Merge tag 'dax-fixes-5.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[linux-2.6-microblaze.git] / kernel / bpf / hashtab.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16
17 #define HTAB_CREATE_FLAG_MASK                                           \
18         (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |    \
19          BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20
21 #define BATCH_OPS(_name)                        \
22         .map_lookup_batch =                     \
23         _name##_map_lookup_batch,               \
24         .map_lookup_and_delete_batch =          \
25         _name##_map_lookup_and_delete_batch,    \
26         .map_update_batch =                     \
27         generic_map_update_batch,               \
28         .map_delete_batch =                     \
29         generic_map_delete_batch
30
31 /*
32  * The bucket lock has two protection scopes:
33  *
34  * 1) Serializing concurrent operations from BPF programs on different
35  *    CPUs
36  *
37  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38  *
39  * BPF programs can execute in any context including perf, kprobes and
40  * tracing. As there are almost no limits where perf, kprobes and tracing
41  * can be invoked from the lock operations need to be protected against
42  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43  * the lock held section when functions which acquire this lock are invoked
44  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45  * variable bpf_prog_active, which prevents BPF programs attached to perf
46  * events, kprobes and tracing to be invoked before the prior invocation
47  * from one of these contexts completed. sys_bpf() uses the same mechanism
48  * by pinning the task to the current CPU and incrementing the recursion
49  * protection accross the map operation.
50  *
51  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52  * operations like memory allocations (even with GFP_ATOMIC) from atomic
53  * contexts. This is required because even with GFP_ATOMIC the memory
54  * allocator calls into code pathes which acquire locks with long held lock
55  * sections. To ensure the deterministic behaviour these locks are regular
56  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57  * true atomic contexts on an RT kernel are the low level hardware
58  * handling, scheduling, low level interrupt handling, NMIs etc. None of
59  * these contexts should ever do memory allocations.
60  *
61  * As regular device interrupt handlers and soft interrupts are forced into
62  * thread context, the existing code which does
63  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64  * just works.
65  *
66  * In theory the BPF locks could be converted to regular spinlocks as well,
67  * but the bucket locks and percpu_freelist locks can be taken from
68  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69  * atomic contexts even on RT. These mechanisms require preallocated maps,
70  * so there is no need to invoke memory allocations within the lock held
71  * sections.
72  *
73  * BPF maps which need dynamic allocation are only used from (forced)
74  * thread context on RT and can therefore use regular spinlocks which in
75  * turn allows to invoke memory allocations from the lock held section.
76  *
77  * On a non RT kernel this distinction is neither possible nor required.
78  * spinlock maps to raw_spinlock and the extra code is optimized out by the
79  * compiler.
80  */
81 struct bucket {
82         struct hlist_nulls_head head;
83         union {
84                 raw_spinlock_t raw_lock;
85                 spinlock_t     lock;
86         };
87 };
88
89 #define HASHTAB_MAP_LOCK_COUNT 8
90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
91
92 struct bpf_htab {
93         struct bpf_map map;
94         struct bucket *buckets;
95         void *elems;
96         union {
97                 struct pcpu_freelist freelist;
98                 struct bpf_lru lru;
99         };
100         struct htab_elem *__percpu *extra_elems;
101         atomic_t count; /* number of elements in this hashtable */
102         u32 n_buckets;  /* number of hash buckets */
103         u32 elem_size;  /* size of each element in bytes */
104         u32 hashrnd;
105         struct lock_class_key lockdep_key;
106         int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
107 };
108
109 /* each htab element is struct htab_elem + key + value */
110 struct htab_elem {
111         union {
112                 struct hlist_nulls_node hash_node;
113                 struct {
114                         void *padding;
115                         union {
116                                 struct bpf_htab *htab;
117                                 struct pcpu_freelist_node fnode;
118                                 struct htab_elem *batch_flink;
119                         };
120                 };
121         };
122         union {
123                 struct rcu_head rcu;
124                 struct bpf_lru_node lru_node;
125         };
126         u32 hash;
127         char key[] __aligned(8);
128 };
129
130 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
131 {
132         return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
133 }
134
135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
136 {
137         return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
138 }
139
140 static void htab_init_buckets(struct bpf_htab *htab)
141 {
142         unsigned i;
143
144         for (i = 0; i < htab->n_buckets; i++) {
145                 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
146                 if (htab_use_raw_lock(htab)) {
147                         raw_spin_lock_init(&htab->buckets[i].raw_lock);
148                         lockdep_set_class(&htab->buckets[i].raw_lock,
149                                           &htab->lockdep_key);
150                 } else {
151                         spin_lock_init(&htab->buckets[i].lock);
152                         lockdep_set_class(&htab->buckets[i].lock,
153                                           &htab->lockdep_key);
154                 }
155                 cond_resched();
156         }
157 }
158
159 static inline int htab_lock_bucket(const struct bpf_htab *htab,
160                                    struct bucket *b, u32 hash,
161                                    unsigned long *pflags)
162 {
163         unsigned long flags;
164
165         hash = hash & HASHTAB_MAP_LOCK_MASK;
166
167         migrate_disable();
168         if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
169                 __this_cpu_dec(*(htab->map_locked[hash]));
170                 migrate_enable();
171                 return -EBUSY;
172         }
173
174         if (htab_use_raw_lock(htab))
175                 raw_spin_lock_irqsave(&b->raw_lock, flags);
176         else
177                 spin_lock_irqsave(&b->lock, flags);
178         *pflags = flags;
179
180         return 0;
181 }
182
183 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
184                                       struct bucket *b, u32 hash,
185                                       unsigned long flags)
186 {
187         hash = hash & HASHTAB_MAP_LOCK_MASK;
188         if (htab_use_raw_lock(htab))
189                 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
190         else
191                 spin_unlock_irqrestore(&b->lock, flags);
192         __this_cpu_dec(*(htab->map_locked[hash]));
193         migrate_enable();
194 }
195
196 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
197
198 static bool htab_is_lru(const struct bpf_htab *htab)
199 {
200         return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
201                 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
202 }
203
204 static bool htab_is_percpu(const struct bpf_htab *htab)
205 {
206         return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
207                 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
208 }
209
210 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
211                                      void __percpu *pptr)
212 {
213         *(void __percpu **)(l->key + key_size) = pptr;
214 }
215
216 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
217 {
218         return *(void __percpu **)(l->key + key_size);
219 }
220
221 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
222 {
223         return *(void **)(l->key + roundup(map->key_size, 8));
224 }
225
226 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
227 {
228         return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
229 }
230
231 static void htab_free_elems(struct bpf_htab *htab)
232 {
233         int i;
234
235         if (!htab_is_percpu(htab))
236                 goto free_elems;
237
238         for (i = 0; i < htab->map.max_entries; i++) {
239                 void __percpu *pptr;
240
241                 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
242                                          htab->map.key_size);
243                 free_percpu(pptr);
244                 cond_resched();
245         }
246 free_elems:
247         bpf_map_area_free(htab->elems);
248 }
249
250 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
251  * (bucket_lock). If both locks need to be acquired together, the lock
252  * order is always lru_lock -> bucket_lock and this only happens in
253  * bpf_lru_list.c logic. For example, certain code path of
254  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
255  * will acquire lru_lock first followed by acquiring bucket_lock.
256  *
257  * In hashtab.c, to avoid deadlock, lock acquisition of
258  * bucket_lock followed by lru_lock is not allowed. In such cases,
259  * bucket_lock needs to be released first before acquiring lru_lock.
