Merge tag 'x86_fpu_for_v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28
29 /* BTF (BPF Type Format) is the meta data format which describes
30  * the data types of BPF program/map.  Hence, it basically focus
31  * on the C programming language which the modern BPF is primary
32  * using.
33  *
34  * ELF Section:
35  * ~~~~~~~~~~~
36  * The BTF data is stored under the ".BTF" ELF section
37  *
38  * struct btf_type:
39  * ~~~~~~~~~~~~~~~
40  * Each 'struct btf_type' object describes a C data type.
41  * Depending on the type it is describing, a 'struct btf_type'
42  * object may be followed by more data.  F.e.
43  * To describe an array, 'struct btf_type' is followed by
44  * 'struct btf_array'.
45  *
46  * 'struct btf_type' and any extra data following it are
47  * 4 bytes aligned.
48  *
49  * Type section:
50  * ~~~~~~~~~~~~~
51  * The BTF type section contains a list of 'struct btf_type' objects.
52  * Each one describes a C type.  Recall from the above section
53  * that a 'struct btf_type' object could be immediately followed by extra
54  * data in order to desribe some particular C types.
55  *
56  * type_id:
57  * ~~~~~~~
58  * Each btf_type object is identified by a type_id.  The type_id
59  * is implicitly implied by the location of the btf_type object in
60  * the BTF type section.  The first one has type_id 1.  The second
61  * one has type_id 2...etc.  Hence, an earlier btf_type has
62  * a smaller type_id.
63  *
64  * A btf_type object may refer to another btf_type object by using
65  * type_id (i.e. the "type" in the "struct btf_type").
66  *
67  * NOTE that we cannot assume any reference-order.
68  * A btf_type object can refer to an earlier btf_type object
69  * but it can also refer to a later btf_type object.
70  *
71  * For example, to describe "const void *".  A btf_type
72  * object describing "const" may refer to another btf_type
73  * object describing "void *".  This type-reference is done
74  * by specifying type_id:
75  *
76  * [1] CONST (anon) type_id=2
77  * [2] PTR (anon) type_id=0
78  *
79  * The above is the btf_verifier debug log:
80  *   - Each line started with "[?]" is a btf_type object
81  *   - [?] is the type_id of the btf_type object.
82  *   - CONST/PTR is the BTF_KIND_XXX
83  *   - "(anon)" is the name of the type.  It just
84  *     happens that CONST and PTR has no name.
85  *   - type_id=XXX is the 'u32 type' in btf_type
86  *
87  * NOTE: "void" has type_id 0
88  *
89  * String section:
90  * ~~~~~~~~~~~~~~
91  * The BTF string section contains the names used by the type section.
92  * Each string is referred by an "offset" from the beginning of the
93  * string section.
94  *
95  * Each string is '\0' terminated.
96  *
97  * The first character in the string section must be '\0'
98  * which is used to mean 'anonymous'. Some btf_type may not
99  * have a name.
100  */
101
102 /* BTF verification:
103  *
104  * To verify BTF data, two passes are needed.
105  *
106  * Pass #1
107  * ~~~~~~~
108  * The first pass is to collect all btf_type objects to
109  * an array: "btf->types".
110  *
111  * Depending on the C type that a btf_type is describing,
112  * a btf_type may be followed by extra data.  We don't know
113  * how many btf_type is there, and more importantly we don't
114  * know where each btf_type is located in the type section.
115  *
116  * Without knowing the location of each type_id, most verifications
117  * cannot be done.  e.g. an earlier btf_type may refer to a later
118  * btf_type (recall the "const void *" above), so we cannot
119  * check this type-reference in the first pass.
120  *
121  * In the first pass, it still does some verifications (e.g.
122  * checking the name is a valid offset to the string section).
123  *
124  * Pass #2
125  * ~~~~~~~
126  * The main focus is to resolve a btf_type that is referring
127  * to another type.
128  *
129  * We have to ensure the referring type:
130  * 1) does exist in the BTF (i.e. in btf->types[])
131  * 2) does not cause a loop:
132  *      struct A {
133  *              struct B b;
134  *      };
135  *
136  *      struct B {
137  *              struct A a;
138  *      };
139  *
140  * btf_type_needs_resolve() decides if a btf_type needs
141  * to be resolved.
142  *
143  * The needs_resolve type implements the "resolve()" ops which
144  * essentially does a DFS and detects backedge.
145  *
146  * During resolve (or DFS), different C types have different
147  * "RESOLVED" conditions.
148  *
149  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150  * members because a member is always referring to another
151  * type.  A struct's member can be treated as "RESOLVED" if
152  * it is referring to a BTF_KIND_PTR.  Otherwise, the
153  * following valid C struct would be rejected:
154  *
155  *      struct A {
156  *              int m;
157  *              struct A *a;
158  *      };
159  *
160  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
162  * detect a pointer loop, e.g.:
163  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164  *                        ^                                         |
165  *                        +-----------------------------------------+
166  *
167  */
168
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175
176 #define BTF_INFO_MASK 0x8f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180
181 /* 16MB for 64k structs and each has 16 members and
182  * a few MB spaces for the string section.
183  * The hard limit is S32_MAX.
184  */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186
187 #define for_each_member_from(i, from, struct_type, member)              \
188         for (i = from, member = btf_type_member(struct_type) + from;    \
189              i < btf_type_vlen(struct_type);                            \
190              i++, member++)
191
192 #define for_each_vsi_from(i, from, struct_type, member)                         \
193         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
194              i < btf_type_vlen(struct_type);                                    \
195              i++, member++)
196
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199
200 struct btf {
201         void *data;
202         struct btf_type **types;
203         u32 *resolved_ids;
204         u32 *resolved_sizes;
205         const char *strings;
206         void *nohdr_data;
207         struct btf_header hdr;
208         u32 nr_types; /* includes VOID for base BTF */
209         u32 types_size;
210         u32 data_size;
211         refcount_t refcnt;
212         u32 id;
213         struct rcu_head rcu;
214
215         /* split BTF support */
216         struct btf *base_btf;
217         u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218         u32 start_str_off; /* first string offset (0 for base BTF) */
219         char name[MODULE_NAME_LEN];
220         bool kernel_btf;
221 };
222
223 enum verifier_phase {
224         CHECK_META,
225         CHECK_TYPE,
226 };
227
228 struct resolve_vertex {
229         const struct btf_type *t;
230         u32 type_id;
231         u16 next_member;
232 };
233
234 enum visit_state {
235         NOT_VISITED,
236         VISITED,
237         RESOLVED,
238 };
239
240 enum resolve_mode {
241         RESOLVE_TBD,    /* To Be Determined */
242         RESOLVE_PTR,    /* Resolving for Pointer */
243         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
244                                          * or array
245                                          */
246 };
247
248 #define MAX_RESOLVE_DEPTH 32
249
250 struct btf_sec_info {
251         u32 off;
252         u32 len;
253 };
254
255 struct btf_verifier_env {
256         struct btf *btf;
257         u8 *visit_states;
258         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259         struct bpf_verifier_log log;
260         u32 log_type_id;
261         u32 top_stack;
262         enum verifier_phase phase;
263         enum resolve_mode resolve_mode;
264 };
265
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267         [BTF_KIND_UNKN]         = "UNKNOWN",
268         [BTF_KIND_INT]          = "INT",
269         [BTF_KIND_PTR]          = "PTR",
270         [BTF_KIND_ARRAY]        = "ARRAY",
271         [BTF_KIND_STRUCT]       = "STRUCT",
272         [BTF_KIND_UNION]        = "UNION",
273         [BTF_KIND_ENUM]         = "ENUM",
274         [BTF_KIND_FWD]          = "FWD",
275         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
276         [BTF_KIND_VOLATILE]     = "VOLATILE",
277         [BTF_KIND_CONST]        = "CONST",
278         [BTF_KIND_RESTRICT]     = "RESTRICT",
279         [BTF_KIND_FUNC]         = "FUNC",
280         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
281         [BTF_KIND_VAR]          = "VAR",
282         [BTF_KIND_DATASEC]      = "DATASEC",
283 };
284
285 static const char *btf_type_str(const struct btf_type *t)
286 {
287         return btf_kind_str[BTF_INFO_KIND(t->info)];
288 }
289
290 /* Chunk size we use in safe copy of data to be shown. */
291 #define BTF_SHOW_OBJ_SAFE_SIZE          32
292
293 /*
294  * This is the maximum size of a base type value (equivalent to a
295  * 128-bit int); if we are at the end of our safe buffer and have
296  * less than 16 bytes space we can't be assured of being able
297  * to copy the next type safely, so in such cases we will initiate
298  * a new copy.
299  */
300 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE     16
301
302 /* Type name size */
303 #define BTF_SHOW_NAME_SIZE              80
304
305 /*
306  * Common data to all BTF show operations. Private show functions can add
307  * their own data to a structure containing a struct btf_show and consult it
308  * in the show callback.  See btf_type_show() below.
309  *
310  * One challenge with showing nested data is we want to skip 0-valued
311  * data, but in order to figure out whether a nested object is all zeros
312  * we need to walk through it.  As a result, we need to make two passes
313  * when handling structs, unions and arrays; the first path simply looks
314  * for nonzero data, while the second actually does the display.  The first
315  * pass is signalled by show->state.depth_check being set, and if we
316  * encounter a non-zero value we set show->state.depth_to_show to
317  * the depth at which we encountered it.  When we have completed the
318  * first pass, we will know if anything needs to be displayed if
319  * depth_to_show > depth.  See btf_[struct,array]_show() for the
320  * implementation of this.
321  *
322  * Another problem is we want to ensure the data for display is safe to
323  * access.  To support this, the anonymous "struct {} obj" tracks the data
324  * object and our safe copy of it.  We copy portions of the data needed
325  * to the object "copy" buffer, but because its size is limited to
326  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
327  * traverse larger objects for display.
328  *
329  * The various data type show functions all start with a call to
330  * btf_show_start_type() which returns a pointer to the safe copy
331  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
332  * raw data itself).  btf_show_obj_safe() is responsible for
333  * using copy_from_kernel_nofault() to update the safe data if necessary
334  * as we traverse the object's data.  skbuff-like semantics are
335  * used:
336  *
337  * - obj.head points to the start of the toplevel object for display
338  * - obj.size is the size of the toplevel object
339  * - obj.data points to the current point in the original data at
340  *   which our safe data starts.  obj.data will advance as we copy
341  *   portions of the data.
342  *
343  * In most cases a single copy will suffice, but larger data structures
344  * such as "struct task_struct" will require many copies.  The logic in
345  * btf_show_obj_safe() handles the logic that determines if a new
346  * copy_from_kernel_nofault() is needed.
347  */
348 struct btf_show {
349         u64 flags;
350         void *target;   /* target of show operation (seq file, buffer) */
351         void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
352         const struct btf *btf;
353         /* below are used during iteration */
354         struct {
355                 u8 depth;
356                 u8 depth_to_show;
357                 u8 depth_check;
358                 u8 array_member:1,
359                    array_terminated:1;
360                 u16 array_encoding;
361                 u32 type_id;
362                 int status;                     /* non-zero for error */
363                 const struct btf_type *type;
364                 const struct btf_member *member;
365                 char name[BTF_SHOW_NAME_SIZE];  /* space for member name/type */
366         } state;
367         struct {
368                 u32 size;
369                 void *head;
370                 void *data;
371                 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
372         } obj;
373 };
374
375 struct btf_kind_operations {
376         s32 (*check_meta)(struct btf_verifier_env *env,
377                           const struct btf_type *t,
378                           u32 meta_left);
379         int (*resolve)(struct btf_verifier_env *env,
380                        const struct resolve_vertex *v);
381         int (*check_member)(struct btf_verifier_env *env,
382                             const struct btf_type *struct_type,
383                             const struct btf_member *member,
384                             const struct btf_type *member_type);
385         int (*check_kflag_member)(struct btf_verifier_env *env,
386                                   const struct btf_type *struct_type,
387                                   const struct btf_member *member,
388                                   const struct btf_type *member_type);
389         void (*log_details)(struct btf_verifier_env *env,
390                             const struct btf_type *t);
391         void (*show)(const struct btf *btf, const struct btf_type *t,
392                          u32 type_id, void *data, u8 bits_offsets,
393                          struct btf_show *show);
394 };
395
396 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
397 static struct btf_type btf_void;
398
399 static int btf_resolve(struct btf_verifier_env *env,
400                        const struct btf_type *t, u32 type_id);
401
402 static bool btf_type_is_modifier(const struct btf_type *t)
403 {
404         /* Some of them is not strictly a C modifier
405          * but they are grouped into the same bucket
406          * for BTF concern:
407          *   A type (t) that refers to another
408          *   type through t->type AND its size cannot
409          *   be determined without following the t->type.
