Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28
29 /* BTF (BPF Type Format) is the meta data format which describes
30  * the data types of BPF program/map.  Hence, it basically focus
31  * on the C programming language which the modern BPF is primary
32  * using.
33  *
34  * ELF Section:
35  * ~~~~~~~~~~~
36  * The BTF data is stored under the ".BTF" ELF section
37  *
38  * struct btf_type:
39  * ~~~~~~~~~~~~~~~
40  * Each 'struct btf_type' object describes a C data type.
41  * Depending on the type it is describing, a 'struct btf_type'
42  * object may be followed by more data.  F.e.
43  * To describe an array, 'struct btf_type' is followed by
44  * 'struct btf_array'.
45  *
46  * 'struct btf_type' and any extra data following it are
47  * 4 bytes aligned.
48  *
49  * Type section:
50  * ~~~~~~~~~~~~~
51  * The BTF type section contains a list of 'struct btf_type' objects.
52  * Each one describes a C type.  Recall from the above section
53  * that a 'struct btf_type' object could be immediately followed by extra
54  * data in order to desribe some particular C types.
55  *
56  * type_id:
57  * ~~~~~~~
58  * Each btf_type object is identified by a type_id.  The type_id
59  * is implicitly implied by the location of the btf_type object in
60  * the BTF type section.  The first one has type_id 1.  The second
61  * one has type_id 2...etc.  Hence, an earlier btf_type has
62  * a smaller type_id.
63  *
64  * A btf_type object may refer to another btf_type object by using
65  * type_id (i.e. the "type" in the "struct btf_type").
66  *
67  * NOTE that we cannot assume any reference-order.
68  * A btf_type object can refer to an earlier btf_type object
69  * but it can also refer to a later btf_type object.
70  *
71  * For example, to describe "const void *".  A btf_type
72  * object describing "const" may refer to another btf_type
73  * object describing "void *".  This type-reference is done
74  * by specifying type_id:
75  *
76  * [1] CONST (anon) type_id=2
77  * [2] PTR (anon) type_id=0
78  *
79  * The above is the btf_verifier debug log:
80  *   - Each line started with "[?]" is a btf_type object
81  *   - [?] is the type_id of the btf_type object.
82  *   - CONST/PTR is the BTF_KIND_XXX
83  *   - "(anon)" is the name of the type.  It just
84  *     happens that CONST and PTR has no name.
85  *   - type_id=XXX is the 'u32 type' in btf_type
86  *
87  * NOTE: "void" has type_id 0
88  *
89  * String section:
90  * ~~~~~~~~~~~~~~
91  * The BTF string section contains the names used by the type section.
92  * Each string is referred by an "offset" from the beginning of the
93  * string section.
94  *
95  * Each string is '\0' terminated.
96  *
97  * The first character in the string section must be '\0'
98  * which is used to mean 'anonymous'. Some btf_type may not
99  * have a name.
100  */
101
102 /* BTF verification:
103  *
104  * To verify BTF data, two passes are needed.
105  *
106  * Pass #1
107  * ~~~~~~~
108  * The first pass is to collect all btf_type objects to
109  * an array: "btf->types".
110  *
111  * Depending on the C type that a btf_type is describing,
112  * a btf_type may be followed by extra data.  We don't know
113  * how many btf_type is there, and more importantly we don't
114  * know where each btf_type is located in the type section.
115  *
116  * Without knowing the location of each type_id, most verifications
117  * cannot be done.  e.g. an earlier btf_type may refer to a later
118  * btf_type (recall the "const void *" above), so we cannot
119  * check this type-reference in the first pass.
120  *
121  * In the first pass, it still does some verifications (e.g.
122  * checking the name is a valid offset to the string section).
123  *
124  * Pass #2
125  * ~~~~~~~
126  * The main focus is to resolve a btf_type that is referring
127  * to another type.
128  *
129  * We have to ensure the referring type:
130  * 1) does exist in the BTF (i.e. in btf->types[])
131  * 2) does not cause a loop:
132  *      struct A {
133  *              struct B b;
134  *      };
135  *
136  *      struct B {
137  *              struct A a;
138  *      };
139  *
140  * btf_type_needs_resolve() decides if a btf_type needs
141  * to be resolved.
142  *
143  * The needs_resolve type implements the "resolve()" ops which
144  * essentially does a DFS and detects backedge.
145  *
146  * During resolve (or DFS), different C types have different
147  * "RESOLVED" conditions.
148  *
149  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150  * members because a member is always referring to another
151  * type.  A struct's member can be treated as "RESOLVED" if
152  * it is referring to a BTF_KIND_PTR.  Otherwise, the
153  * following valid C struct would be rejected:
154  *
155  *      struct A {
156  *              int m;
157  *              struct A *a;
158  *      };
159  *
160  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
162  * detect a pointer loop, e.g.:
163  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164  *                        ^                                         |
165  *                        +-----------------------------------------+
166  *
167  */
168
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175
176 #define BTF_INFO_MASK 0x9f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180
181 /* 16MB for 64k structs and each has 16 members and
182  * a few MB spaces for the string section.
183  * The hard limit is S32_MAX.
184  */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186
187 #define for_each_member_from(i, from, struct_type, member)              \
188         for (i = from, member = btf_type_member(struct_type) + from;    \
189              i < btf_type_vlen(struct_type);                            \
190              i++, member++)
191
192 #define for_each_vsi_from(i, from, struct_type, member)                         \
193         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
194              i < btf_type_vlen(struct_type);                                    \
195              i++, member++)
196
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199
200 struct btf {
201         void *data;
202         struct btf_type **types;
203         u32 *resolved_ids;
204         u32 *resolved_sizes;
205         const char *strings;
206         void *nohdr_data;
207         struct btf_header hdr;
208         u32 nr_types; /* includes VOID for base BTF */
209         u32 types_size;
210         u32 data_size;
211         refcount_t refcnt;
212         u32 id;
213         struct rcu_head rcu;
214
215         /* split BTF support */
216         struct btf *base_btf;
217         u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218         u32 start_str_off; /* first string offset (0 for base BTF) */
219         char name[MODULE_NAME_LEN];
220         bool kernel_btf;
221 };
222
223 enum verifier_phase {
224         CHECK_META,
225         CHECK_TYPE,
226 };
227
228 struct resolve_vertex {
229         const struct btf_type *t;
230         u32 type_id;
231         u16 next_member;
232 };
233
234 enum visit_state {
235         NOT_VISITED,
236         VISITED,
237         RESOLVED,
238 };
239
240 enum resolve_mode {
241         RESOLVE_TBD,    /* To Be Determined */
242         RESOLVE_PTR,    /* Resolving for Pointer */
243         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
244                                          * or array
245                                          */
246 };
247
248 #define MAX_RESOLVE_DEPTH 32
249
250 struct btf_sec_info {
251         u32 off;
252         u32 len;
253 };
254
255 struct btf_verifier_env {
256         struct btf *btf;
257         u8 *visit_states;
258         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259         struct bpf_verifier_log log;
260         u32 log_type_id;
261         u32 top_stack;
262         enum verifier_phase phase;
263         enum resolve_mode resolve_mode;
264 };
265
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267         [BTF_KIND_UNKN]         = "UNKNOWN",
268         [BTF_KIND_INT]          = "INT",
269         [BTF_KIND_PTR]          = "PTR",
270         [BTF_KIND_ARRAY]        = "ARRAY",
271         [BTF_KIND_STRUCT]       = "STRUCT",
272         [BTF_KIND_UNION]        = "UNION",
273         [BTF_KIND_ENUM]         = "ENUM",
274         [BTF_KIND_FWD]          = "FWD",
275         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
276         [BTF_KIND_VOLATILE]     = "VOLATILE",
277         [BTF_KIND_CONST]        = "CONST",
278         [BTF_KIND_RESTRICT]     = "RESTRICT",
279         [BTF_KIND_FUNC]         = "FUNC",
280         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
281         [BTF_KIND_VAR]          = "VAR",
282         [BTF_KIND_DATASEC]      = "DATASEC",
283         [BTF_KIND_FLOAT]        = "FLOAT",
284 };
285
286 const char *btf_type_str(const struct btf_type *t)
287 {
288         return btf_kind_str[BTF_INFO_KIND(t->info)];
289 }
290
291 /* Chunk size we use in safe copy of data to be shown. */
292 #define BTF_SHOW_OBJ_SAFE_SIZE          32
293
294 /*
295  * This is the maximum size of a base type value (equivalent to a
296  * 128-bit int); if we are at the end of our safe buffer and have
297  * less than 16 bytes space we can't be assured of being able
298  * to copy the next type safely, so in such cases we will initiate
299  * a new copy.
300  */
301 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE     16
302
303 /* Type name size */
304 #define BTF_SHOW_NAME_SIZE              80
305
306 /*
307  * Common data to all BTF show operations. Private show functions can add
308  * their own data to a structure containing a struct btf_show and consult it
309  * in the show callback.  See btf_type_show() below.
310  *
311  * One challenge with showing nested data is we want to skip 0-valued
312  * data, but in order to figure out whether a nested object is all zeros
313  * we need to walk through it.  As a result, we need to make two passes
314  * when handling structs, unions and arrays; the first path simply looks
315  * for nonzero data, while the second actually does the display.  The first
316  * pass is signalled by show->state.depth_check being set, and if we
317  * encounter a non-zero value we set show->state.depth_to_show to
318  * the depth at which we encountered it.  When we have completed the
319  * first pass, we will know if anything needs to be displayed if
320  * depth_to_show > depth.  See btf_[struct,array]_show() for the
321  * implementation of this.
322  *
323  * Another problem is we want to ensure the data for display is safe to
324  * access.  To support this, the anonymous "struct {} obj" tracks the data
325  * object and our safe copy of it.  We copy portions of the data needed
326  * to the object "copy" buffer, but because its size is limited to
327  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
328  * traverse larger objects for display.
329  *
330  * The various data type show functions all start with a call to
331  * btf_show_start_type() which returns a pointer to the safe copy
332  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
333  * raw data itself).  btf_show_obj_safe() is responsible for
334  * using copy_from_kernel_nofault() to update the safe data if necessary
335  * as we traverse the object's data.  skbuff-like semantics are
336  * used:
337  *
338  * - obj.head points to the start of the toplevel object for display
339  * - obj.size is the size of the toplevel object
340  * - obj.data points to the current point in the original data at
341  *   which our safe data starts.  obj.data will advance as we copy
342  *   portions of the data.
343  *
344  * In most cases a single copy will suffice, but larger data structures
345  * such as "struct task_struct" will require many copies.  The logic in
346  * btf_show_obj_safe() handles the logic that determines if a new
347  * copy_from_kernel_nofault() is needed.
348  */
349 struct btf_show {
350         u64 flags;
351         void *target;   /* target of show operation (seq file, buffer) */
352         void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
353         const struct btf *btf;
354         /* below are used during iteration */
355         struct {
356                 u8 depth;
357                 u8 depth_to_show;
358                 u8 depth_check;
359                 u8 array_member:1,
360                    array_terminated:1;
361                 u16 array_encoding;
362                 u32 type_id;
363                 int status;                     /* non-zero for error */
364                 const struct btf_type *type;
365                 const struct btf_member *member;
366                 char name[BTF_SHOW_NAME_SIZE];  /* space for member name/type */
367         } state;
368         struct {
369                 u32 size;
370                 void *head;
371                 void *data;
372                 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
373         } obj;
374 };
375
376 struct btf_kind_operations {
377         s32 (*check_meta)(struct btf_verifier_env *env,
378                           const struct btf_type *t,
379                           u32 meta_left);
380         int (*resolve)(struct btf_verifier_env *env,
381                        const struct resolve_vertex *v);
382         int (*check_member)(struct btf_verifier_env *env,
383                             const struct btf_type *struct_type,
384                             const struct btf_member *member,
385                             const struct btf_type *member_type);
386         int (*check_kflag_member)(struct btf_verifier_env *env,
387                                   const struct btf_type *struct_type,
388                                   const struct btf_member *member,
389                                   const struct btf_type *member_type);
390         void (*log_details)(struct btf_verifier_env *env,
391                             const struct btf_type *t);
392         void (*show)(const struct btf *btf, const struct btf_type *t,
393                          u32 type_id, void *data, u8 bits_offsets,
394                          struct btf_show *show);
395 };
396
397 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
398 static struct btf_type btf_void;
399
400 static int btf_resolve(struct btf_verifier_env *env,
401                        const struct btf_type *t, u32 type_id);
402
403 static bool btf_type_is_modifier(const struct btf_type *t)
404 {
405         /* Some of them is not strictly a C modifier
406          * but they are grouped into the same bucket
407          * for BTF concern:
408          *   A type (t) that refers to another
409          *   type through t->type AND its size cannot
410          *   be determined without following the t->type.
411          *
412          * ptr does not fall into this bucket
413          * because its size is always sizeof(void *).
414          */
415         switch (BTF_INFO_KIND(t->info)) {
416         case BTF_KIND_TYPEDEF:
417         case BTF_KIND_VOLATILE:
418         case BTF_KIND_CONST:
419         case BTF_KIND_RESTRICT:
420                 return true;
421         }
422
423         return false;
424 }
425
426 bool btf_type_is_void(const struct btf_type *t)
427 {
428         return t == &btf_void;
429 }
430
431 static bool btf_type_is_fwd(const struct btf_type *t)
432 {
433         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
434 }
435
436 static bool btf_type_nosize(const struct btf_type *t)
437 {
438         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
439                btf_type_is_func(t) || btf_type_is_func_proto(t);
440 }
441
442 static bool btf_type_nosize_or_null(const struct btf_type *t)
443 {
444         return !t || btf_type_nosize(t);
445 }
446
447 static bool __btf_type_is_struct(const struct btf_type *t)
448 {
449         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
450 }
451
452 static bool btf_type_is_array(const struct btf_type *t)
453 {
454         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
455 }
456
457 static bool btf_type_is_datasec(const struct btf_type *t)
458 {
459         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
460 }
461
462 u32 btf_nr_types(const struct btf *btf)
463 {
464         u32 total = 0;
465
466         while (btf) {
467                 total += btf->nr_types;
468                 btf = btf->base_btf;
469         }
470
471         return total;
472 }
473
474 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
475 {
476         const struct btf_type *t;
477         const char *tname;
478         u32 i, total;
479
480         total = btf_nr_types(btf);
481         for (i = 1; i < total; i++) {
482                 t = btf_type_by_id(btf, i);
483                 if (BTF_INFO_KIND(t->info) != kind)
484                         continue;
485
486                 tname = btf_name_by_offset(btf, t->name_off);
487                 if (!strcmp(tname, name))
488                         return i;
489         }
490
491         return -ENOENT;
492 }
493
494 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
495                                                u32 id, u32 *res_id)
496 {
497         const struct btf_type *t = btf_type_by_id(btf, id);
498
499         while (btf_type_is_modifier(t)) {
500                 id = t->type;
501                 t = btf_type_by_id(btf, t->type);
502         }
503
504         if (res_id)
505                 *res_id = id;
506
507         return t;
508 }
509
510 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
511                                             u32 id, u32 *res_id)
512 {
513         const struct btf_type *t;
514
515         t = btf_type_skip_modifiers(btf, id, NULL);
516         if (!btf_type_is_ptr(t))
517                 return NULL;
518
519         return btf_type_skip_modifiers(btf, t->type, res_id);
520 }
521
522 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
523                                                  u32 id, u32 *res_id)
524 {
525         const struct btf_type *ptype;
526
527         ptype = btf_type_resolve_ptr(btf, id, res_id);
528         if (ptype && btf_type_is_func_proto(ptype))
529                 return ptype;
530
531         return NULL;
532 }
533
534 /* Types that act only as a source, not sink or intermediate
535  * type when resolving.
536  */
537 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
538 {
539         return btf_type_is_var(t) ||
540                btf_type_is_datasec(t);
541 }
542
543 /* What types need to be resolved?
544  *
545  * btf_type_is_modifier() is an obvious one.
546  *
547  * btf_type_is_struct() because its member refers to
548  * another type (through member->type).
549  *
550  * btf_type_is_var() because the variable refers to
551  * another type. btf_type_is_datasec() holds multiple
552  * btf_type_is_var() types that need resolving.
553  *
554  * btf_type_is_array() because its element (array->type)
555  * refers to another type.  Array can be thought of a
556  * special case of struct while array just has the same
557  * member-type repeated by array->nelems of times.
558  */
559 static bool btf_type_needs_resolve(const struct btf_type *t)
560 {
561         return btf_type_is_modifier(t) ||
562                btf_type_is_ptr(t) ||
563                btf_type_is_struct(t) ||
564                btf_type_is_array(t) ||
565                btf_type_is_var(t) ||
566                btf_type_is_datasec(t);
567 }
568
569 /* t->size can be used */
570 static bool btf_type_has_size(const struct btf_type *t)
571 {
572         switch (BTF_INFO_KIND(t->info)) {
573         case BTF_KIND_INT:
574         case BTF_KIND_STRUCT:
575         case BTF_KIND_UNION:
576         case BTF_KIND_ENUM:
577         case BTF_KIND_DATASEC:
578         case BTF_KIND_FLOAT:
579                 return true;
580         }
581
582         return false;
583 }
584
585 static const char *btf_int_encoding_str(u8 encoding)
586 {
587         if (encoding == 0)
588                 return "(none)";
589         else if (encoding == BTF_INT_SIGNED)
590                 return "SIGNED";
591         else if (encoding == BTF_INT_CHAR)
592                 return "CHAR";
593         else if (encoding == BTF_INT_BOOL)
594                 return "BOOL";
595         else
596                 return "UNKN";
597 }
598
599 static u32 btf_type_int(const struct btf_type *t)
600 {
601         return *(u32 *)(t + 1);
602 }
603
604 static const struct btf_array *btf_type_array(const struct btf_type *t)
605 {
606         return (const struct btf_array *)(t + 1);
607 }
608
609 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
610 {
611         return (const struct btf_enum *)(t + 1);
612 }
613
614 static const struct btf_var *btf_type_var(const struct btf_type *t)
615 {
616         return (const struct btf_var *)(t + 1);
617 }
618
619 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
620 {
621         return kind_ops[BTF_INFO_KIND(t->info)];
622 }
623
624 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
625 {
626         if (!BTF_STR_OFFSET_VALID(offset))
627                 return false;
628
629         while (offset < btf->start_str_off)
630                 btf = btf->base_btf;
631
632         offset -= btf->start_str_off;
633         return offset < btf->hdr.str_len;
634 }
635
636 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
637 {
638         if ((first ? !isalpha(c) :
639                      !isalnum(c)) &&
640             c != '_' &&
641             ((c == '.' && !dot_ok) ||
642               c != '.'))
643                 return false;
644         return true;
645 }
646
647 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
648 {
649         while (offset < btf->start_str_off)
650                 btf = btf->base_btf;
651
652         offset -= btf->start_str_off;
653         if (offset < btf->hdr.str_len)
654                 return &btf->strings[offset];
655
656         return NULL;
657 }
658
659 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
660 {
661         /* offset must be valid */
662         const char *src = btf_str_by_offset(btf, offset);
663         const char *src_limit;
664
665         if (!__btf_name_char_ok(*src, true, dot_ok))
666                 return false;
667
668         /* set a limit on identifier length */
669         src_limit = src + KSYM_NAME_LEN;
670         src++;
671         while (*src && src < src_limit) {
672                 if (!__btf_name_char_ok(*src, false, dot_ok))
673                         return false;
674                 src++;
675         }
676
677         return !*src;
678 }
679
680 /* Only C-style identifier is permitted. This can be relaxed if
681  * necessary.
682  */
683 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
684 {
685         return __btf_name_valid(btf, offset, false);
686 }
687
688 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
689 {
690         return __btf_name_valid(btf, offset, true);
691 }
692
693 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
694 {
695         const char *name;
696
697         if (!offset)
698                 return "(anon)";
699
700         name = btf_str_by_offset(btf, offset);
701         return name ?: "(invalid-name-offset)";
702 }
703
704 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
705 {
706         return btf_str_by_offset(btf, offset);
707 }
708
709 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
710 {
711         while (type_id < btf->start_id)
712                 btf = btf->base_btf;
713
714         type_id -= btf->start_id;
715         if (type_id >= btf->nr_types)
716                 return NULL;
717         return btf->types[type_id];
718 }
719
720 /*
721  * Regular int is not a bit field and it must be either
722  * u8/u16/u32/u64 or __int128.
723  */
724 static bool btf_type_int_is_regular(const struct btf_type *t)
725 {
726         u8 nr_bits, nr_bytes;
727         u32 int_data;
728
729         int_data = btf_type_int(t);
730         nr_bits = BTF_INT_BITS(int_data);
731         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
732         if (BITS_PER_BYTE_MASKED(nr_bits) ||
733             BTF_INT_OFFSET(int_data) ||
734             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
735              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
736              nr_bytes != (2 * sizeof(u64)))) {
737                 return false;
738         }
739
740         return true;
741 }
742
743 /*
744  * Check that given struct member is a regular int with expected
745  * offset and size.
746  */
747 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
748                            const struct btf_member *m,
749                            u32 expected_offset, u32 expected_size)
750 {
751         const struct btf_type *t;
752         u32 id, int_data;
753         u8 nr_bits;
754
755         id = m->type;
756         t = btf_type_id_size(btf, &id, NULL);
757         if (!t || !btf_type_is_int(t))
758                 return false;
759
760         int_data = btf_type_int(t);
761         nr_bits = BTF_INT_BITS(int_data);
762         if (btf_type_kflag(s)) {
763                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
764                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
765
766                 /* if kflag set, int should be a regular int and
767                  * bit offset should be at byte boundary.
768                  */
769                 return !bitfield_size &&
770                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
771                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
772         }
773
774         if (BTF_INT_OFFSET(int_data) ||
775             BITS_PER_BYTE_MASKED(m->offset) ||
776             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
777             BITS_PER_BYTE_MASKED(nr_bits) ||
778             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
779                 return false;
780
781         return true;
782 }
783
784 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
785 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
786                                                        u32 id)
787 {
788         const struct btf_type *t = btf_type_by_id(btf, id);
789
790         while (btf_type_is_modifier(t) &&
791                BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
792                 t = btf_type_by_id(btf, t->type);
793         }
794
795         return t;
796 }
797
798 #define BTF_SHOW_MAX_ITER       10
799
800 #define BTF_KIND_BIT(kind)      (1ULL << kind)
801
802 /*
803  * Populate show->state.name with type name information.
804  * Format of type name is
805  *
806  * [.member_name = ] (type_name)
807  */
808 static const char *btf_show_name(struct btf_show *show)
809 {
810         /* BTF_MAX_ITER array suffixes "[]" */
811         const char *array_suffixes = "[][][][][][][][][][]";
812         const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
813         /* BTF_MAX_ITER pointer suffixes "*" */
814         const char *ptr_suffixes = "**********";
815         const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
816         const char *name = NULL, *prefix = "", *parens = "";
817         const struct btf_member *m = show->state.member;
818         const struct btf_type *t = show->state.type;
819         const struct btf_array *array;
820         u32 id = show->state.type_id;
821         const char *member = NULL;
822         bool show_member = false;
823         u64 kinds = 0;
824         int i;
825
826         show->state.name[0] = '\0';
827
828         /*
829          * Don't show type name if we're showing an array member;
830          * in that case we show the array type so don't need to repeat
831          * ourselves for each member.
