type eatype = env->prog->expected_attach_type;
8878         enum bpf_prog_type type = resolve_prog_type(env->prog);
8879
8880         if (func_id != BPF_FUNC_map_update_elem)
8881                 return false;
8882
8883         /* It's not possible to get access to a locked struct sock in these
8884          * contexts, so updating is safe.
8885          */
8886         switch (type) {
8887         case BPF_PROG_TYPE_TRACING:
8888                 if (eatype == BPF_TRACE_ITER)
8889                         return true;
8890                 break;
8891         case BPF_PROG_TYPE_SOCKET_FILTER:
8892         case BPF_PROG_TYPE_SCHED_CLS:
8893         case BPF_PROG_TYPE_SCHED_ACT:
8894         case BPF_PROG_TYPE_XDP:
8895         case BPF_PROG_TYPE_SK_REUSEPORT:
8896         case BPF_PROG_TYPE_FLOW_DISSECTOR:
8897         case BPF_PROG_TYPE_SK_LOOKUP:
8898                 return true;
8899         default:
8900                 break;
8901         }
8902
8903         verbose(env, "cannot update sockmap in this context\n");
8904         return false;
8905 }
8906
8907 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8908 {
8909         return env->prog->jit_requested &&
8910                bpf_jit_supports_subprog_tailcalls();
8911 }
8912
8913 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8914                                         struct bpf_map *map, int func_id)
8915 {
8916         if (!map)
8917                 return 0;
8918
8919         /* We need a two way check, first is from map perspective ... */
8920         switch (map->map_type) {
8921         case BPF_MAP_TYPE_PROG_ARRAY:
8922                 if (func_id != BPF_FUNC_tail_call)
8923                         goto error;
8924                 break;
8925         case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8926                 if (func_id != BPF_FUNC_perf_event_read &&
8927                     func_id != BPF_FUNC_perf_event_output &&
8928                     func_id != BPF_FUNC_skb_output &&
8929                     func_id != BPF_FUNC_perf_event_read_value &&
8930                     func_id != BPF_FUNC_xdp_output)
8931                         goto error;
8932                 break;
8933         case BPF_MAP_TYPE_RINGBUF:
8934                 if (func_id != BPF_FUNC_ringbuf_output &&
8935                     func_id != BPF_FUNC_ringbuf_reserve &&
8936                     func_id != BPF_FUNC_ringbuf_query &&
8937                     func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8938                     func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8939                     func_id != BPF_FUNC_ringbuf_discard_dynptr)
8940                         goto error;
8941                 break;
8942         case BPF_MAP_TYPE_USER_RINGBUF:
8943                 if (func_id != BPF_FUNC_user_ringbuf_drain)
8944                         goto error;
8945                 break;
8946         case BPF_MAP_TYPE_STACK_TRACE:
8947                 if (func_id != BPF_FUNC_get_stackid)
8948                         goto error;
8949                 break;
8950         case BPF_MAP_TYPE_CGROUP_ARRAY:
8951                 if (func_id != BPF_FUNC_skb_under_cgroup &&
8952                     func_id != BPF_FUNC_current_task_under_cgroup)
8953                         goto error;
8954                 break;
8955         case BPF_MAP_TYPE_CGROUP_STORAGE:
8956         case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8957                 if (func_id != BPF_FUNC_get_local_storage)
8958                         goto error;
8959                 break;
8960         case BPF_MAP_TYPE_DEVMAP:
8961         case BPF_MAP_TYPE_DEVMAP_HASH:
8962                 if (func_id != BPF_FUNC_redirect_map &&
8963                     func_id != BPF_FUNC_map_lookup_elem)
8964                         goto error;
8965                 break;
8966         /* Restrict bpf side of cpumap and xskmap, open when use-cases
8967          * appear.
8968          */
8969         case BPF_MAP_TYPE_CPUMAP:
8970                 if (func_id != BPF_FUNC_redirect_map)
8971                         goto error;
8972                 break;
8973         case BPF_MAP_TYPE_XSKMAP:
8974                 if (func_id != BPF_FUNC_redirect_map &&
8975                     func_id != BPF_FUNC_map_lookup_elem)
8976                         goto error;
8977                 break;
8978         case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8979         case BPF_MAP_TYPE_HASH_OF_MAPS:
8980                 if (func_id != BPF_FUNC_map_lookup_elem)
8981                         goto error;
8982                 break;
8983         case BPF_MAP_TYPE_SOCKMAP:
8984                 if (func_id != BPF_FUNC_sk_redirect_map &&
8985                     func_id != BPF_FUNC_sock_map_update &&
8986                     func_id != BPF_FUNC_map_delete_elem &&
8987                     func_id != BPF_FUNC_msg_redirect_map &&
8988                     func_id != BPF_FUNC_sk_select_reuseport &&
8989                     func_id != BPF_FUNC_map_lookup_elem &&
8990                     !may_update_sockmap(env, func_id))
8991                         goto error;
8992                 break;
8993         case BPF_MAP_TYPE_SOCKHASH:
8994                 if (func_id != BPF_FUNC_sk_redirect_hash &&
8995                     func_id != BPF_FUNC_sock_hash_update &&
8996                     func_id != BPF_FUNC_map_delete_elem &&
8997                     func_id != BPF_FUNC_msg_redirect_hash &&
8998                     func_id != BPF_FUNC_sk_select_reuseport &&
8999                     func_id != BPF_FUNC_map_lookup_elem &&
9000                     !may_update_sockmap(env, func_id))
9001                         goto error;
9002                 break;
9003         case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9004                 if (func_id != BPF_FUNC_sk_select_reuseport)
9005                         goto error;
9006                 break;
9007         case BPF_MAP_TYPE_QUEUE:
9008         case BPF_MAP_TYPE_STACK:
9009                 if (func_id != BPF_FUNC_map_peek_elem &&
9010                     func_id != BPF_FUNC_map_pop_elem &&
9011                     func_id != BPF_FUNC_map_push_elem)
9012                         goto error;
9013                 break;
9014         case BPF_MAP_TYPE_SK_STORAGE:
9015                 if (func_id != BPF_FUNC_sk_storage_get &&
9016                     func_id != BPF_FUNC_sk_storage_delete &&
9017                     func_id != BPF_FUNC_kptr_xchg)
9018                         goto error;
9019                 break;
9020         case BPF_MAP_TYPE_INODE_STORAGE:
9021                 if (func_id != BPF_FUNC_inode_storage_get &&
9022                     func_id != BPF_FUNC_inode_storage_delete &&
9023                     func_id != BPF_FUNC_kptr_xchg)
9024                         goto error;
9025                 break;
9026         case BPF_MAP_TYPE_TASK_STORAGE:
9027                 if (func_id != BPF_FUNC_task_storage_get &&
9028                     func_id != BPF_FUNC_task_storage_delete &&
9029                     func_id != BPF_FUNC_kptr_xchg)
9030                         goto error;
9031                 break;
9032         case BPF_MAP_TYPE_CGRP_STORAGE:
9033                 if (func_id != BPF_FUNC_cgrp_storage_get &&
9034                     func_id != BPF_FUNC_cgrp_storage_delete &&
9035                     func_id != BPF_FUNC_kptr_xchg)
9036                         goto error;
9037                 break;
9038         case BPF_MAP_TYPE_BLOOM_FILTER:
9039                 if (func_id != BPF_FUNC_map_peek_elem &&
9040                     func_id != BPF_FUNC_map_push_elem)
9041                         goto error;
9042                 break;
9043         default:
9044                 break;
9045         }
9046
9047         /* ... and second from the function itself. */
9048         switch (func_id) {
9049         case BPF_FUNC_tail_call:
9050                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9051                         goto error;
9052                 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9053                         verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9054                         return -EINVAL;
9055                 }
9056                 break;
9057         case BPF_FUNC_perf_event_read:
9058         case BPF_FUNC_perf_event_output:
9059         case BPF_FUNC_perf_event_read_value:
9060         case BPF_FUNC_skb_output:
9061         case BPF_FUNC_xdp_output:
9062                 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9063                         goto error;
9064                 break;
9065         case BPF_FUNC_ringbuf_output:
9066         case BPF_FUNC_ringbuf_reserve:
9067         case BPF_FUNC_ringbuf_query:
9068         case BPF_FUNC_ringbuf_reserve_dynptr:
9069         case BPF_FUNC_ringbuf_submit_dynptr:
9070         case BPF_FUNC_ringbuf_discard_dynptr:
9071                 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9072                         goto error;
9073                 break;
9074         case BPF_FUNC_user_ringbuf_drain:
9075                 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9076                         goto error;
9077                 break;
9078         case BPF_FUNC_get_stackid:
9079                 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9080                         goto error;
9081                 break;
9082         case BPF_FUNC_current_task_under_cgroup:
9083         case BPF_FUNC_skb_under_cgroup:
9084                 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9085                         goto error;
9086                 break;
9087         case BPF_FUNC_redirect_map:
9088                 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9089                     map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9090                     map->map_type != BPF_MAP_TYPE_CPUMAP &&
9091                     map->map_type != BPF_MAP_TYPE_XSKMAP)
9092                         goto error;
9093                 break;
9094         case BPF_FUNC_sk_redirect_map:
9095         case BPF_FUNC_msg_redirect_map:
9096         case BPF_FUNC_sock_map_update:
9097                 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9098                         goto error;
9099                 break;
9100         case BPF_FUNC_sk_redirect_hash:
9101         case BPF_FUNC_msg_redirect_hash:
9102         case BPF_FUNC_sock_hash_update:
9103                 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9104                         goto error;
9105                 break;
9106         case BPF_FUNC_get_local_storage:
9107                 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9108                     map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9109                         goto error;
9110                 break;
9111         case BPF_FUNC_sk_select_reuseport:
9112                 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9113                     map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9114                     map->map_type != BPF_MAP_TYPE_SOCKHASH)
9115                         goto error;
9116                 break;
9117         case BPF_FUNC_map_pop_elem:
9118                 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9119                     map->map_type != BPF_MAP_TYPE_STACK)
9120                         goto error;
9121                 break;
9122         case BPF_FUNC_map_peek_elem:
9123         case BPF_FUNC_map_push_elem:
9124                 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9125                     map->map_type != BPF_MAP_TYPE_STACK &&
9126                     map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9127                         goto error;
9128                 break;
9129         case BPF_FUNC_map_lookup_percpu_elem:
9130                 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9131                     map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9132                     map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9133                         goto error;
9134                 break;
9135         case BPF_FUNC_sk_storage_get:
9136         case BPF_FUNC_sk_storage_delete:
9137                 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9138                         goto error;
9139                 break;
9140         case BPF_FUNC_inode_storage_get:
9141         case BPF_FUNC_inode_storage_delete:
9142                 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9143                         goto error;
9144                 break;
9145         case BPF_FUNC_task_storage_get:
9146         case BPF_FUNC_task_storage_delete:
9147                 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9148                         goto error;
9149                 break;
9150         case BPF_FUNC_cgrp_storage_get:
9151         case BPF_FUNC_cgrp_storage_delete:
9152                 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9153                         goto error;
9154                 break;
9155         default:
9156                 break;
9157         }
9158
9159         return 0;
9160 error:
9161         verbose(env, "cannot pass map_type %d into func %s#%d\n",
9162                 map->map_type, func_id_name(func_id), func_id);
9163         return -EINVAL;
9164 }
9165
9166 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9167 {
9168         int count = 0;
9169
9170         if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9171                 count++;
9172         if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9173                 count++;
9174         if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9175                 count++;
9176         if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9177                 count++;
9178         if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9179                 count++;
9180
9181         /* We only support one arg being in raw mode at the moment,
9182          * which is sufficient for the helper functions we have
9183          * right now.
9184          */
9185         return count <= 1;
9186 }
9187
9188 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9189 {
9190         bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9191         bool has_size = fn->arg_size[arg] != 0;
9192         bool is_next_size = false;
9193
9194         if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9195                 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9196
9197         if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9198                 return is_next_size;
9199
9200         return has_size == is_next_size || is_next_size == is_fixed;
9201 }
9202
9203 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9204 {
9205         /* bpf_xxx(..., buf, len) call will access 'len'
9206          * bytes from memory 'buf'. Both arg types need
9207          * to be paired, so make sure there's no buggy
9208          * helper function specification.
9209          */
9210         if (arg_type_is_mem_size(fn->arg1_type) ||
9211             check_args_pair_invalid(fn, 0) ||
9212             check_args_pair_invalid(fn, 1) ||
9213             check_args_pair_invalid(fn, 2) ||
9214             check_args_pair_invalid(fn, 3) ||
9215             check_args_pair_invalid(fn, 4))
9216                 return false;
9217
9218         return true;
9219 }
9220
9221 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9222 {
9223         int i;
9224
9225         for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9226                 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9227                         return !!fn->arg_btf_id[i];
9228                 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9229                         return fn->arg_btf_id[i] == BPF_PTR_POISON;
9230                 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9231                     /* arg_btf_id and arg_size are in a union. */
9232                     (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9233                      !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9234                         return false;
9235         }
9236
9237         return true;
9238 }
9239
9240 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9241 {
9242         return check_raw_mode_ok(fn) &&
9243                check_arg_pair_ok(fn) &&
9244                check_btf_id_ok(fn) ? 0 : -EINVAL;
9245 }
9246
9247 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9248  * are now invalid, so turn them into unknown SCALAR_VALUE.
9249  *
9250  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9251  * since these slices point to packet data.
9252  */
9253 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9254 {
9255         struct bpf_func_state *state;
9256         struct bpf_reg_state *reg;
9257
9258         bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9259                 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9260                         mark_reg_invalid(env, reg);
9261         }));
9262 }
9263
9264 enum {
9265         AT_PKT_END = -1,
9266         BEYOND_PKT_END = -2,
9267 };
9268
9269 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9270 {
9271         struct bpf_func_state *state = vstate->frame[vstate->curframe];
9272         struct bpf_reg_state *reg = &state->regs[regn];
9273
9274         if (reg->type != PTR_TO_PACKET)
9275                 /* PTR_TO_PACKET_META is not supported yet */
9276                 return;
9277
9278         /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9279          * How far beyond pkt_end it goes is unknown.
9280          * if (!range_open) it's the case of pkt >= pkt_end
9281          * if (range_open) it's the case of pkt > pkt_end
9282          * hence this pointer is at least 1 byte bigger than pkt_end
9283          */
9284         if (range_open)
9285                 reg->range = BEYOND_PKT_END;
9286         else
9287                 reg->range = AT_PKT_END;
9288 }
9289
9290 /* The pointer with the specified id has released its reference to kernel
9291  * resources. Identify all copies of the same pointer and clear the reference.
9292  */
9293 static int release_reference(struct bpf_verifier_env *env,
9294                              int ref_obj_id)
9295 {
9296         struct bpf_func_state *state;
9297         struct bpf_reg_state *reg;
9298         int err;
9299
9300         err = release_reference_state(cur_func(env), ref_obj_id);
9301         if (err)
9302                 return err;
9303
9304         bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9305                 if (reg->ref_obj_id == ref_obj_id)
9306                         mark_reg_invalid(env, reg);
9307         }));
9308
9309         return 0;
9310 }
9311
9312 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9313 {
9314         struct bpf_func_state *unused;
9315         struct bpf_reg_state *reg;
9316
9317         bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9318                 if (type_is_non_owning_ref(reg->type))
9319                         mark_reg_invalid(env, reg);
9320         }));
9321 }
9322
9323 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9324                                     struct bpf_reg_state *regs)
9325 {
9326         int i;
9327
9328         /* after the call registers r0 - r5 were scratched */
9329         for (i = 0; i < CALLER_SAVED_REGS; i++) {
9330                 mark_reg_not_init(env, regs, caller_saved[i]);
9331                 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9332         }
9333 }
9334
9335 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9336                                    struct bpf_func_state *caller,
9337                                    struct bpf_func_state *callee,
9338                                    int insn_idx);
9339
9340 static int set_callee_state(struct bpf_verifier_env *env,
9341                             struct bpf_func_state *caller,
9342                             struct bpf_func_state *callee, int insn_idx);
9343
9344 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9345                              int *insn_idx, int subprog,
9346                              set_callee_state_fn set_callee_state_cb)
9347 {
9348         struct bpf_verifier_state *state = env->cur_state;
9349         struct bpf_func_state *caller, *callee;
9350         int err;
9351
9352         if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9353                 verbose(env, "the call stack of %d frames is too deep\n",
9354                         state->curframe + 2);
9355                 return -E2BIG;
9356         }
9357
9358         caller = state->frame[state->curframe];
9359         if (state->frame[state->curframe + 1]) {
9360                 verbose(env, "verifier bug. Frame %d already allocated\n",
9361                         state->curframe + 1);
9362                 return -EFAULT;
9363         }
9364
9365         err = btf_check_subprog_call(env, subprog, caller->regs);
9366         if (err == -EFAULT)
9367                 return err;
9368         if (subprog_is_global(env, subprog)) {
9369                 if (err) {
9370                         verbose(env, "Caller passes invalid args into func#%d\n",
9371                                 subprog);
9372                         return err;
9373                 } else {
9374                         if (env->log.level & BPF_LOG_LEVEL)
9375                                 verbose(env,
9376                                         "Func#%d is global and valid. Skipping.\n",
9377                                         subprog);
9378                         clear_caller_saved_regs(env, caller->regs);
9379
9380                         /* All global functions return a 64-bit SCALAR_VALUE */
9381                         mark_reg_unknown(env, caller->regs, BPF_REG_0);
9382                         caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9383
9384                         /* continue with next insn after call */
9385                         return 0;
9386                 }
9387         }
9388
9389         /* set_callee_state is used for direct subprog calls, but we are
9390          * interested in validating only BPF helpers that can call subprogs as
9391          * callbacks
9392          */
9393         if (set_callee_state_cb != set_callee_state) {
9394                 env->subprog_info[subprog].is_cb = true;
9395                 if (bpf_pseudo_kfunc_call(insn) &&
9396                     !is_callback_calling_kfunc(insn->imm)) {
9397                         verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9398                                 func_id_name(insn->imm), insn->imm);
9399                         return -EFAULT;
9400                 } else if (!bpf_pseudo_kfunc_call(insn) &&
9401                            !is_callback_calling_function(insn->imm)) { /* helper */
9402                         verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9403                                 func_id_name(insn->imm), insn->imm);
9404                         return -EFAULT;
9405                 }
9406         }
9407
9408         if (insn->code == (BPF_JMP | BPF_CALL) &&
9409             insn->src_reg == 0 &&
9410             insn->imm == BPF_FUNC_timer_set_callback) {
9411                 struct bpf_verifier_state *async_cb;
9412
9413                 /* there is no real recursion here. timer callbacks are async */
9414                 env->subprog_info[subprog].is_async_cb = true;
9415                 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9416                                          *insn_idx, subprog);
9417                 if (!async_cb)
9418                         return -EFAULT;
9419                 callee = async_cb->frame[0];
9420                 callee->async_entry_cnt = caller->async_entry_cnt + 1;
9421
9422                 /* Convert bpf_timer_set_callback() args into timer callback args */
9423                 err = set_callee_state_cb(env, caller, callee, *insn_idx);
9424                 if (err)
9425                         return err;
9426
9427                 clear_caller_saved_regs(env, caller->regs);
9428                 mark_reg_unknown(env, caller->regs, BPF_REG_0);
9429                 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9430                 /* continue with next insn after call */
9431                 return 0;
9432         }
9433
9434         callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9435         if (!callee)
9436                 return -ENOMEM;
9437         state->frame[state->curframe + 1] = callee;
9438
9439         /* callee cannot access r0, r6 - r9 for reading and has to write
9440          * into its own stack before reading from it.
9441          * callee can read/write into caller's stack
9442          */
9443         init_func_state(env, callee,
9444                         /* remember the callsite, it will be used by bpf_exit */
9445                         *insn_idx /* callsite */,
9446                         state->curframe + 1 /* frameno within this callchain */,
9447                         subprog /* subprog number within this prog */);
9448
9449         /* Transfer references to the callee */
9450         err = copy_reference_state(callee, caller);
9451         if (err)
9452                 goto err_out;
9453
9454         err = set_callee_state_cb(env, caller, callee, *insn_idx);
9455         if (err)
9456                 goto err_out;
9457
9458         clear_caller_saved_regs(env, caller->regs);
9459
9460         /* only increment it after check_reg_arg() finished */
9461         state->curframe++;
9462
9463         /* and go analyze first insn of the callee */
9464         *insn_idx = env->subprog_info[subprog].start - 1;
9465
9466         if (env->log.level & BPF_LOG_LEVEL) {
9467                 verbose(env, "caller:\n");
9468                 print_verifier_state(env, caller, true);
9469                 verbose(env, "callee:\n");
9470                 print_verifier_state(env, callee, true);
9471         }
9472         return 0;
9473
9474 err_out:
9475         free_func_state(callee);
9476         state->frame[state->curframe + 1] = NULL;
9477         return err;
9478 }
9479
9480 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9481                                    struct bpf_func_state *caller,
9482                                    struct bpf_func_state *callee)
9483 {
9484         /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9485          *      void *callback_ctx, u64 flags);
9486          * callback_fn(struct bpf_map *map, void *key, void *value,
9487          *      void *callback_ctx);
9488          */
9489         callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9490
9491         callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9492         __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9493         callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9494
9495         callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9496         __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9497         callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9498
9499         /* pointer to stack or null */
9500         callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9501
9502         /* unused */
9503         __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9504         return 0;
9505 }
9506
9507 static int set_callee_state(struct bpf_verifier_env *env,
9508                             struct bpf_func_state *caller,
9509                             struct bpf_func_state *callee, int insn_idx)
9510 {
9511         int i;
9512
9513         /* copy r1 - r5 args that callee can access.  The copy includes parent
9514          * pointers, which connects us up to the liveness chain
9515          */
9516         for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9517                 callee->regs[i] = caller->regs[i];
9518         return 0;
9519 }
9520
9521 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9522                            int *insn_idx)
9523 {
9524         int subprog, target_insn;
9525
9526         target_insn = *insn_idx + insn->imm + 1;
9527         subprog = find_subprog(env, target_insn);
9528         if (subprog < 0) {
9529                 verbose(env, "verifier bug. No program starts at insn %d\n",
9530                         target_insn);
9531                 return -EFAULT;
9532         }
9533
9534         return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9535 }
9536
9537 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9538                                        struct bpf_func_state *caller,
9539                                        struct bpf_func_state *callee,
9540                                        int insn_idx)
9541 {
9542         struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9543         struct bpf_map *map;
9544         int err;
9545
9546         if (bpf_map_ptr_poisoned(insn_aux)) {
9547                 verbose(env, "tail_call abusing map_ptr\n");
9548                 return -EINVAL;
9549         }
9550
9551         map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9552         if (!map->ops->map_set_for_each_callback_args ||
9553             !map->ops->map_for_each_callback) {
9554                 verbose(env, "callback function not allowed for map\n");
9555                 return -ENOTSUPP;
9556         }
9557
9558         err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9559         if (err)
9560                 return err;
9561
9562         callee->in_callback_fn = true;
9563         callee->callback_ret_range = tnum_range(0, 1);
9564         return 0;
9565 }
9566
9567 static int set_loop_callback_state(struct bpf_verifier_env *env,
9568                                    struct bpf_func_state *caller,
9569                                    struct bpf_func_state *callee,
9570                                    int insn_idx)
9571 {
9572         /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9573          *          u64 flags);
9574          * callback_fn(u32 index, void *callback_ctx);
9575          */
9576         callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9577         callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9578
9579         /* unused */
9580         __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9581         __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9582         __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9583
9584         callee->in_callback_fn = true;
9585         callee->callback_ret_range = tnum_range(0, 1);
9586         return 0;
9587 }
9588
9589 static int set_timer_callback_state(struct bpf_verifier_env *env,
9590                                     struct bpf_func_state *caller,
9591                                     struct bpf_func_state *callee,
9592                                     int insn_idx)
9593 {
9594         struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9595
9596         /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9597          * callback_fn(struct bpf_map *map, void *key, void *value);
9598          */
9599         callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9600         __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9601         callee->regs[BPF_REG_1].map_ptr = map_ptr;
9602
9603         callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9604         __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9605         callee->regs[BPF_REG_2].map_ptr = map_ptr;
9606
9607         callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9608         __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9609         callee->regs[BPF_REG_3].map_ptr = map_ptr;
9610
9611         /* unused */
9612         __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9613         __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9614         callee->in_async_callback_fn = true;
9615         callee->callback_ret_range = tnum_range(0, 1);
9616         return 0;
9617 }
9618
9619 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9620                                        struct bpf_func_state *caller,
9621                                        struct bpf_func_state *callee,
9622                                        int insn_idx)
9623 {
9624         /* bpf_find_vma(struct task_struct *task, u64 addr,
9625          *               void *callback_fn, void *callback_ctx, u64 flags)
9626          * (callback_fn)(struct task_struct *task,
9627          *               struct vm_area_struct *vma, void *callback_ctx);
9628          */
9629         callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9630
9631         callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9632         __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9633         callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9634         callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9635
9636         /* pointer to stack or null */
9637         callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9638
9639         /* unused */
9640         __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9641         __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9642         callee->in_callback_fn = true;
9643         callee->callback_ret_range = tnum_range(0, 1);
9644         return 0;
9645 }
9646
9647 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9648                                            struct bpf_func_state *caller,
9649                                            struct bpf_func_state *callee,
9650                                            int insn_idx)
9651 {
9652         /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9653          *                        callback_ctx, u64 flags);
9654          * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9655          */
9656         __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9657         mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9658         callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9659
9660         /* unused */
9661         __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9662         __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9663         __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9664
9665         callee->in_callback_fn = true;
9666         callee->callback_ret_range = tnum_range(0, 1);
9667         return 0;
9668 }
9669
9670 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9671                                          struct bpf_func_state *caller,
9672                                          struct bpf_func_state *callee,
9673                                          int insn_idx)
9674 {
9675         /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9676          *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9677          *
9678          * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9679          * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9680          * by this point, so look at 'root'
9681          */
9682         struct btf_field *field;
9683
9684         field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9685                                       BPF_RB_ROOT);
9686         if (!field || !field->graph_root.value_btf_id)
9687                 return -EFAULT;
9688
9689         mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9690         ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9691         mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9692         ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9693
9694         __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9695         __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9696         __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9697         callee->in_callback_fn = true;
9698         callee->callback_ret_range = tnum_range(0, 1);
9699         return 0;
9700 }
9701
9702 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9703
9704 /* Are we currently verifying the callback for a rbtree helper that must
9705  * be called with lock held? If so, no need to complain about unreleased
9706  * lock
9707  */
9708 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9709 {
9710         struct bpf_verifier_state *state = env->cur_state;
9711         struct bpf_insn *insn = env->prog->insnsi;
9712         struct bpf_func_state *callee;
9713         int kfunc_btf_id;
9714
9715         if (!state->curframe)
9716                 return false;
9717
9718         callee = state->frame[state->curframe];
9719
9720         if (!callee->in_callback_fn)
9721                 return false;
9722
9723         kfunc_btf_id = insn[callee->callsite].imm;
9724         return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9725 }
9726
9727 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9728 {
9729         struct bpf_verifier_state *state = env->cur_state;
9730         struct bpf_func_state *caller, *callee;
9731         struct bpf_reg_state *r0;
9732         int err;
9733
9734         callee = state->frame[state->curframe];
9735         r0 = &callee->regs[BPF_REG_0];
9736         if (r0->type == PTR_TO_STACK) {
9737                 /* technically it's ok to return caller's stack pointer
9738                  * (or caller's caller's pointer) back to the caller,
9739                  * since these pointers are valid. Only current stack
9740                  * pointer will be invalid as soon as function exits,
9741                  * but let's be conservative
9742                  */
9743                 verbose(env, "cannot return stack pointer to the caller\n");
9744                 return -EINVAL;
9745         }
9746
9747         caller = state->frame[state->curframe - 1];
9748         if (callee->in_callback_fn) {
9749                 /* enforce R0 return value range [0, 1]. */
9750                 struct tnum range = callee->callback_ret_range;
9751
9752                 if (r0->type != SCALAR_VALUE) {
9753                         verbose(env, "R0 not a scalar value\n");
9754                         return -EACCES;
9755                 }
9756                 if (!tnum_in(range, r0->var_off)) {
9757                         verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9758                         return -EINVAL;
9759                 }
9760         } else {
9761                 /* return to the caller whatever r0 had in the callee */
9762                 caller->regs[BPF_REG_0] = *r0;
9763         }
9764
9765         /* callback_fn frame should have released its own additions to parent's
9766          * reference state at this point, or check_reference_leak would
9767          * complain, hence it must be the same as the caller. There is no need
9768          * to copy it back.
9769          */
9770         if (!callee->in_callback_fn) {
9771                 /* Transfer references to the caller */
9772                 err = copy_reference_state(caller, callee);
9773                 if (err)
9774                         return err;
9775         }
9776
9777         *insn_idx = callee->callsite + 1;
9778         if (env->log.level & BPF_LOG_LEVEL) {
9779                 verbose(env, "returning from callee:\n");
9780                 print_verifier_state(env, callee, true);
9781                 verbose(env, "to caller at %d:\n", *insn_idx);
9782                 print_verifier_state(env, caller, true);
9783         }
9784         /* clear everything in the callee. In case of exceptional exits using
9785          * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9786         free_func_state(callee);
9787         state->frame[state->curframe--] = NULL;
9788         return 0;
9789 }
9790
9791 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9792                                    int func_id,
9793                                    struct bpf_call_arg_meta *meta)
9794 {
9795         struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9796
9797         if (ret_type != RET_INTEGER)
9798                 return;
9799
9800         switch (func_id) {
9801         case BPF_FUNC_get_stack:
9802         case BPF_FUNC_get_task_stack:
9803         case BPF_FUNC_probe_read_str:
9804         case BPF_FUNC_probe_read_kernel_str:
9805         case BPF_FUNC_probe_read_user_str:
9806                 ret_reg->smax_value = meta->msize_max_value;
9807                 ret_reg->s32_max_value = meta->msize_max_value;
9808                 ret_reg->smin_value = -MAX_ERRNO;
9809                 ret_reg->s32_min_value = -MAX_ERRNO;
9810                 reg_bounds_sync(ret_reg);
9811                 break;
9812         case BPF_FUNC_get_smp_processor_id:
9813                 ret_reg->umax_value = nr_cpu_ids - 1;
9814                 ret_reg->u32_max_value = nr_cpu_ids - 1;
9815                 ret_reg->smax_value = nr_cpu_ids - 1;
9816                 ret_reg->s32_max_value = nr_cpu_ids - 1;
9817                 ret_reg->umin_value = 0;
9818                 ret_reg->u32_min_value = 0;
9819                 ret_reg->smin_value = 0;
9820                 ret_reg->s32_min_value = 0;
9821                 reg_bounds_sync(ret_reg);
9822                 break;
9823         }
9824 }
9825
9826 static int
9827 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9828                 int func_id, int insn_idx)
9829 {
9830         struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9831         struct bpf_map *map = meta->map_ptr;
9832
9833         if (func_id != BPF_FUNC_tail_call &&
9834             func_id != BPF_FUNC_map_lookup_elem &&
9835             func_id != BPF_FUNC_map_update_elem &&
9836             func_id != BPF_FUNC_map_delete_elem &&
9837             func_id != BPF_FUNC_map_push_elem &&
9838             func_id != BPF_FUNC_map_pop_elem &&
9839             func_id != BPF_FUNC_map_peek_elem &&
9840             func_id != BPF_FUNC_for_each_map_elem &&
9841             func_id != BPF_FUNC_redirect_map &&
9842             func_id != BPF_FUNC_map_lookup_percpu_elem)
9843                 return 0;
9844
9845         if (map == NULL) {
9846                 verbose(env, "kernel subsystem misconfigured verifier\n");
9847                 return -EINVAL;
9848         }
9849
9850         /* In case of read-only, some additional restrictions
9851          * need to be applied in order to prevent altering the
9852          * state of the map from program side.
9853          */
9854         if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9855             (func_id == BPF_FUNC_map_delete_elem ||
9856              func_id == BPF_FUNC_map_update_elem ||
9857              func_id == BPF_FUNC_map_push_elem ||
9858              func_id == BPF_FUNC_map_pop_elem)) {
9859                 verbose(env, "write into map forbidden\n");
9860                 return -EACCES;
9861         }
9862
9863         if (!BPF_MAP_PTR(aux->map_ptr_state))
9864                 bpf_map_ptr_store(aux, meta->map_ptr,
9865                                   !meta->map_ptr->bypass_spec_v1);
9866         else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9867                 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9868                                   !meta->map_ptr->bypass_spec_v1);
9869         return 0;
9870 }
9871
9872 static int
9873 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9874                 int func_id, int insn_idx)
9875 {
9876         struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9877         struct bpf_reg_state *regs = cur_regs(env), *reg;
9878         struct bpf_map *map = meta->map_ptr;
9879         u64 val, max;
9880         int err;
9881
9882         if (func_id != BPF_FUNC_tail_call)
9883                 return 0;
9884         if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9885                 verbose(env, "kernel subsystem misconfigured verifier\n");
9886                 return -EINVAL;
9887         }
9888
9889         reg = &regs[BPF_REG_3];
9890         val = reg->var_off.value;
9891         max = map->max_entries;
9892
9893         if (!(register_is_const(reg) && val < max)) {
9894                 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9895                 return 0;
9896         }
9897
9898         err = mark_chain_precision(env, BPF_REG_3);
9899         if (err)
9900                 return err;
9901         if (bpf_map_key_unseen(aux))
9902                 bpf_map_key_store(aux, val);
9903         else if (!bpf_map_key_poisoned(aux) &&
9904                   bpf_map_key_immediate(aux) != val)
9905                 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9906         return 0;
9907 }
9908
9909 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9910 {
9911         struct bpf_func_state *state = cur_func(env);
9912         bool refs_lingering = false;
9913         int i;
9914
9915         if (!exception_exit && state->frameno && !state->in_callback_fn)
9916                 return 0;
9917
9918         for (i = 0; i < state->acquired_refs; i++) {
9919                 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9920                         continue;
9921                 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9922                         state->refs[i].id, state->refs[i].insn_idx);
9923                 refs_lingering = true;
9924         }
9925         return refs_lingering ? -EINVAL : 0;
9926 }
9927
9928 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9929                                    struct bpf_reg_state *regs)
9930 {
9931         struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9932         struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9933         struct bpf_map *fmt_map = fmt_reg->map_ptr;
9934         struct bpf_bprintf_data data = {};
9935         int err, fmt_map_off, num_args;
9936         u64 fmt_addr;
9937         char *fmt;
9938
9939         /* data must be an array of u64 */
9940         if (data_len_reg->var_off.value % 8)
9941                 return -EINVAL;
9942         num_args = data_len_reg->var_off.value / 8;
9943
9944         /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9945          * and map_direct_value_addr is set.
9946          */
9947         fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9948         err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9949                                                   fmt_map_off);
9950         if (err) {
9951                 verbose(env, "verifier bug\n");
9952                 return -EFAULT;
9953         }
9954         fmt = (char *)(long)fmt_addr + fmt_map_off;
9955
9956         /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9957          * can focus on validating the format specifiers.
9958          */
9959         err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9960         if (err < 0)
9961                 verbose(env, "Invalid format string\n");
9962
9963         return err;
9964 }
9965
9966 static int check_get_func_ip(struct bpf_verifier_env *env)
9967 {
9968         enum bpf_prog_type type = resolve_prog_type(env->prog);
9969         int func_id = BPF_FUNC_get_func_ip;
9970
9971         if (type == BPF_PROG_TYPE_TRACING) {
9972                 if (!bpf_prog_has_trampoline(env->prog)) {
9973                         verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9974                                 func_id_name(func_id), func_id);
9975                         return -ENOTSUPP;
9976                 }
9977                 return 0;
9978         } else if (type == BPF_PROG_TYPE_KPROBE) {
9979                 return 0;
9980         }
9981
9982         verbose(env, "func %s#%d not supported for program type %d\n",
9983                 func_id_name(func_id), func_id, type);
9984         return -ENOTSUPP;
9985 }
9986
9987 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9988 {
9989         return &env->insn_aux_data[env->insn_idx];
9990 }
9991
9992 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9993 {
9994         struct bpf_reg_state *regs = cur_regs(env);
9995         struct bpf_reg_state *reg = &regs[BPF_REG_4];
9996         bool reg_is_null = register_is_null(reg);
9997
9998         if (reg_is_null)
9999                 mark_chain_precision(env, BPF_REG_4);
10000
10001         return reg_is_null;
10002 }
10003
10004 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10005 {
10006         struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10007
10008         if (!state->initialized) {
10009                 state->initialized = 1;
10010                 state->fit_for_inline = loop_flag_is_zero(env);
10011                 state->callback_subprogno = subprogno;
10012                 return;
10013         }
10014
10015         if (!state->fit_for_inline)
10016                 return;
10017
10018         state->fit_for_inline = (loop_flag_is_zero(env) &&
10019                                  state->callback_subprogno == subprogno);
10020 }
10021
10022 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10023                              int *insn_idx_p)
10024 {
10025         enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10026         bool returns_cpu_specific_alloc_ptr = false;
10027         const struct bpf_func_proto *fn = NULL;
10028         enum bpf_return_type ret_type;
10029         enum bpf_type_flag ret_flag;
10030         struct bpf_reg_state *regs;
10031         struct bpf_call_arg_meta meta;
10032         int insn_idx = *insn_idx_p;
10033         bool changes_data;
10034         int i, err, func_id;
10035
10036         /* find function prototype */
10037         func_id = insn->imm;
10038         if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10039                 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10040                         func_id);
10041                 return -EINVAL;
10042         }
10043
10044         if (env->ops->get_func_proto)
10045                 fn = env->ops->get_func_proto(func_id, env->prog);
10046         if (!fn) {
10047                 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10048                         func_id);
10049                 return -EINVAL;
10050         }
10051
10052         /* eBPF programs must be GPL compatible to use GPL-ed functions */
10053         if (!env->prog->gpl_compatible && fn->gpl_only) {
10054                 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10055                 return -EINVAL;
10056         }
10057
10058         if (fn->allowed && !fn->allowed(env->prog)) {
10059                 verbose(env, "helper call is not allowed in probe\n");
10060                 return -EINVAL;
10061         }
10062
10063         if (!env->prog->aux->sleepable && fn->might_sleep) {
10064                 verbose(env, "helper call might sleep in a non-sleepable prog\n");
10065                 return -EINVAL;
10066         }
10067
10068         /* With LD_ABS/IND some JITs save/restore skb from r1. */
10069         changes_data = bpf_helper_changes_pkt_data(fn->func);
10070         if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10071                 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10072                         func_id_name(func_id), func_id);
10073                 return -EINVAL;
10074         }
10075
10076         memset(&meta, 0, sizeof(meta));
10077         meta.pkt_access = fn->pkt_access;
10078
10079         err = check_func_proto(fn, func_id);
10080         if (err) {
10081                 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10082                         func_id_name(func_id), func_id);
10083                 return err;
10084         }
10085
10086         if (env->cur_state->active_rcu_lock) {
10087                 if (fn->might_sleep) {
10088                         verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10089                                 func_id_name(func_id), func_id);
10090                         return -EINVAL;
10091                 }
10092
10093                 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10094                         env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10095         }
10096
10097         meta.func_id = func_id;
10098         /* check args */
10099         for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10100                 err = check_func_arg(env, i, &meta, fn, insn_idx);
10101                 if (err)
10102                         return err;
10103         }
10104
10105         err = record_func_map(env, &meta, func_id, insn_idx);
10106         if (err)
10107                 return err;
10108
10109         err = record_func_key(env, &meta, func_id, insn_idx);
10110         if (err)
10111                 return err;
10112
10113         /* Mark slots with STACK_MISC in case of raw mode, stack offset
10114          * is inferred from register state.
10115          */
10116         for (i = 0; i < meta.access_size; i++) {
10117                 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10118                                        BPF_WRITE, -1, false, false);
10119                 if (err)
10120                         return err;
10121         }
10122
10123         regs = cur_regs(env);
10124
10125         if (meta.release_regno) {
10126                 err = -EINVAL;
10127                 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10128                  * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10129                  * is safe to do directly.
10130                  */
10131                 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10132                         if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10133                                 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10134                                 return -EFAULT;
10135                         }
10136                         err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10137                 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10138                         u32 ref_obj_id = meta.ref_obj_id;
10139                         bool in_rcu = in_rcu_cs(env);
10140                         struct bpf_func_state *state;
10141                         struct bpf_reg_state *reg;
10142
10143                         err = release_reference_state(cur_func(env), ref_obj_id);
10144                         if (!err) {
10145                                 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10146                                         if (reg->ref_obj_id == ref_obj_id) {
10147                                                 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10148                                                         reg->ref_obj_id = 0;
10149                                                         reg->type &= ~MEM_ALLOC;
10150                                                         reg->type |= MEM_RCU;
10151                                                 } else {
10152                                                         mark_reg_invalid(env, reg);
10153                                                 }
10154                                         }
10155                                 }));
10156                         }
10157                 } else if (meta.ref_obj_id) {
10158                         err = release_reference(env, meta.ref_obj_id);
10159                 } else if (register_is_null(&regs[meta.release_regno])) {
10160                         /* meta.ref_obj_id can only be 0 if register that is meant to be
10161                          * released is NULL, which must be > R0.
10162                          */
10163                         err = 0;
10164                 }
10165                 if (err) {
10166                         verbose(env, "func %s#%d reference has not been acquired before\n",
10167                                 func_id_name(func_id), func_id);
10168                         return err;
10169                 }
10170         }
10171
10172         switch (func_id) {
10173         case BPF_FUNC_tail_call:
10174                 err = check_reference_leak(env, false);
10175                 if (err) {
10176                         verbose(env, "tail_call would lead to reference leak\n");
10177                         return err;
10178                 }
10179                 break;
10180         case BPF_FUNC_get_local_storage:
10181                 /* check that flags argument in get_local_storage(map, flags) is 0,
10182                  * this is required because get_local_storage() can't return an error.
10183                  */
10184                 if (!register_is_null(&regs[BPF_REG_2])) {
10185                         verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10186                         return -EINVAL;
10187                 }
10188                 break;
10189         case BPF_FUNC_for_each_map_elem:
10190                 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10191                                         set_map_elem_callback_state);
10192                 break;
10193         case BPF_FUNC_timer_set_callback:
10194                 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10195                                         set_timer_callback_state);
10196                 break;
10197         case BPF_FUNC_find_vma:
10198                 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10199                                         set_find_vma_callback_state);
10200                 break;
10201         case BPF_FUNC_snprintf:
10202                 err = check_bpf_snprintf_call(env, regs);
10203                 break;
10204         case BPF_FUNC_loop:
10205                 update_loop_inline_state(env, meta.subprogno);
10206                 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10207                                         set_loop_callback_state);
10208                 break;
10209         case BPF_FUNC_dynptr_from_mem:
10210                 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10211                         verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10212                                 reg_type_str(env, regs[BPF_REG_1].type));
10213                         return -EACCES;
10214                 }
10215                 break;
10216         case BPF_FUNC_set_retval:
10217                 if (prog_type == BPF_PROG_TYPE_LSM &&
10218                     env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10219                         if (!env->prog->aux->attach_func_proto->type) {
10220                                 /* Make sure programs that attach to void
10221                                  * hooks don't try to modify return value.
10222                                  */
10223                                 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10224                                 return -EINVAL;
10225                         }
10226                 }
10227                 break;
10228         case BPF_FUNC_dynptr_data:
10229         {
10230                 struct bpf_reg_state *reg;
10231                 int id, ref_obj_id;
10232
10233                 reg = get_dynptr_arg_reg(env, fn, regs);
10234                 if (!reg)
10235                         return -EFAULT;
10236
10237
10238                 if (meta.dynptr_id) {
10239                         verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10240                         return -EFAULT;
10241                 }
10242                 if (meta.ref_obj_id) {
10243                         verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10244                         return -EFAULT;
10245                 }
10246
10247                 id = dynptr_id(env, reg);
10248                 if (id < 0) {
10249                         verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10250                         return id;
10251                 }
10252
10253                 ref_obj_id = dynptr_ref_obj_id(env, reg);
10254                 if (ref_obj_id < 0) {
10255                         verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10256                         return ref_obj_id;
10257                 }
10258
10259                 meta.dynptr_id = id;
10260                 meta.ref_obj_id = ref_obj_id;
10261
10262                 break;
10263         }
10264         case BPF_FUNC_dynptr_write:
10265         {
10266                 enum bpf_dynptr_type dynptr_type;
10267                 struct bpf_reg_state *reg;
10268
10269                 reg = get_dynptr_arg_reg(env, fn, regs);
10270                 if (!reg)
10271                         return -EFAULT;
10272
10273                 dynptr_type = dynptr_get_type(env, reg);
10274                 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10275                         return -EFAULT;
10276
10277                 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10278                         /* this will trigger clear_all_pkt_pointers(), which will
10279                          * invalidate all dynptr slices associated with the skb
10280                          */
10281                         changes_data = true;
10282
10283                 break;
10284         }
10285         case BPF_FUNC_per_cpu_ptr:
10286         case BPF_FUNC_this_cpu_ptr:
10287         {
10288                 struct bpf_reg_state *reg = &regs[BPF_REG_1];
10289                 const struct btf_type *type;
10290
10291                 if (reg->type & MEM_RCU) {
10292                         type = btf_type_by_id(reg->btf, reg->btf_id);
10293                         if (!type || !btf_type_is_struct(type)) {
10294                                 verbose(env, "Helper has invalid btf/btf_id in R1\n");
10295                                 return -EFAULT;
10296                         }
10297                         returns_cpu_specific_alloc_ptr = true;
10298                         env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10299                 }
10300                 break;
10301         }
10302         case BPF_FUNC_user_ringbuf_drain:
10303                 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10304                                         set_user_ringbuf_callback_state);
10305                 break;
10306         }
10307
10308         if (err)
10309                 return err;
10310
10311         /* reset caller saved regs */
10312         for (i = 0; i < CALLER_SAVED_REGS; i++) {
10313                 mark_reg_not_init(env, regs, caller_saved[i]);
10314                 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10315         }
10316
10317         /* helper call returns 64-bit value. */
10318         regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10319
10320         /* update return register (already marked as written above) */
10321         ret_type = fn->ret_type;
10322         ret_flag = type_flag(ret_type);
10323
10324         switch (base_type(ret_type)) {
10325         case RET_INTEGER:
10326                 /* sets type to SCALAR_VALUE */
10327                 mark_reg_unknown(env, regs, BPF_REG_0);
10328                 break;
10329         case RET_VOID:
10330                 regs[BPF_REG_0].type = NOT_INIT;
10331                 break;
10332         case RET_PTR_TO_MAP_VALUE:
10333                 /* There is no offset yet applied, variable or fixed */
10334                 mark_reg_known_zero(env, regs, BPF_REG_0);
10335                 /* remember map_ptr, so that check_map_access()
10336                  * can check 'value_size' boundary of memory access
10337                  * to map element returned from bpf_map_lookup_elem()
10338                  */
10339                 if (meta.map_ptr == NULL) {
10340                         verbose(env,
10341                                 "kernel subsystem misconfigured verifier\n");
10342                         return -EINVAL;
10343                 }
10344                 regs[BPF_REG_0].map_ptr = meta.map_ptr;
10345                 regs[BPF_REG_0].map_uid = meta.map_uid;
10346                 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10347                 if (!type_may_be_null(ret_type) &&
10348                     btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10349                         regs[BPF_REG_0].id = ++env->id_gen;
10350                 }
10351                 break;
10352         case RET_PTR_TO_SOCKET:
10353                 mark_reg_known_zero(env, regs, BPF_REG_0);
10354                 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10355                 break;
10356         case RET_PTR_TO_SOCK_COMMON:
10357                 mark_reg_known_zero(env, regs, BPF_REG_0);
10358                 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10359                 break;
10360         case RET_PTR_TO_TCP_SOCK:
10361                 mark_reg_known_zero(env, regs, BPF_REG_0);
10362                 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10363                 break;
10364         case RET_PTR_TO_MEM:
10365                 mark_reg_known_zero(env, regs, BPF_REG_0);
10366                 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10367                 regs[BPF_REG_0].mem_size = meta.mem_size;
10368                 break;
10369         case RET_PTR_TO_MEM_OR_BTF_ID:
10370         {
10371                 const struct btf_type *t;
10372
10373                 mark_reg_known_zero(env, regs, BPF_REG_0);
10374                 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10375                 if (!btf_type_is_struct(t)) {
10376                         u32 tsize;
10377                         const struct btf_type *ret;
10378                         const char *tname;
10379
10380                         /* resolve the type size of ksym. */
10381                         ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10382                         if (IS_ERR(ret)) {
10383                                 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10384                                 verbose(env, "unable to resolve the size of type '%s': %ld\n",
10385                                         tname, PTR_ERR(ret));
10386                                 return -EINVAL;
10387                         }
10388                         regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10389                         regs[BPF_REG_0].mem_size = tsize;
10390                 } else {
10391                         if (returns_cpu_specific_alloc_ptr) {
10392                                 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10393                         } else {
10394                                 /* MEM_RDONLY may be carried from ret_flag, but it
10395                                  * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10396                                  * it will confuse the check of PTR_TO_BTF_ID in
10397                                  * check_mem_access().