410          *
411          * ptr does not fall into this bucket
412          * because its size is always sizeof(void *).
413          */
414         switch (BTF_INFO_KIND(t->info)) {
415         case BTF_KIND_TYPEDEF:
416         case BTF_KIND_VOLATILE:
417         case BTF_KIND_CONST:
418         case BTF_KIND_RESTRICT:
419                 return true;
420         }
421
422         return false;
423 }
424
425 bool btf_type_is_void(const struct btf_type *t)
426 {
427         return t == &btf_void;
428 }
429
430 static bool btf_type_is_fwd(const struct btf_type *t)
431 {
432         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
433 }
434
435 static bool btf_type_nosize(const struct btf_type *t)
436 {
437         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
438                btf_type_is_func(t) || btf_type_is_func_proto(t);
439 }
440
441 static bool btf_type_nosize_or_null(const struct btf_type *t)
442 {
443         return !t || btf_type_nosize(t);
444 }
445
446 static bool __btf_type_is_struct(const struct btf_type *t)
447 {
448         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
449 }
450
451 static bool btf_type_is_array(const struct btf_type *t)
452 {
453         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
454 }
455
456 static bool btf_type_is_datasec(const struct btf_type *t)
457 {
458         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
459 }
460
461 u32 btf_nr_types(const struct btf *btf)
462 {
463         u32 total = 0;
464
465         while (btf) {
466                 total += btf->nr_types;
467                 btf = btf->base_btf;
468         }
469
470         return total;
471 }
472
473 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
474 {
475         const struct btf_type *t;
476         const char *tname;
477         u32 i, total;
478
479         total = btf_nr_types(btf);
480         for (i = 1; i < total; i++) {
481                 t = btf_type_by_id(btf, i);
482                 if (BTF_INFO_KIND(t->info) != kind)
483                         continue;
484
485                 tname = btf_name_by_offset(btf, t->name_off);
486                 if (!strcmp(tname, name))
487                         return i;
488         }
489
490         return -ENOENT;
491 }
492
493 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
494                                                u32 id, u32 *res_id)
495 {
496         const struct btf_type *t = btf_type_by_id(btf, id);
497
498         while (btf_type_is_modifier(t)) {
499                 id = t->type;
500                 t = btf_type_by_id(btf, t->type);
501         }
502
503         if (res_id)
504                 *res_id = id;
505
506         return t;
507 }
508
509 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
510                                             u32 id, u32 *res_id)
511 {
512         const struct btf_type *t;
513
514         t = btf_type_skip_modifiers(btf, id, NULL);
515         if (!btf_type_is_ptr(t))
516                 return NULL;
517
518         return btf_type_skip_modifiers(btf, t->type, res_id);
519 }
520
521 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
522                                                  u32 id, u32 *res_id)
523 {
524         const struct btf_type *ptype;
525
526         ptype = btf_type_resolve_ptr(btf, id, res_id);
527         if (ptype && btf_type_is_func_proto(ptype))
528                 return ptype;
529
530         return NULL;
531 }
532
533 /* Types that act only as a source, not sink or intermediate
534  * type when resolving.
535  */
536 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
537 {
538         return btf_type_is_var(t) ||
539                btf_type_is_datasec(t);
540 }
541
542 /* What types need to be resolved?
543  *
544  * btf_type_is_modifier() is an obvious one.
545  *
546  * btf_type_is_struct() because its member refers to
547  * another type (through member->type).
548  *
549  * btf_type_is_var() because the variable refers to
550  * another type. btf_type_is_datasec() holds multiple
551  * btf_type_is_var() types that need resolving.
552  *
553  * btf_type_is_array() because its element (array->type)
554  * refers to another type.  Array can be thought of a
555  * special case of struct while array just has the same
556  * member-type repeated by array->nelems of times.
557  */
558 static bool btf_type_needs_resolve(const struct btf_type *t)
559 {
560         return btf_type_is_modifier(t) ||
561                btf_type_is_ptr(t) ||
562                btf_type_is_struct(t) ||
563                btf_type_is_array(t) ||
564                btf_type_is_var(t) ||
565                btf_type_is_datasec(t);
566 }
567
568 /* t->size can be used */
569 static bool btf_type_has_size(const struct btf_type *t)
570 {
571         switch (BTF_INFO_KIND(t->info)) {
572         case BTF_KIND_INT:
573         case BTF_KIND_STRUCT:
574         case BTF_KIND_UNION:
575         case BTF_KIND_ENUM:
576         case BTF_KIND_DATASEC:
577                 return true;
578         }
579
580         return false;
581 }
582
583 static const char *btf_int_encoding_str(u8 encoding)
584 {
585         if (encoding == 0)
586                 return "(none)";
587         else if (encoding == BTF_INT_SIGNED)
588                 return "SIGNED";
589         else if (encoding == BTF_INT_CHAR)
590                 return "CHAR";
591         else if (encoding == BTF_INT_BOOL)
592                 return "BOOL";
593         else
594                 return "UNKN";
595 }
596
597 static u32 btf_type_int(const struct btf_type *t)
598 {
599         return *(u32 *)(t + 1);
600 }
601
602 static const struct btf_array *btf_type_array(const struct btf_type *t)
603 {
604         return (const struct btf_array *)(t + 1);
605 }
606
607 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
608 {
609         return (const struct btf_enum *)(t + 1);
610 }
611
612 static const struct btf_var *btf_type_var(const struct btf_type *t)
613 {
614         return (const struct btf_var *)(t + 1);
615 }
616
617 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
618 {
619         return kind_ops[BTF_INFO_KIND(t->info)];
620 }
621
622 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
623 {
624         if (!BTF_STR_OFFSET_VALID(offset))
625                 return false;
626
627         while (offset < btf->start_str_off)
628                 btf = btf->base_btf;
629
630         offset -= btf->start_str_off;
631         return offset < btf->hdr.str_len;
632 }
633
634 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
635 {
636         if ((first ? !isalpha(c) :
637                      !isalnum(c)) &&
638             c != '_' &&
639             ((c == '.' && !dot_ok) ||
640               c != '.'))
641                 return false;
642         return true;
643 }
644
645 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
646 {
647         while (offset < btf->start_str_off)
648                 btf = btf->base_btf;
649
650         offset -= btf->start_str_off;
651         if (offset < btf->hdr.str_len)
652                 return &btf->strings[offset];
653
654         return NULL;
655 }
656
657 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
658 {
659         /* offset must be valid */
660         const char *src = btf_str_by_offset(btf, offset);
661         const char *src_limit;
662
663         if (!__btf_name_char_ok(*src, true, dot_ok))
664                 return false;
665
666         /* set a limit on identifier length */
667         src_limit = src + KSYM_NAME_LEN;
668         src++;
669         while (*src && src < src_limit) {
670                 if (!__btf_name_char_ok(*src, false, dot_ok))
671                         return false;
672                 src++;
673         }
674
675         return !*src;
676 }
677
678 /* Only C-style identifier is permitted. This can be relaxed if
679  * necessary.
680  */
681 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
682 {
683         return __btf_name_valid(btf, offset, false);
684 }
685
686 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
687 {
688         return __btf_name_valid(btf, offset, true);
689 }
690
691 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
692 {
693         const char *name;
694
695         if (!offset)
696                 return "(anon)";
697
698         name = btf_str_by_offset(btf, offset);
699         return name ?: "(invalid-name-offset)";
700 }
701
702 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
703 {
704         return btf_str_by_offset(btf, offset);
705 }
706
707 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
708 {
709         while (type_id < btf->start_id)
710                 btf = btf->base_btf;
711
712         type_id -= btf->start_id;
713         if (type_id >= btf->nr_types)
714                 return NULL;
715         return btf->types[type_id];
716 }
717
718 /*
719  * Regular int is not a bit field and it must be either
720  * u8/u16/u32/u64 or __int128.
721  */
722 static bool btf_type_int_is_regular(const struct btf_type *t)
723 {
724         u8 nr_bits, nr_bytes;
725         u32 int_data;
726
727         int_data = btf_type_int(t);
728         nr_bits = BTF_INT_BITS(int_data);
729         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
730         if (BITS_PER_BYTE_MASKED(nr_bits) ||
731             BTF_INT_OFFSET(int_data) ||
732             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
733              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
734              nr_bytes != (2 * sizeof(u64)))) {
735                 return false;
736         }
737
738         return true;
739 }
740
741 /*
742  * Check that given struct member is a regular int with expected
743  * offset and size.
744  */
745 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
746                            const struct btf_member *m,
747                            u32 expected_offset, u32 expected_size)
748 {
749         const struct btf_type *t;
750         u32 id, int_data;
751         u8 nr_bits;
752
753         id = m->type;
754         t = btf_type_id_size(btf, &id, NULL);
755         if (!t || !btf_type_is_int(t))
756                 return false;
757
758         int_data = btf_type_int(t);
759         nr_bits = BTF_INT_BITS(int_data);
760         if (btf_type_kflag(s)) {
761                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
762                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
763
764                 /* if kflag set, int should be a regular int and
765                  * bit offset should be at byte boundary.
766                  */
767                 return !bitfield_size &&
768                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
769                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
770         }
771
772         if (BTF_INT_OFFSET(int_data) ||
773             BITS_PER_BYTE_MASKED(m->offset) ||
774             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
775             BITS_PER_BYTE_MASKED(nr_bits) ||
776             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
777                 return false;
778
779         return true;
780 }
781
782 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
783 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
784                                                        u32 id)
785 {
786         const struct btf_type *t = btf_type_by_id(btf, id);
787
788         while (btf_type_is_modifier(t) &&
789                BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
790                 id = t->type;
791                 t = btf_type_by_id(btf, t->type);
792         }
793
794         return t;
795 }
796
797 #define BTF_SHOW_MAX_ITER       10
798
799 #define BTF_KIND_BIT(kind)      (1ULL << kind)
800
801 /*
802  * Populate show->state.name with type name information.
803  * Format of type name is
804  *
805  * [.member_name = ] (type_name)
806  */
807 static const char *btf_show_name(struct btf_show *show)
808 {
809         /* BTF_MAX_ITER array suffixes "[]" */
810         const char *array_suffixes = "[][][][][][][][][][]";
811         const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
812         /* BTF_MAX_ITER pointer suffixes "*" */
813         const char *ptr_suffixes = "**********";
814         const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
815         const char *name = NULL, *prefix = "", *parens = "";
816         const struct btf_member *m = show->state.member;
817         const struct btf_type *t = show->state.type;
818         const struct btf_array *array;
819         u32 id = show->state.type_id;
820         const char *member = NULL;
821         bool show_member = false;
822         u64 kinds = 0;
823         int i;
824
825         show->state.name[0] = '\0';
826
827         /*
828          * Don't show type name if we're showing an array member;
829          * in that case we show the array type so don't need to repeat
830          * ourselves for each member.
831          */
832         if (show->state.array_member)
833                 return "";
834
835         /* Retrieve member name, if any. */
836         if (m) {
837                 member = btf_name_by_offset(show->btf, m->name_off);
838                 show_member = strlen(member) > 0;
839                 id = m->type;
840         }
841
842         /*
843          * Start with type_id, as we have resolved the struct btf_type *
844          * via btf_modifier_show() past the parent typedef to the child
845          * struct, int etc it is defined as.  In such cases, the type_id
846          * still represents the starting type while the struct btf_type *
847          * in our show->state points at the resolved type of the typedef.