832          */
833         if (show->state.array_member)
834                 return "";
835
836         /* Retrieve member name, if any. */
837         if (m) {
838                 member = btf_name_by_offset(show->btf, m->name_off);
839                 show_member = strlen(member) > 0;
840                 id = m->type;
841         }
842
843         /*
844          * Start with type_id, as we have resolved the struct btf_type *
845          * via btf_modifier_show() past the parent typedef to the child
846          * struct, int etc it is defined as.  In such cases, the type_id
847          * still represents the starting type while the struct btf_type *
848          * in our show->state points at the resolved type of the typedef.
849          */
850         t = btf_type_by_id(show->btf, id);
851         if (!t)
852                 return "";
853
854         /*
855          * The goal here is to build up the right number of pointer and
856          * array suffixes while ensuring the type name for a typedef
857          * is represented.  Along the way we accumulate a list of
858          * BTF kinds we have encountered, since these will inform later
859          * display; for example, pointer types will not require an
860          * opening "{" for struct, we will just display the pointer value.
861          *
862          * We also want to accumulate the right number of pointer or array
863          * indices in the format string while iterating until we get to
864          * the typedef/pointee/array member target type.
865          *
866          * We start by pointing at the end of pointer and array suffix
867          * strings; as we accumulate pointers and arrays we move the pointer
868          * or array string backwards so it will show the expected number of
869          * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
870          * and/or arrays and typedefs are supported as a precaution.
871          *
872          * We also want to get typedef name while proceeding to resolve
873          * type it points to so that we can add parentheses if it is a
874          * "typedef struct" etc.
875          */
876         for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
877
878                 switch (BTF_INFO_KIND(t->info)) {
879                 case BTF_KIND_TYPEDEF:
880                         if (!name)
881                                 name = btf_name_by_offset(show->btf,
882                                                                t->name_off);
883                         kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
884                         id = t->type;
885                         break;
886                 case BTF_KIND_ARRAY:
887                         kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
888                         parens = "[";
889                         if (!t)
890                                 return "";
891                         array = btf_type_array(t);
892                         if (array_suffix > array_suffixes)
893                                 array_suffix -= 2;
894                         id = array->type;
895                         break;
896                 case BTF_KIND_PTR:
897                         kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
898                         if (ptr_suffix > ptr_suffixes)
899                                 ptr_suffix -= 1;
900                         id = t->type;
901                         break;
902                 default:
903                         id = 0;
904                         break;
905                 }
906                 if (!id)
907                         break;
908                 t = btf_type_skip_qualifiers(show->btf, id);
909         }
910         /* We may not be able to represent this type; bail to be safe */
911         if (i == BTF_SHOW_MAX_ITER)
912                 return "";
913
914         if (!name)
915                 name = btf_name_by_offset(show->btf, t->name_off);
916
917         switch (BTF_INFO_KIND(t->info)) {
918         case BTF_KIND_STRUCT:
919         case BTF_KIND_UNION:
920                 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
921                          "struct" : "union";
922                 /* if it's an array of struct/union, parens is already set */
923                 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
924                         parens = "{";
925                 break;
926         case BTF_KIND_ENUM:
927                 prefix = "enum";
928                 break;
929         default:
930                 break;
931         }
932
933         /* pointer does not require parens */
934         if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
935                 parens = "";
936         /* typedef does not require struct/union/enum prefix */
937         if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
938                 prefix = "";
939
940         if (!name)
941                 name = "";
942
943         /* Even if we don't want type name info, we want parentheses etc */
944         if (show->flags & BTF_SHOW_NONAME)
945                 snprintf(show->state.name, sizeof(show->state.name), "%s",
946                          parens);
947         else
948                 snprintf(show->state.name, sizeof(show->state.name),
949                          "%s%s%s(%s%s%s%s%s%s)%s",
950                          /* first 3 strings comprise ".member = " */
951                          show_member ? "." : "",
952                          show_member ? member : "",
953                          show_member ? " = " : "",
954                          /* ...next is our prefix (struct, enum, etc) */
955                          prefix,
956                          strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
957                          /* ...this is the type name itself */
958                          name,
959                          /* ...suffixed by the appropriate '*', '[]' suffixes */
960                          strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
961                          array_suffix, parens);
962
963         return show->state.name;
964 }
965
966 static const char *__btf_show_indent(struct btf_show *show)
967 {
968         const char *indents = "                                ";
969         const char *indent = &indents[strlen(indents)];
970
971         if ((indent - show->state.depth) >= indents)
972                 return indent - show->state.depth;
973         return indents;
974 }
975
976 static const char *btf_show_indent(struct btf_show *show)
977 {
978         return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
979 }
980
981 static const char *btf_show_newline(struct btf_show *show)
982 {
983         return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
984 }
985
986 static const char *btf_show_delim(struct btf_show *show)
987 {
988         if (show->state.depth == 0)
989                 return "";
990
991         if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
992                 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
993                 return "|";
994
995         return ",";
996 }
997
998 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
999 {
1000         va_list args;
1001
1002         if (!show->state.depth_check) {
1003                 va_start(args, fmt);
1004                 show->showfn(show, fmt, args);
1005                 va_end(args);
1006         }
1007 }
1008
1009 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1010  * format specifiers to the format specifier passed in; these do the work of
1011  * adding indentation, delimiters etc while the caller simply has to specify
1012  * the type value(s) in the format specifier + value(s).
1013  */
1014 #define btf_show_type_value(show, fmt, value)                                  \
1015         do {                                                                   \
1016                 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||           \
1017                     show->state.depth == 0) {                                  \
1018                         btf_show(show, "%s%s" fmt "%s%s",                      \
1019                                  btf_show_indent(show),                        \
1020                                  btf_show_name(show),                          \
1021                                  value, btf_show_delim(show),                  \
1022                                  btf_show_newline(show));                      \
1023                         if (show->state.depth > show->state.depth_to_show)     \
1024                                 show->state.depth_to_show = show->state.depth; \
1025                 }                                                              \
1026         } while (0)
1027
1028 #define btf_show_type_values(show, fmt, ...)                                   \
1029         do {                                                                   \
1030                 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1031                          btf_show_name(show),                                  \
1032                          __VA_ARGS__, btf_show_delim(show),                    \
1033                          btf_show_newline(show));                              \
1034                 if (show->state.depth > show->state.depth_to_show)             \
1035                         show->state.depth_to_show = show->state.depth;         \
1036         } while (0)
1037
1038 /* How much is left to copy to safe buffer after @data? */
1039 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1040 {
1041         return show->obj.head + show->obj.size - data;
1042 }
1043
1044 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1045 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1046 {
1047         return data >= show->obj.data &&
1048                (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1049 }
1050
1051 /*
1052  * If object pointed to by @data of @size falls within our safe buffer, return
1053  * the equivalent pointer to the same safe data.  Assumes
1054  * copy_from_kernel_nofault() has already happened and our safe buffer is
1055  * populated.
1056  */
1057 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1058 {
1059         if (btf_show_obj_is_safe(show, data, size))
1060                 return show->obj.safe + (data - show->obj.data);
1061         return NULL;
1062 }
1063
1064 /*
1065  * Return a safe-to-access version of data pointed to by @data.
1066  * We do this by copying the relevant amount of information
1067  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1068  *
1069  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1070  * safe copy is needed.
1071  *
1072  * Otherwise we need to determine if we have the required amount
1073  * of data (determined by the @data pointer and the size of the
1074  * largest base type we can encounter (represented by
1075  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1076  * that we will be able to print some of the current object,
1077  * and if more is needed a copy will be triggered.
1078  * Some objects such as structs will not fit into the buffer;
1079  * in such cases additional copies when we iterate over their
1080  * members may be needed.
1081  *
1082  * btf_show_obj_safe() is used to return a safe buffer for
1083  * btf_show_start_type(); this ensures that as we recurse into
1084  * nested types we always have safe data for the given type.
1085  * This approach is somewhat wasteful; it's possible for example
1086  * that when iterating over a large union we'll end up copying the
1087  * same data repeatedly, but the goal is safety not performance.
1088  * We use stack data as opposed to per-CPU buffers because the
1089  * iteration over a type can take some time, and preemption handling
1090  * would greatly complicate use of the safe buffer.
1091  */
1092 static void *btf_show_obj_safe(struct btf_show *show,
1093                                const struct btf_type *t,
1094                                void *data)
1095 {
1096         const struct btf_type *rt;
1097         int size_left, size;
1098         void *safe = NULL;
1099
1100         if (show->flags & BTF_SHOW_UNSAFE)
1101                 return data;
1102
1103         rt = btf_resolve_size(show->btf, t, &size);
1104         if (IS_ERR(rt)) {
1105                 show->state.status = PTR_ERR(rt);
1106                 return NULL;
1107         }
1108
1109         /*
1110          * Is this toplevel object? If so, set total object size and
1111          * initialize pointers.  Otherwise check if we still fall within
1112          * our safe object data.
1113          */
1114         if (show->state.depth == 0) {
1115                 show->obj.size = size;
1116                 show->obj.head = data;
1117         } else {
1118                 /*
1119                  * If the size of the current object is > our remaining
1120                  * safe buffer we _may_ need to do a new copy.  However
1121                  * consider the case of a nested struct; it's size pushes
1122                  * us over the safe buffer limit, but showing any individual
1123                  * struct members does not.  In such cases, we don't need
1124                  * to initiate a fresh copy yet; however we definitely need
1125                  * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1126                  * in our buffer, regardless of the current object size.
1127                  * The logic here is that as we resolve types we will
1128                  * hit a base type at some point, and we need to be sure
1129                  * the next chunk of data is safely available to display
1130                  * that type info safely.  We cannot rely on the size of
1131                  * the current object here because it may be much larger
1132                  * than our current buffer (e.g. task_struct is 8k).
1133                  * All we want to do here is ensure that we can print the
1134                  * next basic type, which we can if either
1135                  * - the current type size is within the safe buffer; or
1136                  * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1137                  *   the safe buffer.
1138                  */
1139                 safe = __btf_show_obj_safe(show, data,
1140                                            min(size,
1141                                                BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1142         }
1143
1144         /*
1145          * We need a new copy to our safe object, either because we haven't
1146          * yet copied and are intializing safe data, or because the data
1147          * we want falls outside the boundaries of the safe object.
1148          */
1149         if (!safe) {
1150                 size_left = btf_show_obj_size_left(show, data);
1151                 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1152                         size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1153                 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1154                                                               data, size_left);
1155                 if (!show->state.status) {
1156                         show->obj.data = data;
1157                         safe = show->obj.safe;
1158                 }
1159         }
1160
1161         return safe;
1162 }
1163
1164 /*
1165  * Set the type we are starting to show and return a safe data pointer
1166  * to be used for showing the associated data.
1167  */
1168 static void *btf_show_start_type(struct btf_show *show,
1169                                  const struct btf_type *t,
1170                                  u32 type_id, void *data)
1171 {
1172         show->state.type = t;
1173         show->state.type_id = type_id;
1174         show->state.name[0] = '\0';
1175
1176         return btf_show_obj_safe(show, t, data);
1177 }
1178
1179 static void btf_show_end_type(struct btf_show *show)
1180 {
1181         show->state.type = NULL;
1182         show->state.type_id = 0;
1183         show->state.name[0] = '\0';
1184 }
1185
1186 static void *btf_show_start_aggr_type(struct btf_show *show,
1187                                       const struct btf_type *t,
1188                                       u32 type_id, void *data)
1189 {
1190         void *safe_data = btf_show_start_type(show, t, type_id, data);
1191
1192         if (!safe_data)
1193                 return safe_data;
1194
1195         btf_show(show, "%s%s%s", btf_show_indent(show),
1196                  btf_show_name(show),
1197                  btf_show_newline(show));
1198         show->state.depth++;
1199         return safe_data;
1200 }
1201
1202 static void btf_show_end_aggr_type(struct btf_show *show,
1203                                    const char *suffix)
1204 {
1205         show->state.depth--;
1206         btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1207                  btf_show_delim(show), btf_show_newline(show));
1208         btf_show_end_type(show);
1209 }
1210
1211 static void btf_show_start_member(struct btf_show *show,
1212                                   const struct btf_member *m)
1213 {
1214         show->state.member = m;
1215 }
1216
1217 static void btf_show_start_array_member(struct btf_show *show)
1218 {
1219         show->state.array_member = 1;
1220         btf_show_start_member(show, NULL);
1221 }
1222
1223 static void btf_show_end_member(struct btf_show *show)
1224 {
1225         show->state.member = NULL;
1226 }
1227
1228 static void btf_show_end_array_member(struct btf_show *show)
1229 {
1230         show->state.array_member = 0;
1231         btf_show_end_member(show);
1232 }
1233
1234 static void *btf_show_start_array_type(struct btf_show *show,
1235                                        const struct btf_type *t,
1236                                        u32 type_id,
1237                                        u16 array_encoding,
1238                                        void *data)
1239 {
1240         show->state.array_encoding = array_encoding;
1241         show->state.array_terminated = 0;
1242         return btf_show_start_aggr_type(show, t, type_id, data);
1243 }
1244
1245 static void btf_show_end_array_type(struct btf_show *show)
1246 {
1247         show->state.array_encoding = 0;
1248         show->state.array_terminated = 0;
1249         btf_show_end_aggr_type(show, "]");
1250 }
1251
1252 static void *btf_show_start_struct_type(struct btf_show *show,
1253                                         const struct btf_type *t,
1254                                         u32 type_id,
1255                                         void *data)
1256 {
1257         return btf_show_start_aggr_type(show, t, type_id, data);
1258 }
1259
1260 static void btf_show_end_struct_type(struct btf_show *show)
1261 {
1262         btf_show_end_aggr_type(show, "}");
1263 }
1264
1265 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1266                                               const char *fmt, ...)
1267 {
1268         va_list args;
1269
1270         va_start(args, fmt);
1271         bpf_verifier_vlog(log, fmt, args);
1272         va_end(args);
1273 }
1274
1275 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1276                                             const char *fmt, ...)
1277 {
1278         struct bpf_verifier_log *log = &env->log;
1279         va_list args;
1280
1281         if (!bpf_verifier_log_needed(log))
1282                 return;
1283
1284         va_start(args, fmt);
1285         bpf_verifier_vlog(log, fmt, args);
1286         va_end(args);
1287 }
1288
1289 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1290                                                    const struct btf_type *t,
1291                                                    bool log_details,
1292                                                    const char *fmt, ...)
1293 {
1294         struct bpf_verifier_log *log = &env->log;
1295         u8 kind = BTF_INFO_KIND(t->info);
1296         struct btf *btf = env->btf;
1297         va_list args;
1298
1299         if (!bpf_verifier_log_needed(log))
1300                 return;
1301
1302         /* btf verifier prints all types it is processing via
1303          * btf_verifier_log_type(..., fmt = NULL).
1304          * Skip those prints for in-kernel BTF verification.
1305          */
1306         if (log->level == BPF_LOG_KERNEL && !fmt)
1307                 return;
1308
1309         __btf_verifier_log(log, "[%u] %s %s%s",
1310                            env->log_type_id,
1311                            btf_kind_str[kind],
1312                            __btf_name_by_offset(btf, t->name_off),
1313                            log_details ? " " : "");
1314
1315         if (log_details)
1316                 btf_type_ops(t)->log_details(env, t);
1317
1318         if (fmt && *fmt) {
1319                 __btf_verifier_log(log, " ");
1320                 va_start(args, fmt);
1321                 bpf_verifier_vlog(log, fmt, args);
1322                 va_end(args);
1323         }
1324
1325         __btf_verifier_log(log, "\n");
1326 }
1327
1328 #define btf_verifier_log_type(env, t, ...) \
1329         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1330 #define btf_verifier_log_basic(env, t, ...) \
1331         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1332
1333 __printf(4, 5)
1334 static void btf_verifier_log_member(struct btf_verifier_env *env,
1335                                     const struct btf_type *struct_type,
1336                                     const struct btf_member *member,
1337                                     const char *fmt, ...)
1338 {
1339         struct bpf_verifier_log *log = &env->log;
1340         struct btf *btf = env->btf;
1341         va_list args;
1342
1343         if (!bpf_verifier_log_needed(log))
1344                 return;
1345
1346         if (log->level == BPF_LOG_KERNEL && !fmt)
1347                 return;
1348         /* The CHECK_META phase already did a btf dump.
1349          *
1350          * If member is logged again, it must hit an error in
1351          * parsing this member.  It is useful to print out which
1352          * struct this member belongs to.
1353          */
1354         if (env->phase != CHECK_META)
1355                 btf_verifier_log_type(env, struct_type, NULL);
1356
1357         if (btf_type_kflag(struct_type))
1358                 __btf_verifier_log(log,
1359                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1360                                    __btf_name_by_offset(btf, member->name_off),
1361                                    member->type,
1362                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
1363                                    BTF_MEMBER_BIT_OFFSET(member->offset));
1364         else
1365                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1366                                    __btf_name_by_offset(btf, member->name_off),
1367                                    member->type, member->offset);
1368
1369         if (fmt && *fmt) {
1370                 __btf_verifier_log(log, " ");
1371                 va_start(args, fmt);
1372                 bpf_verifier_vlog(log, fmt, args);
1373                 va_end(args);
1374         }
1375
1376         __btf_verifier_log(log, "\n");
1377 }
1378
1379 __printf(4, 5)
1380 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1381                                  const struct btf_type *datasec_type,
1382                                  const struct btf_var_secinfo *vsi,
1383                                  const char *fmt, ...)
1384 {
1385         struct bpf_verifier_log *log = &env->log;
1386         va_list args;
1387
1388         if (!bpf_verifier_log_needed(log))
1389                 return;
1390         if (log->level == BPF_LOG_KERNEL && !fmt)
1391                 return;
1392         if (env->phase != CHECK_META)
1393                 btf_verifier_log_type(env, datasec_type, NULL);
1394
1395         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1396                            vsi->type, vsi->offset, vsi->size);
1397         if (fmt && *fmt) {
1398                 __btf_verifier_log(log, " ");
1399                 va_start(args, fmt);
1400                 bpf_verifier_vlog(log, fmt, args);
1401                 va_end(args);
1402         }
1403
1404         __btf_verifier_log(log, "\n");
1405 }
1406
1407 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1408                                  u32 btf_data_size)
1409 {
1410         struct bpf_verifier_log *log = &env->log;
1411         const struct btf *btf = env->btf;
1412         const struct btf_header *hdr;
1413
1414         if (!bpf_verifier_log_needed(log))
1415                 return;
1416
1417         if (log->level == BPF_LOG_KERNEL)
1418                 return;
1419         hdr = &btf->hdr;
1420         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1421         __btf_verifier_log(log, "version: %u\n", hdr->version);
1422         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1423         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1424         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1425         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1426         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1427         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1428         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1429 }
1430
1431 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1432 {
1433         struct btf *btf = env->btf;
1434
1435         if (btf->types_size == btf->nr_types) {
1436                 /* Expand 'types' array */
1437
1438                 struct btf_type **new_types;
1439                 u32 expand_by, new_size;
1440
1441                 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1442                         btf_verifier_log(env, "Exceeded max num of types");
1443                         return -E2BIG;
1444                 }
1445
1446                 expand_by = max_t(u32, btf->types_size >> 2, 16);
1447                 new_size = min_t(u32, BTF_MAX_TYPE,
1448                                  btf->types_size + expand_by);
1449
1450                 new_types = kvcalloc(new_size, sizeof(*new_types),
1451                                      GFP_KERNEL | __GFP_NOWARN);
1452                 if (!new_types)
1453                         return -ENOMEM;
1454
1455                 if (btf->nr_types == 0) {
1456                         if (!btf->base_btf) {
1457                                 /* lazily init VOID type */
1458                                 new_types[0] = &btf_void;
1459                                 btf->nr_types++;
1460                         }
1461                 } else {
1462                         memcpy(new_types, btf->types,
1463                                sizeof(*btf->types) * btf->nr_types);
1464                 }
1465
1466                 kvfree(btf->types);
1467                 btf->types = new_types;
1468                 btf->types_size = new_size;
1469         }
1470
1471         btf->types[btf->nr_types++] = t;
1472
1473         return 0;
1474 }
1475
1476 static int btf_alloc_id(struct btf *btf)
1477 {
1478         int id;
1479
1480         idr_preload(GFP_KERNEL);
1481         spin_lock_bh(&btf_idr_lock);
1482         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1483         if (id > 0)
1484                 btf->id = id;
1485         spin_unlock_bh(&btf_idr_lock);
1486         idr_preload_end();
1487
1488         if (WARN_ON_ONCE(!id))
1489                 return -ENOSPC;
1490
1491         return id > 0 ? 0 : id;
1492 }
1493
1494 static void btf_free_id(struct btf *btf)
1495 {
1496         unsigned long flags;
1497
1498         /*
1499          * In map-in-map, calling map_delete_elem() on outer
1500          * map will call bpf_map_put on the inner map.
1501          * It will then eventually call btf_free_id()
1502          * on the inner map.  Some of the map_delete_elem()
1503          * implementation may have irq disabled, so
1504          * we need to use the _irqsave() version instead
1505          * of the _bh() version.
1506          */
1507         spin_lock_irqsave(&btf_idr_lock, flags);
1508         idr_remove(&btf_idr, btf->id);
1509         spin_unlock_irqrestore(&btf_idr_lock, flags);
1510 }
1511
1512 static void btf_free(struct btf *btf)
1513 {
1514         kvfree(btf->types);
1515         kvfree(btf->resolved_sizes);
1516         kvfree(btf->resolved_ids);
1517         kvfree(btf->data);
1518         kfree(btf);
1519 }
1520
1521 static void btf_free_rcu(struct rcu_head *rcu)
1522 {
1523         struct btf *btf = container_of(rcu, struct btf, rcu);
1524
1525         btf_free(btf);
1526 }
1527
1528 void btf_get(struct btf *btf)
1529 {
1530         refcount_inc(&btf->refcnt);
1531 }
1532
1533 void btf_put(struct btf *btf)
1534 {
1535         if (btf && refcount_dec_and_test(&btf->refcnt)) {
1536                 btf_free_id(btf);
1537                 call_rcu(&btf->rcu, btf_free_rcu);
1538         }
1539 }
1540
1541 static int env_resolve_init(struct btf_verifier_env *env)
1542 {
1543         struct btf *btf = env->btf;
1544         u32 nr_types = btf->nr_types;
1545         u32 *resolved_sizes = NULL;
1546         u32 *resolved_ids = NULL;
1547         u8 *visit_states = NULL;
1548
1549         resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1550                                   GFP_KERNEL | __GFP_NOWARN);
1551         if (!resolved_sizes)
1552                 goto nomem;
1553
1554         resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1555                                 GFP_KERNEL | __GFP_NOWARN);
1556         if (!resolved_ids)
1557                 goto nomem;
1558
1559         visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1560                                 GFP_KERNEL | __GFP_NOWARN);
1561         if (!visit_states)
1562                 goto nomem;
1563
1564         btf->resolved_sizes = resolved_sizes;
1565         btf->resolved_ids = resolved_ids;
1566         env->visit_states = visit_states;
1567
1568         return 0;
1569
1570 nomem:
1571         kvfree(resolved_sizes);
1572         kvfree(resolved_ids);
1573         kvfree(visit_states);
1574         return -ENOMEM;
1575 }
1576
1577 static void btf_verifier_env_free(struct btf_verifier_env *env)
1578 {
1579         kvfree(env->visit_states);
1580         kfree(env);
1581 }
1582
1583 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1584                                      const struct btf_type *next_type)
1585 {
1586         switch (env->resolve_mode) {
1587         case RESOLVE_TBD:
1588                 /* int, enum or void is a sink */
1589                 return !btf_type_needs_resolve(next_type);
1590         case RESOLVE_PTR:
1591                 /* int, enum, void, struct, array, func or func_proto is a sink
1592                  * for ptr
1593                  */
1594                 return !btf_type_is_modifier(next_type) &&
1595                         !btf_type_is_ptr(next_type);
1596         case RESOLVE_STRUCT_OR_ARRAY:
1597                 /* int, enum, void, ptr, func or func_proto is a sink
1598                  * for struct and array
1599                  */
1600                 return !btf_type_is_modifier(next_type) &&
1601                         !btf_type_is_array(next_type) &&
1602                         !btf_type_is_struct(next_type);
1603         default:
1604                 BUG();
1605         }
1606 }
1607
1608 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1609                                  u32 type_id)
1610 {
1611         /* base BTF types should be resolved by now */
1612         if (type_id < env->btf->start_id)
1613                 return true;
1614
1615         return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1616 }
1617
1618 static int env_stack_push(struct btf_verifier_env *env,
1619                           const struct btf_type *t, u32 type_id)
1620 {
1621         const struct btf *btf = env->btf;
1622         struct resolve_vertex *v;
1623
1624         if (env->top_stack == MAX_RESOLVE_DEPTH)
1625                 return -E2BIG;
1626
1627         if (type_id < btf->start_id
1628             || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1629                 return -EEXIST;
1630
1631         env->visit_states[type_id - btf->start_id] = VISITED;
1632
1633         v = &env->stack[env->top_stack++];
1634         v->t = t;
1635         v->type_id = type_id;
1636         v->next_member = 0;
1637
1638         if (env->resolve_mode == RESOLVE_TBD) {
1639                 if (btf_type_is_ptr(t))
1640                         env->resolve_mode = RESOLVE_PTR;
1641                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1642                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1643         }
1644
1645         return 0;
1646 }
1647
1648 static void env_stack_set_next_member(struct btf_verifier_env *env,
1649                                       u16 next_member)
1650 {
1651         env->stack[env->top_stack - 1].next_member = next_member;
1652 }
1653
1654 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1655                                    u32 resolved_type_id,
1656                                    u32 resolved_size)
1657 {
1658         u32 type_id = env->stack[--(env->top_stack)].type_id;
1659         struct btf *btf = env->btf;
1660
1661         type_id -= btf->start_id; /* adjust to local type id */
1662         btf->resolved_sizes[type_id] = resolved_size;
1663         btf->resolved_ids[type_id] = resolved_type_id;
1664         env->visit_states[type_id] = RESOLVED;
1665 }
1666
1667 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1668 {
1669         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1670 }
1671
1672 /* Resolve the size of a passed-in "type"
1673  *
1674  * type: is an array (e.g. u32 array[x][y])
1675  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1676  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1677  *             corresponds to the return type.