260  */
261 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
262                                           u32 hash)
263 {
264         struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
265         struct htab_elem *l;
266
267         if (node) {
268                 l = container_of(node, struct htab_elem, lru_node);
269                 memcpy(l->key, key, htab->map.key_size);
270                 return l;
271         }
272
273         return NULL;
274 }
275
276 static int prealloc_init(struct bpf_htab *htab)
277 {
278         u32 num_entries = htab->map.max_entries;
279         int err = -ENOMEM, i;
280
281         if (!htab_is_percpu(htab) && !htab_is_lru(htab))
282                 num_entries += num_possible_cpus();
283
284         htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
285                                          htab->map.numa_node);
286         if (!htab->elems)
287                 return -ENOMEM;
288
289         if (!htab_is_percpu(htab))
290                 goto skip_percpu_elems;
291
292         for (i = 0; i < num_entries; i++) {
293                 u32 size = round_up(htab->map.value_size, 8);
294                 void __percpu *pptr;
295
296                 pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
297                                             GFP_USER | __GFP_NOWARN);
298                 if (!pptr)
299                         goto free_elems;
300                 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
301                                   pptr);
302                 cond_resched();
303         }
304
305 skip_percpu_elems:
306         if (htab_is_lru(htab))
307                 err = bpf_lru_init(&htab->lru,
308                                    htab->map.map_flags & BPF_F_NO_COMMON_LRU,
309                                    offsetof(struct htab_elem, hash) -
310                                    offsetof(struct htab_elem, lru_node),
311                                    htab_lru_map_delete_node,
312                                    htab);
313         else
314                 err = pcpu_freelist_init(&htab->freelist);
315
316         if (err)
317                 goto free_elems;
318
319         if (htab_is_lru(htab))
320                 bpf_lru_populate(&htab->lru, htab->elems,
321                                  offsetof(struct htab_elem, lru_node),
322                                  htab->elem_size, num_entries);
323         else
324                 pcpu_freelist_populate(&htab->freelist,
325                                        htab->elems + offsetof(struct htab_elem, fnode),
326                                        htab->elem_size, num_entries);
327
328         return 0;
329
330 free_elems:
331         htab_free_elems(htab);
332         return err;
333 }
334
335 static void prealloc_destroy(struct bpf_htab *htab)
336 {
337         htab_free_elems(htab);
338
339         if (htab_is_lru(htab))
340                 bpf_lru_destroy(&htab->lru);
341         else
342                 pcpu_freelist_destroy(&htab->freelist);
343 }
344
345 static int alloc_extra_elems(struct bpf_htab *htab)
346 {
347         struct htab_elem *__percpu *pptr, *l_new;
348         struct pcpu_freelist_node *l;
349         int cpu;
350
351         pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
352                                     GFP_USER | __GFP_NOWARN);
353         if (!pptr)
354                 return -ENOMEM;
355
356         for_each_possible_cpu(cpu) {
357                 l = pcpu_freelist_pop(&htab->freelist);
358                 /* pop will succeed, since prealloc_init()
359                  * preallocated extra num_possible_cpus elements
360                  */
361                 l_new = container_of(l, struct htab_elem, fnode);
362                 *per_cpu_ptr(pptr, cpu) = l_new;
363         }
364         htab->extra_elems = pptr;
365         return 0;
366 }
367
368 /* Called from syscall */
369 static int htab_map_alloc_check(union bpf_attr *attr)
370 {
371         bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
372                        attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
373         bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
374                     attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
375         /* percpu_lru means each cpu has its own LRU list.
376          * it is different from BPF_MAP_TYPE_PERCPU_HASH where
377          * the map's value itself is percpu.  percpu_lru has
378          * nothing to do with the map's value.
379          */
380         bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
381         bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
382         bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
383         int numa_node = bpf_map_attr_numa_node(attr);
384
385         BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
386                      offsetof(struct htab_elem, hash_node.pprev));
387         BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
388                      offsetof(struct htab_elem, hash_node.pprev));
389
390         if (lru && !bpf_capable())
391                 /* LRU implementation is much complicated than other
392                  * maps.  Hence, limit to CAP_BPF.
393                  */
394                 return -EPERM;
395
396         if (zero_seed && !capable(CAP_SYS_ADMIN))
397                 /* Guard against local DoS, and discourage production use. */
398                 return -EPERM;
399
400         if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
401             !bpf_map_flags_access_ok(attr->map_flags))
402                 return -EINVAL;
403
404         if (!lru && percpu_lru)
405                 return -EINVAL;
406
407         if (lru && !prealloc)
408                 return -ENOTSUPP;
409
410         if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
411                 return -EINVAL;
412
413         /* check sanity of attributes.
414          * value_size == 0 may be allowed in the future to use map as a set
415          */
416         if (attr->max_entries == 0 || attr->key_size == 0 ||
417             attr->value_size == 0)
418                 return -EINVAL;
419
420         if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
421            sizeof(struct htab_elem))
422                 /* if key_size + value_size is bigger, the user space won't be
423                  * able to access the elements via bpf syscall. This check
424                  * also makes sure that the elem_size doesn't overflow and it's
425                  * kmalloc-able later in htab_map_update_elem()
426                  */
427                 return -E2BIG;
428
429         return 0;
430 }
431
432 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
433 {
434         bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
435                        attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
436         bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
437                     attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
438         /* percpu_lru means each cpu has its own LRU list.
439          * it is different from BPF_MAP_TYPE_PERCPU_HASH where
440          * the map's value itself is percpu.  percpu_lru has
441          * nothing to do with the map's value.
442          */
443         bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
444         bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
445         struct bpf_htab *htab;
446         int err, i;
447
448         htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
449         if (!htab)
450                 return ERR_PTR(-ENOMEM);
451
452         lockdep_register_key(&htab->lockdep_key);
453
454         bpf_map_init_from_attr(&htab->map, attr);
455
456         if (percpu_lru) {
457                 /* ensure each CPU's lru list has >=1 elements.
458                  * since we are at it, make each lru list has the same
459                  * number of elements.
460                  */
461                 htab->map.max_entries = roundup(attr->max_entries,
462                                                 num_possible_cpus());
463                 if (htab->map.max_entries < attr->max_entries)
464                         htab->map.max_entries = rounddown(attr->max_entries,
465                                                           num_possible_cpus());
466         }
467
468         /* hash table size must be power of 2 */
469         htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
470
471         htab->elem_size = sizeof(struct htab_elem) +
472                           round_up(htab->map.key_size, 8);
473         if (percpu)
474                 htab->elem_size += sizeof(void *);
475         else
476                 htab->elem_size += round_up(htab->map.value_size, 8);
477
478         err = -E2BIG;
479         /* prevent zero size kmalloc and check for u32 overflow */
480         if (htab->n_buckets == 0 ||
481             htab->n_buckets > U32_MAX / sizeof(struct bucket))
482                 goto free_htab;
483
484         err = -ENOMEM;
485         htab->buckets = bpf_map_area_alloc(htab->n_buckets *
486                                            sizeof(struct bucket),
487                                            htab->map.numa_node);
488         if (!htab->buckets)
489                 goto free_htab;
490
491         for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
492                 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
493                                                            sizeof(int),
494                                                            sizeof(int),
495                                                            GFP_USER);
496                 if (!htab->map_locked[i])
497                         goto free_map_locked;
498         }
499
500         if (htab->map.map_flags & BPF_F_ZERO_SEED)
501                 htab->hashrnd = 0;
502         else
503                 htab->hashrnd = get_random_int();
504
505         htab_init_buckets(htab);
506
507         if (prealloc) {
508                 err = prealloc_init(htab);
509                 if (err)
510                         goto free_map_locked;
511
512                 if (!percpu && !lru) {
513                         /* lru itself can remove the least used element, so
514                          * there is no need for an extra elem during map_update.
515                          */
516                         err = alloc_extra_elems(htab);
517                         if (err)
518                                 goto free_prealloc;
519                 }
520         }
521
522         return &htab->map;
523
524 free_prealloc:
525         prealloc_destroy(htab);
526 free_map_locked:
527         for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
528                 free_percpu(htab->map_locked[i]);
529         bpf_map_area_free(htab->buckets);
530 free_htab:
531         lockdep_unregister_key(&htab->lockdep_key);
532         kfree(htab);
533         return ERR_PTR(err);
534 }
535
536 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
537 {
538         return jhash(key, key_len, hashrnd);
539 }
540
541 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
542 {
543         return &htab->buckets[hash & (htab->n_buckets - 1)];
544 }
545
546 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
547 {
548         return &__select_bucket(htab, hash)->head;
549 }
550
551 /* this lookup function can only be called with bucket lock taken */
552 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
553                                          void *key, u32 key_size)
554 {
555         struct hlist_nulls_node *n;
556         struct htab_elem *l;
557
558         hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
559                 if (l->hash == hash && !memcmp(&l->key, key, key_size))
560                         return l;
561
562         return NULL;
563 }
564
565 /* can be called without bucket lock. it will repeat the loop in
566  * the unlikely event when elements moved from one bucket into another
567  * while link list is being walked
568  */
569 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
570                                                u32 hash, void *key,
571                                                u32 key_size, u32 n_buckets)
572 {
573         struct hlist_nulls_node *n;
574         struct htab_elem *l;
575
576 again:
577         hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
578                 if (l->hash == hash && !memcmp(&l->key, key, key_size))
579                         return l;
580
581         if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
582                 goto again;
583
584         return NULL;
585 }
586
587 /* Called from syscall or from eBPF program directly, so
588  * arguments have to match bpf_map_lookup_elem() exactly.
