Merge tag 'usb-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-microblaze.git] / kernel / bpf / ringbuf.c
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13
14 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
15
16 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
17 #define RINGBUF_PGOFF \
18         (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
19 /* consumer page and producer page */
20 #define RINGBUF_POS_PAGES 2
21
22 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
23
24 /* Maximum size of ring buffer area is limited by 32-bit page offset within
25  * record header, counted in pages. Reserve 8 bits for extensibility, and take
26  * into account few extra pages for consumer/producer pages and
27  * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
28  * ring buffer.
29  */
30 #define RINGBUF_MAX_DATA_SZ \
31         (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
32
33 struct bpf_ringbuf {
34         wait_queue_head_t waitq;
35         struct irq_work work;
36         u64 mask;
37         struct page **pages;
38         int nr_pages;
39         spinlock_t spinlock ____cacheline_aligned_in_smp;
40         /* Consumer and producer counters are put into separate pages to allow
41          * mapping consumer page as r/w, but restrict producer page to r/o.
42          * This protects producer position from being modified by user-space
43          * application and ruining in-kernel position tracking.
44          */
45         unsigned long consumer_pos __aligned(PAGE_SIZE);
46         unsigned long producer_pos __aligned(PAGE_SIZE);
47         char data[] __aligned(PAGE_SIZE);
48 };
49
50 struct bpf_ringbuf_map {
51         struct bpf_map map;
52         struct bpf_ringbuf *rb;
53 };
54
55 /* 8-byte ring buffer record header structure */
56 struct bpf_ringbuf_hdr {
57         u32 len;
58         u32 pg_off;
59 };
60
61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
62 {
63         const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
64                             __GFP_NOWARN | __GFP_ZERO;
65         int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
66         int nr_data_pages = data_sz >> PAGE_SHIFT;
67         int nr_pages = nr_meta_pages + nr_data_pages;
68         struct page **pages, *page;
69         struct bpf_ringbuf *rb;
70         size_t array_size;
71         int i;
72
73         /* Each data page is mapped twice to allow "virtual"
74          * continuous read of samples wrapping around the end of ring
75          * buffer area:
76          * ------------------------------------------------------
77          * | meta pages |  real data pages  |  same data pages  |
78          * ------------------------------------------------------
79          * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
80          * ------------------------------------------------------
81          * |            | TA             DA | TA             DA |
82          * ------------------------------------------------------
83          *                               ^^^^^^^
84          *                                  |
85          * Here, no need to worry about special handling of wrapped-around
86          * data due to double-mapped data pages. This works both in kernel and
87          * when mmap()'ed in user-space, simplifying both kernel and
88          * user-space implementations significantly.
89          */
90         array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
91         pages = bpf_map_area_alloc(array_size, numa_node);
92         if (!pages)
93                 return NULL;
94
95         for (i = 0; i < nr_pages; i++) {
96                 page = alloc_pages_node(numa_node, flags, 0);
97                 if (!page) {
98                         nr_pages = i;
99                         goto err_free_pages;
100                 }
101                 pages[i] = page;
102                 if (i >= nr_meta_pages)
103                         pages[nr_data_pages + i] = page;
104         }
105
106         rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
107                   VM_ALLOC | VM_USERMAP, PAGE_KERNEL);
108         if (rb) {
109                 kmemleak_not_leak(pages);
110                 rb->pages = pages;
111                 rb->nr_pages = nr_pages;
112                 return rb;
113         }
114
115 err_free_pages:
116         for (i = 0; i < nr_pages; i++)
117                 __free_page(pages[i]);
118         kvfree(pages);
119         return NULL;
120 }
121
122 static void bpf_ringbuf_notify(struct irq_work *work)
123 {
124         struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
125
126         wake_up_all(&rb->waitq);
127 }
128
129 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
130 {
131         struct bpf_ringbuf *rb;
132
133         rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
134         if (!rb)
135                 return NULL;
136
137         spin_lock_init(&rb->spinlock);
