Merge tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / kernel / bpf / ringbuf.c
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <uapi/linux/btf.h>
12
13 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
14
15 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
16 #define RINGBUF_PGOFF \
17         (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
18 /* consumer page and producer page */
19 #define RINGBUF_POS_PAGES 2
20
21 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
22
23 /* Maximum size of ring buffer area is limited by 32-bit page offset within
24  * record header, counted in pages. Reserve 8 bits for extensibility, and take
25  * into account few extra pages for consumer/producer pages and
26  * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
27  * ring buffer.
28  */
29 #define RINGBUF_MAX_DATA_SZ \
30         (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
31
32 struct bpf_ringbuf {
33         wait_queue_head_t waitq;
34         struct irq_work work;
35         u64 mask;
36         struct page **pages;
37         int nr_pages;
38         spinlock_t spinlock ____cacheline_aligned_in_smp;
39         /* Consumer and producer counters are put into separate pages to allow
40          * mapping consumer page as r/w, but restrict producer page to r/o.
41          * This protects producer position from being modified by user-space
42          * application and ruining in-kernel position tracking.
43          */
44         unsigned long consumer_pos __aligned(PAGE_SIZE);
45         unsigned long producer_pos __aligned(PAGE_SIZE);
46         char data[] __aligned(PAGE_SIZE);
47 };
48
49 struct bpf_ringbuf_map {
50         struct bpf_map map;
51         struct bpf_map_memory memory;
52         struct bpf_ringbuf *rb;
53 };
54
55 /* 8-byte ring buffer record header structure */
56 struct bpf_ringbuf_hdr {
57         u32 len;
58         u32 pg_off;
59 };
60
61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
62 {
63         const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
64                             __GFP_ZERO;
65         int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
66         int nr_data_pages = data_sz >> PAGE_SHIFT;
67         int nr_pages = nr_meta_pages + nr_data_pages;
68         struct page **pages, *page;
69         struct bpf_ringbuf *rb;
70         size_t array_size;
71         int i;
72
73         /* Each data page is mapped twice to allow "virtual"
74          * continuous read of samples wrapping around the end of ring
75          * buffer area:
76          * ------------------------------------------------------
77          * | meta pages |  real data pages  |  same data pages  |
78          * ------------------------------------------------------
79          * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
80          * ------------------------------------------------------
81          * |            | TA             DA | TA             DA |
82          * ------------------------------------------------------
83          *                               ^^^^^^^
84          *                                  |
85          * Here, no need to worry about special handling of wrapped-around
86          * data due to double-mapped data pages. This works both in kernel and
87          * when mmap()'ed in user-space, simplifying both kernel and
88          * user-space implementations significantly.
89          */
90         array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
91         if (array_size > PAGE_SIZE)
92                 pages = vmalloc_node(array_size, numa_node);
93         else
94                 pages = kmalloc_node(array_size, flags, numa_node);
95         if (!pages)
96                 return NULL;
97
98         for (i = 0; i < nr_pages; i++) {
99                 page = alloc_pages_node(numa_node, flags, 0);
100                 if (!page) {
101                         nr_pages = i;
102                         goto err_free_pages;
103                 }
104                 pages[i] = page;
105                 if (i >= nr_meta_pages)
106                         pages[nr_data_pages + i] = page;
107         }
108
109         rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
110                   VM_ALLOC | VM_USERMAP, PAGE_KERNEL);
111         if (rb) {
112                 rb->pages = pages;
113                 rb->nr_pages = nr_pages;
114                 return rb;
115         }
116
117 err_free_pages:
118         for (i = 0; i < nr_pages; i++)
119                 __free_page(pages[i]);
120         kvfree(pages);
121         return NULL;
122 }
123
124 static void bpf_ringbuf_notify(struct irq_work *work)
125 {
126         struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
127
128         wake_up_all(&rb->waitq);
129 }
130
131 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
132 {
133         struct bpf_ringbuf *rb;
134
135         if (!data_sz || !PAGE_ALIGNED(data_sz))
136                 return ERR_PTR(-EINVAL);
137
138 #ifdef CONFIG_64BIT
139         /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
140         if (data_sz > RINGBUF_MAX_DATA_SZ)
141                 return ERR_PTR(-E2BIG);
142 #endif
143
144         rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
145         if (!rb)
146                 return ERR_PTR(-ENOMEM);
147
148         spin_lock_init(&rb->spinlock);
149         init_waitqueue_head(&rb->waitq);