1678  * *elem_type: u32
1679  * *elem_id: id of u32
1680  * *total_nelems: (x * y).  Hence, individual elem size is
1681  *                (*type_size / *total_nelems)
1682  * *type_id: id of type if it's changed within the function, 0 if not
1683  *
1684  * type: is not an array (e.g. const struct X)
1685  * return type: type "struct X"
1686  * *type_size: sizeof(struct X)
1687  * *elem_type: same as return type ("struct X")
1688  * *elem_id: 0
1689  * *total_nelems: 1
1690  * *type_id: id of type if it's changed within the function, 0 if not
1691  */
1692 static const struct btf_type *
1693 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1694                    u32 *type_size, const struct btf_type **elem_type,
1695                    u32 *elem_id, u32 *total_nelems, u32 *type_id)
1696 {
1697         const struct btf_type *array_type = NULL;
1698         const struct btf_array *array = NULL;
1699         u32 i, size, nelems = 1, id = 0;
1700
1701         for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1702                 switch (BTF_INFO_KIND(type->info)) {
1703                 /* type->size can be used */
1704                 case BTF_KIND_INT:
1705                 case BTF_KIND_STRUCT:
1706                 case BTF_KIND_UNION:
1707                 case BTF_KIND_ENUM:
1708                 case BTF_KIND_FLOAT:
1709                         size = type->size;
1710                         goto resolved;
1711
1712                 case BTF_KIND_PTR:
1713                         size = sizeof(void *);
1714                         goto resolved;
1715
1716                 /* Modifiers */
1717                 case BTF_KIND_TYPEDEF:
1718                 case BTF_KIND_VOLATILE:
1719                 case BTF_KIND_CONST:
1720                 case BTF_KIND_RESTRICT:
1721                         id = type->type;
1722                         type = btf_type_by_id(btf, type->type);
1723                         break;
1724
1725                 case BTF_KIND_ARRAY:
1726                         if (!array_type)
1727                                 array_type = type;
1728                         array = btf_type_array(type);
1729                         if (nelems && array->nelems > U32_MAX / nelems)
1730                                 return ERR_PTR(-EINVAL);
1731                         nelems *= array->nelems;
1732                         type = btf_type_by_id(btf, array->type);
1733                         break;
1734
1735                 /* type without size */
1736                 default:
1737                         return ERR_PTR(-EINVAL);
1738                 }
1739         }
1740
1741         return ERR_PTR(-EINVAL);
1742
1743 resolved:
1744         if (nelems && size > U32_MAX / nelems)
1745                 return ERR_PTR(-EINVAL);
1746
1747         *type_size = nelems * size;
1748         if (total_nelems)
1749                 *total_nelems = nelems;
1750         if (elem_type)
1751                 *elem_type = type;
1752         if (elem_id)
1753                 *elem_id = array ? array->type : 0;
1754         if (type_id && id)
1755                 *type_id = id;
1756
1757         return array_type ? : type;
1758 }
1759
1760 const struct btf_type *
1761 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1762                  u32 *type_size)
1763 {
1764         return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1765 }
1766
1767 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1768 {
1769         while (type_id < btf->start_id)
1770                 btf = btf->base_btf;
1771
1772         return btf->resolved_ids[type_id - btf->start_id];
1773 }
1774
1775 /* The input param "type_id" must point to a needs_resolve type */
1776 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1777                                                   u32 *type_id)
1778 {
1779         *type_id = btf_resolved_type_id(btf, *type_id);
1780         return btf_type_by_id(btf, *type_id);
1781 }
1782
1783 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1784 {
1785         while (type_id < btf->start_id)
1786                 btf = btf->base_btf;
1787
1788         return btf->resolved_sizes[type_id - btf->start_id];
1789 }
1790
1791 const struct btf_type *btf_type_id_size(const struct btf *btf,
1792                                         u32 *type_id, u32 *ret_size)
1793 {
1794         const struct btf_type *size_type;
1795         u32 size_type_id = *type_id;
1796         u32 size = 0;
1797
1798         size_type = btf_type_by_id(btf, size_type_id);
1799         if (btf_type_nosize_or_null(size_type))
1800                 return NULL;
1801
1802         if (btf_type_has_size(size_type)) {
1803                 size = size_type->size;
1804         } else if (btf_type_is_array(size_type)) {
1805                 size = btf_resolved_type_size(btf, size_type_id);
1806         } else if (btf_type_is_ptr(size_type)) {
1807                 size = sizeof(void *);
1808         } else {
1809                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1810                                  !btf_type_is_var(size_type)))
1811                         return NULL;
1812
1813                 size_type_id = btf_resolved_type_id(btf, size_type_id);
1814                 size_type = btf_type_by_id(btf, size_type_id);
1815                 if (btf_type_nosize_or_null(size_type))
1816                         return NULL;
1817                 else if (btf_type_has_size(size_type))
1818                         size = size_type->size;
1819                 else if (btf_type_is_array(size_type))
1820                         size = btf_resolved_type_size(btf, size_type_id);
1821                 else if (btf_type_is_ptr(size_type))
1822                         size = sizeof(void *);
1823                 else
1824                         return NULL;
1825         }
1826
1827         *type_id = size_type_id;
1828         if (ret_size)
1829                 *ret_size = size;
1830
1831         return size_type;
1832 }
1833
1834 static int btf_df_check_member(struct btf_verifier_env *env,
1835                                const struct btf_type *struct_type,
1836                                const struct btf_member *member,
1837                                const struct btf_type *member_type)
1838 {
1839         btf_verifier_log_basic(env, struct_type,
1840                                "Unsupported check_member");
1841         return -EINVAL;
1842 }
1843
1844 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1845                                      const struct btf_type *struct_type,
1846                                      const struct btf_member *member,
1847                                      const struct btf_type *member_type)
1848 {
1849         btf_verifier_log_basic(env, struct_type,
1850                                "Unsupported check_kflag_member");
1851         return -EINVAL;
1852 }
1853
1854 /* Used for ptr, array struct/union and float type members.
1855  * int, enum and modifier types have their specific callback functions.
1856  */
1857 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1858                                           const struct btf_type *struct_type,
1859                                           const struct btf_member *member,
1860                                           const struct btf_type *member_type)
1861 {
1862         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1863                 btf_verifier_log_member(env, struct_type, member,
1864                                         "Invalid member bitfield_size");
1865                 return -EINVAL;
1866         }
1867
1868         /* bitfield size is 0, so member->offset represents bit offset only.
1869          * It is safe to call non kflag check_member variants.
1870          */
1871         return btf_type_ops(member_type)->check_member(env, struct_type,
1872                                                        member,
1873                                                        member_type);
1874 }
1875
1876 static int btf_df_resolve(struct btf_verifier_env *env,
1877                           const struct resolve_vertex *v)
1878 {
1879         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1880         return -EINVAL;
1881 }
1882
1883 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1884                         u32 type_id, void *data, u8 bits_offsets,
1885                         struct btf_show *show)
1886 {
1887         btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1888 }
1889
1890 static int btf_int_check_member(struct btf_verifier_env *env,
1891                                 const struct btf_type *struct_type,
1892                                 const struct btf_member *member,
1893                                 const struct btf_type *member_type)
1894 {
1895         u32 int_data = btf_type_int(member_type);
1896         u32 struct_bits_off = member->offset;
1897         u32 struct_size = struct_type->size;
1898         u32 nr_copy_bits;
1899         u32 bytes_offset;
1900
1901         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1902                 btf_verifier_log_member(env, struct_type, member,
1903                                         "bits_offset exceeds U32_MAX");
1904                 return -EINVAL;
1905         }
1906
1907         struct_bits_off += BTF_INT_OFFSET(int_data);
1908         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1909         nr_copy_bits = BTF_INT_BITS(int_data) +
1910                 BITS_PER_BYTE_MASKED(struct_bits_off);
1911
1912         if (nr_copy_bits > BITS_PER_U128) {
1913                 btf_verifier_log_member(env, struct_type, member,
1914                                         "nr_copy_bits exceeds 128");
1915                 return -EINVAL;
1916         }
1917
1918         if (struct_size < bytes_offset ||
1919             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1920                 btf_verifier_log_member(env, struct_type, member,
1921                                         "Member exceeds struct_size");
1922                 return -EINVAL;
1923         }
1924
1925         return 0;
1926 }
1927
1928 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1929                                       const struct btf_type *struct_type,
1930                                       const struct btf_member *member,
1931                                       const struct btf_type *member_type)
1932 {
1933         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1934         u32 int_data = btf_type_int(member_type);
1935         u32 struct_size = struct_type->size;
1936         u32 nr_copy_bits;
1937
1938         /* a regular int type is required for the kflag int member */
1939         if (!btf_type_int_is_regular(member_type)) {
1940                 btf_verifier_log_member(env, struct_type, member,
1941                                         "Invalid member base type");
1942                 return -EINVAL;
1943         }
1944
1945         /* check sanity of bitfield size */
1946         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1947         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1948         nr_int_data_bits = BTF_INT_BITS(int_data);
1949         if (!nr_bits) {
1950                 /* Not a bitfield member, member offset must be at byte
1951                  * boundary.
1952                  */
1953                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1954                         btf_verifier_log_member(env, struct_type, member,
1955                                                 "Invalid member offset");
1956                         return -EINVAL;
1957                 }
1958
1959                 nr_bits = nr_int_data_bits;
1960         } else if (nr_bits > nr_int_data_bits) {
1961                 btf_verifier_log_member(env, struct_type, member,
1962                                         "Invalid member bitfield_size");
1963                 return -EINVAL;
1964         }
1965
1966         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1967         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1968         if (nr_copy_bits > BITS_PER_U128) {
1969                 btf_verifier_log_member(env, struct_type, member,
1970                                         "nr_copy_bits exceeds 128");
1971                 return -EINVAL;
1972         }
1973
1974         if (struct_size < bytes_offset ||
1975             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1976                 btf_verifier_log_member(env, struct_type, member,
1977                                         "Member exceeds struct_size");
1978                 return -EINVAL;
1979         }
1980
1981         return 0;
1982 }
1983
1984 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1985                               const struct btf_type *t,
1986                               u32 meta_left)
1987 {
1988         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1989         u16 encoding;
1990
1991         if (meta_left < meta_needed) {
1992                 btf_verifier_log_basic(env, t,
1993                                        "meta_left:%u meta_needed:%u",
1994                                        meta_left, meta_needed);
1995                 return -EINVAL;
1996         }
1997
1998         if (btf_type_vlen(t)) {
1999                 btf_verifier_log_type(env, t, "vlen != 0");
2000                 return -EINVAL;
2001         }
2002
2003         if (btf_type_kflag(t)) {
2004                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2005                 return -EINVAL;
2006         }
2007
2008         int_data = btf_type_int(t);
2009         if (int_data & ~BTF_INT_MASK) {
2010                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2011                                        int_data);
2012                 return -EINVAL;
2013         }
2014
2015         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2016
2017         if (nr_bits > BITS_PER_U128) {
2018                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2019                                       BITS_PER_U128);
2020                 return -EINVAL;
2021         }
2022
2023         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2024                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2025                 return -EINVAL;
2026         }
2027
2028         /*
2029          * Only one of the encoding bits is allowed and it
2030          * should be sufficient for the pretty print purpose (i.e. decoding).
2031          * Multiple bits can be allowed later if it is found
2032          * to be insufficient.
2033          */
2034         encoding = BTF_INT_ENCODING(int_data);
2035         if (encoding &&
2036             encoding != BTF_INT_SIGNED &&
2037             encoding != BTF_INT_CHAR &&
2038             encoding != BTF_INT_BOOL) {
2039                 btf_verifier_log_type(env, t, "Unsupported encoding");
2040                 return -ENOTSUPP;
2041         }
2042
2043         btf_verifier_log_type(env, t, NULL);
2044
2045         return meta_needed;
2046 }
2047
2048 static void btf_int_log(struct btf_verifier_env *env,
2049                         const struct btf_type *t)
2050 {
2051         int int_data = btf_type_int(t);
2052
2053         btf_verifier_log(env,
2054                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2055                          t->size, BTF_INT_OFFSET(int_data),
2056                          BTF_INT_BITS(int_data),
2057                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2058 }
2059
2060 static void btf_int128_print(struct btf_show *show, void *data)
2061 {
2062         /* data points to a __int128 number.
2063          * Suppose
2064          *     int128_num = *(__int128 *)data;
2065          * The below formulas shows what upper_num and lower_num represents:
2066          *     upper_num = int128_num >> 64;
2067          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2068          */
2069         u64 upper_num, lower_num;
2070
2071 #ifdef __BIG_ENDIAN_BITFIELD
2072         upper_num = *(u64 *)data;
2073         lower_num = *(u64 *)(data + 8);
2074 #else
2075         upper_num = *(u64 *)(data + 8);
2076         lower_num = *(u64 *)data;
2077 #endif
2078         if (upper_num == 0)
2079                 btf_show_type_value(show, "0x%llx", lower_num);
2080         else
2081                 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2082                                      lower_num);
2083 }
2084
2085 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2086                              u16 right_shift_bits)
2087 {
2088         u64 upper_num, lower_num;
2089
2090 #ifdef __BIG_ENDIAN_BITFIELD
2091         upper_num = print_num[0];
2092         lower_num = print_num[1];
2093 #else
2094         upper_num = print_num[1];
2095         lower_num = print_num[0];
2096 #endif
2097
2098         /* shake out un-needed bits by shift/or operations */
2099         if (left_shift_bits >= 64) {
2100                 upper_num = lower_num << (left_shift_bits - 64);
2101                 lower_num = 0;
2102         } else {
2103                 upper_num = (upper_num << left_shift_bits) |
2104                             (lower_num >> (64 - left_shift_bits));
2105                 lower_num = lower_num << left_shift_bits;
2106         }
2107
2108         if (right_shift_bits >= 64) {
2109                 lower_num = upper_num >> (right_shift_bits - 64);
2110                 upper_num = 0;
2111         } else {
2112                 lower_num = (lower_num >> right_shift_bits) |
2113                             (upper_num << (64 - right_shift_bits));
2114                 upper_num = upper_num >> right_shift_bits;
2115         }
2116
2117 #ifdef __BIG_ENDIAN_BITFIELD
2118         print_num[0] = upper_num;
2119         print_num[1] = lower_num;
2120 #else
2121         print_num[0] = lower_num;
2122         print_num[1] = upper_num;
2123 #endif
2124 }
2125
2126 static void btf_bitfield_show(void *data, u8 bits_offset,
2127                               u8 nr_bits, struct btf_show *show)
2128 {
2129         u16 left_shift_bits, right_shift_bits;
2130         u8 nr_copy_bytes;
2131         u8 nr_copy_bits;
2132         u64 print_num[2] = {};
2133
2134         nr_copy_bits = nr_bits + bits_offset;
2135         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2136
2137         memcpy(print_num, data, nr_copy_bytes);
2138
2139 #ifdef __BIG_ENDIAN_BITFIELD
2140         left_shift_bits = bits_offset;
2141 #else
2142         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2143 #endif
2144         right_shift_bits = BITS_PER_U128 - nr_bits;
2145
2146         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2147         btf_int128_print(show, print_num);
2148 }
2149
2150
2151 static void btf_int_bits_show(const struct btf *btf,
2152                               const struct btf_type *t,
2153                               void *data, u8 bits_offset,
2154                               struct btf_show *show)
2155 {
2156         u32 int_data = btf_type_int(t);
2157         u8 nr_bits = BTF_INT_BITS(int_data);
2158         u8 total_bits_offset;
2159
2160         /*
2161          * bits_offset is at most 7.
2162          * BTF_INT_OFFSET() cannot exceed 128 bits.
2163          */
2164         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2165         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2166         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2167         btf_bitfield_show(data, bits_offset, nr_bits, show);
2168 }
2169
2170 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2171                          u32 type_id, void *data, u8 bits_offset,
2172                          struct btf_show *show)
2173 {
2174         u32 int_data = btf_type_int(t);
2175         u8 encoding = BTF_INT_ENCODING(int_data);
2176         bool sign = encoding & BTF_INT_SIGNED;
2177         u8 nr_bits = BTF_INT_BITS(int_data);
2178         void *safe_data;
2179
2180         safe_data = btf_show_start_type(show, t, type_id, data);
2181         if (!safe_data)
2182                 return;
2183
2184         if (bits_offset || BTF_INT_OFFSET(int_data) ||
2185             BITS_PER_BYTE_MASKED(nr_bits)) {
2186                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2187                 goto out;
2188         }
2189
2190         switch (nr_bits) {
2191         case 128:
2192                 btf_int128_print(show, safe_data);
2193                 break;
2194         case 64:
2195                 if (sign)
2196                         btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2197                 else
2198                         btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2199                 break;
2200         case 32:
2201                 if (sign)
2202                         btf_show_type_value(show, "%d", *(s32 *)safe_data);
2203                 else
2204                         btf_show_type_value(show, "%u", *(u32 *)safe_data);
2205                 break;
2206         case 16:
2207                 if (sign)
2208                         btf_show_type_value(show, "%d", *(s16 *)safe_data);
2209                 else
2210                         btf_show_type_value(show, "%u", *(u16 *)safe_data);
2211                 break;
2212         case 8:
2213                 if (show->state.array_encoding == BTF_INT_CHAR) {
2214                         /* check for null terminator */
2215                         if (show->state.array_terminated)
2216                                 break;
2217                         if (*(char *)data == '\0') {
2218                                 show->state.array_terminated = 1;
2219                                 break;
2220                         }
2221                         if (isprint(*(char *)data)) {
2222                                 btf_show_type_value(show, "'%c'",
2223                                                     *(char *)safe_data);
2224                                 break;
2225                         }
2226                 }
2227                 if (sign)
2228                         btf_show_type_value(show, "%d", *(s8 *)safe_data);
2229                 else
2230                         btf_show_type_value(show, "%u", *(u8 *)safe_data);
2231                 break;
2232         default:
2233                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2234                 break;
2235         }
2236 out:
2237         btf_show_end_type(show);
2238 }
2239
2240 static const struct btf_kind_operations int_ops = {
2241         .check_meta = btf_int_check_meta,
2242         .resolve = btf_df_resolve,
2243         .check_member = btf_int_check_member,
2244         .check_kflag_member = btf_int_check_kflag_member,
2245         .log_details = btf_int_log,
2246         .show = btf_int_show,
2247 };
2248
2249 static int btf_modifier_check_member(struct btf_verifier_env *env,
2250                                      const struct btf_type *struct_type,
2251                                      const struct btf_member *member,
2252                                      const struct btf_type *member_type)
2253 {
2254         const struct btf_type *resolved_type;
2255         u32 resolved_type_id = member->type;
2256         struct btf_member resolved_member;
2257         struct btf *btf = env->btf;
2258
2259         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2260         if (!resolved_type) {
2261                 btf_verifier_log_member(env, struct_type, member,
2262                                         "Invalid member");
2263                 return -EINVAL;
2264         }
2265
2266         resolved_member = *member;
2267         resolved_member.type = resolved_type_id;
2268
2269         return btf_type_ops(resolved_type)->check_member(env, struct_type,
2270                                                          &resolved_member,
2271                                                          resolved_type);
2272 }
2273
2274 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2275                                            const struct btf_type *struct_type,
2276                                            const struct btf_member *member,
2277                                            const struct btf_type *member_type)
2278 {
2279         const struct btf_type *resolved_type;
2280         u32 resolved_type_id = member->type;
2281         struct btf_member resolved_member;
2282         struct btf *btf = env->btf;
2283
2284         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2285         if (!resolved_type) {
2286                 btf_verifier_log_member(env, struct_type, member,
2287                                         "Invalid member");
2288                 return -EINVAL;
2289         }
2290
2291         resolved_member = *member;
2292         resolved_member.type = resolved_type_id;
2293
2294         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2295                                                                &resolved_member,
2296                                                                resolved_type);
2297 }
2298
2299 static int btf_ptr_check_member(struct btf_verifier_env *env,
2300                                 const struct btf_type *struct_type,
2301                                 const struct btf_member *member,
2302                                 const struct btf_type *member_type)
2303 {
2304         u32 struct_size, struct_bits_off, bytes_offset;
2305
2306         struct_size = struct_type->size;
2307         struct_bits_off = member->offset;
2308         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2309
2310         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2311                 btf_verifier_log_member(env, struct_type, member,
2312                                         "Member is not byte aligned");
2313                 return -EINVAL;
2314         }
2315
2316         if (struct_size - bytes_offset < sizeof(void *)) {
2317                 btf_verifier_log_member(env, struct_type, member,
2318                                         "Member exceeds struct_size");
2319                 return -EINVAL;
2320         }
2321
2322         return 0;
2323 }
2324
2325 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2326                                    const struct btf_type *t,
2327                                    u32 meta_left)
2328 {
2329         if (btf_type_vlen(t)) {
2330                 btf_verifier_log_type(env, t, "vlen != 0");
2331                 return -EINVAL;
2332         }
2333
2334         if (btf_type_kflag(t)) {
2335                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2336                 return -EINVAL;
2337         }
2338
2339         if (!BTF_TYPE_ID_VALID(t->type)) {
2340                 btf_verifier_log_type(env, t, "Invalid type_id");
2341                 return -EINVAL;
2342         }
2343
2344         /* typedef type must have a valid name, and other ref types,
2345          * volatile, const, restrict, should have a null name.