10398                                  */
10399                                 ret_flag &= ~MEM_RDONLY;
10400                                 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10401                         }
10402
10403                         regs[BPF_REG_0].btf = meta.ret_btf;
10404                         regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10405                 }
10406                 break;
10407         }
10408         case RET_PTR_TO_BTF_ID:
10409         {
10410                 struct btf *ret_btf;
10411                 int ret_btf_id;
10412
10413                 mark_reg_known_zero(env, regs, BPF_REG_0);
10414                 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10415                 if (func_id == BPF_FUNC_kptr_xchg) {
10416                         ret_btf = meta.kptr_field->kptr.btf;
10417                         ret_btf_id = meta.kptr_field->kptr.btf_id;
10418                         if (!btf_is_kernel(ret_btf)) {
10419                                 regs[BPF_REG_0].type |= MEM_ALLOC;
10420                                 if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10421                                         regs[BPF_REG_0].type |= MEM_PERCPU;
10422                         }
10423                 } else {
10424                         if (fn->ret_btf_id == BPF_PTR_POISON) {
10425                                 verbose(env, "verifier internal error:");
10426                                 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10427                                         func_id_name(func_id));
10428                                 return -EINVAL;
10429                         }
10430                         ret_btf = btf_vmlinux;
10431                         ret_btf_id = *fn->ret_btf_id;
10432                 }
10433                 if (ret_btf_id == 0) {
10434                         verbose(env, "invalid return type %u of func %s#%d\n",
10435                                 base_type(ret_type), func_id_name(func_id),
10436                                 func_id);
10437                         return -EINVAL;
10438                 }
10439                 regs[BPF_REG_0].btf = ret_btf;
10440                 regs[BPF_REG_0].btf_id = ret_btf_id;
10441                 break;
10442         }
10443         default:
10444                 verbose(env, "unknown return type %u of func %s#%d\n",
10445                         base_type(ret_type), func_id_name(func_id), func_id);
10446                 return -EINVAL;
10447         }
10448
10449         if (type_may_be_null(regs[BPF_REG_0].type))
10450                 regs[BPF_REG_0].id = ++env->id_gen;
10451
10452         if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10453                 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10454                         func_id_name(func_id), func_id);
10455                 return -EFAULT;
10456         }
10457
10458         if (is_dynptr_ref_function(func_id))
10459                 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10460
10461         if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10462                 /* For release_reference() */
10463                 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10464         } else if (is_acquire_function(func_id, meta.map_ptr)) {
10465                 int id = acquire_reference_state(env, insn_idx);
10466
10467                 if (id < 0)
10468                         return id;
10469                 /* For mark_ptr_or_null_reg() */
10470                 regs[BPF_REG_0].id = id;
10471                 /* For release_reference() */
10472                 regs[BPF_REG_0].ref_obj_id = id;
10473         }
10474
10475         do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10476
10477         err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10478         if (err)
10479                 return err;
10480
10481         if ((func_id == BPF_FUNC_get_stack ||
10482              func_id == BPF_FUNC_get_task_stack) &&
10483             !env->prog->has_callchain_buf) {
10484                 const char *err_str;
10485
10486 #ifdef CONFIG_PERF_EVENTS
10487                 err = get_callchain_buffers(sysctl_perf_event_max_stack);
10488                 err_str = "cannot get callchain buffer for func %s#%d\n";
10489 #else
10490                 err = -ENOTSUPP;
10491                 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10492 #endif
10493                 if (err) {
10494                         verbose(env, err_str, func_id_name(func_id), func_id);
10495                         return err;
10496                 }
10497
10498                 env->prog->has_callchain_buf = true;
10499         }
10500
10501         if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10502                 env->prog->call_get_stack = true;
10503
10504         if (func_id == BPF_FUNC_get_func_ip) {
10505                 if (check_get_func_ip(env))
10506                         return -ENOTSUPP;
10507                 env->prog->call_get_func_ip = true;
10508         }
10509
10510         if (changes_data)
10511                 clear_all_pkt_pointers(env);
10512         return 0;
10513 }
10514
10515 /* mark_btf_func_reg_size() is used when the reg size is determined by
10516  * the BTF func_proto's return value size and argument.
10517  */
10518 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10519                                    size_t reg_size)
10520 {
10521         struct bpf_reg_state *reg = &cur_regs(env)[regno];
10522
10523         if (regno == BPF_REG_0) {
10524                 /* Function return value */
10525                 reg->live |= REG_LIVE_WRITTEN;
10526                 reg->subreg_def = reg_size == sizeof(u64) ?
10527                         DEF_NOT_SUBREG : env->insn_idx + 1;
10528         } else {
10529                 /* Function argument */
10530                 if (reg_size == sizeof(u64)) {
10531                         mark_insn_zext(env, reg);
10532                         mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10533                 } else {
10534                         mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10535                 }
10536         }
10537 }
10538
10539 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10540 {
10541         return meta->kfunc_flags & KF_ACQUIRE;
10542 }
10543
10544 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10545 {
10546         return meta->kfunc_flags & KF_RELEASE;
10547 }
10548
10549 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10550 {
10551         return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10552 }
10553
10554 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10555 {
10556         return meta->kfunc_flags & KF_SLEEPABLE;
10557 }
10558
10559 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10560 {
10561         return meta->kfunc_flags & KF_DESTRUCTIVE;
10562 }
10563
10564 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10565 {
10566         return meta->kfunc_flags & KF_RCU;
10567 }
10568
10569 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10570 {
10571         return meta->kfunc_flags & KF_RCU_PROTECTED;
10572 }
10573
10574 static bool __kfunc_param_match_suffix(const struct btf *btf,
10575                                        const struct btf_param *arg,
10576                                        const char *suffix)
10577 {
10578         int suffix_len = strlen(suffix), len;
10579         const char *param_name;
10580
10581         /* In the future, this can be ported to use BTF tagging */
10582         param_name = btf_name_by_offset(btf, arg->name_off);
10583         if (str_is_empty(param_name))
10584                 return false;
10585         len = strlen(param_name);
10586         if (len < suffix_len)
10587                 return false;
10588         param_name += len - suffix_len;
10589         return !strncmp(param_name, suffix, suffix_len);
10590 }
10591
10592 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10593                                   const struct btf_param *arg,
10594                                   const struct bpf_reg_state *reg)
10595 {
10596         const struct btf_type *t;
10597
10598         t = btf_type_skip_modifiers(btf, arg->type, NULL);
10599         if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10600                 return false;
10601
10602         return __kfunc_param_match_suffix(btf, arg, "__sz");
10603 }
10604
10605 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10606                                         const struct btf_param *arg,
10607                                         const struct bpf_reg_state *reg)
10608 {
10609         const struct btf_type *t;
10610
10611         t = btf_type_skip_modifiers(btf, arg->type, NULL);
10612         if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10613                 return false;
10614
10615         return __kfunc_param_match_suffix(btf, arg, "__szk");
10616 }
10617
10618 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10619 {
10620         return __kfunc_param_match_suffix(btf, arg, "__opt");
10621 }
10622
10623 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10624 {
10625         return __kfunc_param_match_suffix(btf, arg, "__k");
10626 }
10627
10628 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10629 {
10630         return __kfunc_param_match_suffix(btf, arg, "__ign");
10631 }
10632
10633 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10634 {
10635         return __kfunc_param_match_suffix(btf, arg, "__alloc");
10636 }
10637
10638 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10639 {
10640         return __kfunc_param_match_suffix(btf, arg, "__uninit");
10641 }
10642
10643 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10644 {
10645         return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10646 }
10647
10648 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10649 {
10650         return __kfunc_param_match_suffix(btf, arg, "__nullable");
10651 }
10652
10653 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10654                                           const struct btf_param *arg,
10655                                           const char *name)
10656 {
10657         int len, target_len = strlen(name);
10658         const char *param_name;
10659
10660         param_name = btf_name_by_offset(btf, arg->name_off);
10661         if (str_is_empty(param_name))
10662                 return false;
10663         len = strlen(param_name);
10664         if (len != target_len)
10665                 return false;
10666         if (strcmp(param_name, name))
10667                 return false;
10668
10669         return true;
10670 }
10671
10672 enum {
10673         KF_ARG_DYNPTR_ID,
10674         KF_ARG_LIST_HEAD_ID,
10675         KF_ARG_LIST_NODE_ID,
10676         KF_ARG_RB_ROOT_ID,
10677         KF_ARG_RB_NODE_ID,
10678 };
10679
10680 BTF_ID_LIST(kf_arg_btf_ids)
10681 BTF_ID(struct, bpf_dynptr_kern)
10682 BTF_ID(struct, bpf_list_head)
10683 BTF_ID(struct, bpf_list_node)
10684 BTF_ID(struct, bpf_rb_root)
10685 BTF_ID(struct, bpf_rb_node)
10686
10687 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10688                                     const struct btf_param *arg, int type)
10689 {
10690         const struct btf_type *t;
10691         u32 res_id;
10692
10693         t = btf_type_skip_modifiers(btf, arg->type, NULL);
10694         if (!t)
10695                 return false;
10696         if (!btf_type_is_ptr(t))
10697                 return false;
10698         t = btf_type_skip_modifiers(btf, t->type, &res_id);
10699         if (!t)
10700                 return false;
10701         return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10702 }
10703
10704 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10705 {
10706         return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10707 }
10708
10709 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10710 {
10711         return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10712 }
10713
10714 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10715 {
10716         return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10717 }
10718
10719 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10720 {
10721         return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10722 }
10723
10724 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10725 {
10726         return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10727 }
10728
10729 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10730                                   const struct btf_param *arg)
10731 {
10732         const struct btf_type *t;
10733
10734         t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10735         if (!t)
10736                 return false;
10737
10738         return true;
10739 }
10740
10741 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10742 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10743                                         const struct btf *btf,
10744                                         const struct btf_type *t, int rec)
10745 {
10746         const struct btf_type *member_type;
10747         const struct btf_member *member;
10748         u32 i;
10749
10750         if (!btf_type_is_struct(t))
10751                 return false;
10752
10753         for_each_member(i, t, member) {
10754                 const struct btf_array *array;
10755
10756                 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10757                 if (btf_type_is_struct(member_type)) {
10758                         if (rec >= 3) {
10759                                 verbose(env, "max struct nesting depth exceeded\n");
10760                                 return false;
10761                         }
10762                         if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10763                                 return false;
10764                         continue;
10765                 }
10766                 if (btf_type_is_array(member_type)) {
10767                         array = btf_array(member_type);
10768                         if (!array->nelems)
10769                                 return false;
10770                         member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10771                         if (!btf_type_is_scalar(member_type))
10772                                 return false;
10773                         continue;
10774                 }
10775                 if (!btf_type_is_scalar(member_type))
10776                         return false;
10777         }
10778         return true;
10779 }
10780
10781 enum kfunc_ptr_arg_type {
10782         KF_ARG_PTR_TO_CTX,
10783         KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10784         KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10785         KF_ARG_PTR_TO_DYNPTR,
10786         KF_ARG_PTR_TO_ITER,
10787         KF_ARG_PTR_TO_LIST_HEAD,
10788         KF_ARG_PTR_TO_LIST_NODE,
10789         KF_ARG_PTR_TO_BTF_ID,          /* Also covers reg2btf_ids conversions */
10790         KF_ARG_PTR_TO_MEM,
10791         KF_ARG_PTR_TO_MEM_SIZE,        /* Size derived from next argument, skip it */
10792         KF_ARG_PTR_TO_CALLBACK,
10793         KF_ARG_PTR_TO_RB_ROOT,
10794         KF_ARG_PTR_TO_RB_NODE,
10795         KF_ARG_PTR_TO_NULL,
10796 };
10797
10798 enum special_kfunc_type {
10799         KF_bpf_obj_new_impl,
10800         KF_bpf_obj_drop_impl,
10801         KF_bpf_refcount_acquire_impl,
10802         KF_bpf_list_push_front_impl,
10803         KF_bpf_list_push_back_impl,
10804         KF_bpf_list_pop_front,
10805         KF_bpf_list_pop_back,
10806         KF_bpf_cast_to_kern_ctx,
10807         KF_bpf_rdonly_cast,
10808         KF_bpf_rcu_read_lock,
10809         KF_bpf_rcu_read_unlock,
10810         KF_bpf_rbtree_remove,
10811         KF_bpf_rbtree_add_impl,
10812         KF_bpf_rbtree_first,
10813         KF_bpf_dynptr_from_skb,
10814         KF_bpf_dynptr_from_xdp,
10815         KF_bpf_dynptr_slice,
10816         KF_bpf_dynptr_slice_rdwr,
10817         KF_bpf_dynptr_clone,
10818         KF_bpf_percpu_obj_new_impl,
10819         KF_bpf_percpu_obj_drop_impl,
10820         KF_bpf_throw,
10821         KF_bpf_iter_css_task_new,
10822 };
10823
10824 BTF_SET_START(special_kfunc_set)
10825 BTF_ID(func, bpf_obj_new_impl)
10826 BTF_ID(func, bpf_obj_drop_impl)
10827 BTF_ID(func, bpf_refcount_acquire_impl)
10828 BTF_ID(func, bpf_list_push_front_impl)
10829 BTF_ID(func, bpf_list_push_back_impl)
10830 BTF_ID(func, bpf_list_pop_front)
10831 BTF_ID(func, bpf_list_pop_back)
10832 BTF_ID(func, bpf_cast_to_kern_ctx)
10833 BTF_ID(func, bpf_rdonly_cast)
10834 BTF_ID(func, bpf_rbtree_remove)
10835 BTF_ID(func, bpf_rbtree_add_impl)
10836 BTF_ID(func, bpf_rbtree_first)
10837 BTF_ID(func, bpf_dynptr_from_skb)
10838 BTF_ID(func, bpf_dynptr_from_xdp)
10839 BTF_ID(func, bpf_dynptr_slice)
10840 BTF_ID(func, bpf_dynptr_slice_rdwr)
10841 BTF_ID(func, bpf_dynptr_clone)
10842 BTF_ID(func, bpf_percpu_obj_new_impl)
10843 BTF_ID(func, bpf_percpu_obj_drop_impl)
10844 BTF_ID(func, bpf_throw)
10845 #ifdef CONFIG_CGROUPS
10846 BTF_ID(func, bpf_iter_css_task_new)
10847 #endif
10848 BTF_SET_END(special_kfunc_set)
10849
10850 BTF_ID_LIST(special_kfunc_list)
10851 BTF_ID(func, bpf_obj_new_impl)
10852 BTF_ID(func, bpf_obj_drop_impl)
10853 BTF_ID(func, bpf_refcount_acquire_impl)
10854 BTF_ID(func, bpf_list_push_front_impl)
10855 BTF_ID(func, bpf_list_push_back_impl)
10856 BTF_ID(func, bpf_list_pop_front)
10857 BTF_ID(func, bpf_list_pop_back)
10858 BTF_ID(func, bpf_cast_to_kern_ctx)
10859 BTF_ID(func, bpf_rdonly_cast)
10860 BTF_ID(func, bpf_rcu_read_lock)
10861 BTF_ID(func, bpf_rcu_read_unlock)
10862 BTF_ID(func, bpf_rbtree_remove)
10863 BTF_ID(func, bpf_rbtree_add_impl)
10864 BTF_ID(func, bpf_rbtree_first)
10865 BTF_ID(func, bpf_dynptr_from_skb)
10866 BTF_ID(func, bpf_dynptr_from_xdp)
10867 BTF_ID(func, bpf_dynptr_slice)
10868 BTF_ID(func, bpf_dynptr_slice_rdwr)
10869 BTF_ID(func, bpf_dynptr_clone)
10870 BTF_ID(func, bpf_percpu_obj_new_impl)
10871 BTF_ID(func, bpf_percpu_obj_drop_impl)
10872 BTF_ID(func, bpf_throw)
10873 #ifdef CONFIG_CGROUPS
10874 BTF_ID(func, bpf_iter_css_task_new)
10875 #else
10876 BTF_ID_UNUSED
10877 #endif
10878
10879 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10880 {
10881         if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10882             meta->arg_owning_ref) {
10883                 return false;
10884         }
10885
10886         return meta->kfunc_flags & KF_RET_NULL;
10887 }
10888
10889 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10890 {
10891         return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10892 }
10893
10894 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10895 {
10896         return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10897 }
10898
10899 static enum kfunc_ptr_arg_type
10900 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10901                        struct bpf_kfunc_call_arg_meta *meta,
10902                        const struct btf_type *t, const struct btf_type *ref_t,
10903                        const char *ref_tname, const struct btf_param *args,
10904                        int argno, int nargs)
10905 {
10906         u32 regno = argno + 1;
10907         struct bpf_reg_state *regs = cur_regs(env);
10908         struct bpf_reg_state *reg = &regs[regno];
10909         bool arg_mem_size = false;
10910
10911         if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10912                 return KF_ARG_PTR_TO_CTX;
10913
10914         /* In this function, we verify the kfunc's BTF as per the argument type,
10915          * leaving the rest of the verification with respect to the register
10916          * type to our caller. When a set of conditions hold in the BTF type of
10917          * arguments, we resolve it to a known kfunc_ptr_arg_type.
10918          */
10919         if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10920                 return KF_ARG_PTR_TO_CTX;
10921
10922         if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10923                 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10924
10925         if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10926                 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10927
10928         if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10929                 return KF_ARG_PTR_TO_DYNPTR;
10930
10931         if (is_kfunc_arg_iter(meta, argno))
10932                 return KF_ARG_PTR_TO_ITER;
10933
10934         if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10935                 return KF_ARG_PTR_TO_LIST_HEAD;
10936
10937         if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10938                 return KF_ARG_PTR_TO_LIST_NODE;
10939
10940         if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10941                 return KF_ARG_PTR_TO_RB_ROOT;
10942
10943         if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10944                 return KF_ARG_PTR_TO_RB_NODE;
10945
10946         if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10947                 if (!btf_type_is_struct(ref_t)) {
10948                         verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10949                                 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10950                         return -EINVAL;
10951                 }
10952                 return KF_ARG_PTR_TO_BTF_ID;
10953         }
10954
10955         if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10956                 return KF_ARG_PTR_TO_CALLBACK;
10957
10958         if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
10959                 return KF_ARG_PTR_TO_NULL;
10960
10961         if (argno + 1 < nargs &&
10962             (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10963              is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10964                 arg_mem_size = true;
10965
10966         /* This is the catch all argument type of register types supported by
10967          * check_helper_mem_access. However, we only allow when argument type is
10968          * pointer to scalar, or struct composed (recursively) of scalars. When
10969          * arg_mem_size is true, the pointer can be void *.
10970          */
10971         if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10972             (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10973                 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10974                         argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10975                 return -EINVAL;
10976         }
10977         return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10978 }
10979
10980 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10981                                         struct bpf_reg_state *reg,
10982                                         const struct btf_type *ref_t,
10983                                         const char *ref_tname, u32 ref_id,
10984                                         struct bpf_kfunc_call_arg_meta *meta,
10985                                         int argno)
10986 {
10987         const struct btf_type *reg_ref_t;
10988         bool strict_type_match = false;
10989         const struct btf *reg_btf;
10990         const char *reg_ref_tname;
10991         u32 reg_ref_id;
10992
10993         if (base_type(reg->type) == PTR_TO_BTF_ID) {
10994                 reg_btf = reg->btf;
10995                 reg_ref_id = reg->btf_id;
10996         } else {
10997                 reg_btf = btf_vmlinux;
10998                 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10999         }
11000
11001         /* Enforce strict type matching for calls to kfuncs that are acquiring
11002          * or releasing a reference, or are no-cast aliases. We do _not_
11003          * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11004          * as we want to enable BPF programs to pass types that are bitwise
11005          * equivalent without forcing them to explicitly cast with something
11006          * like bpf_cast_to_kern_ctx().
11007          *
11008          * For example, say we had a type like the following:
11009          *
11010          * struct bpf_cpumask {
11011          *      cpumask_t cpumask;
11012          *      refcount_t usage;
11013          * };
11014          *
11015          * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11016          * to a struct cpumask, so it would be safe to pass a struct
11017          * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11018          *
11019          * The philosophy here is similar to how we allow scalars of different
11020          * types to be passed to kfuncs as long as the size is the same. The
11021          * only difference here is that we're simply allowing
11022          * btf_struct_ids_match() to walk the struct at the 0th offset, and
11023          * resolve types.
11024          */
11025         if (is_kfunc_acquire(meta) ||
11026             (is_kfunc_release(meta) && reg->ref_obj_id) ||
11027             btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11028                 strict_type_match = true;
11029
11030         WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11031
11032         reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11033         reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11034         if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11035                 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11036                         meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11037                         btf_type_str(reg_ref_t), reg_ref_tname);
11038                 return -EINVAL;
11039         }
11040         return 0;
11041 }
11042
11043 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11044 {
11045         struct bpf_verifier_state *state = env->cur_state;
11046         struct btf_record *rec = reg_btf_record(reg);
11047
11048         if (!state->active_lock.ptr) {
11049                 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11050                 return -EFAULT;
11051         }
11052
11053         if (type_flag(reg->type) & NON_OWN_REF) {
11054                 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11055                 return -EFAULT;
11056         }
11057
11058         reg->type |= NON_OWN_REF;
11059         if (rec->refcount_off >= 0)
11060                 reg->type |= MEM_RCU;
11061
11062         return 0;
11063 }
11064
11065 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11066 {
11067         struct bpf_func_state *state, *unused;
11068         struct bpf_reg_state *reg;
11069         int i;
11070
11071         state = cur_func(env);
11072
11073         if (!ref_obj_id) {
11074                 verbose(env, "verifier internal error: ref_obj_id is zero for "
11075                              "owning -> non-owning conversion\n");
11076                 return -EFAULT;
11077         }
11078
11079         for (i = 0; i < state->acquired_refs; i++) {
11080                 if (state->refs[i].id != ref_obj_id)
11081                         continue;
11082
11083                 /* Clear ref_obj_id here so release_reference doesn't clobber
11084                  * the whole reg
11085                  */
11086                 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11087                         if (reg->ref_obj_id == ref_obj_id) {
11088                                 reg->ref_obj_id = 0;
11089                                 ref_set_non_owning(env, reg);
11090                         }
11091                 }));
11092                 return 0;
11093         }
11094
11095         verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11096         return -EFAULT;
11097 }
11098
11099 /* Implementation details:
11100  *
11101  * Each register points to some region of memory, which we define as an
11102  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11103  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11104  * allocation. The lock and the data it protects are colocated in the same
11105  * memory region.
11106  *
11107  * Hence, everytime a register holds a pointer value pointing to such
11108  * allocation, the verifier preserves a unique reg->id for it.
11109  *
11110  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11111  * bpf_spin_lock is called.
11112  *
11113  * To enable this, lock state in the verifier captures two values:
11114  *      active_lock.ptr = Register's type specific pointer
11115  *      active_lock.id  = A unique ID for each register pointer value
11116  *
11117  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11118  * supported register types.
11119  *
11120  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11121  * allocated objects is the reg->btf pointer.
11122  *
11123  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11124  * can establish the provenance of the map value statically for each distinct
11125  * lookup into such maps. They always contain a single map value hence unique
11126  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11127  *
11128  * So, in case of global variables, they use array maps with max_entries = 1,
11129  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11130  * into the same map value as max_entries is 1, as described above).
11131  *
11132  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11133  * outer map pointer (in verifier context), but each lookup into an inner map
11134  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11135  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11136  * will get different reg->id assigned to each lookup, hence different
11137  * active_lock.id.
11138  *
11139  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11140  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11141  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11142  */
11143 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11144 {
11145         void *ptr;
11146         u32 id;
11147
11148         switch ((int)reg->type) {
11149         case PTR_TO_MAP_VALUE:
11150                 ptr = reg->map_ptr;
11151                 break;
11152         case PTR_TO_BTF_ID | MEM_ALLOC:
11153                 ptr = reg->btf;
11154                 break;
11155         default:
11156                 verbose(env, "verifier internal error: unknown reg type for lock check\n");
11157                 return -EFAULT;
11158         }
11159         id = reg->id;
11160
11161         if (!env->cur_state->active_lock.ptr)
11162                 return -EINVAL;
11163         if (env->cur_state->active_lock.ptr != ptr ||
11164             env->cur_state->active_lock.id != id) {
11165                 verbose(env, "held lock and object are not in the same allocation\n");
11166                 return -EINVAL;
11167         }
11168         return 0;
11169 }
11170
11171 static bool is_bpf_list_api_kfunc(u32 btf_id)
11172 {
11173         return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11174                btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11175                btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11176                btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11177 }
11178
11179 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11180 {
11181         return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11182                btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11183                btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11184 }
11185
11186 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11187 {
11188         return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11189                btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11190 }
11191
11192 static bool is_callback_calling_kfunc(u32 btf_id)
11193 {
11194         return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11195 }
11196
11197 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11198 {
11199         return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11200                insn->imm == special_kfunc_list[KF_bpf_throw];
11201 }
11202
11203 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11204 {
11205         return is_bpf_rbtree_api_kfunc(btf_id);
11206 }
11207
11208 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11209                                           enum btf_field_type head_field_type,
11210                                           u32 kfunc_btf_id)
11211 {
11212         bool ret;
11213
11214         switch (head_field_type) {
11215         case BPF_LIST_HEAD:
11216                 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11217                 break;
11218         case BPF_RB_ROOT:
11219                 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11220                 break;
11221         default:
11222                 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11223                         btf_field_type_name(head_field_type));
11224                 return false;
11225         }
11226
11227         if (!ret)
11228                 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11229                         btf_field_type_name(head_field_type));
11230         return ret;
11231 }
11232
11233 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11234                                           enum btf_field_type node_field_type,
11235                                           u32 kfunc_btf_id)
11236 {
11237         bool ret;
11238
11239         switch (node_field_type) {
11240         case BPF_LIST_NODE:
11241                 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11242                        kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11243                 break;
11244         case BPF_RB_NODE:
11245                 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11246                        kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11247                 break;
11248         default:
11249                 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11250                         btf_field_type_name(node_field_type));
11251                 return false;
11252         }
11253
11254         if (!ret)
11255                 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11256                         btf_field_type_name(node_field_type));
11257         return ret;
11258 }
11259
11260 static int
11261 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11262                                    struct bpf_reg_state *reg, u32 regno,
11263                                    struct bpf_kfunc_call_arg_meta *meta,
11264                                    enum btf_field_type head_field_type,
11265                                    struct btf_field **head_field)
11266 {
11267         const char *head_type_name;
11268         struct btf_field *field;
11269         struct btf_record *rec;
11270         u32 head_off;
11271
11272         if (meta->btf != btf_vmlinux) {
11273                 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11274                 return -EFAULT;
11275         }
11276
11277         if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11278                 return -EFAULT;
11279
11280         head_type_name = btf_field_type_name(head_field_type);
11281         if (!tnum_is_const(reg->var_off)) {
11282                 verbose(env,
11283                         "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11284                         regno, head_type_name);
11285                 return -EINVAL;
11286         }
11287
11288         rec = reg_btf_record(reg);
11289         head_off = reg->off + reg->var_off.value;
11290         field = btf_record_find(rec, head_off, head_field_type);
11291         if (!field) {
11292                 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11293                 return -EINVAL;
11294         }
11295
11296         /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11297         if (check_reg_allocation_locked(env, reg)) {
11298                 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11299                         rec->spin_lock_off, head_type_name);
11300                 return -EINVAL;
11301         }
11302
11303         if (*head_field) {
11304                 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11305                 return -EFAULT;
11306         }
11307         *head_field = field;
11308         return 0;
11309 }
11310
11311 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11312                                            struct bpf_reg_state *reg, u32 regno,
11313                                            struct bpf_kfunc_call_arg_meta *meta)
11314 {
11315         return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11316                                                           &meta->arg_list_head.field);
11317 }
11318
11319 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11320                                              struct bpf_reg_state *reg, u32 regno,
11321                                              struct bpf_kfunc_call_arg_meta *meta)
11322 {
11323         return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11324                                                           &meta->arg_rbtree_root.field);
11325 }
11326
11327 static int
11328 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11329                                    struct bpf_reg_state *reg, u32 regno,
11330                                    struct bpf_kfunc_call_arg_meta *meta,
11331                                    enum btf_field_type head_field_type,
11332                                    enum btf_field_type node_field_type,
11333                                    struct btf_field **node_field)
11334 {
11335         const char *node_type_name;
11336         const struct btf_type *et, *t;
11337         struct btf_field *field;
11338         u32 node_off;
11339
11340         if (meta->btf != btf_vmlinux) {
11341                 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11342                 return -EFAULT;
11343         }
11344
11345         if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11346                 return -EFAULT;
11347
11348         node_type_name = btf_field_type_name(node_field_type);
11349         if (!tnum_is_const(reg->var_off)) {
11350                 verbose(env,
11351                         "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11352                         regno, node_type_name);
11353                 return -EINVAL;
11354         }
11355
11356         node_off = reg->off + reg->var_off.value;
11357         field = reg_find_field_offset(reg, node_off, node_field_type);
11358         if (!field || field->offset != node_off) {
11359                 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11360                 return -EINVAL;
11361         }
11362
11363         field = *node_field;
11364
11365         et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11366         t = btf_type_by_id(reg->btf, reg->btf_id);
11367         if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11368                                   field->graph_root.value_btf_id, true)) {
11369                 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11370                         "in struct %s, but arg is at offset=%d in struct %s\n",
11371                         btf_field_type_name(head_field_type),
11372                         btf_field_type_name(node_field_type),
11373                         field->graph_root.node_offset,
11374                         btf_name_by_offset(field->graph_root.btf, et->name_off),
11375                         node_off, btf_name_by_offset(reg->btf, t->name_off));
11376                 return -EINVAL;
11377         }
11378         meta->arg_btf = reg->btf;
11379         meta->arg_btf_id = reg->btf_id;
11380
11381         if (node_off != field->graph_root.node_offset) {
11382                 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11383                         node_off, btf_field_type_name(node_field_type),
11384                         field->graph_root.node_offset,
11385                         btf_name_by_offset(field->graph_root.btf, et->name_off));
11386                 return -EINVAL;
11387         }
11388
11389         return 0;
11390 }
11391
11392 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11393                                            struct bpf_reg_state *reg, u32 regno,
11394                                            struct bpf_kfunc_call_arg_meta *meta)
11395 {
11396         return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11397                                                   BPF_LIST_HEAD, BPF_LIST_NODE,
11398                                                   &meta->arg_list_head.field);
11399 }
11400
11401 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11402                                              struct bpf_reg_state *reg, u32 regno,
11403                                              struct bpf_kfunc_call_arg_meta *meta)
11404 {
11405         return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11406                                                   BPF_RB_ROOT, BPF_RB_NODE,
11407                                                   &meta->arg_rbtree_root.field);
11408 }
11409
11410 /*
11411  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11412  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11413  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11414  * them can only be attached to some specific hook points.
11415  */
11416 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11417 {
11418         enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11419
11420         switch (prog_type) {
11421         case BPF_PROG_TYPE_LSM:
11422                 return true;
11423         case BPF_PROG_TYPE_TRACING:
11424                 if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11425                         return true;
11426                 fallthrough;
11427         default:
11428                 return env->prog->aux->sleepable;
11429         }
11430 }
11431
11432 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11433                             int insn_idx)
11434 {
11435         const char *func_name = meta->func_name, *ref_tname;
11436         const struct btf *btf = meta->btf;
11437         const struct btf_param *args;
11438         struct btf_record *rec;
11439         u32 i, nargs;
11440         int ret;
11441
11442         args = (const struct btf_param *)(meta->func_proto + 1);
11443         nargs = btf_type_vlen(meta->func_proto);
11444         if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11445                 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11446                         MAX_BPF_FUNC_REG_ARGS);
11447                 return -EINVAL;
11448         }
11449
11450         /* Check that BTF function arguments match actual types that the
11451          * verifier sees.
11452          */
11453         for (i = 0; i < nargs; i++) {
11454                 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11455                 const struct btf_type *t, *ref_t, *resolve_ret;
11456                 enum bpf_arg_type arg_type = ARG_DONTCARE;
11457                 u32 regno = i + 1, ref_id, type_size;
11458                 bool is_ret_buf_sz = false;
11459                 int kf_arg_type;
11460
11461                 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11462
11463                 if (is_kfunc_arg_ignore(btf, &args[i]))
11464                         continue;
11465
11466                 if (btf_type_is_scalar(t)) {
11467                         if (reg->type != SCALAR_VALUE) {
11468                                 verbose(env, "R%d is not a scalar\n", regno);
11469                                 return -EINVAL;
11470                         }
11471
11472                         if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11473                                 if (meta->arg_constant.found) {
11474                                         verbose(env, "verifier internal error: only one constant argument permitted\n");
11475                                         return -EFAULT;
11476                                 }
11477                                 if (!tnum_is_const(reg->var_off)) {
11478                                         verbose(env, "R%d must be a known constant\n", regno);
11479                                         return -EINVAL;
11480                                 }
11481                                 ret = mark_chain_precision(env, regno);
11482                                 if (ret < 0)
11483                                         return ret;
11484                                 meta->arg_constant.found = true;
11485                                 meta->arg_constant.value = reg->var_off.value;
11486                         } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11487                                 meta->r0_rdonly = true;
11488                                 is_ret_buf_sz = true;
11489                         } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11490                                 is_ret_buf_sz = true;
11491                         }
11492
11493                         if (is_ret_buf_sz) {
11494                                 if (meta->r0_size) {
11495                                         verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11496                                         return -EINVAL;
11497                                 }
11498
11499                                 if (!tnum_is_const(reg->var_off)) {
11500                                         verbose(env, "R%d is not a const\n", regno);
11501                                         return -EINVAL;
11502                                 }
11503
11504                                 meta->r0_size = reg->var_off.value;
11505                                 ret = mark_chain_precision(env, regno);
11506                                 if (ret)
11507                                         return ret;
11508                         }
11509                         continue;
11510                 }
11511
11512                 if (!btf_type_is_ptr(t)) {
11513                         verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11514                         return -EINVAL;
11515                 }
11516
11517                 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11518                     (register_is_null(reg) || type_may_be_null(reg->type)) &&
11519                         !is_kfunc_arg_nullable(meta->btf, &args[i])) {
11520                         verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11521                         return -EACCES;
11522                 }
11523
11524                 if (reg->ref_obj_id) {
11525                         if (is_kfunc_release(meta) && meta->ref_obj_id) {
11526                                 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11527                                         regno, reg->ref_obj_id,
11528                                         meta->ref_obj_id);
11529                                 return -EFAULT;
11530                         }
11531                         meta->ref_obj_id = reg->ref_obj_id;
11532                         if (is_kfunc_release(meta))
11533                                 meta->release_regno = regno;
11534                 }
11535
11536                 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11537                 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11538
11539                 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11540                 if (kf_arg_type < 0)
11541                         return kf_arg_type;
11542
11543                 switch (kf_arg_type) {
11544                 case KF_ARG_PTR_TO_NULL:
11545                         continue;
11546                 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11547                 case KF_ARG_PTR_TO_BTF_ID:
11548                         if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11549                                 break;
11550
11551                         if (!is_trusted_reg(reg)) {
11552                                 if (!is_kfunc_rcu(meta)) {
11553                                         verbose(env, "R%d must be referenced or trusted\n", regno);
11554                                         return -EINVAL;
11555                                 }
11556                                 if (!is_rcu_reg(reg)) {
11557                                         verbose(env, "R%d must be a rcu pointer\n", regno);
11558                                         return -EINVAL;
11559                                 }
11560                         }
11561
11562                         fallthrough;
11563                 case KF_ARG_PTR_TO_CTX:
11564                         /* Trusted arguments have the same offset checks as release arguments */
11565                         arg_type |= OBJ_RELEASE;
11566                         break;
11567                 case KF_ARG_PTR_TO_DYNPTR:
11568                 case KF_ARG_PTR_TO_ITER:
11569                 case KF_ARG_PTR_TO_LIST_HEAD:
11570                 case KF_ARG_PTR_TO_LIST_NODE:
11571                 case KF_ARG_PTR_TO_RB_ROOT:
11572                 case KF_ARG_PTR_TO_RB_NODE:
11573                 case KF_ARG_PTR_TO_MEM:
11574                 case KF_ARG_PTR_TO_MEM_SIZE:
11575                 case KF_ARG_PTR_TO_CALLBACK:
11576                 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11577                         /* Trusted by default */
11578                         break;
11579                 default:
11580                         WARN_ON_ONCE(1);
11581                         return -EFAULT;
11582                 }
11583
11584                 if (is_kfunc_release(meta) && reg->ref_obj_id)
11585                         arg_type |= OBJ_RELEASE;
11586                 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11587                 if (ret < 0)
11588                         return ret;
11589
11590                 switch (kf_arg_type) {
11591                 case KF_ARG_PTR_TO_CTX:
11592                         if (reg->type != PTR_TO_CTX) {
11593                                 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11594                                 return -EINVAL;
11595                         }
11596
11597                         if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11598                                 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11599                                 if (ret < 0)
11600                                         return -EINVAL;
11601                                 meta->ret_btf_id  = ret;
11602                         }
11603                         break;
11604                 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11605                         if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11606                                 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11607                                         verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11608                                         return -EINVAL;
11609                                 }
11610                         } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11611                                 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11612                                         verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11613                                         return -EINVAL;
11614                                 }
11615                         } else {
11616                                 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11617                                 return -EINVAL;
11618                         }
11619                         if (!reg->ref_obj_id) {
11620                                 verbose(env, "allocated object must be referenced\n");
11621                                 return -EINVAL;
11622                         }
11623                         if (meta->btf == btf_vmlinux) {
11624                                 meta->arg_btf = reg->btf;
11625                                 meta->arg_btf_id = reg->btf_id;
11626                         }
11627                         break;
11628                 case KF_ARG_PTR_TO_DYNPTR:
11629                 {
11630                         enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11631                         int clone_ref_obj_id = 0;
11632
11633                         if (reg->type != PTR_TO_STACK &&
11634                             reg->type != CONST_PTR_TO_DYNPTR) {
11635                                 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11636                                 return -EINVAL;
11637                         }
11638
11639                         if (reg->type == CONST_PTR_TO_DYNPTR)
11640                                 dynptr_arg_type |= MEM_RDONLY;
11641
11642                         if (is_kfunc_arg_uninit(btf, &args[i]))
11643                                 dynptr_arg_type |= MEM_UNINIT;
11644
11645                         if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11646                                 dynptr_arg_type |= DYNPTR_TYPE_SKB;
11647                         } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11648                                 dynptr_arg_type |= DYNPTR_TYPE_XDP;
11649                         } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11650                                    (dynptr_arg_type & MEM_UNINIT)) {
11651                                 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11652
11653                                 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11654                                         verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11655                                         return -EFAULT;
11656                                 }
11657
11658                                 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11659                                 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11660                                 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11661                                         verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11662                                         return -EFAULT;
11663                                 }
11664                         }
11665
11666                         ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11667                         if (ret < 0)
11668                                 return ret;
11669
11670                         if (!(dynptr_arg_type & MEM_UNINIT)) {
11671                                 int id = dynptr_id(env, reg);
11672
11673                                 if (id < 0) {
11674                                         verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11675                                         return id;
11676                                 }
11677                                 meta->initialized_dynptr.id = id;
11678                                 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11679                                 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11680                         }
11681
11682                         break;
11683                 }
11684                 case KF_ARG_PTR_TO_ITER:
11685                         if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11686                                 if (!check_css_task_iter_allowlist(env)) {
11687                                         verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11688                                         return -EINVAL;
11689                                 }
11690                         }
11691                         ret = process_iter_arg(env, regno, insn_idx, meta);
11692                         if (ret < 0)
11693                                 return ret;
11694                         break;
11695                 case KF_ARG_PTR_TO_LIST_HEAD:
11696                         if (reg->type != PTR_TO_MAP_VALUE &&
11697                             reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11698                                 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11699                                 return -EINVAL;
11700                         }
11701                         if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11702                                 verbose(env, "allocated object must be referenced\n");
11703                                 return -EINVAL;
11704                         }
11705                         ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11706                         if (ret < 0)
11707                                 return ret;
11708                         break;
11709                 case KF_ARG_PTR_TO_RB_ROOT:
11710                         if (reg->type != PTR_TO_MAP_VALUE &&
11711                             reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11712                                 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11713                                 return -EINVAL;
11714                         }
11715                         if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11716                                 verbose(env, "allocated object must be referenced\n");
11717                                 return -EINVAL;
11718                         }
11719                         ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11720                         if (ret < 0)
11721                                 return ret;
11722                         break;
11723                 case KF_ARG_PTR_TO_LIST_NODE:
11724                         if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11725                                 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11726                                 return -EINVAL;
11727                         }
11728                         if (!reg->ref_obj_id) {
11729                                 verbose(env, "allocated object must be referenced\n");
11730                                 return -EINVAL;
11731                         }
11732                         ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11733                         if (ret < 0)
11734                                 return ret;
11735                         break;
11736                 case KF_ARG_PTR_TO_RB_NODE:
11737                         if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11738                                 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11739                                         verbose(env, "rbtree_remove node input must be non-owning ref\n");
11740                                         return -EINVAL;
11741                                 }
11742                                 if (in_rbtree_lock_required_cb(env)) {
11743                                         verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11744                                         return -EINVAL;
11745                                 }
11746                         } else {
11747                                 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11748                                         verbose(env, "arg#%d expected pointer to allocated object\n", i);
11749                                         return -EINVAL;
11750                                 }
11751                                 if (!reg->ref_obj_id) {
11752                                         verbose(env, "allocated object must be referenced\n");
11753                                         return -EINVAL;
11754                                 }
11755                         }
11756
11757                         ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11758                         if (ret < 0)
11759                                 return ret;
11760                         break;
11761                 case KF_ARG_PTR_TO_BTF_ID:
11762                         /* Only base_type is checked, further checks are done here */
11763                         if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11764                              (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11765                             !reg2btf_ids[base_type(reg->type)]) {
11766                                 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11767                                 verbose(env, "expected %s or socket\n",
11768                                         reg_type_str(env, base_type(reg->type) |
11769                                                           (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11770                                 return -EINVAL;
11771                         }
11772                         ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11773                         if (ret < 0)
11774                                 return ret;
11775                         break;
11776                 case KF_ARG_PTR_TO_MEM:
11777                         resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11778                         if (IS_ERR(resolve_ret)) {
11779                                 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11780                                         i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11781                                 return -EINVAL;
11782                         }
11783                         ret = check_mem_reg(env, reg, regno, type_size);
11784                         if (ret < 0)
11785                                 return ret;
11786                         break;
11787                 case KF_ARG_PTR_TO_MEM_SIZE:
11788                 {
11789                         struct bpf_reg_state *buff_reg = &regs[regno];
11790                         const struct btf_param *buff_arg = &args[i];
11791                         struct bpf_reg_state *size_reg = &regs[regno + 1];
11792                         const struct btf_param *size_arg = &args[i + 1];
11793
11794                         if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11795                                 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11796                                 if (ret < 0) {
11797                                         verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11798                                         return ret;
11799                                 }
11800                         }
11801
11802                         if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11803                                 if (meta->arg_constant.found) {
11804                                         verbose(env, "verifier internal error: only one constant argument permitted\n");
11805                                         return -EFAULT;
11806                                 }
11807                                 if (!tnum_is_const(size_reg->var_off)) {
11808                                         verbose(env, "R%d must be a known constant\n", regno + 1);
11809                                         return -EINVAL;
11810                                 }
11811                                 meta->arg_constant.found = true;
11812                                 meta->arg_constant.value = size_reg->var_off.value;
11813                         }
11814
11815                         /* Skip next '__sz' or '__szk' argument */
11816                         i++;
11817                         break;
11818                 }
11819                 case KF_ARG_PTR_TO_CALLBACK:
11820                         if (reg->type != PTR_TO_FUNC) {
11821                                 verbose(env, "arg%d expected pointer to func\n", i);
11822                                 return -EINVAL;
11823                         }
11824                         meta->subprogno = reg->subprogno;
11825                         break;
11826                 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11827                         if (!type_is_ptr_alloc_obj(reg->type)) {
11828                                 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11829                                 return -EINVAL;
11830                         }
11831                         if (!type_is_non_owning_ref(reg->type))
11832                                 meta->arg_owning_ref = true;
11833
11834                         rec = reg_btf_record(reg);
11835                         if (!rec) {
11836                                 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11837                                 return -EFAULT;
11838                         }
11839
11840                         if (rec->refcount_off < 0) {
11841                                 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11842                                 return -EINVAL;
11843                         }
11844
11845                         meta->arg_btf = reg->btf;
11846                         meta->arg_btf_id = reg->btf_id;
11847                         break;
11848                 }
11849         }
11850
11851         if (is_kfunc_release(meta) && !meta->release_regno) {
11852                 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11853                         func_name);
11854                 return -EINVAL;
11855         }
11856
11857         return 0;
11858 }
11859
11860 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11861                             struct bpf_insn *insn,
11862                             struct bpf_kfunc_call_arg_meta *meta,
11863                             const char **kfunc_name)
11864 {
11865         const struct btf_type *func, *func_proto;
11866         u32 func_id, *kfunc_flags;
11867         const char *func_name;
11868         struct btf *desc_btf;
11869
11870         if (kfunc_name)
11871                 *kfunc_name = NULL;
11872
11873         if (!insn->imm)
11874                 return -EINVAL;
11875
11876         desc_btf = find_kfunc_desc_btf(env, insn->off);
11877         if (IS_ERR(desc_btf))
11878                 return PTR_ERR(desc_btf);
11879
11880         func_id = insn->imm;
11881         func = btf_type_by_id(desc_btf, func_id);
11882         func_name = btf_name_by_offset(desc_btf, func->name_off);
11883         if (kfunc_name)
11884                 *kfunc_name = func_name;
11885         func_proto = btf_type_by_id(desc_btf, func->type);
11886
11887         kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11888         if (!kfunc_flags) {
11889                 return -EACCES;
11890         }
11891
11892         memset(meta, 0, sizeof(*meta));
11893         meta->btf = desc_btf;
11894         meta->func_id = func_id;
11895         meta->kfunc_flags = *kfunc_flags;
11896         meta->func_proto = func_proto;
11897         meta->func_name = func_name;
11898
11899         return 0;
11900 }
11901
11902 static int check_return_code(struct bpf_verifier_env *env, int regno);
11903
11904 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11905                             int *insn_idx_p)
11906 {
11907         const struct btf_type *t, *ptr_type;
11908         u32 i, nargs, ptr_type_id, release_ref_obj_id;
11909         struct bpf_reg_state *regs = cur_regs(env);
11910         const char *func_name, *ptr_type_name;
11911         bool sleepable, rcu_lock, rcu_unlock;
11912         struct bpf_kfunc_call_arg_meta meta;
11913         struct bpf_insn_aux_data *insn_aux;
11914         int err, insn_idx = *insn_idx_p;
11915         const struct btf_param *args;
11916         const struct btf_type *ret_t;
11917         struct btf *desc_btf;
11918
11919         /* skip for now, but return error when we find this in fixup_kfunc_call */
11920         if (!insn->imm)
11921                 return 0;
11922
11923         err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11924         if (err == -EACCES && func_name)
11925                 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11926         if (err)
11927                 return err;
11928         desc_btf = meta.btf;
11929         insn_aux = &env->insn_aux_data[insn_idx];
11930
11931         insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11932
11933         if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11934                 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11935                 return -EACCES;
11936         }
11937
11938         sleepable = is_kfunc_sleepable(&meta);
11939         if (sleepable && !env->prog->aux->sleepable) {
11940                 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11941                 return -EACCES;
11942         }
11943
11944         rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11945         rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11946
11947         if (env->cur_state->active_rcu_lock) {
11948                 struct bpf_func_state *state;
11949                 struct bpf_reg_state *reg;
11950                 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
11951
11952                 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11953                         verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11954                         return -EACCES;
11955                 }
11956
11957                 if (rcu_lock) {
11958                         verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11959                         return -EINVAL;
11960                 } else if (rcu_unlock) {
11961                         bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
11962                                 if (reg->type & MEM_RCU) {
11963                                         reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11964                                         reg->type |= PTR_UNTRUSTED;
11965                                 }
11966                         }));
11967                         env->cur_state->active_rcu_lock = false;
11968                 } else if (sleepable) {
11969                         verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11970                         return -EACCES;
11971                 }
11972         } else if (rcu_lock) {
11973                 env->cur_state->active_rcu_lock = true;
11974         } else if (rcu_unlock) {
11975                 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11976                 return -EINVAL;
11977         }
11978
11979         /* Check the arguments */
11980         err = check_kfunc_args(env, &meta, insn_idx);
11981         if (err < 0)
11982                 return err;
11983         /* In case of release function, we get register number of refcounted
11984          * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11985          */
11986         if (meta.release_regno) {
11987                 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11988                 if (err) {
11989                         verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11990                                 func_name, meta.func_id);
11991                         return err;
11992                 }
11993         }
11994
11995         if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11996             meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11997             meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11998                 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11999                 insn_aux->insert_off = regs[BPF_REG_2].off;
12000                 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12001                 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12002                 if (err) {
12003                         verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12004                                 func_name, meta.func_id);
12005                         return err;
12006                 }
12007
12008                 err = release_reference(env, release_ref_obj_id);
12009                 if (err) {
12010                         verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12011                                 func_name, meta.func_id);
12012                         return err;
12013                 }
12014         }
12015
12016         if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12017                 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
12018                                         set_rbtree_add_callback_state);
12019                 if (err) {
12020                         verbose(env, "kfunc %s#%d failed callback verification\n",
12021                                 func_name, meta.func_id);
12022                         return err;
12023                 }
12024         }
12025
12026         if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12027                 if (!bpf_jit_supports_exceptions()) {
12028                         verbose(env, "JIT does not support calling kfunc %s#%d\n",
12029                                 func_name, meta.func_id);
12030                         return -ENOTSUPP;
12031                 }
12032                 env->seen_exception = true;
12033
12034                 /* In the case of the default callback, the cookie value passed
12035                  * to bpf_throw becomes the return value of the program.