150         init_irq_work(&rb->work, bpf_ringbuf_notify);
151
152         rb->mask = data_sz - 1;
153         rb->consumer_pos = 0;
154         rb->producer_pos = 0;
155
156         return rb;
157 }
158
159 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
160 {
161         struct bpf_ringbuf_map *rb_map;
162         u64 cost;
163         int err;
164
165         if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
166                 return ERR_PTR(-EINVAL);
167
168         if (attr->key_size || attr->value_size ||
169             attr->max_entries == 0 || !PAGE_ALIGNED(attr->max_entries))
170                 return ERR_PTR(-EINVAL);
171
172         rb_map = kzalloc(sizeof(*rb_map), GFP_USER);
173         if (!rb_map)
174                 return ERR_PTR(-ENOMEM);
175
176         bpf_map_init_from_attr(&rb_map->map, attr);
177
178         cost = sizeof(struct bpf_ringbuf_map) +
179                sizeof(struct bpf_ringbuf) +
180                attr->max_entries;
181         err = bpf_map_charge_init(&rb_map->map.memory, cost);
182         if (err)
183                 goto err_free_map;
184
185         rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
186         if (IS_ERR(rb_map->rb)) {
187                 err = PTR_ERR(rb_map->rb);
188                 goto err_uncharge;
189         }
190
191         return &rb_map->map;
192
193 err_uncharge:
194         bpf_map_charge_finish(&rb_map->map.memory);
195 err_free_map:
196         kfree(rb_map);
197         return ERR_PTR(err);
198 }
199
200 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
201 {
202         /* copy pages pointer and nr_pages to local variable, as we are going
203          * to unmap rb itself with vunmap() below
204          */
205         struct page **pages = rb->pages;
206         int i, nr_pages = rb->nr_pages;
207
208         vunmap(rb);
209         for (i = 0; i < nr_pages; i++)
210                 __free_page(pages[i]);
211         kvfree(pages);
212 }
213
214 static void ringbuf_map_free(struct bpf_map *map)
215 {
216         struct bpf_ringbuf_map *rb_map;
217
218         /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
219          * so the programs (can be more than one that used this map) were
220          * disconnected from events. Wait for outstanding critical sections in
221          * these programs to complete
222          */
223         synchronize_rcu();
224
225         rb_map = container_of(map, struct bpf_ringbuf_map, map);
226         bpf_ringbuf_free(rb_map->rb);
227         kfree(rb_map);
228 }
229
230 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
231 {
232         return ERR_PTR(-ENOTSUPP);
233 }
234
235 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
236                                    u64 flags)
237 {
238         return -ENOTSUPP;
239 }
240
241 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
242 {
243         return -ENOTSUPP;
244 }
245
246 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
247                                     void *next_key)
248 {
249         return -ENOTSUPP;
250 }
251
252 static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb)
253 {
254         size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT;
255
256         /* consumer page + producer page + 2 x data pages */
257         return RINGBUF_POS_PAGES + 2 * data_pages;
258 }
259
260 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
261 {
262         struct bpf_ringbuf_map *rb_map;
263         size_t mmap_sz;
264
265         rb_map = container_of(map, struct bpf_ringbuf_map, map);
266         mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT;
267
268         if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz)
269                 return -EINVAL;
270
271         return remap_vmalloc_range(vma, rb_map->rb,
272                                    vma->vm_pgoff + RINGBUF_PGOFF);
273 }
274
275 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
276 {
277         unsigned long cons_pos, prod_pos;
278
279         cons_pos = smp_load_acquire(&rb->consumer_pos);
280         prod_pos = smp_load_acquire(&rb->producer_pos);
281         return prod_pos - cons_pos;
282 }
283
284 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
285                                  struct poll_table_struct *pts)
286 {
287         struct bpf_ringbuf_map *rb_map;
288
289         rb_map = container_of(map, struct bpf_ringbuf_map, map);
290         poll_wait(filp, &rb_map->rb->waitq, pts);
291
292         if (ringbuf_avail_data_sz(rb_map->rb))
293                 return EPOLLIN | EPOLLRDNORM;
294         return 0;
295 }
296
297 const struct bpf_map_ops ringbuf_map_ops = {
298         .map_alloc = ringbuf_map_alloc,
299         .map_free = ringbuf_map_free,
300         .map_mmap = ringbuf_map_mmap,
301         .map_poll = ringbuf_map_poll,
302         .map_lookup_elem = ringbuf_map_lookup_elem,
303         .map_update_elem = ringbuf_map_update_elem,
304         .map_delete_elem = ringbuf_map_delete_elem,
305         .map_get_next_key = ringbuf_map_get_next_key,
306 };
307
308 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
309  * calculate offset from record metadata to ring buffer in pages, rounded
310  * down. This page offset is stored as part of record metadata and allows to
311  * restore struct bpf_ringbuf * from record pointer. This page offset is
312  * stored at offset 4 of record metadata header.
