Merge tag 'apparmor-pr-2022-08-08' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / bpf / ringbuf.c
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14
15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
16
17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
18 #define RINGBUF_PGOFF \
19         (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
20 /* consumer page and producer page */
21 #define RINGBUF_POS_PAGES 2
22
23 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
24
25 /* Maximum size of ring buffer area is limited by 32-bit page offset within
26  * record header, counted in pages. Reserve 8 bits for extensibility, and take
27  * into account few extra pages for consumer/producer pages and
28  * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
29  * ring buffer.
30  */
31 #define RINGBUF_MAX_DATA_SZ \
32         (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
33
34 struct bpf_ringbuf {
35         wait_queue_head_t waitq;
36         struct irq_work work;
37         u64 mask;
38         struct page **pages;
39         int nr_pages;
40         spinlock_t spinlock ____cacheline_aligned_in_smp;
41         /* Consumer and producer counters are put into separate pages to allow
42          * mapping consumer page as r/w, but restrict producer page to r/o.
43          * This protects producer position from being modified by user-space
44          * application and ruining in-kernel position tracking.
45          */
46         unsigned long consumer_pos __aligned(PAGE_SIZE);
47         unsigned long producer_pos __aligned(PAGE_SIZE);
48         char data[] __aligned(PAGE_SIZE);
49 };
50
51 struct bpf_ringbuf_map {
52         struct bpf_map map;
53         struct bpf_ringbuf *rb;
54 };
55
56 /* 8-byte ring buffer record header structure */
57 struct bpf_ringbuf_hdr {
58         u32 len;
59         u32 pg_off;
60 };
61
62 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
63 {
64         const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
65                             __GFP_NOWARN | __GFP_ZERO;
66         int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
67         int nr_data_pages = data_sz >> PAGE_SHIFT;
68         int nr_pages = nr_meta_pages + nr_data_pages;
69         struct page **pages, *page;
70         struct bpf_ringbuf *rb;
71         size_t array_size;
72         int i;
73
74         /* Each data page is mapped twice to allow "virtual"
75          * continuous read of samples wrapping around the end of ring
76          * buffer area:
77          * ------------------------------------------------------
78          * | meta pages |  real data pages  |  same data pages  |
79          * ------------------------------------------------------
80          * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
81          * ------------------------------------------------------
82          * |            | TA             DA | TA             DA |
83          * ------------------------------------------------------
84          *                               ^^^^^^^
85          *                                  |
86          * Here, no need to worry about special handling of wrapped-around
87          * data due to double-mapped data pages. This works both in kernel and
88          * when mmap()'ed in user-space, simplifying both kernel and
89          * user-space implementations significantly.
90          */
91         array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
92         pages = bpf_map_area_alloc(array_size, numa_node);
93         if (!pages)
94                 return NULL;
95
96         for (i = 0; i < nr_pages; i++) {
97                 page = alloc_pages_node(numa_node, flags, 0);
98                 if (!page) {
99                         nr_pages = i;
100                         goto err_free_pages;
101                 }
102                 pages[i] = page;
103                 if (i >= nr_meta_pages)
104                         pages[nr_data_pages + i] = page;
105         }
106
107         rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
108                   VM_MAP | VM_USERMAP, PAGE_KERNEL);
109         if (rb) {
110                 kmemleak_not_leak(pages);
111                 rb->pages = pages;
112                 rb->nr_pages = nr_pages;
113                 return rb;
114         }
115
116 err_free_pages:
117         for (i = 0; i < nr_pages; i++)
118                 __free_page(pages[i]);
119         kvfree(pages);
120         return NULL;
121 }
122
123 static void bpf_ringbuf_notify(struct irq_work *work)
124 {
125         struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
126
127         wake_up_all(&rb->waitq);
128 }
129
130 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
131 {
132         struct bpf_ringbuf *rb;
133
134         rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
135         if (!rb)
136                 return NULL;
137
138         spin_lock_init(&rb->spinlock);