848          */
849         t = btf_type_by_id(show->btf, id);
850         if (!t)
851                 return "";
852
853         /*
854          * The goal here is to build up the right number of pointer and
855          * array suffixes while ensuring the type name for a typedef
856          * is represented.  Along the way we accumulate a list of
857          * BTF kinds we have encountered, since these will inform later
858          * display; for example, pointer types will not require an
859          * opening "{" for struct, we will just display the pointer value.
860          *
861          * We also want to accumulate the right number of pointer or array
862          * indices in the format string while iterating until we get to
863          * the typedef/pointee/array member target type.
864          *
865          * We start by pointing at the end of pointer and array suffix
866          * strings; as we accumulate pointers and arrays we move the pointer
867          * or array string backwards so it will show the expected number of
868          * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
869          * and/or arrays and typedefs are supported as a precaution.
870          *
871          * We also want to get typedef name while proceeding to resolve
872          * type it points to so that we can add parentheses if it is a
873          * "typedef struct" etc.
874          */
875         for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
876
877                 switch (BTF_INFO_KIND(t->info)) {
878                 case BTF_KIND_TYPEDEF:
879                         if (!name)
880                                 name = btf_name_by_offset(show->btf,
881                                                                t->name_off);
882                         kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
883                         id = t->type;
884                         break;
885                 case BTF_KIND_ARRAY:
886                         kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
887                         parens = "[";
888                         if (!t)
889                                 return "";
890                         array = btf_type_array(t);
891                         if (array_suffix > array_suffixes)
892                                 array_suffix -= 2;
893                         id = array->type;
894                         break;
895                 case BTF_KIND_PTR:
896                         kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
897                         if (ptr_suffix > ptr_suffixes)
898                                 ptr_suffix -= 1;
899                         id = t->type;
900                         break;
901                 default:
902                         id = 0;
903                         break;
904                 }
905                 if (!id)
906                         break;
907                 t = btf_type_skip_qualifiers(show->btf, id);
908         }
909         /* We may not be able to represent this type; bail to be safe */
910         if (i == BTF_SHOW_MAX_ITER)
911                 return "";
912
913         if (!name)
914                 name = btf_name_by_offset(show->btf, t->name_off);
915
916         switch (BTF_INFO_KIND(t->info)) {
917         case BTF_KIND_STRUCT:
918         case BTF_KIND_UNION:
919                 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
920                          "struct" : "union";
921                 /* if it's an array of struct/union, parens is already set */
922                 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
923                         parens = "{";
924                 break;
925         case BTF_KIND_ENUM:
926                 prefix = "enum";
927                 break;
928         default:
929                 break;
930         }
931
932         /* pointer does not require parens */
933         if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
934                 parens = "";
935         /* typedef does not require struct/union/enum prefix */
936         if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
937                 prefix = "";
938
939         if (!name)
940                 name = "";
941
942         /* Even if we don't want type name info, we want parentheses etc */
943         if (show->flags & BTF_SHOW_NONAME)
944                 snprintf(show->state.name, sizeof(show->state.name), "%s",
945                          parens);
946         else
947                 snprintf(show->state.name, sizeof(show->state.name),
948                          "%s%s%s(%s%s%s%s%s%s)%s",
949                          /* first 3 strings comprise ".member = " */
950                          show_member ? "." : "",
951                          show_member ? member : "",
952                          show_member ? " = " : "",
953                          /* ...next is our prefix (struct, enum, etc) */
954                          prefix,
955                          strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
956                          /* ...this is the type name itself */
957                          name,
958                          /* ...suffixed by the appropriate '*', '[]' suffixes */
959                          strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
960                          array_suffix, parens);
961
962         return show->state.name;
963 }
964
965 static const char *__btf_show_indent(struct btf_show *show)
966 {
967         const char *indents = "                                ";
968         const char *indent = &indents[strlen(indents)];
969
970         if ((indent - show->state.depth) >= indents)
971                 return indent - show->state.depth;
972         return indents;
973 }
974
975 static const char *btf_show_indent(struct btf_show *show)
976 {
977         return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
978 }
979
980 static const char *btf_show_newline(struct btf_show *show)
981 {
982         return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
983 }
984
985 static const char *btf_show_delim(struct btf_show *show)
986 {
987         if (show->state.depth == 0)
988                 return "";
989
990         if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
991                 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
992                 return "|";
993
994         return ",";
995 }
996
997 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
998 {
999         va_list args;
1000
1001         if (!show->state.depth_check) {
1002                 va_start(args, fmt);
1003                 show->showfn(show, fmt, args);
1004                 va_end(args);
1005         }
1006 }
1007
1008 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1009  * format specifiers to the format specifier passed in; these do the work of
1010  * adding indentation, delimiters etc while the caller simply has to specify
1011  * the type value(s) in the format specifier + value(s).
1012  */
1013 #define btf_show_type_value(show, fmt, value)                                  \
1014         do {                                                                   \
1015                 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||           \
1016                     show->state.depth == 0) {                                  \
1017                         btf_show(show, "%s%s" fmt "%s%s",                      \
1018                                  btf_show_indent(show),                        \
1019                                  btf_show_name(show),                          \
1020                                  value, btf_show_delim(show),                  \
1021                                  btf_show_newline(show));                      \
1022                         if (show->state.depth > show->state.depth_to_show)     \
1023                                 show->state.depth_to_show = show->state.depth; \
1024                 }                                                              \
1025         } while (0)
1026
1027 #define btf_show_type_values(show, fmt, ...)                                   \
1028         do {                                                                   \
1029                 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1030                          btf_show_name(show),                                  \
1031                          __VA_ARGS__, btf_show_delim(show),                    \
1032                          btf_show_newline(show));                              \
1033                 if (show->state.depth > show->state.depth_to_show)             \
1034                         show->state.depth_to_show = show->state.depth;         \
1035         } while (0)
1036
1037 /* How much is left to copy to safe buffer after @data? */
1038 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1039 {
1040         return show->obj.head + show->obj.size - data;
1041 }
1042
1043 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1044 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1045 {
1046         return data >= show->obj.data &&
1047                (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1048 }
1049
1050 /*
1051  * If object pointed to by @data of @size falls within our safe buffer, return
1052  * the equivalent pointer to the same safe data.  Assumes
1053  * copy_from_kernel_nofault() has already happened and our safe buffer is
1054  * populated.
1055  */
1056 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1057 {
1058         if (btf_show_obj_is_safe(show, data, size))
1059                 return show->obj.safe + (data - show->obj.data);
1060         return NULL;
1061 }
1062
1063 /*
1064  * Return a safe-to-access version of data pointed to by @data.
1065  * We do this by copying the relevant amount of information
1066  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1067  *
1068  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1069  * safe copy is needed.
1070  *
1071  * Otherwise we need to determine if we have the required amount
1072  * of data (determined by the @data pointer and the size of the
1073  * largest base type we can encounter (represented by
1074  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1075  * that we will be able to print some of the current object,
1076  * and if more is needed a copy will be triggered.
1077  * Some objects such as structs will not fit into the buffer;
1078  * in such cases additional copies when we iterate over their
1079  * members may be needed.
1080  *
1081  * btf_show_obj_safe() is used to return a safe buffer for
1082  * btf_show_start_type(); this ensures that as we recurse into
1083  * nested types we always have safe data for the given type.
1084  * This approach is somewhat wasteful; it's possible for example
1085  * that when iterating over a large union we'll end up copying the
1086  * same data repeatedly, but the goal is safety not performance.
1087  * We use stack data as opposed to per-CPU buffers because the
1088  * iteration over a type can take some time, and preemption handling
1089  * would greatly complicate use of the safe buffer.
1090  */
1091 static void *btf_show_obj_safe(struct btf_show *show,
1092                                const struct btf_type *t,
1093                                void *data)
1094 {
1095         const struct btf_type *rt;
1096         int size_left, size;
1097         void *safe = NULL;
1098
1099         if (show->flags & BTF_SHOW_UNSAFE)
1100                 return data;
1101
1102         rt = btf_resolve_size(show->btf, t, &size);
1103         if (IS_ERR(rt)) {
1104                 show->state.status = PTR_ERR(rt);
1105                 return NULL;
1106         }
1107
1108         /*
1109          * Is this toplevel object? If so, set total object size and
1110          * initialize pointers.  Otherwise check if we still fall within
1111          * our safe object data.
1112          */
1113         if (show->state.depth == 0) {
1114                 show->obj.size = size;
1115                 show->obj.head = data;
1116         } else {
1117                 /*
1118                  * If the size of the current object is > our remaining
1119                  * safe buffer we _may_ need to do a new copy.  However
1120                  * consider the case of a nested struct; it's size pushes
1121                  * us over the safe buffer limit, but showing any individual
1122                  * struct members does not.  In such cases, we don't need
1123                  * to initiate a fresh copy yet; however we definitely need
1124                  * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1125                  * in our buffer, regardless of the current object size.
1126                  * The logic here is that as we resolve types we will
1127                  * hit a base type at some point, and we need to be sure
1128                  * the next chunk of data is safely available to display
1129                  * that type info safely.  We cannot rely on the size of
1130                  * the current object here because it may be much larger
1131                  * than our current buffer (e.g. task_struct is 8k).
1132                  * All we want to do here is ensure that we can print the
1133                  * next basic type, which we can if either
1134                  * - the current type size is within the safe buffer; or
1135                  * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1136                  *   the safe buffer.
1137                  */
1138                 safe = __btf_show_obj_safe(show, data,
1139                                            min(size,
1140                                                BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1141         }
1142
1143         /*
1144          * We need a new copy to our safe object, either because we haven't
1145          * yet copied and are intializing safe data, or because the data
1146          * we want falls outside the boundaries of the safe object.
1147          */
1148         if (!safe) {
1149                 size_left = btf_show_obj_size_left(show, data);
1150                 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1151                         size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1152                 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1153                                                               data, size_left);
1154                 if (!show->state.status) {
1155                         show->obj.data = data;
1156                         safe = show->obj.safe;
1157                 }
1158         }
1159
1160         return safe;
1161 }
1162
1163 /*
1164  * Set the type we are starting to show and return a safe data pointer
1165  * to be used for showing the associated data.
1166  */
1167 static void *btf_show_start_type(struct btf_show *show,
1168                                  const struct btf_type *t,
1169                                  u32 type_id, void *data)
1170 {
1171         show->state.type = t;
1172         show->state.type_id = type_id;
1173         show->state.name[0] = '\0';
1174
1175         return btf_show_obj_safe(show, t, data);
1176 }
1177
1178 static void btf_show_end_type(struct btf_show *show)
1179 {
1180         show->state.type = NULL;
1181         show->state.type_id = 0;
1182         show->state.name[0] = '\0';
1183 }
1184
1185 static void *btf_show_start_aggr_type(struct btf_show *show,
1186                                       const struct btf_type *t,
1187                                       u32 type_id, void *data)
1188 {
1189         void *safe_data = btf_show_start_type(show, t, type_id, data);
1190
1191         if (!safe_data)
1192                 return safe_data;
1193
1194         btf_show(show, "%s%s%s", btf_show_indent(show),
1195                  btf_show_name(show),
1196                  btf_show_newline(show));
1197         show->state.depth++;
1198         return safe_data;
1199 }
1200
1201 static void btf_show_end_aggr_type(struct btf_show *show,
1202                                    const char *suffix)
1203 {
1204         show->state.depth--;
1205         btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1206                  btf_show_delim(show), btf_show_newline(show));
1207         btf_show_end_type(show);
1208 }
1209
1210 static void btf_show_start_member(struct btf_show *show,
1211                                   const struct btf_member *m)
1212 {
1213         show->state.member = m;
1214 }
1215
1216 static void btf_show_start_array_member(struct btf_show *show)
1217 {
1218         show->state.array_member = 1;
1219         btf_show_start_member(show, NULL);
1220 }
1221
1222 static void btf_show_end_member(struct btf_show *show)
1223 {
1224         show->state.member = NULL;
1225 }
1226
1227 static void btf_show_end_array_member(struct btf_show *show)
1228 {
1229         show->state.array_member = 0;
1230         btf_show_end_member(show);
1231 }
1232
1233 static void *btf_show_start_array_type(struct btf_show *show,
1234                                        const struct btf_type *t,
1235                                        u32 type_id,
1236                                        u16 array_encoding,
1237                                        void *data)
1238 {
1239         show->state.array_encoding = array_encoding;
1240         show->state.array_terminated = 0;
1241         return btf_show_start_aggr_type(show, t, type_id, data);
1242 }
1243
1244 static void btf_show_end_array_type(struct btf_show *show)
1245 {
1246         show->state.array_encoding = 0;
1247         show->state.array_terminated = 0;
1248         btf_show_end_aggr_type(show, "]");
1249 }
1250
1251 static void *btf_show_start_struct_type(struct btf_show *show,
1252                                         const struct btf_type *t,
1253                                         u32 type_id,
1254                                         void *data)
1255 {
1256         return btf_show_start_aggr_type(show, t, type_id, data);
1257 }
1258
1259 static void btf_show_end_struct_type(struct btf_show *show)
1260 {
1261         btf_show_end_aggr_type(show, "}");
1262 }
1263
1264 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1265                                               const char *fmt, ...)