589  * The return value is adjusted by BPF instructions
590  * in htab_map_gen_lookup().
591  */
592 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
593 {
594         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
595         struct hlist_nulls_head *head;
596         struct htab_elem *l;
597         u32 hash, key_size;
598
599         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
600
601         key_size = map->key_size;
602
603         hash = htab_map_hash(key, key_size, htab->hashrnd);
604
605         head = select_bucket(htab, hash);
606
607         l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
608
609         return l;
610 }
611
612 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
613 {
614         struct htab_elem *l = __htab_map_lookup_elem(map, key);
615
616         if (l)
617                 return l->key + round_up(map->key_size, 8);
618
619         return NULL;
620 }
621
622 /* inline bpf_map_lookup_elem() call.
623  * Instead of:
624  * bpf_prog
625  *   bpf_map_lookup_elem
626  *     map->ops->map_lookup_elem
627  *       htab_map_lookup_elem
628  *         __htab_map_lookup_elem
629  * do:
630  * bpf_prog
631  *   __htab_map_lookup_elem
632  */
633 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
634 {
635         struct bpf_insn *insn = insn_buf;
636         const int ret = BPF_REG_0;
637
638         BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
639                      (void *(*)(struct bpf_map *map, void *key))NULL));
640         *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
641         *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
642         *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
643                                 offsetof(struct htab_elem, key) +
644                                 round_up(map->key_size, 8));
645         return insn - insn_buf;
646 }
647
648 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
649                                                         void *key, const bool mark)
650 {
651         struct htab_elem *l = __htab_map_lookup_elem(map, key);
652
653         if (l) {
654                 if (mark)
655                         bpf_lru_node_set_ref(&l->lru_node);
656                 return l->key + round_up(map->key_size, 8);
657         }
658
659         return NULL;
660 }
661
662 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
663 {
664         return __htab_lru_map_lookup_elem(map, key, true);
665 }
666
667 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
668 {
669         return __htab_lru_map_lookup_elem(map, key, false);
670 }
671
672 static int htab_lru_map_gen_lookup(struct bpf_map *map,
673                                    struct bpf_insn *insn_buf)
674 {
675         struct bpf_insn *insn = insn_buf;
676         const int ret = BPF_REG_0;
677         const int ref_reg = BPF_REG_1;
678
679         BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
680                      (void *(*)(struct bpf_map *map, void *key))NULL));
681         *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
682         *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
683         *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
684                               offsetof(struct htab_elem, lru_node) +
685                               offsetof(struct bpf_lru_node, ref));
686         *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
687         *insn++ = BPF_ST_MEM(BPF_B, ret,
688                              offsetof(struct htab_elem, lru_node) +
689                              offsetof(struct bpf_lru_node, ref),
690                              1);
691         *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
692                                 offsetof(struct htab_elem, key) +
693                                 round_up(map->key_size, 8));
694         return insn - insn_buf;
695 }
696
697 /* It is called from the bpf_lru_list when the LRU needs to delete
698  * older elements from the htab.
699  */
700 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
701 {
702         struct bpf_htab *htab = (struct bpf_htab *)arg;
703         struct htab_elem *l = NULL, *tgt_l;
704         struct hlist_nulls_head *head;
705         struct hlist_nulls_node *n;
706         unsigned long flags;
707         struct bucket *b;
708         int ret;
709
710         tgt_l = container_of(node, struct htab_elem, lru_node);
711         b = __select_bucket(htab, tgt_l->hash);
712         head = &b->head;
713
714         ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
715         if (ret)
716                 return false;
717
718         hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
719                 if (l == tgt_l) {
720                         hlist_nulls_del_rcu(&l->hash_node);
721                         break;
722                 }
723
724         htab_unlock_bucket(htab, b, tgt_l->hash, flags);
725
726         return l == tgt_l;
727 }
728
729 /* Called from syscall */
730 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
731 {
732         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
733         struct hlist_nulls_head *head;
734         struct htab_elem *l, *next_l;
735         u32 hash, key_size;
736         int i = 0;
737
738         WARN_ON_ONCE(!rcu_read_lock_held());
739
740         key_size = map->key_size;
741
742         if (!key)
743                 goto find_first_elem;
744
745         hash = htab_map_hash(key, key_size, htab->hashrnd);
746
747         head = select_bucket(htab, hash);
748
749         /* lookup the key */
750         l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
751
752         if (!l)
753                 goto find_first_elem;
754
755         /* key was found, get next key in the same bucket */
756         next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
757                                   struct htab_elem, hash_node);
758
759         if (next_l) {
760                 /* if next elem in this hash list is non-zero, just return it */
761                 memcpy(next_key, next_l->key, key_size);
762                 return 0;
763         }
764
765         /* no more elements in this hash list, go to the next bucket */
766         i = hash & (htab->n_buckets - 1);
767         i++;
768
769 find_first_elem:
770         /* iterate over buckets */
771         for (; i < htab->n_buckets; i++) {
772                 head = select_bucket(htab, i);
773
774                 /* pick first element in the bucket */
775                 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
776                                           struct htab_elem, hash_node);
777                 if (next_l) {
778                         /* if it's not empty, just return it */
779                         memcpy(next_key, next_l->key, key_size);
780                         return 0;
781                 }
782         }
783
784         /* iterated over all buckets and all elements */
785         return -ENOENT;
786 }
787
788 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
789 {
790         if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
791                 free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
792         kfree(l);
793 }
794
795 static void htab_elem_free_rcu(struct rcu_head *head)
796 {
797         struct htab_elem *l = container_of(head, struct htab_elem, rcu);
798         struct bpf_htab *htab = l->htab;
799
800         htab_elem_free(htab, l);
801 }
802
803 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
804 {
805         struct bpf_map *map = &htab->map;
806         void *ptr;
807
808         if (map->ops->map_fd_put_ptr) {
809                 ptr = fd_htab_map_get_ptr(map, l);
810                 map->ops->map_fd_put_ptr(ptr);
811         }
812 }
813
814 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
815 {
816         htab_put_fd_value(htab, l);
817
818         if (htab_is_prealloc(htab)) {
819                 __pcpu_freelist_push(&htab->freelist, &l->fnode);
820         } else {
821                 atomic_dec(&htab->count);
822                 l->htab = htab;
823                 call_rcu(&l->rcu, htab_elem_free_rcu);
824         }
825 }
826
827 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
828                             void *value, bool onallcpus)
829 {
830         if (!onallcpus) {
831                 /* copy true value_size bytes */
832                 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
833         } else {
834                 u32 size = round_up(htab->map.value_size, 8);
835                 int off = 0, cpu;
836
837                 for_each_possible_cpu(cpu) {
838                         bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
839                                         value + off, size);
840                         off += size;
841                 }
842         }
843 }
844
845 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
846                             void *value, bool onallcpus)
847 {
848         /* When using prealloc and not setting the initial value on all cpus,
849          * zero-fill element values for other cpus (just as what happens when
850          * not using prealloc). Otherwise, bpf program has no way to ensure
851          * known initial values for cpus other than current one
852          * (onallcpus=false always when coming from bpf prog).
853          */
854         if (htab_is_prealloc(htab) && !onallcpus) {
855                 u32 size = round_up(htab->map.value_size, 8);
856                 int current_cpu = raw_smp_processor_id();
857                 int cpu;
858
859                 for_each_possible_cpu(cpu) {
860                         if (cpu == current_cpu)
861                                 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
862                                                 size);
863                         else
864                                 memset(per_cpu_ptr(pptr, cpu), 0, size);
865                 }
866         } else {
867                 pcpu_copy_value(htab, pptr, value, onallcpus);
868         }
869 }
870
871 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
872 {
873         return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
874                BITS_PER_LONG == 64;
875 }
876
877 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
878                                          void *value, u32 key_size, u32 hash,
879                                          bool percpu, bool onallcpus,
880                                          struct htab_elem *old_elem)
881 {
882         u32 size = htab->map.value_size;
883         bool prealloc = htab_is_prealloc(htab);
884         struct htab_elem *l_new, **pl_new;
885         void __percpu *pptr;
886
887         if (prealloc) {
888                 if (old_elem) {
889                         /* if we're updating the existing element,
890                          * use per-cpu extra elems to avoid freelist_pop/push
891                          */
892                         pl_new = this_cpu_ptr(htab->extra_elems);
893                         l_new = *pl_new;
894                         htab_put_fd_value(htab, old_elem);
895                         *pl_new = old_elem;
896                 } else {
897                         struct pcpu_freelist_node *l;
898
899                         l = __pcpu_freelist_pop(&htab->freelist);
900                         if (!l)
901                                 return ERR_PTR(-E2BIG);
902                         l_new = container_of(l, struct htab_elem, fnode);
903                 }
904         } else {
905                 if (atomic_inc_return(&htab->count) > htab->map.max_entries)
906                         if (!old_elem) {
907                                 /* when map is full and update() is replacing
908                                  * old element, it's ok to allocate, since
909                                  * old element will be freed immediately.