139         init_waitqueue_head(&rb->waitq);
140         init_irq_work(&rb->work, bpf_ringbuf_notify);
141
142         rb->mask = data_sz - 1;
143         rb->consumer_pos = 0;
144         rb->producer_pos = 0;
145
146         return rb;
147 }
148
149 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
150 {
151         struct bpf_ringbuf_map *rb_map;
152
153         if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
154                 return ERR_PTR(-EINVAL);
155
156         if (attr->key_size || attr->value_size ||
157             !is_power_of_2(attr->max_entries) ||
158             !PAGE_ALIGNED(attr->max_entries))
159                 return ERR_PTR(-EINVAL);
160
161 #ifdef CONFIG_64BIT
162         /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
163         if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
164                 return ERR_PTR(-E2BIG);
165 #endif
166
167         rb_map = kzalloc(sizeof(*rb_map), GFP_USER | __GFP_ACCOUNT);
168         if (!rb_map)
169                 return ERR_PTR(-ENOMEM);
170
171         bpf_map_init_from_attr(&rb_map->map, attr);
172
173         rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
174         if (!rb_map->rb) {
175                 kfree(rb_map);
176                 return ERR_PTR(-ENOMEM);
177         }
178
179         return &rb_map->map;
180 }
181
182 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
183 {
184         /* copy pages pointer and nr_pages to local variable, as we are going
185          * to unmap rb itself with vunmap() below
186          */
187         struct page **pages = rb->pages;
188         int i, nr_pages = rb->nr_pages;
189
190         vunmap(rb);
191         for (i = 0; i < nr_pages; i++)
192                 __free_page(pages[i]);
193         kvfree(pages);
194 }
195
196 static void ringbuf_map_free(struct bpf_map *map)
197 {
198         struct bpf_ringbuf_map *rb_map;
199
200         rb_map = container_of(map, struct bpf_ringbuf_map, map);
201         bpf_ringbuf_free(rb_map->rb);
202         kfree(rb_map);
203 }
204
205 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
206 {
207         return ERR_PTR(-ENOTSUPP);
208 }
209
210 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
211                                    u64 flags)
212 {
213         return -ENOTSUPP;
214 }
215
216 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
217 {
218         return -ENOTSUPP;
219 }
220
221 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
222                                     void *next_key)
223 {
224         return -ENOTSUPP;
225 }
226
227 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
228 {
229         struct bpf_ringbuf_map *rb_map;
230
231         rb_map = container_of(map, struct bpf_ringbuf_map, map);
232
233         if (vma->vm_flags & VM_WRITE) {
234                 /* allow writable mapping for the consumer_pos only */
235                 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
236                         return -EPERM;
237         } else {
238                 vma->vm_flags &= ~VM_MAYWRITE;
239         }
240         /* remap_vmalloc_range() checks size and offset constraints */
241         return remap_vmalloc_range(vma, rb_map->rb,
242                                    vma->vm_pgoff + RINGBUF_PGOFF);
243 }
244
245 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
246 {
247         unsigned long cons_pos, prod_pos;
248
249         cons_pos = smp_load_acquire(&rb->consumer_pos);
250         prod_pos = smp_load_acquire(&rb->producer_pos);
251         return prod_pos - cons_pos;
252 }
253
254 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
255                                  struct poll_table_struct *pts)
256 {
257         struct bpf_ringbuf_map *rb_map;
258
259         rb_map = container_of(map, struct bpf_ringbuf_map, map);
260         poll_wait(filp, &rb_map->rb->waitq, pts);
261
262         if (ringbuf_avail_data_sz(rb_map->rb))
263                 return EPOLLIN | EPOLLRDNORM;
264         return 0;
265 }
266
267 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
268 const struct bpf_map_ops ringbuf_map_ops = {
269         .map_meta_equal = bpf_map_meta_equal,
270         .map_alloc = ringbuf_map_alloc,
271         .map_free = ringbuf_map_free,
272         .map_mmap = ringbuf_map_mmap,
273         .map_poll = ringbuf_map_poll,
274         .map_lookup_elem = ringbuf_map_lookup_elem,
275         .map_update_elem = ringbuf_map_update_elem,
276         .map_delete_elem = ringbuf_map_delete_elem,
277         .map_get_next_key = ringbuf_map_get_next_key,
278         .map_btf_id = &ringbuf_map_btf_ids[0],
279 };
280
281 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
282  * calculate offset from record metadata to ring buffer in pages, rounded
283  * down. This page offset is stored as part of record metadata and allows to
284  * restore struct bpf_ringbuf * from record pointer. This page offset is
285  * stored at offset 4 of record metadata header.