138         init_waitqueue_head(&rb->waitq);
139         init_irq_work(&rb->work, bpf_ringbuf_notify);
140
141         rb->mask = data_sz - 1;
142         rb->consumer_pos = 0;
143         rb->producer_pos = 0;
144
145         return rb;
146 }
147
148 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
149 {
150         struct bpf_ringbuf_map *rb_map;
151
152         if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
153                 return ERR_PTR(-EINVAL);
154
155         if (attr->key_size || attr->value_size ||
156             !is_power_of_2(attr->max_entries) ||
157             !PAGE_ALIGNED(attr->max_entries))
158                 return ERR_PTR(-EINVAL);
159
160 #ifdef CONFIG_64BIT
161         /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
162         if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
163                 return ERR_PTR(-E2BIG);
164 #endif
165
166         rb_map = kzalloc(sizeof(*rb_map), GFP_USER | __GFP_ACCOUNT);
167         if (!rb_map)
168                 return ERR_PTR(-ENOMEM);
169
170         bpf_map_init_from_attr(&rb_map->map, attr);
171
172         rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
173         if (!rb_map->rb) {
174                 kfree(rb_map);
175                 return ERR_PTR(-ENOMEM);
176         }
177
178         return &rb_map->map;
179 }
180
181 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
182 {
183         /* copy pages pointer and nr_pages to local variable, as we are going
184          * to unmap rb itself with vunmap() below
185          */
186         struct page **pages = rb->pages;
187         int i, nr_pages = rb->nr_pages;
188
189         vunmap(rb);
190         for (i = 0; i < nr_pages; i++)
191                 __free_page(pages[i]);
192         kvfree(pages);
193 }
194
195 static void ringbuf_map_free(struct bpf_map *map)
196 {
197         struct bpf_ringbuf_map *rb_map;
198
199         rb_map = container_of(map, struct bpf_ringbuf_map, map);
200         bpf_ringbuf_free(rb_map->rb);
201         kfree(rb_map);
202 }
203
204 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
205 {
206         return ERR_PTR(-ENOTSUPP);
207 }
208
209 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
210                                    u64 flags)
211 {
212         return -ENOTSUPP;
213 }
214
215 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
216 {
217         return -ENOTSUPP;
218 }
219
220 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
221                                     void *next_key)
222 {
223         return -ENOTSUPP;
224 }
225
226 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
227 {
228         struct bpf_ringbuf_map *rb_map;
229
230         rb_map = container_of(map, struct bpf_ringbuf_map, map);
231
232         if (vma->vm_flags & VM_WRITE) {
233                 /* allow writable mapping for the consumer_pos only */
234                 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
235                         return -EPERM;
236         } else {
237                 vma->vm_flags &= ~VM_MAYWRITE;
238         }
239         /* remap_vmalloc_range() checks size and offset constraints */
240         return remap_vmalloc_range(vma, rb_map->rb,
241                                    vma->vm_pgoff + RINGBUF_PGOFF);
242 }
243
244 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
245 {
246         unsigned long cons_pos, prod_pos;
247
248         cons_pos = smp_load_acquire(&rb->consumer_pos);
249         prod_pos = smp_load_acquire(&rb->producer_pos);
250         return prod_pos - cons_pos;
251 }
252
253 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
254                                  struct poll_table_struct *pts)
255 {
256         struct bpf_ringbuf_map *rb_map;
257
258         rb_map = container_of(map, struct bpf_ringbuf_map, map);
259         poll_wait(filp, &rb_map->rb->waitq, pts);
260
261         if (ringbuf_avail_data_sz(rb_map->rb))
262                 return EPOLLIN | EPOLLRDNORM;
263         return 0;
264 }
265
266 static int ringbuf_map_btf_id;
267 const struct bpf_map_ops ringbuf_map_ops = {
268         .map_meta_equal = bpf_map_meta_equal,
269         .map_alloc = ringbuf_map_alloc,
270         .map_free = ringbuf_map_free,
271         .map_mmap = ringbuf_map_mmap,
272         .map_poll = ringbuf_map_poll,
273         .map_lookup_elem = ringbuf_map_lookup_elem,
274         .map_update_elem = ringbuf_map_update_elem,
275         .map_delete_elem = ringbuf_map_delete_elem,
276         .map_get_next_key = ringbuf_map_get_next_key,
277         .map_btf_name = "bpf_ringbuf_map",
278         .map_btf_id = &ringbuf_map_btf_id,
279 };
280
281 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
282  * calculate offset from record metadata to ring buffer in pages, rounded
283  * down. This page offset is stored as part of record metadata and allows to
284  * restore struct bpf_ringbuf * from record pointer. This page offset is
285  * stored at offset 4 of record metadata header.