12036                  */
12037                 if (!env->exception_callback_subprog) {
12038                         err = check_return_code(env, BPF_REG_1);
12039                         if (err < 0)
12040                                 return err;
12041                 }
12042         }
12043
12044         for (i = 0; i < CALLER_SAVED_REGS; i++)
12045                 mark_reg_not_init(env, regs, caller_saved[i]);
12046
12047         /* Check return type */
12048         t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12049
12050         if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12051                 /* Only exception is bpf_obj_new_impl */
12052                 if (meta.btf != btf_vmlinux ||
12053                     (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12054                      meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12055                      meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12056                         verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12057                         return -EINVAL;
12058                 }
12059         }
12060
12061         if (btf_type_is_scalar(t)) {
12062                 mark_reg_unknown(env, regs, BPF_REG_0);
12063                 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12064         } else if (btf_type_is_ptr(t)) {
12065                 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12066
12067                 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12068                         if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12069                             meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12070                                 struct btf_struct_meta *struct_meta;
12071                                 struct btf *ret_btf;
12072                                 u32 ret_btf_id;
12073
12074                                 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12075                                         return -ENOMEM;
12076
12077                                 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && !bpf_global_percpu_ma_set)
12078                                         return -ENOMEM;
12079
12080                                 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12081                                         verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12082                                         return -EINVAL;
12083                                 }
12084
12085                                 ret_btf = env->prog->aux->btf;
12086                                 ret_btf_id = meta.arg_constant.value;
12087
12088                                 /* This may be NULL due to user not supplying a BTF */
12089                                 if (!ret_btf) {
12090                                         verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12091                                         return -EINVAL;
12092                                 }
12093
12094                                 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12095                                 if (!ret_t || !__btf_type_is_struct(ret_t)) {
12096                                         verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12097                                         return -EINVAL;
12098                                 }
12099
12100                                 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12101                                 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12102                                         if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12103                                                 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12104                                                 return -EINVAL;
12105                                         }
12106
12107                                         if (struct_meta) {
12108                                                 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12109                                                 return -EINVAL;
12110                                         }
12111                                 }
12112
12113                                 mark_reg_known_zero(env, regs, BPF_REG_0);
12114                                 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12115                                 regs[BPF_REG_0].btf = ret_btf;
12116                                 regs[BPF_REG_0].btf_id = ret_btf_id;
12117                                 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12118                                         regs[BPF_REG_0].type |= MEM_PERCPU;
12119
12120                                 insn_aux->obj_new_size = ret_t->size;
12121                                 insn_aux->kptr_struct_meta = struct_meta;
12122                         } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12123                                 mark_reg_known_zero(env, regs, BPF_REG_0);
12124                                 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12125                                 regs[BPF_REG_0].btf = meta.arg_btf;
12126                                 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12127
12128                                 insn_aux->kptr_struct_meta =
12129                                         btf_find_struct_meta(meta.arg_btf,
12130                                                              meta.arg_btf_id);
12131                         } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12132                                    meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12133                                 struct btf_field *field = meta.arg_list_head.field;
12134
12135                                 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12136                         } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12137                                    meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12138                                 struct btf_field *field = meta.arg_rbtree_root.field;
12139
12140                                 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12141                         } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12142                                 mark_reg_known_zero(env, regs, BPF_REG_0);
12143                                 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12144                                 regs[BPF_REG_0].btf = desc_btf;
12145                                 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12146                         } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12147                                 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12148                                 if (!ret_t || !btf_type_is_struct(ret_t)) {
12149                                         verbose(env,
12150                                                 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12151                                         return -EINVAL;
12152                                 }
12153
12154                                 mark_reg_known_zero(env, regs, BPF_REG_0);
12155                                 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12156                                 regs[BPF_REG_0].btf = desc_btf;
12157                                 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12158                         } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12159                                    meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12160                                 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12161
12162                                 mark_reg_known_zero(env, regs, BPF_REG_0);
12163
12164                                 if (!meta.arg_constant.found) {
12165                                         verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12166                                         return -EFAULT;
12167                                 }
12168
12169                                 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12170
12171                                 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12172                                 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12173
12174                                 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12175                                         regs[BPF_REG_0].type |= MEM_RDONLY;
12176                                 } else {
12177                                         /* this will set env->seen_direct_write to true */
12178                                         if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12179                                                 verbose(env, "the prog does not allow writes to packet data\n");
12180                                                 return -EINVAL;
12181                                         }
12182                                 }
12183
12184                                 if (!meta.initialized_dynptr.id) {
12185                                         verbose(env, "verifier internal error: no dynptr id\n");
12186                                         return -EFAULT;
12187                                 }
12188                                 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12189
12190                                 /* we don't need to set BPF_REG_0's ref obj id
12191                                  * because packet slices are not refcounted (see
12192                                  * dynptr_type_refcounted)
12193                                  */
12194                         } else {
12195                                 verbose(env, "kernel function %s unhandled dynamic return type\n",
12196                                         meta.func_name);
12197                                 return -EFAULT;
12198                         }
12199                 } else if (!__btf_type_is_struct(ptr_type)) {
12200                         if (!meta.r0_size) {
12201                                 __u32 sz;
12202
12203                                 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12204                                         meta.r0_size = sz;
12205                                         meta.r0_rdonly = true;
12206                                 }
12207                         }
12208                         if (!meta.r0_size) {
12209                                 ptr_type_name = btf_name_by_offset(desc_btf,
12210                                                                    ptr_type->name_off);
12211                                 verbose(env,
12212                                         "kernel function %s returns pointer type %s %s is not supported\n",
12213                                         func_name,
12214                                         btf_type_str(ptr_type),
12215                                         ptr_type_name);
12216                                 return -EINVAL;
12217                         }
12218
12219                         mark_reg_known_zero(env, regs, BPF_REG_0);
12220                         regs[BPF_REG_0].type = PTR_TO_MEM;
12221                         regs[BPF_REG_0].mem_size = meta.r0_size;
12222
12223                         if (meta.r0_rdonly)
12224                                 regs[BPF_REG_0].type |= MEM_RDONLY;
12225
12226                         /* Ensures we don't access the memory after a release_reference() */
12227                         if (meta.ref_obj_id)
12228                                 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12229                 } else {
12230                         mark_reg_known_zero(env, regs, BPF_REG_0);
12231                         regs[BPF_REG_0].btf = desc_btf;
12232                         regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12233                         regs[BPF_REG_0].btf_id = ptr_type_id;
12234                 }
12235
12236                 if (is_kfunc_ret_null(&meta)) {
12237                         regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12238                         /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12239                         regs[BPF_REG_0].id = ++env->id_gen;
12240                 }
12241                 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12242                 if (is_kfunc_acquire(&meta)) {
12243                         int id = acquire_reference_state(env, insn_idx);
12244
12245                         if (id < 0)
12246                                 return id;
12247                         if (is_kfunc_ret_null(&meta))
12248                                 regs[BPF_REG_0].id = id;
12249                         regs[BPF_REG_0].ref_obj_id = id;
12250                 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12251                         ref_set_non_owning(env, &regs[BPF_REG_0]);
12252                 }
12253
12254                 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12255                         regs[BPF_REG_0].id = ++env->id_gen;
12256         } else if (btf_type_is_void(t)) {
12257                 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12258                         if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12259                             meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12260                                 insn_aux->kptr_struct_meta =
12261                                         btf_find_struct_meta(meta.arg_btf,
12262                                                              meta.arg_btf_id);
12263                         }
12264                 }
12265         }
12266
12267         nargs = btf_type_vlen(meta.func_proto);
12268         args = (const struct btf_param *)(meta.func_proto + 1);
12269         for (i = 0; i < nargs; i++) {
12270                 u32 regno = i + 1;
12271
12272                 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12273                 if (btf_type_is_ptr(t))
12274                         mark_btf_func_reg_size(env, regno, sizeof(void *));
12275                 else
12276                         /* scalar. ensured by btf_check_kfunc_arg_match() */
12277                         mark_btf_func_reg_size(env, regno, t->size);
12278         }
12279
12280         if (is_iter_next_kfunc(&meta)) {
12281                 err = process_iter_next_call(env, insn_idx, &meta);
12282                 if (err)
12283                         return err;
12284         }
12285
12286         return 0;
12287 }
12288
12289 static bool signed_add_overflows(s64 a, s64 b)
12290 {
12291         /* Do the add in u64, where overflow is well-defined */
12292         s64 res = (s64)((u64)a + (u64)b);
12293
12294         if (b < 0)
12295                 return res > a;
12296         return res < a;
12297 }
12298
12299 static bool signed_add32_overflows(s32 a, s32 b)
12300 {
12301         /* Do the add in u32, where overflow is well-defined */
12302         s32 res = (s32)((u32)a + (u32)b);
12303
12304         if (b < 0)
12305                 return res > a;
12306         return res < a;
12307 }
12308
12309 static bool signed_sub_overflows(s64 a, s64 b)
12310 {
12311         /* Do the sub in u64, where overflow is well-defined */
12312         s64 res = (s64)((u64)a - (u64)b);
12313
12314         if (b < 0)
12315                 return res < a;
12316         return res > a;
12317 }
12318
12319 static bool signed_sub32_overflows(s32 a, s32 b)
12320 {
12321         /* Do the sub in u32, where overflow is well-defined */
12322         s32 res = (s32)((u32)a - (u32)b);
12323
12324         if (b < 0)
12325                 return res < a;
12326         return res > a;
12327 }
12328
12329 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12330                                   const struct bpf_reg_state *reg,
12331                                   enum bpf_reg_type type)
12332 {
12333         bool known = tnum_is_const(reg->var_off);
12334         s64 val = reg->var_off.value;
12335         s64 smin = reg->smin_value;
12336
12337         if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12338                 verbose(env, "math between %s pointer and %lld is not allowed\n",
12339                         reg_type_str(env, type), val);
12340                 return false;
12341         }
12342
12343         if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12344                 verbose(env, "%s pointer offset %d is not allowed\n",
12345                         reg_type_str(env, type), reg->off);
12346                 return false;
12347         }
12348
12349         if (smin == S64_MIN) {
12350                 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12351                         reg_type_str(env, type));
12352                 return false;
12353         }
12354
12355         if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12356                 verbose(env, "value %lld makes %s pointer be out of bounds\n",
12357                         smin, reg_type_str(env, type));
12358                 return false;
12359         }
12360
12361         return true;
12362 }
12363
12364 enum {
12365         REASON_BOUNDS   = -1,
12366         REASON_TYPE     = -2,
12367         REASON_PATHS    = -3,
12368         REASON_LIMIT    = -4,
12369         REASON_STACK    = -5,
12370 };
12371
12372 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12373                               u32 *alu_limit, bool mask_to_left)
12374 {
12375         u32 max = 0, ptr_limit = 0;
12376
12377         switch (ptr_reg->type) {
12378         case PTR_TO_STACK:
12379                 /* Offset 0 is out-of-bounds, but acceptable start for the
12380                  * left direction, see BPF_REG_FP. Also, unknown scalar
12381                  * offset where we would need to deal with min/max bounds is
12382                  * currently prohibited for unprivileged.
12383                  */
12384                 max = MAX_BPF_STACK + mask_to_left;
12385                 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12386                 break;
12387         case PTR_TO_MAP_VALUE:
12388                 max = ptr_reg->map_ptr->value_size;
12389                 ptr_limit = (mask_to_left ?
12390                              ptr_reg->smin_value :
12391                              ptr_reg->umax_value) + ptr_reg->off;
12392                 break;
12393         default:
12394                 return REASON_TYPE;
12395         }
12396
12397         if (ptr_limit >= max)
12398                 return REASON_LIMIT;
12399         *alu_limit = ptr_limit;
12400         return 0;
12401 }
12402
12403 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12404                                     const struct bpf_insn *insn)
12405 {
12406         return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12407 }
12408
12409 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12410                                        u32 alu_state, u32 alu_limit)
12411 {
12412         /* If we arrived here from different branches with different
12413          * state or limits to sanitize, then this won't work.
12414          */
12415         if (aux->alu_state &&
12416             (aux->alu_state != alu_state ||
12417              aux->alu_limit != alu_limit))
12418                 return REASON_PATHS;
12419
12420         /* Corresponding fixup done in do_misc_fixups(). */
12421         aux->alu_state = alu_state;
12422         aux->alu_limit = alu_limit;
12423         return 0;
12424 }
12425
12426 static int sanitize_val_alu(struct bpf_verifier_env *env,
12427                             struct bpf_insn *insn)
12428 {
12429         struct bpf_insn_aux_data *aux = cur_aux(env);
12430
12431         if (can_skip_alu_sanitation(env, insn))
12432                 return 0;
12433
12434         return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12435 }
12436
12437 static bool sanitize_needed(u8 opcode)
12438 {
12439         return opcode == BPF_ADD || opcode == BPF_SUB;
12440 }
12441
12442 struct bpf_sanitize_info {
12443         struct bpf_insn_aux_data aux;
12444         bool mask_to_left;
12445 };
12446
12447 static struct bpf_verifier_state *
12448 sanitize_speculative_path(struct bpf_verifier_env *env,
12449                           const struct bpf_insn *insn,
12450                           u32 next_idx, u32 curr_idx)
12451 {
12452         struct bpf_verifier_state *branch;
12453         struct bpf_reg_state *regs;
12454
12455         branch = push_stack(env, next_idx, curr_idx, true);
12456         if (branch && insn) {
12457                 regs = branch->frame[branch->curframe]->regs;
12458                 if (BPF_SRC(insn->code) == BPF_K) {
12459                         mark_reg_unknown(env, regs, insn->dst_reg);
12460                 } else if (BPF_SRC(insn->code) == BPF_X) {
12461                         mark_reg_unknown(env, regs, insn->dst_reg);
12462                         mark_reg_unknown(env, regs, insn->src_reg);
12463                 }
12464         }
12465         return branch;
12466 }
12467
12468 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12469                             struct bpf_insn *insn,
12470                             const struct bpf_reg_state *ptr_reg,
12471                             const struct bpf_reg_state *off_reg,
12472                             struct bpf_reg_state *dst_reg,
12473                             struct bpf_sanitize_info *info,
12474                             const bool commit_window)
12475 {
12476         struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12477         struct bpf_verifier_state *vstate = env->cur_state;
12478         bool off_is_imm = tnum_is_const(off_reg->var_off);
12479         bool off_is_neg = off_reg->smin_value < 0;
12480         bool ptr_is_dst_reg = ptr_reg == dst_reg;
12481         u8 opcode = BPF_OP(insn->code);
12482         u32 alu_state, alu_limit;
12483         struct bpf_reg_state tmp;
12484         bool ret;
12485         int err;
12486
12487         if (can_skip_alu_sanitation(env, insn))
12488                 return 0;
12489
12490         /* We already marked aux for masking from non-speculative
12491          * paths, thus we got here in the first place. We only care
12492          * to explore bad access from here.
12493          */
12494         if (vstate->speculative)
12495                 goto do_sim;
12496
12497         if (!commit_window) {
12498                 if (!tnum_is_const(off_reg->var_off) &&
12499                     (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12500                         return REASON_BOUNDS;
12501
12502                 info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12503                                      (opcode == BPF_SUB && !off_is_neg);
12504         }
12505
12506         err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12507         if (err < 0)
12508                 return err;
12509
12510         if (commit_window) {
12511                 /* In commit phase we narrow the masking window based on
12512                  * the observed pointer move after the simulated operation.
12513                  */
12514                 alu_state = info->aux.alu_state;
12515                 alu_limit = abs(info->aux.alu_limit - alu_limit);
12516         } else {
12517                 alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12518                 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12519                 alu_state |= ptr_is_dst_reg ?
12520                              BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12521
12522                 /* Limit pruning on unknown scalars to enable deep search for
12523                  * potential masking differences from other program paths.
12524                  */
12525                 if (!off_is_imm)
12526                         env->explore_alu_limits = true;
12527         }
12528
12529         err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12530         if (err < 0)
12531                 return err;
12532 do_sim:
12533         /* If we're in commit phase, we're done here given we already
12534          * pushed the truncated dst_reg into the speculative verification
12535          * stack.
12536          *
12537          * Also, when register is a known constant, we rewrite register-based
12538          * operation to immediate-based, and thus do not need masking (and as
12539          * a consequence, do not need to simulate the zero-truncation either).
12540          */
12541         if (commit_window || off_is_imm)
12542                 return 0;
12543
12544         /* Simulate and find potential out-of-bounds access under
12545          * speculative execution from truncation as a result of
12546          * masking when off was not within expected range. If off
12547          * sits in dst, then we temporarily need to move ptr there
12548          * to simulate dst (== 0) +/-= ptr. Needed, for example,
12549          * for cases where we use K-based arithmetic in one direction
12550          * and truncated reg-based in the other in order to explore
12551          * bad access.
12552          */
12553         if (!ptr_is_dst_reg) {
12554                 tmp = *dst_reg;
12555                 copy_register_state(dst_reg, ptr_reg);
12556         }
12557         ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12558                                         env->insn_idx);
12559         if (!ptr_is_dst_reg && ret)
12560                 *dst_reg = tmp;
12561         return !ret ? REASON_STACK : 0;
12562 }
12563
12564 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12565 {
12566         struct bpf_verifier_state *vstate = env->cur_state;
12567
12568         /* If we simulate paths under speculation, we don't update the
12569          * insn as 'seen' such that when we verify unreachable paths in
12570          * the non-speculative domain, sanitize_dead_code() can still
12571          * rewrite/sanitize them.
12572          */
12573         if (!vstate->speculative)
12574                 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12575 }
12576
12577 static int sanitize_err(struct bpf_verifier_env *env,
12578                         const struct bpf_insn *insn, int reason,
12579                         const struct bpf_reg_state *off_reg,
12580                         const struct bpf_reg_state *dst_reg)
12581 {
12582         static const char *err = "pointer arithmetic with it prohibited for !root";
12583         const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12584         u32 dst = insn->dst_reg, src = insn->src_reg;
12585
12586         switch (reason) {
12587         case REASON_BOUNDS:
12588                 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12589                         off_reg == dst_reg ? dst : src, err);
12590                 break;
12591         case REASON_TYPE:
12592                 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12593                         off_reg == dst_reg ? src : dst, err);
12594                 break;
12595         case REASON_PATHS:
12596                 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12597                         dst, op, err);
12598                 break;
12599         case REASON_LIMIT:
12600                 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12601                         dst, op, err);
12602                 break;
12603         case REASON_STACK:
12604                 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12605                         dst, err);
12606                 break;
12607         default:
12608                 verbose(env, "verifier internal error: unknown reason (%d)\n",
12609                         reason);
12610                 break;
12611         }
12612
12613         return -EACCES;
12614 }
12615
12616 /* check that stack access falls within stack limits and that 'reg' doesn't
12617  * have a variable offset.
12618  *
12619  * Variable offset is prohibited for unprivileged mode for simplicity since it
12620  * requires corresponding support in Spectre masking for stack ALU.  See also
12621  * retrieve_ptr_limit().
12622  *
12623  *
12624  * 'off' includes 'reg->off'.
12625  */
12626 static int check_stack_access_for_ptr_arithmetic(
12627                                 struct bpf_verifier_env *env,
12628                                 int regno,
12629                                 const struct bpf_reg_state *reg,
12630                                 int off)
12631 {
12632         if (!tnum_is_const(reg->var_off)) {
12633                 char tn_buf[48];
12634
12635                 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12636                 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12637                         regno, tn_buf, off);
12638                 return -EACCES;
12639         }
12640
12641         if (off >= 0 || off < -MAX_BPF_STACK) {
12642                 verbose(env, "R%d stack pointer arithmetic goes out of range, "
12643                         "prohibited for !root; off=%d\n", regno, off);
12644                 return -EACCES;
12645         }
12646
12647         return 0;
12648 }
12649
12650 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12651                                  const struct bpf_insn *insn,
12652                                  const struct bpf_reg_state *dst_reg)
12653 {
12654         u32 dst = insn->dst_reg;
12655
12656         /* For unprivileged we require that resulting offset must be in bounds
12657          * in order to be able to sanitize access later on.
12658          */
12659         if (env->bypass_spec_v1)
12660                 return 0;
12661
12662         switch (dst_reg->type) {
12663         case PTR_TO_STACK:
12664                 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12665                                         dst_reg->off + dst_reg->var_off.value))
12666                         return -EACCES;
12667                 break;
12668         case PTR_TO_MAP_VALUE:
12669                 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12670                         verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12671                                 "prohibited for !root\n", dst);
12672                         return -EACCES;
12673                 }
12674                 break;
12675         default:
12676                 break;
12677         }
12678
12679         return 0;
12680 }
12681
12682 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12683  * Caller should also handle BPF_MOV case separately.
12684  * If we return -EACCES, caller may want to try again treating pointer as a
12685  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12686  */
12687 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12688                                    struct bpf_insn *insn,
12689                                    const struct bpf_reg_state *ptr_reg,
12690                                    const struct bpf_reg_state *off_reg)
12691 {
12692         struct bpf_verifier_state *vstate = env->cur_state;
12693         struct bpf_func_state *state = vstate->frame[vstate->curframe];
12694         struct bpf_reg_state *regs = state->regs, *dst_reg;
12695         bool known = tnum_is_const(off_reg->var_off);
12696         s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12697             smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12698         u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12699             umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12700         struct bpf_sanitize_info info = {};
12701         u8 opcode = BPF_OP(insn->code);
12702         u32 dst = insn->dst_reg;
12703         int ret;
12704
12705         dst_reg = &regs[dst];
12706
12707         if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12708             smin_val > smax_val || umin_val > umax_val) {
12709                 /* Taint dst register if offset had invalid bounds derived from
12710                  * e.g. dead branches.
12711                  */
12712                 __mark_reg_unknown(env, dst_reg);
12713                 return 0;
12714         }
12715
12716         if (BPF_CLASS(insn->code) != BPF_ALU64) {
12717                 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
12718                 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12719                         __mark_reg_unknown(env, dst_reg);
12720                         return 0;
12721                 }
12722
12723                 verbose(env,
12724                         "R%d 32-bit pointer arithmetic prohibited\n",
12725                         dst);
12726                 return -EACCES;
12727         }
12728
12729         if (ptr_reg->type & PTR_MAYBE_NULL) {
12730                 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12731                         dst, reg_type_str(env, ptr_reg->type));
12732                 return -EACCES;
12733         }
12734
12735         switch (base_type(ptr_reg->type)) {
12736         case CONST_PTR_TO_MAP:
12737                 /* smin_val represents the known value */
12738                 if (known && smin_val == 0 && opcode == BPF_ADD)
12739                         break;
12740                 fallthrough;
12741         case PTR_TO_PACKET_END:
12742         case PTR_TO_SOCKET:
12743         case PTR_TO_SOCK_COMMON:
12744         case PTR_TO_TCP_SOCK:
12745         case PTR_TO_XDP_SOCK:
12746                 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12747                         dst, reg_type_str(env, ptr_reg->type));
12748                 return -EACCES;
12749         default:
12750                 break;
12751         }
12752
12753         /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12754          * The id may be overwritten later if we create a new variable offset.
12755          */
12756         dst_reg->type = ptr_reg->type;
12757         dst_reg->id = ptr_reg->id;
12758
12759         if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12760             !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12761                 return -EINVAL;
12762
12763         /* pointer types do not carry 32-bit bounds at the moment. */
12764         __mark_reg32_unbounded(dst_reg);
12765
12766         if (sanitize_needed(opcode)) {
12767                 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12768                                        &info, false);
12769                 if (ret < 0)
12770                         return sanitize_err(env, insn, ret, off_reg, dst_reg);
12771         }
12772
12773         switch (opcode) {
12774         case BPF_ADD:
12775                 /* We can take a fixed offset as long as it doesn't overflow
12776                  * the s32 'off' field
12777                  */
12778                 if (known && (ptr_reg->off + smin_val ==
12779                               (s64)(s32)(ptr_reg->off + smin_val))) {
12780                         /* pointer += K.  Accumulate it into fixed offset */
12781                         dst_reg->smin_value = smin_ptr;
12782                         dst_reg->smax_value = smax_ptr;
12783                         dst_reg->umin_value = umin_ptr;
12784                         dst_reg->umax_value = umax_ptr;
12785                         dst_reg->var_off = ptr_reg->var_off;
12786                         dst_reg->off = ptr_reg->off + smin_val;
12787                         dst_reg->raw = ptr_reg->raw;
12788                         break;
12789                 }
12790                 /* A new variable offset is created.  Note that off_reg->off
12791                  * == 0, since it's a scalar.
12792                  * dst_reg gets the pointer type and since some positive
12793                  * integer value was added to the pointer, give it a new 'id'
12794                  * if it's a PTR_TO_PACKET.
12795                  * this creates a new 'base' pointer, off_reg (variable) gets
12796                  * added into the variable offset, and we copy the fixed offset
12797                  * from ptr_reg.
12798                  */
12799                 if (signed_add_overflows(smin_ptr, smin_val) ||
12800                     signed_add_overflows(smax_ptr, smax_val)) {
12801                         dst_reg->smin_value = S64_MIN;
12802                         dst_reg->smax_value = S64_MAX;
12803                 } else {
12804                         dst_reg->smin_value = smin_ptr + smin_val;
12805                         dst_reg->smax_value = smax_ptr + smax_val;
12806                 }
12807                 if (umin_ptr + umin_val < umin_ptr ||
12808                     umax_ptr + umax_val < umax_ptr) {
12809                         dst_reg->umin_value = 0;
12810                         dst_reg->umax_value = U64_MAX;
12811                 } else {
12812                         dst_reg->umin_value = umin_ptr + umin_val;
12813                         dst_reg->umax_value = umax_ptr + umax_val;
12814                 }
12815                 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12816                 dst_reg->off = ptr_reg->off;
12817                 dst_reg->raw = ptr_reg->raw;
12818                 if (reg_is_pkt_pointer(ptr_reg)) {
12819                         dst_reg->id = ++env->id_gen;
12820                         /* something was added to pkt_ptr, set range to zero */
12821                         memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12822                 }
12823                 break;
12824         case BPF_SUB:
12825                 if (dst_reg == off_reg) {
12826                         /* scalar -= pointer.  Creates an unknown scalar */
12827                         verbose(env, "R%d tried to subtract pointer from scalar\n",
12828                                 dst);
12829                         return -EACCES;
12830                 }
12831                 /* We don't allow subtraction from FP, because (according to
12832                  * test_verifier.c test "invalid fp arithmetic", JITs might not
12833                  * be able to deal with it.
12834                  */
12835                 if (ptr_reg->type == PTR_TO_STACK) {
12836                         verbose(env, "R%d subtraction from stack pointer prohibited\n",
12837                                 dst);
12838                         return -EACCES;
12839                 }
12840                 if (known && (ptr_reg->off - smin_val ==
12841                               (s64)(s32)(ptr_reg->off - smin_val))) {
12842                         /* pointer -= K.  Subtract it from fixed offset */
12843                         dst_reg->smin_value = smin_ptr;
12844                         dst_reg->smax_value = smax_ptr;
12845                         dst_reg->umin_value = umin_ptr;
12846                         dst_reg->umax_value = umax_ptr;
12847                         dst_reg->var_off = ptr_reg->var_off;
12848                         dst_reg->id = ptr_reg->id;
12849                         dst_reg->off = ptr_reg->off - smin_val;
12850                         dst_reg->raw = ptr_reg->raw;
12851                         break;
12852                 }
12853                 /* A new variable offset is created.  If the subtrahend is known
12854                  * nonnegative, then any reg->range we had before is still good.
12855                  */
12856                 if (signed_sub_overflows(smin_ptr, smax_val) ||
12857                     signed_sub_overflows(smax_ptr, smin_val)) {
12858                         /* Overflow possible, we know nothing */
12859                         dst_reg->smin_value = S64_MIN;
12860                         dst_reg->smax_value = S64_MAX;
12861                 } else {
12862                         dst_reg->smin_value = smin_ptr - smax_val;
12863                         dst_reg->smax_value = smax_ptr - smin_val;
12864                 }
12865                 if (umin_ptr < umax_val) {
12866                         /* Overflow possible, we know nothing */
12867                         dst_reg->umin_value = 0;
12868                         dst_reg->umax_value = U64_MAX;
12869                 } else {
12870                         /* Cannot overflow (as long as bounds are consistent) */
12871                         dst_reg->umin_value = umin_ptr - umax_val;
12872                         dst_reg->umax_value = umax_ptr - umin_val;
12873                 }
12874                 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12875                 dst_reg->off = ptr_reg->off;
12876                 dst_reg->raw = ptr_reg->raw;
12877                 if (reg_is_pkt_pointer(ptr_reg)) {
12878                         dst_reg->id = ++env->id_gen;
12879                         /* something was added to pkt_ptr, set range to zero */
12880                         if (smin_val < 0)
12881                                 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12882                 }
12883                 break;
12884         case BPF_AND:
12885         case BPF_OR:
12886         case BPF_XOR:
12887                 /* bitwise ops on pointers are troublesome, prohibit. */
12888                 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12889                         dst, bpf_alu_string[opcode >> 4]);
12890                 return -EACCES;
12891         default:
12892                 /* other operators (e.g. MUL,LSH) produce non-pointer results */
12893                 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12894                         dst, bpf_alu_string[opcode >> 4]);
12895                 return -EACCES;
12896         }
12897
12898         if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12899                 return -EINVAL;
12900         reg_bounds_sync(dst_reg);
12901         if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12902                 return -EACCES;
12903         if (sanitize_needed(opcode)) {
12904                 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12905                                        &info, true);
12906                 if (ret < 0)
12907                         return sanitize_err(env, insn, ret, off_reg, dst_reg);
12908         }
12909
12910         return 0;
12911 }
12912
12913 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12914                                  struct bpf_reg_state *src_reg)
12915 {
12916         s32 smin_val = src_reg->s32_min_value;
12917         s32 smax_val = src_reg->s32_max_value;
12918         u32 umin_val = src_reg->u32_min_value;
12919         u32 umax_val = src_reg->u32_max_value;
12920
12921         if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12922             signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12923                 dst_reg->s32_min_value = S32_MIN;
12924                 dst_reg->s32_max_value = S32_MAX;
12925         } else {
12926                 dst_reg->s32_min_value += smin_val;
12927                 dst_reg->s32_max_value += smax_val;
12928         }
12929         if (dst_reg->u32_min_value + umin_val < umin_val ||
12930             dst_reg->u32_max_value + umax_val < umax_val) {
12931                 dst_reg->u32_min_value = 0;
12932                 dst_reg->u32_max_value = U32_MAX;
12933         } else {
12934                 dst_reg->u32_min_value += umin_val;
12935                 dst_reg->u32_max_value += umax_val;
12936         }
12937 }
12938
12939 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12940                                struct bpf_reg_state *src_reg)
12941 {
12942         s64 smin_val = src_reg->smin_value;
12943         s64 smax_val = src_reg->smax_value;
12944         u64 umin_val = src_reg->umin_value;
12945         u64 umax_val = src_reg->umax_value;
12946
12947         if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12948             signed_add_overflows(dst_reg->smax_value, smax_val)) {
12949                 dst_reg->smin_value = S64_MIN;
12950                 dst_reg->smax_value = S64_MAX;
12951         } else {
12952                 dst_reg->smin_value += smin_val;
12953                 dst_reg->smax_value += smax_val;
12954         }
12955         if (dst_reg->umin_value + umin_val < umin_val ||
12956             dst_reg->umax_value + umax_val < umax_val) {
12957                 dst_reg->umin_value = 0;
12958                 dst_reg->umax_value = U64_MAX;
12959         } else {
12960                 dst_reg->umin_value += umin_val;
12961                 dst_reg->umax_value += umax_val;
12962         }
12963 }
12964
12965 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12966                                  struct bpf_reg_state *src_reg)
12967 {
12968         s32 smin_val = src_reg->s32_min_value;
12969         s32 smax_val = src_reg->s32_max_value;
12970         u32 umin_val = src_reg->u32_min_value;
12971         u32 umax_val = src_reg->u32_max_value;
12972
12973         if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12974             signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12975                 /* Overflow possible, we know nothing */
12976                 dst_reg->s32_min_value = S32_MIN;
12977                 dst_reg->s32_max_value = S32_MAX;
12978         } else {
12979                 dst_reg->s32_min_value -= smax_val;
12980                 dst_reg->s32_max_value -= smin_val;
12981         }
12982         if (dst_reg->u32_min_value < umax_val) {
12983                 /* Overflow possible, we know nothing */
12984                 dst_reg->u32_min_value = 0;
12985                 dst_reg->u32_max_value = U32_MAX;
12986         } else {
12987                 /* Cannot overflow (as long as bounds are consistent) */
12988                 dst_reg->u32_min_value -= umax_val;
12989                 dst_reg->u32_max_value -= umin_val;
12990         }
12991 }
12992
12993 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12994                                struct bpf_reg_state *src_reg)
12995 {
12996         s64 smin_val = src_reg->smin_value;
12997         s64 smax_val = src_reg->smax_value;
12998         u64 umin_val = src_reg->umin_value;
12999         u64 umax_val = src_reg->umax_value;
13000
13001         if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13002             signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13003                 /* Overflow possible, we know nothing */
13004                 dst_reg->smin_value = S64_MIN;
13005                 dst_reg->smax_value = S64_MAX;
13006         } else {
13007                 dst_reg->smin_value -= smax_val;
13008                 dst_reg->smax_value -= smin_val;
13009         }
13010         if (dst_reg->umin_value < umax_val) {
13011                 /* Overflow possible, we know nothing */
13012                 dst_reg->umin_value = 0;
13013                 dst_reg->umax_value = U64_MAX;
13014         } else {
13015                 /* Cannot overflow (as long as bounds are consistent) */
13016                 dst_reg->umin_value -= umax_val;
13017                 dst_reg->umax_value -= umin_val;
13018         }
13019 }
13020
13021 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13022                                  struct bpf_reg_state *src_reg)
13023 {
13024         s32 smin_val = src_reg->s32_min_value;
13025         u32 umin_val = src_reg->u32_min_value;
13026         u32 umax_val = src_reg->u32_max_value;
13027
13028         if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13029                 /* Ain't nobody got time to multiply that sign */
13030                 __mark_reg32_unbounded(dst_reg);
13031                 return;
13032         }
13033         /* Both values are positive, so we can work with unsigned and
13034          * copy the result to signed (unless it exceeds S32_MAX).
13035          */
13036         if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13037                 /* Potential overflow, we know nothing */
13038                 __mark_reg32_unbounded(dst_reg);
13039                 return;
13040         }
13041         dst_reg->u32_min_value *= umin_val;
13042         dst_reg->u32_max_value *= umax_val;
13043         if (dst_reg->u32_max_value > S32_MAX) {
13044                 /* Overflow possible, we know nothing */
13045                 dst_reg->s32_min_value = S32_MIN;
13046                 dst_reg->s32_max_value = S32_MAX;
13047         } else {
13048                 dst_reg->s32_min_value = dst_reg->u32_min_value;
13049                 dst_reg->s32_max_value = dst_reg->u32_max_value;
13050         }
13051 }
13052
13053 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13054                                struct bpf_reg_state *src_reg)
13055 {
13056         s64 smin_val = src_reg->smin_value;
13057         u64 umin_val = src_reg->umin_value;
13058         u64 umax_val = src_reg->umax_value;
13059
13060         if (smin_val < 0 || dst_reg->smin_value < 0) {
13061                 /* Ain't nobody got time to multiply that sign */
13062                 __mark_reg64_unbounded(dst_reg);
13063                 return;
13064         }
13065         /* Both values are positive, so we can work with unsigned and
13066          * copy the result to signed (unless it exceeds S64_MAX).
13067          */
13068         if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13069                 /* Potential overflow, we know nothing */
13070                 __mark_reg64_unbounded(dst_reg);
13071                 return;
13072         }
13073         dst_reg->umin_value *= umin_val;
13074         dst_reg->umax_value *= umax_val;
13075         if (dst_reg->umax_value > S64_MAX) {
13076                 /* Overflow possible, we know nothing */
13077                 dst_reg->smin_value = S64_MIN;
13078                 dst_reg->smax_value = S64_MAX;
13079         } else {
13080                 dst_reg->smin_value = dst_reg->umin_value;
13081                 dst_reg->smax_value = dst_reg->umax_value;
13082         }
13083 }
13084
13085 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13086                                  struct bpf_reg_state *src_reg)
13087 {
13088         bool src_known = tnum_subreg_is_const(src_reg->var_off);
13089         bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13090         struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13091         s32 smin_val = src_reg->s32_min_value;
13092         u32 umax_val = src_reg->u32_max_value;
13093
13094         if (src_known && dst_known) {
13095                 __mark_reg32_known(dst_reg, var32_off.value);
13096                 return;
13097         }
13098
13099         /* We get our minimum from the var_off, since that's inherently
13100          * bitwise.  Our maximum is the minimum of the operands' maxima.
13101          */
13102         dst_reg->u32_min_value = var32_off.value;
13103         dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13104         if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13105                 /* Lose signed bounds when ANDing negative numbers,
13106                  * ain't nobody got time for that.
13107                  */
13108                 dst_reg->s32_min_value = S32_MIN;
13109                 dst_reg->s32_max_value = S32_MAX;
13110         } else {
13111                 /* ANDing two positives gives a positive, so safe to
13112                  * cast result into s64.
13113                  */
13114                 dst_reg->s32_min_value = dst_reg->u32_min_value;
13115                 dst_reg->s32_max_value = dst_reg->u32_max_value;
13116         }
13117 }
13118
13119 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13120                                struct bpf_reg_state *src_reg)
13121 {
13122         bool src_known = tnum_is_const(src_reg->var_off);
13123         bool dst_known = tnum_is_const(dst_reg->var_off);
13124         s64 smin_val = src_reg->smin_value;
13125         u64 umax_val = src_reg->umax_value;
13126
13127         if (src_known && dst_known) {
13128                 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13129                 return;
13130         }
13131
13132         /* We get our minimum from the var_off, since that's inherently
13133          * bitwise.  Our maximum is the minimum of the operands' maxima.
13134          */
13135         dst_reg->umin_value = dst_reg->var_off.value;
13136         dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13137         if (dst_reg->smin_value < 0 || smin_val < 0) {
13138                 /* Lose signed bounds when ANDing negative numbers,
13139                  * ain't nobody got time for that.
13140                  */
13141                 dst_reg->smin_value = S64_MIN;
13142                 dst_reg->smax_value = S64_MAX;
13143         } else {
13144                 /* ANDing two positives gives a positive, so safe to
13145                  * cast result into s64.
13146                  */
13147                 dst_reg->smin_value = dst_reg->umin_value;
13148                 dst_reg->smax_value = dst_reg->umax_value;
13149         }
13150         /* We may learn something more from the var_off */
13151         __update_reg_bounds(dst_reg);
13152 }
13153
13154 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13155                                 struct bpf_reg_state *src_reg)
13156 {
13157         bool src_known = tnum_subreg_is_const(src_reg->var_off);
13158         bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13159         struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13160         s32 smin_val = src_reg->s32_min_value;
13161         u32 umin_val = src_reg->u32_min_value;
13162
13163         if (src_known && dst_known) {
13164                 __mark_reg32_known(dst_reg, var32_off.value);
13165                 return;
13166         }
13167
13168         /* We get our maximum from the var_off, and our minimum is the
13169          * maximum of the operands' minima
13170          */
13171         dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13172         dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13173         if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13174                 /* Lose signed bounds when ORing negative numbers,
13175                  * ain't nobody got time for that.
13176                  */
13177                 dst_reg->s32_min_value = S32_MIN;
13178                 dst_reg->s32_max_value = S32_MAX;
13179         } else {
13180                 /* ORing two positives gives a positive, so safe to
13181                  * cast result into s64.
13182                  */
13183                 dst_reg->s32_min_value = dst_reg->u32_min_value;
13184                 dst_reg->s32_max_value = dst_reg->u32_max_value;
13185         }
13186 }
13187
13188 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13189                               struct bpf_reg_state *src_reg)
13190 {
13191         bool src_known = tnum_is_const(src_reg->var_off);
13192         bool dst_known = tnum_is_const(dst_reg->var_off);
13193         s64 smin_val = src_reg->smin_value;
13194         u64 umin_val = src_reg->umin_value;
13195
13196         if (src_known && dst_known) {
13197                 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13198                 return;
13199         }
13200
13201         /* We get our maximum from the var_off, and our minimum is the
13202          * maximum of the operands' minima
13203          */
13204         dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13205         dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13206         if (dst_reg->smin_value < 0 || smin_val < 0) {
13207                 /* Lose signed bounds when ORing negative numbers,
13208                  * ain't nobody got time for that.
13209                  */
13210                 dst_reg->smin_value = S64_MIN;
13211                 dst_reg->smax_value = S64_MAX;
13212         } else {
13213                 /* ORing two positives gives a positive, so safe to
13214                  * cast result into s64.
13215                  */
13216                 dst_reg->smin_value = dst_reg->umin_value;
13217                 dst_reg->smax_value = dst_reg->umax_value;
13218         }
13219         /* We may learn something more from the var_off */
13220         __update_reg_bounds(dst_reg);
13221 }
13222
13223 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13224                                  struct bpf_reg_state *src_reg)
13225 {
13226         bool src_known = tnum_subreg_is_const(src_reg->var_off);
13227         bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13228         struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13229         s32 smin_val = src_reg->s32_min_value;
13230
13231         if (src_known && dst_known) {
13232                 __mark_reg32_known(dst_reg, var32_off.value);
13233                 return;
13234         }
13235
13236         /* We get both minimum and maximum from the var32_off. */
13237         dst_reg->u32_min_value = var32_off.value;
13238         dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13239
13240         if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13241                 /* XORing two positive sign numbers gives a positive,
13242                  * so safe to cast u32 result into s32.
13243                  */
13244                 dst_reg->s32_min_value = dst_reg->u32_min_value;
13245                 dst_reg->s32_max_value = dst_reg->u32_max_value;
13246         } else {
13247                 dst_reg->s32_min_value = S32_MIN;
13248                 dst_reg->s32_max_value = S32_MAX;
13249         }
13250 }
13251
13252 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13253                                struct bpf_reg_state *src_reg)
13254 {
13255         bool src_known = tnum_is_const(src_reg->var_off);
13256         bool dst_known = tnum_is_const(dst_reg->var_off);
13257         s64 smin_val = src_reg->smin_value;
13258
13259         if (src_known && dst_known) {
13260                 /* dst_reg->var_off.value has been updated earlier */
13261                 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13262                 return;
13263         }
13264
13265         /* We get both minimum and maximum from the var_off. */
13266         dst_reg->umin_value = dst_reg->var_off.value;
13267         dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13268
13269         if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13270                 /* XORing two positive sign numbers gives a positive,
13271                  * so safe to cast u64 result into s64.
13272                  */
13273                 dst_reg->smin_value = dst_reg->umin_value;
13274                 dst_reg->smax_value = dst_reg->umax_value;
13275         } else {
13276                 dst_reg->smin_value = S64_MIN;
13277                 dst_reg->smax_value = S64_MAX;
13278         }
13279
13280         __update_reg_bounds(dst_reg);
13281 }
13282
13283 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13284                                    u64 umin_val, u64 umax_val)
13285 {
13286         /* We lose all sign bit information (except what we can pick
13287          * up from var_off)
13288          */
13289         dst_reg->s32_min_value = S32_MIN;
13290         dst_reg->s32_max_value = S32_MAX;
13291         /* If we might shift our top bit out, then we know nothing */
13292         if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13293                 dst_reg->u32_min_value = 0;
13294                 dst_reg->u32_max_value = U32_MAX;
13295         } else {
13296                 dst_reg->u32_min_value <<= umin_val;
13297                 dst_reg->u32_max_value <<= umax_val;
13298         }
13299 }
13300
13301 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13302                                  struct bpf_reg_state *src_reg)
13303 {
13304         u32 umax_val = src_reg->u32_max_value;
13305         u32 umin_val = src_reg->u32_min_value;
13306         /* u32 alu operation will zext upper bits */
13307         struct tnum subreg = tnum_subreg(dst_reg->var_off);
13308
13309         __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13310         dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13311         /* Not required but being careful mark reg64 bounds as unknown so
13312          * that we are forced to pick them up from tnum and zext later and
13313          * if some path skips this step we are still safe.
13314          */
13315         __mark_reg64_unbounded(dst_reg);
13316         __update_reg32_bounds(dst_reg);
13317 }
13318
13319 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13320                                    u64 umin_val, u64 umax_val)
13321 {
13322         /* Special case <<32 because it is a common compiler pattern to sign
13323          * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13324          * positive we know this shift will also be positive so we can track
13325          * bounds correctly. Otherwise we lose all sign bit information except
13326          * what we can pick up from var_off. Perhaps we can generalize this
13327          * later to shifts of any length.
13328          */
13329         if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13330                 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13331         else
13332                 dst_reg->smax_value = S64_MAX;
13333
13334         if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13335                 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13336         else
13337                 dst_reg->smin_value = S64_MIN;
13338
13339         /* If we might shift our top bit out, then we know nothing */
13340         if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13341                 dst_reg->umin_value = 0;
13342                 dst_reg->umax_value = U64_MAX;
13343         } else {
13344                 dst_reg->umin_value <<= umin_val;
13345                 dst_reg->umax_value <<= umax_val;
13346         }
13347 }
13348
13349 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13350                                struct bpf_reg_state *src_reg)
13351 {
13352         u64 umax_val = src_reg->umax_value;
13353         u64 umin_val = src_reg->umin_value;
13354
13355         /* scalar64 calc uses 32bit unshifted bounds so must be called first */
13356         __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13357         __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13358
13359         dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13360         /* We may learn something more from the var_off */
13361         __update_reg_bounds(dst_reg);
13362 }
13363
13364 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13365                                  struct bpf_reg_state *src_reg)
13366 {
13367         struct tnum subreg = tnum_subreg(dst_reg->var_off);
13368         u32 umax_val = src_reg->u32_max_value;
13369         u32 umin_val = src_reg->u32_min_value;
13370
13371         /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13372          * be negative, then either:
13373          * 1) src_reg might be zero, so the sign bit of the result is
13374          *    unknown, so we lose our signed bounds
13375          * 2) it's known negative, thus the unsigned bounds capture the
13376          *    signed bounds
13377          * 3) the signed bounds cross zero, so they tell us nothing
13378          *    about the result
13379          * If the value in dst_reg is known nonnegative, then again the
13380          * unsigned bounds capture the signed bounds.
13381          * Thus, in all cases it suffices to blow away our signed bounds
13382          * and rely on inferring new ones from the unsigned bounds and
13383          * var_off of the result.
13384          */
13385         dst_reg->s32_min_value = S32_MIN;
13386         dst_reg->s32_max_value = S32_MAX;
13387
13388         dst_reg->var_off = tnum_rshift(subreg, umin_val);
13389         dst_reg->u32_min_value >>= umax_val;
13390         dst_reg->u32_max_value >>= umin_val;
13391
13392         __mark_reg64_unbounded(dst_reg);
13393         __update_reg32_bounds(dst_reg);
13394 }
13395
13396 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13397                                struct bpf_reg_state *src_reg)
13398 {
13399         u64 umax_val = src_reg->umax_value;
13400         u64 umin_val = src_reg->umin_value;
13401
13402         /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13403          * be negative, then either:
13404          * 1) src_reg might be zero, so the sign bit of the result is
13405          *    unknown, so we lose our signed bounds
13406          * 2) it's known negative, thus the unsigned bounds capture the
13407          *    signed bounds
13408          * 3) the signed bounds cross zero, so they tell us nothing
13409          *    about the result
13410          * If the value in dst_reg is known nonnegative, then again the
13411          * unsigned bounds capture the signed bounds.
13412          * Thus, in all cases it suffices to blow away our signed bounds
13413          * and rely on inferring new ones from the unsigned bounds and
13414          * var_off of the result.
13415          */
13416         dst_reg->smin_value = S64_MIN;
13417         dst_reg->smax_value = S64_MAX;
13418         dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13419         dst_reg->umin_value >>= umax_val;
13420         dst_reg->umax_value >>= umin_val;
13421
13422         /* Its not easy to operate on alu32 bounds here because it depends
13423          * on bits being shifted in. Take easy way out and mark unbounded
13424          * so we can recalculate later from tnum.
13425          */
13426         __mark_reg32_unbounded(dst_reg);
13427         __update_reg_bounds(dst_reg);
13428 }
13429
13430 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13431                                   struct bpf_reg_state *src_reg)
13432 {
13433         u64 umin_val = src_reg->u32_min_value;
13434
13435         /* Upon reaching here, src_known is true and
13436          * umax_val is equal to umin_val.
13437          */
13438         dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13439         dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13440
13441         dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13442
13443         /* blow away the dst_reg umin_value/umax_value and rely on
13444          * dst_reg var_off to refine the result.
13445          */
13446         dst_reg->u32_min_value = 0;
13447         dst_reg->u32_max_value = U32_MAX;
13448
13449         __mark_reg64_unbounded(dst_reg);
13450         __update_reg32_bounds(dst_reg);
13451 }
13452
13453 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13454                                 struct bpf_reg_state *src_reg)
13455 {
13456         u64 umin_val = src_reg->umin_value;
13457
13458         /* Upon reaching here, src_known is true and umax_val is equal
13459          * to umin_val.
13460          */
13461         dst_reg->smin_value >>= umin_val;
13462         dst_reg->smax_value >>= umin_val;
13463
13464         dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13465
13466         /* blow away the dst_reg umin_value/umax_value and rely on
13467          * dst_reg var_off to refine the result.