1266 {
1267         va_list args;
1268
1269         va_start(args, fmt);
1270         bpf_verifier_vlog(log, fmt, args);
1271         va_end(args);
1272 }
1273
1274 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1275                                             const char *fmt, ...)
1276 {
1277         struct bpf_verifier_log *log = &env->log;
1278         va_list args;
1279
1280         if (!bpf_verifier_log_needed(log))
1281                 return;
1282
1283         va_start(args, fmt);
1284         bpf_verifier_vlog(log, fmt, args);
1285         va_end(args);
1286 }
1287
1288 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1289                                                    const struct btf_type *t,
1290                                                    bool log_details,
1291                                                    const char *fmt, ...)
1292 {
1293         struct bpf_verifier_log *log = &env->log;
1294         u8 kind = BTF_INFO_KIND(t->info);
1295         struct btf *btf = env->btf;
1296         va_list args;
1297
1298         if (!bpf_verifier_log_needed(log))
1299                 return;
1300
1301         /* btf verifier prints all types it is processing via
1302          * btf_verifier_log_type(..., fmt = NULL).
1303          * Skip those prints for in-kernel BTF verification.
1304          */
1305         if (log->level == BPF_LOG_KERNEL && !fmt)
1306                 return;
1307
1308         __btf_verifier_log(log, "[%u] %s %s%s",
1309                            env->log_type_id,
1310                            btf_kind_str[kind],
1311                            __btf_name_by_offset(btf, t->name_off),
1312                            log_details ? " " : "");
1313
1314         if (log_details)
1315                 btf_type_ops(t)->log_details(env, t);
1316
1317         if (fmt && *fmt) {
1318                 __btf_verifier_log(log, " ");
1319                 va_start(args, fmt);
1320                 bpf_verifier_vlog(log, fmt, args);
1321                 va_end(args);
1322         }
1323
1324         __btf_verifier_log(log, "\n");
1325 }
1326
1327 #define btf_verifier_log_type(env, t, ...) \
1328         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1329 #define btf_verifier_log_basic(env, t, ...) \
1330         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1331
1332 __printf(4, 5)
1333 static void btf_verifier_log_member(struct btf_verifier_env *env,
1334                                     const struct btf_type *struct_type,
1335                                     const struct btf_member *member,
1336                                     const char *fmt, ...)
1337 {
1338         struct bpf_verifier_log *log = &env->log;
1339         struct btf *btf = env->btf;
1340         va_list args;
1341
1342         if (!bpf_verifier_log_needed(log))
1343                 return;
1344
1345         if (log->level == BPF_LOG_KERNEL && !fmt)
1346                 return;
1347         /* The CHECK_META phase already did a btf dump.
1348          *
1349          * If member is logged again, it must hit an error in
1350          * parsing this member.  It is useful to print out which
1351          * struct this member belongs to.
1352          */
1353         if (env->phase != CHECK_META)
1354                 btf_verifier_log_type(env, struct_type, NULL);
1355
1356         if (btf_type_kflag(struct_type))
1357                 __btf_verifier_log(log,
1358                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1359                                    __btf_name_by_offset(btf, member->name_off),
1360                                    member->type,
1361                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
1362                                    BTF_MEMBER_BIT_OFFSET(member->offset));
1363         else
1364                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1365                                    __btf_name_by_offset(btf, member->name_off),
1366                                    member->type, member->offset);
1367
1368         if (fmt && *fmt) {
1369                 __btf_verifier_log(log, " ");
1370                 va_start(args, fmt);
1371                 bpf_verifier_vlog(log, fmt, args);
1372                 va_end(args);
1373         }
1374
1375         __btf_verifier_log(log, "\n");
1376 }
1377
1378 __printf(4, 5)
1379 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1380                                  const struct btf_type *datasec_type,
1381                                  const struct btf_var_secinfo *vsi,
1382                                  const char *fmt, ...)
1383 {
1384         struct bpf_verifier_log *log = &env->log;
1385         va_list args;
1386
1387         if (!bpf_verifier_log_needed(log))
1388                 return;
1389         if (log->level == BPF_LOG_KERNEL && !fmt)
1390                 return;
1391         if (env->phase != CHECK_META)
1392                 btf_verifier_log_type(env, datasec_type, NULL);
1393
1394         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1395                            vsi->type, vsi->offset, vsi->size);
1396         if (fmt && *fmt) {
1397                 __btf_verifier_log(log, " ");
1398                 va_start(args, fmt);
1399                 bpf_verifier_vlog(log, fmt, args);
1400                 va_end(args);
1401         }
1402
1403         __btf_verifier_log(log, "\n");
1404 }
1405
1406 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1407                                  u32 btf_data_size)
1408 {
1409         struct bpf_verifier_log *log = &env->log;
1410         const struct btf *btf = env->btf;
1411         const struct btf_header *hdr;
1412
1413         if (!bpf_verifier_log_needed(log))
1414                 return;
1415
1416         if (log->level == BPF_LOG_KERNEL)
1417                 return;
1418         hdr = &btf->hdr;
1419         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1420         __btf_verifier_log(log, "version: %u\n", hdr->version);
1421         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1422         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1423         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1424         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1425         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1426         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1427         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1428 }
1429
1430 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1431 {
1432         struct btf *btf = env->btf;
1433
1434         if (btf->types_size == btf->nr_types) {
1435                 /* Expand 'types' array */
1436
1437                 struct btf_type **new_types;
1438                 u32 expand_by, new_size;
1439
1440                 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1441                         btf_verifier_log(env, "Exceeded max num of types");
1442                         return -E2BIG;
1443                 }
1444
1445                 expand_by = max_t(u32, btf->types_size >> 2, 16);
1446                 new_size = min_t(u32, BTF_MAX_TYPE,
1447                                  btf->types_size + expand_by);
1448
1449                 new_types = kvcalloc(new_size, sizeof(*new_types),
1450                                      GFP_KERNEL | __GFP_NOWARN);
1451                 if (!new_types)
1452                         return -ENOMEM;
1453
1454                 if (btf->nr_types == 0) {
1455                         if (!btf->base_btf) {
1456                                 /* lazily init VOID type */
1457                                 new_types[0] = &btf_void;
1458                                 btf->nr_types++;
1459                         }
1460                 } else {
1461                         memcpy(new_types, btf->types,
1462                                sizeof(*btf->types) * btf->nr_types);
1463                 }
1464
1465                 kvfree(btf->types);
1466                 btf->types = new_types;
1467                 btf->types_size = new_size;
1468         }
1469
1470         btf->types[btf->nr_types++] = t;
1471
1472         return 0;
1473 }
1474
1475 static int btf_alloc_id(struct btf *btf)
1476 {
1477         int id;
1478
1479         idr_preload(GFP_KERNEL);
1480         spin_lock_bh(&btf_idr_lock);
1481         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1482         if (id > 0)
1483                 btf->id = id;
1484         spin_unlock_bh(&btf_idr_lock);
1485         idr_preload_end();
1486
1487         if (WARN_ON_ONCE(!id))
1488                 return -ENOSPC;
1489
1490         return id > 0 ? 0 : id;
1491 }
1492
1493 static void btf_free_id(struct btf *btf)
1494 {
1495         unsigned long flags;
1496
1497         /*
1498          * In map-in-map, calling map_delete_elem() on outer
1499          * map will call bpf_map_put on the inner map.
1500          * It will then eventually call btf_free_id()
1501          * on the inner map.  Some of the map_delete_elem()
1502          * implementation may have irq disabled, so
1503          * we need to use the _irqsave() version instead
1504          * of the _bh() version.
1505          */
1506         spin_lock_irqsave(&btf_idr_lock, flags);
1507         idr_remove(&btf_idr, btf->id);
1508         spin_unlock_irqrestore(&btf_idr_lock, flags);
1509 }
1510
1511 static void btf_free(struct btf *btf)
1512 {
1513         kvfree(btf->types);
1514         kvfree(btf->resolved_sizes);
1515         kvfree(btf->resolved_ids);
1516         kvfree(btf->data);
1517         kfree(btf);
1518 }
1519
1520 static void btf_free_rcu(struct rcu_head *rcu)
1521 {
1522         struct btf *btf = container_of(rcu, struct btf, rcu);
1523
1524         btf_free(btf);
1525 }
1526
1527 void btf_get(struct btf *btf)
1528 {
1529         refcount_inc(&btf->refcnt);
1530 }
1531
1532 void btf_put(struct btf *btf)
1533 {
1534         if (btf && refcount_dec_and_test(&btf->refcnt)) {
1535                 btf_free_id(btf);
1536                 call_rcu(&btf->rcu, btf_free_rcu);
1537         }
1538 }
1539
1540 static int env_resolve_init(struct btf_verifier_env *env)
1541 {
1542         struct btf *btf = env->btf;
1543         u32 nr_types = btf->nr_types;
1544         u32 *resolved_sizes = NULL;
1545         u32 *resolved_ids = NULL;
1546         u8 *visit_states = NULL;
1547
1548         resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1549                                   GFP_KERNEL | __GFP_NOWARN);
1550         if (!resolved_sizes)
1551                 goto nomem;
1552
1553         resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1554                                 GFP_KERNEL | __GFP_NOWARN);
1555         if (!resolved_ids)
1556                 goto nomem;
1557
1558         visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1559                                 GFP_KERNEL | __GFP_NOWARN);
1560         if (!visit_states)
1561                 goto nomem;
1562
1563         btf->resolved_sizes = resolved_sizes;
1564         btf->resolved_ids = resolved_ids;
1565         env->visit_states = visit_states;
1566
1567         return 0;
1568
1569 nomem:
1570         kvfree(resolved_sizes);
1571         kvfree(resolved_ids);
1572         kvfree(visit_states);
1573         return -ENOMEM;
1574 }
1575
1576 static void btf_verifier_env_free(struct btf_verifier_env *env)
1577 {
1578         kvfree(env->visit_states);
1579         kfree(env);
1580 }
1581
1582 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1583                                      const struct btf_type *next_type)
1584 {
1585         switch (env->resolve_mode) {
1586         case RESOLVE_TBD:
1587                 /* int, enum or void is a sink */
1588                 return !btf_type_needs_resolve(next_type);
1589         case RESOLVE_PTR:
1590                 /* int, enum, void, struct, array, func or func_proto is a sink
1591                  * for ptr
1592                  */
1593                 return !btf_type_is_modifier(next_type) &&
1594                         !btf_type_is_ptr(next_type);
1595         case RESOLVE_STRUCT_OR_ARRAY:
1596                 /* int, enum, void, ptr, func or func_proto is a sink
1597                  * for struct and array
1598                  */
1599                 return !btf_type_is_modifier(next_type) &&
1600                         !btf_type_is_array(next_type) &&
1601                         !btf_type_is_struct(next_type);
1602         default:
1603                 BUG();
1604         }
1605 }
1606
1607 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1608                                  u32 type_id)
1609 {
1610         /* base BTF types should be resolved by now */
1611         if (type_id < env->btf->start_id)
1612                 return true;
1613
1614         return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1615 }
1616
1617 static int env_stack_push(struct btf_verifier_env *env,
1618                           const struct btf_type *t, u32 type_id)
1619 {
1620         const struct btf *btf = env->btf;
1621         struct resolve_vertex *v;
1622
1623         if (env->top_stack == MAX_RESOLVE_DEPTH)
1624                 return -E2BIG;
1625
1626         if (type_id < btf->start_id
1627             || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1628                 return -EEXIST;
1629
1630         env->visit_states[type_id - btf->start_id] = VISITED;
1631
1632         v = &env->stack[env->top_stack++];
1633         v->t = t;
1634         v->type_id = type_id;
1635         v->next_member = 0;
1636
1637         if (env->resolve_mode == RESOLVE_TBD) {
1638                 if (btf_type_is_ptr(t))
1639                         env->resolve_mode = RESOLVE_PTR;
1640                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1641                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1642         }
1643
1644         return 0;
1645 }
1646
1647 static void env_stack_set_next_member(struct btf_verifier_env *env,
1648                                       u16 next_member)
1649 {
1650         env->stack[env->top_stack - 1].next_member = next_member;
1651 }
1652
1653 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1654                                    u32 resolved_type_id,
1655                                    u32 resolved_size)
1656 {
1657         u32 type_id = env->stack[--(env->top_stack)].type_id;
1658         struct btf *btf = env->btf;
1659
1660         type_id -= btf->start_id; /* adjust to local type id */
1661         btf->resolved_sizes[type_id] = resolved_size;
1662         btf->resolved_ids[type_id] = resolved_type_id;
1663         env->visit_states[type_id] = RESOLVED;
1664 }
1665
1666 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1667 {
1668         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1669 }
1670
1671 /* Resolve the size of a passed-in "type"
1672  *
1673  * type: is an array (e.g. u32 array[x][y])
1674  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1675  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1676  *             corresponds to the return type.