286  */
287 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
288                                      struct bpf_ringbuf_hdr *hdr)
289 {
290         return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
291 }
292
293 /* Given pointer to ring buffer record header, restore pointer to struct
294  * bpf_ringbuf itself by using page offset stored at offset 4
295  */
296 static struct bpf_ringbuf *
297 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
298 {
299         unsigned long addr = (unsigned long)(void *)hdr;
300         unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
301
302         return (void*)((addr & PAGE_MASK) - off);
303 }
304
305 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
306 {
307         unsigned long cons_pos, prod_pos, new_prod_pos, flags;
308         u32 len, pg_off;
309         struct bpf_ringbuf_hdr *hdr;
310
311         if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
312                 return NULL;
313
314         len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
315         if (len > rb->mask + 1)
316                 return NULL;
317
318         cons_pos = smp_load_acquire(&rb->consumer_pos);
319
320         if (in_nmi()) {
321                 if (!spin_trylock_irqsave(&rb->spinlock, flags))
322                         return NULL;
323         } else {
324                 spin_lock_irqsave(&rb->spinlock, flags);
325         }
326
327         prod_pos = rb->producer_pos;
328         new_prod_pos = prod_pos + len;
329
330         /* check for out of ringbuf space by ensuring producer position
331          * doesn't advance more than (ringbuf_size - 1) ahead
332          */
333         if (new_prod_pos - cons_pos > rb->mask) {
334                 spin_unlock_irqrestore(&rb->spinlock, flags);
335                 return NULL;
336         }
337
338         hdr = (void *)rb->data + (prod_pos & rb->mask);
339         pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
340         hdr->len = size | BPF_RINGBUF_BUSY_BIT;
341         hdr->pg_off = pg_off;
342
343         /* pairs with consumer's smp_load_acquire() */
344         smp_store_release(&rb->producer_pos, new_prod_pos);
345
346         spin_unlock_irqrestore(&rb->spinlock, flags);
347
348         return (void *)hdr + BPF_RINGBUF_HDR_SZ;
349 }
350
351 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
352 {
353         struct bpf_ringbuf_map *rb_map;
354
355         if (unlikely(flags))
356                 return 0;
357
358         rb_map = container_of(map, struct bpf_ringbuf_map, map);
359         return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
360 }
361
362 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
363         .func           = bpf_ringbuf_reserve,
364         .ret_type       = RET_PTR_TO_ALLOC_MEM_OR_NULL,
365         .arg1_type      = ARG_CONST_MAP_PTR,
366         .arg2_type      = ARG_CONST_ALLOC_SIZE_OR_ZERO,
367         .arg3_type      = ARG_ANYTHING,
368 };
369
370 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
371 {
372         unsigned long rec_pos, cons_pos;
373         struct bpf_ringbuf_hdr *hdr;
374         struct bpf_ringbuf *rb;
375         u32 new_len;
376
377         hdr = sample - BPF_RINGBUF_HDR_SZ;
378         rb = bpf_ringbuf_restore_from_rec(hdr);
379         new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
380         if (discard)
381                 new_len |= BPF_RINGBUF_DISCARD_BIT;
382
383         /* update record header with correct final size prefix */
384         xchg(&hdr->len, new_len);
385
386         /* if consumer caught up and is waiting for our record, notify about
387          * new data availability
388          */
389         rec_pos = (void *)hdr - (void *)rb->data;
390         cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
391
392         if (flags & BPF_RB_FORCE_WAKEUP)
393                 irq_work_queue(&rb->work);
394         else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
395                 irq_work_queue(&rb->work);
396 }
397
398 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
399 {
400         bpf_ringbuf_commit(sample, flags, false /* discard */);
401         return 0;
402 }
403
404 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
405         .func           = bpf_ringbuf_submit,
406         .ret_type       = RET_VOID,
407         .arg1_type      = ARG_PTR_TO_ALLOC_MEM,
408         .arg2_type      = ARG_ANYTHING,
409 };
410
411 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
412 {
413         bpf_ringbuf_commit(sample, flags, true /* discard */);
414         return 0;
415 }
416
417 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
418         .func           = bpf_ringbuf_discard,
419         .ret_type       = RET_VOID,
420         .arg1_type      = ARG_PTR_TO_ALLOC_MEM,
421         .arg2_type      = ARG_ANYTHING,
422 };
423
424 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
425            u64, flags)
426 {
427         struct bpf_ringbuf_map *rb_map;
428         void *rec;
429
430         if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
431                 return -EINVAL;
432
433         rb_map = container_of(map, struct bpf_ringbuf_map, map);
434         rec = __bpf_ringbuf_reserve(rb_map->rb, size);
435         if (!rec)
436                 return -EAGAIN;
437
438         memcpy(rec, data, size);
439         bpf_ringbuf_commit(rec, flags, false /* discard */);
440         return 0;
441 }
442
443 const struct bpf_func_proto bpf_ringbuf_output_proto = {
444         .func           = bpf_ringbuf_output,
445         .ret_type       = RET_INTEGER,
446         .arg1_type      = ARG_CONST_MAP_PTR,
447         .arg2_type      = ARG_PTR_TO_MEM,
448         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
449         .arg4_type      = ARG_ANYTHING,
450 };
451
452 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
453 {
454         struct bpf_ringbuf *rb;
455
456         rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
457
458         switch (flags) {
459         case BPF_RB_AVAIL_DATA:
460                 return ringbuf_avail_data_sz(rb);
461         case BPF_RB_RING_SIZE:
462                 return rb->mask + 1;
463         case BPF_RB_CONS_POS:
464                 return smp_load_acquire(&rb->consumer_pos);
465         case BPF_RB_PROD_POS:
466                 return smp_load_acquire(&rb->producer_pos);
467         default:
468                 return 0;
469         }
470 }
471
472 const struct bpf_func_proto bpf_ringbuf_query_proto = {
473         .func           = bpf_ringbuf_query,
474         .ret_type       = RET_INTEGER,
475         .arg1_type      = ARG_CONST_MAP_PTR,
476         .arg2_type      = ARG_ANYTHING,
477 };