2346          */
2347         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2348                 if (!t->name_off ||
2349                     !btf_name_valid_identifier(env->btf, t->name_off)) {
2350                         btf_verifier_log_type(env, t, "Invalid name");
2351                         return -EINVAL;
2352                 }
2353         } else {
2354                 if (t->name_off) {
2355                         btf_verifier_log_type(env, t, "Invalid name");
2356                         return -EINVAL;
2357                 }
2358         }
2359
2360         btf_verifier_log_type(env, t, NULL);
2361
2362         return 0;
2363 }
2364
2365 static int btf_modifier_resolve(struct btf_verifier_env *env,
2366                                 const struct resolve_vertex *v)
2367 {
2368         const struct btf_type *t = v->t;
2369         const struct btf_type *next_type;
2370         u32 next_type_id = t->type;
2371         struct btf *btf = env->btf;
2372
2373         next_type = btf_type_by_id(btf, next_type_id);
2374         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2375                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2376                 return -EINVAL;
2377         }
2378
2379         if (!env_type_is_resolve_sink(env, next_type) &&
2380             !env_type_is_resolved(env, next_type_id))
2381                 return env_stack_push(env, next_type, next_type_id);
2382
2383         /* Figure out the resolved next_type_id with size.
2384          * They will be stored in the current modifier's
2385          * resolved_ids and resolved_sizes such that it can
2386          * save us a few type-following when we use it later (e.g. in
2387          * pretty print).
2388          */
2389         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2390                 if (env_type_is_resolved(env, next_type_id))
2391                         next_type = btf_type_id_resolve(btf, &next_type_id);
2392
2393                 /* "typedef void new_void", "const void"...etc */
2394                 if (!btf_type_is_void(next_type) &&
2395                     !btf_type_is_fwd(next_type) &&
2396                     !btf_type_is_func_proto(next_type)) {
2397                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2398                         return -EINVAL;
2399                 }
2400         }
2401
2402         env_stack_pop_resolved(env, next_type_id, 0);
2403
2404         return 0;
2405 }
2406
2407 static int btf_var_resolve(struct btf_verifier_env *env,
2408                            const struct resolve_vertex *v)
2409 {
2410         const struct btf_type *next_type;
2411         const struct btf_type *t = v->t;
2412         u32 next_type_id = t->type;
2413         struct btf *btf = env->btf;
2414
2415         next_type = btf_type_by_id(btf, next_type_id);
2416         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2417                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2418                 return -EINVAL;
2419         }
2420
2421         if (!env_type_is_resolve_sink(env, next_type) &&
2422             !env_type_is_resolved(env, next_type_id))
2423                 return env_stack_push(env, next_type, next_type_id);
2424
2425         if (btf_type_is_modifier(next_type)) {
2426                 const struct btf_type *resolved_type;
2427                 u32 resolved_type_id;
2428
2429                 resolved_type_id = next_type_id;
2430                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2431
2432                 if (btf_type_is_ptr(resolved_type) &&
2433                     !env_type_is_resolve_sink(env, resolved_type) &&
2434                     !env_type_is_resolved(env, resolved_type_id))
2435                         return env_stack_push(env, resolved_type,
2436                                               resolved_type_id);
2437         }
2438
2439         /* We must resolve to something concrete at this point, no
2440          * forward types or similar that would resolve to size of
2441          * zero is allowed.
2442          */
2443         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2444                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2445                 return -EINVAL;
2446         }
2447
2448         env_stack_pop_resolved(env, next_type_id, 0);
2449
2450         return 0;
2451 }
2452
2453 static int btf_ptr_resolve(struct btf_verifier_env *env,
2454                            const struct resolve_vertex *v)
2455 {
2456         const struct btf_type *next_type;
2457         const struct btf_type *t = v->t;
2458         u32 next_type_id = t->type;
2459         struct btf *btf = env->btf;
2460
2461         next_type = btf_type_by_id(btf, next_type_id);
2462         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2463                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2464                 return -EINVAL;
2465         }
2466
2467         if (!env_type_is_resolve_sink(env, next_type) &&
2468             !env_type_is_resolved(env, next_type_id))
2469                 return env_stack_push(env, next_type, next_type_id);
2470
2471         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2472          * the modifier may have stopped resolving when it was resolved
2473          * to a ptr (last-resolved-ptr).
2474          *
2475          * We now need to continue from the last-resolved-ptr to
2476          * ensure the last-resolved-ptr will not referring back to
2477          * the currenct ptr (t).
2478          */
2479         if (btf_type_is_modifier(next_type)) {
2480                 const struct btf_type *resolved_type;
2481                 u32 resolved_type_id;
2482
2483                 resolved_type_id = next_type_id;
2484                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2485
2486                 if (btf_type_is_ptr(resolved_type) &&
2487                     !env_type_is_resolve_sink(env, resolved_type) &&
2488                     !env_type_is_resolved(env, resolved_type_id))
2489                         return env_stack_push(env, resolved_type,
2490                                               resolved_type_id);
2491         }
2492
2493         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2494                 if (env_type_is_resolved(env, next_type_id))
2495                         next_type = btf_type_id_resolve(btf, &next_type_id);
2496
2497                 if (!btf_type_is_void(next_type) &&
2498                     !btf_type_is_fwd(next_type) &&
2499                     !btf_type_is_func_proto(next_type)) {
2500                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2501                         return -EINVAL;
2502                 }
2503         }
2504
2505         env_stack_pop_resolved(env, next_type_id, 0);
2506
2507         return 0;
2508 }
2509
2510 static void btf_modifier_show(const struct btf *btf,
2511                               const struct btf_type *t,
2512                               u32 type_id, void *data,
2513                               u8 bits_offset, struct btf_show *show)
2514 {
2515         if (btf->resolved_ids)
2516                 t = btf_type_id_resolve(btf, &type_id);
2517         else
2518                 t = btf_type_skip_modifiers(btf, type_id, NULL);
2519
2520         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2521 }
2522
2523 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2524                          u32 type_id, void *data, u8 bits_offset,
2525                          struct btf_show *show)
2526 {
2527         t = btf_type_id_resolve(btf, &type_id);
2528
2529         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2530 }
2531
2532 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2533                          u32 type_id, void *data, u8 bits_offset,
2534                          struct btf_show *show)
2535 {
2536         void *safe_data;
2537
2538         safe_data = btf_show_start_type(show, t, type_id, data);
2539         if (!safe_data)
2540                 return;
2541
2542         /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2543         if (show->flags & BTF_SHOW_PTR_RAW)
2544                 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2545         else
2546                 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2547         btf_show_end_type(show);
2548 }
2549
2550 static void btf_ref_type_log(struct btf_verifier_env *env,
2551                              const struct btf_type *t)
2552 {
2553         btf_verifier_log(env, "type_id=%u", t->type);
2554 }
2555
2556 static struct btf_kind_operations modifier_ops = {
2557         .check_meta = btf_ref_type_check_meta,
2558         .resolve = btf_modifier_resolve,
2559         .check_member = btf_modifier_check_member,
2560         .check_kflag_member = btf_modifier_check_kflag_member,
2561         .log_details = btf_ref_type_log,
2562         .show = btf_modifier_show,
2563 };
2564
2565 static struct btf_kind_operations ptr_ops = {
2566         .check_meta = btf_ref_type_check_meta,
2567         .resolve = btf_ptr_resolve,
2568         .check_member = btf_ptr_check_member,
2569         .check_kflag_member = btf_generic_check_kflag_member,
2570         .log_details = btf_ref_type_log,
2571         .show = btf_ptr_show,
2572 };
2573
2574 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2575                               const struct btf_type *t,
2576                               u32 meta_left)
2577 {
2578         if (btf_type_vlen(t)) {
2579                 btf_verifier_log_type(env, t, "vlen != 0");
2580                 return -EINVAL;
2581         }
2582
2583         if (t->type) {
2584                 btf_verifier_log_type(env, t, "type != 0");
2585                 return -EINVAL;
2586         }
2587
2588         /* fwd type must have a valid name */
2589         if (!t->name_off ||
2590             !btf_name_valid_identifier(env->btf, t->name_off)) {
2591                 btf_verifier_log_type(env, t, "Invalid name");
2592                 return -EINVAL;
2593         }
2594
2595         btf_verifier_log_type(env, t, NULL);
2596
2597         return 0;
2598 }
2599
2600 static void btf_fwd_type_log(struct btf_verifier_env *env,
2601                              const struct btf_type *t)
2602 {
2603         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2604 }
2605
2606 static struct btf_kind_operations fwd_ops = {
2607         .check_meta = btf_fwd_check_meta,
2608         .resolve = btf_df_resolve,
2609         .check_member = btf_df_check_member,
2610         .check_kflag_member = btf_df_check_kflag_member,
2611         .log_details = btf_fwd_type_log,
2612         .show = btf_df_show,
2613 };
2614
2615 static int btf_array_check_member(struct btf_verifier_env *env,
2616                                   const struct btf_type *struct_type,
2617                                   const struct btf_member *member,
2618                                   const struct btf_type *member_type)
2619 {
2620         u32 struct_bits_off = member->offset;
2621         u32 struct_size, bytes_offset;
2622         u32 array_type_id, array_size;
2623         struct btf *btf = env->btf;
2624
2625         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2626                 btf_verifier_log_member(env, struct_type, member,
2627                                         "Member is not byte aligned");
2628                 return -EINVAL;
2629         }
2630
2631         array_type_id = member->type;
2632         btf_type_id_size(btf, &array_type_id, &array_size);
2633         struct_size = struct_type->size;
2634         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2635         if (struct_size - bytes_offset < array_size) {
2636                 btf_verifier_log_member(env, struct_type, member,
2637                                         "Member exceeds struct_size");
2638                 return -EINVAL;
2639         }
2640
2641         return 0;
2642 }
2643
2644 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2645                                 const struct btf_type *t,
2646                                 u32 meta_left)
2647 {
2648         const struct btf_array *array = btf_type_array(t);
2649         u32 meta_needed = sizeof(*array);
2650
2651         if (meta_left < meta_needed) {
2652                 btf_verifier_log_basic(env, t,
2653                                        "meta_left:%u meta_needed:%u",
2654                                        meta_left, meta_needed);
2655                 return -EINVAL;
2656         }
2657
2658         /* array type should not have a name */
2659         if (t->name_off) {
2660                 btf_verifier_log_type(env, t, "Invalid name");
2661                 return -EINVAL;
2662         }
2663
2664         if (btf_type_vlen(t)) {
2665                 btf_verifier_log_type(env, t, "vlen != 0");
2666                 return -EINVAL;
2667         }
2668
2669         if (btf_type_kflag(t)) {
2670                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2671                 return -EINVAL;
2672         }
2673
2674         if (t->size) {
2675                 btf_verifier_log_type(env, t, "size != 0");
2676                 return -EINVAL;
2677         }
2678
2679         /* Array elem type and index type cannot be in type void,
2680          * so !array->type and !array->index_type are not allowed.
2681          */
2682         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2683                 btf_verifier_log_type(env, t, "Invalid elem");
2684                 return -EINVAL;
2685         }
2686
2687         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2688                 btf_verifier_log_type(env, t, "Invalid index");
2689                 return -EINVAL;
2690         }
2691
2692         btf_verifier_log_type(env, t, NULL);
2693
2694         return meta_needed;
2695 }
2696
2697 static int btf_array_resolve(struct btf_verifier_env *env,
2698                              const struct resolve_vertex *v)
2699 {
2700         const struct btf_array *array = btf_type_array(v->t);
2701         const struct btf_type *elem_type, *index_type;
2702         u32 elem_type_id, index_type_id;
2703         struct btf *btf = env->btf;
2704         u32 elem_size;
2705
2706         /* Check array->index_type */
2707         index_type_id = array->index_type;
2708         index_type = btf_type_by_id(btf, index_type_id);
2709         if (btf_type_nosize_or_null(index_type) ||
2710             btf_type_is_resolve_source_only(index_type)) {
2711                 btf_verifier_log_type(env, v->t, "Invalid index");
2712                 return -EINVAL;
2713         }
2714
2715         if (!env_type_is_resolve_sink(env, index_type) &&
2716             !env_type_is_resolved(env, index_type_id))
2717                 return env_stack_push(env, index_type, index_type_id);
2718
2719         index_type = btf_type_id_size(btf, &index_type_id, NULL);
2720         if (!index_type || !btf_type_is_int(index_type) ||
2721             !btf_type_int_is_regular(index_type)) {
2722                 btf_verifier_log_type(env, v->t, "Invalid index");
2723                 return -EINVAL;
2724         }
2725
2726         /* Check array->type */
2727         elem_type_id = array->type;
2728         elem_type = btf_type_by_id(btf, elem_type_id);
2729         if (btf_type_nosize_or_null(elem_type) ||
2730             btf_type_is_resolve_source_only(elem_type)) {
2731                 btf_verifier_log_type(env, v->t,
2732                                       "Invalid elem");
2733                 return -EINVAL;
2734         }
2735
2736         if (!env_type_is_resolve_sink(env, elem_type) &&
2737             !env_type_is_resolved(env, elem_type_id))
2738                 return env_stack_push(env, elem_type, elem_type_id);
2739
2740         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2741         if (!elem_type) {
2742                 btf_verifier_log_type(env, v->t, "Invalid elem");
2743                 return -EINVAL;
2744         }
2745
2746         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2747                 btf_verifier_log_type(env, v->t, "Invalid array of int");
2748                 return -EINVAL;
2749         }
2750
2751         if (array->nelems && elem_size > U32_MAX / array->nelems) {
2752                 btf_verifier_log_type(env, v->t,
2753                                       "Array size overflows U32_MAX");
2754                 return -EINVAL;
2755         }
2756
2757         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2758
2759         return 0;
2760 }
2761
2762 static void btf_array_log(struct btf_verifier_env *env,
2763                           const struct btf_type *t)
2764 {
2765         const struct btf_array *array = btf_type_array(t);
2766
2767         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2768                          array->type, array->index_type, array->nelems);
2769 }
2770
2771 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2772                              u32 type_id, void *data, u8 bits_offset,
2773                              struct btf_show *show)
2774 {
2775         const struct btf_array *array = btf_type_array(t);
2776         const struct btf_kind_operations *elem_ops;
2777         const struct btf_type *elem_type;
2778         u32 i, elem_size = 0, elem_type_id;
2779         u16 encoding = 0;
2780
2781         elem_type_id = array->type;
2782         elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2783         if (elem_type && btf_type_has_size(elem_type))
2784                 elem_size = elem_type->size;
2785
2786         if (elem_type && btf_type_is_int(elem_type)) {
2787                 u32 int_type = btf_type_int(elem_type);
2788
2789                 encoding = BTF_INT_ENCODING(int_type);
2790
2791                 /*
2792                  * BTF_INT_CHAR encoding never seems to be set for
2793                  * char arrays, so if size is 1 and element is
2794                  * printable as a char, we'll do that.
2795                  */
2796                 if (elem_size == 1)
2797                         encoding = BTF_INT_CHAR;
2798         }
2799
2800         if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2801                 return;
2802
2803         if (!elem_type)
2804                 goto out;
2805         elem_ops = btf_type_ops(elem_type);
2806
2807         for (i = 0; i < array->nelems; i++) {
2808
2809                 btf_show_start_array_member(show);
2810
2811                 elem_ops->show(btf, elem_type, elem_type_id, data,
2812                                bits_offset, show);
2813                 data += elem_size;
2814
2815                 btf_show_end_array_member(show);
2816
2817                 if (show->state.array_terminated)
2818                         break;
2819         }
2820 out:
2821         btf_show_end_array_type(show);
2822 }
2823
2824 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2825                            u32 type_id, void *data, u8 bits_offset,
2826                            struct btf_show *show)
2827 {
2828         const struct btf_member *m = show->state.member;
2829
2830         /*
2831          * First check if any members would be shown (are non-zero).
2832          * See comments above "struct btf_show" definition for more
2833          * details on how this works at a high-level.
2834          */
2835         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2836                 if (!show->state.depth_check) {
2837                         show->state.depth_check = show->state.depth + 1;
2838                         show->state.depth_to_show = 0;
2839                 }
2840                 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2841                 show->state.member = m;
2842
2843                 if (show->state.depth_check != show->state.depth + 1)
2844                         return;
2845                 show->state.depth_check = 0;
2846
2847                 if (show->state.depth_to_show <= show->state.depth)
2848                         return;
2849                 /*
2850                  * Reaching here indicates we have recursed and found
2851                  * non-zero array member(s).
2852                  */
2853         }
2854         __btf_array_show(btf, t, type_id, data, bits_offset, show);
2855 }
2856
2857 static struct btf_kind_operations array_ops = {
2858         .check_meta = btf_array_check_meta,
2859         .resolve = btf_array_resolve,
2860         .check_member = btf_array_check_member,
2861         .check_kflag_member = btf_generic_check_kflag_member,
2862         .log_details = btf_array_log,
2863         .show = btf_array_show,
2864 };
2865
2866 static int btf_struct_check_member(struct btf_verifier_env *env,
2867                                    const struct btf_type *struct_type,
2868                                    const struct btf_member *member,
2869                                    const struct btf_type *member_type)
2870 {
2871         u32 struct_bits_off = member->offset;
2872         u32 struct_size, bytes_offset;
2873
2874         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2875                 btf_verifier_log_member(env, struct_type, member,
2876                                         "Member is not byte aligned");
2877                 return -EINVAL;
2878         }
2879
2880         struct_size = struct_type->size;
2881         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2882         if (struct_size - bytes_offset < member_type->size) {
2883                 btf_verifier_log_member(env, struct_type, member,
2884                                         "Member exceeds struct_size");
2885                 return -EINVAL;
2886         }
2887
2888         return 0;
2889 }
2890
2891 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2892                                  const struct btf_type *t,
2893                                  u32 meta_left)
2894 {
2895         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2896         const struct btf_member *member;
2897         u32 meta_needed, last_offset;
2898         struct btf *btf = env->btf;
2899         u32 struct_size = t->size;
2900         u32 offset;
2901         u16 i;
2902
2903         meta_needed = btf_type_vlen(t) * sizeof(*member);
2904         if (meta_left < meta_needed) {
2905                 btf_verifier_log_basic(env, t,
2906                                        "meta_left:%u meta_needed:%u",
2907                                        meta_left, meta_needed);
2908                 return -EINVAL;
2909         }
2910
2911         /* struct type either no name or a valid one */
2912         if (t->name_off &&
2913             !btf_name_valid_identifier(env->btf, t->name_off)) {
2914                 btf_verifier_log_type(env, t, "Invalid name");
2915                 return -EINVAL;
2916         }
2917
2918         btf_verifier_log_type(env, t, NULL);
2919
2920         last_offset = 0;
2921         for_each_member(i, t, member) {
2922                 if (!btf_name_offset_valid(btf, member->name_off)) {
2923                         btf_verifier_log_member(env, t, member,
2924                                                 "Invalid member name_offset:%u",
2925                                                 member->name_off);
2926                         return -EINVAL;
2927                 }
2928
2929                 /* struct member either no name or a valid one */
2930                 if (member->name_off &&
2931                     !btf_name_valid_identifier(btf, member->name_off)) {
2932                         btf_verifier_log_member(env, t, member, "Invalid name");
2933                         return -EINVAL;
2934                 }
2935                 /* A member cannot be in type void */
2936                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2937                         btf_verifier_log_member(env, t, member,
2938                                                 "Invalid type_id");
2939                         return -EINVAL;
2940                 }
2941
2942                 offset = btf_member_bit_offset(t, member);
2943                 if (is_union && offset) {
2944                         btf_verifier_log_member(env, t, member,
2945                                                 "Invalid member bits_offset");
2946                         return -EINVAL;
2947                 }
2948
2949                 /*
2950                  * ">" instead of ">=" because the last member could be
2951                  * "char a[0];"
2952                  */
2953                 if (last_offset > offset) {
2954                         btf_verifier_log_member(env, t, member,
2955                                                 "Invalid member bits_offset");
2956                         return -EINVAL;
2957                 }
2958
2959                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2960                         btf_verifier_log_member(env, t, member,
2961                                                 "Member bits_offset exceeds its struct size");
2962                         return -EINVAL;
2963                 }
2964
2965                 btf_verifier_log_member(env, t, member, NULL);
2966                 last_offset = offset;
2967         }
2968
2969         return meta_needed;
2970 }
2971
2972 static int btf_struct_resolve(struct btf_verifier_env *env,
2973                               const struct resolve_vertex *v)
2974 {
2975         const struct btf_member *member;
2976         int err;
2977         u16 i;
2978
2979         /* Before continue resolving the next_member,
2980          * ensure the last member is indeed resolved to a
2981          * type with size info.
2982          */
2983         if (v->next_member) {
2984                 const struct btf_type *last_member_type;
2985                 const struct btf_member *last_member;
2986                 u16 last_member_type_id;
2987
2988                 last_member = btf_type_member(v->t) + v->next_member - 1;
2989                 last_member_type_id = last_member->type;
2990                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2991                                                        last_member_type_id)))
2992                         return -EINVAL;
2993
2994                 last_member_type = btf_type_by_id(env->btf,
2995                                                   last_member_type_id);
2996                 if (btf_type_kflag(v->t))
2997                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2998                                                                 last_member,
2999                                                                 last_member_type);
3000                 else
3001                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
3002                                                                 last_member,
3003                                                                 last_member_type);
3004                 if (err)
3005                         return err;
3006         }
3007
3008         for_each_member_from(i, v->next_member, v->t, member) {
3009                 u32 member_type_id = member->type;
3010                 const struct btf_type *member_type = btf_type_by_id(env->btf,
3011                                                                 member_type_id);
3012
3013                 if (btf_type_nosize_or_null(member_type) ||
3014                     btf_type_is_resolve_source_only(member_type)) {
3015                         btf_verifier_log_member(env, v->t, member,
3016                                                 "Invalid member");
3017                         return -EINVAL;
3018                 }
3019
3020                 if (!env_type_is_resolve_sink(env, member_type) &&
3021                     !env_type_is_resolved(env, member_type_id)) {
3022                         env_stack_set_next_member(env, i + 1);
3023                         return env_stack_push(env, member_type, member_type_id);
3024                 }
3025
3026                 if (btf_type_kflag(v->t))
3027                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3028                                                                             member,
3029                                                                             member_type);
3030                 else
3031                         err = btf_type_ops(member_type)->check_member(env, v->t,
3032                                                                       member,
3033                                                                       member_type);
3034                 if (err)
3035                         return err;
3036         }
3037
3038         env_stack_pop_resolved(env, 0, 0);
3039
3040         return 0;
3041 }
3042
3043 static void btf_struct_log(struct btf_verifier_env *env,
3044                            const struct btf_type *t)
3045 {
3046         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3047 }
3048
3049 /* find 'struct bpf_spin_lock' in map value.