910                                  * Otherwise return an error
911                                  */
912                                 l_new = ERR_PTR(-E2BIG);
913                                 goto dec_count;
914                         }
915                 l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
916                                              GFP_ATOMIC | __GFP_NOWARN,
917                                              htab->map.numa_node);
918                 if (!l_new) {
919                         l_new = ERR_PTR(-ENOMEM);
920                         goto dec_count;
921                 }
922                 check_and_init_map_lock(&htab->map,
923                                         l_new->key + round_up(key_size, 8));
924         }
925
926         memcpy(l_new->key, key, key_size);
927         if (percpu) {
928                 size = round_up(size, 8);
929                 if (prealloc) {
930                         pptr = htab_elem_get_ptr(l_new, key_size);
931                 } else {
932                         /* alloc_percpu zero-fills */
933                         pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
934                                                     GFP_ATOMIC | __GFP_NOWARN);
935                         if (!pptr) {
936                                 kfree(l_new);
937                                 l_new = ERR_PTR(-ENOMEM);
938                                 goto dec_count;
939                         }
940                 }
941
942                 pcpu_init_value(htab, pptr, value, onallcpus);
943
944                 if (!prealloc)
945                         htab_elem_set_ptr(l_new, key_size, pptr);
946         } else if (fd_htab_map_needs_adjust(htab)) {
947                 size = round_up(size, 8);
948                 memcpy(l_new->key + round_up(key_size, 8), value, size);
949         } else {
950                 copy_map_value(&htab->map,
951                                l_new->key + round_up(key_size, 8),
952                                value);
953         }
954
955         l_new->hash = hash;
956         return l_new;
957 dec_count:
958         atomic_dec(&htab->count);
959         return l_new;
960 }
961
962 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
963                        u64 map_flags)
964 {
965         if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
966                 /* elem already exists */
967                 return -EEXIST;
968
969         if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
970                 /* elem doesn't exist, cannot update it */
971                 return -ENOENT;
972
973         return 0;
974 }
975
976 /* Called from syscall or from eBPF program */
977 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
978                                 u64 map_flags)
979 {
980         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
981         struct htab_elem *l_new = NULL, *l_old;
982         struct hlist_nulls_head *head;
983         unsigned long flags;
984         struct bucket *b;
985         u32 key_size, hash;
986         int ret;
987
988         if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
989                 /* unknown flags */
990                 return -EINVAL;
991
992         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
993
994         key_size = map->key_size;
995
996         hash = htab_map_hash(key, key_size, htab->hashrnd);
997
998         b = __select_bucket(htab, hash);
999         head = &b->head;
1000
1001         if (unlikely(map_flags & BPF_F_LOCK)) {
1002                 if (unlikely(!map_value_has_spin_lock(map)))
1003                         return -EINVAL;
1004                 /* find an element without taking the bucket lock */
1005                 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1006                                               htab->n_buckets);
1007                 ret = check_flags(htab, l_old, map_flags);
1008                 if (ret)
1009                         return ret;
1010                 if (l_old) {
1011                         /* grab the element lock and update value in place */
1012                         copy_map_value_locked(map,
1013                                               l_old->key + round_up(key_size, 8),
1014                                               value, false);
1015                         return 0;
1016                 }
1017                 /* fall through, grab the bucket lock and lookup again.
1018                  * 99.9% chance that the element won't be found,
1019                  * but second lookup under lock has to be done.
1020                  */
1021         }
1022
1023         ret = htab_lock_bucket(htab, b, hash, &flags);
1024         if (ret)
1025                 return ret;
1026
1027         l_old = lookup_elem_raw(head, hash, key, key_size);
1028
1029         ret = check_flags(htab, l_old, map_flags);
1030         if (ret)
1031                 goto err;
1032
1033         if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1034                 /* first lookup without the bucket lock didn't find the element,
1035                  * but second lookup with the bucket lock found it.
1036                  * This case is highly unlikely, but has to be dealt with:
1037                  * grab the element lock in addition to the bucket lock
1038                  * and update element in place
1039                  */
1040                 copy_map_value_locked(map,
1041                                       l_old->key + round_up(key_size, 8),
1042                                       value, false);
1043                 ret = 0;
1044                 goto err;
1045         }
1046
1047         l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1048                                 l_old);
1049         if (IS_ERR(l_new)) {
1050                 /* all pre-allocated elements are in use or memory exhausted */
1051                 ret = PTR_ERR(l_new);
1052                 goto err;
1053         }
1054
1055         /* add new element to the head of the list, so that
1056          * concurrent search will find it before old elem
1057          */
1058         hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1059         if (l_old) {
1060                 hlist_nulls_del_rcu(&l_old->hash_node);
1061                 if (!htab_is_prealloc(htab))
1062                         free_htab_elem(htab, l_old);
1063         }
1064         ret = 0;
1065 err:
1066         htab_unlock_bucket(htab, b, hash, flags);
1067         return ret;
1068 }
1069
1070 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1071                                     u64 map_flags)
1072 {
1073         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1074         struct htab_elem *l_new, *l_old = NULL;
1075         struct hlist_nulls_head *head;
1076         unsigned long flags;
1077         struct bucket *b;
1078         u32 key_size, hash;
1079         int ret;
1080
1081         if (unlikely(map_flags > BPF_EXIST))
1082                 /* unknown flags */
1083                 return -EINVAL;
1084
1085         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1086
1087         key_size = map->key_size;
1088
1089         hash = htab_map_hash(key, key_size, htab->hashrnd);
1090
1091         b = __select_bucket(htab, hash);
1092         head = &b->head;
1093
1094         /* For LRU, we need to alloc before taking bucket's
1095          * spinlock because getting free nodes from LRU may need
1096          * to remove older elements from htab and this removal
1097          * operation will need a bucket lock.
1098          */
1099         l_new = prealloc_lru_pop(htab, key, hash);
1100         if (!l_new)
1101                 return -ENOMEM;
1102         memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1103
1104         ret = htab_lock_bucket(htab, b, hash, &flags);
1105         if (ret)
1106                 return ret;
1107
1108         l_old = lookup_elem_raw(head, hash, key, key_size);
1109
1110         ret = check_flags(htab, l_old, map_flags);
1111         if (ret)
1112                 goto err;
1113
1114         /* add new element to the head of the list, so that
1115          * concurrent search will find it before old elem
1116          */
1117         hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1118         if (l_old) {
1119                 bpf_lru_node_set_ref(&l_new->lru_node);
1120                 hlist_nulls_del_rcu(&l_old->hash_node);
1121         }
1122         ret = 0;
1123
1124 err:
1125         htab_unlock_bucket(htab, b, hash, flags);
1126
1127         if (ret)
1128                 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1129         else if (l_old)
1130                 bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1131
1132         return ret;
1133 }
1134
1135 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1136                                          void *value, u64 map_flags,
1137                                          bool onallcpus)
1138 {
1139         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1140         struct htab_elem *l_new = NULL, *l_old;
1141         struct hlist_nulls_head *head;
1142         unsigned long flags;
1143         struct bucket *b;
1144         u32 key_size, hash;
1145         int ret;
1146
1147         if (unlikely(map_flags > BPF_EXIST))
1148                 /* unknown flags */
1149                 return -EINVAL;
1150
1151         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1152
1153         key_size = map->key_size;
1154
1155         hash = htab_map_hash(key, key_size, htab->hashrnd);
1156
1157         b = __select_bucket(htab, hash);
1158         head = &b->head;
1159
1160         ret = htab_lock_bucket(htab, b, hash, &flags);
1161         if (ret)
1162                 return ret;
1163
1164         l_old = lookup_elem_raw(head, hash, key, key_size);
1165
1166         ret = check_flags(htab, l_old, map_flags);
1167         if (ret)
1168                 goto err;
1169
1170         if (l_old) {
1171                 /* per-cpu hash map can update value in-place */
1172                 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1173                                 value, onallcpus);
1174         } else {
1175                 l_new = alloc_htab_elem(htab, key, value, key_size,
1176                                         hash, true, onallcpus, NULL);
1177                 if (IS_ERR(l_new)) {
1178                         ret = PTR_ERR(l_new);
1179                         goto err;
1180                 }
1181                 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1182         }
1183         ret = 0;
1184 err:
1185         htab_unlock_bucket(htab, b, hash, flags);
1186         return ret;
1187 }
1188
1189 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1190                                              void *value, u64 map_flags,
1191                                              bool onallcpus)
1192 {
1193         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1194         struct htab_elem *l_new = NULL, *l_old;
1195         struct hlist_nulls_head *head;
1196         unsigned long flags;
1197         struct bucket *b;
1198         u32 key_size, hash;
1199         int ret;
1200
1201         if (unlikely(map_flags > BPF_EXIST))
1202                 /* unknown flags */
1203                 return -EINVAL;
1204
1205         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1206
1207         key_size = map->key_size;
1208
1209         hash = htab_map_hash(key, key_size, htab->hashrnd);
1210
1211         b = __select_bucket(htab, hash);
1212         head = &b->head;
1213
1214         /* For LRU, we need to alloc before taking bucket's
1215          * spinlock because LRU's elem alloc may need
1216          * to remove older elem from htab and this removal
1217          * operation will need a bucket lock.