13468          */
13469         dst_reg->umin_value = 0;
13470         dst_reg->umax_value = U64_MAX;
13471
13472         /* Its not easy to operate on alu32 bounds here because it depends
13473          * on bits being shifted in from upper 32-bits. Take easy way out
13474          * and mark unbounded so we can recalculate later from tnum.
13475          */
13476         __mark_reg32_unbounded(dst_reg);
13477         __update_reg_bounds(dst_reg);
13478 }
13479
13480 /* WARNING: This function does calculations on 64-bit values, but the actual
13481  * execution may occur on 32-bit values. Therefore, things like bitshifts
13482  * need extra checks in the 32-bit case.
13483  */
13484 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13485                                       struct bpf_insn *insn,
13486                                       struct bpf_reg_state *dst_reg,
13487                                       struct bpf_reg_state src_reg)
13488 {
13489         struct bpf_reg_state *regs = cur_regs(env);
13490         u8 opcode = BPF_OP(insn->code);
13491         bool src_known;
13492         s64 smin_val, smax_val;
13493         u64 umin_val, umax_val;
13494         s32 s32_min_val, s32_max_val;
13495         u32 u32_min_val, u32_max_val;
13496         u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13497         bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13498         int ret;
13499
13500         smin_val = src_reg.smin_value;
13501         smax_val = src_reg.smax_value;
13502         umin_val = src_reg.umin_value;
13503         umax_val = src_reg.umax_value;
13504
13505         s32_min_val = src_reg.s32_min_value;
13506         s32_max_val = src_reg.s32_max_value;
13507         u32_min_val = src_reg.u32_min_value;
13508         u32_max_val = src_reg.u32_max_value;
13509
13510         if (alu32) {
13511                 src_known = tnum_subreg_is_const(src_reg.var_off);
13512                 if ((src_known &&
13513                      (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13514                     s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13515                         /* Taint dst register if offset had invalid bounds
13516                          * derived from e.g. dead branches.
13517                          */
13518                         __mark_reg_unknown(env, dst_reg);
13519                         return 0;
13520                 }
13521         } else {
13522                 src_known = tnum_is_const(src_reg.var_off);
13523                 if ((src_known &&
13524                      (smin_val != smax_val || umin_val != umax_val)) ||
13525                     smin_val > smax_val || umin_val > umax_val) {
13526                         /* Taint dst register if offset had invalid bounds
13527                          * derived from e.g. dead branches.
13528                          */
13529                         __mark_reg_unknown(env, dst_reg);
13530                         return 0;
13531                 }
13532         }
13533
13534         if (!src_known &&
13535             opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13536                 __mark_reg_unknown(env, dst_reg);
13537                 return 0;
13538         }
13539
13540         if (sanitize_needed(opcode)) {
13541                 ret = sanitize_val_alu(env, insn);
13542                 if (ret < 0)
13543                         return sanitize_err(env, insn, ret, NULL, NULL);
13544         }
13545
13546         /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13547          * There are two classes of instructions: The first class we track both
13548          * alu32 and alu64 sign/unsigned bounds independently this provides the
13549          * greatest amount of precision when alu operations are mixed with jmp32
13550          * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13551          * and BPF_OR. This is possible because these ops have fairly easy to
13552          * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13553          * See alu32 verifier tests for examples. The second class of
13554          * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13555          * with regards to tracking sign/unsigned bounds because the bits may
13556          * cross subreg boundaries in the alu64 case. When this happens we mark
13557          * the reg unbounded in the subreg bound space and use the resulting
13558          * tnum to calculate an approximation of the sign/unsigned bounds.
13559          */
13560         switch (opcode) {
13561         case BPF_ADD:
13562                 scalar32_min_max_add(dst_reg, &src_reg);
13563                 scalar_min_max_add(dst_reg, &src_reg);
13564                 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13565                 break;
13566         case BPF_SUB:
13567                 scalar32_min_max_sub(dst_reg, &src_reg);
13568                 scalar_min_max_sub(dst_reg, &src_reg);
13569                 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13570                 break;
13571         case BPF_MUL:
13572                 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13573                 scalar32_min_max_mul(dst_reg, &src_reg);
13574                 scalar_min_max_mul(dst_reg, &src_reg);
13575                 break;
13576         case BPF_AND:
13577                 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13578                 scalar32_min_max_and(dst_reg, &src_reg);
13579                 scalar_min_max_and(dst_reg, &src_reg);
13580                 break;
13581         case BPF_OR:
13582                 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13583                 scalar32_min_max_or(dst_reg, &src_reg);
13584                 scalar_min_max_or(dst_reg, &src_reg);
13585                 break;
13586         case BPF_XOR:
13587                 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13588                 scalar32_min_max_xor(dst_reg, &src_reg);
13589                 scalar_min_max_xor(dst_reg, &src_reg);
13590                 break;
13591         case BPF_LSH:
13592                 if (umax_val >= insn_bitness) {
13593                         /* Shifts greater than 31 or 63 are undefined.
13594                          * This includes shifts by a negative number.
13595                          */
13596                         mark_reg_unknown(env, regs, insn->dst_reg);
13597                         break;
13598                 }
13599                 if (alu32)
13600                         scalar32_min_max_lsh(dst_reg, &src_reg);
13601                 else
13602                         scalar_min_max_lsh(dst_reg, &src_reg);
13603                 break;
13604         case BPF_RSH:
13605                 if (umax_val >= insn_bitness) {
13606                         /* Shifts greater than 31 or 63 are undefined.
13607                          * This includes shifts by a negative number.
13608                          */
13609                         mark_reg_unknown(env, regs, insn->dst_reg);
13610                         break;
13611                 }
13612                 if (alu32)
13613                         scalar32_min_max_rsh(dst_reg, &src_reg);
13614                 else
13615                         scalar_min_max_rsh(dst_reg, &src_reg);
13616                 break;
13617         case BPF_ARSH:
13618                 if (umax_val >= insn_bitness) {
13619                         /* Shifts greater than 31 or 63 are undefined.
13620                          * This includes shifts by a negative number.
13621                          */
13622                         mark_reg_unknown(env, regs, insn->dst_reg);
13623                         break;
13624                 }
13625                 if (alu32)
13626                         scalar32_min_max_arsh(dst_reg, &src_reg);
13627                 else
13628                         scalar_min_max_arsh(dst_reg, &src_reg);
13629                 break;
13630         default:
13631                 mark_reg_unknown(env, regs, insn->dst_reg);
13632                 break;
13633         }
13634
13635         /* ALU32 ops are zero extended into 64bit register */
13636         if (alu32)
13637                 zext_32_to_64(dst_reg);
13638         reg_bounds_sync(dst_reg);
13639         return 0;
13640 }
13641
13642 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13643  * and var_off.
13644  */
13645 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13646                                    struct bpf_insn *insn)
13647 {
13648         struct bpf_verifier_state *vstate = env->cur_state;
13649         struct bpf_func_state *state = vstate->frame[vstate->curframe];
13650         struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13651         struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13652         u8 opcode = BPF_OP(insn->code);
13653         int err;
13654
13655         dst_reg = &regs[insn->dst_reg];
13656         src_reg = NULL;
13657         if (dst_reg->type != SCALAR_VALUE)
13658                 ptr_reg = dst_reg;
13659         else
13660                 /* Make sure ID is cleared otherwise dst_reg min/max could be
13661                  * incorrectly propagated into other registers by find_equal_scalars()
13662                  */
13663                 dst_reg->id = 0;
13664         if (BPF_SRC(insn->code) == BPF_X) {
13665                 src_reg = &regs[insn->src_reg];
13666                 if (src_reg->type != SCALAR_VALUE) {
13667                         if (dst_reg->type != SCALAR_VALUE) {
13668                                 /* Combining two pointers by any ALU op yields
13669                                  * an arbitrary scalar. Disallow all math except
13670                                  * pointer subtraction
13671                                  */
13672                                 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13673                                         mark_reg_unknown(env, regs, insn->dst_reg);
13674                                         return 0;
13675                                 }
13676                                 verbose(env, "R%d pointer %s pointer prohibited\n",
13677                                         insn->dst_reg,
13678                                         bpf_alu_string[opcode >> 4]);
13679                                 return -EACCES;
13680                         } else {
13681                                 /* scalar += pointer
13682                                  * This is legal, but we have to reverse our
13683                                  * src/dest handling in computing the range
13684                                  */
13685                                 err = mark_chain_precision(env, insn->dst_reg);
13686                                 if (err)
13687                                         return err;
13688                                 return adjust_ptr_min_max_vals(env, insn,
13689                                                                src_reg, dst_reg);
13690                         }
13691                 } else if (ptr_reg) {
13692                         /* pointer += scalar */
13693                         err = mark_chain_precision(env, insn->src_reg);
13694                         if (err)
13695                                 return err;
13696                         return adjust_ptr_min_max_vals(env, insn,
13697                                                        dst_reg, src_reg);
13698                 } else if (dst_reg->precise) {
13699                         /* if dst_reg is precise, src_reg should be precise as well */
13700                         err = mark_chain_precision(env, insn->src_reg);
13701                         if (err)
13702                                 return err;
13703                 }
13704         } else {
13705                 /* Pretend the src is a reg with a known value, since we only
13706                  * need to be able to read from this state.
13707                  */
13708                 off_reg.type = SCALAR_VALUE;
13709                 __mark_reg_known(&off_reg, insn->imm);
13710                 src_reg = &off_reg;
13711                 if (ptr_reg) /* pointer += K */
13712                         return adjust_ptr_min_max_vals(env, insn,
13713                                                        ptr_reg, src_reg);
13714         }
13715
13716         /* Got here implies adding two SCALAR_VALUEs */
13717         if (WARN_ON_ONCE(ptr_reg)) {
13718                 print_verifier_state(env, state, true);
13719                 verbose(env, "verifier internal error: unexpected ptr_reg\n");
13720                 return -EINVAL;
13721         }
13722         if (WARN_ON(!src_reg)) {
13723                 print_verifier_state(env, state, true);
13724                 verbose(env, "verifier internal error: no src_reg\n");
13725                 return -EINVAL;
13726         }
13727         return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13728 }
13729
13730 /* check validity of 32-bit and 64-bit arithmetic operations */
13731 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13732 {
13733         struct bpf_reg_state *regs = cur_regs(env);
13734         u8 opcode = BPF_OP(insn->code);
13735         int err;
13736
13737         if (opcode == BPF_END || opcode == BPF_NEG) {
13738                 if (opcode == BPF_NEG) {
13739                         if (BPF_SRC(insn->code) != BPF_K ||
13740                             insn->src_reg != BPF_REG_0 ||
13741                             insn->off != 0 || insn->imm != 0) {
13742                                 verbose(env, "BPF_NEG uses reserved fields\n");
13743                                 return -EINVAL;
13744                         }
13745                 } else {
13746                         if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13747                             (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13748                             (BPF_CLASS(insn->code) == BPF_ALU64 &&
13749                              BPF_SRC(insn->code) != BPF_TO_LE)) {
13750                                 verbose(env, "BPF_END uses reserved fields\n");
13751                                 return -EINVAL;
13752                         }
13753                 }
13754
13755                 /* check src operand */
13756                 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13757                 if (err)
13758                         return err;
13759
13760                 if (is_pointer_value(env, insn->dst_reg)) {
13761                         verbose(env, "R%d pointer arithmetic prohibited\n",
13762                                 insn->dst_reg);
13763                         return -EACCES;
13764                 }
13765
13766                 /* check dest operand */
13767                 err = check_reg_arg(env, insn->dst_reg, DST_OP);
13768                 if (err)
13769                         return err;
13770
13771         } else if (opcode == BPF_MOV) {
13772
13773                 if (BPF_SRC(insn->code) == BPF_X) {
13774                         if (insn->imm != 0) {
13775                                 verbose(env, "BPF_MOV uses reserved fields\n");
13776                                 return -EINVAL;
13777                         }
13778
13779                         if (BPF_CLASS(insn->code) == BPF_ALU) {
13780                                 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13781                                         verbose(env, "BPF_MOV uses reserved fields\n");
13782                                         return -EINVAL;
13783                                 }
13784                         } else {
13785                                 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13786                                     insn->off != 32) {
13787                                         verbose(env, "BPF_MOV uses reserved fields\n");
13788                                         return -EINVAL;
13789                                 }
13790                         }
13791
13792                         /* check src operand */
13793                         err = check_reg_arg(env, insn->src_reg, SRC_OP);
13794                         if (err)
13795                                 return err;
13796                 } else {
13797                         if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13798                                 verbose(env, "BPF_MOV uses reserved fields\n");
13799                                 return -EINVAL;
13800                         }
13801                 }
13802
13803                 /* check dest operand, mark as required later */
13804                 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13805                 if (err)
13806                         return err;
13807
13808                 if (BPF_SRC(insn->code) == BPF_X) {
13809                         struct bpf_reg_state *src_reg = regs + insn->src_reg;
13810                         struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13811                         bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13812                                        !tnum_is_const(src_reg->var_off);
13813
13814                         if (BPF_CLASS(insn->code) == BPF_ALU64) {
13815                                 if (insn->off == 0) {
13816                                         /* case: R1 = R2
13817                                          * copy register state to dest reg
13818                                          */
13819                                         if (need_id)
13820                                                 /* Assign src and dst registers the same ID
13821                                                  * that will be used by find_equal_scalars()
13822                                                  * to propagate min/max range.
13823                                                  */
13824                                                 src_reg->id = ++env->id_gen;
13825                                         copy_register_state(dst_reg, src_reg);
13826                                         dst_reg->live |= REG_LIVE_WRITTEN;
13827                                         dst_reg->subreg_def = DEF_NOT_SUBREG;
13828                                 } else {
13829                                         /* case: R1 = (s8, s16 s32)R2 */
13830                                         if (is_pointer_value(env, insn->src_reg)) {
13831                                                 verbose(env,
13832                                                         "R%d sign-extension part of pointer\n",
13833                                                         insn->src_reg);
13834                                                 return -EACCES;
13835                                         } else if (src_reg->type == SCALAR_VALUE) {
13836                                                 bool no_sext;
13837
13838                                                 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13839                                                 if (no_sext && need_id)
13840                                                         src_reg->id = ++env->id_gen;
13841                                                 copy_register_state(dst_reg, src_reg);
13842                                                 if (!no_sext)
13843                                                         dst_reg->id = 0;
13844                                                 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13845                                                 dst_reg->live |= REG_LIVE_WRITTEN;
13846                                                 dst_reg->subreg_def = DEF_NOT_SUBREG;
13847                                         } else {
13848                                                 mark_reg_unknown(env, regs, insn->dst_reg);
13849                                         }
13850                                 }
13851                         } else {
13852                                 /* R1 = (u32) R2 */
13853                                 if (is_pointer_value(env, insn->src_reg)) {
13854                                         verbose(env,
13855                                                 "R%d partial copy of pointer\n",
13856                                                 insn->src_reg);
13857                                         return -EACCES;
13858                                 } else if (src_reg->type == SCALAR_VALUE) {
13859                                         if (insn->off == 0) {
13860                                                 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13861
13862                                                 if (is_src_reg_u32 && need_id)
13863                                                         src_reg->id = ++env->id_gen;
13864                                                 copy_register_state(dst_reg, src_reg);
13865                                                 /* Make sure ID is cleared if src_reg is not in u32
13866                                                  * range otherwise dst_reg min/max could be incorrectly
13867                                                  * propagated into src_reg by find_equal_scalars()
13868                                                  */
13869                                                 if (!is_src_reg_u32)
13870                                                         dst_reg->id = 0;
13871                                                 dst_reg->live |= REG_LIVE_WRITTEN;
13872                                                 dst_reg->subreg_def = env->insn_idx + 1;
13873                                         } else {
13874                                                 /* case: W1 = (s8, s16)W2 */
13875                                                 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13876
13877                                                 if (no_sext && need_id)
13878                                                         src_reg->id = ++env->id_gen;
13879                                                 copy_register_state(dst_reg, src_reg);
13880                                                 if (!no_sext)
13881                                                         dst_reg->id = 0;
13882                                                 dst_reg->live |= REG_LIVE_WRITTEN;
13883                                                 dst_reg->subreg_def = env->insn_idx + 1;
13884                                                 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13885                                         }
13886                                 } else {
13887                                         mark_reg_unknown(env, regs,
13888                                                          insn->dst_reg);
13889                                 }
13890                                 zext_32_to_64(dst_reg);
13891                                 reg_bounds_sync(dst_reg);
13892                         }
13893                 } else {
13894                         /* case: R = imm
13895                          * remember the value we stored into this reg
13896                          */
13897                         /* clear any state __mark_reg_known doesn't set */
13898                         mark_reg_unknown(env, regs, insn->dst_reg);
13899                         regs[insn->dst_reg].type = SCALAR_VALUE;
13900                         if (BPF_CLASS(insn->code) == BPF_ALU64) {
13901                                 __mark_reg_known(regs + insn->dst_reg,
13902                                                  insn->imm);
13903                         } else {
13904                                 __mark_reg_known(regs + insn->dst_reg,
13905                                                  (u32)insn->imm);
13906                         }
13907                 }
13908
13909         } else if (opcode > BPF_END) {
13910                 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13911                 return -EINVAL;
13912
13913         } else {        /* all other ALU ops: and, sub, xor, add, ... */
13914
13915                 if (BPF_SRC(insn->code) == BPF_X) {
13916                         if (insn->imm != 0 || insn->off > 1 ||
13917                             (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13918                                 verbose(env, "BPF_ALU uses reserved fields\n");
13919                                 return -EINVAL;
13920                         }
13921                         /* check src1 operand */
13922                         err = check_reg_arg(env, insn->src_reg, SRC_OP);
13923                         if (err)
13924                                 return err;
13925                 } else {
13926                         if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13927                             (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13928                                 verbose(env, "BPF_ALU uses reserved fields\n");
13929                                 return -EINVAL;
13930                         }
13931                 }
13932
13933                 /* check src2 operand */
13934                 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13935                 if (err)
13936                         return err;
13937
13938                 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13939                     BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13940                         verbose(env, "div by zero\n");
13941                         return -EINVAL;
13942                 }
13943
13944                 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13945                      opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13946                         int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13947
13948                         if (insn->imm < 0 || insn->imm >= size) {
13949                                 verbose(env, "invalid shift %d\n", insn->imm);
13950                                 return -EINVAL;
13951                         }
13952                 }
13953
13954                 /* check dest operand */
13955                 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13956                 if (err)
13957                         return err;
13958
13959                 return adjust_reg_min_max_vals(env, insn);
13960         }
13961
13962         return 0;
13963 }
13964
13965 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13966                                    struct bpf_reg_state *dst_reg,
13967                                    enum bpf_reg_type type,
13968                                    bool range_right_open)
13969 {
13970         struct bpf_func_state *state;
13971         struct bpf_reg_state *reg;
13972         int new_range;
13973
13974         if (dst_reg->off < 0 ||
13975             (dst_reg->off == 0 && range_right_open))
13976                 /* This doesn't give us any range */
13977                 return;
13978
13979         if (dst_reg->umax_value > MAX_PACKET_OFF ||
13980             dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13981                 /* Risk of overflow.  For instance, ptr + (1<<63) may be less
13982                  * than pkt_end, but that's because it's also less than pkt.
13983                  */
13984                 return;
13985
13986         new_range = dst_reg->off;
13987         if (range_right_open)
13988                 new_range++;
13989
13990         /* Examples for register markings:
13991          *
13992          * pkt_data in dst register:
13993          *
13994          *   r2 = r3;
13995          *   r2 += 8;
13996          *   if (r2 > pkt_end) goto <handle exception>
13997          *   <access okay>
13998          *
13999          *   r2 = r3;
14000          *   r2 += 8;
14001          *   if (r2 < pkt_end) goto <access okay>
14002          *   <handle exception>
14003          *
14004          *   Where:
14005          *     r2 == dst_reg, pkt_end == src_reg
14006          *     r2=pkt(id=n,off=8,r=0)
14007          *     r3=pkt(id=n,off=0,r=0)
14008          *
14009          * pkt_data in src register:
14010          *
14011          *   r2 = r3;
14012          *   r2 += 8;
14013          *   if (pkt_end >= r2) goto <access okay>
14014          *   <handle exception>
14015          *
14016          *   r2 = r3;
14017          *   r2 += 8;
14018          *   if (pkt_end <= r2) goto <handle exception>
14019          *   <access okay>
14020          *
14021          *   Where:
14022          *     pkt_end == dst_reg, r2 == src_reg
14023          *     r2=pkt(id=n,off=8,r=0)
14024          *     r3=pkt(id=n,off=0,r=0)
14025          *
14026          * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14027          * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14028          * and [r3, r3 + 8-1) respectively is safe to access depending on
14029          * the check.
14030          */
14031
14032         /* If our ids match, then we must have the same max_value.  And we
14033          * don't care about the other reg's fixed offset, since if it's too big
14034          * the range won't allow anything.
14035          * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14036          */
14037         bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14038                 if (reg->type == type && reg->id == dst_reg->id)
14039                         /* keep the maximum range already checked */
14040                         reg->range = max(reg->range, new_range);
14041         }));
14042 }
14043
14044 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
14045 {
14046         struct tnum subreg = tnum_subreg(reg->var_off);
14047         s32 sval = (s32)val;
14048
14049         switch (opcode) {
14050         case BPF_JEQ:
14051                 if (tnum_is_const(subreg))
14052                         return !!tnum_equals_const(subreg, val);
14053                 else if (val < reg->u32_min_value || val > reg->u32_max_value)
14054                         return 0;
14055                 else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14056                         return 0;
14057                 break;
14058         case BPF_JNE:
14059                 if (tnum_is_const(subreg))
14060                         return !tnum_equals_const(subreg, val);
14061                 else if (val < reg->u32_min_value || val > reg->u32_max_value)
14062                         return 1;
14063                 else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14064                         return 1;
14065                 break;
14066         case BPF_JSET:
14067                 if ((~subreg.mask & subreg.value) & val)
14068                         return 1;
14069                 if (!((subreg.mask | subreg.value) & val))
14070                         return 0;
14071                 break;
14072         case BPF_JGT:
14073                 if (reg->u32_min_value > val)
14074                         return 1;
14075                 else if (reg->u32_max_value <= val)
14076                         return 0;
14077                 break;
14078         case BPF_JSGT:
14079                 if (reg->s32_min_value > sval)
14080                         return 1;
14081                 else if (reg->s32_max_value <= sval)
14082                         return 0;
14083                 break;
14084         case BPF_JLT:
14085                 if (reg->u32_max_value < val)
14086                         return 1;
14087                 else if (reg->u32_min_value >= val)
14088                         return 0;
14089                 break;
14090         case BPF_JSLT:
14091                 if (reg->s32_max_value < sval)
14092                         return 1;
14093                 else if (reg->s32_min_value >= sval)
14094                         return 0;
14095                 break;
14096         case BPF_JGE:
14097                 if (reg->u32_min_value >= val)
14098                         return 1;
14099                 else if (reg->u32_max_value < val)
14100                         return 0;
14101                 break;
14102         case BPF_JSGE:
14103                 if (reg->s32_min_value >= sval)
14104                         return 1;
14105                 else if (reg->s32_max_value < sval)
14106                         return 0;
14107                 break;
14108         case BPF_JLE:
14109                 if (reg->u32_max_value <= val)
14110                         return 1;
14111                 else if (reg->u32_min_value > val)
14112                         return 0;
14113                 break;
14114         case BPF_JSLE:
14115                 if (reg->s32_max_value <= sval)
14116                         return 1;
14117                 else if (reg->s32_min_value > sval)
14118                         return 0;
14119                 break;
14120         }
14121
14122         return -1;
14123 }
14124
14125
14126 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
14127 {
14128         s64 sval = (s64)val;
14129
14130         switch (opcode) {
14131         case BPF_JEQ:
14132                 if (tnum_is_const(reg->var_off))
14133                         return !!tnum_equals_const(reg->var_off, val);
14134                 else if (val < reg->umin_value || val > reg->umax_value)
14135                         return 0;
14136                 else if (sval < reg->smin_value || sval > reg->smax_value)
14137                         return 0;
14138                 break;
14139         case BPF_JNE:
14140                 if (tnum_is_const(reg->var_off))
14141                         return !tnum_equals_const(reg->var_off, val);
14142                 else if (val < reg->umin_value || val > reg->umax_value)
14143                         return 1;
14144                 else if (sval < reg->smin_value || sval > reg->smax_value)
14145                         return 1;
14146                 break;
14147         case BPF_JSET:
14148                 if ((~reg->var_off.mask & reg->var_off.value) & val)
14149                         return 1;
14150                 if (!((reg->var_off.mask | reg->var_off.value) & val))
14151                         return 0;
14152                 break;
14153         case BPF_JGT:
14154                 if (reg->umin_value > val)
14155                         return 1;
14156                 else if (reg->umax_value <= val)
14157                         return 0;
14158                 break;
14159         case BPF_JSGT:
14160                 if (reg->smin_value > sval)
14161                         return 1;
14162                 else if (reg->smax_value <= sval)
14163                         return 0;
14164                 break;
14165         case BPF_JLT:
14166                 if (reg->umax_value < val)
14167                         return 1;
14168                 else if (reg->umin_value >= val)
14169                         return 0;
14170                 break;
14171         case BPF_JSLT:
14172                 if (reg->smax_value < sval)
14173                         return 1;
14174                 else if (reg->smin_value >= sval)
14175                         return 0;
14176                 break;
14177         case BPF_JGE:
14178                 if (reg->umin_value >= val)
14179                         return 1;
14180                 else if (reg->umax_value < val)
14181                         return 0;
14182                 break;
14183         case BPF_JSGE:
14184                 if (reg->smin_value >= sval)
14185                         return 1;
14186                 else if (reg->smax_value < sval)
14187                         return 0;
14188                 break;
14189         case BPF_JLE:
14190                 if (reg->umax_value <= val)
14191                         return 1;
14192                 else if (reg->umin_value > val)
14193                         return 0;
14194                 break;
14195         case BPF_JSLE:
14196                 if (reg->smax_value <= sval)
14197                         return 1;
14198                 else if (reg->smin_value > sval)
14199                         return 0;
14200                 break;
14201         }
14202
14203         return -1;
14204 }
14205
14206 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14207  * and return:
14208  *  1 - branch will be taken and "goto target" will be executed
14209  *  0 - branch will not be taken and fall-through to next insn
14210  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14211  *      range [0,10]
14212  */
14213 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14214                            bool is_jmp32)
14215 {
14216         if (__is_pointer_value(false, reg)) {
14217                 if (!reg_not_null(reg))
14218                         return -1;
14219
14220                 /* If pointer is valid tests against zero will fail so we can
14221                  * use this to direct branch taken.
14222                  */
14223                 if (val != 0)
14224                         return -1;
14225
14226                 switch (opcode) {
14227                 case BPF_JEQ:
14228                         return 0;
14229                 case BPF_JNE:
14230                         return 1;
14231                 default:
14232                         return -1;
14233                 }
14234         }
14235
14236         if (is_jmp32)
14237                 return is_branch32_taken(reg, val, opcode);
14238         return is_branch64_taken(reg, val, opcode);
14239 }
14240
14241 static int flip_opcode(u32 opcode)
14242 {
14243         /* How can we transform "a <op> b" into "b <op> a"? */
14244         static const u8 opcode_flip[16] = {
14245                 /* these stay the same */
14246                 [BPF_JEQ  >> 4] = BPF_JEQ,
14247                 [BPF_JNE  >> 4] = BPF_JNE,
14248                 [BPF_JSET >> 4] = BPF_JSET,
14249                 /* these swap "lesser" and "greater" (L and G in the opcodes) */
14250                 [BPF_JGE  >> 4] = BPF_JLE,
14251                 [BPF_JGT  >> 4] = BPF_JLT,
14252                 [BPF_JLE  >> 4] = BPF_JGE,
14253                 [BPF_JLT  >> 4] = BPF_JGT,
14254                 [BPF_JSGE >> 4] = BPF_JSLE,
14255                 [BPF_JSGT >> 4] = BPF_JSLT,
14256                 [BPF_JSLE >> 4] = BPF_JSGE,
14257                 [BPF_JSLT >> 4] = BPF_JSGT
14258         };
14259         return opcode_flip[opcode >> 4];
14260 }
14261
14262 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14263                                    struct bpf_reg_state *src_reg,
14264                                    u8 opcode)
14265 {
14266         struct bpf_reg_state *pkt;
14267
14268         if (src_reg->type == PTR_TO_PACKET_END) {
14269                 pkt = dst_reg;
14270         } else if (dst_reg->type == PTR_TO_PACKET_END) {
14271                 pkt = src_reg;
14272                 opcode = flip_opcode(opcode);
14273         } else {
14274                 return -1;
14275         }
14276
14277         if (pkt->range >= 0)
14278                 return -1;
14279
14280         switch (opcode) {
14281         case BPF_JLE:
14282                 /* pkt <= pkt_end */
14283                 fallthrough;
14284         case BPF_JGT:
14285                 /* pkt > pkt_end */
14286                 if (pkt->range == BEYOND_PKT_END)
14287                         /* pkt has at last one extra byte beyond pkt_end */
14288                         return opcode == BPF_JGT;
14289                 break;
14290         case BPF_JLT:
14291                 /* pkt < pkt_end */
14292                 fallthrough;
14293         case BPF_JGE:
14294                 /* pkt >= pkt_end */
14295                 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14296                         return opcode == BPF_JGE;
14297                 break;
14298         }
14299         return -1;
14300 }
14301
14302 /* Adjusts the register min/max values in the case that the dst_reg is the
14303  * variable register that we are working on, and src_reg is a constant or we're
14304  * simply doing a BPF_K check.
14305  * In JEQ/JNE cases we also adjust the var_off values.
14306  */
14307 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14308                             struct bpf_reg_state *false_reg,
14309                             u64 val, u32 val32,
14310                             u8 opcode, bool is_jmp32)
14311 {
14312         struct tnum false_32off = tnum_subreg(false_reg->var_off);
14313         struct tnum false_64off = false_reg->var_off;
14314         struct tnum true_32off = tnum_subreg(true_reg->var_off);
14315         struct tnum true_64off = true_reg->var_off;
14316         s64 sval = (s64)val;
14317         s32 sval32 = (s32)val32;
14318
14319         /* If the dst_reg is a pointer, we can't learn anything about its
14320          * variable offset from the compare (unless src_reg were a pointer into
14321          * the same object, but we don't bother with that.
14322          * Since false_reg and true_reg have the same type by construction, we
14323          * only need to check one of them for pointerness.
14324          */
14325         if (__is_pointer_value(false, false_reg))
14326                 return;
14327
14328         switch (opcode) {
14329         /* JEQ/JNE comparison doesn't change the register equivalence.
14330          *
14331          * r1 = r2;
14332          * if (r1 == 42) goto label;
14333          * ...
14334          * label: // here both r1 and r2 are known to be 42.
14335          *
14336          * Hence when marking register as known preserve it's ID.
14337          */
14338         case BPF_JEQ:
14339                 if (is_jmp32) {
14340                         __mark_reg32_known(true_reg, val32);
14341                         true_32off = tnum_subreg(true_reg->var_off);
14342                 } else {
14343                         ___mark_reg_known(true_reg, val);
14344                         true_64off = true_reg->var_off;
14345                 }
14346                 break;
14347         case BPF_JNE:
14348                 if (is_jmp32) {
14349                         __mark_reg32_known(false_reg, val32);
14350                         false_32off = tnum_subreg(false_reg->var_off);
14351                 } else {
14352                         ___mark_reg_known(false_reg, val);
14353                         false_64off = false_reg->var_off;
14354                 }
14355                 break;
14356         case BPF_JSET:
14357                 if (is_jmp32) {
14358                         false_32off = tnum_and(false_32off, tnum_const(~val32));
14359                         if (is_power_of_2(val32))
14360                                 true_32off = tnum_or(true_32off,
14361                                                      tnum_const(val32));
14362                 } else {
14363                         false_64off = tnum_and(false_64off, tnum_const(~val));
14364                         if (is_power_of_2(val))
14365                                 true_64off = tnum_or(true_64off,
14366                                                      tnum_const(val));
14367                 }
14368                 break;
14369         case BPF_JGE:
14370         case BPF_JGT:
14371         {
14372                 if (is_jmp32) {
14373                         u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14374                         u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14375
14376                         false_reg->u32_max_value = min(false_reg->u32_max_value,
14377                                                        false_umax);
14378                         true_reg->u32_min_value = max(true_reg->u32_min_value,
14379                                                       true_umin);
14380                 } else {
14381                         u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14382                         u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14383
14384                         false_reg->umax_value = min(false_reg->umax_value, false_umax);
14385                         true_reg->umin_value = max(true_reg->umin_value, true_umin);
14386                 }
14387                 break;
14388         }
14389         case BPF_JSGE:
14390         case BPF_JSGT:
14391         {
14392                 if (is_jmp32) {
14393                         s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14394                         s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14395
14396                         false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14397                         true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14398                 } else {
14399                         s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14400                         s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14401
14402                         false_reg->smax_value = min(false_reg->smax_value, false_smax);
14403                         true_reg->smin_value = max(true_reg->smin_value, true_smin);
14404                 }
14405                 break;
14406         }
14407         case BPF_JLE:
14408         case BPF_JLT:
14409         {
14410                 if (is_jmp32) {
14411                         u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14412                         u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14413
14414                         false_reg->u32_min_value = max(false_reg->u32_min_value,
14415                                                        false_umin);
14416                         true_reg->u32_max_value = min(true_reg->u32_max_value,
14417                                                       true_umax);
14418                 } else {
14419                         u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14420                         u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14421
14422                         false_reg->umin_value = max(false_reg->umin_value, false_umin);
14423                         true_reg->umax_value = min(true_reg->umax_value, true_umax);
14424                 }
14425                 break;
14426         }
14427         case BPF_JSLE:
14428         case BPF_JSLT:
14429         {
14430                 if (is_jmp32) {
14431                         s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14432                         s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14433
14434                         false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14435                         true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14436                 } else {
14437                         s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14438                         s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14439
14440                         false_reg->smin_value = max(false_reg->smin_value, false_smin);
14441                         true_reg->smax_value = min(true_reg->smax_value, true_smax);
14442                 }
14443                 break;
14444         }
14445         default:
14446                 return;
14447         }
14448
14449         if (is_jmp32) {
14450                 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14451                                              tnum_subreg(false_32off));
14452                 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14453                                             tnum_subreg(true_32off));
14454                 __reg_combine_32_into_64(false_reg);
14455                 __reg_combine_32_into_64(true_reg);
14456         } else {
14457                 false_reg->var_off = false_64off;
14458                 true_reg->var_off = true_64off;
14459                 __reg_combine_64_into_32(false_reg);
14460                 __reg_combine_64_into_32(true_reg);
14461         }
14462 }
14463
14464 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14465  * the variable reg.
14466  */
14467 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14468                                 struct bpf_reg_state *false_reg,
14469                                 u64 val, u32 val32,
14470                                 u8 opcode, bool is_jmp32)
14471 {
14472         opcode = flip_opcode(opcode);
14473         /* This uses zero as "not present in table"; luckily the zero opcode,
14474          * BPF_JA, can't get here.
14475          */
14476         if (opcode)
14477                 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14478 }
14479
14480 /* Regs are known to be equal, so intersect their min/max/var_off */
14481 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14482                                   struct bpf_reg_state *dst_reg)
14483 {
14484         src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14485                                                         dst_reg->umin_value);
14486         src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14487                                                         dst_reg->umax_value);
14488         src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14489                                                         dst_reg->smin_value);
14490         src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14491                                                         dst_reg->smax_value);
14492         src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14493                                                              dst_reg->var_off);
14494         reg_bounds_sync(src_reg);
14495         reg_bounds_sync(dst_reg);
14496 }
14497
14498 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14499                                 struct bpf_reg_state *true_dst,
14500                                 struct bpf_reg_state *false_src,
14501                                 struct bpf_reg_state *false_dst,
14502                                 u8 opcode)
14503 {
14504         switch (opcode) {
14505         case BPF_JEQ:
14506                 __reg_combine_min_max(true_src, true_dst);
14507                 break;
14508         case BPF_JNE:
14509                 __reg_combine_min_max(false_src, false_dst);
14510                 break;
14511         }
14512 }
14513
14514 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14515                                  struct bpf_reg_state *reg, u32 id,
14516                                  bool is_null)
14517 {
14518         if (type_may_be_null(reg->type) && reg->id == id &&
14519             (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14520                 /* Old offset (both fixed and variable parts) should have been
14521                  * known-zero, because we don't allow pointer arithmetic on
14522                  * pointers that might be NULL. If we see this happening, don't
14523                  * convert the register.
14524                  *
14525                  * But in some cases, some helpers that return local kptrs
14526                  * advance offset for the returned pointer. In those cases, it
14527                  * is fine to expect to see reg->off.
14528                  */
14529                 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14530                         return;
14531                 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14532                     WARN_ON_ONCE(reg->off))
14533                         return;
14534
14535                 if (is_null) {
14536                         reg->type = SCALAR_VALUE;
14537                         /* We don't need id and ref_obj_id from this point
14538                          * onwards anymore, thus we should better reset it,
14539                          * so that state pruning has chances to take effect.
14540                          */
14541                         reg->id = 0;
14542                         reg->ref_obj_id = 0;
14543
14544                         return;
14545                 }
14546
14547                 mark_ptr_not_null_reg(reg);
14548
14549                 if (!reg_may_point_to_spin_lock(reg)) {
14550                         /* For not-NULL ptr, reg->ref_obj_id will be reset
14551                          * in release_reference().
14552                          *
14553                          * reg->id is still used by spin_lock ptr. Other
14554                          * than spin_lock ptr type, reg->id can be reset.
14555                          */
14556                         reg->id = 0;
14557                 }
14558         }
14559 }
14560
14561 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14562  * be folded together at some point.
14563  */
14564 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14565                                   bool is_null)
14566 {
14567         struct bpf_func_state *state = vstate->frame[vstate->curframe];
14568         struct bpf_reg_state *regs = state->regs, *reg;
14569         u32 ref_obj_id = regs[regno].ref_obj_id;
14570         u32 id = regs[regno].id;
14571
14572         if (ref_obj_id && ref_obj_id == id && is_null)
14573                 /* regs[regno] is in the " == NULL" branch.
14574                  * No one could have freed the reference state before
14575                  * doing the NULL check.
14576                  */
14577                 WARN_ON_ONCE(release_reference_state(state, id));
14578
14579         bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14580                 mark_ptr_or_null_reg(state, reg, id, is_null);
14581         }));
14582 }
14583
14584 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14585                                    struct bpf_reg_state *dst_reg,
14586                                    struct bpf_reg_state *src_reg,
14587                                    struct bpf_verifier_state *this_branch,
14588                                    struct bpf_verifier_state *other_branch)
14589 {
14590         if (BPF_SRC(insn->code) != BPF_X)
14591                 return false;
14592
14593         /* Pointers are always 64-bit. */
14594         if (BPF_CLASS(insn->code) == BPF_JMP32)
14595                 return false;
14596
14597         switch (BPF_OP(insn->code)) {
14598         case BPF_JGT:
14599                 if ((dst_reg->type == PTR_TO_PACKET &&
14600                      src_reg->type == PTR_TO_PACKET_END) ||
14601                     (dst_reg->type == PTR_TO_PACKET_META &&
14602                      reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14603                         /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14604                         find_good_pkt_pointers(this_branch, dst_reg,
14605                                                dst_reg->type, false);
14606                         mark_pkt_end(other_branch, insn->dst_reg, true);
14607                 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14608                             src_reg->type == PTR_TO_PACKET) ||
14609                            (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14610                             src_reg->type == PTR_TO_PACKET_META)) {
14611                         /* pkt_end > pkt_data', pkt_data > pkt_meta' */
14612                         find_good_pkt_pointers(other_branch, src_reg,
14613                                                src_reg->type, true);
14614                         mark_pkt_end(this_branch, insn->src_reg, false);
14615                 } else {
14616                         return false;
14617                 }
14618                 break;
14619         case BPF_JLT:
14620                 if ((dst_reg->type == PTR_TO_PACKET &&
14621                      src_reg->type == PTR_TO_PACKET_END) ||
14622                     (dst_reg->type == PTR_TO_PACKET_META &&
14623                      reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14624                         /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14625                         find_good_pkt_pointers(other_branch, dst_reg,
14626                                                dst_reg->type, true);
14627                         mark_pkt_end(this_branch, insn->dst_reg, false);
14628                 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14629                             src_reg->type == PTR_TO_PACKET) ||
14630                            (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14631                             src_reg->type == PTR_TO_PACKET_META)) {
14632                         /* pkt_end < pkt_data', pkt_data > pkt_meta' */
14633                         find_good_pkt_pointers(this_branch, src_reg,
14634                                                src_reg->type, false);
14635                         mark_pkt_end(other_branch, insn->src_reg, true);
14636                 } else {
14637                         return false;
14638                 }
14639                 break;
14640         case BPF_JGE:
14641                 if ((dst_reg->type == PTR_TO_PACKET &&
14642                      src_reg->type == PTR_TO_PACKET_END) ||
14643                     (dst_reg->type == PTR_TO_PACKET_META &&
14644                      reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14645                         /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14646                         find_good_pkt_pointers(this_branch, dst_reg,
14647                                                dst_reg->type, true);
14648                         mark_pkt_end(other_branch, insn->dst_reg, false);
14649                 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14650                             src_reg->type == PTR_TO_PACKET) ||
14651                            (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14652                             src_reg->type == PTR_TO_PACKET_META)) {
14653                         /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14654                         find_good_pkt_pointers(other_branch, src_reg,
14655                                                src_reg->type, false);
14656                         mark_pkt_end(this_branch, insn->src_reg, true);
14657                 } else {
14658                         return false;
14659                 }
14660                 break;
14661         case BPF_JLE:
14662                 if ((dst_reg->type == PTR_TO_PACKET &&
14663                      src_reg->type == PTR_TO_PACKET_END) ||
14664                     (dst_reg->type == PTR_TO_PACKET_META &&
14665                      reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14666                         /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14667                         find_good_pkt_pointers(other_branch, dst_reg,
14668                                                dst_reg->type, false);
14669                         mark_pkt_end(this_branch, insn->dst_reg, true);
14670                 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14671                             src_reg->type == PTR_TO_PACKET) ||
14672                            (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14673                             src_reg->type == PTR_TO_PACKET_META)) {
14674                         /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14675                         find_good_pkt_pointers(this_branch, src_reg,
14676                                                src_reg->type, true);
14677                         mark_pkt_end(other_branch, insn->src_reg, false);
14678                 } else {
14679                         return false;
14680                 }
14681                 break;
14682         default:
14683                 return false;
14684         }
14685
14686         return true;
14687 }
14688
14689 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14690                                struct bpf_reg_state *known_reg)
14691 {
14692         struct bpf_func_state *state;
14693         struct bpf_reg_state *reg;
14694
14695         bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14696                 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14697                         copy_register_state(reg, known_reg);
14698         }));
14699 }
14700
14701 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14702                              struct bpf_insn *insn, int *insn_idx)
14703 {
14704         struct bpf_verifier_state *this_branch = env->cur_state;
14705         struct bpf_verifier_state *other_branch;
14706         struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14707         struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14708         struct bpf_reg_state *eq_branch_regs;
14709         u8 opcode = BPF_OP(insn->code);
14710         bool is_jmp32;
14711         int pred = -1;
14712         int err;
14713
14714         /* Only conditional jumps are expected to reach here. */
14715         if (opcode == BPF_JA || opcode > BPF_JSLE) {
14716                 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14717                 return -EINVAL;
14718         }
14719
14720         /* check src2 operand */
14721         err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14722         if (err)
14723                 return err;
14724
14725         dst_reg = &regs[insn->dst_reg];
14726         if (BPF_SRC(insn->code) == BPF_X) {
14727                 if (insn->imm != 0) {
14728                         verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14729                         return -EINVAL;
14730                 }
14731
14732                 /* check src1 operand */
14733                 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14734                 if (err)
14735                         return err;
14736
14737                 src_reg = &regs[insn->src_reg];
14738                 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14739                     is_pointer_value(env, insn->src_reg)) {
14740                         verbose(env, "R%d pointer comparison prohibited\n",
14741                                 insn->src_reg);
14742                         return -EACCES;
14743                 }
14744         } else {
14745                 if (insn->src_reg != BPF_REG_0) {
14746                         verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14747                         return -EINVAL;
14748                 }
14749         }
14750
14751         is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14752
14753         if (BPF_SRC(insn->code) == BPF_K) {
14754                 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14755         } else if (src_reg->type == SCALAR_VALUE &&
14756                    is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14757                 pred = is_branch_taken(dst_reg,
14758                                        tnum_subreg(src_reg->var_off).value,
14759                                        opcode,
14760                                        is_jmp32);
14761         } else if (src_reg->type == SCALAR_VALUE &&
14762                    !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14763                 pred = is_branch_taken(dst_reg,
14764                                        src_reg->var_off.value,
14765                                        opcode,
14766                                        is_jmp32);
14767         } else if (dst_reg->type == SCALAR_VALUE &&
14768                    is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14769                 pred = is_branch_taken(src_reg,
14770                                        tnum_subreg(dst_reg->var_off).value,
14771                                        flip_opcode(opcode),
14772                                        is_jmp32);
14773         } else if (dst_reg->type == SCALAR_VALUE &&
14774                    !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14775                 pred = is_branch_taken(src_reg,
14776                                        dst_reg->var_off.value,
14777                                        flip_opcode(opcode),
14778                                        is_jmp32);
14779         } else if (reg_is_pkt_pointer_any(dst_reg) &&
14780                    reg_is_pkt_pointer_any(src_reg) &&
14781                    !is_jmp32) {
14782                 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14783         }
14784
14785         if (pred >= 0) {
14786                 /* If we get here with a dst_reg pointer type it is because
14787                  * above is_branch_taken() special cased the 0 comparison.
14788                  */
14789                 if (!__is_pointer_value(false, dst_reg))
14790                         err = mark_chain_precision(env, insn->dst_reg);
14791                 if (BPF_SRC(insn->code) == BPF_X && !err &&
14792                     !__is_pointer_value(false, src_reg))
14793                         err = mark_chain_precision(env, insn->src_reg);
14794                 if (err)
14795                         return err;
14796         }
14797
14798         if (pred == 1) {
14799                 /* Only follow the goto, ignore fall-through. If needed, push
14800                  * the fall-through branch for simulation under speculative
14801                  * execution.
14802                  */
14803                 if (!env->bypass_spec_v1 &&
14804                     !sanitize_speculative_path(env, insn, *insn_idx + 1,
14805                                                *insn_idx))
14806                         return -EFAULT;
14807                 if (env->log.level & BPF_LOG_LEVEL)
14808                         print_insn_state(env, this_branch->frame[this_branch->curframe]);
14809                 *insn_idx += insn->off;
14810                 return 0;
14811         } else if (pred == 0) {
14812                 /* Only follow the fall-through branch, since that's where the
14813                  * program will go. If needed, push the goto branch for
14814                  * simulation under speculative execution.
14815                  */
14816                 if (!env->bypass_spec_v1 &&
14817                     !sanitize_speculative_path(env, insn,
14818                                                *insn_idx + insn->off + 1,
14819                                                *insn_idx))
14820                         return -EFAULT;
14821                 if (env->log.level & BPF_LOG_LEVEL)
14822                         print_insn_state(env, this_branch->frame[this_branch->curframe]);
14823                 return 0;
14824         }
14825
14826         other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14827                                   false);
14828         if (!other_branch)
14829                 return -EFAULT;
14830         other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14831
14832         /* detect if we are comparing against a constant value so we can adjust
14833          * our min/max values for our dst register.
14834          * this is only legit if both are scalars (or pointers to the same
14835          * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14836          * because otherwise the different base pointers mean the offsets aren't
14837          * comparable.
14838          */
14839         if (BPF_SRC(insn->code) == BPF_X) {
14840                 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14841
14842                 if (dst_reg->type == SCALAR_VALUE &&
14843                     src_reg->type == SCALAR_VALUE) {
14844                         if (tnum_is_const(src_reg->var_off) ||
14845                             (is_jmp32 &&
14846                              tnum_is_const(tnum_subreg(src_reg->var_off))))
14847                                 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14848                                                 dst_reg,
14849                                                 src_reg->var_off.value,
14850                                                 tnum_subreg(src_reg->var_off).value,
14851                                                 opcode, is_jmp32);
14852                         else if (tnum_is_const(dst_reg->var_off) ||
14853                                  (is_jmp32 &&
14854                                   tnum_is_const(tnum_subreg(dst_reg->var_off))))
14855                                 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14856                                                     src_reg,
14857                                                     dst_reg->var_off.value,
14858                                                     tnum_subreg(dst_reg->var_off).value,
14859                                                     opcode, is_jmp32);
14860                         else if (!is_jmp32 &&
14861                                  (opcode == BPF_JEQ || opcode == BPF_JNE))
14862                                 /* Comparing for equality, we can combine knowledge */
14863                                 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14864                                                     &other_branch_regs[insn->dst_reg],
14865                                                     src_reg, dst_reg, opcode);
14866                         if (src_reg->id &&
14867                             !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14868                                 find_equal_scalars(this_branch, src_reg);
14869                                 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14870                         }
14871
14872                 }
14873         } else if (dst_reg->type == SCALAR_VALUE) {
14874                 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14875                                         dst_reg, insn->imm, (u32)insn->imm,
14876                                         opcode, is_jmp32);
14877         }
14878
14879         if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14880             !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14881                 find_equal_scalars(this_branch, dst_reg);
14882                 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14883         }
14884
14885         /* if one pointer register is compared to another pointer
14886          * register check if PTR_MAYBE_NULL could be lifted.