3050  * return >= 0 offset if found
3051  * and < 0 in case of error
3052  */
3053 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3054 {
3055         const struct btf_member *member;
3056         u32 i, off = -ENOENT;
3057
3058         if (!__btf_type_is_struct(t))
3059                 return -EINVAL;
3060
3061         for_each_member(i, t, member) {
3062                 const struct btf_type *member_type = btf_type_by_id(btf,
3063                                                                     member->type);
3064                 if (!__btf_type_is_struct(member_type))
3065                         continue;
3066                 if (member_type->size != sizeof(struct bpf_spin_lock))
3067                         continue;
3068                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3069                            "bpf_spin_lock"))
3070                         continue;
3071                 if (off != -ENOENT)
3072                         /* only one 'struct bpf_spin_lock' is allowed */
3073                         return -E2BIG;
3074                 off = btf_member_bit_offset(t, member);
3075                 if (off % 8)
3076                         /* valid C code cannot generate such BTF */
3077                         return -EINVAL;
3078                 off /= 8;
3079                 if (off % __alignof__(struct bpf_spin_lock))
3080                         /* valid struct bpf_spin_lock will be 4 byte aligned */
3081                         return -EINVAL;
3082         }
3083         return off;
3084 }
3085
3086 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3087                               u32 type_id, void *data, u8 bits_offset,
3088                               struct btf_show *show)
3089 {
3090         const struct btf_member *member;
3091         void *safe_data;
3092         u32 i;
3093
3094         safe_data = btf_show_start_struct_type(show, t, type_id, data);
3095         if (!safe_data)
3096                 return;
3097
3098         for_each_member(i, t, member) {
3099                 const struct btf_type *member_type = btf_type_by_id(btf,
3100                                                                 member->type);
3101                 const struct btf_kind_operations *ops;
3102                 u32 member_offset, bitfield_size;
3103                 u32 bytes_offset;
3104                 u8 bits8_offset;
3105
3106                 btf_show_start_member(show, member);
3107
3108                 member_offset = btf_member_bit_offset(t, member);
3109                 bitfield_size = btf_member_bitfield_size(t, member);
3110                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3111                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3112                 if (bitfield_size) {
3113                         safe_data = btf_show_start_type(show, member_type,
3114                                                         member->type,
3115                                                         data + bytes_offset);
3116                         if (safe_data)
3117                                 btf_bitfield_show(safe_data,
3118                                                   bits8_offset,
3119                                                   bitfield_size, show);
3120                         btf_show_end_type(show);
3121                 } else {
3122                         ops = btf_type_ops(member_type);
3123                         ops->show(btf, member_type, member->type,
3124                                   data + bytes_offset, bits8_offset, show);
3125                 }
3126
3127                 btf_show_end_member(show);
3128         }
3129
3130         btf_show_end_struct_type(show);
3131 }
3132
3133 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3134                             u32 type_id, void *data, u8 bits_offset,
3135                             struct btf_show *show)
3136 {
3137         const struct btf_member *m = show->state.member;
3138
3139         /*
3140          * First check if any members would be shown (are non-zero).
3141          * See comments above "struct btf_show" definition for more
3142          * details on how this works at a high-level.
3143          */
3144         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3145                 if (!show->state.depth_check) {
3146                         show->state.depth_check = show->state.depth + 1;
3147                         show->state.depth_to_show = 0;
3148                 }
3149                 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3150                 /* Restore saved member data here */
3151                 show->state.member = m;
3152                 if (show->state.depth_check != show->state.depth + 1)
3153                         return;
3154                 show->state.depth_check = 0;
3155
3156                 if (show->state.depth_to_show <= show->state.depth)
3157                         return;
3158                 /*
3159                  * Reaching here indicates we have recursed and found
3160                  * non-zero child values.
3161                  */
3162         }
3163
3164         __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3165 }
3166
3167 static struct btf_kind_operations struct_ops = {
3168         .check_meta = btf_struct_check_meta,
3169         .resolve = btf_struct_resolve,
3170         .check_member = btf_struct_check_member,
3171         .check_kflag_member = btf_generic_check_kflag_member,
3172         .log_details = btf_struct_log,
3173         .show = btf_struct_show,
3174 };
3175
3176 static int btf_enum_check_member(struct btf_verifier_env *env,
3177                                  const struct btf_type *struct_type,
3178                                  const struct btf_member *member,
3179                                  const struct btf_type *member_type)
3180 {
3181         u32 struct_bits_off = member->offset;
3182         u32 struct_size, bytes_offset;
3183
3184         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3185                 btf_verifier_log_member(env, struct_type, member,
3186                                         "Member is not byte aligned");
3187                 return -EINVAL;
3188         }
3189
3190         struct_size = struct_type->size;
3191         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3192         if (struct_size - bytes_offset < member_type->size) {
3193                 btf_verifier_log_member(env, struct_type, member,
3194                                         "Member exceeds struct_size");
3195                 return -EINVAL;
3196         }
3197
3198         return 0;
3199 }
3200
3201 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3202                                        const struct btf_type *struct_type,
3203                                        const struct btf_member *member,
3204                                        const struct btf_type *member_type)
3205 {
3206         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3207         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3208
3209         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3210         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3211         if (!nr_bits) {
3212                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3213                         btf_verifier_log_member(env, struct_type, member,
3214                                                 "Member is not byte aligned");
3215                         return -EINVAL;
3216                 }
3217
3218                 nr_bits = int_bitsize;
3219         } else if (nr_bits > int_bitsize) {
3220                 btf_verifier_log_member(env, struct_type, member,
3221                                         "Invalid member bitfield_size");
3222                 return -EINVAL;
3223         }
3224
3225         struct_size = struct_type->size;
3226         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3227         if (struct_size < bytes_end) {
3228                 btf_verifier_log_member(env, struct_type, member,
3229                                         "Member exceeds struct_size");
3230                 return -EINVAL;
3231         }
3232
3233         return 0;
3234 }
3235
3236 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3237                                const struct btf_type *t,
3238                                u32 meta_left)
3239 {
3240         const struct btf_enum *enums = btf_type_enum(t);
3241         struct btf *btf = env->btf;
3242         u16 i, nr_enums;
3243         u32 meta_needed;
3244
3245         nr_enums = btf_type_vlen(t);
3246         meta_needed = nr_enums * sizeof(*enums);
3247
3248         if (meta_left < meta_needed) {
3249                 btf_verifier_log_basic(env, t,
3250                                        "meta_left:%u meta_needed:%u",
3251                                        meta_left, meta_needed);
3252                 return -EINVAL;
3253         }
3254
3255         if (btf_type_kflag(t)) {
3256                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3257                 return -EINVAL;
3258         }
3259
3260         if (t->size > 8 || !is_power_of_2(t->size)) {
3261                 btf_verifier_log_type(env, t, "Unexpected size");
3262                 return -EINVAL;
3263         }
3264
3265         /* enum type either no name or a valid one */
3266         if (t->name_off &&
3267             !btf_name_valid_identifier(env->btf, t->name_off)) {
3268                 btf_verifier_log_type(env, t, "Invalid name");
3269                 return -EINVAL;
3270         }
3271
3272         btf_verifier_log_type(env, t, NULL);
3273
3274         for (i = 0; i < nr_enums; i++) {
3275                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3276                         btf_verifier_log(env, "\tInvalid name_offset:%u",
3277                                          enums[i].name_off);
3278                         return -EINVAL;
3279                 }
3280
3281                 /* enum member must have a valid name */
3282                 if (!enums[i].name_off ||
3283                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
3284                         btf_verifier_log_type(env, t, "Invalid name");
3285                         return -EINVAL;
3286                 }
3287
3288                 if (env->log.level == BPF_LOG_KERNEL)
3289                         continue;
3290                 btf_verifier_log(env, "\t%s val=%d\n",
3291                                  __btf_name_by_offset(btf, enums[i].name_off),
3292                                  enums[i].val);
3293         }
3294
3295         return meta_needed;
3296 }
3297
3298 static void btf_enum_log(struct btf_verifier_env *env,
3299                          const struct btf_type *t)
3300 {
3301         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3302 }
3303
3304 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3305                           u32 type_id, void *data, u8 bits_offset,
3306                           struct btf_show *show)
3307 {
3308         const struct btf_enum *enums = btf_type_enum(t);
3309         u32 i, nr_enums = btf_type_vlen(t);
3310         void *safe_data;
3311         int v;
3312
3313         safe_data = btf_show_start_type(show, t, type_id, data);
3314         if (!safe_data)
3315                 return;
3316
3317         v = *(int *)safe_data;
3318
3319         for (i = 0; i < nr_enums; i++) {
3320                 if (v != enums[i].val)
3321                         continue;
3322
3323                 btf_show_type_value(show, "%s",
3324                                     __btf_name_by_offset(btf,
3325                                                          enums[i].name_off));
3326
3327                 btf_show_end_type(show);
3328                 return;
3329         }
3330
3331         btf_show_type_value(show, "%d", v);
3332         btf_show_end_type(show);
3333 }
3334
3335 static struct btf_kind_operations enum_ops = {
3336         .check_meta = btf_enum_check_meta,
3337         .resolve = btf_df_resolve,
3338         .check_member = btf_enum_check_member,
3339         .check_kflag_member = btf_enum_check_kflag_member,
3340         .log_details = btf_enum_log,
3341         .show = btf_enum_show,
3342 };
3343
3344 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3345                                      const struct btf_type *t,
3346                                      u32 meta_left)
3347 {
3348         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3349
3350         if (meta_left < meta_needed) {
3351                 btf_verifier_log_basic(env, t,
3352                                        "meta_left:%u meta_needed:%u",
3353                                        meta_left, meta_needed);
3354                 return -EINVAL;
3355         }
3356
3357         if (t->name_off) {
3358                 btf_verifier_log_type(env, t, "Invalid name");
3359                 return -EINVAL;
3360         }
3361
3362         if (btf_type_kflag(t)) {
3363                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3364                 return -EINVAL;
3365         }
3366
3367         btf_verifier_log_type(env, t, NULL);
3368
3369         return meta_needed;
3370 }
3371
3372 static void btf_func_proto_log(struct btf_verifier_env *env,
3373                                const struct btf_type *t)
3374 {
3375         const struct btf_param *args = (const struct btf_param *)(t + 1);
3376         u16 nr_args = btf_type_vlen(t), i;
3377
3378         btf_verifier_log(env, "return=%u args=(", t->type);
3379         if (!nr_args) {
3380                 btf_verifier_log(env, "void");
3381                 goto done;
3382         }
3383
3384         if (nr_args == 1 && !args[0].type) {
3385                 /* Only one vararg */
3386                 btf_verifier_log(env, "vararg");
3387                 goto done;
3388         }
3389
3390         btf_verifier_log(env, "%u %s", args[0].type,
3391                          __btf_name_by_offset(env->btf,
3392                                               args[0].name_off));
3393         for (i = 1; i < nr_args - 1; i++)
3394                 btf_verifier_log(env, ", %u %s", args[i].type,
3395                                  __btf_name_by_offset(env->btf,
3396                                                       args[i].name_off));
3397
3398         if (nr_args > 1) {
3399                 const struct btf_param *last_arg = &args[nr_args - 1];
3400
3401                 if (last_arg->type)
3402                         btf_verifier_log(env, ", %u %s", last_arg->type,
3403                                          __btf_name_by_offset(env->btf,
3404                                                               last_arg->name_off));
3405                 else
3406                         btf_verifier_log(env, ", vararg");
3407         }
3408
3409 done:
3410         btf_verifier_log(env, ")");
3411 }
3412
3413 static struct btf_kind_operations func_proto_ops = {
3414         .check_meta = btf_func_proto_check_meta,
3415         .resolve = btf_df_resolve,
3416         /*
3417          * BTF_KIND_FUNC_PROTO cannot be directly referred by
3418          * a struct's member.
3419          *
3420          * It should be a funciton pointer instead.
3421          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3422          *
3423          * Hence, there is no btf_func_check_member().
3424          */
3425         .check_member = btf_df_check_member,
3426         .check_kflag_member = btf_df_check_kflag_member,
3427         .log_details = btf_func_proto_log,
3428         .show = btf_df_show,
3429 };
3430
3431 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3432                                const struct btf_type *t,
3433                                u32 meta_left)
3434 {
3435         if (!t->name_off ||
3436             !btf_name_valid_identifier(env->btf, t->name_off)) {
3437                 btf_verifier_log_type(env, t, "Invalid name");
3438                 return -EINVAL;
3439         }
3440
3441         if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3442                 btf_verifier_log_type(env, t, "Invalid func linkage");
3443                 return -EINVAL;
3444         }
3445
3446         if (btf_type_kflag(t)) {
3447                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3448                 return -EINVAL;
3449         }
3450
3451         btf_verifier_log_type(env, t, NULL);
3452
3453         return 0;
3454 }
3455
3456 static struct btf_kind_operations func_ops = {
3457         .check_meta = btf_func_check_meta,
3458         .resolve = btf_df_resolve,
3459         .check_member = btf_df_check_member,
3460         .check_kflag_member = btf_df_check_kflag_member,
3461         .log_details = btf_ref_type_log,
3462         .show = btf_df_show,
3463 };
3464
3465 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3466                               const struct btf_type *t,
3467                               u32 meta_left)
3468 {
3469         const struct btf_var *var;
3470         u32 meta_needed = sizeof(*var);
3471
3472         if (meta_left < meta_needed) {
3473                 btf_verifier_log_basic(env, t,
3474                                        "meta_left:%u meta_needed:%u",
3475                                        meta_left, meta_needed);
3476                 return -EINVAL;
3477         }
3478
3479         if (btf_type_vlen(t)) {
3480                 btf_verifier_log_type(env, t, "vlen != 0");
3481                 return -EINVAL;
3482         }
3483
3484         if (btf_type_kflag(t)) {
3485                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3486                 return -EINVAL;
3487         }
3488
3489         if (!t->name_off ||
3490             !__btf_name_valid(env->btf, t->name_off, true)) {
3491                 btf_verifier_log_type(env, t, "Invalid name");
3492                 return -EINVAL;
3493         }
3494
3495         /* A var cannot be in type void */
3496         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3497                 btf_verifier_log_type(env, t, "Invalid type_id");
3498                 return -EINVAL;
3499         }
3500
3501         var = btf_type_var(t);
3502         if (var->linkage != BTF_VAR_STATIC &&
3503             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3504                 btf_verifier_log_type(env, t, "Linkage not supported");
3505                 return -EINVAL;
3506         }
3507
3508         btf_verifier_log_type(env, t, NULL);
3509
3510         return meta_needed;
3511 }
3512
3513 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3514 {
3515         const struct btf_var *var = btf_type_var(t);
3516
3517         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3518 }
3519
3520 static const struct btf_kind_operations var_ops = {
3521         .check_meta             = btf_var_check_meta,
3522         .resolve                = btf_var_resolve,
3523         .check_member           = btf_df_check_member,
3524         .check_kflag_member     = btf_df_check_kflag_member,
3525         .log_details            = btf_var_log,
3526         .show                   = btf_var_show,
3527 };
3528
3529 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3530                                   const struct btf_type *t,
3531                                   u32 meta_left)
3532 {
3533         const struct btf_var_secinfo *vsi;
3534         u64 last_vsi_end_off = 0, sum = 0;
3535         u32 i, meta_needed;
3536
3537         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3538         if (meta_left < meta_needed) {
3539                 btf_verifier_log_basic(env, t,
3540                                        "meta_left:%u meta_needed:%u",
3541                                        meta_left, meta_needed);
3542                 return -EINVAL;
3543         }
3544
3545         if (!t->size) {
3546                 btf_verifier_log_type(env, t, "size == 0");
3547                 return -EINVAL;
3548         }
3549
3550         if (btf_type_kflag(t)) {
3551                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3552                 return -EINVAL;
3553         }
3554
3555         if (!t->name_off ||
3556             !btf_name_valid_section(env->btf, t->name_off)) {
3557                 btf_verifier_log_type(env, t, "Invalid name");
3558                 return -EINVAL;
3559         }
3560
3561         btf_verifier_log_type(env, t, NULL);
3562
3563         for_each_vsi(i, t, vsi) {
3564                 /* A var cannot be in type void */
3565                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3566                         btf_verifier_log_vsi(env, t, vsi,
3567                                              "Invalid type_id");
3568                         return -EINVAL;
3569                 }
3570
3571                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3572                         btf_verifier_log_vsi(env, t, vsi,
3573                                              "Invalid offset");
3574                         return -EINVAL;
3575                 }
3576
3577                 if (!vsi->size || vsi->size > t->size) {
3578                         btf_verifier_log_vsi(env, t, vsi,
3579                                              "Invalid size");
3580                         return -EINVAL;
3581                 }
3582
3583                 last_vsi_end_off = vsi->offset + vsi->size;
3584                 if (last_vsi_end_off > t->size) {
3585                         btf_verifier_log_vsi(env, t, vsi,
3586                                              "Invalid offset+size");
3587                         return -EINVAL;
3588                 }
3589
3590                 btf_verifier_log_vsi(env, t, vsi, NULL);
3591                 sum += vsi->size;
3592         }
3593
3594         if (t->size < sum) {
3595                 btf_verifier_log_type(env, t, "Invalid btf_info size");
3596                 return -EINVAL;
3597         }
3598
3599         return meta_needed;
3600 }
3601
3602 static int btf_datasec_resolve(struct btf_verifier_env *env,
3603                                const struct resolve_vertex *v)
3604 {
3605         const struct btf_var_secinfo *vsi;
3606         struct btf *btf = env->btf;
3607         u16 i;
3608
3609         for_each_vsi_from(i, v->next_member, v->t, vsi) {
3610                 u32 var_type_id = vsi->type, type_id, type_size = 0;
3611                 const struct btf_type *var_type = btf_type_by_id(env->btf,
3612                                                                  var_type_id);
3613                 if (!var_type || !btf_type_is_var(var_type)) {
3614                         btf_verifier_log_vsi(env, v->t, vsi,
3615                                              "Not a VAR kind member");
3616                         return -EINVAL;
3617                 }
3618
3619                 if (!env_type_is_resolve_sink(env, var_type) &&
3620                     !env_type_is_resolved(env, var_type_id)) {
3621                         env_stack_set_next_member(env, i + 1);
3622                         return env_stack_push(env, var_type, var_type_id);
3623                 }
3624
3625                 type_id = var_type->type;
3626                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3627                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3628                         return -EINVAL;
3629                 }
3630
3631                 if (vsi->size < type_size) {
3632                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3633                         return -EINVAL;
3634                 }
3635         }
3636
3637         env_stack_pop_resolved(env, 0, 0);
3638         return 0;
3639 }
3640
3641 static void btf_datasec_log(struct btf_verifier_env *env,
3642                             const struct btf_type *t)
3643 {
3644         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3645 }
3646
3647 static void btf_datasec_show(const struct btf *btf,
3648                              const struct btf_type *t, u32 type_id,
3649                              void *data, u8 bits_offset,
3650                              struct btf_show *show)
3651 {
3652         const struct btf_var_secinfo *vsi;
3653         const struct btf_type *var;
3654         u32 i;
3655
3656         if (!btf_show_start_type(show, t, type_id, data))
3657                 return;
3658
3659         btf_show_type_value(show, "section (\"%s\") = {",
3660                             __btf_name_by_offset(btf, t->name_off));
3661         for_each_vsi(i, t, vsi) {
3662                 var = btf_type_by_id(btf, vsi->type);
3663                 if (i)
3664                         btf_show(show, ",");
3665                 btf_type_ops(var)->show(btf, var, vsi->type,
3666                                         data + vsi->offset, bits_offset, show);
3667         }
3668         btf_show_end_type(show);
3669 }
3670
3671 static const struct btf_kind_operations datasec_ops = {
3672         .check_meta             = btf_datasec_check_meta,
3673         .resolve                = btf_datasec_resolve,
3674         .check_member           = btf_df_check_member,
3675         .check_kflag_member     = btf_df_check_kflag_member,
3676         .log_details            = btf_datasec_log,
3677         .show                   = btf_datasec_show,
3678 };
3679
3680 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3681                                 const struct btf_type *t,
3682                                 u32 meta_left)
3683 {
3684         if (btf_type_vlen(t)) {
3685                 btf_verifier_log_type(env, t, "vlen != 0");
3686                 return -EINVAL;
3687         }
3688
3689         if (btf_type_kflag(t)) {
3690                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3691                 return -EINVAL;
3692         }
3693
3694         if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3695             t->size != 16) {
3696                 btf_verifier_log_type(env, t, "Invalid type_size");
3697                 return -EINVAL;
3698         }
3699
3700         btf_verifier_log_type(env, t, NULL);
3701
3702         return 0;
3703 }
3704
3705 static int btf_float_check_member(struct btf_verifier_env *env,
3706                                   const struct btf_type *struct_type,
3707                                   const struct btf_member *member,
3708                                   const struct btf_type *member_type)
3709 {
3710         u64 start_offset_bytes;
3711         u64 end_offset_bytes;
3712         u64 misalign_bits;
3713         u64 align_bytes;
3714         u64 align_bits;
3715
3716         /* Different architectures have different alignment requirements, so
3717          * here we check only for the reasonable minimum. This way we ensure
3718          * that types after CO-RE can pass the kernel BTF verifier.