1218          */
1219         if (map_flags != BPF_EXIST) {
1220                 l_new = prealloc_lru_pop(htab, key, hash);
1221                 if (!l_new)
1222                         return -ENOMEM;
1223         }
1224
1225         ret = htab_lock_bucket(htab, b, hash, &flags);
1226         if (ret)
1227                 return ret;
1228
1229         l_old = lookup_elem_raw(head, hash, key, key_size);
1230
1231         ret = check_flags(htab, l_old, map_flags);
1232         if (ret)
1233                 goto err;
1234
1235         if (l_old) {
1236                 bpf_lru_node_set_ref(&l_old->lru_node);
1237
1238                 /* per-cpu hash map can update value in-place */
1239                 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1240                                 value, onallcpus);
1241         } else {
1242                 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1243                                 value, onallcpus);
1244                 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1245                 l_new = NULL;
1246         }
1247         ret = 0;
1248 err:
1249         htab_unlock_bucket(htab, b, hash, flags);
1250         if (l_new)
1251                 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1252         return ret;
1253 }
1254
1255 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1256                                        void *value, u64 map_flags)
1257 {
1258         return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1259 }
1260
1261 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1262                                            void *value, u64 map_flags)
1263 {
1264         return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1265                                                  false);
1266 }
1267
1268 /* Called from syscall or from eBPF program */
1269 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1270 {
1271         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1272         struct hlist_nulls_head *head;
1273         struct bucket *b;
1274         struct htab_elem *l;
1275         unsigned long flags;
1276         u32 hash, key_size;
1277         int ret;
1278
1279         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1280
1281         key_size = map->key_size;
1282
1283         hash = htab_map_hash(key, key_size, htab->hashrnd);
1284         b = __select_bucket(htab, hash);
1285         head = &b->head;
1286
1287         ret = htab_lock_bucket(htab, b, hash, &flags);
1288         if (ret)
1289                 return ret;
1290
1291         l = lookup_elem_raw(head, hash, key, key_size);
1292
1293         if (l) {
1294                 hlist_nulls_del_rcu(&l->hash_node);
1295                 free_htab_elem(htab, l);
1296         } else {
1297                 ret = -ENOENT;
1298         }
1299
1300         htab_unlock_bucket(htab, b, hash, flags);
1301         return ret;
1302 }
1303
1304 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1305 {
1306         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1307         struct hlist_nulls_head *head;
1308         struct bucket *b;
1309         struct htab_elem *l;
1310         unsigned long flags;
1311         u32 hash, key_size;
1312         int ret;
1313
1314         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1315
1316         key_size = map->key_size;
1317
1318         hash = htab_map_hash(key, key_size, htab->hashrnd);
1319         b = __select_bucket(htab, hash);
1320         head = &b->head;
1321
1322         ret = htab_lock_bucket(htab, b, hash, &flags);
1323         if (ret)
1324                 return ret;
1325
1326         l = lookup_elem_raw(head, hash, key, key_size);
1327
1328         if (l)
1329                 hlist_nulls_del_rcu(&l->hash_node);
1330         else
1331                 ret = -ENOENT;
1332
1333         htab_unlock_bucket(htab, b, hash, flags);
1334         if (l)
1335                 bpf_lru_push_free(&htab->lru, &l->lru_node);
1336         return ret;
1337 }
1338
1339 static void delete_all_elements(struct bpf_htab *htab)
1340 {
1341         int i;
1342
1343         for (i = 0; i < htab->n_buckets; i++) {
1344                 struct hlist_nulls_head *head = select_bucket(htab, i);
1345                 struct hlist_nulls_node *n;
1346                 struct htab_elem *l;
1347
1348                 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1349                         hlist_nulls_del_rcu(&l->hash_node);
1350                         htab_elem_free(htab, l);
1351                 }
1352         }
1353 }
1354
1355 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1356 static void htab_map_free(struct bpf_map *map)
1357 {
1358         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1359         int i;
1360
1361         /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1362          * bpf_free_used_maps() is called after bpf prog is no longer executing.
1363          * There is no need to synchronize_rcu() here to protect map elements.
1364          */
1365
1366         /* some of free_htab_elem() callbacks for elements of this map may
1367          * not have executed. Wait for them.
1368          */
1369         rcu_barrier();
1370         if (!htab_is_prealloc(htab))
1371                 delete_all_elements(htab);
1372         else
1373                 prealloc_destroy(htab);
1374
1375         free_percpu(htab->extra_elems);
1376         bpf_map_area_free(htab->buckets);
1377         for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1378                 free_percpu(htab->map_locked[i]);
1379         lockdep_unregister_key(&htab->lockdep_key);
1380         kfree(htab);
1381 }
1382
1383 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1384                                    struct seq_file *m)
1385 {
1386         void *value;
1387
1388         rcu_read_lock();
1389
1390         value = htab_map_lookup_elem(map, key);
1391         if (!value) {
1392                 rcu_read_unlock();
1393                 return;
1394         }
1395
1396         btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1397         seq_puts(m, ": ");
1398         btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1399         seq_puts(m, "\n");
1400
1401         rcu_read_unlock();
1402 }
1403
1404 static int
1405 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1406                                    const union bpf_attr *attr,
1407                                    union bpf_attr __user *uattr,
1408                                    bool do_delete, bool is_lru_map,
1409                                    bool is_percpu)
1410 {
1411         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1412         u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1413         void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1414         void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1415         void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1416         void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1417         u32 batch, max_count, size, bucket_size;
1418         struct htab_elem *node_to_free = NULL;
1419         u64 elem_map_flags, map_flags;
1420         struct hlist_nulls_head *head;
1421         struct hlist_nulls_node *n;
1422         unsigned long flags = 0;
1423         bool locked = false;
1424         struct htab_elem *l;
1425         struct bucket *b;
1426         int ret = 0;
1427
1428         elem_map_flags = attr->batch.elem_flags;
1429         if ((elem_map_flags & ~BPF_F_LOCK) ||
1430             ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1431                 return -EINVAL;
1432
1433         map_flags = attr->batch.flags;
1434         if (map_flags)
1435                 return -EINVAL;
1436
1437         max_count = attr->batch.count;
1438         if (!max_count)
1439                 return 0;
1440
1441         if (put_user(0, &uattr->batch.count))
1442                 return -EFAULT;
1443
1444         batch = 0;
1445         if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1446                 return -EFAULT;
1447
1448         if (batch >= htab->n_buckets)
1449                 return -ENOENT;
1450
1451         key_size = htab->map.key_size;
1452         roundup_key_size = round_up(htab->map.key_size, 8);
1453         value_size = htab->map.value_size;
1454         size = round_up(value_size, 8);
1455         if (is_percpu)
1456                 value_size = size * num_possible_cpus();
1457         total = 0;
1458         /* while experimenting with hash tables with sizes ranging from 10 to
1459          * 1000, it was observed that a bucket can have upto 5 entries.