313  */
314 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
315                                      struct bpf_ringbuf_hdr *hdr)
316 {
317         return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
318 }
319
320 /* Given pointer to ring buffer record header, restore pointer to struct
321  * bpf_ringbuf itself by using page offset stored at offset 4
322  */
323 static struct bpf_ringbuf *
324 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
325 {
326         unsigned long addr = (unsigned long)(void *)hdr;
327         unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
328
329         return (void*)((addr & PAGE_MASK) - off);
330 }
331
332 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
333 {
334         unsigned long cons_pos, prod_pos, new_prod_pos, flags;
335         u32 len, pg_off;
336         struct bpf_ringbuf_hdr *hdr;
337
338         if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
339                 return NULL;
340
341         len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
342         cons_pos = smp_load_acquire(&rb->consumer_pos);
343
344         if (in_nmi()) {
345                 if (!spin_trylock_irqsave(&rb->spinlock, flags))
346                         return NULL;
347         } else {
348                 spin_lock_irqsave(&rb->spinlock, flags);
349         }
350
351         prod_pos = rb->producer_pos;
352         new_prod_pos = prod_pos + len;
353
354         /* check for out of ringbuf space by ensuring producer position
355          * doesn't advance more than (ringbuf_size - 1) ahead
356          */
357         if (new_prod_pos - cons_pos > rb->mask) {
358                 spin_unlock_irqrestore(&rb->spinlock, flags);
359                 return NULL;
360         }
361
362         hdr = (void *)rb->data + (prod_pos & rb->mask);
363         pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
364         hdr->len = size | BPF_RINGBUF_BUSY_BIT;
365         hdr->pg_off = pg_off;
366
367         /* pairs with consumer's smp_load_acquire() */
368         smp_store_release(&rb->producer_pos, new_prod_pos);
369
370         spin_unlock_irqrestore(&rb->spinlock, flags);
371
372         return (void *)hdr + BPF_RINGBUF_HDR_SZ;
373 }
374
375 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
376 {
377         struct bpf_ringbuf_map *rb_map;
378
379         if (unlikely(flags))
380                 return 0;
381
382         rb_map = container_of(map, struct bpf_ringbuf_map, map);
383         return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
384 }
385
386 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
387         .func           = bpf_ringbuf_reserve,
388         .ret_type       = RET_PTR_TO_ALLOC_MEM_OR_NULL,
389         .arg1_type      = ARG_CONST_MAP_PTR,
390         .arg2_type      = ARG_CONST_ALLOC_SIZE_OR_ZERO,
391         .arg3_type      = ARG_ANYTHING,
392 };
393
394 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
395 {
396         unsigned long rec_pos, cons_pos;
397         struct bpf_ringbuf_hdr *hdr;
398         struct bpf_ringbuf *rb;
399         u32 new_len;
400
401         hdr = sample - BPF_RINGBUF_HDR_SZ;
402         rb = bpf_ringbuf_restore_from_rec(hdr);
403         new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
404         if (discard)
405                 new_len |= BPF_RINGBUF_DISCARD_BIT;
406
407         /* update record header with correct final size prefix */
408         xchg(&hdr->len, new_len);
409
410         /* if consumer caught up and is waiting for our record, notify about
411          * new data availability
412          */
413         rec_pos = (void *)hdr - (void *)rb->data;
414         cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
415
416         if (flags & BPF_RB_FORCE_WAKEUP)
417                 irq_work_queue(&rb->work);
418         else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
419                 irq_work_queue(&rb->work);
420 }
421
422 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
423 {
424         bpf_ringbuf_commit(sample, flags, false /* discard */);
425         return 0;
426 }
427
428 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
429         .func           = bpf_ringbuf_submit,
430         .ret_type       = RET_VOID,
431         .arg1_type      = ARG_PTR_TO_ALLOC_MEM,
432         .arg2_type      = ARG_ANYTHING,
433 };
434
435 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
436 {
437         bpf_ringbuf_commit(sample, flags, true /* discard */);
438         return 0;
439 }
440
441 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
442         .func           = bpf_ringbuf_discard,
443         .ret_type       = RET_VOID,
444         .arg1_type      = ARG_PTR_TO_ALLOC_MEM,
445         .arg2_type      = ARG_ANYTHING,
446 };
447
448 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
449            u64, flags)
450 {
451         struct bpf_ringbuf_map *rb_map;
452         void *rec;
453
454         if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
455                 return -EINVAL;
456
457         rb_map = container_of(map, struct bpf_ringbuf_map, map);
458         rec = __bpf_ringbuf_reserve(rb_map->rb, size);
459         if (!rec)
460                 return -EAGAIN;
461
462         memcpy(rec, data, size);
463         bpf_ringbuf_commit(rec, flags, false /* discard */);
464         return 0;
465 }
466
467 const struct bpf_func_proto bpf_ringbuf_output_proto = {
468         .func           = bpf_ringbuf_output,
469         .ret_type       = RET_INTEGER,
470         .arg1_type      = ARG_CONST_MAP_PTR,
471         .arg2_type      = ARG_PTR_TO_MEM,
472         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
473         .arg4_type      = ARG_ANYTHING,
474 };
475
476 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
477 {
478         struct bpf_ringbuf *rb;
479
480         rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
481
482         switch (flags) {
483         case BPF_RB_AVAIL_DATA:
484                 return ringbuf_avail_data_sz(rb);
485         case BPF_RB_RING_SIZE:
486                 return rb->mask + 1;
487         case BPF_RB_CONS_POS:
488                 return smp_load_acquire(&rb->consumer_pos);
489         case BPF_RB_PROD_POS:
490                 return smp_load_acquire(&rb->producer_pos);
491         default:
492                 return 0;
493         }
494 }
495
496 const struct bpf_func_proto bpf_ringbuf_query_proto = {
497         .func           = bpf_ringbuf_query,
498         .ret_type       = RET_INTEGER,
499         .arg1_type      = ARG_CONST_MAP_PTR,
500         .arg2_type      = ARG_ANYTHING,
501 };