3719          */
3720         align_bytes = min_t(u64, sizeof(void *), member_type->size);
3721         align_bits = align_bytes * BITS_PER_BYTE;
3722         div64_u64_rem(member->offset, align_bits, &misalign_bits);
3723         if (misalign_bits) {
3724                 btf_verifier_log_member(env, struct_type, member,
3725                                         "Member is not properly aligned");
3726                 return -EINVAL;
3727         }
3728
3729         start_offset_bytes = member->offset / BITS_PER_BYTE;
3730         end_offset_bytes = start_offset_bytes + member_type->size;
3731         if (end_offset_bytes > struct_type->size) {
3732                 btf_verifier_log_member(env, struct_type, member,
3733                                         "Member exceeds struct_size");
3734                 return -EINVAL;
3735         }
3736
3737         return 0;
3738 }
3739
3740 static void btf_float_log(struct btf_verifier_env *env,
3741                           const struct btf_type *t)
3742 {
3743         btf_verifier_log(env, "size=%u", t->size);
3744 }
3745
3746 static const struct btf_kind_operations float_ops = {
3747         .check_meta = btf_float_check_meta,
3748         .resolve = btf_df_resolve,
3749         .check_member = btf_float_check_member,
3750         .check_kflag_member = btf_generic_check_kflag_member,
3751         .log_details = btf_float_log,
3752         .show = btf_df_show,
3753 };
3754
3755 static int btf_func_proto_check(struct btf_verifier_env *env,
3756                                 const struct btf_type *t)
3757 {
3758         const struct btf_type *ret_type;
3759         const struct btf_param *args;
3760         const struct btf *btf;
3761         u16 nr_args, i;
3762         int err;
3763
3764         btf = env->btf;
3765         args = (const struct btf_param *)(t + 1);
3766         nr_args = btf_type_vlen(t);
3767
3768         /* Check func return type which could be "void" (t->type == 0) */
3769         if (t->type) {
3770                 u32 ret_type_id = t->type;
3771
3772                 ret_type = btf_type_by_id(btf, ret_type_id);
3773                 if (!ret_type) {
3774                         btf_verifier_log_type(env, t, "Invalid return type");
3775                         return -EINVAL;
3776                 }
3777
3778                 if (btf_type_needs_resolve(ret_type) &&
3779                     !env_type_is_resolved(env, ret_type_id)) {
3780                         err = btf_resolve(env, ret_type, ret_type_id);
3781                         if (err)
3782                                 return err;
3783                 }
3784
3785                 /* Ensure the return type is a type that has a size */
3786                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3787                         btf_verifier_log_type(env, t, "Invalid return type");
3788                         return -EINVAL;
3789                 }
3790         }
3791
3792         if (!nr_args)
3793                 return 0;
3794
3795         /* Last func arg type_id could be 0 if it is a vararg */
3796         if (!args[nr_args - 1].type) {
3797                 if (args[nr_args - 1].name_off) {
3798                         btf_verifier_log_type(env, t, "Invalid arg#%u",
3799                                               nr_args);
3800                         return -EINVAL;
3801                 }
3802                 nr_args--;
3803         }
3804
3805         err = 0;
3806         for (i = 0; i < nr_args; i++) {
3807                 const struct btf_type *arg_type;
3808                 u32 arg_type_id;
3809
3810                 arg_type_id = args[i].type;
3811                 arg_type = btf_type_by_id(btf, arg_type_id);
3812                 if (!arg_type) {
3813                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3814                         err = -EINVAL;
3815                         break;
3816                 }
3817
3818                 if (args[i].name_off &&
3819                     (!btf_name_offset_valid(btf, args[i].name_off) ||
3820                      !btf_name_valid_identifier(btf, args[i].name_off))) {
3821                         btf_verifier_log_type(env, t,
3822                                               "Invalid arg#%u", i + 1);
3823                         err = -EINVAL;
3824                         break;
3825                 }
3826
3827                 if (btf_type_needs_resolve(arg_type) &&
3828                     !env_type_is_resolved(env, arg_type_id)) {
3829                         err = btf_resolve(env, arg_type, arg_type_id);
3830                         if (err)
3831                                 break;
3832                 }
3833
3834                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3835                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3836                         err = -EINVAL;
3837                         break;
3838                 }
3839         }
3840
3841         return err;
3842 }
3843
3844 static int btf_func_check(struct btf_verifier_env *env,
3845                           const struct btf_type *t)
3846 {
3847         const struct btf_type *proto_type;
3848         const struct btf_param *args;
3849         const struct btf *btf;
3850         u16 nr_args, i;
3851
3852         btf = env->btf;
3853         proto_type = btf_type_by_id(btf, t->type);
3854
3855         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3856                 btf_verifier_log_type(env, t, "Invalid type_id");
3857                 return -EINVAL;
3858         }
3859
3860         args = (const struct btf_param *)(proto_type + 1);
3861         nr_args = btf_type_vlen(proto_type);
3862         for (i = 0; i < nr_args; i++) {
3863                 if (!args[i].name_off && args[i].type) {
3864                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3865                         return -EINVAL;
3866                 }
3867         }
3868
3869         return 0;
3870 }
3871
3872 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3873         [BTF_KIND_INT] = &int_ops,
3874         [BTF_KIND_PTR] = &ptr_ops,
3875         [BTF_KIND_ARRAY] = &array_ops,
3876         [BTF_KIND_STRUCT] = &struct_ops,
3877         [BTF_KIND_UNION] = &struct_ops,
3878         [BTF_KIND_ENUM] = &enum_ops,
3879         [BTF_KIND_FWD] = &fwd_ops,
3880         [BTF_KIND_TYPEDEF] = &modifier_ops,
3881         [BTF_KIND_VOLATILE] = &modifier_ops,
3882         [BTF_KIND_CONST] = &modifier_ops,
3883         [BTF_KIND_RESTRICT] = &modifier_ops,
3884         [BTF_KIND_FUNC] = &func_ops,
3885         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3886         [BTF_KIND_VAR] = &var_ops,
3887         [BTF_KIND_DATASEC] = &datasec_ops,
3888         [BTF_KIND_FLOAT] = &float_ops,
3889 };
3890
3891 static s32 btf_check_meta(struct btf_verifier_env *env,
3892                           const struct btf_type *t,
3893                           u32 meta_left)
3894 {
3895         u32 saved_meta_left = meta_left;
3896         s32 var_meta_size;
3897
3898         if (meta_left < sizeof(*t)) {
3899                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3900                                  env->log_type_id, meta_left, sizeof(*t));
3901                 return -EINVAL;
3902         }
3903         meta_left -= sizeof(*t);
3904
3905         if (t->info & ~BTF_INFO_MASK) {
3906                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3907                                  env->log_type_id, t->info);
3908                 return -EINVAL;
3909         }
3910
3911         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3912             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3913                 btf_verifier_log(env, "[%u] Invalid kind:%u",
3914                                  env->log_type_id, BTF_INFO_KIND(t->info));
3915                 return -EINVAL;
3916         }
3917
3918         if (!btf_name_offset_valid(env->btf, t->name_off)) {
3919                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3920                                  env->log_type_id, t->name_off);
3921                 return -EINVAL;
3922         }
3923
3924         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3925         if (var_meta_size < 0)
3926                 return var_meta_size;
3927
3928         meta_left -= var_meta_size;
3929
3930         return saved_meta_left - meta_left;
3931 }
3932
3933 static int btf_check_all_metas(struct btf_verifier_env *env)
3934 {
3935         struct btf *btf = env->btf;
3936         struct btf_header *hdr;
3937         void *cur, *end;
3938
3939         hdr = &btf->hdr;
3940         cur = btf->nohdr_data + hdr->type_off;
3941         end = cur + hdr->type_len;
3942
3943         env->log_type_id = btf->base_btf ? btf->start_id : 1;
3944         while (cur < end) {
3945                 struct btf_type *t = cur;
3946                 s32 meta_size;
3947
3948                 meta_size = btf_check_meta(env, t, end - cur);
3949                 if (meta_size < 0)
3950                         return meta_size;
3951
3952                 btf_add_type(env, t);
3953                 cur += meta_size;
3954                 env->log_type_id++;
3955         }
3956
3957         return 0;
3958 }
3959
3960 static bool btf_resolve_valid(struct btf_verifier_env *env,
3961                               const struct btf_type *t,
3962                               u32 type_id)
3963 {
3964         struct btf *btf = env->btf;
3965
3966         if (!env_type_is_resolved(env, type_id))
3967                 return false;
3968
3969         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3970                 return !btf_resolved_type_id(btf, type_id) &&
3971                        !btf_resolved_type_size(btf, type_id);
3972
3973         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3974             btf_type_is_var(t)) {
3975                 t = btf_type_id_resolve(btf, &type_id);
3976                 return t &&
3977                        !btf_type_is_modifier(t) &&
3978                        !btf_type_is_var(t) &&
3979                        !btf_type_is_datasec(t);
3980         }
3981
3982         if (btf_type_is_array(t)) {
3983                 const struct btf_array *array = btf_type_array(t);
3984                 const struct btf_type *elem_type;
3985                 u32 elem_type_id = array->type;
3986                 u32 elem_size;
3987
3988                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3989                 return elem_type && !btf_type_is_modifier(elem_type) &&
3990                         (array->nelems * elem_size ==
3991                          btf_resolved_type_size(btf, type_id));
3992         }
3993
3994         return false;
3995 }
3996
3997 static int btf_resolve(struct btf_verifier_env *env,
3998                        const struct btf_type *t, u32 type_id)
3999 {
4000         u32 save_log_type_id = env->log_type_id;
4001         const struct resolve_vertex *v;
4002         int err = 0;
4003
4004         env->resolve_mode = RESOLVE_TBD;
4005         env_stack_push(env, t, type_id);
4006         while (!err && (v = env_stack_peak(env))) {
4007                 env->log_type_id = v->type_id;
4008                 err = btf_type_ops(v->t)->resolve(env, v);
4009         }
4010
4011         env->log_type_id = type_id;
4012         if (err == -E2BIG) {
4013                 btf_verifier_log_type(env, t,
4014                                       "Exceeded max resolving depth:%u",
4015                                       MAX_RESOLVE_DEPTH);
4016         } else if (err == -EEXIST) {
4017                 btf_verifier_log_type(env, t, "Loop detected");
4018         }
4019
4020         /* Final sanity check */
4021         if (!err && !btf_resolve_valid(env, t, type_id)) {
4022                 btf_verifier_log_type(env, t, "Invalid resolve state");
4023                 err = -EINVAL;
4024         }
4025
4026         env->log_type_id = save_log_type_id;
4027         return err;
4028 }
4029
4030 static int btf_check_all_types(struct btf_verifier_env *env)
4031 {
4032         struct btf *btf = env->btf;
4033         const struct btf_type *t;
4034         u32 type_id, i;
4035         int err;
4036
4037         err = env_resolve_init(env);
4038         if (err)
4039                 return err;
4040
4041         env->phase++;
4042         for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4043                 type_id = btf->start_id + i;
4044                 t = btf_type_by_id(btf, type_id);
4045
4046                 env->log_type_id = type_id;
4047                 if (btf_type_needs_resolve(t) &&
4048                     !env_type_is_resolved(env, type_id)) {
4049                         err = btf_resolve(env, t, type_id);
4050                         if (err)
4051                                 return err;
4052                 }
4053
4054                 if (btf_type_is_func_proto(t)) {
4055                         err = btf_func_proto_check(env, t);
4056                         if (err)
4057                                 return err;
4058                 }
4059
4060                 if (btf_type_is_func(t)) {
4061                         err = btf_func_check(env, t);
4062                         if (err)
4063                                 return err;
4064                 }
4065         }
4066
4067         return 0;
4068 }
4069
4070 static int btf_parse_type_sec(struct btf_verifier_env *env)
4071 {
4072         const struct btf_header *hdr = &env->btf->hdr;
4073         int err;
4074
4075         /* Type section must align to 4 bytes */
4076         if (hdr->type_off & (sizeof(u32) - 1)) {
4077                 btf_verifier_log(env, "Unaligned type_off");
4078                 return -EINVAL;
4079         }
4080
4081         if (!env->btf->base_btf && !hdr->type_len) {
4082                 btf_verifier_log(env, "No type found");
4083                 return -EINVAL;
4084         }
4085
4086         err = btf_check_all_metas(env);
4087         if (err)
4088                 return err;
4089
4090         return btf_check_all_types(env);
4091 }
4092
4093 static int btf_parse_str_sec(struct btf_verifier_env *env)
4094 {
4095         const struct btf_header *hdr;
4096         struct btf *btf = env->btf;
4097         const char *start, *end;
4098
4099         hdr = &btf->hdr;
4100         start = btf->nohdr_data + hdr->str_off;
4101         end = start + hdr->str_len;
4102
4103         if (end != btf->data + btf->data_size) {
4104                 btf_verifier_log(env, "String section is not at the end");
4105                 return -EINVAL;
4106         }
4107
4108         btf->strings = start;
4109
4110         if (btf->base_btf && !hdr->str_len)
4111                 return 0;
4112         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4113                 btf_verifier_log(env, "Invalid string section");
4114                 return -EINVAL;
4115         }
4116         if (!btf->base_btf && start[0]) {
4117                 btf_verifier_log(env, "Invalid string section");
4118                 return -EINVAL;
4119         }
4120
4121         return 0;
4122 }
4123
4124 static const size_t btf_sec_info_offset[] = {
4125         offsetof(struct btf_header, type_off),
4126         offsetof(struct btf_header, str_off),
4127 };
4128
4129 static int btf_sec_info_cmp(const void *a, const void *b)
4130 {
4131         const struct btf_sec_info *x = a;
4132         const struct btf_sec_info *y = b;
4133
4134         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4135 }
4136
4137 static int btf_check_sec_info(struct btf_verifier_env *env,
4138                               u32 btf_data_size)
4139 {
4140         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4141         u32 total, expected_total, i;
4142         const struct btf_header *hdr;
4143         const struct btf *btf;
4144
4145         btf = env->btf;
4146         hdr = &btf->hdr;
4147
4148         /* Populate the secs from hdr */
4149         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4150                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4151                                                    btf_sec_info_offset[i]);
4152
4153         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4154              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4155
4156         /* Check for gaps and overlap among sections */
4157         total = 0;
4158         expected_total = btf_data_size - hdr->hdr_len;
4159         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4160                 if (expected_total < secs[i].off) {
4161                         btf_verifier_log(env, "Invalid section offset");
4162                         return -EINVAL;
4163                 }
4164                 if (total < secs[i].off) {
4165                         /* gap */
4166                         btf_verifier_log(env, "Unsupported section found");
4167                         return -EINVAL;
4168                 }
4169                 if (total > secs[i].off) {
4170                         btf_verifier_log(env, "Section overlap found");
4171                         return -EINVAL;
4172                 }
4173                 if (expected_total - total < secs[i].len) {
4174                         btf_verifier_log(env,
4175                                          "Total section length too long");
4176                         return -EINVAL;
4177                 }
4178                 total += secs[i].len;
4179         }
4180
4181         /* There is data other than hdr and known sections */
4182         if (expected_total != total) {
4183                 btf_verifier_log(env, "Unsupported section found");
4184                 return -EINVAL;
4185         }
4186
4187         return 0;
4188 }
4189
4190 static int btf_parse_hdr(struct btf_verifier_env *env)
4191 {
4192         u32 hdr_len, hdr_copy, btf_data_size;
4193         const struct btf_header *hdr;
4194         struct btf *btf;
4195         int err;
4196
4197         btf = env->btf;
4198         btf_data_size = btf->data_size;
4199
4200         if (btf_data_size <
4201             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4202                 btf_verifier_log(env, "hdr_len not found");
4203                 return -EINVAL;
4204         }
4205
4206         hdr = btf->data;
4207         hdr_len = hdr->hdr_len;
4208         if (btf_data_size < hdr_len) {
4209                 btf_verifier_log(env, "btf_header not found");
4210                 return -EINVAL;
4211         }
4212
4213         /* Ensure the unsupported header fields are zero */
4214         if (hdr_len > sizeof(btf->hdr)) {
4215                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4216                 u8 *end = btf->data + hdr_len;
4217
4218                 for (; expected_zero < end; expected_zero++) {
4219                         if (*expected_zero) {
4220                                 btf_verifier_log(env, "Unsupported btf_header");
4221                                 return -E2BIG;
4222                         }
4223                 }
4224         }
4225
4226         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4227         memcpy(&btf->hdr, btf->data, hdr_copy);
4228
4229         hdr = &btf->hdr;
4230
4231         btf_verifier_log_hdr(env, btf_data_size);
4232
4233         if (hdr->magic != BTF_MAGIC) {
4234                 btf_verifier_log(env, "Invalid magic");
4235                 return -EINVAL;
4236         }
4237
4238         if (hdr->version != BTF_VERSION) {
4239                 btf_verifier_log(env, "Unsupported version");
4240                 return -ENOTSUPP;
4241         }
4242
4243         if (hdr->flags) {
4244                 btf_verifier_log(env, "Unsupported flags");
4245                 return -ENOTSUPP;
4246         }
4247
4248         if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4249                 btf_verifier_log(env, "No data");
4250                 return -EINVAL;
4251         }
4252
4253         err = btf_check_sec_info(env, btf_data_size);
4254         if (err)
4255                 return err;
4256
4257         return 0;
4258 }
4259
4260 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4261                              u32 log_level, char __user *log_ubuf, u32 log_size)
4262 {
4263         struct btf_verifier_env *env = NULL;
4264         struct bpf_verifier_log *log;
4265         struct btf *btf = NULL;
4266         u8 *data;
4267         int err;
4268
4269         if (btf_data_size > BTF_MAX_SIZE)
4270                 return ERR_PTR(-E2BIG);
4271
4272         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4273         if (!env)
4274                 return ERR_PTR(-ENOMEM);
4275
4276         log = &env->log;
4277         if (log_level || log_ubuf || log_size) {
4278                 /* user requested verbose verifier output
4279                  * and supplied buffer to store the verification trace
4280                  */
4281                 log->level = log_level;
4282                 log->ubuf = log_ubuf;
4283                 log->len_total = log_size;
4284
4285                 /* log attributes have to be sane */
4286                 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4287                     !log->level || !log->ubuf) {
4288                         err = -EINVAL;
4289                         goto errout;
4290                 }
4291         }
4292
4293         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4294         if (!btf) {
4295                 err = -ENOMEM;
4296                 goto errout;
4297         }
4298         env->btf = btf;
4299
4300         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4301         if (!data) {
4302                 err = -ENOMEM;
4303                 goto errout;
4304         }
4305
4306         btf->data = data;
4307         btf->data_size = btf_data_size;
4308
4309         if (copy_from_user(data, btf_data, btf_data_size)) {
4310                 err = -EFAULT;
4311                 goto errout;
4312         }
4313
4314         err = btf_parse_hdr(env);
4315         if (err)
4316                 goto errout;
4317
4318         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4319
4320         err = btf_parse_str_sec(env);
4321         if (err)
4322                 goto errout;
4323
4324         err = btf_parse_type_sec(env);
4325         if (err)
4326                 goto errout;
4327
4328         if (log->level && bpf_verifier_log_full(log)) {
4329                 err = -ENOSPC;
4330                 goto errout;
4331         }
4332
4333         btf_verifier_env_free(env);
4334         refcount_set(&btf->refcnt, 1);
4335         return btf;
4336
4337 errout:
4338         btf_verifier_env_free(env);
4339         if (btf)
4340                 btf_free(btf);
4341         return ERR_PTR(err);
4342 }
4343
4344 extern char __weak __start_BTF[];
4345 extern char __weak __stop_BTF[];
4346 extern struct btf *btf_vmlinux;
4347
4348 #define BPF_MAP_TYPE(_id, _ops)
4349 #define BPF_LINK_TYPE(_id, _name)
4350 static union {
4351         struct bpf_ctx_convert {
4352 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4353         prog_ctx_type _id##_prog; \
4354         kern_ctx_type _id##_kern;
4355 #include <linux/bpf_types.h>
4356 #undef BPF_PROG_TYPE
4357         } *__t;
4358         /* 't' is written once under lock. Read many times. */
4359         const struct btf_type *t;
4360 } bpf_ctx_convert;
4361 enum {
4362 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4363         __ctx_convert##_id,
4364 #include <linux/bpf_types.h>
4365 #undef BPF_PROG_TYPE
4366         __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4367 };
4368 static u8 bpf_ctx_convert_map[] = {
4369 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4370         [_id] = __ctx_convert##_id,
4371 #include <linux/bpf_types.h>
4372 #undef BPF_PROG_TYPE
4373         0, /* avoid empty array */
4374 };
4375 #undef BPF_MAP_TYPE
4376 #undef BPF_LINK_TYPE
4377
4378 static const struct btf_member *
4379 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4380                       const struct btf_type *t, enum bpf_prog_type prog_type,
4381                       int arg)
4382 {
4383         const struct btf_type *conv_struct;
4384         const struct btf_type *ctx_struct;
4385         const struct btf_member *ctx_type;
4386         const char *tname, *ctx_tname;
4387
4388         conv_struct = bpf_ctx_convert.t;
4389         if (!conv_struct) {
4390                 bpf_log(log, "btf_vmlinux is malformed\n");
4391                 return NULL;
4392         }
4393         t = btf_type_by_id(btf, t->type);
4394         while (btf_type_is_modifier(t))
4395                 t = btf_type_by_id(btf, t->type);
4396         if (!btf_type_is_struct(t)) {
4397                 /* Only pointer to struct is supported for now.
4398                  * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4399                  * is not supported yet.
4400                  * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4401                  */
4402                 return NULL;
4403         }
4404         tname = btf_name_by_offset(btf, t->name_off);
4405         if (!tname) {
4406                 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4407                 return NULL;
4408         }
4409         /* prog_type is valid bpf program type. No need for bounds check. */
4410         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4411         /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4412          * Like 'struct __sk_buff'
4413          */
4414         ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4415         if (!ctx_struct)
4416                 /* should not happen */
4417                 return NULL;
4418         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4419         if (!ctx_tname) {
4420                 /* should not happen */
4421                 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4422                 return NULL;
4423         }
4424         /* only compare that prog's ctx type name is the same as
4425          * kernel expects. No need to compare field by field.
4426          * It's ok for bpf prog to do:
4427          * struct __sk_buff {};
4428          * int socket_filter_bpf_prog(struct __sk_buff *skb)
4429          * { // no fields of skb are ever used }
4430          */
4431         if (strcmp(ctx_tname, tname))
4432                 return NULL;
4433         return ctx_type;
4434 }
4435
4436 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4437 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4438 #define BPF_LINK_TYPE(_id, _name)
4439 #define BPF_MAP_TYPE(_id, _ops) \
4440         [_id] = &_ops,
4441 #include <linux/bpf_types.h>
4442 #undef BPF_PROG_TYPE
4443 #undef BPF_LINK_TYPE
4444 #undef BPF_MAP_TYPE
4445 };
4446
4447 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4448                                     struct bpf_verifier_log *log)
4449 {
4450         const struct bpf_map_ops *ops;
4451         int i, btf_id;
4452
4453         for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4454                 ops = btf_vmlinux_map_ops[i];
4455                 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4456                         continue;
4457                 if (!ops->map_btf_name || !ops->map_btf_id) {
4458                         bpf_log(log, "map type %d is misconfigured\n", i);
4459                         return -EINVAL;
4460                 }
4461                 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4462                                                BTF_KIND_STRUCT);
4463                 if (btf_id < 0)
4464                         return btf_id;
4465                 *ops->map_btf_id = btf_id;
4466         }
4467
4468         return 0;
4469 }
4470
4471 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4472                                      struct btf *btf,
4473                                      const struct btf_type *t,
4474                                      enum bpf_prog_type prog_type,
4475                                      int arg)
4476 {
4477         const struct btf_member *prog_ctx_type, *kern_ctx_type;
4478
4479         prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4480         if (!prog_ctx_type)
4481                 return -ENOENT;
4482         kern_ctx_type = prog_ctx_type + 1;
4483         return kern_ctx_type->type;
4484 }
4485
4486 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4487 BTF_ID(struct, bpf_ctx_convert)
4488
4489 struct btf *btf_parse_vmlinux(void)
4490 {
4491         struct btf_verifier_env *env = NULL;
4492         struct bpf_verifier_log *log;
4493         struct btf *btf = NULL;
4494         int err;
4495
4496         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4497         if (!env)
4498                 return ERR_PTR(-ENOMEM);
4499
4500         log = &env->log;
4501         log->level = BPF_LOG_KERNEL;
4502
4503         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4504         if (!btf) {
4505                 err = -ENOMEM;
4506                 goto errout;
4507         }
4508         env->btf = btf;
4509
4510         btf->data = __start_BTF;
4511         btf->data_size = __stop_BTF - __start_BTF;
4512         btf->kernel_btf = true;
4513         snprintf(btf->name, sizeof(btf->name), "vmlinux");
4514
4515         err = btf_parse_hdr(env);
4516         if (err)
4517                 goto errout;
4518
4519         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4520
4521         err = btf_parse_str_sec(env);
4522         if (err)
4523                 goto errout;
4524
4525         err = btf_check_all_metas(env);
4526         if (err)
4527                 goto errout;
4528
4529         /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4530         bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4531
4532         /* find bpf map structs for map_ptr access checking */
4533         err = btf_vmlinux_map_ids_init(btf, log);
4534         if (err < 0)
4535                 goto errout;
4536
4537         bpf_struct_ops_init(btf, log);
4538
4539         refcount_set(&btf->refcnt, 1);
4540
4541         err = btf_alloc_id(btf);
4542         if (err)
4543                 goto errout;
4544
4545         btf_verifier_env_free(env);
4546         return btf;
4547
4548 errout:
4549         btf_verifier_env_free(env);
4550         if (btf) {
4551                 kvfree(btf->types);
4552                 kfree(btf);
4553         }
4554         return ERR_PTR(err);
4555 }
4556
4557 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4558
4559 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4560 {
4561         struct btf_verifier_env *env = NULL;
4562         struct bpf_verifier_log *log;
4563         struct btf *btf = NULL, *base_btf;
4564         int err;
4565
4566         base_btf = bpf_get_btf_vmlinux();
4567         if (IS_ERR(base_btf))
4568                 return base_btf;
4569         if (!base_btf)
4570                 return ERR_PTR(-EINVAL);
4571
4572         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4573         if (!env)
4574                 return ERR_PTR(-ENOMEM);
4575
4576         log = &env->log;
4577         log->level = BPF_LOG_KERNEL;
4578
4579         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4580         if (!btf) {
4581                 err = -ENOMEM;
4582                 goto errout;
4583         }
4584         env->btf = btf;
4585
4586         btf->base_btf = base_btf;
4587         btf->start_id = base_btf->nr_types;
4588         btf->start_str_off = base_btf->hdr.str_len;
4589         btf->kernel_btf = true;
4590         snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4591
4592         btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4593         if (!btf->data) {
4594                 err = -ENOMEM;
4595                 goto errout;
4596         }
4597         memcpy(btf->data, data, data_size);
4598         btf->data_size = data_size;
4599
4600         err = btf_parse_hdr(env);
4601         if (err)
4602                 goto errout;
4603
4604         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4605
4606         err = btf_parse_str_sec(env);
4607         if (err)
4608                 goto errout;
4609
4610         err = btf_check_all_metas(env);
4611         if (err)
4612                 goto errout;
4613
4614         btf_verifier_env_free(env);
4615         refcount_set(&btf->refcnt, 1);
4616         return btf;
4617
4618 errout:
4619         btf_verifier_env_free(env);
4620         if (btf) {
4621                 kvfree(btf->data);
4622                 kvfree(btf->types);
4623                 kfree(btf);
4624         }
4625         return ERR_PTR(err);
4626 }
4627
4628 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4629
4630 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4631 {
4632         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4633
4634         if (tgt_prog)
4635                 return tgt_prog->aux->btf;
4636         else
4637                 return prog->aux->attach_btf;
4638 }
4639
4640 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4641 {
4642         /* t comes in already as a pointer */
4643         t = btf_type_by_id(btf, t->type);
4644
4645         /* allow const */
4646         if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4647                 t = btf_type_by_id(btf, t->type);
4648
4649         /* char, signed char, unsigned char */
4650         return btf_type_is_int(t) && t->size == 1;
4651 }
4652
4653 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4654                     const struct bpf_prog *prog,
4655                     struct bpf_insn_access_aux *info)
4656 {
4657         const struct btf_type *t = prog->aux->attach_func_proto;
4658         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4659         struct btf *btf = bpf_prog_get_target_btf(prog);
4660         const char *tname = prog->aux->attach_func_name;
4661         struct bpf_verifier_log *log = info->log;
4662         const struct btf_param *args;
4663         u32 nr_args, arg;
4664         int i, ret;
4665
4666         if (off % 8) {
4667                 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4668                         tname, off);
4669                 return false;
4670         }
4671         arg = off / 8;
4672         args = (const struct btf_param *)(t + 1);
4673         /* if (t == NULL) Fall back to default BPF prog with
4674          * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4675          */
4676         nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4677         if (prog->aux->attach_btf_trace) {
4678                 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4679                 args++;
4680                 nr_args--;
4681         }
4682
4683         if (arg > nr_args) {
4684                 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4685                         tname, arg + 1);
4686                 return false;
4687         }
4688
4689         if (arg == nr_args) {
4690                 switch (prog->expected_attach_type) {
4691                 case BPF_LSM_MAC:
4692                 case BPF_TRACE_FEXIT:
4693                         /* When LSM programs are attached to void LSM hooks
4694                          * they use FEXIT trampolines and when attached to
4695                          * int LSM hooks, they use MODIFY_RETURN trampolines.