14887          * E.g. register A - maybe null
14888          *      register B - not null
14889          * for JNE A, B, ... - A is not null in the false branch;
14890          * for JEQ A, B, ... - A is not null in the true branch.
14891          *
14892          * Since PTR_TO_BTF_ID points to a kernel struct that does
14893          * not need to be null checked by the BPF program, i.e.,
14894          * could be null even without PTR_MAYBE_NULL marking, so
14895          * only propagate nullness when neither reg is that type.
14896          */
14897         if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14898             __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14899             type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14900             base_type(src_reg->type) != PTR_TO_BTF_ID &&
14901             base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14902                 eq_branch_regs = NULL;
14903                 switch (opcode) {
14904                 case BPF_JEQ:
14905                         eq_branch_regs = other_branch_regs;
14906                         break;
14907                 case BPF_JNE:
14908                         eq_branch_regs = regs;
14909                         break;
14910                 default:
14911                         /* do nothing */
14912                         break;
14913                 }
14914                 if (eq_branch_regs) {
14915                         if (type_may_be_null(src_reg->type))
14916                                 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14917                         else
14918                                 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14919                 }
14920         }
14921
14922         /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14923          * NOTE: these optimizations below are related with pointer comparison
14924          *       which will never be JMP32.
14925          */
14926         if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14927             insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14928             type_may_be_null(dst_reg->type)) {
14929                 /* Mark all identical registers in each branch as either
14930                  * safe or unknown depending R == 0 or R != 0 conditional.
14931                  */
14932                 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14933                                       opcode == BPF_JNE);
14934                 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14935                                       opcode == BPF_JEQ);
14936         } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14937                                            this_branch, other_branch) &&
14938                    is_pointer_value(env, insn->dst_reg)) {
14939                 verbose(env, "R%d pointer comparison prohibited\n",
14940                         insn->dst_reg);
14941                 return -EACCES;
14942         }
14943         if (env->log.level & BPF_LOG_LEVEL)
14944                 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14945         return 0;
14946 }
14947
14948 /* verify BPF_LD_IMM64 instruction */
14949 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14950 {
14951         struct bpf_insn_aux_data *aux = cur_aux(env);
14952         struct bpf_reg_state *regs = cur_regs(env);
14953         struct bpf_reg_state *dst_reg;
14954         struct bpf_map *map;
14955         int err;
14956
14957         if (BPF_SIZE(insn->code) != BPF_DW) {
14958                 verbose(env, "invalid BPF_LD_IMM insn\n");
14959                 return -EINVAL;
14960         }
14961         if (insn->off != 0) {
14962                 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14963                 return -EINVAL;
14964         }
14965
14966         err = check_reg_arg(env, insn->dst_reg, DST_OP);
14967         if (err)
14968                 return err;
14969
14970         dst_reg = &regs[insn->dst_reg];
14971         if (insn->src_reg == 0) {
14972                 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14973
14974                 dst_reg->type = SCALAR_VALUE;
14975                 __mark_reg_known(&regs[insn->dst_reg], imm);
14976                 return 0;
14977         }
14978
14979         /* All special src_reg cases are listed below. From this point onwards
14980          * we either succeed and assign a corresponding dst_reg->type after
14981          * zeroing the offset, or fail and reject the program.
14982          */
14983         mark_reg_known_zero(env, regs, insn->dst_reg);
14984
14985         if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14986                 dst_reg->type = aux->btf_var.reg_type;
14987                 switch (base_type(dst_reg->type)) {
14988                 case PTR_TO_MEM:
14989                         dst_reg->mem_size = aux->btf_var.mem_size;
14990                         break;
14991                 case PTR_TO_BTF_ID:
14992                         dst_reg->btf = aux->btf_var.btf;
14993                         dst_reg->btf_id = aux->btf_var.btf_id;
14994                         break;
14995                 default:
14996                         verbose(env, "bpf verifier is misconfigured\n");
14997                         return -EFAULT;
14998                 }
14999                 return 0;
15000         }
15001
15002         if (insn->src_reg == BPF_PSEUDO_FUNC) {
15003                 struct bpf_prog_aux *aux = env->prog->aux;
15004                 u32 subprogno = find_subprog(env,
15005                                              env->insn_idx + insn->imm + 1);
15006
15007                 if (!aux->func_info) {
15008                         verbose(env, "missing btf func_info\n");
15009                         return -EINVAL;
15010                 }
15011                 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15012                         verbose(env, "callback function not static\n");
15013                         return -EINVAL;
15014                 }
15015
15016                 dst_reg->type = PTR_TO_FUNC;
15017                 dst_reg->subprogno = subprogno;
15018                 return 0;
15019         }
15020
15021         map = env->used_maps[aux->map_index];
15022         dst_reg->map_ptr = map;
15023
15024         if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15025             insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15026                 dst_reg->type = PTR_TO_MAP_VALUE;
15027                 dst_reg->off = aux->map_off;
15028                 WARN_ON_ONCE(map->max_entries != 1);
15029                 /* We want reg->id to be same (0) as map_value is not distinct */
15030         } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15031                    insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15032                 dst_reg->type = CONST_PTR_TO_MAP;
15033         } else {
15034                 verbose(env, "bpf verifier is misconfigured\n");
15035                 return -EINVAL;
15036         }
15037
15038         return 0;
15039 }
15040
15041 static bool may_access_skb(enum bpf_prog_type type)
15042 {
15043         switch (type) {
15044         case BPF_PROG_TYPE_SOCKET_FILTER:
15045         case BPF_PROG_TYPE_SCHED_CLS:
15046         case BPF_PROG_TYPE_SCHED_ACT:
15047                 return true;
15048         default:
15049                 return false;
15050         }
15051 }
15052
15053 /* verify safety of LD_ABS|LD_IND instructions:
15054  * - they can only appear in the programs where ctx == skb
15055  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15056  *   preserve R6-R9, and store return value into R0
15057  *
15058  * Implicit input:
15059  *   ctx == skb == R6 == CTX
15060  *
15061  * Explicit input:
15062  *   SRC == any register
15063  *   IMM == 32-bit immediate
15064  *
15065  * Output:
15066  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15067  */
15068 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15069 {
15070         struct bpf_reg_state *regs = cur_regs(env);
15071         static const int ctx_reg = BPF_REG_6;
15072         u8 mode = BPF_MODE(insn->code);
15073         int i, err;
15074
15075         if (!may_access_skb(resolve_prog_type(env->prog))) {
15076                 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15077                 return -EINVAL;
15078         }
15079
15080         if (!env->ops->gen_ld_abs) {
15081                 verbose(env, "bpf verifier is misconfigured\n");
15082                 return -EINVAL;
15083         }
15084
15085         if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15086             BPF_SIZE(insn->code) == BPF_DW ||
15087             (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15088                 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15089                 return -EINVAL;
15090         }
15091
15092         /* check whether implicit source operand (register R6) is readable */
15093         err = check_reg_arg(env, ctx_reg, SRC_OP);
15094         if (err)
15095                 return err;
15096
15097         /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15098          * gen_ld_abs() may terminate the program at runtime, leading to
15099          * reference leak.
15100          */
15101         err = check_reference_leak(env, false);
15102         if (err) {
15103                 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15104                 return err;
15105         }
15106
15107         if (env->cur_state->active_lock.ptr) {
15108                 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15109                 return -EINVAL;
15110         }
15111
15112         if (env->cur_state->active_rcu_lock) {
15113                 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15114                 return -EINVAL;
15115         }
15116
15117         if (regs[ctx_reg].type != PTR_TO_CTX) {
15118                 verbose(env,
15119                         "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15120                 return -EINVAL;
15121         }
15122
15123         if (mode == BPF_IND) {
15124                 /* check explicit source operand */
15125                 err = check_reg_arg(env, insn->src_reg, SRC_OP);
15126                 if (err)
15127                         return err;
15128         }
15129
15130         err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15131         if (err < 0)
15132                 return err;
15133
15134         /* reset caller saved regs to unreadable */
15135         for (i = 0; i < CALLER_SAVED_REGS; i++) {
15136                 mark_reg_not_init(env, regs, caller_saved[i]);
15137                 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15138         }
15139
15140         /* mark destination R0 register as readable, since it contains
15141          * the value fetched from the packet.
15142          * Already marked as written above.
15143          */
15144         mark_reg_unknown(env, regs, BPF_REG_0);
15145         /* ld_abs load up to 32-bit skb data. */
15146         regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15147         return 0;
15148 }
15149
15150 static int check_return_code(struct bpf_verifier_env *env, int regno)
15151 {
15152         struct tnum enforce_attach_type_range = tnum_unknown;
15153         const struct bpf_prog *prog = env->prog;
15154         struct bpf_reg_state *reg;
15155         struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
15156         enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15157         int err;
15158         struct bpf_func_state *frame = env->cur_state->frame[0];
15159         const bool is_subprog = frame->subprogno;
15160
15161         /* LSM and struct_ops func-ptr's return type could be "void" */
15162         if (!is_subprog || frame->in_exception_callback_fn) {
15163                 switch (prog_type) {
15164                 case BPF_PROG_TYPE_LSM:
15165                         if (prog->expected_attach_type == BPF_LSM_CGROUP)
15166                                 /* See below, can be 0 or 0-1 depending on hook. */
15167                                 break;
15168                         fallthrough;
15169                 case BPF_PROG_TYPE_STRUCT_OPS:
15170                         if (!prog->aux->attach_func_proto->type)
15171                                 return 0;
15172                         break;
15173                 default:
15174                         break;
15175                 }
15176         }
15177
15178         /* eBPF calling convention is such that R0 is used
15179          * to return the value from eBPF program.
15180          * Make sure that it's readable at this time
15181          * of bpf_exit, which means that program wrote
15182          * something into it earlier
15183          */
15184         err = check_reg_arg(env, regno, SRC_OP);
15185         if (err)
15186                 return err;
15187
15188         if (is_pointer_value(env, regno)) {
15189                 verbose(env, "R%d leaks addr as return value\n", regno);
15190                 return -EACCES;
15191         }
15192
15193         reg = cur_regs(env) + regno;
15194
15195         if (frame->in_async_callback_fn) {
15196                 /* enforce return zero from async callbacks like timer */
15197                 if (reg->type != SCALAR_VALUE) {
15198                         verbose(env, "In async callback the register R%d is not a known value (%s)\n",
15199                                 regno, reg_type_str(env, reg->type));
15200                         return -EINVAL;
15201                 }
15202
15203                 if (!tnum_in(const_0, reg->var_off)) {
15204                         verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15205                         return -EINVAL;
15206                 }
15207                 return 0;
15208         }
15209
15210         if (is_subprog && !frame->in_exception_callback_fn) {
15211                 if (reg->type != SCALAR_VALUE) {
15212                         verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15213                                 regno, reg_type_str(env, reg->type));
15214                         return -EINVAL;
15215                 }
15216                 return 0;
15217         }
15218
15219         switch (prog_type) {
15220         case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15221                 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15222                     env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15223                     env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15224                     env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15225                     env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15226                     env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15227                     env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15228                     env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15229                     env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15230                         range = tnum_range(1, 1);
15231                 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15232                     env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15233                         range = tnum_range(0, 3);
15234                 break;
15235         case BPF_PROG_TYPE_CGROUP_SKB:
15236                 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15237                         range = tnum_range(0, 3);
15238                         enforce_attach_type_range = tnum_range(2, 3);
15239                 }
15240                 break;
15241         case BPF_PROG_TYPE_CGROUP_SOCK:
15242         case BPF_PROG_TYPE_SOCK_OPS:
15243         case BPF_PROG_TYPE_CGROUP_DEVICE:
15244         case BPF_PROG_TYPE_CGROUP_SYSCTL:
15245         case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15246                 break;
15247         case BPF_PROG_TYPE_RAW_TRACEPOINT:
15248                 if (!env->prog->aux->attach_btf_id)
15249                         return 0;
15250                 range = tnum_const(0);
15251                 break;
15252         case BPF_PROG_TYPE_TRACING:
15253                 switch (env->prog->expected_attach_type) {
15254                 case BPF_TRACE_FENTRY:
15255                 case BPF_TRACE_FEXIT:
15256                         range = tnum_const(0);
15257                         break;
15258                 case BPF_TRACE_RAW_TP:
15259                 case BPF_MODIFY_RETURN:
15260                         return 0;
15261                 case BPF_TRACE_ITER:
15262                         break;
15263                 default:
15264                         return -ENOTSUPP;
15265                 }
15266                 break;
15267         case BPF_PROG_TYPE_SK_LOOKUP:
15268                 range = tnum_range(SK_DROP, SK_PASS);
15269                 break;
15270
15271         case BPF_PROG_TYPE_LSM:
15272                 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15273                         /* Regular BPF_PROG_TYPE_LSM programs can return
15274                          * any value.
15275                          */
15276                         return 0;
15277                 }
15278                 if (!env->prog->aux->attach_func_proto->type) {
15279                         /* Make sure programs that attach to void
15280                          * hooks don't try to modify return value.
15281                          */
15282                         range = tnum_range(1, 1);
15283                 }
15284                 break;
15285
15286         case BPF_PROG_TYPE_NETFILTER:
15287                 range = tnum_range(NF_DROP, NF_ACCEPT);
15288                 break;
15289         case BPF_PROG_TYPE_EXT:
15290                 /* freplace program can return anything as its return value
15291                  * depends on the to-be-replaced kernel func or bpf program.
15292                  */
15293         default:
15294                 return 0;
15295         }
15296
15297         if (reg->type != SCALAR_VALUE) {
15298                 verbose(env, "At program exit the register R%d is not a known value (%s)\n",
15299                         regno, reg_type_str(env, reg->type));
15300                 return -EINVAL;
15301         }
15302
15303         if (!tnum_in(range, reg->var_off)) {
15304                 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15305                 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15306                     prog_type == BPF_PROG_TYPE_LSM &&
15307                     !prog->aux->attach_func_proto->type)
15308                         verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15309                 return -EINVAL;
15310         }
15311
15312         if (!tnum_is_unknown(enforce_attach_type_range) &&
15313             tnum_in(enforce_attach_type_range, reg->var_off))
15314                 env->prog->enforce_expected_attach_type = 1;
15315         return 0;
15316 }
15317
15318 /* non-recursive DFS pseudo code
15319  * 1  procedure DFS-iterative(G,v):
15320  * 2      label v as discovered
15321  * 3      let S be a stack
15322  * 4      S.push(v)
15323  * 5      while S is not empty
15324  * 6            t <- S.peek()
15325  * 7            if t is what we're looking for:
15326  * 8                return t
15327  * 9            for all edges e in G.adjacentEdges(t) do
15328  * 10               if edge e is already labelled
15329  * 11                   continue with the next edge
15330  * 12               w <- G.adjacentVertex(t,e)
15331  * 13               if vertex w is not discovered and not explored
15332  * 14                   label e as tree-edge
15333  * 15                   label w as discovered
15334  * 16                   S.push(w)
15335  * 17                   continue at 5
15336  * 18               else if vertex w is discovered
15337  * 19                   label e as back-edge
15338  * 20               else
15339  * 21                   // vertex w is explored
15340  * 22                   label e as forward- or cross-edge
15341  * 23           label t as explored
15342  * 24           S.pop()
15343  *
15344  * convention:
15345  * 0x10 - discovered
15346  * 0x11 - discovered and fall-through edge labelled
15347  * 0x12 - discovered and fall-through and branch edges labelled
15348  * 0x20 - explored
15349  */
15350
15351 enum {
15352         DISCOVERED = 0x10,
15353         EXPLORED = 0x20,
15354         FALLTHROUGH = 1,
15355         BRANCH = 2,
15356 };
15357
15358 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15359 {
15360         env->insn_aux_data[idx].prune_point = true;
15361 }
15362
15363 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15364 {
15365         return env->insn_aux_data[insn_idx].prune_point;
15366 }
15367
15368 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15369 {
15370         env->insn_aux_data[idx].force_checkpoint = true;
15371 }
15372
15373 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15374 {
15375         return env->insn_aux_data[insn_idx].force_checkpoint;
15376 }
15377
15378
15379 enum {
15380         DONE_EXPLORING = 0,
15381         KEEP_EXPLORING = 1,
15382 };
15383
15384 /* t, w, e - match pseudo-code above:
15385  * t - index of current instruction
15386  * w - next instruction
15387  * e - edge
15388  */
15389 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
15390                      bool loop_ok)
15391 {
15392         int *insn_stack = env->cfg.insn_stack;
15393         int *insn_state = env->cfg.insn_state;
15394
15395         if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15396                 return DONE_EXPLORING;
15397
15398         if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15399                 return DONE_EXPLORING;
15400
15401         if (w < 0 || w >= env->prog->len) {
15402                 verbose_linfo(env, t, "%d: ", t);
15403                 verbose(env, "jump out of range from insn %d to %d\n", t, w);
15404                 return -EINVAL;
15405         }
15406
15407         if (e == BRANCH) {
15408                 /* mark branch target for state pruning */
15409                 mark_prune_point(env, w);
15410                 mark_jmp_point(env, w);
15411         }
15412
15413         if (insn_state[w] == 0) {
15414                 /* tree-edge */
15415                 insn_state[t] = DISCOVERED | e;
15416                 insn_state[w] = DISCOVERED;
15417                 if (env->cfg.cur_stack >= env->prog->len)
15418                         return -E2BIG;
15419                 insn_stack[env->cfg.cur_stack++] = w;
15420                 return KEEP_EXPLORING;
15421         } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15422                 if (loop_ok && env->bpf_capable)
15423                         return DONE_EXPLORING;
15424                 verbose_linfo(env, t, "%d: ", t);
15425                 verbose_linfo(env, w, "%d: ", w);
15426                 verbose(env, "back-edge from insn %d to %d\n", t, w);
15427                 return -EINVAL;
15428         } else if (insn_state[w] == EXPLORED) {
15429                 /* forward- or cross-edge */
15430                 insn_state[t] = DISCOVERED | e;
15431         } else {
15432                 verbose(env, "insn state internal bug\n");
15433                 return -EFAULT;
15434         }
15435         return DONE_EXPLORING;
15436 }
15437
15438 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15439                                 struct bpf_verifier_env *env,
15440                                 bool visit_callee)
15441 {
15442         int ret;
15443
15444         ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
15445         if (ret)
15446                 return ret;
15447
15448         mark_prune_point(env, t + 1);
15449         /* when we exit from subprog, we need to record non-linear history */
15450         mark_jmp_point(env, t + 1);
15451
15452         if (visit_callee) {
15453                 mark_prune_point(env, t);
15454                 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
15455                                 /* It's ok to allow recursion from CFG point of
15456                                  * view. __check_func_call() will do the actual
15457                                  * check.
15458                                  */
15459                                 bpf_pseudo_func(insns + t));
15460         }
15461         return ret;
15462 }
15463
15464 /* Visits the instruction at index t and returns one of the following:
15465  *  < 0 - an error occurred
15466  *  DONE_EXPLORING - the instruction was fully explored
15467  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15468  */
15469 static int visit_insn(int t, struct bpf_verifier_env *env)
15470 {
15471         struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15472         int ret, off;
15473
15474         if (bpf_pseudo_func(insn))
15475                 return visit_func_call_insn(t, insns, env, true);
15476
15477         /* All non-branch instructions have a single fall-through edge. */
15478         if (BPF_CLASS(insn->code) != BPF_JMP &&
15479             BPF_CLASS(insn->code) != BPF_JMP32)
15480                 return push_insn(t, t + 1, FALLTHROUGH, env, false);
15481
15482         switch (BPF_OP(insn->code)) {
15483         case BPF_EXIT:
15484                 return DONE_EXPLORING;
15485
15486         case BPF_CALL:
15487                 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15488                         /* Mark this call insn as a prune point to trigger
15489                          * is_state_visited() check before call itself is
15490                          * processed by __check_func_call(). Otherwise new
15491                          * async state will be pushed for further exploration.
15492                          */
15493                         mark_prune_point(env, t);
15494                 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15495                         struct bpf_kfunc_call_arg_meta meta;
15496
15497                         ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15498                         if (ret == 0 && is_iter_next_kfunc(&meta)) {
15499                                 mark_prune_point(env, t);
15500                                 /* Checking and saving state checkpoints at iter_next() call
15501                                  * is crucial for fast convergence of open-coded iterator loop
15502                                  * logic, so we need to force it. If we don't do that,
15503                                  * is_state_visited() might skip saving a checkpoint, causing
15504                                  * unnecessarily long sequence of not checkpointed
15505                                  * instructions and jumps, leading to exhaustion of jump
15506                                  * history buffer, and potentially other undesired outcomes.
15507                                  * It is expected that with correct open-coded iterators
15508                                  * convergence will happen quickly, so we don't run a risk of
15509                                  * exhausting memory.
15510                                  */
15511                                 mark_force_checkpoint(env, t);
15512                         }
15513                 }
15514                 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15515
15516         case BPF_JA:
15517                 if (BPF_SRC(insn->code) != BPF_K)
15518                         return -EINVAL;
15519
15520                 if (BPF_CLASS(insn->code) == BPF_JMP)
15521                         off = insn->off;
15522                 else
15523                         off = insn->imm;
15524
15525                 /* unconditional jump with single edge */
15526                 ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
15527                                 true);
15528                 if (ret)
15529                         return ret;
15530
15531                 mark_prune_point(env, t + off + 1);
15532                 mark_jmp_point(env, t + off + 1);
15533
15534                 return ret;
15535
15536         default:
15537                 /* conditional jump with two edges */
15538                 mark_prune_point(env, t);
15539
15540                 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
15541                 if (ret)
15542                         return ret;
15543
15544                 return push_insn(t, t + insn->off + 1, BRANCH, env, true);
15545         }
15546 }
15547
15548 /* non-recursive depth-first-search to detect loops in BPF program
15549  * loop == back-edge in directed graph
15550  */
15551 static int check_cfg(struct bpf_verifier_env *env)
15552 {
15553         int insn_cnt = env->prog->len;
15554         int *insn_stack, *insn_state;
15555         int ex_insn_beg, i, ret = 0;
15556         bool ex_done = false;
15557
15558         insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15559         if (!insn_state)
15560                 return -ENOMEM;
15561
15562         insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15563         if (!insn_stack) {
15564                 kvfree(insn_state);
15565                 return -ENOMEM;
15566         }
15567
15568         insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15569         insn_stack[0] = 0; /* 0 is the first instruction */
15570         env->cfg.cur_stack = 1;
15571
15572 walk_cfg:
15573         while (env->cfg.cur_stack > 0) {
15574                 int t = insn_stack[env->cfg.cur_stack - 1];
15575
15576                 ret = visit_insn(t, env);
15577                 switch (ret) {
15578                 case DONE_EXPLORING:
15579                         insn_state[t] = EXPLORED;
15580                         env->cfg.cur_stack--;
15581                         break;
15582                 case KEEP_EXPLORING:
15583                         break;
15584                 default:
15585                         if (ret > 0) {
15586                                 verbose(env, "visit_insn internal bug\n");
15587                                 ret = -EFAULT;
15588                         }
15589                         goto err_free;
15590                 }
15591         }
15592
15593         if (env->cfg.cur_stack < 0) {
15594                 verbose(env, "pop stack internal bug\n");
15595                 ret = -EFAULT;
15596                 goto err_free;
15597         }
15598
15599         if (env->exception_callback_subprog && !ex_done) {
15600                 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15601
15602                 insn_state[ex_insn_beg] = DISCOVERED;
15603                 insn_stack[0] = ex_insn_beg;
15604                 env->cfg.cur_stack = 1;
15605                 ex_done = true;
15606                 goto walk_cfg;
15607         }
15608
15609         for (i = 0; i < insn_cnt; i++) {
15610                 if (insn_state[i] != EXPLORED) {
15611                         verbose(env, "unreachable insn %d\n", i);
15612                         ret = -EINVAL;
15613                         goto err_free;
15614                 }
15615         }
15616         ret = 0; /* cfg looks good */
15617
15618 err_free:
15619         kvfree(insn_state);
15620         kvfree(insn_stack);
15621         env->cfg.insn_state = env->cfg.insn_stack = NULL;
15622         return ret;
15623 }
15624
15625 static int check_abnormal_return(struct bpf_verifier_env *env)
15626 {
15627         int i;
15628
15629         for (i = 1; i < env->subprog_cnt; i++) {
15630                 if (env->subprog_info[i].has_ld_abs) {
15631                         verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15632                         return -EINVAL;
15633                 }
15634                 if (env->subprog_info[i].has_tail_call) {
15635                         verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15636                         return -EINVAL;
15637                 }
15638         }
15639         return 0;
15640 }
15641
15642 /* The minimum supported BTF func info size */
15643 #define MIN_BPF_FUNCINFO_SIZE   8
15644 #define MAX_FUNCINFO_REC_SIZE   252
15645
15646 static int check_btf_func_early(struct bpf_verifier_env *env,
15647                                 const union bpf_attr *attr,
15648                                 bpfptr_t uattr)
15649 {
15650         u32 krec_size = sizeof(struct bpf_func_info);
15651         const struct btf_type *type, *func_proto;
15652         u32 i, nfuncs, urec_size, min_size;
15653         struct bpf_func_info *krecord;
15654         struct bpf_prog *prog;
15655         const struct btf *btf;
15656         u32 prev_offset = 0;
15657         bpfptr_t urecord;
15658         int ret = -ENOMEM;
15659
15660         nfuncs = attr->func_info_cnt;
15661         if (!nfuncs) {
15662                 if (check_abnormal_return(env))
15663                         return -EINVAL;
15664                 return 0;
15665         }
15666
15667         urec_size = attr->func_info_rec_size;
15668         if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15669             urec_size > MAX_FUNCINFO_REC_SIZE ||
15670             urec_size % sizeof(u32)) {
15671                 verbose(env, "invalid func info rec size %u\n", urec_size);
15672                 return -EINVAL;
15673         }
15674
15675         prog = env->prog;
15676         btf = prog->aux->btf;
15677
15678         urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15679         min_size = min_t(u32, krec_size, urec_size);
15680
15681         krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15682         if (!krecord)
15683                 return -ENOMEM;
15684
15685         for (i = 0; i < nfuncs; i++) {
15686                 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15687                 if (ret) {
15688                         if (ret == -E2BIG) {
15689                                 verbose(env, "nonzero tailing record in func info");
15690                                 /* set the size kernel expects so loader can zero
15691                                  * out the rest of the record.
15692                                  */
15693                                 if (copy_to_bpfptr_offset(uattr,
15694                                                           offsetof(union bpf_attr, func_info_rec_size),
15695                                                           &min_size, sizeof(min_size)))
15696                                         ret = -EFAULT;
15697                         }
15698                         goto err_free;
15699                 }
15700
15701                 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15702                         ret = -EFAULT;
15703                         goto err_free;
15704                 }
15705
15706                 /* check insn_off */
15707                 ret = -EINVAL;
15708                 if (i == 0) {
15709                         if (krecord[i].insn_off) {
15710                                 verbose(env,
15711                                         "nonzero insn_off %u for the first func info record",
15712                                         krecord[i].insn_off);
15713                                 goto err_free;
15714                         }
15715                 } else if (krecord[i].insn_off <= prev_offset) {
15716                         verbose(env,
15717                                 "same or smaller insn offset (%u) than previous func info record (%u)",
15718                                 krecord[i].insn_off, prev_offset);
15719                         goto err_free;
15720                 }
15721
15722                 /* check type_id */
15723                 type = btf_type_by_id(btf, krecord[i].type_id);
15724                 if (!type || !btf_type_is_func(type)) {
15725                         verbose(env, "invalid type id %d in func info",
15726                                 krecord[i].type_id);
15727                         goto err_free;
15728                 }
15729
15730                 func_proto = btf_type_by_id(btf, type->type);
15731                 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15732                         /* btf_func_check() already verified it during BTF load */
15733                         goto err_free;
15734
15735                 prev_offset = krecord[i].insn_off;
15736                 bpfptr_add(&urecord, urec_size);
15737         }
15738
15739         prog->aux->func_info = krecord;
15740         prog->aux->func_info_cnt = nfuncs;
15741         return 0;
15742
15743 err_free:
15744         kvfree(krecord);
15745         return ret;
15746 }
15747
15748 static int check_btf_func(struct bpf_verifier_env *env,
15749                           const union bpf_attr *attr,
15750                           bpfptr_t uattr)
15751 {
15752         const struct btf_type *type, *func_proto, *ret_type;
15753         u32 i, nfuncs, urec_size;
15754         struct bpf_func_info *krecord;
15755         struct bpf_func_info_aux *info_aux = NULL;
15756         struct bpf_prog *prog;
15757         const struct btf *btf;
15758         bpfptr_t urecord;
15759         bool scalar_return;
15760         int ret = -ENOMEM;
15761
15762         nfuncs = attr->func_info_cnt;
15763         if (!nfuncs) {
15764                 if (check_abnormal_return(env))
15765                         return -EINVAL;
15766                 return 0;
15767         }
15768         if (nfuncs != env->subprog_cnt) {
15769                 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15770                 return -EINVAL;
15771         }
15772
15773         urec_size = attr->func_info_rec_size;
15774
15775         prog = env->prog;
15776         btf = prog->aux->btf;
15777
15778         urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15779
15780         krecord = prog->aux->func_info;
15781         info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15782         if (!info_aux)
15783                 return -ENOMEM;
15784
15785         for (i = 0; i < nfuncs; i++) {
15786                 /* check insn_off */
15787                 ret = -EINVAL;
15788
15789                 if (env->subprog_info[i].start != krecord[i].insn_off) {
15790                         verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15791                         goto err_free;
15792                 }
15793
15794                 /* Already checked type_id */
15795                 type = btf_type_by_id(btf, krecord[i].type_id);
15796                 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15797                 /* Already checked func_proto */
15798                 func_proto = btf_type_by_id(btf, type->type);
15799
15800                 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15801                 scalar_return =
15802                         btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15803                 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15804                         verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15805                         goto err_free;
15806                 }
15807                 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15808                         verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15809                         goto err_free;
15810                 }
15811
15812                 bpfptr_add(&urecord, urec_size);
15813         }
15814
15815         prog->aux->func_info_aux = info_aux;
15816         return 0;
15817
15818 err_free:
15819         kfree(info_aux);
15820         return ret;
15821 }
15822
15823 static void adjust_btf_func(struct bpf_verifier_env *env)
15824 {
15825         struct bpf_prog_aux *aux = env->prog->aux;
15826         int i;
15827
15828         if (!aux->func_info)
15829                 return;
15830
15831         /* func_info is not available for hidden subprogs */
15832         for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15833                 aux->func_info[i].insn_off = env->subprog_info[i].start;
15834 }
15835
15836 #define MIN_BPF_LINEINFO_SIZE   offsetofend(struct bpf_line_info, line_col)
15837 #define MAX_LINEINFO_REC_SIZE   MAX_FUNCINFO_REC_SIZE
15838
15839 static int check_btf_line(struct bpf_verifier_env *env,
15840                           const union bpf_attr *attr,
15841                           bpfptr_t uattr)
15842 {
15843         u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15844         struct bpf_subprog_info *sub;
15845         struct bpf_line_info *linfo;
15846         struct bpf_prog *prog;
15847         const struct btf *btf;
15848         bpfptr_t ulinfo;
15849         int err;
15850
15851         nr_linfo = attr->line_info_cnt;
15852         if (!nr_linfo)
15853                 return 0;
15854         if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15855                 return -EINVAL;
15856
15857         rec_size = attr->line_info_rec_size;
15858         if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15859             rec_size > MAX_LINEINFO_REC_SIZE ||
15860             rec_size & (sizeof(u32) - 1))
15861                 return -EINVAL;
15862
15863         /* Need to zero it in case the userspace may
15864          * pass in a smaller bpf_line_info object.
15865          */
15866         linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15867                          GFP_KERNEL | __GFP_NOWARN);
15868         if (!linfo)
15869                 return -ENOMEM;
15870
15871         prog = env->prog;
15872         btf = prog->aux->btf;
15873
15874         s = 0;
15875         sub = env->subprog_info;
15876         ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15877         expected_size = sizeof(struct bpf_line_info);
15878         ncopy = min_t(u32, expected_size, rec_size);
15879         for (i = 0; i < nr_linfo; i++) {
15880                 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15881                 if (err) {
15882                         if (err == -E2BIG) {
15883                                 verbose(env, "nonzero tailing record in line_info");
15884                                 if (copy_to_bpfptr_offset(uattr,
15885                                                           offsetof(union bpf_attr, line_info_rec_size),
15886                                                           &expected_size, sizeof(expected_size)))
15887                                         err = -EFAULT;
15888                         }
15889                         goto err_free;
15890                 }
15891
15892                 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15893                         err = -EFAULT;
15894                         goto err_free;
15895                 }
15896
15897                 /*
15898                  * Check insn_off to ensure
15899                  * 1) strictly increasing AND
15900                  * 2) bounded by prog->len
15901                  *
15902                  * The linfo[0].insn_off == 0 check logically falls into
15903                  * the later "missing bpf_line_info for func..." case
15904                  * because the first linfo[0].insn_off must be the
15905                  * first sub also and the first sub must have
15906                  * subprog_info[0].start == 0.
15907                  */
15908                 if ((i && linfo[i].insn_off <= prev_offset) ||
15909                     linfo[i].insn_off >= prog->len) {
15910                         verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15911                                 i, linfo[i].insn_off, prev_offset,
15912                                 prog->len);
15913                         err = -EINVAL;
15914                         goto err_free;
15915                 }
15916
15917                 if (!prog->insnsi[linfo[i].insn_off].code) {
15918                         verbose(env,
15919                                 "Invalid insn code at line_info[%u].insn_off\n",
15920                                 i);
15921                         err = -EINVAL;
15922                         goto err_free;
15923                 }
15924
15925                 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15926                     !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15927                         verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15928                         err = -EINVAL;
15929                         goto err_free;
15930                 }
15931
15932                 if (s != env->subprog_cnt) {
15933                         if (linfo[i].insn_off == sub[s].start) {
15934                                 sub[s].linfo_idx = i;
15935                                 s++;
15936                         } else if (sub[s].start < linfo[i].insn_off) {
15937                                 verbose(env, "missing bpf_line_info for func#%u\n", s);
15938                                 err = -EINVAL;
15939                                 goto err_free;
15940                         }
15941                 }
15942
15943                 prev_offset = linfo[i].insn_off;
15944                 bpfptr_add(&ulinfo, rec_size);
15945         }
15946
15947         if (s != env->subprog_cnt) {
15948                 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15949                         env->subprog_cnt - s, s);
15950                 err = -EINVAL;
15951                 goto err_free;
15952         }
15953
15954         prog->aux->linfo = linfo;
15955         prog->aux->nr_linfo = nr_linfo;
15956
15957         return 0;
15958
15959 err_free:
15960         kvfree(linfo);
15961         return err;
15962 }
15963
15964 #define MIN_CORE_RELO_SIZE      sizeof(struct bpf_core_relo)
15965 #define MAX_CORE_RELO_SIZE      MAX_FUNCINFO_REC_SIZE
15966
15967 static int check_core_relo(struct bpf_verifier_env *env,
15968                            const union bpf_attr *attr,
15969                            bpfptr_t uattr)
15970 {
15971         u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15972         struct bpf_core_relo core_relo = {};
15973         struct bpf_prog *prog = env->prog;
15974         const struct btf *btf = prog->aux->btf;
15975         struct bpf_core_ctx ctx = {
15976                 .log = &env->log,
15977                 .btf = btf,
15978         };
15979         bpfptr_t u_core_relo;
15980         int err;
15981
15982         nr_core_relo = attr->core_relo_cnt;
15983         if (!nr_core_relo)
15984                 return 0;
15985         if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15986                 return -EINVAL;
15987
15988         rec_size = attr->core_relo_rec_size;
15989         if (rec_size < MIN_CORE_RELO_SIZE ||
15990             rec_size > MAX_CORE_RELO_SIZE ||
15991             rec_size % sizeof(u32))
15992                 return -EINVAL;
15993
15994         u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15995         expected_size = sizeof(struct bpf_core_relo);
15996         ncopy = min_t(u32, expected_size, rec_size);
15997
15998         /* Unlike func_info and line_info, copy and apply each CO-RE
15999          * relocation record one at a time.
16000          */
16001         for (i = 0; i < nr_core_relo; i++) {
16002                 /* future proofing when sizeof(bpf_core_relo) changes */
16003                 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16004                 if (err) {
16005                         if (err == -E2BIG) {
16006                                 verbose(env, "nonzero tailing record in core_relo");
16007                                 if (copy_to_bpfptr_offset(uattr,
16008                                                           offsetof(union bpf_attr, core_relo_rec_size),
16009                                                           &expected_size, sizeof(expected_size)))
16010                                         err = -EFAULT;
16011                         }
16012                         break;
16013                 }
16014
16015                 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16016                         err = -EFAULT;
16017                         break;
16018                 }
16019
16020                 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16021                         verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16022                                 i, core_relo.insn_off, prog->len);
16023                         err = -EINVAL;
16024                         break;
16025                 }
16026
16027                 err = bpf_core_apply(&ctx, &core_relo, i,
16028                                      &prog->insnsi[core_relo.insn_off / 8]);
16029                 if (err)
16030                         break;
16031                 bpfptr_add(&u_core_relo, rec_size);
16032         }
16033         return err;
16034 }
16035
16036 static int check_btf_info_early(struct bpf_verifier_env *env,
16037                                 const union bpf_attr *attr,
16038                                 bpfptr_t uattr)
16039 {
16040         struct btf *btf;
16041         int err;
16042
16043         if (!attr->func_info_cnt && !attr->line_info_cnt) {
16044                 if (check_abnormal_return(env))
16045                         return -EINVAL;
16046                 return 0;
16047         }
16048
16049         btf = btf_get_by_fd(attr->prog_btf_fd);
16050         if (IS_ERR(btf))
16051                 return PTR_ERR(btf);
16052         if (btf_is_kernel(btf)) {
16053                 btf_put(btf);
16054                 return -EACCES;
16055         }
16056         env->prog->aux->btf = btf;
16057
16058         err = check_btf_func_early(env, attr, uattr);
16059         if (err)
16060                 return err;
16061         return 0;
16062 }
16063
16064 static int check_btf_info(struct bpf_verifier_env *env,
16065                           const union bpf_attr *attr,
16066                           bpfptr_t uattr)
16067 {
16068         int err;
16069
16070         if (!attr->func_info_cnt && !attr->line_info_cnt) {
16071                 if (check_abnormal_return(env))
16072                         return -EINVAL;
16073                 return 0;
16074         }
16075
16076         err = check_btf_func(env, attr, uattr);
16077         if (err)
16078                 return err;
16079
16080         err = check_btf_line(env, attr, uattr);
16081         if (err)
16082                 return err;
16083
16084         err = check_core_relo(env, attr, uattr);
16085         if (err)
16086                 return err;
16087
16088         return 0;
16089 }
16090
16091 /* check %cur's range satisfies %old's */
16092 static bool range_within(struct bpf_reg_state *old,
16093                          struct bpf_reg_state *cur)
16094 {
16095         return old->umin_value <= cur->umin_value &&
16096                old->umax_value >= cur->umax_value &&
16097                old->smin_value <= cur->smin_value &&
16098                old->smax_value >= cur->smax_value &&
16099                old->u32_min_value <= cur->u32_min_value &&
16100                old->u32_max_value >= cur->u32_max_value &&
16101                old->s32_min_value <= cur->s32_min_value &&
16102                old->s32_max_value >= cur->s32_max_value;
16103 }
16104
16105 /* If in the old state two registers had the same id, then they need to have
16106  * the same id in the new state as well.  But that id could be different from
16107  * the old state, so we need to track the mapping from old to new ids.
16108  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16109  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16110  * regs with a different old id could still have new id 9, we don't care about
16111  * that.
16112  * So we look through our idmap to see if this old id has been seen before.  If
16113  * so, we require the new id to match; otherwise, we add the id pair to the map.
16114  */
16115 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16116 {
16117         struct bpf_id_pair *map = idmap->map;
16118         unsigned int i;
16119
16120         /* either both IDs should be set or both should be zero */
16121         if (!!old_id != !!cur_id)
16122                 return false;
16123
16124         if (old_id == 0) /* cur_id == 0 as well */
16125                 return true;
16126
16127         for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16128                 if (!map[i].old) {
16129                         /* Reached an empty slot; haven't seen this id before */
16130                         map[i].old = old_id;
16131                         map[i].cur = cur_id;
16132                         return true;
16133                 }
16134                 if (map[i].old == old_id)
16135                         return map[i].cur == cur_id;
16136                 if (map[i].cur == cur_id)
16137                         return false;
16138         }
16139         /* We ran out of idmap slots, which should be impossible */
16140         WARN_ON_ONCE(1);
16141         return false;
16142 }
16143
16144 /* Similar to check_ids(), but allocate a unique temporary ID
16145  * for 'old_id' or 'cur_id' of zero.
16146  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16147  */
16148 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16149 {
16150         old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16151         cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16152
16153         return check_ids(old_id, cur_id, idmap);
16154 }
16155
16156 static void clean_func_state(struct bpf_verifier_env *env,
16157                              struct bpf_func_state *st)
16158 {
16159         enum bpf_reg_liveness live;
16160         int i, j;
16161
16162         for (i = 0; i < BPF_REG_FP; i++) {
16163                 live = st->regs[i].live;
16164                 /* liveness must not touch this register anymore */
16165                 st->regs[i].live |= REG_LIVE_DONE;
16166                 if (!(live & REG_LIVE_READ))
16167                         /* since the register is unused, clear its state
16168                          * to make further comparison simpler
16169                          */
16170                         __mark_reg_not_init(env, &st->regs[i]);
16171         }
16172
16173         for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16174                 live = st->stack[i].spilled_ptr.live;
16175                 /* liveness must not touch this stack slot anymore */
16176                 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16177                 if (!(live & REG_LIVE_READ)) {
16178                         __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16179                         for (j = 0; j < BPF_REG_SIZE; j++)
16180                                 st->stack[i].slot_type[j] = STACK_INVALID;
16181                 }
16182         }
16183 }
16184
16185 static void clean_verifier_state(struct bpf_verifier_env *env,
16186                                  struct bpf_verifier_state *st)
16187 {
16188         int i;
16189
16190         if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16191                 /* all regs in this state in all frames were already marked */
16192                 return;
16193
16194         for (i = 0; i <= st->curframe; i++)
16195                 clean_func_state(env, st->frame[i]);
16196 }
16197
16198 /* the parentage chains form a tree.
16199  * the verifier states are added to state lists at given insn and
16200  * pushed into state stack for future exploration.
16201  * when the verifier reaches bpf_exit insn some of the verifer states
16202  * stored in the state lists have their final liveness state already,
16203  * but a lot of states will get revised from liveness point of view when
16204  * the verifier explores other branches.
16205  * Example:
16206  * 1: r0 = 1
16207  * 2: if r1 == 100 goto pc+1
16208  * 3: r0 = 2
16209  * 4: exit
16210  * when the verifier reaches exit insn the register r0 in the state list of
16211  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16212  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16213  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16214  *
16215  * Since the verifier pushes the branch states as it sees them while exploring
16216  * the program the condition of walking the branch instruction for the second
16217  * time means that all states below this branch were already explored and
16218  * their final liveness marks are already propagated.
16219  * Hence when the verifier completes the search of state list in is_state_visited()
16220  * we can call this clean_live_states() function to mark all liveness states
16221  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16222  * will not be used.
16223  * This function also clears the registers and stack for states that !READ
16224  * to simplify state merging.
16225  *
16226  * Important note here that walking the same branch instruction in the callee
16227  * doesn't meant that the states are DONE. The verifier has to compare
16228  * the callsites
16229  */
16230 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16231                               struct bpf_verifier_state *cur)
16232 {
16233         struct bpf_verifier_state_list *sl;
16234
16235         sl = *explored_state(env, insn);
16236         while (sl) {
16237                 if (sl->state.branches)
16238                         goto next;
16239                 if (sl->state.insn_idx != insn ||
16240                     !same_callsites(&sl->state, cur))
16241                         goto next;
16242                 clean_verifier_state(env, &sl->state);
16243 next:
16244                 sl = sl->next;
16245         }
16246 }
16247
16248 static bool regs_exact(const struct bpf_reg_state *rold,
16249                        const struct bpf_reg_state *rcur,
16250                        struct bpf_idmap *idmap)
16251 {
16252         return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16253                check_ids(rold->id, rcur->id, idmap) &&
16254                check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16255 }
16256
16257 /* Returns true if (rold safe implies rcur safe) */
16258 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16259                     struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16260 {
16261         if (exact)
16262                 return regs_exact(rold, rcur, idmap);
16263
16264         if (!(rold->live & REG_LIVE_READ))
16265                 /* explored state didn't use this */
16266                 return true;
16267         if (rold->type == NOT_INIT)
16268                 /* explored state can't have used this */
16269                 return true;
16270         if (rcur->type == NOT_INIT)
16271                 return false;
16272
16273         /* Enforce that register types have to match exactly, including their
16274          * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16275          * rule.
16276          *
16277          * One can make a point that using a pointer register as unbounded
16278          * SCALAR would be technically acceptable, but this could lead to
16279          * pointer leaks because scalars are allowed to leak while pointers
16280          * are not. We could make this safe in special cases if root is
16281          * calling us, but it's probably not worth the hassle.
16282          *
16283          * Also, register types that are *not* MAYBE_NULL could technically be
16284          * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16285          * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16286          * to the same map).
16287          * However, if the old MAYBE_NULL register then got NULL checked,
16288          * doing so could have affected others with the same id, and we can't
16289          * check for that because we lost the id when we converted to
16290          * a non-MAYBE_NULL variant.
16291          * So, as a general rule we don't allow mixing MAYBE_NULL and
16292          * non-MAYBE_NULL registers as well.
16293          */
16294         if (rold->type != rcur->type)
16295                 return false;
16296
16297         switch (base_type(rold->type)) {
16298         case SCALAR_VALUE:
16299                 if (env->explore_alu_limits) {
16300                         /* explore_alu_limits disables tnum_in() and range_within()
16301                          * logic and requires everything to be strict
16302                          */
16303                         return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16304                                check_scalar_ids(rold->id, rcur->id, idmap);
16305                 }
16306                 if (!rold->precise)
16307                         return true;
16308                 /* Why check_ids() for scalar registers?
16309                  *
16310                  * Consider the following BPF code:
16311                  *   1: r6 = ... unbound scalar, ID=a ...
16312                  *   2: r7 = ... unbound scalar, ID=b ...
16313                  *   3: if (r6 > r7) goto +1
16314                  *   4: r6 = r7
16315                  *   5: if (r6 > X) goto ...
16316                  *   6: ... memory operation using r7 ...
16317                  *
16318                  * First verification path is [1-6]:
16319                  * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16320                  * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16321                  *   r7 <= X, because r6 and r7 share same id.
16322                  * Next verification path is [1-4, 6].
16323                  *
16324                  * Instruction (6) would be reached in two states:
16325                  *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16326                  *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16327                  *
16328                  * Use check_ids() to distinguish these states.
16329                  * ---
16330                  * Also verify that new value satisfies old value range knowledge.
16331                  */
16332                 return range_within(rold, rcur) &&
16333                        tnum_in(rold->var_off, rcur->var_off) &&
16334                        check_scalar_ids(rold->id, rcur->id, idmap);
16335         case PTR_TO_MAP_KEY:
16336         case PTR_TO_MAP_VALUE:
16337         case PTR_TO_MEM:
16338         case PTR_TO_BUF:
16339         case PTR_TO_TP_BUFFER:
16340                 /* If the new min/max/var_off satisfy the old ones and
16341                  * everything else matches, we are OK.
16342                  */
16343                 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16344                        range_within(rold, rcur) &&
16345                        tnum_in(rold->var_off, rcur->var_off) &&
16346                        check_ids(rold->id, rcur->id, idmap) &&
16347                        check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16348         case PTR_TO_PACKET_META:
16349         case PTR_TO_PACKET:
16350                 /* We must have at least as much range as the old ptr
16351                  * did, so that any accesses which were safe before are
16352                  * still safe.  This is true even if old range < old off,
16353                  * since someone could have accessed through (ptr - k), or
16354                  * even done ptr -= k in a register, to get a safe access.
16355                  */
16356                 if (rold->range > rcur->range)
16357                         return false;
16358                 /* If the offsets don't match, we can't trust our alignment;
16359                  * nor can we be sure that we won't fall out of range.
16360                  */
16361                 if (rold->off != rcur->off)
16362                         return false;
16363                 /* id relations must be preserved */
16364                 if (!check_ids(rold->id, rcur->id, idmap))
16365                         return false;
16366                 /* new val must satisfy old val knowledge */
16367                 return range_within(rold, rcur) &&
16368                        tnum_in(rold->var_off, rcur->var_off);
16369         case PTR_TO_STACK:
16370                 /* two stack pointers are equal only if they're pointing to
16371                  * the same stack frame, since fp-8 in foo != fp-8 in bar
16372                  */
16373                 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16374         default:
16375                 return regs_exact(rold, rcur, idmap);
16376         }
16377 }
16378
16379 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16380                       struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16381 {
16382         int i, spi;
16383
16384         /* walk slots of the explored stack and ignore any additional
16385          * slots in the current stack, since explored(safe) state
16386          * didn't use them
16387          */
16388         for (i = 0; i < old->allocated_stack; i++) {
16389                 struct bpf_reg_state *old_reg, *cur_reg;
16390
16391                 spi = i / BPF_REG_SIZE;
16392
16393                 if (exact &&
16394                     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16395                     cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16396                         return false;
16397
16398                 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16399                         i += BPF_REG_SIZE - 1;
16400                         /* explored state didn't use this */
16401                         continue;
16402                 }
16403
16404                 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16405                         continue;
16406
16407                 if (env->allow_uninit_stack &&
16408                     old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16409                         continue;
16410
16411                 /* explored stack has more populated slots than current stack
16412                  * and these slots were used
16413                  */
16414                 if (i >= cur->allocated_stack)
16415                         return false;
16416
16417                 /* if old state was safe with misc data in the stack
16418                  * it will be safe with zero-initialized stack.