1677  * *elem_type: u32
1678  * *elem_id: id of u32
1679  * *total_nelems: (x * y).  Hence, individual elem size is
1680  *                (*type_size / *total_nelems)
1681  * *type_id: id of type if it's changed within the function, 0 if not
1682  *
1683  * type: is not an array (e.g. const struct X)
1684  * return type: type "struct X"
1685  * *type_size: sizeof(struct X)
1686  * *elem_type: same as return type ("struct X")
1687  * *elem_id: 0
1688  * *total_nelems: 1
1689  * *type_id: id of type if it's changed within the function, 0 if not
1690  */
1691 static const struct btf_type *
1692 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1693                    u32 *type_size, const struct btf_type **elem_type,
1694                    u32 *elem_id, u32 *total_nelems, u32 *type_id)
1695 {
1696         const struct btf_type *array_type = NULL;
1697         const struct btf_array *array = NULL;
1698         u32 i, size, nelems = 1, id = 0;
1699
1700         for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1701                 switch (BTF_INFO_KIND(type->info)) {
1702                 /* type->size can be used */
1703                 case BTF_KIND_INT:
1704                 case BTF_KIND_STRUCT:
1705                 case BTF_KIND_UNION:
1706                 case BTF_KIND_ENUM:
1707                         size = type->size;
1708                         goto resolved;
1709
1710                 case BTF_KIND_PTR:
1711                         size = sizeof(void *);
1712                         goto resolved;
1713
1714                 /* Modifiers */
1715                 case BTF_KIND_TYPEDEF:
1716                 case BTF_KIND_VOLATILE:
1717                 case BTF_KIND_CONST:
1718                 case BTF_KIND_RESTRICT:
1719                         id = type->type;
1720                         type = btf_type_by_id(btf, type->type);
1721                         break;
1722
1723                 case BTF_KIND_ARRAY:
1724                         if (!array_type)
1725                                 array_type = type;
1726                         array = btf_type_array(type);
1727                         if (nelems && array->nelems > U32_MAX / nelems)
1728                                 return ERR_PTR(-EINVAL);
1729                         nelems *= array->nelems;
1730                         type = btf_type_by_id(btf, array->type);
1731                         break;
1732
1733                 /* type without size */
1734                 default:
1735                         return ERR_PTR(-EINVAL);
1736                 }
1737         }
1738
1739         return ERR_PTR(-EINVAL);
1740
1741 resolved:
1742         if (nelems && size > U32_MAX / nelems)
1743                 return ERR_PTR(-EINVAL);
1744
1745         *type_size = nelems * size;
1746         if (total_nelems)
1747                 *total_nelems = nelems;
1748         if (elem_type)
1749                 *elem_type = type;
1750         if (elem_id)
1751                 *elem_id = array ? array->type : 0;
1752         if (type_id && id)
1753                 *type_id = id;
1754
1755         return array_type ? : type;
1756 }
1757
1758 const struct btf_type *
1759 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1760                  u32 *type_size)
1761 {
1762         return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1763 }
1764
1765 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1766 {
1767         while (type_id < btf->start_id)
1768                 btf = btf->base_btf;
1769
1770         return btf->resolved_ids[type_id - btf->start_id];
1771 }
1772
1773 /* The input param "type_id" must point to a needs_resolve type */
1774 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1775                                                   u32 *type_id)
1776 {
1777         *type_id = btf_resolved_type_id(btf, *type_id);
1778         return btf_type_by_id(btf, *type_id);
1779 }
1780
1781 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1782 {
1783         while (type_id < btf->start_id)
1784                 btf = btf->base_btf;
1785
1786         return btf->resolved_sizes[type_id - btf->start_id];
1787 }
1788
1789 const struct btf_type *btf_type_id_size(const struct btf *btf,
1790                                         u32 *type_id, u32 *ret_size)
1791 {
1792         const struct btf_type *size_type;
1793         u32 size_type_id = *type_id;
1794         u32 size = 0;
1795
1796         size_type = btf_type_by_id(btf, size_type_id);
1797         if (btf_type_nosize_or_null(size_type))
1798                 return NULL;
1799
1800         if (btf_type_has_size(size_type)) {
1801                 size = size_type->size;
1802         } else if (btf_type_is_array(size_type)) {
1803                 size = btf_resolved_type_size(btf, size_type_id);
1804         } else if (btf_type_is_ptr(size_type)) {
1805                 size = sizeof(void *);
1806         } else {
1807                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1808                                  !btf_type_is_var(size_type)))
1809                         return NULL;
1810
1811                 size_type_id = btf_resolved_type_id(btf, size_type_id);
1812                 size_type = btf_type_by_id(btf, size_type_id);
1813                 if (btf_type_nosize_or_null(size_type))
1814                         return NULL;
1815                 else if (btf_type_has_size(size_type))
1816                         size = size_type->size;
1817                 else if (btf_type_is_array(size_type))
1818                         size = btf_resolved_type_size(btf, size_type_id);
1819                 else if (btf_type_is_ptr(size_type))
1820                         size = sizeof(void *);
1821                 else
1822                         return NULL;
1823         }
1824
1825         *type_id = size_type_id;
1826         if (ret_size)
1827                 *ret_size = size;
1828
1829         return size_type;
1830 }
1831
1832 static int btf_df_check_member(struct btf_verifier_env *env,
1833                                const struct btf_type *struct_type,
1834                                const struct btf_member *member,
1835                                const struct btf_type *member_type)
1836 {
1837         btf_verifier_log_basic(env, struct_type,
1838                                "Unsupported check_member");
1839         return -EINVAL;
1840 }
1841
1842 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1843                                      const struct btf_type *struct_type,
1844                                      const struct btf_member *member,
1845                                      const struct btf_type *member_type)
1846 {
1847         btf_verifier_log_basic(env, struct_type,
1848                                "Unsupported check_kflag_member");
1849         return -EINVAL;
1850 }
1851
1852 /* Used for ptr, array and struct/union type members.
1853  * int, enum and modifier types have their specific callback functions.
1854  */
1855 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1856                                           const struct btf_type *struct_type,
1857                                           const struct btf_member *member,
1858                                           const struct btf_type *member_type)
1859 {
1860         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1861                 btf_verifier_log_member(env, struct_type, member,
1862                                         "Invalid member bitfield_size");
1863                 return -EINVAL;
1864         }
1865
1866         /* bitfield size is 0, so member->offset represents bit offset only.
1867          * It is safe to call non kflag check_member variants.
1868          */
1869         return btf_type_ops(member_type)->check_member(env, struct_type,
1870                                                        member,
1871                                                        member_type);
1872 }
1873
1874 static int btf_df_resolve(struct btf_verifier_env *env,
1875                           const struct resolve_vertex *v)
1876 {
1877         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1878         return -EINVAL;
1879 }
1880
1881 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1882                         u32 type_id, void *data, u8 bits_offsets,
1883                         struct btf_show *show)
1884 {
1885         btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1886 }
1887
1888 static int btf_int_check_member(struct btf_verifier_env *env,
1889                                 const struct btf_type *struct_type,
1890                                 const struct btf_member *member,
1891                                 const struct btf_type *member_type)
1892 {
1893         u32 int_data = btf_type_int(member_type);
1894         u32 struct_bits_off = member->offset;
1895         u32 struct_size = struct_type->size;
1896         u32 nr_copy_bits;
1897         u32 bytes_offset;
1898
1899         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1900                 btf_verifier_log_member(env, struct_type, member,
1901                                         "bits_offset exceeds U32_MAX");
1902                 return -EINVAL;
1903         }
1904
1905         struct_bits_off += BTF_INT_OFFSET(int_data);
1906         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1907         nr_copy_bits = BTF_INT_BITS(int_data) +
1908                 BITS_PER_BYTE_MASKED(struct_bits_off);
1909
1910         if (nr_copy_bits > BITS_PER_U128) {
1911                 btf_verifier_log_member(env, struct_type, member,
1912                                         "nr_copy_bits exceeds 128");
1913                 return -EINVAL;
1914         }
1915
1916         if (struct_size < bytes_offset ||
1917             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1918                 btf_verifier_log_member(env, struct_type, member,
1919                                         "Member exceeds struct_size");
1920                 return -EINVAL;
1921         }
1922
1923         return 0;
1924 }
1925
1926 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1927                                       const struct btf_type *struct_type,
1928                                       const struct btf_member *member,
1929                                       const struct btf_type *member_type)
1930 {
1931         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1932         u32 int_data = btf_type_int(member_type);
1933         u32 struct_size = struct_type->size;
1934         u32 nr_copy_bits;
1935
1936         /* a regular int type is required for the kflag int member */
1937         if (!btf_type_int_is_regular(member_type)) {
1938                 btf_verifier_log_member(env, struct_type, member,
1939                                         "Invalid member base type");
1940                 return -EINVAL;
1941         }
1942
1943         /* check sanity of bitfield size */
1944         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1945         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1946         nr_int_data_bits = BTF_INT_BITS(int_data);
1947         if (!nr_bits) {
1948                 /* Not a bitfield member, member offset must be at byte
1949                  * boundary.