4696                          *
4697                          * While the LSM programs are BPF_MODIFY_RETURN-like
4698                          * the check:
4699                          *
4700                          *      if (ret_type != 'int')
4701                          *              return -EINVAL;
4702                          *
4703                          * is _not_ done here. This is still safe as LSM hooks
4704                          * have only void and int return types.
4705                          */
4706                         if (!t)
4707                                 return true;
4708                         t = btf_type_by_id(btf, t->type);
4709                         break;
4710                 case BPF_MODIFY_RETURN:
4711                         /* For now the BPF_MODIFY_RETURN can only be attached to
4712                          * functions that return an int.
4713                          */
4714                         if (!t)
4715                                 return false;
4716
4717                         t = btf_type_skip_modifiers(btf, t->type, NULL);
4718                         if (!btf_type_is_small_int(t)) {
4719                                 bpf_log(log,
4720                                         "ret type %s not allowed for fmod_ret\n",
4721                                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4722                                 return false;
4723                         }
4724                         break;
4725                 default:
4726                         bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4727                                 tname, arg + 1);
4728                         return false;
4729                 }
4730         } else {
4731                 if (!t)
4732                         /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4733                         return true;
4734                 t = btf_type_by_id(btf, args[arg].type);
4735         }
4736
4737         /* skip modifiers */
4738         while (btf_type_is_modifier(t))
4739                 t = btf_type_by_id(btf, t->type);
4740         if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4741                 /* accessing a scalar */
4742                 return true;
4743         if (!btf_type_is_ptr(t)) {
4744                 bpf_log(log,
4745                         "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4746                         tname, arg,
4747                         __btf_name_by_offset(btf, t->name_off),
4748                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4749                 return false;
4750         }
4751
4752         /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4753         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4754                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4755
4756                 if (ctx_arg_info->offset == off &&
4757                     (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4758                      ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4759                         info->reg_type = ctx_arg_info->reg_type;
4760                         return true;
4761                 }
4762         }
4763
4764         if (t->type == 0)
4765                 /* This is a pointer to void.
4766                  * It is the same as scalar from the verifier safety pov.
4767                  * No further pointer walking is allowed.
4768                  */
4769                 return true;
4770
4771         if (is_string_ptr(btf, t))
4772                 return true;
4773
4774         /* this is a pointer to another type */
4775         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4776                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4777
4778                 if (ctx_arg_info->offset == off) {
4779                         info->reg_type = ctx_arg_info->reg_type;
4780                         info->btf = btf_vmlinux;
4781                         info->btf_id = ctx_arg_info->btf_id;
4782                         return true;
4783                 }
4784         }
4785
4786         info->reg_type = PTR_TO_BTF_ID;
4787         if (tgt_prog) {
4788                 enum bpf_prog_type tgt_type;
4789
4790                 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4791                         tgt_type = tgt_prog->aux->saved_dst_prog_type;
4792                 else
4793                         tgt_type = tgt_prog->type;
4794
4795                 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4796                 if (ret > 0) {
4797                         info->btf = btf_vmlinux;
4798                         info->btf_id = ret;
4799                         return true;
4800                 } else {
4801                         return false;
4802                 }
4803         }
4804
4805         info->btf = btf;
4806         info->btf_id = t->type;
4807         t = btf_type_by_id(btf, t->type);
4808         /* skip modifiers */
4809         while (btf_type_is_modifier(t)) {
4810                 info->btf_id = t->type;
4811                 t = btf_type_by_id(btf, t->type);
4812         }
4813         if (!btf_type_is_struct(t)) {
4814                 bpf_log(log,
4815                         "func '%s' arg%d type %s is not a struct\n",
4816                         tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4817                 return false;
4818         }
4819         bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4820                 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4821                 __btf_name_by_offset(btf, t->name_off));
4822         return true;
4823 }
4824
4825 enum bpf_struct_walk_result {
4826         /* < 0 error */
4827         WALK_SCALAR = 0,
4828         WALK_PTR,
4829         WALK_STRUCT,
4830 };
4831
4832 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4833                            const struct btf_type *t, int off, int size,
4834                            u32 *next_btf_id)
4835 {
4836         u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4837         const struct btf_type *mtype, *elem_type = NULL;
4838         const struct btf_member *member;
4839         const char *tname, *mname;
4840         u32 vlen, elem_id, mid;
4841
4842 again:
4843         tname = __btf_name_by_offset(btf, t->name_off);
4844         if (!btf_type_is_struct(t)) {
4845                 bpf_log(log, "Type '%s' is not a struct\n", tname);
4846                 return -EINVAL;
4847         }
4848
4849         vlen = btf_type_vlen(t);
4850         if (off + size > t->size) {
4851                 /* If the last element is a variable size array, we may
4852                  * need to relax the rule.
4853                  */
4854                 struct btf_array *array_elem;
4855
4856                 if (vlen == 0)
4857                         goto error;
4858
4859                 member = btf_type_member(t) + vlen - 1;
4860                 mtype = btf_type_skip_modifiers(btf, member->type,
4861                                                 NULL);
4862                 if (!btf_type_is_array(mtype))
4863                         goto error;
4864
4865                 array_elem = (struct btf_array *)(mtype + 1);
4866                 if (array_elem->nelems != 0)
4867                         goto error;
4868
4869                 moff = btf_member_bit_offset(t, member) / 8;
4870                 if (off < moff)
4871                         goto error;
4872
4873                 /* Only allow structure for now, can be relaxed for
4874                  * other types later.
4875                  */
4876                 t = btf_type_skip_modifiers(btf, array_elem->type,
4877                                             NULL);
4878                 if (!btf_type_is_struct(t))
4879                         goto error;
4880
4881                 off = (off - moff) % t->size;
4882                 goto again;
4883
4884 error:
4885                 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4886                         tname, off, size);
4887                 return -EACCES;
4888         }
4889
4890         for_each_member(i, t, member) {
4891                 /* offset of the field in bytes */
4892                 moff = btf_member_bit_offset(t, member) / 8;
4893                 if (off + size <= moff)
4894                         /* won't find anything, field is already too far */
4895                         break;
4896
4897                 if (btf_member_bitfield_size(t, member)) {
4898                         u32 end_bit = btf_member_bit_offset(t, member) +
4899                                 btf_member_bitfield_size(t, member);
4900
4901                         /* off <= moff instead of off == moff because clang
4902                          * does not generate a BTF member for anonymous
4903                          * bitfield like the ":16" here:
4904                          * struct {
4905                          *      int :16;
4906                          *      int x:8;
4907                          * };
4908                          */
4909                         if (off <= moff &&
4910                             BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4911                                 return WALK_SCALAR;
4912
4913                         /* off may be accessing a following member
4914                          *
4915                          * or
4916                          *
4917                          * Doing partial access at either end of this
4918                          * bitfield.  Continue on this case also to
4919                          * treat it as not accessing this bitfield
4920                          * and eventually error out as field not
4921                          * found to keep it simple.
4922                          * It could be relaxed if there was a legit
4923                          * partial access case later.
4924                          */
4925                         continue;
4926                 }
4927
4928                 /* In case of "off" is pointing to holes of a struct */
4929                 if (off < moff)
4930                         break;
4931
4932                 /* type of the field */
4933                 mid = member->type;
4934                 mtype = btf_type_by_id(btf, member->type);
4935                 mname = __btf_name_by_offset(btf, member->name_off);
4936
4937                 mtype = __btf_resolve_size(btf, mtype, &msize,
4938                                            &elem_type, &elem_id, &total_nelems,
4939                                            &mid);
4940                 if (IS_ERR(mtype)) {
4941                         bpf_log(log, "field %s doesn't have size\n", mname);
4942                         return -EFAULT;
4943                 }
4944
4945                 mtrue_end = moff + msize;
4946                 if (off >= mtrue_end)
4947                         /* no overlap with member, keep iterating */
4948                         continue;
4949
4950                 if (btf_type_is_array(mtype)) {
4951                         u32 elem_idx;
4952
4953                         /* __btf_resolve_size() above helps to
4954                          * linearize a multi-dimensional array.
4955                          *
4956                          * The logic here is treating an array
4957                          * in a struct as the following way:
4958                          *
4959                          * struct outer {
4960                          *      struct inner array[2][2];
4961                          * };
4962                          *
4963                          * looks like:
4964                          *
4965                          * struct outer {
4966                          *      struct inner array_elem0;
4967                          *      struct inner array_elem1;
4968                          *      struct inner array_elem2;
4969                          *      struct inner array_elem3;
4970                          * };
4971                          *
4972                          * When accessing outer->array[1][0], it moves
4973                          * moff to "array_elem2", set mtype to
4974                          * "struct inner", and msize also becomes
4975                          * sizeof(struct inner).  Then most of the
4976                          * remaining logic will fall through without
4977                          * caring the current member is an array or
4978                          * not.
4979                          *
4980                          * Unlike mtype/msize/moff, mtrue_end does not
4981                          * change.  The naming difference ("_true") tells
4982                          * that it is not always corresponding to
4983                          * the current mtype/msize/moff.
4984                          * It is the true end of the current
4985                          * member (i.e. array in this case).  That
4986                          * will allow an int array to be accessed like
4987                          * a scratch space,
4988                          * i.e. allow access beyond the size of
4989                          *      the array's element as long as it is
4990                          *      within the mtrue_end boundary.
4991                          */
4992
4993                         /* skip empty array */
4994                         if (moff == mtrue_end)
4995                                 continue;
4996
4997                         msize /= total_nelems;
4998                         elem_idx = (off - moff) / msize;
4999                         moff += elem_idx * msize;
5000                         mtype = elem_type;
5001                         mid = elem_id;
5002                 }
5003
5004                 /* the 'off' we're looking for is either equal to start
5005                  * of this field or inside of this struct
5006                  */
5007                 if (btf_type_is_struct(mtype)) {
5008                         /* our field must be inside that union or struct */
5009                         t = mtype;
5010
5011                         /* return if the offset matches the member offset */
5012                         if (off == moff) {
5013                                 *next_btf_id = mid;
5014                                 return WALK_STRUCT;
5015                         }
5016
5017                         /* adjust offset we're looking for */
5018                         off -= moff;
5019                         goto again;
5020                 }
5021
5022                 if (btf_type_is_ptr(mtype)) {
5023                         const struct btf_type *stype;
5024                         u32 id;
5025
5026                         if (msize != size || off != moff) {
5027                                 bpf_log(log,
5028                                         "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5029                                         mname, moff, tname, off, size);
5030                                 return -EACCES;
5031                         }
5032                         stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5033                         if (btf_type_is_struct(stype)) {
5034                                 *next_btf_id = id;
5035                                 return WALK_PTR;
5036                         }
5037                 }
5038
5039                 /* Allow more flexible access within an int as long as
5040                  * it is within mtrue_end.
5041                  * Since mtrue_end could be the end of an array,
5042                  * that also allows using an array of int as a scratch
5043                  * space. e.g. skb->cb[].
5044                  */
5045                 if (off + size > mtrue_end) {
5046                         bpf_log(log,
5047                                 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5048                                 mname, mtrue_end, tname, off, size);
5049                         return -EACCES;
5050                 }
5051
5052                 return WALK_SCALAR;
5053         }
5054         bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5055         return -EINVAL;
5056 }
5057
5058 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5059                       const struct btf_type *t, int off, int size,
5060                       enum bpf_access_type atype __maybe_unused,
5061                       u32 *next_btf_id)
5062 {
5063         int err;
5064         u32 id;
5065
5066         do {
5067                 err = btf_struct_walk(log, btf, t, off, size, &id);
5068
5069                 switch (err) {
5070                 case WALK_PTR:
5071                         /* If we found the pointer or scalar on t+off,
5072                          * we're done.
5073                          */
5074                         *next_btf_id = id;
5075                         return PTR_TO_BTF_ID;
5076                 case WALK_SCALAR:
5077                         return SCALAR_VALUE;
5078                 case WALK_STRUCT:
5079                         /* We found nested struct, so continue the search
5080                          * by diving in it. At this point the offset is
5081                          * aligned with the new type, so set it to 0.
5082                          */
5083                         t = btf_type_by_id(btf, id);
5084                         off = 0;
5085                         break;
5086                 default:
5087                         /* It's either error or unknown return value..
5088                          * scream and leave.
5089                          */
5090                         if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5091                                 return -EINVAL;
5092                         return err;
5093                 }
5094         } while (t);
5095
5096         return -EINVAL;
5097 }
5098
5099 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5100  * the same. Trivial ID check is not enough due to module BTFs, because we can
5101  * end up with two different module BTFs, but IDs point to the common type in
5102  * vmlinux BTF.
5103  */
5104 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5105                                const struct btf *btf2, u32 id2)
5106 {
5107         if (id1 != id2)
5108                 return false;
5109         if (btf1 == btf2)
5110                 return true;
5111         return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5112 }
5113
5114 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5115                           const struct btf *btf, u32 id, int off,
5116                           const struct btf *need_btf, u32 need_type_id)
5117 {
5118         const struct btf_type *type;
5119         int err;
5120
5121         /* Are we already done? */
5122         if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5123                 return true;
5124
5125 again:
5126         type = btf_type_by_id(btf, id);
5127         if (!type)
5128                 return false;
5129         err = btf_struct_walk(log, btf, type, off, 1, &id);
5130         if (err != WALK_STRUCT)
5131                 return false;
5132
5133         /* We found nested struct object. If it matches
5134          * the requested ID, we're done. Otherwise let's
5135          * continue the search with offset 0 in the new
5136          * type.
5137          */
5138         if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5139                 off = 0;
5140                 goto again;
5141         }
5142
5143         return true;
5144 }
5145
5146 static int __get_type_size(struct btf *btf, u32 btf_id,
5147                            const struct btf_type **bad_type)
5148 {
5149         const struct btf_type *t;
5150
5151         if (!btf_id)
5152                 /* void */
5153                 return 0;
5154         t = btf_type_by_id(btf, btf_id);
5155         while (t && btf_type_is_modifier(t))
5156                 t = btf_type_by_id(btf, t->type);
5157         if (!t) {
5158                 *bad_type = btf_type_by_id(btf, 0);
5159                 return -EINVAL;
5160         }
5161         if (btf_type_is_ptr(t))
5162                 /* kernel size of pointer. Not BPF's size of pointer*/
5163                 return sizeof(void *);
5164         if (btf_type_is_int(t) || btf_type_is_enum(t))
5165                 return t->size;
5166         *bad_type = t;
5167         return -EINVAL;
5168 }
5169
5170 int btf_distill_func_proto(struct bpf_verifier_log *log,
5171                            struct btf *btf,
5172                            const struct btf_type *func,
5173                            const char *tname,
5174                            struct btf_func_model *m)
5175 {
5176         const struct btf_param *args;
5177         const struct btf_type *t;
5178         u32 i, nargs;
5179         int ret;
5180
5181         if (!func) {
5182                 /* BTF function prototype doesn't match the verifier types.
5183                  * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5184                  */
5185                 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5186                         m->arg_size[i] = 8;
5187                 m->ret_size = 8;
5188                 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5189                 return 0;
5190         }
5191         args = (const struct btf_param *)(func + 1);
5192         nargs = btf_type_vlen(func);
5193         if (nargs >= MAX_BPF_FUNC_ARGS) {
5194                 bpf_log(log,
5195                         "The function %s has %d arguments. Too many.\n",
5196                         tname, nargs);
5197                 return -EINVAL;
5198         }
5199         ret = __get_type_size(btf, func->type, &t);
5200         if (ret < 0) {
5201                 bpf_log(log,
5202                         "The function %s return type %s is unsupported.\n",
5203                         tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5204                 return -EINVAL;
5205         }
5206         m->ret_size = ret;
5207
5208         for (i = 0; i < nargs; i++) {
5209                 if (i == nargs - 1 && args[i].type == 0) {
5210                         bpf_log(log,
5211                                 "The function %s with variable args is unsupported.\n",
5212                                 tname);
5213                         return -EINVAL;
5214                 }
5215                 ret = __get_type_size(btf, args[i].type, &t);
5216                 if (ret < 0) {
5217                         bpf_log(log,
5218                                 "The function %s arg%d type %s is unsupported.\n",
5219                                 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5220                         return -EINVAL;
5221                 }
5222                 if (ret == 0) {
5223                         bpf_log(log,
5224                                 "The function %s has malformed void argument.\n",
5225                                 tname);
5226                         return -EINVAL;
5227                 }
5228                 m->arg_size[i] = ret;
5229         }
5230         m->nr_args = nargs;
5231         return 0;
5232 }
5233
5234 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5235  * t1 points to BTF_KIND_FUNC in btf1
5236  * t2 points to BTF_KIND_FUNC in btf2
5237  * Returns:
5238  * EINVAL - function prototype mismatch
5239  * EFAULT - verifier bug
5240  * 0 - 99% match. The last 1% is validated by the verifier.
5241  */
5242 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5243                                      struct btf *btf1, const struct btf_type *t1,
5244                                      struct btf *btf2, const struct btf_type *t2)
5245 {
5246         const struct btf_param *args1, *args2;
5247         const char *fn1, *fn2, *s1, *s2;
5248         u32 nargs1, nargs2, i;
5249
5250         fn1 = btf_name_by_offset(btf1, t1->name_off);
5251         fn2 = btf_name_by_offset(btf2, t2->name_off);
5252
5253         if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5254                 bpf_log(log, "%s() is not a global function\n", fn1);
5255                 return -EINVAL;
5256         }
5257         if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5258                 bpf_log(log, "%s() is not a global function\n", fn2);
5259                 return -EINVAL;
5260         }
5261
5262         t1 = btf_type_by_id(btf1, t1->type);
5263         if (!t1 || !btf_type_is_func_proto(t1))
5264                 return -EFAULT;
5265         t2 = btf_type_by_id(btf2, t2->type);
5266         if (!t2 || !btf_type_is_func_proto(t2))
5267                 return -EFAULT;
5268
5269         args1 = (const struct btf_param *)(t1 + 1);
5270         nargs1 = btf_type_vlen(t1);
5271         args2 = (const struct btf_param *)(t2 + 1);
5272         nargs2 = btf_type_vlen(t2);
5273
5274         if (nargs1 != nargs2) {
5275                 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5276                         fn1, nargs1, fn2, nargs2);
5277                 return -EINVAL;
5278         }
5279
5280         t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5281         t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5282         if (t1->info != t2->info) {
5283                 bpf_log(log,
5284                         "Return type %s of %s() doesn't match type %s of %s()\n",
5285                         btf_type_str(t1), fn1,
5286                         btf_type_str(t2), fn2);
5287                 return -EINVAL;
5288         }
5289
5290         for (i = 0; i < nargs1; i++) {
5291                 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5292                 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5293
5294                 if (t1->info != t2->info) {
5295                         bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5296                                 i, fn1, btf_type_str(t1),
5297                                 fn2, btf_type_str(t2));
5298                         return -EINVAL;
5299                 }
5300                 if (btf_type_has_size(t1) && t1->size != t2->size) {
5301                         bpf_log(log,
5302                                 "arg%d in %s() has size %d while %s() has %d\n",
5303                                 i, fn1, t1->size,
5304                                 fn2, t2->size);
5305                         return -EINVAL;
5306                 }
5307
5308                 /* global functions are validated with scalars and pointers
5309                  * to context only. And only global functions can be replaced.
5310                  * Hence type check only those types.
5311                  */
5312                 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5313                         continue;
5314                 if (!btf_type_is_ptr(t1)) {
5315                         bpf_log(log,
5316                                 "arg%d in %s() has unrecognized type\n",
5317                                 i, fn1);
5318                         return -EINVAL;
5319                 }
5320                 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5321                 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5322                 if (!btf_type_is_struct(t1)) {
5323                         bpf_log(log,
5324                                 "arg%d in %s() is not a pointer to context\n",
5325                                 i, fn1);
5326                         return -EINVAL;
5327                 }
5328                 if (!btf_type_is_struct(t2)) {
5329                         bpf_log(log,
5330                                 "arg%d in %s() is not a pointer to context\n",
5331                                 i, fn2);
5332                         return -EINVAL;
5333                 }
5334                 /* This is an optional check to make program writing easier.
5335                  * Compare names of structs and report an error to the user.
5336                  * btf_prepare_func_args() already checked that t2 struct
5337                  * is a context type. btf_prepare_func_args() will check
5338                  * later that t1 struct is a context type as well.