286  */
287 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
288                                      struct bpf_ringbuf_hdr *hdr)
289 {
290         return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
291 }
292
293 /* Given pointer to ring buffer record header, restore pointer to struct
294  * bpf_ringbuf itself by using page offset stored at offset 4
295  */
296 static struct bpf_ringbuf *
297 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
298 {
299         unsigned long addr = (unsigned long)(void *)hdr;
300         unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
301
302         return (void*)((addr & PAGE_MASK) - off);
303 }
304
305 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
306 {
307         unsigned long cons_pos, prod_pos, new_prod_pos, flags;
308         u32 len, pg_off;
309         struct bpf_ringbuf_hdr *hdr;
310
311         if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
312                 return NULL;
313
314         len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
315         if (len > rb->mask + 1)
316                 return NULL;
317
318         cons_pos = smp_load_acquire(&rb->consumer_pos);
319
320         if (in_nmi()) {
321                 if (!spin_trylock_irqsave(&rb->spinlock, flags))
322                         return NULL;
323         } else {
324                 spin_lock_irqsave(&rb->spinlock, flags);
325         }
326
327         prod_pos = rb->producer_pos;
328         new_prod_pos = prod_pos + len;
329
330         /* check for out of ringbuf space by ensuring producer position
331          * doesn't advance more than (ringbuf_size - 1) ahead
332          */
333         if (new_prod_pos - cons_pos > rb->mask) {
334                 spin_unlock_irqrestore(&rb->spinlock, flags);
335                 return NULL;
336         }
337
338         hdr = (void *)rb->data + (prod_pos & rb->mask);
339         pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
340         hdr->len = size | BPF_RINGBUF_BUSY_BIT;
341         hdr->pg_off = pg_off;
342
343         /* pairs with consumer's smp_load_acquire() */
344         smp_store_release(&rb->producer_pos, new_prod_pos);
345
346         spin_unlock_irqrestore(&rb->spinlock, flags);
347
348         return (void *)hdr + BPF_RINGBUF_HDR_SZ;
349 }
350
351 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
352 {
353         struct bpf_ringbuf_map *rb_map;
354
355         if (unlikely(flags))
356                 return 0;
357
358         rb_map = container_of(map, struct bpf_ringbuf_map, map);
359         return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
360 }
361
362 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
363         .func           = bpf_ringbuf_reserve,
364         .ret_type       = RET_PTR_TO_ALLOC_MEM_OR_NULL,
365         .arg1_type      = ARG_CONST_MAP_PTR,
366         .arg2_type      = ARG_CONST_ALLOC_SIZE_OR_ZERO,
367         .arg3_type      = ARG_ANYTHING,
368 };
369
370 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
371 {
372         unsigned long rec_pos, cons_pos;
373         struct bpf_ringbuf_hdr *hdr;
374         struct bpf_ringbuf *rb;
375         u32 new_len;
376
377         hdr = sample - BPF_RINGBUF_HDR_SZ;
378         rb = bpf_ringbuf_restore_from_rec(hdr);
379         new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
380         if (discard)
381                 new_len |= BPF_RINGBUF_DISCARD_BIT;
382
383         /* update record header with correct final size prefix */
384         xchg(&hdr->len, new_len);
385
386         /* if consumer caught up and is waiting for our record, notify about
387          * new data availability
388          */
389         rec_pos = (void *)hdr - (void *)rb->data;
390         cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
391
392         if (flags & BPF_RB_FORCE_WAKEUP)
393                 irq_work_queue(&rb->work);
394         else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
395                 irq_work_queue(&rb->work);
396 }
397
398 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
399 {
400         bpf_ringbuf_commit(sample, flags, false /* discard */);
401         return 0;
402 }
403
404 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
405         .func           = bpf_ringbuf_submit,
406         .ret_type       = RET_VOID,
407         .arg1_type      = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
408         .arg2_type      = ARG_ANYTHING,
409 };
410
411 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
412 {
413         bpf_ringbuf_commit(sample, flags, true /* discard */);