16419                  * The opposite is not true
16420                  */
16421                 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16422                     cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16423                         continue;
16424                 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16425                     cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16426                         /* Ex: old explored (safe) state has STACK_SPILL in
16427                          * this stack slot, but current has STACK_MISC ->
16428                          * this verifier states are not equivalent,
16429                          * return false to continue verification of this path
16430                          */
16431                         return false;
16432                 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16433                         continue;
16434                 /* Both old and cur are having same slot_type */
16435                 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16436                 case STACK_SPILL:
16437                         /* when explored and current stack slot are both storing
16438                          * spilled registers, check that stored pointers types
16439                          * are the same as well.
16440                          * Ex: explored safe path could have stored
16441                          * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16442                          * but current path has stored:
16443                          * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16444                          * such verifier states are not equivalent.
16445                          * return false to continue verification of this path
16446                          */
16447                         if (!regsafe(env, &old->stack[spi].spilled_ptr,
16448                                      &cur->stack[spi].spilled_ptr, idmap, exact))
16449                                 return false;
16450                         break;
16451                 case STACK_DYNPTR:
16452                         old_reg = &old->stack[spi].spilled_ptr;
16453                         cur_reg = &cur->stack[spi].spilled_ptr;
16454                         if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16455                             old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16456                             !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16457                                 return false;
16458                         break;
16459                 case STACK_ITER:
16460                         old_reg = &old->stack[spi].spilled_ptr;
16461                         cur_reg = &cur->stack[spi].spilled_ptr;
16462                         /* iter.depth is not compared between states as it
16463                          * doesn't matter for correctness and would otherwise
16464                          * prevent convergence; we maintain it only to prevent
16465                          * infinite loop check triggering, see
16466                          * iter_active_depths_differ()
16467                          */
16468                         if (old_reg->iter.btf != cur_reg->iter.btf ||
16469                             old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16470                             old_reg->iter.state != cur_reg->iter.state ||
16471                             /* ignore {old_reg,cur_reg}->iter.depth, see above */
16472                             !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16473                                 return false;
16474                         break;
16475                 case STACK_MISC:
16476                 case STACK_ZERO:
16477                 case STACK_INVALID:
16478                         continue;
16479                 /* Ensure that new unhandled slot types return false by default */
16480                 default:
16481                         return false;
16482                 }
16483         }
16484         return true;
16485 }
16486
16487 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16488                     struct bpf_idmap *idmap)
16489 {
16490         int i;
16491
16492         if (old->acquired_refs != cur->acquired_refs)
16493                 return false;
16494
16495         for (i = 0; i < old->acquired_refs; i++) {
16496                 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16497                         return false;
16498         }
16499
16500         return true;
16501 }
16502
16503 /* compare two verifier states
16504  *
16505  * all states stored in state_list are known to be valid, since
16506  * verifier reached 'bpf_exit' instruction through them
16507  *
16508  * this function is called when verifier exploring different branches of
16509  * execution popped from the state stack. If it sees an old state that has
16510  * more strict register state and more strict stack state then this execution
16511  * branch doesn't need to be explored further, since verifier already
16512  * concluded that more strict state leads to valid finish.
16513  *
16514  * Therefore two states are equivalent if register state is more conservative
16515  * and explored stack state is more conservative than the current one.
16516  * Example:
16517  *       explored                   current
16518  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16519  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16520  *
16521  * In other words if current stack state (one being explored) has more
16522  * valid slots than old one that already passed validation, it means
16523  * the verifier can stop exploring and conclude that current state is valid too
16524  *
16525  * Similarly with registers. If explored state has register type as invalid
16526  * whereas register type in current state is meaningful, it means that
16527  * the current state will reach 'bpf_exit' instruction safely
16528  */
16529 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16530                               struct bpf_func_state *cur, bool exact)
16531 {
16532         int i;
16533
16534         for (i = 0; i < MAX_BPF_REG; i++)
16535                 if (!regsafe(env, &old->regs[i], &cur->regs[i],
16536                              &env->idmap_scratch, exact))
16537                         return false;
16538
16539         if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16540                 return false;
16541
16542         if (!refsafe(old, cur, &env->idmap_scratch))
16543                 return false;
16544
16545         return true;
16546 }
16547
16548 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16549 {
16550         env->idmap_scratch.tmp_id_gen = env->id_gen;
16551         memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16552 }
16553
16554 static bool states_equal(struct bpf_verifier_env *env,
16555                          struct bpf_verifier_state *old,
16556                          struct bpf_verifier_state *cur,
16557                          bool exact)
16558 {
16559         int i;
16560
16561         if (old->curframe != cur->curframe)
16562                 return false;
16563
16564         reset_idmap_scratch(env);
16565
16566         /* Verification state from speculative execution simulation
16567          * must never prune a non-speculative execution one.
16568          */
16569         if (old->speculative && !cur->speculative)
16570                 return false;
16571
16572         if (old->active_lock.ptr != cur->active_lock.ptr)
16573                 return false;
16574
16575         /* Old and cur active_lock's have to be either both present
16576          * or both absent.
16577          */
16578         if (!!old->active_lock.id != !!cur->active_lock.id)
16579                 return false;
16580
16581         if (old->active_lock.id &&
16582             !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16583                 return false;
16584
16585         if (old->active_rcu_lock != cur->active_rcu_lock)
16586                 return false;
16587
16588         /* for states to be equal callsites have to be the same
16589          * and all frame states need to be equivalent
16590          */
16591         for (i = 0; i <= old->curframe; i++) {
16592                 if (old->frame[i]->callsite != cur->frame[i]->callsite)
16593                         return false;
16594                 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16595                         return false;
16596         }
16597         return true;
16598 }
16599
16600 /* Return 0 if no propagation happened. Return negative error code if error
16601  * happened. Otherwise, return the propagated bit.
16602  */
16603 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16604                                   struct bpf_reg_state *reg,
16605                                   struct bpf_reg_state *parent_reg)
16606 {
16607         u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16608         u8 flag = reg->live & REG_LIVE_READ;
16609         int err;
16610
16611         /* When comes here, read flags of PARENT_REG or REG could be any of
16612          * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16613          * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16614          */
16615         if (parent_flag == REG_LIVE_READ64 ||
16616             /* Or if there is no read flag from REG. */
16617             !flag ||
16618             /* Or if the read flag from REG is the same as PARENT_REG. */
16619             parent_flag == flag)
16620                 return 0;
16621
16622         err = mark_reg_read(env, reg, parent_reg, flag);
16623         if (err)
16624                 return err;
16625
16626         return flag;
16627 }
16628
16629 /* A write screens off any subsequent reads; but write marks come from the
16630  * straight-line code between a state and its parent.  When we arrive at an
16631  * equivalent state (jump target or such) we didn't arrive by the straight-line
16632  * code, so read marks in the state must propagate to the parent regardless
16633  * of the state's write marks. That's what 'parent == state->parent' comparison
16634  * in mark_reg_read() is for.
16635  */
16636 static int propagate_liveness(struct bpf_verifier_env *env,
16637                               const struct bpf_verifier_state *vstate,
16638                               struct bpf_verifier_state *vparent)
16639 {
16640         struct bpf_reg_state *state_reg, *parent_reg;
16641         struct bpf_func_state *state, *parent;
16642         int i, frame, err = 0;
16643
16644         if (vparent->curframe != vstate->curframe) {
16645                 WARN(1, "propagate_live: parent frame %d current frame %d\n",
16646                      vparent->curframe, vstate->curframe);
16647                 return -EFAULT;
16648         }
16649         /* Propagate read liveness of registers... */
16650         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16651         for (frame = 0; frame <= vstate->curframe; frame++) {
16652                 parent = vparent->frame[frame];
16653                 state = vstate->frame[frame];
16654                 parent_reg = parent->regs;
16655                 state_reg = state->regs;
16656                 /* We don't need to worry about FP liveness, it's read-only */
16657                 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16658                         err = propagate_liveness_reg(env, &state_reg[i],
16659                                                      &parent_reg[i]);
16660                         if (err < 0)
16661                                 return err;
16662                         if (err == REG_LIVE_READ64)
16663                                 mark_insn_zext(env, &parent_reg[i]);
16664                 }
16665
16666                 /* Propagate stack slots. */
16667                 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16668                             i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16669                         parent_reg = &parent->stack[i].spilled_ptr;
16670                         state_reg = &state->stack[i].spilled_ptr;
16671                         err = propagate_liveness_reg(env, state_reg,
16672                                                      parent_reg);
16673                         if (err < 0)
16674                                 return err;
16675                 }
16676         }
16677         return 0;
16678 }
16679
16680 /* find precise scalars in the previous equivalent state and
16681  * propagate them into the current state
16682  */
16683 static int propagate_precision(struct bpf_verifier_env *env,
16684                                const struct bpf_verifier_state *old)
16685 {
16686         struct bpf_reg_state *state_reg;
16687         struct bpf_func_state *state;
16688         int i, err = 0, fr;
16689         bool first;
16690
16691         for (fr = old->curframe; fr >= 0; fr--) {
16692                 state = old->frame[fr];
16693                 state_reg = state->regs;
16694                 first = true;
16695                 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16696                         if (state_reg->type != SCALAR_VALUE ||
16697                             !state_reg->precise ||
16698                             !(state_reg->live & REG_LIVE_READ))
16699                                 continue;
16700                         if (env->log.level & BPF_LOG_LEVEL2) {
16701                                 if (first)
16702                                         verbose(env, "frame %d: propagating r%d", fr, i);
16703                                 else
16704                                         verbose(env, ",r%d", i);
16705                         }
16706                         bt_set_frame_reg(&env->bt, fr, i);
16707                         first = false;
16708                 }
16709
16710                 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16711                         if (!is_spilled_reg(&state->stack[i]))
16712                                 continue;
16713                         state_reg = &state->stack[i].spilled_ptr;
16714                         if (state_reg->type != SCALAR_VALUE ||
16715                             !state_reg->precise ||
16716                             !(state_reg->live & REG_LIVE_READ))
16717                                 continue;
16718                         if (env->log.level & BPF_LOG_LEVEL2) {
16719                                 if (first)
16720                                         verbose(env, "frame %d: propagating fp%d",
16721                                                 fr, (-i - 1) * BPF_REG_SIZE);
16722                                 else
16723                                         verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16724                         }
16725                         bt_set_frame_slot(&env->bt, fr, i);
16726                         first = false;
16727                 }
16728                 if (!first)
16729                         verbose(env, "\n");
16730         }
16731
16732         err = mark_chain_precision_batch(env);
16733         if (err < 0)
16734                 return err;
16735
16736         return 0;
16737 }
16738
16739 static bool states_maybe_looping(struct bpf_verifier_state *old,
16740                                  struct bpf_verifier_state *cur)
16741 {
16742         struct bpf_func_state *fold, *fcur;
16743         int i, fr = cur->curframe;
16744
16745         if (old->curframe != fr)
16746                 return false;
16747
16748         fold = old->frame[fr];
16749         fcur = cur->frame[fr];
16750         for (i = 0; i < MAX_BPF_REG; i++)
16751                 if (memcmp(&fold->regs[i], &fcur->regs[i],
16752                            offsetof(struct bpf_reg_state, parent)))
16753                         return false;
16754         return true;
16755 }
16756
16757 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16758 {
16759         return env->insn_aux_data[insn_idx].is_iter_next;
16760 }
16761
16762 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16763  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16764  * states to match, which otherwise would look like an infinite loop. So while
16765  * iter_next() calls are taken care of, we still need to be careful and
16766  * prevent erroneous and too eager declaration of "ininite loop", when
16767  * iterators are involved.
16768  *
16769  * Here's a situation in pseudo-BPF assembly form:
16770  *
16771  *   0: again:                          ; set up iter_next() call args
16772  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16773  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16774  *   3:   if r0 == 0 goto done
16775  *   4:   ... something useful here ...
16776  *   5:   goto again                    ; another iteration
16777  *   6: done:
16778  *   7:   r1 = &it
16779  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16780  *   9:   exit
16781  *
16782  * This is a typical loop. Let's assume that we have a prune point at 1:,
16783  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16784  * again`, assuming other heuristics don't get in a way).
16785  *
16786  * When we first time come to 1:, let's say we have some state X. We proceed
16787  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16788  * Now we come back to validate that forked ACTIVE state. We proceed through
16789  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16790  * are converging. But the problem is that we don't know that yet, as this
16791  * convergence has to happen at iter_next() call site only. So if nothing is
16792  * done, at 1: verifier will use bounded loop logic and declare infinite
16793  * looping (and would be *technically* correct, if not for iterator's
16794  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16795  * don't want that. So what we do in process_iter_next_call() when we go on
16796  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16797  * a different iteration. So when we suspect an infinite loop, we additionally
16798  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16799  * pretend we are not looping and wait for next iter_next() call.
16800  *
16801  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16802  * loop, because that would actually mean infinite loop, as DRAINED state is
16803  * "sticky", and so we'll keep returning into the same instruction with the
16804  * same state (at least in one of possible code paths).
16805  *
16806  * This approach allows to keep infinite loop heuristic even in the face of
16807  * active iterator. E.g., C snippet below is and will be detected as
16808  * inifintely looping:
16809  *
16810  *   struct bpf_iter_num it;
16811  *   int *p, x;
16812  *
16813  *   bpf_iter_num_new(&it, 0, 10);
16814  *   while ((p = bpf_iter_num_next(&t))) {
16815  *       x = p;
16816  *       while (x--) {} // <<-- infinite loop here
16817  *   }
16818  *
16819  */
16820 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16821 {
16822         struct bpf_reg_state *slot, *cur_slot;
16823         struct bpf_func_state *state;
16824         int i, fr;
16825
16826         for (fr = old->curframe; fr >= 0; fr--) {
16827                 state = old->frame[fr];
16828                 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16829                         if (state->stack[i].slot_type[0] != STACK_ITER)
16830                                 continue;
16831
16832                         slot = &state->stack[i].spilled_ptr;
16833                         if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16834                                 continue;
16835
16836                         cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16837                         if (cur_slot->iter.depth != slot->iter.depth)
16838                                 return true;
16839                 }
16840         }
16841         return false;
16842 }
16843
16844 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16845 {
16846         struct bpf_verifier_state_list *new_sl;
16847         struct bpf_verifier_state_list *sl, **pprev;
16848         struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16849         int i, j, n, err, states_cnt = 0;
16850         bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16851         bool add_new_state = force_new_state;
16852         bool force_exact;
16853
16854         /* bpf progs typically have pruning point every 4 instructions
16855          * http://vger.kernel.org/bpfconf2019.html#session-1
16856          * Do not add new state for future pruning if the verifier hasn't seen
16857          * at least 2 jumps and at least 8 instructions.
16858          * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16859          * In tests that amounts to up to 50% reduction into total verifier
16860          * memory consumption and 20% verifier time speedup.
16861          */
16862         if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16863             env->insn_processed - env->prev_insn_processed >= 8)
16864                 add_new_state = true;
16865
16866         pprev = explored_state(env, insn_idx);
16867         sl = *pprev;
16868
16869         clean_live_states(env, insn_idx, cur);
16870
16871         while (sl) {
16872                 states_cnt++;
16873                 if (sl->state.insn_idx != insn_idx)
16874                         goto next;
16875
16876                 if (sl->state.branches) {
16877                         struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16878
16879                         if (frame->in_async_callback_fn &&
16880                             frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16881                                 /* Different async_entry_cnt means that the verifier is
16882                                  * processing another entry into async callback.
16883                                  * Seeing the same state is not an indication of infinite
16884                                  * loop or infinite recursion.
16885                                  * But finding the same state doesn't mean that it's safe
16886                                  * to stop processing the current state. The previous state
16887                                  * hasn't yet reached bpf_exit, since state.branches > 0.
16888                                  * Checking in_async_callback_fn alone is not enough either.
16889                                  * Since the verifier still needs to catch infinite loops
16890                                  * inside async callbacks.
16891                                  */
16892                                 goto skip_inf_loop_check;
16893                         }
16894                         /* BPF open-coded iterators loop detection is special.
16895                          * states_maybe_looping() logic is too simplistic in detecting
16896                          * states that *might* be equivalent, because it doesn't know
16897                          * about ID remapping, so don't even perform it.
16898                          * See process_iter_next_call() and iter_active_depths_differ()
16899                          * for overview of the logic. When current and one of parent
16900                          * states are detected as equivalent, it's a good thing: we prove
16901                          * convergence and can stop simulating further iterations.
16902                          * It's safe to assume that iterator loop will finish, taking into
16903                          * account iter_next() contract of eventually returning
16904                          * sticky NULL result.
16905                          *
16906                          * Note, that states have to be compared exactly in this case because
16907                          * read and precision marks might not be finalized inside the loop.
16908                          * E.g. as in the program below:
16909                          *
16910                          *     1. r7 = -16
16911                          *     2. r6 = bpf_get_prandom_u32()
16912                          *     3. while (bpf_iter_num_next(&fp[-8])) {
16913                          *     4.   if (r6 != 42) {
16914                          *     5.     r7 = -32
16915                          *     6.     r6 = bpf_get_prandom_u32()
16916                          *     7.     continue
16917                          *     8.   }
16918                          *     9.   r0 = r10
16919                          *    10.   r0 += r7
16920                          *    11.   r8 = *(u64 *)(r0 + 0)
16921                          *    12.   r6 = bpf_get_prandom_u32()
16922                          *    13. }
16923                          *
16924                          * Here verifier would first visit path 1-3, create a checkpoint at 3
16925                          * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16926                          * not have read or precision mark for r7 yet, thus inexact states
16927                          * comparison would discard current state with r7=-32
16928                          * => unsafe memory access at 11 would not be caught.
16929                          */
16930                         if (is_iter_next_insn(env, insn_idx)) {
16931                                 if (states_equal(env, &sl->state, cur, true)) {
16932                                         struct bpf_func_state *cur_frame;
16933                                         struct bpf_reg_state *iter_state, *iter_reg;
16934                                         int spi;
16935
16936                                         cur_frame = cur->frame[cur->curframe];
16937                                         /* btf_check_iter_kfuncs() enforces that
16938                                          * iter state pointer is always the first arg
16939                                          */
16940                                         iter_reg = &cur_frame->regs[BPF_REG_1];
16941                                         /* current state is valid due to states_equal(),
16942                                          * so we can assume valid iter and reg state,
16943                                          * no need for extra (re-)validations
16944                                          */
16945                                         spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16946                                         iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16947                                         if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16948                                                 update_loop_entry(cur, &sl->state);
16949                                                 goto hit;
16950                                         }
16951                                 }
16952                                 goto skip_inf_loop_check;
16953                         }
16954                         /* attempt to detect infinite loop to avoid unnecessary doomed work */
16955                         if (states_maybe_looping(&sl->state, cur) &&
16956                             states_equal(env, &sl->state, cur, false) &&
16957                             !iter_active_depths_differ(&sl->state, cur)) {
16958                                 verbose_linfo(env, insn_idx, "; ");
16959                                 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16960                                 verbose(env, "cur state:");
16961                                 print_verifier_state(env, cur->frame[cur->curframe], true);
16962                                 verbose(env, "old state:");
16963                                 print_verifier_state(env, sl->state.frame[cur->curframe], true);
16964                                 return -EINVAL;
16965                         }
16966                         /* if the verifier is processing a loop, avoid adding new state
16967                          * too often, since different loop iterations have distinct
16968                          * states and may not help future pruning.
16969                          * This threshold shouldn't be too low to make sure that
16970                          * a loop with large bound will be rejected quickly.
16971                          * The most abusive loop will be:
16972                          * r1 += 1
16973                          * if r1 < 1000000 goto pc-2
16974                          * 1M insn_procssed limit / 100 == 10k peak states.
16975                          * This threshold shouldn't be too high either, since states
16976                          * at the end of the loop are likely to be useful in pruning.
16977                          */
16978 skip_inf_loop_check:
16979                         if (!force_new_state &&
16980                             env->jmps_processed - env->prev_jmps_processed < 20 &&
16981                             env->insn_processed - env->prev_insn_processed < 100)
16982                                 add_new_state = false;
16983                         goto miss;
16984                 }
16985                 /* If sl->state is a part of a loop and this loop's entry is a part of
16986                  * current verification path then states have to be compared exactly.
16987                  * 'force_exact' is needed to catch the following case:
16988                  *
16989                  *                initial     Here state 'succ' was processed first,
16990                  *                  |         it was eventually tracked to produce a
16991                  *                  V         state identical to 'hdr'.
16992                  *     .---------> hdr        All branches from 'succ' had been explored
16993                  *     |            |         and thus 'succ' has its .branches == 0.
16994                  *     |            V
16995                  *     |    .------...        Suppose states 'cur' and 'succ' correspond
16996                  *     |    |       |         to the same instruction + callsites.
16997                  *     |    V       V         In such case it is necessary to check
16998                  *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16999                  *     |    |       |         If 'succ' and 'cur' are a part of the
17000                  *     |    V       V         same loop exact flag has to be set.
17001                  *     |   succ <- cur        To check if that is the case, verify
17002                  *     |    |                 if loop entry of 'succ' is in current
17003                  *     |    V                 DFS path.
17004                  *     |   ...
17005                  *     |    |
17006                  *     '----'
17007                  *
17008                  * Additional details are in the comment before get_loop_entry().
17009                  */
17010                 loop_entry = get_loop_entry(&sl->state);
17011                 force_exact = loop_entry && loop_entry->branches > 0;
17012                 if (states_equal(env, &sl->state, cur, force_exact)) {
17013                         if (force_exact)
17014                                 update_loop_entry(cur, loop_entry);
17015 hit:
17016                         sl->hit_cnt++;
17017                         /* reached equivalent register/stack state,
17018                          * prune the search.
17019                          * Registers read by the continuation are read by us.
17020                          * If we have any write marks in env->cur_state, they
17021                          * will prevent corresponding reads in the continuation
17022                          * from reaching our parent (an explored_state).  Our
17023                          * own state will get the read marks recorded, but
17024                          * they'll be immediately forgotten as we're pruning
17025                          * this state and will pop a new one.
17026                          */
17027                         err = propagate_liveness(env, &sl->state, cur);
17028
17029                         /* if previous state reached the exit with precision and
17030                          * current state is equivalent to it (except precsion marks)
17031                          * the precision needs to be propagated back in
17032                          * the current state.
17033                          */
17034                         err = err ? : push_jmp_history(env, cur);
17035                         err = err ? : propagate_precision(env, &sl->state);
17036                         if (err)
17037                                 return err;
17038                         return 1;
17039                 }
17040 miss:
17041                 /* when new state is not going to be added do not increase miss count.
17042                  * Otherwise several loop iterations will remove the state
17043                  * recorded earlier. The goal of these heuristics is to have
17044                  * states from some iterations of the loop (some in the beginning
17045                  * and some at the end) to help pruning.
17046                  */
17047                 if (add_new_state)
17048                         sl->miss_cnt++;
17049                 /* heuristic to determine whether this state is beneficial
17050                  * to keep checking from state equivalence point of view.
17051                  * Higher numbers increase max_states_per_insn and verification time,
17052                  * but do not meaningfully decrease insn_processed.
17053                  * 'n' controls how many times state could miss before eviction.
17054                  * Use bigger 'n' for checkpoints because evicting checkpoint states
17055                  * too early would hinder iterator convergence.
17056                  */
17057                 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17058                 if (sl->miss_cnt > sl->hit_cnt * n + n) {
17059                         /* the state is unlikely to be useful. Remove it to
17060                          * speed up verification
17061                          */
17062                         *pprev = sl->next;
17063                         if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17064                             !sl->state.used_as_loop_entry) {
17065                                 u32 br = sl->state.branches;
17066
17067                                 WARN_ONCE(br,
17068                                           "BUG live_done but branches_to_explore %d\n",
17069                                           br);
17070                                 free_verifier_state(&sl->state, false);
17071                                 kfree(sl);
17072                                 env->peak_states--;
17073                         } else {
17074                                 /* cannot free this state, since parentage chain may
17075                                  * walk it later. Add it for free_list instead to
17076                                  * be freed at the end of verification
17077                                  */
17078                                 sl->next = env->free_list;
17079                                 env->free_list = sl;
17080                         }
17081                         sl = *pprev;
17082                         continue;
17083                 }
17084 next:
17085                 pprev = &sl->next;
17086                 sl = *pprev;
17087         }
17088
17089         if (env->max_states_per_insn < states_cnt)
17090                 env->max_states_per_insn = states_cnt;
17091
17092         if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17093                 return 0;
17094
17095         if (!add_new_state)
17096                 return 0;
17097
17098         /* There were no equivalent states, remember the current one.
17099          * Technically the current state is not proven to be safe yet,
17100          * but it will either reach outer most bpf_exit (which means it's safe)
17101          * or it will be rejected. When there are no loops the verifier won't be
17102          * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17103          * again on the way to bpf_exit.
17104          * When looping the sl->state.branches will be > 0 and this state
17105          * will not be considered for equivalence until branches == 0.
17106          */
17107         new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17108         if (!new_sl)
17109                 return -ENOMEM;
17110         env->total_states++;
17111         env->peak_states++;
17112         env->prev_jmps_processed = env->jmps_processed;
17113         env->prev_insn_processed = env->insn_processed;
17114
17115         /* forget precise markings we inherited, see __mark_chain_precision */
17116         if (env->bpf_capable)
17117                 mark_all_scalars_imprecise(env, cur);
17118
17119         /* add new state to the head of linked list */
17120         new = &new_sl->state;
17121         err = copy_verifier_state(new, cur);
17122         if (err) {
17123                 free_verifier_state(new, false);
17124                 kfree(new_sl);
17125                 return err;
17126         }
17127         new->insn_idx = insn_idx;
17128         WARN_ONCE(new->branches != 1,
17129                   "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17130
17131         cur->parent = new;
17132         cur->first_insn_idx = insn_idx;
17133         cur->dfs_depth = new->dfs_depth + 1;
17134         clear_jmp_history(cur);
17135         new_sl->next = *explored_state(env, insn_idx);
17136         *explored_state(env, insn_idx) = new_sl;
17137         /* connect new state to parentage chain. Current frame needs all
17138          * registers connected. Only r6 - r9 of the callers are alive (pushed
17139          * to the stack implicitly by JITs) so in callers' frames connect just
17140          * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17141          * the state of the call instruction (with WRITTEN set), and r0 comes
17142          * from callee with its full parentage chain, anyway.
17143          */
17144         /* clear write marks in current state: the writes we did are not writes
17145          * our child did, so they don't screen off its reads from us.
17146          * (There are no read marks in current state, because reads always mark
17147          * their parent and current state never has children yet.  Only
17148          * explored_states can get read marks.)
17149          */
17150         for (j = 0; j <= cur->curframe; j++) {
17151                 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17152                         cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17153                 for (i = 0; i < BPF_REG_FP; i++)
17154                         cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17155         }
17156
17157         /* all stack frames are accessible from callee, clear them all */
17158         for (j = 0; j <= cur->curframe; j++) {
17159                 struct bpf_func_state *frame = cur->frame[j];
17160                 struct bpf_func_state *newframe = new->frame[j];
17161
17162                 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17163                         frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17164                         frame->stack[i].spilled_ptr.parent =
17165                                                 &newframe->stack[i].spilled_ptr;
17166                 }
17167         }
17168         return 0;
17169 }
17170
17171 /* Return true if it's OK to have the same insn return a different type. */
17172 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17173 {
17174         switch (base_type(type)) {
17175         case PTR_TO_CTX:
17176         case PTR_TO_SOCKET:
17177         case PTR_TO_SOCK_COMMON:
17178         case PTR_TO_TCP_SOCK:
17179         case PTR_TO_XDP_SOCK:
17180         case PTR_TO_BTF_ID:
17181                 return false;
17182         default:
17183                 return true;
17184         }
17185 }
17186
17187 /* If an instruction was previously used with particular pointer types, then we
17188  * need to be careful to avoid cases such as the below, where it may be ok
17189  * for one branch accessing the pointer, but not ok for the other branch:
17190  *
17191  * R1 = sock_ptr
17192  * goto X;
17193  * ...
17194  * R1 = some_other_valid_ptr;
17195  * goto X;
17196  * ...
17197  * R2 = *(u32 *)(R1 + 0);
17198  */
17199 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17200 {
17201         return src != prev && (!reg_type_mismatch_ok(src) ||
17202                                !reg_type_mismatch_ok(prev));
17203 }
17204
17205 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17206                              bool allow_trust_missmatch)
17207 {
17208         enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17209
17210         if (*prev_type == NOT_INIT) {
17211                 /* Saw a valid insn
17212                  * dst_reg = *(u32 *)(src_reg + off)
17213                  * save type to validate intersecting paths
17214                  */
17215                 *prev_type = type;
17216         } else if (reg_type_mismatch(type, *prev_type)) {
17217                 /* Abuser program is trying to use the same insn
17218                  * dst_reg = *(u32*) (src_reg + off)
17219                  * with different pointer types:
17220                  * src_reg == ctx in one branch and
17221                  * src_reg == stack|map in some other branch.
17222                  * Reject it.
17223                  */
17224                 if (allow_trust_missmatch &&
17225                     base_type(type) == PTR_TO_BTF_ID &&
17226                     base_type(*prev_type) == PTR_TO_BTF_ID) {
17227                         /*
17228                          * Have to support a use case when one path through
17229                          * the program yields TRUSTED pointer while another
17230                          * is UNTRUSTED. Fallback to UNTRUSTED to generate
17231                          * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17232                          */
17233                         *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17234                 } else {
17235                         verbose(env, "same insn cannot be used with different pointers\n");
17236                         return -EINVAL;
17237                 }
17238         }
17239
17240         return 0;
17241 }
17242
17243 static int do_check(struct bpf_verifier_env *env)
17244 {
17245         bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17246         struct bpf_verifier_state *state = env->cur_state;
17247         struct bpf_insn *insns = env->prog->insnsi;
17248         struct bpf_reg_state *regs;
17249         int insn_cnt = env->prog->len;
17250         bool do_print_state = false;
17251         int prev_insn_idx = -1;
17252
17253         for (;;) {
17254                 bool exception_exit = false;
17255                 struct bpf_insn *insn;
17256                 u8 class;
17257                 int err;
17258
17259                 env->prev_insn_idx = prev_insn_idx;
17260                 if (env->insn_idx >= insn_cnt) {
17261                         verbose(env, "invalid insn idx %d insn_cnt %d\n",
17262                                 env->insn_idx, insn_cnt);
17263                         return -EFAULT;
17264                 }
17265
17266                 insn = &insns[env->insn_idx];
17267                 class = BPF_CLASS(insn->code);
17268
17269                 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17270                         verbose(env,
17271                                 "BPF program is too large. Processed %d insn\n",
17272                                 env->insn_processed);
17273                         return -E2BIG;
17274                 }
17275
17276                 state->last_insn_idx = env->prev_insn_idx;
17277
17278                 if (is_prune_point(env, env->insn_idx)) {
17279                         err = is_state_visited(env, env->insn_idx);
17280                         if (err < 0)
17281                                 return err;
17282                         if (err == 1) {
17283                                 /* found equivalent state, can prune the search */
17284                                 if (env->log.level & BPF_LOG_LEVEL) {
17285                                         if (do_print_state)
17286                                                 verbose(env, "\nfrom %d to %d%s: safe\n",
17287                                                         env->prev_insn_idx, env->insn_idx,
17288                                                         env->cur_state->speculative ?
17289                                                         " (speculative execution)" : "");
17290                                         else
17291                                                 verbose(env, "%d: safe\n", env->insn_idx);
17292                                 }
17293                                 goto process_bpf_exit;
17294                         }
17295                 }
17296
17297                 if (is_jmp_point(env, env->insn_idx)) {
17298                         err = push_jmp_history(env, state);
17299                         if (err)
17300                                 return err;
17301                 }
17302
17303                 if (signal_pending(current))
17304                         return -EAGAIN;
17305
17306                 if (need_resched())
17307                         cond_resched();
17308
17309                 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17310                         verbose(env, "\nfrom %d to %d%s:",
17311                                 env->prev_insn_idx, env->insn_idx,
17312                                 env->cur_state->speculative ?
17313                                 " (speculative execution)" : "");
17314                         print_verifier_state(env, state->frame[state->curframe], true);
17315                         do_print_state = false;
17316                 }
17317
17318                 if (env->log.level & BPF_LOG_LEVEL) {
17319                         const struct bpf_insn_cbs cbs = {
17320                                 .cb_call        = disasm_kfunc_name,
17321                                 .cb_print       = verbose,
17322                                 .private_data   = env,
17323                         };
17324
17325                         if (verifier_state_scratched(env))
17326                                 print_insn_state(env, state->frame[state->curframe]);
17327
17328                         verbose_linfo(env, env->insn_idx, "; ");
17329                         env->prev_log_pos = env->log.end_pos;
17330                         verbose(env, "%d: ", env->insn_idx);
17331                         print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17332                         env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17333                         env->prev_log_pos = env->log.end_pos;
17334                 }
17335
17336                 if (bpf_prog_is_offloaded(env->prog->aux)) {
17337                         err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17338                                                            env->prev_insn_idx);
17339                         if (err)
17340                                 return err;
17341                 }
17342
17343                 regs = cur_regs(env);
17344                 sanitize_mark_insn_seen(env);
17345                 prev_insn_idx = env->insn_idx;
17346
17347                 if (class == BPF_ALU || class == BPF_ALU64) {
17348                         err = check_alu_op(env, insn);
17349                         if (err)
17350                                 return err;
17351
17352                 } else if (class == BPF_LDX) {
17353                         enum bpf_reg_type src_reg_type;
17354
17355                         /* check for reserved fields is already done */
17356
17357                         /* check src operand */
17358                         err = check_reg_arg(env, insn->src_reg, SRC_OP);
17359                         if (err)
17360                                 return err;
17361
17362                         err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17363                         if (err)
17364                                 return err;
17365
17366                         src_reg_type = regs[insn->src_reg].type;
17367
17368                         /* check that memory (src_reg + off) is readable,
17369                          * the state of dst_reg will be updated by this func
17370                          */
17371                         err = check_mem_access(env, env->insn_idx, insn->src_reg,
17372                                                insn->off, BPF_SIZE(insn->code),
17373                                                BPF_READ, insn->dst_reg, false,
17374                                                BPF_MODE(insn->code) == BPF_MEMSX);
17375                         if (err)
17376                                 return err;
17377
17378                         err = save_aux_ptr_type(env, src_reg_type, true);
17379                         if (err)
17380                                 return err;
17381                 } else if (class == BPF_STX) {
17382                         enum bpf_reg_type dst_reg_type;
17383
17384                         if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17385                                 err = check_atomic(env, env->insn_idx, insn);
17386                                 if (err)
17387                                         return err;
17388                                 env->insn_idx++;
17389                                 continue;
17390                         }
17391
17392                         if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17393                                 verbose(env, "BPF_STX uses reserved fields\n");
17394                                 return -EINVAL;
17395                         }
17396
17397                         /* check src1 operand */
17398                         err = check_reg_arg(env, insn->src_reg, SRC_OP);
17399                         if (err)
17400                                 return err;
17401                         /* check src2 operand */
17402                         err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17403                         if (err)
17404                                 return err;
17405
17406                         dst_reg_type = regs[insn->dst_reg].type;
17407
17408                         /* check that memory (dst_reg + off) is writeable */
17409                         err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17410                                                insn->off, BPF_SIZE(insn->code),
17411                                                BPF_WRITE, insn->src_reg, false, false);
17412                         if (err)
17413                                 return err;
17414
17415                         err = save_aux_ptr_type(env, dst_reg_type, false);
17416                         if (err)
17417                                 return err;
17418                 } else if (class == BPF_ST) {
17419                         enum bpf_reg_type dst_reg_type;
17420
17421                         if (BPF_MODE(insn->code) != BPF_MEM ||
17422                             insn->src_reg != BPF_REG_0) {
17423                                 verbose(env, "BPF_ST uses reserved fields\n");
17424                                 return -EINVAL;
17425                         }
17426                         /* check src operand */
17427                         err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17428                         if (err)
17429                                 return err;
17430
17431                         dst_reg_type = regs[insn->dst_reg].type;
17432
17433                         /* check that memory (dst_reg + off) is writeable */
17434                         err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17435                                                insn->off, BPF_SIZE(insn->code),
17436                                                BPF_WRITE, -1, false, false);
17437                         if (err)
17438                                 return err;
17439
17440                         err = save_aux_ptr_type(env, dst_reg_type, false);
17441                         if (err)
17442                                 return err;
17443                 } else if (class == BPF_JMP || class == BPF_JMP32) {
17444                         u8 opcode = BPF_OP(insn->code);
17445
17446                         env->jmps_processed++;
17447                         if (opcode == BPF_CALL) {
17448                                 if (BPF_SRC(insn->code) != BPF_K ||
17449                                     (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17450                                      && insn->off != 0) ||
17451                                     (insn->src_reg != BPF_REG_0 &&
17452                                      insn->src_reg != BPF_PSEUDO_CALL &&
17453                                      insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17454                                     insn->dst_reg != BPF_REG_0 ||
17455                                     class == BPF_JMP32) {
17456                                         verbose(env, "BPF_CALL uses reserved fields\n");
17457                                         return -EINVAL;
17458                                 }
17459
17460                                 if (env->cur_state->active_lock.ptr) {
17461                                         if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17462                                             (insn->src_reg == BPF_PSEUDO_CALL) ||
17463                                             (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17464                                              (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17465                                                 verbose(env, "function calls are not allowed while holding a lock\n");
17466                                                 return -EINVAL;
17467                                         }
17468                                 }
17469                                 if (insn->src_reg == BPF_PSEUDO_CALL) {
17470                                         err = check_func_call(env, insn, &env->insn_idx);
17471                                 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17472                                         err = check_kfunc_call(env, insn, &env->insn_idx);
17473                                         if (!err && is_bpf_throw_kfunc(insn)) {
17474                                                 exception_exit = true;
17475                                                 goto process_bpf_exit_full;
17476                                         }
17477                                 } else {
17478                                         err = check_helper_call(env, insn, &env->insn_idx);
17479                                 }
17480                                 if (err)
17481                                         return err;
17482
17483                                 mark_reg_scratched(env, BPF_REG_0);
17484                         } else if (opcode == BPF_JA) {
17485                                 if (BPF_SRC(insn->code) != BPF_K ||
17486                                     insn->src_reg != BPF_REG_0 ||
17487                                     insn->dst_reg != BPF_REG_0 ||
17488                                     (class == BPF_JMP && insn->imm != 0) ||
17489                                     (class == BPF_JMP32 && insn->off != 0)) {
17490                                         verbose(env, "BPF_JA uses reserved fields\n");
17491                                         return -EINVAL;
17492                                 }
17493
17494                                 if (class == BPF_JMP)
17495                                         env->insn_idx += insn->off + 1;
17496                                 else
17497                                         env->insn_idx += insn->imm + 1;
17498                                 continue;
17499
17500                         } else if (opcode == BPF_EXIT) {
17501                                 if (BPF_SRC(insn->code) != BPF_K ||
17502                                     insn->imm != 0 ||
17503                                     insn->src_reg != BPF_REG_0 ||
17504                                     insn->dst_reg != BPF_REG_0 ||
17505                                     class == BPF_JMP32) {
17506                                         verbose(env, "BPF_EXIT uses reserved fields\n");
17507                                         return -EINVAL;
17508                                 }
17509 process_bpf_exit_full:
17510                                 if (env->cur_state->active_lock.ptr &&
17511                                     !in_rbtree_lock_required_cb(env)) {
17512                                         verbose(env, "bpf_spin_unlock is missing\n");
17513                                         return -EINVAL;
17514                                 }
17515
17516                                 if (env->cur_state->active_rcu_lock &&
17517                                     !in_rbtree_lock_required_cb(env)) {
17518                                         verbose(env, "bpf_rcu_read_unlock is missing\n");
17519                                         return -EINVAL;
17520                                 }
17521
17522                                 /* We must do check_reference_leak here before
17523                                  * prepare_func_exit to handle the case when
17524                                  * state->curframe > 0, it may be a callback
17525                                  * function, for which reference_state must
17526                                  * match caller reference state when it exits.
17527                                  */
17528                                 err = check_reference_leak(env, exception_exit);
17529                                 if (err)
17530                                         return err;
17531
17532                                 /* The side effect of the prepare_func_exit
17533                                  * which is being skipped is that it frees
17534                                  * bpf_func_state. Typically, process_bpf_exit
17535                                  * will only be hit with outermost exit.
17536                                  * copy_verifier_state in pop_stack will handle
17537                                  * freeing of any extra bpf_func_state left over
17538                                  * from not processing all nested function
17539                                  * exits. We also skip return code checks as
17540                                  * they are not needed for exceptional exits.
17541                                  */
17542                                 if (exception_exit)
17543                                         goto process_bpf_exit;
17544
17545                                 if (state->curframe) {
17546                                         /* exit from nested function */
17547                                         err = prepare_func_exit(env, &env->insn_idx);
17548                                         if (err)
17549                                                 return err;
17550                                         do_print_state = true;
17551                                         continue;
17552                                 }
17553
17554                                 err = check_return_code(env, BPF_REG_0);
17555                                 if (err)
17556                                         return err;
17557 process_bpf_exit:
17558                                 mark_verifier_state_scratched(env);
17559                                 update_branch_counts(env, env->cur_state);
17560                                 err = pop_stack(env, &prev_insn_idx,
17561                                                 &env->insn_idx, pop_log);
17562                                 if (err < 0) {
17563                                         if (err != -ENOENT)
17564                                                 return err;
17565                                         break;
17566                                 } else {
17567                                         do_print_state = true;
17568                                         continue;
17569                                 }
17570                         } else {
17571                                 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17572                                 if (err)
17573                                         return err;
17574                         }
17575                 } else if (class == BPF_LD) {
17576                         u8 mode = BPF_MODE(insn->code);
17577
17578                         if (mode == BPF_ABS || mode == BPF_IND) {
17579                                 err = check_ld_abs(env, insn);
17580                                 if (err)
17581                                         return err;
17582
17583                         } else if (mode == BPF_IMM) {
17584                                 err = check_ld_imm(env, insn);
17585                                 if (err)
17586                                         return err;
17587
17588                                 env->insn_idx++;
17589                                 sanitize_mark_insn_seen(env);
17590                         } else {
17591                                 verbose(env, "invalid BPF_LD mode\n");
17592                                 return -EINVAL;
17593                         }
17594                 } else {
17595                         verbose(env, "unknown insn class %d\n", class);
17596                         return -EINVAL;
17597                 }
17598
17599                 env->insn_idx++;
17600         }
17601
17602         return 0;
17603 }
17604
17605 static int find_btf_percpu_datasec(struct btf *btf)
17606 {
17607         const struct btf_type *t;
17608         const char *tname;
17609         int i, n;
17610
17611         /*
17612          * Both vmlinux and module each have their own ".data..percpu"
17613          * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17614          * types to look at only module's own BTF types.
17615          */
17616         n = btf_nr_types(btf);
17617         if (btf_is_module(btf))
17618                 i = btf_nr_types(btf_vmlinux);
17619         else
17620                 i = 1;
17621
17622         for(; i < n; i++) {
17623                 t = btf_type_by_id(btf, i);
17624                 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17625                         continue;
17626
17627                 tname = btf_name_by_offset(btf, t->name_off);
17628                 if (!strcmp(tname, ".data..percpu"))
17629                         return i;
17630         }
17631
17632         return -ENOENT;
17633 }
17634
17635 /* replace pseudo btf_id with kernel symbol address */
17636 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17637                                struct bpf_insn *insn,
17638                                struct bpf_insn_aux_data *aux)
17639 {
17640         const struct btf_var_secinfo *vsi;
17641         const struct btf_type *datasec;
17642         struct btf_mod_pair *btf_mod;
17643         const struct btf_type *t;
17644         const char *sym_name;
17645         bool percpu = false;
17646         u32 type, id = insn->imm;
17647         struct btf *btf;
17648         s32 datasec_id;
17649         u64 addr;
17650         int i, btf_fd, err;
17651
17652         btf_fd = insn[1].imm;
17653         if (btf_fd) {
17654                 btf = btf_get_by_fd(btf_fd);
17655                 if (IS_ERR(btf)) {
17656                         verbose(env, "invalid module BTF object FD specified.\n");
17657                         return -EINVAL;
17658                 }
17659         } else {
17660                 if (!btf_vmlinux) {
17661                         verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17662                         return -EINVAL;
17663                 }
17664                 btf = btf_vmlinux;
17665                 btf_get(btf);
17666         }
17667
17668         t = btf_type_by_id(btf, id);
17669         if (!t) {
17670                 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17671                 err = -ENOENT;
17672                 goto err_put;
17673         }
17674
17675         if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17676                 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17677                 err = -EINVAL;
17678                 goto err_put;
17679         }
17680
17681         sym_name = btf_name_by_offset(btf, t->name_off);
17682         addr = kallsyms_lookup_name(sym_name);
17683         if (!addr) {
17684                 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17685                         sym_name);
17686                 err = -ENOENT;
17687                 goto err_put;
17688         }
17689         insn[0].imm = (u32)addr;
17690         insn[1].imm = addr >> 32;
17691
17692         if (btf_type_is_func(t)) {
17693                 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17694                 aux->btf_var.mem_size = 0;
17695                 goto check_btf;
17696         }
17697
17698         datasec_id = find_btf_percpu_datasec(btf);
17699         if (datasec_id > 0) {
17700                 datasec = btf_type_by_id(btf, datasec_id);
17701                 for_each_vsi(i, datasec, vsi) {
17702                         if (vsi->type == id) {
17703                                 percpu = true;
17704                                 break;
17705                         }
17706                 }
17707         }
17708
17709         type = t->type;
17710         t = btf_type_skip_modifiers(btf, type, NULL);
17711         if (percpu) {
17712                 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17713                 aux->btf_var.btf = btf;
17714                 aux->btf_var.btf_id = type;
17715         } else if (!btf_type_is_struct(t)) {
17716                 const struct btf_type *ret;
17717                 const char *tname;
17718                 u32 tsize;
17719
17720                 /* resolve the type size of ksym. */
17721                 ret = btf_resolve_size(btf, t, &tsize);
17722                 if (IS_ERR(ret)) {
17723                         tname = btf_name_by_offset(btf, t->name_off);
17724                         verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17725                                 tname, PTR_ERR(ret));
17726                         err = -EINVAL;
17727                         goto err_put;
17728                 }
17729                 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17730                 aux->btf_var.mem_size = tsize;
17731         } else {
17732                 aux->btf_var.reg_type = PTR_TO_BTF_ID;
17733                 aux->btf_var.btf = btf;
17734                 aux->btf_var.btf_id = type;
17735         }
17736 check_btf:
17737         /* check whether we recorded this BTF (and maybe module) already */
17738         for (i = 0; i < env->used_btf_cnt; i++) {
17739                 if (env->used_btfs[i].btf == btf) {
17740                         btf_put(btf);
17741                         return 0;
17742                 }
17743         }
17744
17745         if (env->used_btf_cnt >= MAX_USED_BTFS) {
17746                 err = -E2BIG;
17747                 goto err_put;
17748         }
17749
17750         btf_mod = &env->used_btfs[env->used_btf_cnt];
17751         btf_mod->btf = btf;
17752         btf_mod->module = NULL;
17753
17754         /* if we reference variables from kernel module, bump its refcount */
17755         if (btf_is_module(btf)) {
17756                 btf_mod->module = btf_try_get_module(btf);
17757                 if (!btf_mod->module) {
17758                         err = -ENXIO;
17759                         goto err_put;
17760                 }
17761         }
17762
17763         env->used_btf_cnt++;
17764
17765         return 0;
17766 err_put:
17767         btf_put(btf);
17768         return err;
17769 }
17770
17771 static bool is_tracing_prog_type(enum bpf_prog_type type)
17772 {
17773         switch (type) {
17774         case BPF_PROG_TYPE_KPROBE:
17775         case BPF_PROG_TYPE_TRACEPOINT:
17776         case BPF_PROG_TYPE_PERF_EVENT:
17777         case BPF_PROG_TYPE_RAW_TRACEPOINT:
17778         case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17779                 return true;
17780         default:
17781                 return false;
17782         }
17783 }
17784
17785 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17786                                         struct bpf_map *map,
17787                                         struct bpf_prog *prog)
17788
17789 {
17790         enum bpf_prog_type prog_type = resolve_prog_type(prog);
17791
17792         if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17793             btf_record_has_field(map->record, BPF_RB_ROOT)) {
17794                 if (is_tracing_prog_type(prog_type)) {
17795                         verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17796                         return -EINVAL;
17797                 }
17798         }
17799
17800         if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17801                 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17802                         verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17803                         return -EINVAL;
17804                 }
17805
17806                 if (is_tracing_prog_type(prog_type)) {
17807                         verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17808                         return -EINVAL;
17809                 }
17810         }
17811
17812         if (btf_record_has_field(map->record, BPF_TIMER)) {
17813                 if (is_tracing_prog_type(prog_type)) {
17814                         verbose(env, "tracing progs cannot use bpf_timer yet\n");
17815                         return -EINVAL;
17816                 }
17817         }
17818
17819         if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17820             !bpf_offload_prog_map_match(prog, map)) {
17821                 verbose(env, "offload device mismatch between prog and map\n");
17822                 return -EINVAL;
17823         }
17824
17825         if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17826                 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17827                 return -EINVAL;
17828         }
17829
17830         if (prog->aux->sleepable)
17831                 switch (map->map_type) {
17832                 case BPF_MAP_TYPE_HASH:
17833                 case BPF_MAP_TYPE_LRU_HASH:
17834                 case BPF_MAP_TYPE_ARRAY:
17835                 case BPF_MAP_TYPE_PERCPU_HASH:
17836                 case BPF_MAP_TYPE_PERCPU_ARRAY:
17837                 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17838                 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17839                 case BPF_MAP_TYPE_HASH_OF_MAPS:
17840                 case BPF_MAP_TYPE_RINGBUF:
17841                 case BPF_MAP_TYPE_USER_RINGBUF:
17842                 case BPF_MAP_TYPE_INODE_STORAGE:
17843                 case BPF_MAP_TYPE_SK_STORAGE:
17844                 case BPF_MAP_TYPE_TASK_STORAGE:
17845                 case BPF_MAP_TYPE_CGRP_STORAGE:
17846                         break;
17847                 default:
17848                         verbose(env,
17849                                 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17850                         return -EINVAL;
17851                 }
17852
17853         return 0;
17854 }
17855
17856 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17857 {
17858         return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17859                 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17860 }
17861
17862 /* find and rewrite pseudo imm in ld_imm64 instructions:
17863  *
17864  * 1. if it accesses map FD, replace it with actual map pointer.