5339                  */
5340                 s1 = btf_name_by_offset(btf1, t1->name_off);
5341                 s2 = btf_name_by_offset(btf2, t2->name_off);
5342                 if (strcmp(s1, s2)) {
5343                         bpf_log(log,
5344                                 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5345                                 i, fn1, s1, fn2, s2);
5346                         return -EINVAL;
5347                 }
5348         }
5349         return 0;
5350 }
5351
5352 /* Compare BTFs of given program with BTF of target program */
5353 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5354                          struct btf *btf2, const struct btf_type *t2)
5355 {
5356         struct btf *btf1 = prog->aux->btf;
5357         const struct btf_type *t1;
5358         u32 btf_id = 0;
5359
5360         if (!prog->aux->func_info) {
5361                 bpf_log(log, "Program extension requires BTF\n");
5362                 return -EINVAL;
5363         }
5364
5365         btf_id = prog->aux->func_info[0].type_id;
5366         if (!btf_id)
5367                 return -EFAULT;
5368
5369         t1 = btf_type_by_id(btf1, btf_id);
5370         if (!t1 || !btf_type_is_func(t1))
5371                 return -EFAULT;
5372
5373         return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5374 }
5375
5376 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5377 #ifdef CONFIG_NET
5378         [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5379         [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5380         [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5381 #endif
5382 };
5383
5384 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5385                                     const struct btf *btf, u32 func_id,
5386                                     struct bpf_reg_state *regs,
5387                                     bool ptr_to_mem_ok)
5388 {
5389         struct bpf_verifier_log *log = &env->log;
5390         const char *func_name, *ref_tname;
5391         const struct btf_type *t, *ref_t;
5392         const struct btf_param *args;
5393         u32 i, nargs, ref_id;
5394
5395         t = btf_type_by_id(btf, func_id);
5396         if (!t || !btf_type_is_func(t)) {
5397                 /* These checks were already done by the verifier while loading
5398                  * struct bpf_func_info or in add_kfunc_call().
5399                  */
5400                 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5401                         func_id);
5402                 return -EFAULT;
5403         }
5404         func_name = btf_name_by_offset(btf, t->name_off);
5405
5406         t = btf_type_by_id(btf, t->type);
5407         if (!t || !btf_type_is_func_proto(t)) {
5408                 bpf_log(log, "Invalid BTF of func %s\n", func_name);
5409                 return -EFAULT;
5410         }
5411         args = (const struct btf_param *)(t + 1);
5412         nargs = btf_type_vlen(t);
5413         if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5414                 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5415                         MAX_BPF_FUNC_REG_ARGS);
5416                 return -EINVAL;
5417         }
5418
5419         /* check that BTF function arguments match actual types that the
5420          * verifier sees.
5421          */
5422         for (i = 0; i < nargs; i++) {
5423                 u32 regno = i + 1;
5424                 struct bpf_reg_state *reg = &regs[regno];
5425
5426                 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5427                 if (btf_type_is_scalar(t)) {
5428                         if (reg->type == SCALAR_VALUE)
5429                                 continue;
5430                         bpf_log(log, "R%d is not a scalar\n", regno);
5431                         return -EINVAL;
5432                 }
5433
5434                 if (!btf_type_is_ptr(t)) {
5435                         bpf_log(log, "Unrecognized arg#%d type %s\n",
5436                                 i, btf_type_str(t));
5437                         return -EINVAL;
5438                 }
5439
5440                 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5441                 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5442                 if (btf_is_kernel(btf)) {
5443                         const struct btf_type *reg_ref_t;
5444                         const struct btf *reg_btf;
5445                         const char *reg_ref_tname;
5446                         u32 reg_ref_id;
5447
5448                         if (!btf_type_is_struct(ref_t)) {
5449                                 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5450                                         func_name, i, btf_type_str(ref_t),
5451                                         ref_tname);
5452                                 return -EINVAL;
5453                         }
5454
5455                         if (reg->type == PTR_TO_BTF_ID) {
5456                                 reg_btf = reg->btf;
5457                                 reg_ref_id = reg->btf_id;
5458                         } else if (reg2btf_ids[reg->type]) {
5459                                 reg_btf = btf_vmlinux;
5460                                 reg_ref_id = *reg2btf_ids[reg->type];
5461                         } else {
5462                                 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5463                                         func_name, i,
5464                                         btf_type_str(ref_t), ref_tname, regno);
5465                                 return -EINVAL;
5466                         }
5467
5468                         reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5469                                                             &reg_ref_id);
5470                         reg_ref_tname = btf_name_by_offset(reg_btf,
5471                                                            reg_ref_t->name_off);
5472                         if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5473                                                   reg->off, btf, ref_id)) {
5474                                 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5475                                         func_name, i,
5476                                         btf_type_str(ref_t), ref_tname,
5477                                         regno, btf_type_str(reg_ref_t),
5478                                         reg_ref_tname);
5479                                 return -EINVAL;
5480                         }
5481                 } else if (btf_get_prog_ctx_type(log, btf, t,
5482                                                  env->prog->type, i)) {
5483                         /* If function expects ctx type in BTF check that caller
5484                          * is passing PTR_TO_CTX.
5485                          */
5486                         if (reg->type != PTR_TO_CTX) {
5487                                 bpf_log(log,
5488                                         "arg#%d expected pointer to ctx, but got %s\n",
5489                                         i, btf_type_str(t));
5490                                 return -EINVAL;
5491                         }
5492                         if (check_ctx_reg(env, reg, regno))
5493                                 return -EINVAL;
5494                 } else if (ptr_to_mem_ok) {
5495                         const struct btf_type *resolve_ret;
5496                         u32 type_size;
5497
5498                         resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5499                         if (IS_ERR(resolve_ret)) {
5500                                 bpf_log(log,
5501                                         "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5502                                         i, btf_type_str(ref_t), ref_tname,
5503                                         PTR_ERR(resolve_ret));
5504                                 return -EINVAL;
5505                         }
5506
5507                         if (check_mem_reg(env, reg, regno, type_size))
5508                                 return -EINVAL;
5509                 } else {
5510                         return -EINVAL;
5511                 }
5512         }
5513
5514         return 0;
5515 }
5516
5517 /* Compare BTF of a function with given bpf_reg_state.
5518  * Returns:
5519  * EFAULT - there is a verifier bug. Abort verification.
5520  * EINVAL - there is a type mismatch or BTF is not available.
5521  * 0 - BTF matches with what bpf_reg_state expects.
5522  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5523  */
5524 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5525                                 struct bpf_reg_state *regs)
5526 {
5527         struct bpf_prog *prog = env->prog;
5528         struct btf *btf = prog->aux->btf;
5529         bool is_global;
5530         u32 btf_id;
5531         int err;
5532
5533         if (!prog->aux->func_info)
5534                 return -EINVAL;
5535
5536         btf_id = prog->aux->func_info[subprog].type_id;
5537         if (!btf_id)
5538                 return -EFAULT;
5539
5540         if (prog->aux->func_info_aux[subprog].unreliable)
5541                 return -EINVAL;
5542
5543         is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5544         err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5545
5546         /* Compiler optimizations can remove arguments from static functions
5547          * or mismatched type can be passed into a global function.
5548          * In such cases mark the function as unreliable from BTF point of view.
5549          */
5550         if (err)
5551                 prog->aux->func_info_aux[subprog].unreliable = true;
5552         return err;
5553 }
5554
5555 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5556                               const struct btf *btf, u32 func_id,
5557                               struct bpf_reg_state *regs)
5558 {
5559         return btf_check_func_arg_match(env, btf, func_id, regs, false);
5560 }
5561
5562 /* Convert BTF of a function into bpf_reg_state if possible
5563  * Returns:
5564  * EFAULT - there is a verifier bug. Abort verification.
5565  * EINVAL - cannot convert BTF.
5566  * 0 - Successfully converted BTF into bpf_reg_state
5567  * (either PTR_TO_CTX or SCALAR_VALUE).
5568  */
5569 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5570                           struct bpf_reg_state *regs)
5571 {
5572         struct bpf_verifier_log *log = &env->log;
5573         struct bpf_prog *prog = env->prog;
5574         enum bpf_prog_type prog_type = prog->type;
5575         struct btf *btf = prog->aux->btf;
5576         const struct btf_param *args;
5577         const struct btf_type *t, *ref_t;
5578         u32 i, nargs, btf_id;
5579         const char *tname;
5580
5581         if (!prog->aux->func_info ||
5582             prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5583                 bpf_log(log, "Verifier bug\n");
5584                 return -EFAULT;
5585         }
5586
5587         btf_id = prog->aux->func_info[subprog].type_id;
5588         if (!btf_id) {
5589                 bpf_log(log, "Global functions need valid BTF\n");
5590                 return -EFAULT;
5591         }
5592
5593         t = btf_type_by_id(btf, btf_id);
5594         if (!t || !btf_type_is_func(t)) {
5595                 /* These checks were already done by the verifier while loading
5596                  * struct bpf_func_info
5597                  */
5598                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5599                         subprog);
5600                 return -EFAULT;
5601         }
5602         tname = btf_name_by_offset(btf, t->name_off);
5603
5604         if (log->level & BPF_LOG_LEVEL)
5605                 bpf_log(log, "Validating %s() func#%d...\n",
5606                         tname, subprog);
5607
5608         if (prog->aux->func_info_aux[subprog].unreliable) {
5609                 bpf_log(log, "Verifier bug in function %s()\n", tname);
5610                 return -EFAULT;
5611         }
5612         if (prog_type == BPF_PROG_TYPE_EXT)
5613                 prog_type = prog->aux->dst_prog->type;
5614
5615         t = btf_type_by_id(btf, t->type);
5616         if (!t || !btf_type_is_func_proto(t)) {
5617                 bpf_log(log, "Invalid type of function %s()\n", tname);
5618                 return -EFAULT;
5619         }
5620         args = (const struct btf_param *)(t + 1);
5621         nargs = btf_type_vlen(t);
5622         if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5623                 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5624                         tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5625                 return -EINVAL;
5626         }
5627         /* check that function returns int */
5628         t = btf_type_by_id(btf, t->type);
5629         while (btf_type_is_modifier(t))
5630                 t = btf_type_by_id(btf, t->type);
5631         if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5632                 bpf_log(log,
5633                         "Global function %s() doesn't return scalar. Only those are supported.\n",
5634                         tname);
5635                 return -EINVAL;
5636         }
5637         /* Convert BTF function arguments into verifier types.
5638          * Only PTR_TO_CTX and SCALAR are supported atm.
5639          */
5640         for (i = 0; i < nargs; i++) {
5641                 struct bpf_reg_state *reg = &regs[i + 1];
5642
5643                 t = btf_type_by_id(btf, args[i].type);
5644                 while (btf_type_is_modifier(t))
5645                         t = btf_type_by_id(btf, t->type);
5646                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5647                         reg->type = SCALAR_VALUE;
5648                         continue;
5649                 }
5650                 if (btf_type_is_ptr(t)) {
5651                         if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5652                                 reg->type = PTR_TO_CTX;
5653                                 continue;
5654                         }
5655
5656                         t = btf_type_skip_modifiers(btf, t->type, NULL);
5657
5658                         ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5659                         if (IS_ERR(ref_t)) {
5660                                 bpf_log(log,
5661                                     "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5662                                     i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5663                                         PTR_ERR(ref_t));
5664                                 return -EINVAL;
5665                         }
5666
5667                         reg->type = PTR_TO_MEM_OR_NULL;
5668                         reg->id = ++env->id_gen;
5669
5670                         continue;
5671                 }
5672                 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5673                         i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5674                 return -EINVAL;
5675         }
5676         return 0;
5677 }
5678
5679 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5680                           struct btf_show *show)
5681 {
5682         const struct btf_type *t = btf_type_by_id(btf, type_id);
5683
5684         show->btf = btf;
5685         memset(&show->state, 0, sizeof(show->state));
5686         memset(&show->obj, 0, sizeof(show->obj));
5687
5688         btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5689 }
5690
5691 static void btf_seq_show(struct btf_show *show, const char *fmt,
5692                          va_list args)
5693 {
5694         seq_vprintf((struct seq_file *)show->target, fmt, args);
5695 }
5696
5697 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5698                             void *obj, struct seq_file *m, u64 flags)
5699 {
5700         struct btf_show sseq;
5701
5702         sseq.target = m;
5703         sseq.showfn = btf_seq_show;
5704         sseq.flags = flags;
5705
5706         btf_type_show(btf, type_id, obj, &sseq);
5707
5708         return sseq.state.status;
5709 }
5710
5711 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5712                        struct seq_file *m)
5713 {
5714         (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5715                                        BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5716                                        BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5717 }
5718
5719 struct btf_show_snprintf {
5720         struct btf_show show;
5721         int len_left;           /* space left in string */
5722         int len;                /* length we would have written */
5723 };
5724
5725 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5726                               va_list args)
5727 {
5728         struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5729         int len;
5730
5731         len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5732
5733         if (len < 0) {
5734                 ssnprintf->len_left = 0;
5735                 ssnprintf->len = len;
5736         } else if (len > ssnprintf->len_left) {
5737                 /* no space, drive on to get length we would have written */
5738                 ssnprintf->len_left = 0;
5739                 ssnprintf->len += len;
5740         } else {
5741                 ssnprintf->len_left -= len;
5742                 ssnprintf->len += len;
5743                 show->target += len;
5744         }
5745 }
5746
5747 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5748                            char *buf, int len, u64 flags)
5749 {
5750         struct btf_show_snprintf ssnprintf;
5751
5752         ssnprintf.show.target = buf;
5753         ssnprintf.show.flags = flags;
5754         ssnprintf.show.showfn = btf_snprintf_show;
5755         ssnprintf.len_left = len;
5756         ssnprintf.len = 0;
5757
5758         btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5759
5760         /* If we encontered an error, return it. */
5761         if (ssnprintf.show.state.status)
5762                 return ssnprintf.show.state.status;
5763
5764         /* Otherwise return length we would have written */
5765         return ssnprintf.len;
5766 }
5767
5768 #ifdef CONFIG_PROC_FS
5769 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5770 {
5771         const struct btf *btf = filp->private_data;
5772
5773         seq_printf(m, "btf_id:\t%u\n", btf->id);
5774 }
5775 #endif
5776
5777 static int btf_release(struct inode *inode, struct file *filp)
5778 {
5779         btf_put(filp->private_data);
5780         return 0;
5781 }
5782
5783 const struct file_operations btf_fops = {
5784 #ifdef CONFIG_PROC_FS
5785         .show_fdinfo    = bpf_btf_show_fdinfo,
5786 #endif
5787         .release        = btf_release,
5788 };
5789
5790 static int __btf_new_fd(struct btf *btf)
5791 {
5792         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5793 }
5794
5795 int btf_new_fd(const union bpf_attr *attr)
5796 {
5797         struct btf *btf;
5798         int ret;
5799
5800         btf = btf_parse(u64_to_user_ptr(attr->btf),
5801                         attr->btf_size, attr->btf_log_level,
5802                         u64_to_user_ptr(attr->btf_log_buf),
5803                         attr->btf_log_size);
5804         if (IS_ERR(btf))
5805                 return PTR_ERR(btf);
5806
5807         ret = btf_alloc_id(btf);
5808         if (ret) {
5809                 btf_free(btf);
5810                 return ret;
5811         }
5812
5813         /*
5814          * The BTF ID is published to the userspace.
5815          * All BTF free must go through call_rcu() from
5816          * now on (i.e. free by calling btf_put()).
5817          */
5818
5819         ret = __btf_new_fd(btf);
5820         if (ret < 0)
5821                 btf_put(btf);
5822
5823         return ret;
5824 }
5825
5826 struct btf *btf_get_by_fd(int fd)
5827 {
5828         struct btf *btf;
5829         struct fd f;
5830
5831         f = fdget(fd);
5832
5833         if (!f.file)
5834                 return ERR_PTR(-EBADF);
5835
5836         if (f.file->f_op != &btf_fops) {
5837                 fdput(f);
5838                 return ERR_PTR(-EINVAL);
5839         }
5840
5841         btf = f.file->private_data;
5842         refcount_inc(&btf->refcnt);
5843         fdput(f);
5844
5845         return btf;
5846 }
5847
5848 int btf_get_info_by_fd(const struct btf *btf,
5849                        const union bpf_attr *attr,
5850                        union bpf_attr __user *uattr)
5851 {
5852         struct bpf_btf_info __user *uinfo;
5853         struct bpf_btf_info info;
5854         u32 info_copy, btf_copy;
5855         void __user *ubtf;
5856         char __user *uname;
5857         u32 uinfo_len, uname_len, name_len;
5858         int ret = 0;
5859
5860         uinfo = u64_to_user_ptr(attr->info.info);
5861         uinfo_len = attr->info.info_len;
5862
5863         info_copy = min_t(u32, uinfo_len, sizeof(info));
5864         memset(&info, 0, sizeof(info));
5865         if (copy_from_user(&info, uinfo, info_copy))
5866                 return -EFAULT;
5867
5868         info.id = btf->id;
5869         ubtf = u64_to_user_ptr(info.btf);
5870         btf_copy = min_t(u32, btf->data_size, info.btf_size);
5871         if (copy_to_user(ubtf, btf->data, btf_copy))
5872                 return -EFAULT;
5873         info.btf_size = btf->data_size;
5874
5875         info.kernel_btf = btf->kernel_btf;
5876
5877         uname = u64_to_user_ptr(info.name);
5878         uname_len = info.name_len;
5879         if (!uname ^ !uname_len)
5880                 return -EINVAL;
5881
5882         name_len = strlen(btf->name);
5883         info.name_len = name_len;
5884
5885         if (uname) {
5886                 if (uname_len >= name_len + 1) {
5887                         if (copy_to_user(uname, btf->name, name_len + 1))
5888                                 return -EFAULT;
5889                 } else {
5890                         char zero = '\0';
5891
5892                         if (copy_to_user(uname, btf->name, uname_len - 1))
5893                                 return -EFAULT;
5894                         if (put_user(zero, uname + uname_len - 1))
5895                                 return -EFAULT;
5896                         /* let user-space know about too short buffer */
5897                         ret = -ENOSPC;
5898                 }
5899         }
5900
5901         if (copy_to_user(uinfo, &info, info_copy) ||
5902             put_user(info_copy, &uattr->info.info_len))
5903                 return -EFAULT;
5904
5905         return ret;
5906 }
5907
5908 int btf_get_fd_by_id(u32 id)
5909 {
5910         struct btf *btf;
5911         int fd;
5912
5913         rcu_read_lock();
5914         btf = idr_find(&btf_idr, id);
5915         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5916                 btf = ERR_PTR(-ENOENT);
5917         rcu_read_unlock();
5918
5919         if (IS_ERR(btf))
5920                 return PTR_ERR(btf);
5921
5922         fd = __btf_new_fd(btf);
5923         if (fd < 0)
5924                 btf_put(btf);
5925
5926         return fd;
5927 }
5928
5929 u32 btf_obj_id(const struct btf *btf)
5930 {
5931         return btf->id;
5932 }
5933
5934 bool btf_is_kernel(const struct btf *btf)
5935 {
5936         return btf->kernel_btf;
5937 }
5938
5939 bool btf_is_module(const struct btf *btf)
5940 {
5941         return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5942 }
5943
5944 static int btf_id_cmp_func(const void *a, const void *b)
5945 {
5946         const int *pa = a, *pb = b;
5947
5948         return *pa - *pb;
5949 }
5950
5951 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5952 {
5953         return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5954 }
5955
5956 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5957 struct btf_module {
5958         struct list_head list;
5959         struct module *module;
5960         struct btf *btf;
5961         struct bin_attribute *sysfs_attr;
5962 };
5963
5964 static LIST_HEAD(btf_modules);
5965 static DEFINE_MUTEX(btf_module_mutex);
5966
5967 static ssize_t
5968 btf_module_read(struct file *file, struct kobject *kobj,
5969                 struct bin_attribute *bin_attr,
5970                 char *buf, loff_t off, size_t len)
5971 {
5972         const struct btf *btf = bin_attr->private;
5973
5974         memcpy(buf, btf->data + off, len);
5975         return len;
5976 }
5977
5978 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5979                              void *module)
5980 {
5981         struct btf_module *btf_mod, *tmp;
5982         struct module *mod = module;
5983         struct btf *btf;
5984         int err = 0;
5985
5986         if (mod->btf_data_size == 0 ||
5987             (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5988                 goto out;
5989
5990         switch (op) {
5991         case MODULE_STATE_COMING:
5992                 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5993                 if (!btf_mod) {
5994                         err = -ENOMEM;
5995                         goto out;
5996                 }
5997                 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5998                 if (IS_ERR(btf)) {
5999                         pr_warn("failed to validate module [%s] BTF: %ld\n",
6000                                 mod->name, PTR_ERR(btf));
6001                         kfree(btf_mod);
6002                         err = PTR_ERR(btf);
6003                         goto out;
6004                 }
6005                 err = btf_alloc_id(btf);
6006                 if (err) {
6007                         btf_free(btf);
6008                         kfree(btf_mod);
6009                         goto out;
6010                 }
6011
6012                 mutex_lock(&btf_module_mutex);
6013                 btf_mod->module = module;
6014                 btf_mod->btf = btf;
6015                 list_add(&btf_mod->list, &btf_modules);
6016                 mutex_unlock(&btf_module_mutex);
6017
6018                 if (IS_ENABLED(CONFIG_SYSFS)) {
6019                         struct bin_attribute *attr;
6020
6021                         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6022                         if (!attr)
6023                                 goto out;
6024
6025                         sysfs_bin_attr_init(attr);
6026                         attr->attr.name = btf->name;
6027                         attr->attr.mode = 0444;
6028                         attr->size = btf->data_size;
6029                         attr->private = btf;
6030                         attr->read = btf_module_read;
6031
6032                         err = sysfs_create_bin_file(btf_kobj, attr);
6033                         if (err) {
6034                                 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6035                                         mod->name, err);
6036                                 kfree(attr);
6037                                 err = 0;
6038                                 goto out;
6039                         }
6040
6041                         btf_mod->sysfs_attr = attr;
6042                 }
6043
6044                 break;
6045         case MODULE_STATE_GOING:
6046                 mutex_lock(&btf_module_mutex);
6047                 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6048                         if (btf_mod->module != module)
6049                                 continue;
6050
6051                         list_del(&btf_mod->list);
6052                         if (btf_mod->sysfs_attr)
6053                                 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6054                         btf_put(btf_mod->btf);
6055                         kfree(btf_mod->sysfs_attr);
6056                         kfree(btf_mod);
6057                         break;
6058                 }
6059                 mutex_unlock(&btf_module_mutex);
6060                 break;
6061         }
6062 out:
6063         return notifier_from_errno(err);
6064 }
6065
6066 static struct notifier_block btf_module_nb = {
6067         .notifier_call = btf_module_notify,
6068 };
6069
6070 static int __init btf_module_init(void)
6071 {
6072         register_module_notifier(&btf_module_nb);
6073         return 0;
6074 }
6075
6076 fs_initcall(btf_module_init);
6077 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6078
6079 struct module *btf_try_get_module(const struct btf *btf)
6080 {
6081         struct module *res = NULL;
6082 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6083         struct btf_module *btf_mod, *tmp;
6084
6085         mutex_lock(&btf_module_mutex);
6086         list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6087                 if (btf_mod->btf != btf)
6088                         continue;
6089
6090                 if (try_module_get(btf_mod->module))
6091                         res = btf_mod->module;
6092
6093                 break;
6094         }
6095         mutex_unlock(&btf_module_mutex);
6096 #endif
6097
6098         return res;
6099 }