1950                  */
1951                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1952                         btf_verifier_log_member(env, struct_type, member,
1953                                                 "Invalid member offset");
1954                         return -EINVAL;
1955                 }
1956
1957                 nr_bits = nr_int_data_bits;
1958         } else if (nr_bits > nr_int_data_bits) {
1959                 btf_verifier_log_member(env, struct_type, member,
1960                                         "Invalid member bitfield_size");
1961                 return -EINVAL;
1962         }
1963
1964         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1965         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1966         if (nr_copy_bits > BITS_PER_U128) {
1967                 btf_verifier_log_member(env, struct_type, member,
1968                                         "nr_copy_bits exceeds 128");
1969                 return -EINVAL;
1970         }
1971
1972         if (struct_size < bytes_offset ||
1973             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1974                 btf_verifier_log_member(env, struct_type, member,
1975                                         "Member exceeds struct_size");
1976                 return -EINVAL;
1977         }
1978
1979         return 0;
1980 }
1981
1982 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1983                               const struct btf_type *t,
1984                               u32 meta_left)
1985 {
1986         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1987         u16 encoding;
1988
1989         if (meta_left < meta_needed) {
1990                 btf_verifier_log_basic(env, t,
1991                                        "meta_left:%u meta_needed:%u",
1992                                        meta_left, meta_needed);
1993                 return -EINVAL;
1994         }
1995
1996         if (btf_type_vlen(t)) {
1997                 btf_verifier_log_type(env, t, "vlen != 0");
1998                 return -EINVAL;
1999         }
2000
2001         if (btf_type_kflag(t)) {
2002                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2003                 return -EINVAL;
2004         }
2005
2006         int_data = btf_type_int(t);
2007         if (int_data & ~BTF_INT_MASK) {
2008                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2009                                        int_data);
2010                 return -EINVAL;
2011         }
2012
2013         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2014
2015         if (nr_bits > BITS_PER_U128) {
2016                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2017                                       BITS_PER_U128);
2018                 return -EINVAL;
2019         }
2020
2021         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2022                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2023                 return -EINVAL;
2024         }
2025
2026         /*
2027          * Only one of the encoding bits is allowed and it
2028          * should be sufficient for the pretty print purpose (i.e. decoding).
2029          * Multiple bits can be allowed later if it is found
2030          * to be insufficient.
2031          */
2032         encoding = BTF_INT_ENCODING(int_data);
2033         if (encoding &&
2034             encoding != BTF_INT_SIGNED &&
2035             encoding != BTF_INT_CHAR &&
2036             encoding != BTF_INT_BOOL) {
2037                 btf_verifier_log_type(env, t, "Unsupported encoding");
2038                 return -ENOTSUPP;
2039         }
2040
2041         btf_verifier_log_type(env, t, NULL);
2042
2043         return meta_needed;
2044 }
2045
2046 static void btf_int_log(struct btf_verifier_env *env,
2047                         const struct btf_type *t)
2048 {
2049         int int_data = btf_type_int(t);
2050
2051         btf_verifier_log(env,
2052                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2053                          t->size, BTF_INT_OFFSET(int_data),
2054                          BTF_INT_BITS(int_data),
2055                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2056 }
2057
2058 static void btf_int128_print(struct btf_show *show, void *data)
2059 {
2060         /* data points to a __int128 number.
2061          * Suppose
2062          *     int128_num = *(__int128 *)data;
2063          * The below formulas shows what upper_num and lower_num represents:
2064          *     upper_num = int128_num >> 64;
2065          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2066          */
2067         u64 upper_num, lower_num;
2068
2069 #ifdef __BIG_ENDIAN_BITFIELD
2070         upper_num = *(u64 *)data;
2071         lower_num = *(u64 *)(data + 8);
2072 #else
2073         upper_num = *(u64 *)(data + 8);
2074         lower_num = *(u64 *)data;
2075 #endif
2076         if (upper_num == 0)
2077                 btf_show_type_value(show, "0x%llx", lower_num);
2078         else
2079                 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2080                                      lower_num);
2081 }
2082
2083 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2084                              u16 right_shift_bits)
2085 {
2086         u64 upper_num, lower_num;
2087
2088 #ifdef __BIG_ENDIAN_BITFIELD
2089         upper_num = print_num[0];
2090         lower_num = print_num[1];
2091 #else
2092         upper_num = print_num[1];
2093         lower_num = print_num[0];
2094 #endif
2095
2096         /* shake out un-needed bits by shift/or operations */
2097         if (left_shift_bits >= 64) {
2098                 upper_num = lower_num << (left_shift_bits - 64);
2099                 lower_num = 0;
2100         } else {
2101                 upper_num = (upper_num << left_shift_bits) |
2102                             (lower_num >> (64 - left_shift_bits));
2103                 lower_num = lower_num << left_shift_bits;
2104         }
2105
2106         if (right_shift_bits >= 64) {
2107                 lower_num = upper_num >> (right_shift_bits - 64);
2108                 upper_num = 0;
2109         } else {
2110                 lower_num = (lower_num >> right_shift_bits) |
2111                             (upper_num << (64 - right_shift_bits));
2112                 upper_num = upper_num >> right_shift_bits;
2113         }
2114
2115 #ifdef __BIG_ENDIAN_BITFIELD
2116         print_num[0] = upper_num;
2117         print_num[1] = lower_num;
2118 #else
2119         print_num[0] = lower_num;
2120         print_num[1] = upper_num;
2121 #endif
2122 }
2123
2124 static void btf_bitfield_show(void *data, u8 bits_offset,
2125                               u8 nr_bits, struct btf_show *show)
2126 {
2127         u16 left_shift_bits, right_shift_bits;
2128         u8 nr_copy_bytes;
2129         u8 nr_copy_bits;
2130         u64 print_num[2] = {};
2131
2132         nr_copy_bits = nr_bits + bits_offset;
2133         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2134
2135         memcpy(print_num, data, nr_copy_bytes);
2136
2137 #ifdef __BIG_ENDIAN_BITFIELD
2138         left_shift_bits = bits_offset;
2139 #else
2140         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2141 #endif
2142         right_shift_bits = BITS_PER_U128 - nr_bits;
2143
2144         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2145         btf_int128_print(show, print_num);
2146 }
2147
2148
2149 static void btf_int_bits_show(const struct btf *btf,
2150                               const struct btf_type *t,
2151                               void *data, u8 bits_offset,
2152                               struct btf_show *show)
2153 {
2154         u32 int_data = btf_type_int(t);
2155         u8 nr_bits = BTF_INT_BITS(int_data);
2156         u8 total_bits_offset;
2157
2158         /*
2159          * bits_offset is at most 7.
2160          * BTF_INT_OFFSET() cannot exceed 128 bits.
2161          */
2162         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2163         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2164         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2165         btf_bitfield_show(data, bits_offset, nr_bits, show);
2166 }
2167
2168 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2169                          u32 type_id, void *data, u8 bits_offset,
2170                          struct btf_show *show)
2171 {
2172         u32 int_data = btf_type_int(t);
2173         u8 encoding = BTF_INT_ENCODING(int_data);
2174         bool sign = encoding & BTF_INT_SIGNED;
2175         u8 nr_bits = BTF_INT_BITS(int_data);
2176         void *safe_data;
2177
2178         safe_data = btf_show_start_type(show, t, type_id, data);
2179         if (!safe_data)
2180                 return;
2181
2182         if (bits_offset || BTF_INT_OFFSET(int_data) ||
2183             BITS_PER_BYTE_MASKED(nr_bits)) {
2184                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2185                 goto out;
2186         }
2187
2188         switch (nr_bits) {
2189         case 128:
2190                 btf_int128_print(show, safe_data);
2191                 break;
2192         case 64:
2193                 if (sign)
2194                         btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2195                 else
2196                         btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2197                 break;
2198         case 32:
2199                 if (sign)
2200                         btf_show_type_value(show, "%d", *(s32 *)safe_data);
2201                 else
2202                         btf_show_type_value(show, "%u", *(u32 *)safe_data);
2203                 break;
2204         case 16:
2205                 if (sign)
2206                         btf_show_type_value(show, "%d", *(s16 *)safe_data);
2207                 else
2208                         btf_show_type_value(show, "%u", *(u16 *)safe_data);
2209                 break;
2210         case 8:
2211                 if (show->state.array_encoding == BTF_INT_CHAR) {
2212                         /* check for null terminator */
2213                         if (show->state.array_terminated)
2214                                 break;
2215                         if (*(char *)data == '\0') {
2216                                 show->state.array_terminated = 1;
2217                                 break;
2218                         }
2219                         if (isprint(*(char *)data)) {
2220                                 btf_show_type_value(show, "'%c'",
2221                                                     *(char *)safe_data);
2222                                 break;
2223                         }
2224                 }
2225                 if (sign)
2226                         btf_show_type_value(show, "%d", *(s8 *)safe_data);
2227                 else
2228                         btf_show_type_value(show, "%u", *(u8 *)safe_data);
2229                 break;
2230         default:
2231                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2232                 break;
2233         }
2234 out:
2235         btf_show_end_type(show);
2236 }
2237
2238 static const struct btf_kind_operations int_ops = {
2239         .check_meta = btf_int_check_meta,
2240         .resolve = btf_df_resolve,
2241         .check_member = btf_int_check_member,
2242         .check_kflag_member = btf_int_check_kflag_member,
2243         .log_details = btf_int_log,
2244         .show = btf_int_show,
2245 };
2246
2247 static int btf_modifier_check_member(struct btf_verifier_env *env,
2248                                      const struct btf_type *struct_type,
2249                                      const struct btf_member *member,
2250                                      const struct btf_type *member_type)
2251 {
2252         const struct btf_type *resolved_type;
2253         u32 resolved_type_id = member->type;
2254         struct btf_member resolved_member;
2255         struct btf *btf = env->btf;
2256
2257         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2258         if (!resolved_type) {
2259                 btf_verifier_log_member(env, struct_type, member,
2260                                         "Invalid member");
2261                 return -EINVAL;
2262         }
2263
2264         resolved_member = *member;
2265         resolved_member.type = resolved_type_id;
2266
2267         return btf_type_ops(resolved_type)->check_member(env, struct_type,
2268                                                          &resolved_member,
2269                                                          resolved_type);
2270 }
2271
2272 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2273                                            const struct btf_type *struct_type,
2274                                            const struct btf_member *member,
2275                                            const struct btf_type *member_type)
2276 {
2277         const struct btf_type *resolved_type;
2278         u32 resolved_type_id = member->type;
2279         struct btf_member resolved_member;
2280         struct btf *btf = env->btf;
2281
2282         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2283         if (!resolved_type) {
2284                 btf_verifier_log_member(env, struct_type, member,
2285                                         "Invalid member");
2286                 return -EINVAL;
2287         }
2288
2289         resolved_member = *member;
2290         resolved_member.type = resolved_type_id;
2291
2292         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2293                                                                &resolved_member,
2294                                                                resolved_type);
2295 }
2296
2297 static int btf_ptr_check_member(struct btf_verifier_env *env,
2298                                 const struct btf_type *struct_type,
2299                                 const struct btf_member *member,
2300                                 const struct btf_type *member_type)
2301 {
2302         u32 struct_size, struct_bits_off, bytes_offset;
2303
2304         struct_size = struct_type->size;
2305         struct_bits_off = member->offset;
2306         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2307
2308         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2309                 btf_verifier_log_member(env, struct_type, member,
2310                                         "Member is not byte aligned");
2311                 return -EINVAL;
2312         }
2313
2314         if (struct_size - bytes_offset < sizeof(void *)) {
2315                 btf_verifier_log_member(env, struct_type, member,
2316                                         "Member exceeds struct_size");
2317                 return -EINVAL;
2318         }
2319
2320         return 0;
2321 }
2322
2323 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2324                                    const struct btf_type *t,
2325                                    u32 meta_left)
2326 {
2327         if (btf_type_vlen(t)) {
2328                 btf_verifier_log_type(env, t, "vlen != 0");
2329                 return -EINVAL;
2330         }
2331
2332         if (btf_type_kflag(t)) {
2333                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2334                 return -EINVAL;
2335         }
2336
2337         if (!BTF_TYPE_ID_VALID(t->type)) {
2338                 btf_verifier_log_type(env, t, "Invalid type_id");
2339                 return -EINVAL;
2340         }
2341
2342         /* typedef type must have a valid name, and other ref types,
2343          * volatile, const, restrict, should have a null name.