17865  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17866  *
17867  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17868  */
17869 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17870 {
17871         struct bpf_insn *insn = env->prog->insnsi;
17872         int insn_cnt = env->prog->len;
17873         int i, j, err;
17874
17875         err = bpf_prog_calc_tag(env->prog);
17876         if (err)
17877                 return err;
17878
17879         for (i = 0; i < insn_cnt; i++, insn++) {
17880                 if (BPF_CLASS(insn->code) == BPF_LDX &&
17881                     ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17882                     insn->imm != 0)) {
17883                         verbose(env, "BPF_LDX uses reserved fields\n");
17884                         return -EINVAL;
17885                 }
17886
17887                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17888                         struct bpf_insn_aux_data *aux;
17889                         struct bpf_map *map;
17890                         struct fd f;
17891                         u64 addr;
17892                         u32 fd;
17893
17894                         if (i == insn_cnt - 1 || insn[1].code != 0 ||
17895                             insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17896                             insn[1].off != 0) {
17897                                 verbose(env, "invalid bpf_ld_imm64 insn\n");
17898                                 return -EINVAL;
17899                         }
17900
17901                         if (insn[0].src_reg == 0)
17902                                 /* valid generic load 64-bit imm */
17903                                 goto next_insn;
17904
17905                         if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17906                                 aux = &env->insn_aux_data[i];
17907                                 err = check_pseudo_btf_id(env, insn, aux);
17908                                 if (err)
17909                                         return err;
17910                                 goto next_insn;
17911                         }
17912
17913                         if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17914                                 aux = &env->insn_aux_data[i];
17915                                 aux->ptr_type = PTR_TO_FUNC;
17916                                 goto next_insn;
17917                         }
17918
17919                         /* In final convert_pseudo_ld_imm64() step, this is
17920                          * converted into regular 64-bit imm load insn.
17921                          */
17922                         switch (insn[0].src_reg) {
17923                         case BPF_PSEUDO_MAP_VALUE:
17924                         case BPF_PSEUDO_MAP_IDX_VALUE:
17925                                 break;
17926                         case BPF_PSEUDO_MAP_FD:
17927                         case BPF_PSEUDO_MAP_IDX:
17928                                 if (insn[1].imm == 0)
17929                                         break;
17930                                 fallthrough;
17931                         default:
17932                                 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17933                                 return -EINVAL;
17934                         }
17935
17936                         switch (insn[0].src_reg) {
17937                         case BPF_PSEUDO_MAP_IDX_VALUE:
17938                         case BPF_PSEUDO_MAP_IDX:
17939                                 if (bpfptr_is_null(env->fd_array)) {
17940                                         verbose(env, "fd_idx without fd_array is invalid\n");
17941                                         return -EPROTO;
17942                                 }
17943                                 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17944                                                             insn[0].imm * sizeof(fd),
17945                                                             sizeof(fd)))
17946                                         return -EFAULT;
17947                                 break;
17948                         default:
17949                                 fd = insn[0].imm;
17950                                 break;
17951                         }
17952
17953                         f = fdget(fd);
17954                         map = __bpf_map_get(f);
17955                         if (IS_ERR(map)) {
17956                                 verbose(env, "fd %d is not pointing to valid bpf_map\n",
17957                                         insn[0].imm);
17958                                 return PTR_ERR(map);
17959                         }
17960
17961                         err = check_map_prog_compatibility(env, map, env->prog);
17962                         if (err) {
17963                                 fdput(f);
17964                                 return err;
17965                         }
17966
17967                         aux = &env->insn_aux_data[i];
17968                         if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17969                             insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17970                                 addr = (unsigned long)map;
17971                         } else {
17972                                 u32 off = insn[1].imm;
17973
17974                                 if (off >= BPF_MAX_VAR_OFF) {
17975                                         verbose(env, "direct value offset of %u is not allowed\n", off);
17976                                         fdput(f);
17977                                         return -EINVAL;
17978                                 }
17979
17980                                 if (!map->ops->map_direct_value_addr) {
17981                                         verbose(env, "no direct value access support for this map type\n");
17982                                         fdput(f);
17983                                         return -EINVAL;
17984                                 }
17985
17986                                 err = map->ops->map_direct_value_addr(map, &addr, off);
17987                                 if (err) {
17988                                         verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17989                                                 map->value_size, off);
17990                                         fdput(f);
17991                                         return err;
17992                                 }
17993
17994                                 aux->map_off = off;
17995                                 addr += off;
17996                         }
17997
17998                         insn[0].imm = (u32)addr;
17999                         insn[1].imm = addr >> 32;
18000
18001                         /* check whether we recorded this map already */
18002                         for (j = 0; j < env->used_map_cnt; j++) {
18003                                 if (env->used_maps[j] == map) {
18004                                         aux->map_index = j;
18005                                         fdput(f);
18006                                         goto next_insn;
18007                                 }
18008                         }
18009
18010                         if (env->used_map_cnt >= MAX_USED_MAPS) {
18011                                 fdput(f);
18012                                 return -E2BIG;
18013                         }
18014
18015                         /* hold the map. If the program is rejected by verifier,
18016                          * the map will be released by release_maps() or it
18017                          * will be used by the valid program until it's unloaded
18018                          * and all maps are released in free_used_maps()
18019                          */
18020                         bpf_map_inc(map);
18021
18022                         aux->map_index = env->used_map_cnt;
18023                         env->used_maps[env->used_map_cnt++] = map;
18024
18025                         if (bpf_map_is_cgroup_storage(map) &&
18026                             bpf_cgroup_storage_assign(env->prog->aux, map)) {
18027                                 verbose(env, "only one cgroup storage of each type is allowed\n");
18028                                 fdput(f);
18029                                 return -EBUSY;
18030                         }
18031
18032                         fdput(f);
18033 next_insn:
18034                         insn++;
18035                         i++;
18036                         continue;
18037                 }
18038
18039                 /* Basic sanity check before we invest more work here. */
18040                 if (!bpf_opcode_in_insntable(insn->code)) {
18041                         verbose(env, "unknown opcode %02x\n", insn->code);
18042                         return -EINVAL;
18043                 }
18044         }
18045
18046         /* now all pseudo BPF_LD_IMM64 instructions load valid
18047          * 'struct bpf_map *' into a register instead of user map_fd.
18048          * These pointers will be used later by verifier to validate map access.
18049          */
18050         return 0;
18051 }
18052
18053 /* drop refcnt of maps used by the rejected program */
18054 static void release_maps(struct bpf_verifier_env *env)
18055 {
18056         __bpf_free_used_maps(env->prog->aux, env->used_maps,
18057                              env->used_map_cnt);
18058 }
18059
18060 /* drop refcnt of maps used by the rejected program */
18061 static void release_btfs(struct bpf_verifier_env *env)
18062 {
18063         __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18064                              env->used_btf_cnt);
18065 }
18066
18067 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18068 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18069 {
18070         struct bpf_insn *insn = env->prog->insnsi;
18071         int insn_cnt = env->prog->len;
18072         int i;
18073
18074         for (i = 0; i < insn_cnt; i++, insn++) {
18075                 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18076                         continue;
18077                 if (insn->src_reg == BPF_PSEUDO_FUNC)
18078                         continue;
18079                 insn->src_reg = 0;
18080         }
18081 }
18082
18083 /* single env->prog->insni[off] instruction was replaced with the range
18084  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18085  * [0, off) and [off, end) to new locations, so the patched range stays zero
18086  */
18087 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18088                                  struct bpf_insn_aux_data *new_data,
18089                                  struct bpf_prog *new_prog, u32 off, u32 cnt)
18090 {
18091         struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18092         struct bpf_insn *insn = new_prog->insnsi;
18093         u32 old_seen = old_data[off].seen;
18094         u32 prog_len;
18095         int i;
18096
18097         /* aux info at OFF always needs adjustment, no matter fast path
18098          * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18099          * original insn at old prog.
18100          */
18101         old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18102
18103         if (cnt == 1)
18104                 return;
18105         prog_len = new_prog->len;
18106
18107         memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18108         memcpy(new_data + off + cnt - 1, old_data + off,
18109                sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18110         for (i = off; i < off + cnt - 1; i++) {
18111                 /* Expand insni[off]'s seen count to the patched range. */
18112                 new_data[i].seen = old_seen;
18113                 new_data[i].zext_dst = insn_has_def32(env, insn + i);
18114         }
18115         env->insn_aux_data = new_data;
18116         vfree(old_data);
18117 }
18118
18119 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18120 {
18121         int i;
18122
18123         if (len == 1)
18124                 return;
18125         /* NOTE: fake 'exit' subprog should be updated as well. */
18126         for (i = 0; i <= env->subprog_cnt; i++) {
18127                 if (env->subprog_info[i].start <= off)
18128                         continue;
18129                 env->subprog_info[i].start += len - 1;
18130         }
18131 }
18132
18133 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18134 {
18135         struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18136         int i, sz = prog->aux->size_poke_tab;
18137         struct bpf_jit_poke_descriptor *desc;
18138
18139         for (i = 0; i < sz; i++) {
18140                 desc = &tab[i];
18141                 if (desc->insn_idx <= off)
18142                         continue;
18143                 desc->insn_idx += len - 1;
18144         }
18145 }
18146
18147 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18148                                             const struct bpf_insn *patch, u32 len)
18149 {
18150         struct bpf_prog *new_prog;
18151         struct bpf_insn_aux_data *new_data = NULL;
18152
18153         if (len > 1) {
18154                 new_data = vzalloc(array_size(env->prog->len + len - 1,
18155                                               sizeof(struct bpf_insn_aux_data)));
18156                 if (!new_data)
18157                         return NULL;
18158         }
18159
18160         new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18161         if (IS_ERR(new_prog)) {
18162                 if (PTR_ERR(new_prog) == -ERANGE)
18163                         verbose(env,
18164                                 "insn %d cannot be patched due to 16-bit range\n",
18165                                 env->insn_aux_data[off].orig_idx);
18166                 vfree(new_data);
18167                 return NULL;
18168         }
18169         adjust_insn_aux_data(env, new_data, new_prog, off, len);
18170         adjust_subprog_starts(env, off, len);
18171         adjust_poke_descs(new_prog, off, len);
18172         return new_prog;
18173 }
18174
18175 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18176                                               u32 off, u32 cnt)
18177 {
18178         int i, j;
18179
18180         /* find first prog starting at or after off (first to remove) */
18181         for (i = 0; i < env->subprog_cnt; i++)
18182                 if (env->subprog_info[i].start >= off)
18183                         break;
18184         /* find first prog starting at or after off + cnt (first to stay) */
18185         for (j = i; j < env->subprog_cnt; j++)
18186                 if (env->subprog_info[j].start >= off + cnt)
18187                         break;
18188         /* if j doesn't start exactly at off + cnt, we are just removing
18189          * the front of previous prog
18190          */
18191         if (env->subprog_info[j].start != off + cnt)
18192                 j--;
18193
18194         if (j > i) {
18195                 struct bpf_prog_aux *aux = env->prog->aux;
18196                 int move;
18197
18198                 /* move fake 'exit' subprog as well */
18199                 move = env->subprog_cnt + 1 - j;
18200
18201                 memmove(env->subprog_info + i,
18202                         env->subprog_info + j,
18203                         sizeof(*env->subprog_info) * move);
18204                 env->subprog_cnt -= j - i;
18205
18206                 /* remove func_info */
18207                 if (aux->func_info) {
18208                         move = aux->func_info_cnt - j;
18209
18210                         memmove(aux->func_info + i,
18211                                 aux->func_info + j,
18212                                 sizeof(*aux->func_info) * move);
18213                         aux->func_info_cnt -= j - i;
18214                         /* func_info->insn_off is set after all code rewrites,
18215                          * in adjust_btf_func() - no need to adjust
18216                          */
18217                 }
18218         } else {
18219                 /* convert i from "first prog to remove" to "first to adjust" */
18220                 if (env->subprog_info[i].start == off)
18221                         i++;
18222         }
18223
18224         /* update fake 'exit' subprog as well */
18225         for (; i <= env->subprog_cnt; i++)
18226                 env->subprog_info[i].start -= cnt;
18227
18228         return 0;
18229 }
18230
18231 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18232                                       u32 cnt)
18233 {
18234         struct bpf_prog *prog = env->prog;
18235         u32 i, l_off, l_cnt, nr_linfo;
18236         struct bpf_line_info *linfo;
18237
18238         nr_linfo = prog->aux->nr_linfo;
18239         if (!nr_linfo)
18240                 return 0;
18241
18242         linfo = prog->aux->linfo;
18243
18244         /* find first line info to remove, count lines to be removed */
18245         for (i = 0; i < nr_linfo; i++)
18246                 if (linfo[i].insn_off >= off)
18247                         break;
18248
18249         l_off = i;
18250         l_cnt = 0;
18251         for (; i < nr_linfo; i++)
18252                 if (linfo[i].insn_off < off + cnt)
18253                         l_cnt++;
18254                 else
18255                         break;
18256
18257         /* First live insn doesn't match first live linfo, it needs to "inherit"
18258          * last removed linfo.  prog is already modified, so prog->len == off
18259          * means no live instructions after (tail of the program was removed).
18260          */
18261         if (prog->len != off && l_cnt &&
18262             (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18263                 l_cnt--;
18264                 linfo[--i].insn_off = off + cnt;
18265         }
18266
18267         /* remove the line info which refer to the removed instructions */
18268         if (l_cnt) {
18269                 memmove(linfo + l_off, linfo + i,
18270                         sizeof(*linfo) * (nr_linfo - i));
18271
18272                 prog->aux->nr_linfo -= l_cnt;
18273                 nr_linfo = prog->aux->nr_linfo;
18274         }
18275
18276         /* pull all linfo[i].insn_off >= off + cnt in by cnt */
18277         for (i = l_off; i < nr_linfo; i++)
18278                 linfo[i].insn_off -= cnt;
18279
18280         /* fix up all subprogs (incl. 'exit') which start >= off */
18281         for (i = 0; i <= env->subprog_cnt; i++)
18282                 if (env->subprog_info[i].linfo_idx > l_off) {
18283                         /* program may have started in the removed region but
18284                          * may not be fully removed
18285                          */
18286                         if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18287                                 env->subprog_info[i].linfo_idx -= l_cnt;
18288                         else
18289                                 env->subprog_info[i].linfo_idx = l_off;
18290                 }
18291
18292         return 0;
18293 }
18294
18295 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18296 {
18297         struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18298         unsigned int orig_prog_len = env->prog->len;
18299         int err;
18300
18301         if (bpf_prog_is_offloaded(env->prog->aux))
18302                 bpf_prog_offload_remove_insns(env, off, cnt);
18303
18304         err = bpf_remove_insns(env->prog, off, cnt);
18305         if (err)
18306                 return err;
18307
18308         err = adjust_subprog_starts_after_remove(env, off, cnt);
18309         if (err)
18310                 return err;
18311
18312         err = bpf_adj_linfo_after_remove(env, off, cnt);
18313         if (err)
18314                 return err;
18315
18316         memmove(aux_data + off, aux_data + off + cnt,
18317                 sizeof(*aux_data) * (orig_prog_len - off - cnt));
18318
18319         return 0;
18320 }
18321
18322 /* The verifier does more data flow analysis than llvm and will not
18323  * explore branches that are dead at run time. Malicious programs can
18324  * have dead code too. Therefore replace all dead at-run-time code
18325  * with 'ja -1'.
18326  *
18327  * Just nops are not optimal, e.g. if they would sit at the end of the
18328  * program and through another bug we would manage to jump there, then
18329  * we'd execute beyond program memory otherwise. Returning exception
18330  * code also wouldn't work since we can have subprogs where the dead
18331  * code could be located.
18332  */
18333 static void sanitize_dead_code(struct bpf_verifier_env *env)
18334 {
18335         struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18336         struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18337         struct bpf_insn *insn = env->prog->insnsi;
18338         const int insn_cnt = env->prog->len;
18339         int i;
18340
18341         for (i = 0; i < insn_cnt; i++) {
18342                 if (aux_data[i].seen)
18343                         continue;
18344                 memcpy(insn + i, &trap, sizeof(trap));
18345                 aux_data[i].zext_dst = false;
18346         }
18347 }
18348
18349 static bool insn_is_cond_jump(u8 code)
18350 {
18351         u8 op;
18352
18353         op = BPF_OP(code);
18354         if (BPF_CLASS(code) == BPF_JMP32)
18355                 return op != BPF_JA;
18356
18357         if (BPF_CLASS(code) != BPF_JMP)
18358                 return false;
18359
18360         return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18361 }
18362
18363 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18364 {
18365         struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18366         struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18367         struct bpf_insn *insn = env->prog->insnsi;
18368         const int insn_cnt = env->prog->len;
18369         int i;
18370
18371         for (i = 0; i < insn_cnt; i++, insn++) {
18372                 if (!insn_is_cond_jump(insn->code))
18373                         continue;
18374
18375                 if (!aux_data[i + 1].seen)
18376                         ja.off = insn->off;
18377                 else if (!aux_data[i + 1 + insn->off].seen)
18378                         ja.off = 0;
18379                 else
18380                         continue;
18381
18382                 if (bpf_prog_is_offloaded(env->prog->aux))
18383                         bpf_prog_offload_replace_insn(env, i, &ja);
18384
18385                 memcpy(insn, &ja, sizeof(ja));
18386         }
18387 }
18388
18389 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18390 {
18391         struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18392         int insn_cnt = env->prog->len;
18393         int i, err;
18394
18395         for (i = 0; i < insn_cnt; i++) {
18396                 int j;
18397
18398                 j = 0;
18399                 while (i + j < insn_cnt && !aux_data[i + j].seen)
18400                         j++;
18401                 if (!j)
18402                         continue;
18403
18404                 err = verifier_remove_insns(env, i, j);
18405                 if (err)
18406                         return err;
18407                 insn_cnt = env->prog->len;
18408         }
18409
18410         return 0;
18411 }
18412
18413 static int opt_remove_nops(struct bpf_verifier_env *env)
18414 {
18415         const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18416         struct bpf_insn *insn = env->prog->insnsi;
18417         int insn_cnt = env->prog->len;
18418         int i, err;
18419
18420         for (i = 0; i < insn_cnt; i++) {
18421                 if (memcmp(&insn[i], &ja, sizeof(ja)))
18422                         continue;
18423
18424                 err = verifier_remove_insns(env, i, 1);
18425                 if (err)
18426                         return err;
18427                 insn_cnt--;
18428                 i--;
18429         }
18430
18431         return 0;
18432 }
18433
18434 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18435                                          const union bpf_attr *attr)
18436 {
18437         struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18438         struct bpf_insn_aux_data *aux = env->insn_aux_data;
18439         int i, patch_len, delta = 0, len = env->prog->len;
18440         struct bpf_insn *insns = env->prog->insnsi;
18441         struct bpf_prog *new_prog;
18442         bool rnd_hi32;
18443
18444         rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18445         zext_patch[1] = BPF_ZEXT_REG(0);
18446         rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18447         rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18448         rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18449         for (i = 0; i < len; i++) {
18450                 int adj_idx = i + delta;
18451                 struct bpf_insn insn;
18452                 int load_reg;
18453
18454                 insn = insns[adj_idx];
18455                 load_reg = insn_def_regno(&insn);
18456                 if (!aux[adj_idx].zext_dst) {
18457                         u8 code, class;
18458                         u32 imm_rnd;
18459
18460                         if (!rnd_hi32)
18461                                 continue;
18462
18463                         code = insn.code;
18464                         class = BPF_CLASS(code);
18465                         if (load_reg == -1)
18466                                 continue;
18467
18468                         /* NOTE: arg "reg" (the fourth one) is only used for
18469                          *       BPF_STX + SRC_OP, so it is safe to pass NULL
18470                          *       here.
18471                          */
18472                         if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18473                                 if (class == BPF_LD &&
18474                                     BPF_MODE(code) == BPF_IMM)
18475                                         i++;
18476                                 continue;
18477                         }
18478
18479                         /* ctx load could be transformed into wider load. */
18480                         if (class == BPF_LDX &&
18481                             aux[adj_idx].ptr_type == PTR_TO_CTX)
18482                                 continue;
18483
18484                         imm_rnd = get_random_u32();
18485                         rnd_hi32_patch[0] = insn;
18486                         rnd_hi32_patch[1].imm = imm_rnd;
18487                         rnd_hi32_patch[3].dst_reg = load_reg;
18488                         patch = rnd_hi32_patch;
18489                         patch_len = 4;
18490                         goto apply_patch_buffer;
18491                 }
18492
18493                 /* Add in an zero-extend instruction if a) the JIT has requested
18494                  * it or b) it's a CMPXCHG.
18495                  *
18496                  * The latter is because: BPF_CMPXCHG always loads a value into
18497                  * R0, therefore always zero-extends. However some archs'
18498                  * equivalent instruction only does this load when the
18499                  * comparison is successful. This detail of CMPXCHG is
18500                  * orthogonal to the general zero-extension behaviour of the
18501                  * CPU, so it's treated independently of bpf_jit_needs_zext.
18502                  */
18503                 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18504                         continue;
18505
18506                 /* Zero-extension is done by the caller. */
18507                 if (bpf_pseudo_kfunc_call(&insn))
18508                         continue;
18509
18510                 if (WARN_ON(load_reg == -1)) {
18511                         verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18512                         return -EFAULT;
18513                 }
18514
18515                 zext_patch[0] = insn;
18516                 zext_patch[1].dst_reg = load_reg;
18517                 zext_patch[1].src_reg = load_reg;
18518                 patch = zext_patch;
18519                 patch_len = 2;
18520 apply_patch_buffer:
18521                 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18522                 if (!new_prog)
18523                         return -ENOMEM;
18524                 env->prog = new_prog;
18525                 insns = new_prog->insnsi;
18526                 aux = env->insn_aux_data;
18527                 delta += patch_len - 1;
18528         }
18529
18530         return 0;
18531 }
18532
18533 /* convert load instructions that access fields of a context type into a
18534  * sequence of instructions that access fields of the underlying structure:
18535  *     struct __sk_buff    -> struct sk_buff
18536  *     struct bpf_sock_ops -> struct sock
18537  */
18538 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18539 {
18540         const struct bpf_verifier_ops *ops = env->ops;
18541         int i, cnt, size, ctx_field_size, delta = 0;
18542         const int insn_cnt = env->prog->len;
18543         struct bpf_insn insn_buf[16], *insn;
18544         u32 target_size, size_default, off;
18545         struct bpf_prog *new_prog;
18546         enum bpf_access_type type;
18547         bool is_narrower_load;
18548
18549         if (ops->gen_prologue || env->seen_direct_write) {
18550                 if (!ops->gen_prologue) {
18551                         verbose(env, "bpf verifier is misconfigured\n");
18552                         return -EINVAL;
18553                 }
18554                 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18555                                         env->prog);
18556                 if (cnt >= ARRAY_SIZE(insn_buf)) {
18557                         verbose(env, "bpf verifier is misconfigured\n");
18558                         return -EINVAL;
18559                 } else if (cnt) {
18560                         new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18561                         if (!new_prog)
18562                                 return -ENOMEM;
18563
18564                         env->prog = new_prog;
18565                         delta += cnt - 1;
18566                 }
18567         }
18568
18569         if (bpf_prog_is_offloaded(env->prog->aux))
18570                 return 0;
18571
18572         insn = env->prog->insnsi + delta;
18573
18574         for (i = 0; i < insn_cnt; i++, insn++) {
18575                 bpf_convert_ctx_access_t convert_ctx_access;
18576                 u8 mode;
18577
18578                 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18579                     insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18580                     insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18581                     insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18582                     insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18583                     insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18584                     insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18585                         type = BPF_READ;
18586                 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18587                            insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18588                            insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18589                            insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18590                            insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18591                            insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18592                            insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18593                            insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18594                         type = BPF_WRITE;
18595                 } else {
18596                         continue;
18597                 }
18598
18599                 if (type == BPF_WRITE &&
18600                     env->insn_aux_data[i + delta].sanitize_stack_spill) {
18601                         struct bpf_insn patch[] = {
18602                                 *insn,
18603                                 BPF_ST_NOSPEC(),
18604                         };
18605
18606                         cnt = ARRAY_SIZE(patch);
18607                         new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18608                         if (!new_prog)
18609                                 return -ENOMEM;
18610
18611                         delta    += cnt - 1;
18612                         env->prog = new_prog;
18613                         insn      = new_prog->insnsi + i + delta;
18614                         continue;
18615                 }
18616
18617                 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18618                 case PTR_TO_CTX:
18619                         if (!ops->convert_ctx_access)
18620                                 continue;
18621                         convert_ctx_access = ops->convert_ctx_access;
18622                         break;
18623                 case PTR_TO_SOCKET:
18624                 case PTR_TO_SOCK_COMMON:
18625                         convert_ctx_access = bpf_sock_convert_ctx_access;
18626                         break;
18627                 case PTR_TO_TCP_SOCK:
18628                         convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18629                         break;
18630                 case PTR_TO_XDP_SOCK:
18631                         convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18632                         break;
18633                 case PTR_TO_BTF_ID:
18634                 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18635                 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18636                  * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18637                  * be said once it is marked PTR_UNTRUSTED, hence we must handle
18638                  * any faults for loads into such types. BPF_WRITE is disallowed
18639                  * for this case.
18640                  */
18641                 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18642                         if (type == BPF_READ) {
18643                                 if (BPF_MODE(insn->code) == BPF_MEM)
18644                                         insn->code = BPF_LDX | BPF_PROBE_MEM |
18645                                                      BPF_SIZE((insn)->code);
18646                                 else
18647                                         insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18648                                                      BPF_SIZE((insn)->code);
18649                                 env->prog->aux->num_exentries++;
18650                         }
18651                         continue;
18652                 default:
18653                         continue;
18654                 }
18655
18656                 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18657                 size = BPF_LDST_BYTES(insn);
18658                 mode = BPF_MODE(insn->code);
18659
18660                 /* If the read access is a narrower load of the field,
18661                  * convert to a 4/8-byte load, to minimum program type specific
18662                  * convert_ctx_access changes. If conversion is successful,
18663                  * we will apply proper mask to the result.
18664                  */
18665                 is_narrower_load = size < ctx_field_size;
18666                 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18667                 off = insn->off;
18668                 if (is_narrower_load) {
18669                         u8 size_code;
18670
18671                         if (type == BPF_WRITE) {
18672                                 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18673                                 return -EINVAL;
18674                         }
18675
18676                         size_code = BPF_H;
18677                         if (ctx_field_size == 4)
18678                                 size_code = BPF_W;
18679                         else if (ctx_field_size == 8)
18680                                 size_code = BPF_DW;
18681
18682                         insn->off = off & ~(size_default - 1);
18683                         insn->code = BPF_LDX | BPF_MEM | size_code;
18684                 }
18685
18686                 target_size = 0;
18687                 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18688                                          &target_size);
18689                 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18690                     (ctx_field_size && !target_size)) {
18691                         verbose(env, "bpf verifier is misconfigured\n");
18692                         return -EINVAL;
18693                 }
18694
18695                 if (is_narrower_load && size < target_size) {
18696                         u8 shift = bpf_ctx_narrow_access_offset(
18697                                 off, size, size_default) * 8;
18698                         if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18699                                 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18700                                 return -EINVAL;
18701                         }
18702                         if (ctx_field_size <= 4) {
18703                                 if (shift)
18704                                         insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18705                                                                         insn->dst_reg,
18706                                                                         shift);
18707                                 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18708                                                                 (1 << size * 8) - 1);
18709                         } else {
18710                                 if (shift)
18711                                         insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18712                                                                         insn->dst_reg,
18713                                                                         shift);
18714                                 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18715                                                                 (1ULL << size * 8) - 1);
18716                         }
18717                 }
18718                 if (mode == BPF_MEMSX)
18719                         insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18720                                                        insn->dst_reg, insn->dst_reg,
18721                                                        size * 8, 0);
18722
18723                 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18724                 if (!new_prog)
18725                         return -ENOMEM;
18726
18727                 delta += cnt - 1;
18728
18729                 /* keep walking new program and skip insns we just inserted */
18730                 env->prog = new_prog;
18731                 insn      = new_prog->insnsi + i + delta;
18732         }
18733
18734         return 0;
18735 }
18736
18737 static int jit_subprogs(struct bpf_verifier_env *env)
18738 {
18739         struct bpf_prog *prog = env->prog, **func, *tmp;
18740         int i, j, subprog_start, subprog_end = 0, len, subprog;
18741         struct bpf_map *map_ptr;
18742         struct bpf_insn *insn;
18743         void *old_bpf_func;
18744         int err, num_exentries;
18745
18746         if (env->subprog_cnt <= 1)
18747                 return 0;
18748
18749         for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18750                 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18751                         continue;
18752
18753                 /* Upon error here we cannot fall back to interpreter but
18754                  * need a hard reject of the program. Thus -EFAULT is
18755                  * propagated in any case.
18756                  */
18757                 subprog = find_subprog(env, i + insn->imm + 1);
18758                 if (subprog < 0) {
18759                         WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18760                                   i + insn->imm + 1);
18761                         return -EFAULT;
18762                 }
18763                 /* temporarily remember subprog id inside insn instead of
18764                  * aux_data, since next loop will split up all insns into funcs
18765                  */
18766                 insn->off = subprog;
18767                 /* remember original imm in case JIT fails and fallback
18768                  * to interpreter will be needed
18769                  */
18770                 env->insn_aux_data[i].call_imm = insn->imm;
18771                 /* point imm to __bpf_call_base+1 from JITs point of view */
18772                 insn->imm = 1;
18773                 if (bpf_pseudo_func(insn))
18774                         /* jit (e.g. x86_64) may emit fewer instructions
18775                          * if it learns a u32 imm is the same as a u64 imm.
18776                          * Force a non zero here.
18777                          */
18778                         insn[1].imm = 1;
18779         }
18780
18781         err = bpf_prog_alloc_jited_linfo(prog);
18782         if (err)
18783                 goto out_undo_insn;
18784
18785         err = -ENOMEM;
18786         func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18787         if (!func)
18788                 goto out_undo_insn;
18789
18790         for (i = 0; i < env->subprog_cnt; i++) {
18791                 subprog_start = subprog_end;
18792                 subprog_end = env->subprog_info[i + 1].start;
18793
18794                 len = subprog_end - subprog_start;
18795                 /* bpf_prog_run() doesn't call subprogs directly,
18796                  * hence main prog stats include the runtime of subprogs.
18797                  * subprogs don't have IDs and not reachable via prog_get_next_id
18798                  * func[i]->stats will never be accessed and stays NULL
18799                  */
18800                 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18801                 if (!func[i])
18802                         goto out_free;
18803                 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18804                        len * sizeof(struct bpf_insn));
18805                 func[i]->type = prog->type;
18806                 func[i]->len = len;
18807                 if (bpf_prog_calc_tag(func[i]))
18808                         goto out_free;
18809                 func[i]->is_func = 1;
18810                 func[i]->aux->func_idx = i;
18811                 /* Below members will be freed only at prog->aux */
18812                 func[i]->aux->btf = prog->aux->btf;
18813                 func[i]->aux->func_info = prog->aux->func_info;
18814                 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18815                 func[i]->aux->poke_tab = prog->aux->poke_tab;
18816                 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18817
18818                 for (j = 0; j < prog->aux->size_poke_tab; j++) {
18819                         struct bpf_jit_poke_descriptor *poke;
18820
18821                         poke = &prog->aux->poke_tab[j];
18822                         if (poke->insn_idx < subprog_end &&
18823                             poke->insn_idx >= subprog_start)
18824                                 poke->aux = func[i]->aux;
18825                 }
18826
18827                 func[i]->aux->name[0] = 'F';
18828                 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18829                 func[i]->jit_requested = 1;
18830                 func[i]->blinding_requested = prog->blinding_requested;
18831                 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18832                 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18833                 func[i]->aux->linfo = prog->aux->linfo;
18834                 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18835                 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18836                 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18837                 num_exentries = 0;
18838                 insn = func[i]->insnsi;
18839                 for (j = 0; j < func[i]->len; j++, insn++) {
18840                         if (BPF_CLASS(insn->code) == BPF_LDX &&
18841                             (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18842                              BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18843                                 num_exentries++;
18844                 }
18845                 func[i]->aux->num_exentries = num_exentries;
18846                 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18847                 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18848                 if (!i)
18849                         func[i]->aux->exception_boundary = env->seen_exception;
18850                 func[i] = bpf_int_jit_compile(func[i]);
18851                 if (!func[i]->jited) {
18852                         err = -ENOTSUPP;
18853                         goto out_free;
18854                 }
18855                 cond_resched();
18856         }
18857
18858         /* at this point all bpf functions were successfully JITed
18859          * now populate all bpf_calls with correct addresses and
18860          * run last pass of JIT
18861          */
18862         for (i = 0; i < env->subprog_cnt; i++) {
18863                 insn = func[i]->insnsi;
18864                 for (j = 0; j < func[i]->len; j++, insn++) {
18865                         if (bpf_pseudo_func(insn)) {
18866                                 subprog = insn->off;
18867                                 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18868                                 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18869                                 continue;
18870                         }
18871                         if (!bpf_pseudo_call(insn))
18872                                 continue;
18873                         subprog = insn->off;
18874                         insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18875                 }
18876
18877                 /* we use the aux data to keep a list of the start addresses
18878                  * of the JITed images for each function in the program
18879                  *
18880                  * for some architectures, such as powerpc64, the imm field
18881                  * might not be large enough to hold the offset of the start
18882                  * address of the callee's JITed image from __bpf_call_base
18883                  *
18884                  * in such cases, we can lookup the start address of a callee
18885                  * by using its subprog id, available from the off field of
18886                  * the call instruction, as an index for this list
18887                  */
18888                 func[i]->aux->func = func;
18889                 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18890                 func[i]->aux->real_func_cnt = env->subprog_cnt;
18891         }
18892         for (i = 0; i < env->subprog_cnt; i++) {
18893                 old_bpf_func = func[i]->bpf_func;
18894                 tmp = bpf_int_jit_compile(func[i]);
18895                 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18896                         verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18897                         err = -ENOTSUPP;
18898                         goto out_free;
18899                 }
18900                 cond_resched();
18901         }
18902
18903         /* finally lock prog and jit images for all functions and
18904          * populate kallsysm. Begin at the first subprogram, since
18905          * bpf_prog_load will add the kallsyms for the main program.
18906          */
18907         for (i = 1; i < env->subprog_cnt; i++) {
18908                 bpf_prog_lock_ro(func[i]);
18909                 bpf_prog_kallsyms_add(func[i]);
18910         }
18911
18912         /* Last step: make now unused interpreter insns from main
18913          * prog consistent for later dump requests, so they can
18914          * later look the same as if they were interpreted only.
18915          */
18916         for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18917                 if (bpf_pseudo_func(insn)) {
18918                         insn[0].imm = env->insn_aux_data[i].call_imm;
18919                         insn[1].imm = insn->off;
18920                         insn->off = 0;
18921                         continue;
18922                 }
18923                 if (!bpf_pseudo_call(insn))
18924                         continue;
18925                 insn->off = env->insn_aux_data[i].call_imm;
18926                 subprog = find_subprog(env, i + insn->off + 1);
18927                 insn->imm = subprog;
18928         }
18929
18930         prog->jited = 1;
18931         prog->bpf_func = func[0]->bpf_func;
18932         prog->jited_len = func[0]->jited_len;
18933         prog->aux->extable = func[0]->aux->extable;
18934         prog->aux->num_exentries = func[0]->aux->num_exentries;
18935         prog->aux->func = func;
18936         prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18937         prog->aux->real_func_cnt = env->subprog_cnt;
18938         prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18939         prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18940         bpf_prog_jit_attempt_done(prog);
18941         return 0;
18942 out_free:
18943         /* We failed JIT'ing, so at this point we need to unregister poke
18944          * descriptors from subprogs, so that kernel is not attempting to
18945          * patch it anymore as we're freeing the subprog JIT memory.
18946          */
18947         for (i = 0; i < prog->aux->size_poke_tab; i++) {
18948                 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18949                 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18950         }
18951         /* At this point we're guaranteed that poke descriptors are not
18952          * live anymore. We can just unlink its descriptor table as it's
18953          * released with the main prog.
18954          */
18955         for (i = 0; i < env->subprog_cnt; i++) {
18956                 if (!func[i])
18957                         continue;
18958                 func[i]->aux->poke_tab = NULL;
18959                 bpf_jit_free(func[i]);
18960         }
18961         kfree(func);
18962 out_undo_insn:
18963         /* cleanup main prog to be interpreted */
18964         prog->jit_requested = 0;
18965         prog->blinding_requested = 0;
18966         for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18967                 if (!bpf_pseudo_call(insn))
18968                         continue;
18969                 insn->off = 0;
18970                 insn->imm = env->insn_aux_data[i].call_imm;
18971         }
18972         bpf_prog_jit_attempt_done(prog);
18973         return err;
18974 }
18975
18976 static int fixup_call_args(struct bpf_verifier_env *env)
18977 {
18978 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18979         struct bpf_prog *prog = env->prog;
18980         struct bpf_insn *insn = prog->insnsi;
18981         bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18982         int i, depth;
18983 #endif
18984         int err = 0;
18985
18986         if (env->prog->jit_requested &&
18987             !bpf_prog_is_offloaded(env->prog->aux)) {
18988                 err = jit_subprogs(env);
18989                 if (err == 0)
18990                         return 0;
18991                 if (err == -EFAULT)
18992                         return err;
18993         }
18994 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18995         if (has_kfunc_call) {
18996                 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18997                 return -EINVAL;
18998         }
18999         if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19000                 /* When JIT fails the progs with bpf2bpf calls and tail_calls
19001                  * have to be rejected, since interpreter doesn't support them yet.
19002                  */
19003                 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19004                 return -EINVAL;
19005         }
19006         for (i = 0; i < prog->len; i++, insn++) {
19007                 if (bpf_pseudo_func(insn)) {
19008                         /* When JIT fails the progs with callback calls
19009                          * have to be rejected, since interpreter doesn't support them yet.
19010                          */
19011                         verbose(env, "callbacks are not allowed in non-JITed programs\n");
19012                         return -EINVAL;
19013                 }
19014
19015                 if (!bpf_pseudo_call(insn))
19016                         continue;
19017                 depth = get_callee_stack_depth(env, insn, i);
19018                 if (depth < 0)
19019                         return depth;
19020                 bpf_patch_call_args(insn, depth);
19021         }
19022         err = 0;
19023 #endif
19024         return err;
19025 }
19026
19027 /* replace a generic kfunc with a specialized version if necessary */
19028 static void specialize_kfunc(struct bpf_verifier_env *env,
19029                              u32 func_id, u16 offset, unsigned long *addr)
19030 {
19031         struct bpf_prog *prog = env->prog;
19032         bool seen_direct_write;
19033         void *xdp_kfunc;
19034         bool is_rdonly;
19035
19036         if (bpf_dev_bound_kfunc_id(func_id)) {
19037                 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19038                 if (xdp_kfunc) {
19039                         *addr = (unsigned long)xdp_kfunc;
19040                         return;
19041                 }
19042                 /* fallback to default kfunc when not supported by netdev */
19043         }
19044
19045         if (offset)
19046                 return;
19047
19048         if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19049                 seen_direct_write = env->seen_direct_write;
19050                 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19051
19052                 if (is_rdonly)
19053                         *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19054
19055                 /* restore env->seen_direct_write to its original value, since
19056                  * may_access_direct_pkt_data mutates it
19057                  */
19058                 env->seen_direct_write = seen_direct_write;
19059         }
19060 }
19061
19062 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19063                                             u16 struct_meta_reg,
19064                                             u16 node_offset_reg,
19065                                             struct bpf_insn *insn,
19066                                             struct bpf_insn *insn_buf,
19067                                             int *cnt)
19068 {
19069         struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19070         struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19071
19072         insn_buf[0] = addr[0];
19073         insn_buf[1] = addr[1];
19074         insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19075         insn_buf[3] = *insn;
19076         *cnt = 4;
19077 }
19078
19079 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19080                             struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19081 {
19082         const struct bpf_kfunc_desc *desc;
19083
19084         if (!insn->imm) {
19085                 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19086                 return -EINVAL;
19087         }
19088
19089         *cnt = 0;
19090
19091         /* insn->imm has the btf func_id. Replace it with an offset relative to
19092          * __bpf_call_base, unless the JIT needs to call functions that are
19093          * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19094          */
19095         desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19096         if (!desc) {
19097                 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19098                         insn->imm);
19099                 return -EFAULT;
19100         }
19101
19102         if (!bpf_jit_supports_far_kfunc_call())
19103                 insn->imm = BPF_CALL_IMM(desc->addr);
19104         if (insn->off)
19105                 return 0;
19106         if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19107             desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19108                 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19109                 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19110                 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19111
19112                 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19113                         verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19114                                 insn_idx);
19115                         return -EFAULT;
19116                 }
19117
19118                 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19119                 insn_buf[1] = addr[0];
19120                 insn_buf[2] = addr[1];
19121                 insn_buf[3] = *insn;
19122                 *cnt = 4;
19123         } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19124                    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19125                    desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19126                 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19127                 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19128
19129                 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19130                         verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19131                                 insn_idx);
19132                         return -EFAULT;
19133                 }
19134
19135                 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19136                     !kptr_struct_meta) {
19137                         verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19138                                 insn_idx);
19139                         return -EFAULT;
19140                 }
19141
19142                 insn_buf[0] = addr[0];
19143                 insn_buf[1] = addr[1];
19144                 insn_buf[2] = *insn;
19145                 *cnt = 3;
19146         } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19147                    desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19148                    desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19149                 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19150                 int struct_meta_reg = BPF_REG_3;
19151                 int node_offset_reg = BPF_REG_4;
19152
19153                 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19154                 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19155                         struct_meta_reg = BPF_REG_4;
19156                         node_offset_reg = BPF_REG_5;
19157                 }
19158
19159                 if (!kptr_struct_meta) {
19160                         verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19161                                 insn_idx);
19162                         return -EFAULT;
19163                 }
19164
19165                 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19166                                                 node_offset_reg, insn, insn_buf, cnt);
19167         } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19168                    desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19169                 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19170                 *cnt = 1;
19171         }
19172         return 0;
19173 }
19174
19175 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19176 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19177 {
19178         struct bpf_subprog_info *info = env->subprog_info;
19179         int cnt = env->subprog_cnt;
19180         struct bpf_prog *prog;
19181
19182         /* We only reserve one slot for hidden subprogs in subprog_info. */
19183         if (env->hidden_subprog_cnt) {
19184                 verbose(env, "verifier internal error: only one hidden subprog supported\n");
19185                 return -EFAULT;
19186         }
19187         /* We're not patching any existing instruction, just appending the new
19188          * ones for the hidden subprog. Hence all of the adjustment operations
19189          * in bpf_patch_insn_data are no-ops.
19190          */
19191         prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19192         if (!prog)
19193                 return -ENOMEM;
19194         env->prog = prog;
19195         info[cnt + 1].start = info[cnt].start;
19196         info[cnt].start = prog->len - len + 1;
19197         env->subprog_cnt++;
19198         env->hidden_subprog_cnt++;
19199         return 0;
19200 }
19201
19202 /* Do various post-verification rewrites in a single program pass.
19203  * These rewrites simplify JIT and interpreter implementations.
19204  */
19205 static int do_misc_fixups(struct bpf_verifier_env *env)
19206 {
19207         struct bpf_prog *prog = env->prog;
19208         enum bpf_attach_type eatype = prog->expected_attach_type;
19209         enum bpf_prog_type prog_type = resolve_prog_type(prog);
19210         struct bpf_insn *insn = prog->insnsi;
19211         const struct bpf_func_proto *fn;
19212         const int insn_cnt = prog->len;
19213         const struct bpf_map_ops *ops;
19214         struct bpf_insn_aux_data *aux;
19215         struct bpf_insn insn_buf[16];
19216         struct bpf_prog *new_prog;
19217         struct bpf_map *map_ptr;
19218         int i, ret, cnt, delta = 0;
19219
19220         if (env->seen_exception && !env->exception_callback_subprog) {
19221                 struct bpf_insn patch[] = {
19222                         env->prog->insnsi[insn_cnt - 1],
19223                         BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19224                         BPF_EXIT_INSN(),
19225                 };
19226
19227                 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19228                 if (ret < 0)
19229                         return ret;
19230                 prog = env->prog;
19231                 insn = prog->insnsi;
19232
19233                 env->exception_callback_subprog = env->subprog_cnt - 1;
19234                 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19235                 env->subprog_info[env->exception_callback_subprog].is_cb = true;
19236                 env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
19237                 env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
19238         }
19239
19240         for (i = 0; i < insn_cnt; i++, insn++) {
19241                 /* Make divide-by-zero exceptions impossible. */
19242                 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19243                     insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19244                     insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19245                     insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19246                         bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19247                         bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19248                         struct bpf_insn *patchlet;
19249                         struct bpf_insn chk_and_div[] = {
19250                                 /* [R,W]x div 0 -> 0 */
19251                                 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19252                                              BPF_JNE | BPF_K, insn->src_reg,
19253                                              0, 2, 0),
19254                                 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19255                                 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19256                                 *insn,
19257                         };
19258                         struct bpf_insn chk_and_mod[] = {
19259                                 /* [R,W]x mod 0 -> [R,W]x */
19260                                 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19261                                              BPF_JEQ | BPF_K, insn->src_reg,
19262                                              0, 1 + (is64 ? 0 : 1), 0),
19263                                 *insn,
19264                                 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19265                                 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19266                         };
19267
19268                         patchlet = isdiv ? chk_and_div : chk_and_mod;
19269                         cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19270                                       ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19271
19272                         new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19273                         if (!new_prog)
19274                                 return -ENOMEM;
19275
19276                         delta    += cnt - 1;
19277                         env->prog = prog = new_prog;
19278                         insn      = new_prog->insnsi + i + delta;
19279                         continue;
19280                 }
19281
19282                 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19283                 if (BPF_CLASS(insn->code) == BPF_LD &&
19284                     (BPF_MODE(insn->code) == BPF_ABS ||
19285                      BPF_MODE(insn->code) == BPF_IND)) {
19286                         cnt = env->ops->gen_ld_abs(insn, insn_buf);
19287                         if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19288                                 verbose(env, "bpf verifier is misconfigured\n");
19289                                 return -EINVAL;
19290                         }
19291
19292                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19293                         if (!new_prog)
19294                                 return -ENOMEM;
19295
19296                         delta    += cnt - 1;
19297                         env->prog = prog = new_prog;
19298                         insn      = new_prog->insnsi + i + delta;
19299                         continue;
19300                 }
19301
19302                 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
19303                 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19304                     insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19305                         const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19306                         const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19307                         struct bpf_insn *patch = &insn_buf[0];
19308                         bool issrc, isneg, isimm;
19309                         u32 off_reg;
19310
19311                         aux = &env->insn_aux_data[i + delta];
19312                         if (!aux->alu_state ||
19313                             aux->alu_state == BPF_ALU_NON_POINTER)
19314                                 continue;
19315
19316                         isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19317                         issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19318                                 BPF_ALU_SANITIZE_SRC;
19319                         isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19320
19321                         off_reg = issrc ? insn->src_reg : insn->dst_reg;
19322                         if (isimm) {
19323                                 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19324                         } else {
19325                                 if (isneg)
19326                                         *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19327                                 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19328                                 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19329                                 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19330                                 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19331                                 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19332                                 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19333                         }
19334                         if (!issrc)
19335                                 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19336                         insn->src_reg = BPF_REG_AX;
19337                         if (isneg)
19338                                 insn->code = insn->code == code_add ?