1460          */
1461         bucket_size = 5;
1462
1463 alloc:
1464         /* We cannot do copy_from_user or copy_to_user inside
1465          * the rcu_read_lock. Allocate enough space here.
1466          */
1467         keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1468         values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1469         if (!keys || !values) {
1470                 ret = -ENOMEM;
1471                 goto after_loop;
1472         }
1473
1474 again:
1475         bpf_disable_instrumentation();
1476         rcu_read_lock();
1477 again_nocopy:
1478         dst_key = keys;
1479         dst_val = values;
1480         b = &htab->buckets[batch];
1481         head = &b->head;
1482         /* do not grab the lock unless need it (bucket_cnt > 0). */
1483         if (locked) {
1484                 ret = htab_lock_bucket(htab, b, batch, &flags);
1485                 if (ret)
1486                         goto next_batch;
1487         }
1488
1489         bucket_cnt = 0;
1490         hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1491                 bucket_cnt++;
1492
1493         if (bucket_cnt && !locked) {
1494                 locked = true;
1495                 goto again_nocopy;
1496         }
1497
1498         if (bucket_cnt > (max_count - total)) {
1499                 if (total == 0)
1500                         ret = -ENOSPC;
1501                 /* Note that since bucket_cnt > 0 here, it is implicit
1502                  * that the locked was grabbed, so release it.
1503                  */
1504                 htab_unlock_bucket(htab, b, batch, flags);
1505                 rcu_read_unlock();
1506                 bpf_enable_instrumentation();
1507                 goto after_loop;
1508         }
1509
1510         if (bucket_cnt > bucket_size) {
1511                 bucket_size = bucket_cnt;
1512                 /* Note that since bucket_cnt > 0 here, it is implicit
1513                  * that the locked was grabbed, so release it.
1514                  */
1515                 htab_unlock_bucket(htab, b, batch, flags);
1516                 rcu_read_unlock();
1517                 bpf_enable_instrumentation();
1518                 kvfree(keys);
1519                 kvfree(values);
1520                 goto alloc;
1521         }
1522
1523         /* Next block is only safe to run if you have grabbed the lock */
1524         if (!locked)
1525                 goto next_batch;
1526
1527         hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1528                 memcpy(dst_key, l->key, key_size);
1529
1530                 if (is_percpu) {
1531                         int off = 0, cpu;
1532                         void __percpu *pptr;
1533
1534                         pptr = htab_elem_get_ptr(l, map->key_size);
1535                         for_each_possible_cpu(cpu) {
1536                                 bpf_long_memcpy(dst_val + off,
1537                                                 per_cpu_ptr(pptr, cpu), size);
1538                                 off += size;
1539                         }
1540                 } else {
1541                         value = l->key + roundup_key_size;
1542                         if (elem_map_flags & BPF_F_LOCK)
1543                                 copy_map_value_locked(map, dst_val, value,
1544                                                       true);
1545                         else
1546                                 copy_map_value(map, dst_val, value);
1547                         check_and_init_map_lock(map, dst_val);
1548                 }
1549                 if (do_delete) {
1550                         hlist_nulls_del_rcu(&l->hash_node);
1551
1552                         /* bpf_lru_push_free() will acquire lru_lock, which
1553                          * may cause deadlock. See comments in function
1554                          * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1555                          * after releasing the bucket lock.
1556                          */
1557                         if (is_lru_map) {
1558                                 l->batch_flink = node_to_free;
1559                                 node_to_free = l;
1560                         } else {
1561                                 free_htab_elem(htab, l);
1562                         }
1563                 }
1564                 dst_key += key_size;
1565                 dst_val += value_size;
1566         }
1567
1568         htab_unlock_bucket(htab, b, batch, flags);
1569         locked = false;
1570
1571         while (node_to_free) {
1572                 l = node_to_free;
1573                 node_to_free = node_to_free->batch_flink;
1574                 bpf_lru_push_free(&htab->lru, &l->lru_node);
1575         }
1576
1577 next_batch:
1578         /* If we are not copying data, we can go to next bucket and avoid
1579          * unlocking the rcu.
1580          */
1581         if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1582                 batch++;
1583                 goto again_nocopy;
1584         }
1585
1586         rcu_read_unlock();
1587         bpf_enable_instrumentation();
1588         if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1589             key_size * bucket_cnt) ||
1590             copy_to_user(uvalues + total * value_size, values,
1591             value_size * bucket_cnt))) {
1592                 ret = -EFAULT;
1593                 goto after_loop;
1594         }
1595
1596         total += bucket_cnt;
1597         batch++;
1598         if (batch >= htab->n_buckets) {
1599                 ret = -ENOENT;
1600                 goto after_loop;
1601         }
1602         goto again;
1603
1604 after_loop:
1605         if (ret == -EFAULT)
1606                 goto out;
1607
1608         /* copy # of entries and next batch */
1609         ubatch = u64_to_user_ptr(attr->batch.out_batch);
1610         if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1611             put_user(total, &uattr->batch.count))
1612                 ret = -EFAULT;
1613
1614 out:
1615         kvfree(keys);
1616         kvfree(values);
1617         return ret;
1618 }
1619
1620 static int
1621 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1622                              union bpf_attr __user *uattr)
1623 {
1624         return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1625                                                   false, true);
1626 }
1627
1628 static int
1629 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1630                                         const union bpf_attr *attr,
1631                                         union bpf_attr __user *uattr)
1632 {
1633         return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1634                                                   false, true);
1635 }
1636
1637 static int
1638 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1639                       union bpf_attr __user *uattr)
1640 {
1641         return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1642                                                   false, false);
1643 }
1644
1645 static int
1646 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1647                                  const union bpf_attr *attr,
1648                                  union bpf_attr __user *uattr)
1649 {
1650         return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1651                                                   false, false);
1652 }
1653
1654 static int
1655 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1656                                  const union bpf_attr *attr,
1657                                  union bpf_attr __user *uattr)
1658 {
1659         return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1660                                                   true, true);
1661 }
1662
1663 static int
1664 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1665                                             const union bpf_attr *attr,
1666                                             union bpf_attr __user *uattr)
1667 {
1668         return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1669                                                   true, true);
1670 }
1671
1672 static int
1673 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1674                           union bpf_attr __user *uattr)
1675 {
1676         return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1677                                                   true, false);
1678 }
1679
1680 static int
1681 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1682                                      const union bpf_attr *attr,
1683                                      union bpf_attr __user *uattr)
1684 {
1685         return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1686                                                   true, false);
1687 }
1688
1689 struct bpf_iter_seq_hash_map_info {
1690         struct bpf_map *map;
1691         struct bpf_htab *htab;
1692         void *percpu_value_buf; // non-zero means percpu hash
1693         u32 bucket_id;
1694         u32 skip_elems;
1695 };
1696
1697 static struct htab_elem *
1698 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1699                            struct htab_elem *prev_elem)
1700 {
1701         const struct bpf_htab *htab = info->htab;
1702         u32 skip_elems = info->skip_elems;
1703         u32 bucket_id = info->bucket_id;
1704         struct hlist_nulls_head *head;
1705         struct hlist_nulls_node *n;
1706         struct htab_elem *elem;
1707         struct bucket *b;
1708         u32 i, count;
1709
1710         if (bucket_id >= htab->n_buckets)
1711                 return NULL;
1712
1713         /* try to find next elem in the same bucket */
1714         if (prev_elem) {
1715                 /* no update/deletion on this bucket, prev_elem should be still valid
1716                  * and we won't skip elements.