2344          */
2345         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2346                 if (!t->name_off ||
2347                     !btf_name_valid_identifier(env->btf, t->name_off)) {
2348                         btf_verifier_log_type(env, t, "Invalid name");
2349                         return -EINVAL;
2350                 }
2351         } else {
2352                 if (t->name_off) {
2353                         btf_verifier_log_type(env, t, "Invalid name");
2354                         return -EINVAL;
2355                 }
2356         }
2357
2358         btf_verifier_log_type(env, t, NULL);
2359
2360         return 0;
2361 }
2362
2363 static int btf_modifier_resolve(struct btf_verifier_env *env,
2364                                 const struct resolve_vertex *v)
2365 {
2366         const struct btf_type *t = v->t;
2367         const struct btf_type *next_type;
2368         u32 next_type_id = t->type;
2369         struct btf *btf = env->btf;
2370
2371         next_type = btf_type_by_id(btf, next_type_id);
2372         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2373                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2374                 return -EINVAL;
2375         }
2376
2377         if (!env_type_is_resolve_sink(env, next_type) &&
2378             !env_type_is_resolved(env, next_type_id))
2379                 return env_stack_push(env, next_type, next_type_id);
2380
2381         /* Figure out the resolved next_type_id with size.
2382          * They will be stored in the current modifier's
2383          * resolved_ids and resolved_sizes such that it can
2384          * save us a few type-following when we use it later (e.g. in
2385          * pretty print).
2386          */
2387         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2388                 if (env_type_is_resolved(env, next_type_id))
2389                         next_type = btf_type_id_resolve(btf, &next_type_id);
2390
2391                 /* "typedef void new_void", "const void"...etc */
2392                 if (!btf_type_is_void(next_type) &&
2393                     !btf_type_is_fwd(next_type) &&
2394                     !btf_type_is_func_proto(next_type)) {
2395                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2396                         return -EINVAL;
2397                 }
2398         }
2399
2400         env_stack_pop_resolved(env, next_type_id, 0);
2401
2402         return 0;
2403 }
2404
2405 static int btf_var_resolve(struct btf_verifier_env *env,
2406                            const struct resolve_vertex *v)
2407 {
2408         const struct btf_type *next_type;
2409         const struct btf_type *t = v->t;
2410         u32 next_type_id = t->type;
2411         struct btf *btf = env->btf;
2412
2413         next_type = btf_type_by_id(btf, next_type_id);
2414         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2415                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2416                 return -EINVAL;
2417         }
2418
2419         if (!env_type_is_resolve_sink(env, next_type) &&
2420             !env_type_is_resolved(env, next_type_id))
2421                 return env_stack_push(env, next_type, next_type_id);
2422
2423         if (btf_type_is_modifier(next_type)) {
2424                 const struct btf_type *resolved_type;
2425                 u32 resolved_type_id;
2426
2427                 resolved_type_id = next_type_id;
2428                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2429
2430                 if (btf_type_is_ptr(resolved_type) &&
2431                     !env_type_is_resolve_sink(env, resolved_type) &&
2432                     !env_type_is_resolved(env, resolved_type_id))
2433                         return env_stack_push(env, resolved_type,
2434                                               resolved_type_id);
2435         }
2436
2437         /* We must resolve to something concrete at this point, no
2438          * forward types or similar that would resolve to size of
2439          * zero is allowed.
2440          */
2441         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2442                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2443                 return -EINVAL;
2444         }
2445
2446         env_stack_pop_resolved(env, next_type_id, 0);
2447
2448         return 0;
2449 }
2450
2451 static int btf_ptr_resolve(struct btf_verifier_env *env,
2452                            const struct resolve_vertex *v)
2453 {
2454         const struct btf_type *next_type;
2455         const struct btf_type *t = v->t;
2456         u32 next_type_id = t->type;
2457         struct btf *btf = env->btf;
2458
2459         next_type = btf_type_by_id(btf, next_type_id);
2460         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2461                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2462                 return -EINVAL;
2463         }
2464
2465         if (!env_type_is_resolve_sink(env, next_type) &&
2466             !env_type_is_resolved(env, next_type_id))
2467                 return env_stack_push(env, next_type, next_type_id);
2468
2469         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2470          * the modifier may have stopped resolving when it was resolved
2471          * to a ptr (last-resolved-ptr).
2472          *
2473          * We now need to continue from the last-resolved-ptr to
2474          * ensure the last-resolved-ptr will not referring back to
2475          * the currenct ptr (t).
2476          */
2477         if (btf_type_is_modifier(next_type)) {
2478                 const struct btf_type *resolved_type;
2479                 u32 resolved_type_id;
2480
2481                 resolved_type_id = next_type_id;
2482                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2483
2484                 if (btf_type_is_ptr(resolved_type) &&
2485                     !env_type_is_resolve_sink(env, resolved_type) &&
2486                     !env_type_is_resolved(env, resolved_type_id))
2487                         return env_stack_push(env, resolved_type,
2488                                               resolved_type_id);
2489         }
2490
2491         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2492                 if (env_type_is_resolved(env, next_type_id))
2493                         next_type = btf_type_id_resolve(btf, &next_type_id);
2494
2495                 if (!btf_type_is_void(next_type) &&
2496                     !btf_type_is_fwd(next_type) &&
2497                     !btf_type_is_func_proto(next_type)) {
2498                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2499                         return -EINVAL;
2500                 }
2501         }
2502
2503         env_stack_pop_resolved(env, next_type_id, 0);
2504
2505         return 0;
2506 }
2507
2508 static void btf_modifier_show(const struct btf *btf,
2509                               const struct btf_type *t,
2510                               u32 type_id, void *data,
2511                               u8 bits_offset, struct btf_show *show)
2512 {
2513         if (btf->resolved_ids)
2514                 t = btf_type_id_resolve(btf, &type_id);
2515         else
2516                 t = btf_type_skip_modifiers(btf, type_id, NULL);
2517
2518         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2519 }
2520
2521 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2522                          u32 type_id, void *data, u8 bits_offset,
2523                          struct btf_show *show)
2524 {
2525         t = btf_type_id_resolve(btf, &type_id);
2526
2527         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2528 }
2529
2530 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2531                          u32 type_id, void *data, u8 bits_offset,
2532                          struct btf_show *show)
2533 {
2534         void *safe_data;
2535
2536         safe_data = btf_show_start_type(show, t, type_id, data);
2537         if (!safe_data)
2538                 return;
2539
2540         /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2541         if (show->flags & BTF_SHOW_PTR_RAW)
2542                 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2543         else
2544                 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2545         btf_show_end_type(show);
2546 }
2547
2548 static void btf_ref_type_log(struct btf_verifier_env *env,
2549                              const struct btf_type *t)
2550 {
2551         btf_verifier_log(env, "type_id=%u", t->type);
2552 }
2553
2554 static struct btf_kind_operations modifier_ops = {
2555         .check_meta = btf_ref_type_check_meta,
2556         .resolve = btf_modifier_resolve,
2557         .check_member = btf_modifier_check_member,
2558         .check_kflag_member = btf_modifier_check_kflag_member,
2559         .log_details = btf_ref_type_log,
2560         .show = btf_modifier_show,
2561 };
2562
2563 static struct btf_kind_operations ptr_ops = {
2564         .check_meta = btf_ref_type_check_meta,
2565         .resolve = btf_ptr_resolve,
2566         .check_member = btf_ptr_check_member,
2567         .check_kflag_member = btf_generic_check_kflag_member,
2568         .log_details = btf_ref_type_log,
2569         .show = btf_ptr_show,
2570 };
2571
2572 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2573                               const struct btf_type *t,
2574                               u32 meta_left)
2575 {
2576         if (btf_type_vlen(t)) {
2577                 btf_verifier_log_type(env, t, "vlen != 0");
2578                 return -EINVAL;
2579         }
2580
2581         if (t->type) {
2582                 btf_verifier_log_type(env, t, "type != 0");
2583                 return -EINVAL;
2584         }
2585
2586         /* fwd type must have a valid name */
2587         if (!t->name_off ||
2588             !btf_name_valid_identifier(env->btf, t->name_off)) {
2589                 btf_verifier_log_type(env, t, "Invalid name");
2590                 return -EINVAL;
2591         }
2592
2593         btf_verifier_log_type(env, t, NULL);
2594
2595         return 0;
2596 }
2597
2598 static void btf_fwd_type_log(struct btf_verifier_env *env,
2599                              const struct btf_type *t)
2600 {
2601         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2602 }
2603
2604 static struct btf_kind_operations fwd_ops = {
2605         .check_meta = btf_fwd_check_meta,
2606         .resolve = btf_df_resolve,
2607         .check_member = btf_df_check_member,
2608         .check_kflag_member = btf_df_check_kflag_member,
2609         .log_details = btf_fwd_type_log,
2610         .show = btf_df_show,
2611 };
2612
2613 static int btf_array_check_member(struct btf_verifier_env *env,
2614                                   const struct btf_type *struct_type,
2615                                   const struct btf_member *member,
2616                                   const struct btf_type *member_type)
2617 {
2618         u32 struct_bits_off = member->offset;
2619         u32 struct_size, bytes_offset;
2620         u32 array_type_id, array_size;
2621         struct btf *btf = env->btf;
2622
2623         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2624                 btf_verifier_log_member(env, struct_type, member,
2625                                         "Member is not byte aligned");
2626                 return -EINVAL;
2627         }
2628
2629         array_type_id = member->type;
2630         btf_type_id_size(btf, &array_type_id, &array_size);
2631         struct_size = struct_type->size;
2632         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2633         if (struct_size - bytes_offset < array_size) {
2634                 btf_verifier_log_member(env, struct_type, member,
2635                                         "Member exceeds struct_size");
2636                 return -EINVAL;
2637         }
2638
2639         return 0;
2640 }
2641
2642 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2643                                 const struct btf_type *t,
2644                                 u32 meta_left)
2645 {
2646         const struct btf_array *array = btf_type_array(t);
2647         u32 meta_needed = sizeof(*array);
2648
2649         if (meta_left < meta_needed) {
2650                 btf_verifier_log_basic(env, t,
2651                                        "meta_left:%u meta_needed:%u",
2652                                        meta_left, meta_needed);
2653                 return -EINVAL;
2654         }
2655
2656         /* array type should not have a name */
2657         if (t->name_off) {
2658                 btf_verifier_log_type(env, t, "Invalid name");
2659                 return -EINVAL;
2660         }
2661
2662         if (btf_type_vlen(t)) {
2663                 btf_verifier_log_type(env, t, "vlen != 0");
2664                 return -EINVAL;
2665         }
2666
2667         if (btf_type_kflag(t)) {
2668                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2669                 return -EINVAL;
2670         }
2671
2672         if (t->size) {
2673                 btf_verifier_log_type(env, t, "size != 0");
2674                 return -EINVAL;
2675         }
2676
2677         /* Array elem type and index type cannot be in type void,
2678          * so !array->type and !array->index_type are not allowed.