19339                                              code_sub : code_add;
19340                         *patch++ = *insn;
19341                         if (issrc && isneg && !isimm)
19342                                 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19343                         cnt = patch - insn_buf;
19344
19345                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19346                         if (!new_prog)
19347                                 return -ENOMEM;
19348
19349                         delta    += cnt - 1;
19350                         env->prog = prog = new_prog;
19351                         insn      = new_prog->insnsi + i + delta;
19352                         continue;
19353                 }
19354
19355                 if (insn->code != (BPF_JMP | BPF_CALL))
19356                         continue;
19357                 if (insn->src_reg == BPF_PSEUDO_CALL)
19358                         continue;
19359                 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19360                         ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19361                         if (ret)
19362                                 return ret;
19363                         if (cnt == 0)
19364                                 continue;
19365
19366                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19367                         if (!new_prog)
19368                                 return -ENOMEM;
19369
19370                         delta    += cnt - 1;
19371                         env->prog = prog = new_prog;
19372                         insn      = new_prog->insnsi + i + delta;
19373                         continue;
19374                 }
19375
19376                 if (insn->imm == BPF_FUNC_get_route_realm)
19377                         prog->dst_needed = 1;
19378                 if (insn->imm == BPF_FUNC_get_prandom_u32)
19379                         bpf_user_rnd_init_once();
19380                 if (insn->imm == BPF_FUNC_override_return)
19381                         prog->kprobe_override = 1;
19382                 if (insn->imm == BPF_FUNC_tail_call) {
19383                         /* If we tail call into other programs, we
19384                          * cannot make any assumptions since they can
19385                          * be replaced dynamically during runtime in
19386                          * the program array.
19387                          */
19388                         prog->cb_access = 1;
19389                         if (!allow_tail_call_in_subprogs(env))
19390                                 prog->aux->stack_depth = MAX_BPF_STACK;
19391                         prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19392
19393                         /* mark bpf_tail_call as different opcode to avoid
19394                          * conditional branch in the interpreter for every normal
19395                          * call and to prevent accidental JITing by JIT compiler
19396                          * that doesn't support bpf_tail_call yet
19397                          */
19398                         insn->imm = 0;
19399                         insn->code = BPF_JMP | BPF_TAIL_CALL;
19400
19401                         aux = &env->insn_aux_data[i + delta];
19402                         if (env->bpf_capable && !prog->blinding_requested &&
19403                             prog->jit_requested &&
19404                             !bpf_map_key_poisoned(aux) &&
19405                             !bpf_map_ptr_poisoned(aux) &&
19406                             !bpf_map_ptr_unpriv(aux)) {
19407                                 struct bpf_jit_poke_descriptor desc = {
19408                                         .reason = BPF_POKE_REASON_TAIL_CALL,
19409                                         .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19410                                         .tail_call.key = bpf_map_key_immediate(aux),
19411                                         .insn_idx = i + delta,
19412                                 };
19413
19414                                 ret = bpf_jit_add_poke_descriptor(prog, &desc);
19415                                 if (ret < 0) {
19416                                         verbose(env, "adding tail call poke descriptor failed\n");
19417                                         return ret;
19418                                 }
19419
19420                                 insn->imm = ret + 1;
19421                                 continue;
19422                         }
19423
19424                         if (!bpf_map_ptr_unpriv(aux))
19425                                 continue;
19426
19427                         /* instead of changing every JIT dealing with tail_call
19428                          * emit two extra insns:
19429                          * if (index >= max_entries) goto out;
19430                          * index &= array->index_mask;
19431                          * to avoid out-of-bounds cpu speculation
19432                          */
19433                         if (bpf_map_ptr_poisoned(aux)) {
19434                                 verbose(env, "tail_call abusing map_ptr\n");
19435                                 return -EINVAL;
19436                         }
19437
19438                         map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19439                         insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19440                                                   map_ptr->max_entries, 2);
19441                         insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19442                                                     container_of(map_ptr,
19443                                                                  struct bpf_array,
19444                                                                  map)->index_mask);
19445                         insn_buf[2] = *insn;
19446                         cnt = 3;
19447                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19448                         if (!new_prog)
19449                                 return -ENOMEM;
19450
19451                         delta    += cnt - 1;
19452                         env->prog = prog = new_prog;
19453                         insn      = new_prog->insnsi + i + delta;
19454                         continue;
19455                 }
19456
19457                 if (insn->imm == BPF_FUNC_timer_set_callback) {
19458                         /* The verifier will process callback_fn as many times as necessary
19459                          * with different maps and the register states prepared by
19460                          * set_timer_callback_state will be accurate.
19461                          *
19462                          * The following use case is valid:
19463                          *   map1 is shared by prog1, prog2, prog3.
19464                          *   prog1 calls bpf_timer_init for some map1 elements
19465                          *   prog2 calls bpf_timer_set_callback for some map1 elements.
19466                          *     Those that were not bpf_timer_init-ed will return -EINVAL.
19467                          *   prog3 calls bpf_timer_start for some map1 elements.
19468                          *     Those that were not both bpf_timer_init-ed and
19469                          *     bpf_timer_set_callback-ed will return -EINVAL.
19470                          */
19471                         struct bpf_insn ld_addrs[2] = {
19472                                 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19473                         };
19474
19475                         insn_buf[0] = ld_addrs[0];
19476                         insn_buf[1] = ld_addrs[1];
19477                         insn_buf[2] = *insn;
19478                         cnt = 3;
19479
19480                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19481                         if (!new_prog)
19482                                 return -ENOMEM;
19483
19484                         delta    += cnt - 1;
19485                         env->prog = prog = new_prog;
19486                         insn      = new_prog->insnsi + i + delta;
19487                         goto patch_call_imm;
19488                 }
19489
19490                 if (is_storage_get_function(insn->imm)) {
19491                         if (!env->prog->aux->sleepable ||
19492                             env->insn_aux_data[i + delta].storage_get_func_atomic)
19493                                 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19494                         else
19495                                 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19496                         insn_buf[1] = *insn;
19497                         cnt = 2;
19498
19499                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19500                         if (!new_prog)
19501                                 return -ENOMEM;
19502
19503                         delta += cnt - 1;
19504                         env->prog = prog = new_prog;
19505                         insn = new_prog->insnsi + i + delta;
19506                         goto patch_call_imm;
19507                 }
19508
19509                 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19510                 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19511                         /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19512                          * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19513                          */
19514                         insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19515                         insn_buf[1] = *insn;
19516                         cnt = 2;
19517
19518                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19519                         if (!new_prog)
19520                                 return -ENOMEM;
19521
19522                         delta += cnt - 1;
19523                         env->prog = prog = new_prog;
19524                         insn = new_prog->insnsi + i + delta;
19525                         goto patch_call_imm;
19526                 }
19527
19528                 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19529                  * and other inlining handlers are currently limited to 64 bit
19530                  * only.
19531                  */
19532                 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19533                     (insn->imm == BPF_FUNC_map_lookup_elem ||
19534                      insn->imm == BPF_FUNC_map_update_elem ||
19535                      insn->imm == BPF_FUNC_map_delete_elem ||
19536                      insn->imm == BPF_FUNC_map_push_elem   ||
19537                      insn->imm == BPF_FUNC_map_pop_elem    ||
19538                      insn->imm == BPF_FUNC_map_peek_elem   ||
19539                      insn->imm == BPF_FUNC_redirect_map    ||
19540                      insn->imm == BPF_FUNC_for_each_map_elem ||
19541                      insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19542                         aux = &env->insn_aux_data[i + delta];
19543                         if (bpf_map_ptr_poisoned(aux))
19544                                 goto patch_call_imm;
19545
19546                         map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19547                         ops = map_ptr->ops;
19548                         if (insn->imm == BPF_FUNC_map_lookup_elem &&
19549                             ops->map_gen_lookup) {
19550                                 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19551                                 if (cnt == -EOPNOTSUPP)
19552                                         goto patch_map_ops_generic;
19553                                 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19554                                         verbose(env, "bpf verifier is misconfigured\n");
19555                                         return -EINVAL;
19556                                 }
19557
19558                                 new_prog = bpf_patch_insn_data(env, i + delta,
19559                                                                insn_buf, cnt);
19560                                 if (!new_prog)
19561                                         return -ENOMEM;
19562
19563                                 delta    += cnt - 1;
19564                                 env->prog = prog = new_prog;
19565                                 insn      = new_prog->insnsi + i + delta;
19566                                 continue;
19567                         }
19568
19569                         BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19570                                      (void *(*)(struct bpf_map *map, void *key))NULL));
19571                         BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19572                                      (long (*)(struct bpf_map *map, void *key))NULL));
19573                         BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19574                                      (long (*)(struct bpf_map *map, void *key, void *value,
19575                                               u64 flags))NULL));
19576                         BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19577                                      (long (*)(struct bpf_map *map, void *value,
19578                                               u64 flags))NULL));
19579                         BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19580                                      (long (*)(struct bpf_map *map, void *value))NULL));
19581                         BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19582                                      (long (*)(struct bpf_map *map, void *value))NULL));
19583                         BUILD_BUG_ON(!__same_type(ops->map_redirect,
19584                                      (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19585                         BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19586                                      (long (*)(struct bpf_map *map,
19587                                               bpf_callback_t callback_fn,
19588                                               void *callback_ctx,
19589                                               u64 flags))NULL));
19590                         BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19591                                      (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19592
19593 patch_map_ops_generic:
19594                         switch (insn->imm) {
19595                         case BPF_FUNC_map_lookup_elem:
19596                                 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19597                                 continue;
19598                         case BPF_FUNC_map_update_elem:
19599                                 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19600                                 continue;
19601                         case BPF_FUNC_map_delete_elem:
19602                                 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19603                                 continue;
19604                         case BPF_FUNC_map_push_elem:
19605                                 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19606                                 continue;
19607                         case BPF_FUNC_map_pop_elem:
19608                                 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19609                                 continue;
19610                         case BPF_FUNC_map_peek_elem:
19611                                 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19612                                 continue;
19613                         case BPF_FUNC_redirect_map:
19614                                 insn->imm = BPF_CALL_IMM(ops->map_redirect);
19615                                 continue;
19616                         case BPF_FUNC_for_each_map_elem:
19617                                 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19618                                 continue;
19619                         case BPF_FUNC_map_lookup_percpu_elem:
19620                                 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19621                                 continue;
19622                         }
19623
19624                         goto patch_call_imm;
19625                 }
19626
19627                 /* Implement bpf_jiffies64 inline. */
19628                 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19629                     insn->imm == BPF_FUNC_jiffies64) {
19630                         struct bpf_insn ld_jiffies_addr[2] = {
19631                                 BPF_LD_IMM64(BPF_REG_0,
19632                                              (unsigned long)&jiffies),
19633                         };
19634
19635                         insn_buf[0] = ld_jiffies_addr[0];
19636                         insn_buf[1] = ld_jiffies_addr[1];
19637                         insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19638                                                   BPF_REG_0, 0);
19639                         cnt = 3;
19640
19641                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19642                                                        cnt);
19643                         if (!new_prog)
19644                                 return -ENOMEM;
19645
19646                         delta    += cnt - 1;
19647                         env->prog = prog = new_prog;
19648                         insn      = new_prog->insnsi + i + delta;
19649                         continue;
19650                 }
19651
19652                 /* Implement bpf_get_func_arg inline. */
19653                 if (prog_type == BPF_PROG_TYPE_TRACING &&
19654                     insn->imm == BPF_FUNC_get_func_arg) {
19655                         /* Load nr_args from ctx - 8 */
19656                         insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19657                         insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19658                         insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19659                         insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19660                         insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19661                         insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19662                         insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19663                         insn_buf[7] = BPF_JMP_A(1);
19664                         insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19665                         cnt = 9;
19666
19667                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19668                         if (!new_prog)
19669                                 return -ENOMEM;
19670
19671                         delta    += cnt - 1;
19672                         env->prog = prog = new_prog;
19673                         insn      = new_prog->insnsi + i + delta;
19674                         continue;
19675                 }
19676
19677                 /* Implement bpf_get_func_ret inline. */
19678                 if (prog_type == BPF_PROG_TYPE_TRACING &&
19679                     insn->imm == BPF_FUNC_get_func_ret) {
19680                         if (eatype == BPF_TRACE_FEXIT ||
19681                             eatype == BPF_MODIFY_RETURN) {
19682                                 /* Load nr_args from ctx - 8 */
19683                                 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19684                                 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19685                                 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19686                                 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19687                                 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19688                                 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19689                                 cnt = 6;
19690                         } else {
19691                                 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19692                                 cnt = 1;
19693                         }
19694
19695                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19696                         if (!new_prog)
19697                                 return -ENOMEM;
19698
19699                         delta    += cnt - 1;
19700                         env->prog = prog = new_prog;
19701                         insn      = new_prog->insnsi + i + delta;
19702                         continue;
19703                 }
19704
19705                 /* Implement get_func_arg_cnt inline. */
19706                 if (prog_type == BPF_PROG_TYPE_TRACING &&
19707                     insn->imm == BPF_FUNC_get_func_arg_cnt) {
19708                         /* Load nr_args from ctx - 8 */
19709                         insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19710
19711                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19712                         if (!new_prog)
19713                                 return -ENOMEM;
19714
19715                         env->prog = prog = new_prog;
19716                         insn      = new_prog->insnsi + i + delta;
19717                         continue;
19718                 }
19719
19720                 /* Implement bpf_get_func_ip inline. */
19721                 if (prog_type == BPF_PROG_TYPE_TRACING &&
19722                     insn->imm == BPF_FUNC_get_func_ip) {
19723                         /* Load IP address from ctx - 16 */
19724                         insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19725
19726                         new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19727                         if (!new_prog)
19728                                 return -ENOMEM;
19729
19730                         env->prog = prog = new_prog;
19731                         insn      = new_prog->insnsi + i + delta;
19732                         continue;
19733                 }
19734
19735 patch_call_imm:
19736                 fn = env->ops->get_func_proto(insn->imm, env->prog);
19737                 /* all functions that have prototype and verifier allowed
19738                  * programs to call them, must be real in-kernel functions
19739                  */
19740                 if (!fn->func) {
19741                         verbose(env,
19742                                 "kernel subsystem misconfigured func %s#%d\n",
19743                                 func_id_name(insn->imm), insn->imm);
19744                         return -EFAULT;
19745                 }
19746                 insn->imm = fn->func - __bpf_call_base;
19747         }
19748
19749         /* Since poke tab is now finalized, publish aux to tracker. */
19750         for (i = 0; i < prog->aux->size_poke_tab; i++) {
19751                 map_ptr = prog->aux->poke_tab[i].tail_call.map;
19752                 if (!map_ptr->ops->map_poke_track ||
19753                     !map_ptr->ops->map_poke_untrack ||
19754                     !map_ptr->ops->map_poke_run) {
19755                         verbose(env, "bpf verifier is misconfigured\n");
19756                         return -EINVAL;
19757                 }
19758
19759                 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19760                 if (ret < 0) {
19761                         verbose(env, "tracking tail call prog failed\n");
19762                         return ret;
19763                 }
19764         }
19765
19766         sort_kfunc_descs_by_imm_off(env->prog);
19767
19768         return 0;
19769 }
19770
19771 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19772                                         int position,
19773                                         s32 stack_base,
19774                                         u32 callback_subprogno,
19775                                         u32 *cnt)
19776 {
19777         s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19778         s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19779         s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19780         int reg_loop_max = BPF_REG_6;
19781         int reg_loop_cnt = BPF_REG_7;
19782         int reg_loop_ctx = BPF_REG_8;
19783
19784         struct bpf_prog *new_prog;
19785         u32 callback_start;
19786         u32 call_insn_offset;
19787         s32 callback_offset;
19788
19789         /* This represents an inlined version of bpf_iter.c:bpf_loop,
19790          * be careful to modify this code in sync.
19791          */
19792         struct bpf_insn insn_buf[] = {
19793                 /* Return error and jump to the end of the patch if
19794                  * expected number of iterations is too big.
19795                  */
19796                 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19797                 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19798                 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19799                 /* spill R6, R7, R8 to use these as loop vars */
19800                 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19801                 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19802                 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19803                 /* initialize loop vars */
19804                 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19805                 BPF_MOV32_IMM(reg_loop_cnt, 0),
19806                 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19807                 /* loop header,
19808                  * if reg_loop_cnt >= reg_loop_max skip the loop body
19809                  */
19810                 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19811                 /* callback call,
19812                  * correct callback offset would be set after patching
19813                  */
19814                 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19815                 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19816                 BPF_CALL_REL(0),
19817                 /* increment loop counter */
19818                 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19819                 /* jump to loop header if callback returned 0 */
19820                 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19821                 /* return value of bpf_loop,
19822                  * set R0 to the number of iterations
19823                  */
19824                 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19825                 /* restore original values of R6, R7, R8 */
19826                 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19827                 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19828                 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19829         };
19830
19831         *cnt = ARRAY_SIZE(insn_buf);
19832         new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19833         if (!new_prog)
19834                 return new_prog;
19835
19836         /* callback start is known only after patching */
19837         callback_start = env->subprog_info[callback_subprogno].start;
19838         /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19839         call_insn_offset = position + 12;
19840         callback_offset = callback_start - call_insn_offset - 1;
19841         new_prog->insnsi[call_insn_offset].imm = callback_offset;
19842
19843         return new_prog;
19844 }
19845
19846 static bool is_bpf_loop_call(struct bpf_insn *insn)
19847 {
19848         return insn->code == (BPF_JMP | BPF_CALL) &&
19849                 insn->src_reg == 0 &&
19850                 insn->imm == BPF_FUNC_loop;
19851 }
19852
19853 /* For all sub-programs in the program (including main) check
19854  * insn_aux_data to see if there are bpf_loop calls that require
19855  * inlining. If such calls are found the calls are replaced with a
19856  * sequence of instructions produced by `inline_bpf_loop` function and
19857  * subprog stack_depth is increased by the size of 3 registers.
19858  * This stack space is used to spill values of the R6, R7, R8.  These
19859  * registers are used to store the loop bound, counter and context
19860  * variables.
19861  */
19862 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19863 {
19864         struct bpf_subprog_info *subprogs = env->subprog_info;
19865         int i, cur_subprog = 0, cnt, delta = 0;
19866         struct bpf_insn *insn = env->prog->insnsi;
19867         int insn_cnt = env->prog->len;
19868         u16 stack_depth = subprogs[cur_subprog].stack_depth;
19869         u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19870         u16 stack_depth_extra = 0;
19871
19872         for (i = 0; i < insn_cnt; i++, insn++) {
19873                 struct bpf_loop_inline_state *inline_state =
19874                         &env->insn_aux_data[i + delta].loop_inline_state;
19875
19876                 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19877                         struct bpf_prog *new_prog;
19878
19879                         stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19880                         new_prog = inline_bpf_loop(env,
19881                                                    i + delta,
19882                                                    -(stack_depth + stack_depth_extra),
19883                                                    inline_state->callback_subprogno,
19884                                                    &cnt);
19885                         if (!new_prog)
19886                                 return -ENOMEM;
19887
19888                         delta     += cnt - 1;
19889                         env->prog  = new_prog;
19890                         insn       = new_prog->insnsi + i + delta;
19891                 }
19892
19893                 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19894                         subprogs[cur_subprog].stack_depth += stack_depth_extra;
19895                         cur_subprog++;
19896                         stack_depth = subprogs[cur_subprog].stack_depth;
19897                         stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19898                         stack_depth_extra = 0;
19899                 }
19900         }
19901
19902         env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19903
19904         return 0;
19905 }
19906
19907 static void free_states(struct bpf_verifier_env *env)
19908 {
19909         struct bpf_verifier_state_list *sl, *sln;
19910         int i;
19911
19912         sl = env->free_list;
19913         while (sl) {
19914                 sln = sl->next;
19915                 free_verifier_state(&sl->state, false);
19916                 kfree(sl);
19917                 sl = sln;
19918         }
19919         env->free_list = NULL;
19920
19921         if (!env->explored_states)
19922                 return;
19923
19924         for (i = 0; i < state_htab_size(env); i++) {
19925                 sl = env->explored_states[i];
19926
19927                 while (sl) {
19928                         sln = sl->next;
19929                         free_verifier_state(&sl->state, false);
19930                         kfree(sl);
19931                         sl = sln;
19932                 }
19933                 env->explored_states[i] = NULL;
19934         }
19935 }
19936
19937 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
19938 {
19939         bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19940         struct bpf_verifier_state *state;
19941         struct bpf_reg_state *regs;
19942         int ret, i;
19943
19944         env->prev_linfo = NULL;
19945         env->pass_cnt++;
19946
19947         state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19948         if (!state)
19949                 return -ENOMEM;
19950         state->curframe = 0;
19951         state->speculative = false;
19952         state->branches = 1;
19953         state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19954         if (!state->frame[0]) {
19955                 kfree(state);
19956                 return -ENOMEM;
19957         }
19958         env->cur_state = state;
19959         init_func_state(env, state->frame[0],
19960                         BPF_MAIN_FUNC /* callsite */,
19961                         0 /* frameno */,
19962                         subprog);
19963         state->first_insn_idx = env->subprog_info[subprog].start;
19964         state->last_insn_idx = -1;
19965
19966         regs = state->frame[state->curframe]->regs;
19967         if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19968                 ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
19969                 if (ret)
19970                         goto out;
19971                 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19972                         if (regs[i].type == PTR_TO_CTX)
19973                                 mark_reg_known_zero(env, regs, i);
19974                         else if (regs[i].type == SCALAR_VALUE)
19975                                 mark_reg_unknown(env, regs, i);
19976                         else if (base_type(regs[i].type) == PTR_TO_MEM) {
19977                                 const u32 mem_size = regs[i].mem_size;
19978
19979                                 mark_reg_known_zero(env, regs, i);
19980                                 regs[i].mem_size = mem_size;
19981                                 regs[i].id = ++env->id_gen;
19982                         }
19983                 }
19984                 if (is_ex_cb) {
19985                         state->frame[0]->in_exception_callback_fn = true;
19986                         env->subprog_info[subprog].is_cb = true;
19987                         env->subprog_info[subprog].is_async_cb = true;
19988                         env->subprog_info[subprog].is_exception_cb = true;
19989                 }
19990         } else {
19991                 /* 1st arg to a function */
19992                 regs[BPF_REG_1].type = PTR_TO_CTX;
19993                 mark_reg_known_zero(env, regs, BPF_REG_1);
19994                 ret = btf_check_subprog_arg_match(env, subprog, regs);
19995                 if (ret == -EFAULT)
19996                         /* unlikely verifier bug. abort.
19997                          * ret == 0 and ret < 0 are sadly acceptable for
19998                          * main() function due to backward compatibility.
19999                          * Like socket filter program may be written as:
20000                          * int bpf_prog(struct pt_regs *ctx)
20001                          * and never dereference that ctx in the program.
20002                          * 'struct pt_regs' is a type mismatch for socket
20003                          * filter that should be using 'struct __sk_buff'.
20004                          */
20005                         goto out;
20006         }
20007
20008         ret = do_check(env);
20009 out:
20010         /* check for NULL is necessary, since cur_state can be freed inside
20011          * do_check() under memory pressure.
20012          */
20013         if (env->cur_state) {
20014                 free_verifier_state(env->cur_state, true);
20015                 env->cur_state = NULL;
20016         }
20017         while (!pop_stack(env, NULL, NULL, false));
20018         if (!ret && pop_log)
20019                 bpf_vlog_reset(&env->log, 0);
20020         free_states(env);
20021         return ret;
20022 }
20023
20024 /* Verify all global functions in a BPF program one by one based on their BTF.
20025  * All global functions must pass verification. Otherwise the whole program is rejected.
20026  * Consider:
20027  * int bar(int);
20028  * int foo(int f)
20029  * {
20030  *    return bar(f);
20031  * }
20032  * int bar(int b)
20033  * {
20034  *    ...
20035  * }
20036  * foo() will be verified first for R1=any_scalar_value. During verification it
20037  * will be assumed that bar() already verified successfully and call to bar()
20038  * from foo() will be checked for type match only. Later bar() will be verified
20039  * independently to check that it's safe for R1=any_scalar_value.
20040  */
20041 static int do_check_subprogs(struct bpf_verifier_env *env)
20042 {
20043         struct bpf_prog_aux *aux = env->prog->aux;
20044         int i, ret;
20045
20046         if (!aux->func_info)
20047                 return 0;
20048
20049         for (i = 1; i < env->subprog_cnt; i++) {
20050                 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
20051                         continue;
20052                 env->insn_idx = env->subprog_info[i].start;
20053                 WARN_ON_ONCE(env->insn_idx == 0);
20054                 ret = do_check_common(env, i, env->exception_callback_subprog == i);
20055                 if (ret) {
20056                         return ret;
20057                 } else if (env->log.level & BPF_LOG_LEVEL) {
20058                         verbose(env,
20059                                 "Func#%d is safe for any args that match its prototype\n",
20060                                 i);
20061                 }
20062         }
20063         return 0;
20064 }
20065
20066 static int do_check_main(struct bpf_verifier_env *env)
20067 {
20068         int ret;
20069
20070         env->insn_idx = 0;
20071         ret = do_check_common(env, 0, false);
20072         if (!ret)
20073                 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20074         return ret;
20075 }
20076
20077
20078 static void print_verification_stats(struct bpf_verifier_env *env)
20079 {
20080         int i;
20081
20082         if (env->log.level & BPF_LOG_STATS) {
20083                 verbose(env, "verification time %lld usec\n",
20084                         div_u64(env->verification_time, 1000));
20085                 verbose(env, "stack depth ");
20086                 for (i = 0; i < env->subprog_cnt; i++) {
20087                         u32 depth = env->subprog_info[i].stack_depth;
20088
20089                         verbose(env, "%d", depth);
20090                         if (i + 1 < env->subprog_cnt)
20091                                 verbose(env, "+");
20092                 }
20093                 verbose(env, "\n");
20094         }
20095         verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20096                 "total_states %d peak_states %d mark_read %d\n",
20097                 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20098                 env->max_states_per_insn, env->total_states,
20099                 env->peak_states, env->longest_mark_read_walk);
20100 }
20101
20102 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20103 {
20104         const struct btf_type *t, *func_proto;
20105         const struct bpf_struct_ops *st_ops;
20106         const struct btf_member *member;
20107         struct bpf_prog *prog = env->prog;
20108         u32 btf_id, member_idx;
20109         const char *mname;
20110
20111         if (!prog->gpl_compatible) {
20112                 verbose(env, "struct ops programs must have a GPL compatible license\n");
20113                 return -EINVAL;
20114         }
20115
20116         btf_id = prog->aux->attach_btf_id;
20117         st_ops = bpf_struct_ops_find(btf_id);
20118         if (!st_ops) {
20119                 verbose(env, "attach_btf_id %u is not a supported struct\n",
20120                         btf_id);
20121                 return -ENOTSUPP;
20122         }
20123
20124         t = st_ops->type;
20125         member_idx = prog->expected_attach_type;
20126         if (member_idx >= btf_type_vlen(t)) {
20127                 verbose(env, "attach to invalid member idx %u of struct %s\n",
20128                         member_idx, st_ops->name);
20129                 return -EINVAL;
20130         }
20131
20132         member = &btf_type_member(t)[member_idx];
20133         mname = btf_name_by_offset(btf_vmlinux, member->name_off);
20134         func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
20135                                                NULL);
20136         if (!func_proto) {
20137                 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20138                         mname, member_idx, st_ops->name);
20139                 return -EINVAL;
20140         }
20141
20142         if (st_ops->check_member) {
20143                 int err = st_ops->check_member(t, member, prog);
20144
20145                 if (err) {
20146                         verbose(env, "attach to unsupported member %s of struct %s\n",
20147                                 mname, st_ops->name);
20148                         return err;
20149                 }
20150         }
20151
20152         prog->aux->attach_func_proto = func_proto;
20153         prog->aux->attach_func_name = mname;
20154         env->ops = st_ops->verifier_ops;
20155
20156         return 0;
20157 }
20158 #define SECURITY_PREFIX "security_"
20159
20160 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20161 {
20162         if (within_error_injection_list(addr) ||
20163             !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20164                 return 0;
20165
20166         return -EINVAL;
20167 }
20168
20169 /* list of non-sleepable functions that are otherwise on
20170  * ALLOW_ERROR_INJECTION list
20171  */
20172 BTF_SET_START(btf_non_sleepable_error_inject)
20173 /* Three functions below can be called from sleepable and non-sleepable context.
20174  * Assume non-sleepable from bpf safety point of view.
20175  */
20176 BTF_ID(func, __filemap_add_folio)
20177 BTF_ID(func, should_fail_alloc_page)
20178 BTF_ID(func, should_failslab)
20179 BTF_SET_END(btf_non_sleepable_error_inject)
20180
20181 static int check_non_sleepable_error_inject(u32 btf_id)
20182 {
20183         return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20184 }
20185
20186 int bpf_check_attach_target(struct bpf_verifier_log *log,
20187                             const struct bpf_prog *prog,
20188                             const struct bpf_prog *tgt_prog,
20189                             u32 btf_id,
20190                             struct bpf_attach_target_info *tgt_info)
20191 {
20192         bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20193         const char prefix[] = "btf_trace_";
20194         int ret = 0, subprog = -1, i;
20195         const struct btf_type *t;
20196         bool conservative = true;
20197         const char *tname;
20198         struct btf *btf;
20199         long addr = 0;
20200         struct module *mod = NULL;
20201
20202         if (!btf_id) {
20203                 bpf_log(log, "Tracing programs must provide btf_id\n");
20204                 return -EINVAL;
20205         }
20206         btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20207         if (!btf) {
20208                 bpf_log(log,
20209                         "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20210                 return -EINVAL;
20211         }
20212         t = btf_type_by_id(btf, btf_id);
20213         if (!t) {
20214                 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20215                 return -EINVAL;
20216         }
20217         tname = btf_name_by_offset(btf, t->name_off);
20218         if (!tname) {
20219                 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20220                 return -EINVAL;
20221         }
20222         if (tgt_prog) {
20223                 struct bpf_prog_aux *aux = tgt_prog->aux;
20224
20225                 if (bpf_prog_is_dev_bound(prog->aux) &&
20226                     !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20227                         bpf_log(log, "Target program bound device mismatch");
20228                         return -EINVAL;
20229                 }
20230
20231                 for (i = 0; i < aux->func_info_cnt; i++)
20232                         if (aux->func_info[i].type_id == btf_id) {
20233                                 subprog = i;
20234                                 break;
20235                         }
20236                 if (subprog == -1) {
20237                         bpf_log(log, "Subprog %s doesn't exist\n", tname);
20238                         return -EINVAL;
20239                 }
20240                 if (aux->func && aux->func[subprog]->aux->exception_cb) {
20241                         bpf_log(log,
20242                                 "%s programs cannot attach to exception callback\n",
20243                                 prog_extension ? "Extension" : "FENTRY/FEXIT");
20244                         return -EINVAL;
20245                 }
20246                 conservative = aux->func_info_aux[subprog].unreliable;
20247                 if (prog_extension) {
20248                         if (conservative) {
20249                                 bpf_log(log,
20250                                         "Cannot replace static functions\n");
20251                                 return -EINVAL;
20252                         }
20253                         if (!prog->jit_requested) {
20254                                 bpf_log(log,
20255                                         "Extension programs should be JITed\n");
20256                                 return -EINVAL;
20257                         }
20258                 }
20259                 if (!tgt_prog->jited) {
20260                         bpf_log(log, "Can attach to only JITed progs\n");
20261                         return -EINVAL;
20262                 }
20263                 if (tgt_prog->type == prog->type) {
20264                         /* Cannot fentry/fexit another fentry/fexit program.
20265                          * Cannot attach program extension to another extension.
20266                          * It's ok to attach fentry/fexit to extension program.
20267                          */
20268                         bpf_log(log, "Cannot recursively attach\n");
20269                         return -EINVAL;
20270                 }
20271                 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20272                     prog_extension &&
20273                     (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20274                      tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20275                         /* Program extensions can extend all program types
20276                          * except fentry/fexit. The reason is the following.
20277                          * The fentry/fexit programs are used for performance
20278                          * analysis, stats and can be attached to any program
20279                          * type except themselves. When extension program is
20280                          * replacing XDP function it is necessary to allow
20281                          * performance analysis of all functions. Both original
20282                          * XDP program and its program extension. Hence
20283                          * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
20284                          * allowed. If extending of fentry/fexit was allowed it
20285                          * would be possible to create long call chain
20286                          * fentry->extension->fentry->extension beyond
20287                          * reasonable stack size. Hence extending fentry is not
20288                          * allowed.
20289                          */
20290                         bpf_log(log, "Cannot extend fentry/fexit\n");
20291                         return -EINVAL;
20292                 }
20293         } else {
20294                 if (prog_extension) {
20295                         bpf_log(log, "Cannot replace kernel functions\n");
20296                         return -EINVAL;
20297                 }
20298         }
20299
20300         switch (prog->expected_attach_type) {
20301         case BPF_TRACE_RAW_TP:
20302                 if (tgt_prog) {
20303                         bpf_log(log,
20304                                 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20305                         return -EINVAL;
20306                 }
20307                 if (!btf_type_is_typedef(t)) {
20308                         bpf_log(log, "attach_btf_id %u is not a typedef\n",
20309                                 btf_id);
20310                         return -EINVAL;
20311                 }
20312                 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20313                         bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20314                                 btf_id, tname);
20315                         return -EINVAL;
20316                 }
20317                 tname += sizeof(prefix) - 1;
20318                 t = btf_type_by_id(btf, t->type);
20319                 if (!btf_type_is_ptr(t))
20320                         /* should never happen in valid vmlinux build */
20321                         return -EINVAL;
20322                 t = btf_type_by_id(btf, t->type);
20323                 if (!btf_type_is_func_proto(t))
20324                         /* should never happen in valid vmlinux build */
20325                         return -EINVAL;
20326
20327                 break;
20328         case BPF_TRACE_ITER:
20329                 if (!btf_type_is_func(t)) {
20330                         bpf_log(log, "attach_btf_id %u is not a function\n",
20331                                 btf_id);
20332                         return -EINVAL;
20333                 }
20334                 t = btf_type_by_id(btf, t->type);
20335                 if (!btf_type_is_func_proto(t))
20336                         return -EINVAL;
20337                 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20338                 if (ret)
20339                         return ret;
20340                 break;
20341         default:
20342                 if (!prog_extension)
20343                         return -EINVAL;
20344                 fallthrough;
20345         case BPF_MODIFY_RETURN:
20346         case BPF_LSM_MAC:
20347         case BPF_LSM_CGROUP:
20348         case BPF_TRACE_FENTRY:
20349         case BPF_TRACE_FEXIT:
20350                 if (!btf_type_is_func(t)) {
20351                         bpf_log(log, "attach_btf_id %u is not a function\n",
20352                                 btf_id);
20353                         return -EINVAL;
20354                 }
20355                 if (prog_extension &&
20356                     btf_check_type_match(log, prog, btf, t))
20357                         return -EINVAL;
20358                 t = btf_type_by_id(btf, t->type);
20359                 if (!btf_type_is_func_proto(t))
20360                         return -EINVAL;
20361
20362                 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20363                     (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20364                      prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20365                         return -EINVAL;
20366
20367                 if (tgt_prog && conservative)
20368                         t = NULL;
20369
20370                 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20371                 if (ret < 0)
20372                         return ret;
20373
20374                 if (tgt_prog) {
20375                         if (subprog == 0)
20376                                 addr = (long) tgt_prog->bpf_func;
20377                         else
20378                                 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20379                 } else {
20380                         if (btf_is_module(btf)) {
20381                                 mod = btf_try_get_module(btf);
20382                                 if (mod)
20383                                         addr = find_kallsyms_symbol_value(mod, tname);
20384                                 else
20385                                         addr = 0;
20386                         } else {
20387                                 addr = kallsyms_lookup_name(tname);
20388                         }
20389                         if (!addr) {
20390                                 module_put(mod);
20391                                 bpf_log(log,
20392                                         "The address of function %s cannot be found\n",
20393                                         tname);
20394                                 return -ENOENT;
20395                         }
20396                 }
20397
20398                 if (prog->aux->sleepable) {
20399                         ret = -EINVAL;
20400                         switch (prog->type) {
20401                         case BPF_PROG_TYPE_TRACING:
20402
20403                                 /* fentry/fexit/fmod_ret progs can be sleepable if they are
20404                                  * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20405                                  */
20406                                 if (!check_non_sleepable_error_inject(btf_id) &&
20407                                     within_error_injection_list(addr))
20408                                         ret = 0;
20409                                 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
20410                                  * in the fmodret id set with the KF_SLEEPABLE flag.
20411                                  */
20412                                 else {
20413                                         u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20414                                                                                 prog);
20415
20416                                         if (flags && (*flags & KF_SLEEPABLE))
20417                                                 ret = 0;
20418                                 }
20419                                 break;
20420                         case BPF_PROG_TYPE_LSM:
20421                                 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
20422                                  * Only some of them are sleepable.
20423                                  */
20424                                 if (bpf_lsm_is_sleepable_hook(btf_id))
20425                                         ret = 0;
20426                                 break;
20427                         default:
20428                                 break;
20429                         }
20430                         if (ret) {
20431                                 module_put(mod);
20432                                 bpf_log(log, "%s is not sleepable\n", tname);
20433                                 return ret;
20434                         }
20435                 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20436                         if (tgt_prog) {
20437                                 module_put(mod);
20438                                 bpf_log(log, "can't modify return codes of BPF programs\n");
20439                                 return -EINVAL;
20440                         }
20441                         ret = -EINVAL;
20442                         if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20443                             !check_attach_modify_return(addr, tname))
20444                                 ret = 0;
20445                         if (ret) {
20446                                 module_put(mod);
20447                                 bpf_log(log, "%s() is not modifiable\n", tname);
20448                                 return ret;
20449                         }
20450                 }
20451
20452                 break;
20453         }
20454         tgt_info->tgt_addr = addr;
20455         tgt_info->tgt_name = tname;
20456         tgt_info->tgt_type = t;
20457         tgt_info->tgt_mod = mod;
20458         return 0;
20459 }
20460
20461 BTF_SET_START(btf_id_deny)
20462 BTF_ID_UNUSED
20463 #ifdef CONFIG_SMP
20464 BTF_ID(func, migrate_disable)
20465 BTF_ID(func, migrate_enable)
20466 #endif
20467 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20468 BTF_ID(func, rcu_read_unlock_strict)
20469 #endif
20470 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20471 BTF_ID(func, preempt_count_add)
20472 BTF_ID(func, preempt_count_sub)
20473 #endif
20474 #ifdef CONFIG_PREEMPT_RCU
20475 BTF_ID(func, __rcu_read_lock)
20476 BTF_ID(func, __rcu_read_unlock)
20477 #endif
20478 BTF_SET_END(btf_id_deny)
20479
20480 static bool can_be_sleepable(struct bpf_prog *prog)
20481 {
20482         if (prog->type == BPF_PROG_TYPE_TRACING) {
20483                 switch (prog->expected_attach_type) {
20484                 case BPF_TRACE_FENTRY:
20485                 case BPF_TRACE_FEXIT:
20486                 case BPF_MODIFY_RETURN:
20487                 case BPF_TRACE_ITER:
20488                         return true;
20489                 default:
20490                         return false;
20491                 }
20492         }
20493         return prog->type == BPF_PROG_TYPE_LSM ||
20494                prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20495                prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20496 }
20497
20498 static int check_attach_btf_id(struct bpf_verifier_env *env)
20499 {
20500         struct bpf_prog *prog = env->prog;
20501         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20502         struct bpf_attach_target_info tgt_info = {};
20503         u32 btf_id = prog->aux->attach_btf_id;
20504         struct bpf_trampoline *tr;
20505         int ret;
20506         u64 key;
20507
20508         if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20509                 if (prog->aux->sleepable)
20510                         /* attach_btf_id checked to be zero already */
20511                         return 0;
20512                 verbose(env, "Syscall programs can only be sleepable\n");
20513                 return -EINVAL;
20514         }
20515
20516         if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20517                 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20518                 return -EINVAL;
20519         }
20520
20521         if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20522                 return check_struct_ops_btf_id(env);
20523
20524         if (prog->type != BPF_PROG_TYPE_TRACING &&
20525             prog->type != BPF_PROG_TYPE_LSM &&
20526             prog->type != BPF_PROG_TYPE_EXT)
20527                 return 0;
20528
20529         ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20530         if (ret)
20531                 return ret;
20532
20533         if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20534                 /* to make freplace equivalent to their targets, they need to
20535                  * inherit env->ops and expected_attach_type for the rest of the
20536                  * verification
20537                  */
20538                 env->ops = bpf_verifier_ops[tgt_prog->type];
20539                 prog->expected_attach_type = tgt_prog->expected_attach_type;
20540         }
20541
20542         /* store info about the attachment target that will be used later */
20543         prog->aux->attach_func_proto = tgt_info.tgt_type;
20544         prog->aux->attach_func_name = tgt_info.tgt_name;
20545         prog->aux->mod = tgt_info.tgt_mod;
20546
20547         if (tgt_prog) {
20548                 prog->aux->saved_dst_prog_type = tgt_prog->type;
20549                 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20550         }
20551
20552         if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20553                 prog->aux->attach_btf_trace = true;
20554                 return 0;
20555         } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20556                 if (!bpf_iter_prog_supported(prog))
20557                         return -EINVAL;
20558                 return 0;
20559         }
20560
20561         if (prog->type == BPF_PROG_TYPE_LSM) {
20562                 ret = bpf_lsm_verify_prog(&env->log, prog);
20563                 if (ret < 0)
20564                         return ret;
20565         } else if (prog->type == BPF_PROG_TYPE_TRACING &&
20566                    btf_id_set_contains(&btf_id_deny, btf_id)) {
20567                 return -EINVAL;
20568         }
20569
20570         key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20571         tr = bpf_trampoline_get(key, &tgt_info);
20572         if (!tr)
20573                 return -ENOMEM;
20574
20575         if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20576                 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20577
20578         prog->aux->dst_trampoline = tr;
20579         return 0;
20580 }
20581
20582 struct btf *bpf_get_btf_vmlinux(void)
20583 {
20584         if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20585                 mutex_lock(&bpf_verifier_lock);
20586                 if (!btf_vmlinux)
20587                         btf_vmlinux = btf_parse_vmlinux();
20588                 mutex_unlock(&bpf_verifier_lock);
20589         }
20590         return btf_vmlinux;
20591 }
20592
20593 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20594 {
20595         u64 start_time = ktime_get_ns();
20596         struct bpf_verifier_env *env;
20597         int i, len, ret = -EINVAL, err;
20598         u32 log_true_size;
20599         bool is_priv;
20600
20601         /* no program is valid */
20602         if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20603                 return -EINVAL;
20604
20605         /* 'struct bpf_verifier_env' can be global, but since it's not small,
20606          * allocate/free it every time bpf_check() is called
20607          */
20608         env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20609         if (!env)
20610                 return -ENOMEM;
20611
20612         env->bt.env = env;
20613
20614         len = (*prog)->len;
20615         env->insn_aux_data =
20616                 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20617         ret = -ENOMEM;
20618         if (!env->insn_aux_data)
20619                 goto err_free_env;
20620         for (i = 0; i < len; i++)
20621                 env->insn_aux_data[i].orig_idx = i;
20622         env->prog = *prog;
20623         env->ops = bpf_verifier_ops[env->prog->type];
20624         env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20625         is_priv = bpf_capable();
20626
20627         bpf_get_btf_vmlinux();
20628
20629         /* grab the mutex to protect few globals used by verifier */
20630         if (!is_priv)
20631                 mutex_lock(&bpf_verifier_lock);
20632
20633         /* user could have requested verbose verifier output
20634          * and supplied buffer to store the verification trace
20635          */
20636         ret = bpf_vlog_init(&env->log, attr->log_level,
20637                             (char __user *) (unsigned long) attr->log_buf,
20638                             attr->log_size);
20639         if (ret)
20640                 goto err_unlock;
20641
20642         mark_verifier_state_clean(env);
20643
20644         if (IS_ERR(btf_vmlinux)) {
20645                 /* Either gcc or pahole or kernel are broken. */
20646                 verbose(env, "in-kernel BTF is malformed\n");
20647                 ret = PTR_ERR(btf_vmlinux);
20648                 goto skip_full_check;
20649         }
20650
20651         env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20652         if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20653                 env->strict_alignment = true;
20654         if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20655                 env->strict_alignment = false;
20656
20657         env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20658         env->allow_uninit_stack = bpf_allow_uninit_stack();
20659         env->bypass_spec_v1 = bpf_bypass_spec_v1();
20660         env->bypass_spec_v4 = bpf_bypass_spec_v4();
20661         env->bpf_capable = bpf_capable();
20662
20663         if (is_priv)
20664                 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20665
20666         env->explored_states = kvcalloc(state_htab_size(env),
20667                                        sizeof(struct bpf_verifier_state_list *),
20668                                        GFP_USER);
20669         ret = -ENOMEM;
20670         if (!env->explored_states)
20671                 goto skip_full_check;
20672
20673         ret = check_btf_info_early(env, attr, uattr);
20674         if (ret < 0)
20675                 goto skip_full_check;
20676
20677         ret = add_subprog_and_kfunc(env);
20678         if (ret < 0)
20679                 goto skip_full_check;
20680
20681         ret = check_subprogs(env);
20682         if (ret < 0)
20683                 goto skip_full_check;
20684
20685         ret = check_btf_info(env, attr, uattr);
20686         if (ret < 0)
20687                 goto skip_full_check;
20688
20689         ret = check_attach_btf_id(env);
20690         if (ret)
20691                 goto skip_full_check;
20692
20693         ret = resolve_pseudo_ldimm64(env);
20694         if (ret < 0)
20695                 goto skip_full_check;
20696
20697         if (bpf_prog_is_offloaded(env->prog->aux)) {
20698                 ret = bpf_prog_offload_verifier_prep(env->prog);
20699                 if (ret)
20700                         goto skip_full_check;
20701         }
20702
20703         ret = check_cfg(env);
20704         if (ret < 0)
20705                 goto skip_full_check;
20706
20707         ret = do_check_subprogs(env);
20708         ret = ret ?: do_check_main(env);
20709
20710         if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20711                 ret = bpf_prog_offload_finalize(env);
20712
20713 skip_full_check:
20714         kvfree(env->explored_states);
20715
20716         if (ret == 0)
20717                 ret = check_max_stack_depth(env);
20718
20719         /* instruction rewrites happen after this point */
20720         if (ret == 0)
20721                 ret = optimize_bpf_loop(env);
20722
20723         if (is_priv) {
20724                 if (ret == 0)
20725                         opt_hard_wire_dead_code_branches(env);
20726                 if (ret == 0)
20727                         ret = opt_remove_dead_code(env);
20728                 if (ret == 0)
20729                         ret = opt_remove_nops(env);
20730         } else {
20731                 if (ret == 0)
20732                         sanitize_dead_code(env);
20733         }
20734
20735         if (ret == 0)
20736                 /* program is valid, convert *(u32*)(ctx + off) accesses */
20737                 ret = convert_ctx_accesses(env);
20738
20739         if (ret == 0)
20740                 ret = do_misc_fixups(env);
20741
20742         /* do 32-bit optimization after insn patching has done so those patched
20743          * insns could be handled correctly.
20744          */
20745         if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20746                 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20747                 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20748                                                                      : false;
20749         }
20750
20751         if (ret == 0)
20752                 ret = fixup_call_args(env);
20753
20754         env->verification_time = ktime_get_ns() - start_time;
20755         print_verification_stats(env);
20756         env->prog->aux->verified_insns = env->insn_processed;
20757
20758         /* preserve original error even if log finalization is successful */
20759         err = bpf_vlog_finalize(&env->log, &log_true_size);
20760         if (err)
20761                 ret = err;
20762
20763         if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20764             copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20765                                   &log_true_size, sizeof(log_true_size))) {
20766                 ret = -EFAULT;
20767                 goto err_release_maps;
20768         }
20769
20770         if (ret)
20771                 goto err_release_maps;
20772
20773         if (env->used_map_cnt) {
20774                 /* if program passed verifier, update used_maps in bpf_prog_info */
20775                 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20776                                                           sizeof(env->used_maps[0]),
20777                                                           GFP_KERNEL);
20778
20779                 if (!env->prog->aux->used_maps) {
20780                         ret = -ENOMEM;
20781                         goto err_release_maps;
20782                 }
20783
20784                 memcpy(env->prog->aux->used_maps, env->used_maps,
20785                        sizeof(env->used_maps[0]) * env->used_map_cnt);
20786                 env->prog->aux->used_map_cnt = env->used_map_cnt;
20787         }
20788         if (env->used_btf_cnt) {
20789                 /* if program passed verifier, update used_btfs in bpf_prog_aux */
20790                 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20791                                                           sizeof(env->used_btfs[0]),
20792                                                           GFP_KERNEL);
20793                 if (!env->prog->aux->used_btfs) {
20794                         ret = -ENOMEM;
20795                         goto err_release_maps;
20796                 }
20797
20798                 memcpy(env->prog->aux->used_btfs, env->used_btfs,
20799                        sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20800                 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20801         }
20802         if (env->used_map_cnt || env->used_btf_cnt) {
20803                 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
20804                  * bpf_ld_imm64 instructions
20805                  */
20806                 convert_pseudo_ld_imm64(env);
20807         }
20808
20809         adjust_btf_func(env);
20810
20811 err_release_maps:
20812         if (!env->prog->aux->used_maps)
20813                 /* if we didn't copy map pointers into bpf_prog_info, release
20814                  * them now. Otherwise free_used_maps() will release them.
20815                  */
20816                 release_maps(env);
20817         if (!env->prog->aux->used_btfs)
20818                 release_btfs(env);
20819
20820         /* extension progs temporarily inherit the attach_type of their targets
20821            for verification purposes, so set it back to zero before returning
20822          */
20823         if (env->prog->type == BPF_PROG_TYPE_EXT)
20824                 env->prog->expected_attach_type = 0;
20825
20826         *prog = env->prog;
20827 err_unlock:
20828         if (!is_priv)
20829                 mutex_unlock(&bpf_verifier_lock);
20830         vfree(env->insn_aux_data);
20831 err_free_env:
20832         kfree(env);
20833         return ret;
20834 }