1717                  */
1718                 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1719                 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1720                 if (elem)
1721                         return elem;
1722
1723                 /* not found, unlock and go to the next bucket */
1724                 b = &htab->buckets[bucket_id++];
1725                 rcu_read_unlock();
1726                 skip_elems = 0;
1727         }
1728
1729         for (i = bucket_id; i < htab->n_buckets; i++) {
1730                 b = &htab->buckets[i];
1731                 rcu_read_lock();
1732
1733                 count = 0;
1734                 head = &b->head;
1735                 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1736                         if (count >= skip_elems) {
1737                                 info->bucket_id = i;
1738                                 info->skip_elems = count;
1739                                 return elem;
1740                         }
1741                         count++;
1742                 }
1743
1744                 rcu_read_unlock();
1745                 skip_elems = 0;
1746         }
1747
1748         info->bucket_id = i;
1749         info->skip_elems = 0;
1750         return NULL;
1751 }
1752
1753 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1754 {
1755         struct bpf_iter_seq_hash_map_info *info = seq->private;
1756         struct htab_elem *elem;
1757
1758         elem = bpf_hash_map_seq_find_next(info, NULL);
1759         if (!elem)
1760                 return NULL;
1761
1762         if (*pos == 0)
1763                 ++*pos;
1764         return elem;
1765 }
1766
1767 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1768 {
1769         struct bpf_iter_seq_hash_map_info *info = seq->private;
1770
1771         ++*pos;
1772         ++info->skip_elems;
1773         return bpf_hash_map_seq_find_next(info, v);
1774 }
1775
1776 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1777 {
1778         struct bpf_iter_seq_hash_map_info *info = seq->private;
1779         u32 roundup_key_size, roundup_value_size;
1780         struct bpf_iter__bpf_map_elem ctx = {};
1781         struct bpf_map *map = info->map;
1782         struct bpf_iter_meta meta;
1783         int ret = 0, off = 0, cpu;
1784         struct bpf_prog *prog;
1785         void __percpu *pptr;
1786
1787         meta.seq = seq;
1788         prog = bpf_iter_get_info(&meta, elem == NULL);
1789         if (prog) {
1790                 ctx.meta = &meta;
1791                 ctx.map = info->map;
1792                 if (elem) {
1793                         roundup_key_size = round_up(map->key_size, 8);
1794                         ctx.key = elem->key;
1795                         if (!info->percpu_value_buf) {
1796                                 ctx.value = elem->key + roundup_key_size;
1797                         } else {
1798                                 roundup_value_size = round_up(map->value_size, 8);
1799                                 pptr = htab_elem_get_ptr(elem, map->key_size);
1800                                 for_each_possible_cpu(cpu) {
1801                                         bpf_long_memcpy(info->percpu_value_buf + off,
1802                                                         per_cpu_ptr(pptr, cpu),
1803                                                         roundup_value_size);
1804                                         off += roundup_value_size;
1805                                 }
1806                                 ctx.value = info->percpu_value_buf;
1807                         }
1808                 }
1809                 ret = bpf_iter_run_prog(prog, &ctx);
1810         }
1811
1812         return ret;
1813 }
1814
1815 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1816 {
1817         return __bpf_hash_map_seq_show(seq, v);
1818 }
1819
1820 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1821 {
1822         if (!v)
1823                 (void)__bpf_hash_map_seq_show(seq, NULL);
1824         else
1825                 rcu_read_unlock();
1826 }
1827
1828 static int bpf_iter_init_hash_map(void *priv_data,
1829                                   struct bpf_iter_aux_info *aux)
1830 {
1831         struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1832         struct bpf_map *map = aux->map;
1833         void *value_buf;
1834         u32 buf_size;
1835
1836         if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1837             map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1838                 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1839                 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1840                 if (!value_buf)
1841                         return -ENOMEM;
1842
1843                 seq_info->percpu_value_buf = value_buf;
1844         }
1845
1846         seq_info->map = map;
1847         seq_info->htab = container_of(map, struct bpf_htab, map);
1848         return 0;
1849 }
1850
1851 static void bpf_iter_fini_hash_map(void *priv_data)
1852 {
1853         struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1854
1855         kfree(seq_info->percpu_value_buf);
1856 }
1857
1858 static const struct seq_operations bpf_hash_map_seq_ops = {
1859         .start  = bpf_hash_map_seq_start,
1860         .next   = bpf_hash_map_seq_next,
1861         .stop   = bpf_hash_map_seq_stop,
1862         .show   = bpf_hash_map_seq_show,
1863 };
1864
1865 static const struct bpf_iter_seq_info iter_seq_info = {
1866         .seq_ops                = &bpf_hash_map_seq_ops,
1867         .init_seq_private       = bpf_iter_init_hash_map,
1868         .fini_seq_private       = bpf_iter_fini_hash_map,
1869         .seq_priv_size          = sizeof(struct bpf_iter_seq_hash_map_info),
1870 };
1871
1872 static int bpf_for_each_hash_elem(struct bpf_map *map, void *callback_fn,
1873                                   void *callback_ctx, u64 flags)
1874 {
1875         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1876         struct hlist_nulls_head *head;
1877         struct hlist_nulls_node *n;
1878         struct htab_elem *elem;
1879         u32 roundup_key_size;
1880         int i, num_elems = 0;
1881         void __percpu *pptr;
1882         struct bucket *b;
1883         void *key, *val;
1884         bool is_percpu;
1885         u64 ret = 0;
1886
1887         if (flags != 0)
1888                 return -EINVAL;
1889
1890         is_percpu = htab_is_percpu(htab);
1891
1892         roundup_key_size = round_up(map->key_size, 8);
1893         /* disable migration so percpu value prepared here will be the
1894          * same as the one seen by the bpf program with bpf_map_lookup_elem().
1895          */
1896         if (is_percpu)
1897                 migrate_disable();
1898         for (i = 0; i < htab->n_buckets; i++) {
1899                 b = &htab->buckets[i];
1900                 rcu_read_lock();
1901                 head = &b->head;
1902                 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1903                         key = elem->key;
1904                         if (is_percpu) {
1905                                 /* current cpu value for percpu map */
1906                                 pptr = htab_elem_get_ptr(elem, map->key_size);
1907                                 val = this_cpu_ptr(pptr);
1908                         } else {
1909                                 val = elem->key + roundup_key_size;
1910                         }
1911                         num_elems++;
1912                         ret = BPF_CAST_CALL(callback_fn)((u64)(long)map,
1913                                         (u64)(long)key, (u64)(long)val,
1914                                         (u64)(long)callback_ctx, 0);
1915                         /* return value: 0 - continue, 1 - stop and return */
1916                         if (ret) {
1917                                 rcu_read_unlock();
1918                                 goto out;
1919                         }
1920                 }
1921                 rcu_read_unlock();
1922         }
1923 out:
1924         if (is_percpu)
1925                 migrate_enable();
1926         return num_elems;
1927 }
1928
1929 static int htab_map_btf_id;
1930 const struct bpf_map_ops htab_map_ops = {
1931         .map_meta_equal = bpf_map_meta_equal,
1932         .map_alloc_check = htab_map_alloc_check,
1933         .map_alloc = htab_map_alloc,
1934         .map_free = htab_map_free,
1935         .map_get_next_key = htab_map_get_next_key,
1936         .map_lookup_elem = htab_map_lookup_elem,
1937         .map_update_elem = htab_map_update_elem,
1938         .map_delete_elem = htab_map_delete_elem,
1939         .map_gen_lookup = htab_map_gen_lookup,
1940         .map_seq_show_elem = htab_map_seq_show_elem,
1941         .map_set_for_each_callback_args = map_set_for_each_callback_args,
1942         .map_for_each_callback = bpf_for_each_hash_elem,
1943         BATCH_OPS(htab),
1944         .map_btf_name = "bpf_htab",
1945         .map_btf_id = &htab_map_btf_id,
1946         .iter_seq_info = &iter_seq_info,
1947 };
1948
1949 static int htab_lru_map_btf_id;
1950 const struct bpf_map_ops htab_lru_map_ops = {
1951         .map_meta_equal = bpf_map_meta_equal,
1952         .map_alloc_check = htab_map_alloc_check,
1953         .map_alloc = htab_map_alloc,
1954         .map_free = htab_map_free,
1955         .map_get_next_key = htab_map_get_next_key,
1956         .map_lookup_elem = htab_lru_map_lookup_elem,
1957         .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1958         .map_update_elem = htab_lru_map_update_elem,
1959         .map_delete_elem = htab_lru_map_delete_elem,
1960         .map_gen_lookup = htab_lru_map_gen_lookup,
1961         .map_seq_show_elem = htab_map_seq_show_elem,
1962         .map_set_for_each_callback_args = map_set_for_each_callback_args,
1963         .map_for_each_callback = bpf_for_each_hash_elem,
1964         BATCH_OPS(htab_lru),
1965         .map_btf_name = "bpf_htab",
1966         .map_btf_id = &htab_lru_map_btf_id,
1967         .iter_seq_info = &iter_seq_info,
1968 };
1969
1970 /* Called from eBPF program */
1971 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1972 {
1973         struct htab_elem *l = __htab_map_lookup_elem(map, key);
1974
1975         if (l)
1976                 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1977         else
1978                 return NULL;
1979 }
1980
1981 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1982 {
1983         struct htab_elem *l = __htab_map_lookup_elem(map, key);
1984
1985         if (l) {
1986                 bpf_lru_node_set_ref(&l->lru_node);
1987                 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1988         }
1989
1990         return NULL;
1991 }
1992
1993 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1994 {
1995         struct htab_elem *l;
1996         void __percpu *pptr;
1997         int ret = -ENOENT;
1998         int cpu, off = 0;
1999         u32 size;
2000
2001         /* per_cpu areas are zero-filled and bpf programs can only
2002          * access 'value_size' of them, so copying rounded areas
2003          * will not leak any kernel data
2004          */
2005         size = round_up(map->value_size, 8);
2006         rcu_read_lock();
2007         l = __htab_map_lookup_elem(map, key);
2008         if (!l)
2009                 goto out;
2010         /* We do not mark LRU map element here in order to not mess up
2011          * eviction heuristics when user space does a map walk.