414         return 0;
415 }
416
417 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
418         .func           = bpf_ringbuf_discard,
419         .ret_type       = RET_VOID,
420         .arg1_type      = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
421         .arg2_type      = ARG_ANYTHING,
422 };
423
424 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
425            u64, flags)
426 {
427         struct bpf_ringbuf_map *rb_map;
428         void *rec;
429
430         if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
431                 return -EINVAL;
432
433         rb_map = container_of(map, struct bpf_ringbuf_map, map);
434         rec = __bpf_ringbuf_reserve(rb_map->rb, size);
435         if (!rec)
436                 return -EAGAIN;
437
438         memcpy(rec, data, size);
439         bpf_ringbuf_commit(rec, flags, false /* discard */);
440         return 0;
441 }
442
443 const struct bpf_func_proto bpf_ringbuf_output_proto = {
444         .func           = bpf_ringbuf_output,
445         .ret_type       = RET_INTEGER,
446         .arg1_type      = ARG_CONST_MAP_PTR,
447         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
448         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
449         .arg4_type      = ARG_ANYTHING,
450 };
451
452 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
453 {
454         struct bpf_ringbuf *rb;
455
456         rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
457
458         switch (flags) {
459         case BPF_RB_AVAIL_DATA:
460                 return ringbuf_avail_data_sz(rb);
461         case BPF_RB_RING_SIZE:
462                 return rb->mask + 1;
463         case BPF_RB_CONS_POS:
464                 return smp_load_acquire(&rb->consumer_pos);
465         case BPF_RB_PROD_POS:
466                 return smp_load_acquire(&rb->producer_pos);
467         default:
468                 return 0;
469         }
470 }
471
472 const struct bpf_func_proto bpf_ringbuf_query_proto = {
473         .func           = bpf_ringbuf_query,
474         .ret_type       = RET_INTEGER,
475         .arg1_type      = ARG_CONST_MAP_PTR,
476         .arg2_type      = ARG_ANYTHING,
477 };
478
479 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
480            struct bpf_dynptr_kern *, ptr)
481 {
482         struct bpf_ringbuf_map *rb_map;
483         void *sample;
484         int err;
485
486         if (unlikely(flags)) {
487                 bpf_dynptr_set_null(ptr);
488                 return -EINVAL;
489         }
490
491         err = bpf_dynptr_check_size(size);
492         if (err) {
493                 bpf_dynptr_set_null(ptr);
494                 return err;
495         }
496
497         rb_map = container_of(map, struct bpf_ringbuf_map, map);
498
499         sample = __bpf_ringbuf_reserve(rb_map->rb, size);
500         if (!sample) {
501                 bpf_dynptr_set_null(ptr);
502                 return -EINVAL;
503         }
504
505         bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
506
507         return 0;
508 }
509
510 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
511         .func           = bpf_ringbuf_reserve_dynptr,
512         .ret_type       = RET_INTEGER,
513         .arg1_type      = ARG_CONST_MAP_PTR,
514         .arg2_type      = ARG_ANYTHING,
515         .arg3_type      = ARG_ANYTHING,
516         .arg4_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
517 };
518
519 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
520 {
521         if (!ptr->data)
522                 return 0;
523
524         bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
525
526         bpf_dynptr_set_null(ptr);
527
528         return 0;
529 }
530
531 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
532         .func           = bpf_ringbuf_submit_dynptr,
533         .ret_type       = RET_VOID,
534         .arg1_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
535         .arg2_type      = ARG_ANYTHING,
536 };
537
538 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
539 {
540         if (!ptr->data)
541                 return 0;
542
543         bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
544
545         bpf_dynptr_set_null(ptr);
546
547         return 0;
548 }
549
550 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
551         .func           = bpf_ringbuf_discard_dynptr,
552         .ret_type       = RET_VOID,
553         .arg1_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
554         .arg2_type      = ARG_ANYTHING,
555 };