2012          */
2013         pptr = htab_elem_get_ptr(l, map->key_size);
2014         for_each_possible_cpu(cpu) {
2015                 bpf_long_memcpy(value + off,
2016                                 per_cpu_ptr(pptr, cpu), size);
2017                 off += size;
2018         }
2019         ret = 0;
2020 out:
2021         rcu_read_unlock();
2022         return ret;
2023 }
2024
2025 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2026                            u64 map_flags)
2027 {
2028         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2029         int ret;
2030
2031         rcu_read_lock();
2032         if (htab_is_lru(htab))
2033                 ret = __htab_lru_percpu_map_update_elem(map, key, value,
2034                                                         map_flags, true);
2035         else
2036                 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2037                                                     true);
2038         rcu_read_unlock();
2039
2040         return ret;
2041 }
2042
2043 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2044                                           struct seq_file *m)
2045 {
2046         struct htab_elem *l;
2047         void __percpu *pptr;
2048         int cpu;
2049
2050         rcu_read_lock();
2051
2052         l = __htab_map_lookup_elem(map, key);
2053         if (!l) {
2054                 rcu_read_unlock();
2055                 return;
2056         }
2057
2058         btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2059         seq_puts(m, ": {\n");
2060         pptr = htab_elem_get_ptr(l, map->key_size);
2061         for_each_possible_cpu(cpu) {
2062                 seq_printf(m, "\tcpu%d: ", cpu);
2063                 btf_type_seq_show(map->btf, map->btf_value_type_id,
2064                                   per_cpu_ptr(pptr, cpu), m);
2065                 seq_puts(m, "\n");
2066         }
2067         seq_puts(m, "}\n");
2068
2069         rcu_read_unlock();
2070 }
2071
2072 static int htab_percpu_map_btf_id;
2073 const struct bpf_map_ops htab_percpu_map_ops = {
2074         .map_meta_equal = bpf_map_meta_equal,
2075         .map_alloc_check = htab_map_alloc_check,
2076         .map_alloc = htab_map_alloc,
2077         .map_free = htab_map_free,
2078         .map_get_next_key = htab_map_get_next_key,
2079         .map_lookup_elem = htab_percpu_map_lookup_elem,
2080         .map_update_elem = htab_percpu_map_update_elem,
2081         .map_delete_elem = htab_map_delete_elem,
2082         .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2083         .map_set_for_each_callback_args = map_set_for_each_callback_args,
2084         .map_for_each_callback = bpf_for_each_hash_elem,
2085         BATCH_OPS(htab_percpu),
2086         .map_btf_name = "bpf_htab",
2087         .map_btf_id = &htab_percpu_map_btf_id,
2088         .iter_seq_info = &iter_seq_info,
2089 };
2090
2091 static int htab_lru_percpu_map_btf_id;
2092 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2093         .map_meta_equal = bpf_map_meta_equal,
2094         .map_alloc_check = htab_map_alloc_check,
2095         .map_alloc = htab_map_alloc,
2096         .map_free = htab_map_free,
2097         .map_get_next_key = htab_map_get_next_key,
2098         .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2099         .map_update_elem = htab_lru_percpu_map_update_elem,
2100         .map_delete_elem = htab_lru_map_delete_elem,
2101         .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2102         .map_set_for_each_callback_args = map_set_for_each_callback_args,
2103         .map_for_each_callback = bpf_for_each_hash_elem,
2104         BATCH_OPS(htab_lru_percpu),
2105         .map_btf_name = "bpf_htab",
2106         .map_btf_id = &htab_lru_percpu_map_btf_id,
2107         .iter_seq_info = &iter_seq_info,
2108 };
2109
2110 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2111 {
2112         if (attr->value_size != sizeof(u32))
2113                 return -EINVAL;
2114         return htab_map_alloc_check(attr);
2115 }
2116
2117 static void fd_htab_map_free(struct bpf_map *map)
2118 {
2119         struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2120         struct hlist_nulls_node *n;
2121         struct hlist_nulls_head *head;
2122         struct htab_elem *l;
2123         int i;
2124
2125         for (i = 0; i < htab->n_buckets; i++) {
2126                 head = select_bucket(htab, i);
2127
2128                 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2129                         void *ptr = fd_htab_map_get_ptr(map, l);
2130
2131                         map->ops->map_fd_put_ptr(ptr);
2132                 }
2133         }
2134
2135         htab_map_free(map);
2136 }
2137
2138 /* only called from syscall */
2139 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2140 {
2141         void **ptr;
2142         int ret = 0;
2143
2144         if (!map->ops->map_fd_sys_lookup_elem)
2145                 return -ENOTSUPP;
2146
2147         rcu_read_lock();
2148         ptr = htab_map_lookup_elem(map, key);
2149         if (ptr)
2150                 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2151         else
2152                 ret = -ENOENT;
2153         rcu_read_unlock();
2154
2155         return ret;
2156 }
2157
2158 /* only called from syscall */
2159 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2160                                 void *key, void *value, u64 map_flags)
2161 {
2162         void *ptr;
2163         int ret;
2164         u32 ufd = *(u32 *)value;
2165
2166         ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2167         if (IS_ERR(ptr))
2168                 return PTR_ERR(ptr);
2169
2170         ret = htab_map_update_elem(map, key, &ptr, map_flags);
2171         if (ret)
2172                 map->ops->map_fd_put_ptr(ptr);
2173
2174         return ret;
2175 }
2176
2177 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2178 {
2179         struct bpf_map *map, *inner_map_meta;
2180
2181         inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2182         if (IS_ERR(inner_map_meta))
2183                 return inner_map_meta;
2184
2185         map = htab_map_alloc(attr);
2186         if (IS_ERR(map)) {
2187                 bpf_map_meta_free(inner_map_meta);
2188                 return map;
2189         }
2190
2191         map->inner_map_meta = inner_map_meta;
2192
2193         return map;
2194 }
2195
2196 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2197 {
2198         struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2199
2200         if (!inner_map)
2201                 return NULL;
2202
2203         return READ_ONCE(*inner_map);
2204 }
2205
2206 static int htab_of_map_gen_lookup(struct bpf_map *map,
2207                                   struct bpf_insn *insn_buf)
2208 {
2209         struct bpf_insn *insn = insn_buf;
2210         const int ret = BPF_REG_0;
2211
2212         BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2213                      (void *(*)(struct bpf_map *map, void *key))NULL));
2214         *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2215         *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2216         *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2217                                 offsetof(struct htab_elem, key) +
2218                                 round_up(map->key_size, 8));
2219         *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2220
2221         return insn - insn_buf;
2222 }
2223
2224 static void htab_of_map_free(struct bpf_map *map)
2225 {
2226         bpf_map_meta_free(map->inner_map_meta);
2227         fd_htab_map_free(map);
2228 }
2229
2230 static int htab_of_maps_map_btf_id;
2231 const struct bpf_map_ops htab_of_maps_map_ops = {
2232         .map_alloc_check = fd_htab_map_alloc_check,
2233         .map_alloc = htab_of_map_alloc,
2234         .map_free = htab_of_map_free,
2235         .map_get_next_key = htab_map_get_next_key,
2236         .map_lookup_elem = htab_of_map_lookup_elem,
2237         .map_delete_elem = htab_map_delete_elem,
2238         .map_fd_get_ptr = bpf_map_fd_get_ptr,
2239         .map_fd_put_ptr = bpf_map_fd_put_ptr,
2240         .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2241         .map_gen_lookup = htab_of_map_gen_lookup,
2242         .map_check_btf = map_check_no_btf,
2243         .map_btf_name = "bpf_htab",
2244         .map_btf_id = &htab_of_maps_map_btf_id,
2245 };