2679          */
2680         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2681                 btf_verifier_log_type(env, t, "Invalid elem");
2682                 return -EINVAL;
2683         }
2684
2685         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2686                 btf_verifier_log_type(env, t, "Invalid index");
2687                 return -EINVAL;
2688         }
2689
2690         btf_verifier_log_type(env, t, NULL);
2691
2692         return meta_needed;
2693 }
2694
2695 static int btf_array_resolve(struct btf_verifier_env *env,
2696                              const struct resolve_vertex *v)
2697 {
2698         const struct btf_array *array = btf_type_array(v->t);
2699         const struct btf_type *elem_type, *index_type;
2700         u32 elem_type_id, index_type_id;
2701         struct btf *btf = env->btf;
2702         u32 elem_size;
2703
2704         /* Check array->index_type */
2705         index_type_id = array->index_type;
2706         index_type = btf_type_by_id(btf, index_type_id);
2707         if (btf_type_nosize_or_null(index_type) ||
2708             btf_type_is_resolve_source_only(index_type)) {
2709                 btf_verifier_log_type(env, v->t, "Invalid index");
2710                 return -EINVAL;
2711         }
2712
2713         if (!env_type_is_resolve_sink(env, index_type) &&
2714             !env_type_is_resolved(env, index_type_id))
2715                 return env_stack_push(env, index_type, index_type_id);
2716
2717         index_type = btf_type_id_size(btf, &index_type_id, NULL);
2718         if (!index_type || !btf_type_is_int(index_type) ||
2719             !btf_type_int_is_regular(index_type)) {
2720                 btf_verifier_log_type(env, v->t, "Invalid index");
2721                 return -EINVAL;
2722         }
2723
2724         /* Check array->type */
2725         elem_type_id = array->type;
2726         elem_type = btf_type_by_id(btf, elem_type_id);
2727         if (btf_type_nosize_or_null(elem_type) ||
2728             btf_type_is_resolve_source_only(elem_type)) {
2729                 btf_verifier_log_type(env, v->t,
2730                                       "Invalid elem");
2731                 return -EINVAL;
2732         }
2733
2734         if (!env_type_is_resolve_sink(env, elem_type) &&
2735             !env_type_is_resolved(env, elem_type_id))
2736                 return env_stack_push(env, elem_type, elem_type_id);
2737
2738         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2739         if (!elem_type) {
2740                 btf_verifier_log_type(env, v->t, "Invalid elem");
2741                 return -EINVAL;
2742         }
2743
2744         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2745                 btf_verifier_log_type(env, v->t, "Invalid array of int");
2746                 return -EINVAL;
2747         }
2748
2749         if (array->nelems && elem_size > U32_MAX / array->nelems) {
2750                 btf_verifier_log_type(env, v->t,
2751                                       "Array size overflows U32_MAX");
2752                 return -EINVAL;
2753         }
2754
2755         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2756
2757         return 0;
2758 }
2759
2760 static void btf_array_log(struct btf_verifier_env *env,
2761                           const struct btf_type *t)
2762 {
2763         const struct btf_array *array = btf_type_array(t);
2764
2765         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2766                          array->type, array->index_type, array->nelems);
2767 }
2768
2769 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2770                              u32 type_id, void *data, u8 bits_offset,
2771                              struct btf_show *show)
2772 {
2773         const struct btf_array *array = btf_type_array(t);
2774         const struct btf_kind_operations *elem_ops;
2775         const struct btf_type *elem_type;
2776         u32 i, elem_size = 0, elem_type_id;
2777         u16 encoding = 0;
2778
2779         elem_type_id = array->type;
2780         elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2781         if (elem_type && btf_type_has_size(elem_type))
2782                 elem_size = elem_type->size;
2783
2784         if (elem_type && btf_type_is_int(elem_type)) {
2785                 u32 int_type = btf_type_int(elem_type);
2786
2787                 encoding = BTF_INT_ENCODING(int_type);
2788
2789                 /*
2790                  * BTF_INT_CHAR encoding never seems to be set for
2791                  * char arrays, so if size is 1 and element is
2792                  * printable as a char, we'll do that.
2793                  */
2794                 if (elem_size == 1)
2795                         encoding = BTF_INT_CHAR;
2796         }
2797
2798         if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2799                 return;
2800
2801         if (!elem_type)
2802                 goto out;
2803         elem_ops = btf_type_ops(elem_type);
2804
2805         for (i = 0; i < array->nelems; i++) {
2806
2807                 btf_show_start_array_member(show);
2808
2809                 elem_ops->show(btf, elem_type, elem_type_id, data,
2810                                bits_offset, show);
2811                 data += elem_size;
2812
2813                 btf_show_end_array_member(show);
2814
2815                 if (show->state.array_terminated)
2816                         break;
2817         }
2818 out:
2819         btf_show_end_array_type(show);
2820 }
2821
2822 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2823                            u32 type_id, void *data, u8 bits_offset,
2824                            struct btf_show *show)
2825 {
2826         const struct btf_member *m = show->state.member;
2827
2828         /*
2829          * First check if any members would be shown (are non-zero).
2830          * See comments above "struct btf_show" definition for more
2831          * details on how this works at a high-level.
2832          */
2833         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2834                 if (!show->state.depth_check) {
2835                         show->state.depth_check = show->state.depth + 1;
2836                         show->state.depth_to_show = 0;
2837                 }
2838                 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2839                 show->state.member = m;
2840
2841                 if (show->state.depth_check != show->state.depth + 1)
2842                         return;
2843                 show->state.depth_check = 0;
2844
2845                 if (show->state.depth_to_show <= show->state.depth)
2846                         return;
2847                 /*
2848                  * Reaching here indicates we have recursed and found
2849                  * non-zero array member(s).
2850                  */
2851         }
2852         __btf_array_show(btf, t, type_id, data, bits_offset, show);
2853 }
2854
2855 static struct btf_kind_operations array_ops = {
2856         .check_meta = btf_array_check_meta,
2857         .resolve = btf_array_resolve,
2858         .check_member = btf_array_check_member,
2859         .check_kflag_member = btf_generic_check_kflag_member,
2860         .log_details = btf_array_log,
2861         .show = btf_array_show,
2862 };
2863
2864 static int btf_struct_check_member(struct btf_verifier_env *env,
2865                                    const struct btf_type *struct_type,
2866                                    const struct btf_member *member,
2867                                    const struct btf_type *member_type)
2868 {
2869         u32 struct_bits_off = member->offset;
2870         u32 struct_size, bytes_offset;
2871
2872         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2873                 btf_verifier_log_member(env, struct_type, member,
2874                                         "Member is not byte aligned");
2875                 return -EINVAL;
2876         }
2877
2878         struct_size = struct_type->size;
2879         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2880         if (struct_size - bytes_offset < member_type->size) {
2881                 btf_verifier_log_member(env, struct_type, member,
2882                                         "Member exceeds struct_size");
2883                 return -EINVAL;
2884         }
2885
2886         return 0;
2887 }
2888
2889 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2890                                  const struct btf_type *t,
2891                                  u32 meta_left)
2892 {
2893         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2894         const struct btf_member *member;
2895         u32 meta_needed, last_offset;
2896         struct btf *btf = env->btf;
2897         u32 struct_size = t->size;
2898         u32 offset;
2899         u16 i;
2900
2901         meta_needed = btf_type_vlen(t) * sizeof(*member);
2902         if (meta_left < meta_needed) {
2903                 btf_verifier_log_basic(env, t,
2904                                        "meta_left:%u meta_needed:%u",
2905                                        meta_left, meta_needed);
2906                 return -EINVAL;
2907         }
2908
2909         /* struct type either no name or a valid one */
2910         if (t->name_off &&
2911             !btf_name_valid_identifier(env->btf, t->name_off)) {
2912                 btf_verifier_log_type(env, t, "Invalid name");
2913                 return -EINVAL;
2914         }
2915
2916         btf_verifier_log_type(env, t, NULL);
2917
2918         last_offset = 0;
2919         for_each_member(i, t, member) {
2920                 if (!btf_name_offset_valid(btf, member->name_off)) {
2921                         btf_verifier_log_member(env, t, member,
2922                                                 "Invalid member name_offset:%u",
2923                                                 member->name_off);
2924                         return -EINVAL;
2925                 }
2926
2927                 /* struct member either no name or a valid one */
2928                 if (member->name_off &&
2929                     !btf_name_valid_identifier(btf, member->name_off)) {
2930                         btf_verifier_log_member(env, t, member, "Invalid name");
2931                         return -EINVAL;
2932                 }
2933                 /* A member cannot be in type void */
2934                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2935                         btf_verifier_log_member(env, t, member,
2936                                                 "Invalid type_id");
2937                         return -EINVAL;
2938                 }
2939
2940                 offset = btf_member_bit_offset(t, member);
2941                 if (is_union && offset) {
2942                         btf_verifier_log_member(env, t, member,
2943                                                 "Invalid member bits_offset");
2944                         return -EINVAL;
2945                 }
2946
2947                 /*
2948                  * ">" instead of ">=" because the last member could be
2949                  * "char a[0];"
2950                  */
2951                 if (last_offset > offset) {
2952                         btf_verifier_log_member(env, t, member,
2953                                                 "Invalid member bits_offset");
2954                         return -EINVAL;
2955                 }
2956
2957                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2958                         btf_verifier_log_member(env, t, member,
2959                                                 "Member bits_offset exceeds its struct size");
2960                         return -EINVAL;
2961                 }
2962
2963                 btf_verifier_log_member(env, t, member, NULL);
2964                 last_offset = offset;
2965         }
2966
2967         return meta_needed;
2968 }
2969
2970 static int btf_struct_resolve(struct btf_verifier_env *env,
2971                               const struct resolve_vertex *v)
2972 {
2973         const struct btf_member *member;
2974         int err;
2975         u16 i;
2976
2977         /* Before continue resolving the next_member,
2978          * ensure the last member is indeed resolved to a
2979          * type with size info.
2980          */
2981         if (v->next_member) {
2982                 const struct btf_type *last_member_type;
2983                 const struct btf_member *last_member;
2984                 u16 last_member_type_id;
2985
2986                 last_member = btf_type_member(v->t) + v->next_member - 1;
2987                 last_member_type_id = last_member->type;
2988                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2989                                                        last_member_type_id)))
2990                         return -EINVAL;
2991
2992                 last_member_type = btf_type_by_id(env->btf,
2993                                                   last_member_type_id);
2994                 if (btf_type_kflag(v->t))
2995                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2996                                                                 last_member,
2997                                                                 last_member_type);
2998                 else
2999                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
3000                                                                 last_member,
3001                                                                 last_member_type);
3002                 if (err)
3003                         return err;
3004         }
3005
3006         for_each_member_from(i, v->next_member, v->t, member) {
3007                 u32 member_type_id = member->type;
3008                 const struct btf_type *member_type = btf_type_by_id(env->btf,
3009                                                                 member_type_id);
3010
3011                 if (btf_type_nosize_or_null(member_type) ||
3012                     btf_type_is_resolve_source_only(member_type)) {
3013                         btf_verifier_log_member(env, v->t, member,
3014                                                 "Invalid member");
3015                         return -EINVAL;
3016                 }
3017
3018                 if (!env_type_is_resolve_sink(env, member_type) &&
3019                     !env_type_is_resolved(env, member_type_id)) {
3020                         env_stack_set_next_member(env, i + 1);
3021                         return env_stack_push(env, member_type, member_type_id);
3022                 }
3023
3024                 if (btf_type_kflag(v->t))
3025                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3026                                                                             member,
3027                                                                             member_type);
3028                 else
3029                         err = btf_type_ops(member_type)->check_member(env, v->t,
3030                                                                       member,
3031                                                                       member_type);
3032                 if (err)
3033                         return err;
3034         }
3035
3036         env_stack_pop_resolved(env, 0, 0);
3037
3038         return 0;
3039 }
3040
3041 static void btf_struct_log(struct btf_verifier_env *env,
3042                            const struct btf_type *t)
3043 {
3044         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3045 }
3046
3047 /* find 'struct bpf_spin_lock' in map value.
3048  * return >= 0 offset if found
3049  * and < 0 in case of error
3050  */
3051 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3052 {
3053         const struct btf_member *member;
3054         u32 i, off = -ENOENT;
3055
3056         if (!__btf_type_is_struct(t))
3057                 return -EINVAL;
3058
3059         for_each_member(i, t, member) {
3060                 const struct btf_type *member_type = btf_type_by_id(btf,
3061                                                                     member->type);
3062                 if (!__btf_type_is_struct(member_type))
3063                         continue;
3064                 if (member_type->size != sizeof(struct bpf_spin_lock))
3065                         continue;
3066                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3067                            "bpf_spin_lock"))
3068                         continue;
3069                 if (off != -ENOENT)
3070                         /* only one 'struct bpf_spin_lock' is allowed */
3071                         return -E2BIG;
3072                 off = btf_member_bit_offset(t, member);
3073                 if (off % 8)
3074                         /* valid C code cannot generate such BTF */
3075                         return -EINVAL;
3076                 off /= 8;
3077                 if (off % __alignof__(struct bpf_spin_lock))
3078                         /* valid struct bpf_spin_lock will be 4 byte aligned */
3079                         return -EINVAL;
3080         }
3081         return off;
3082 }
3083
3084 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3085                               u32 type_id, void *data, u8 bits_offset,
3086                               struct btf_show *show)
3087 {
3088         const struct btf_member *member;
3089         void *safe_data;
3090         u32 i;
3091
3092         safe_data = btf_show_start_struct_type(show, t, type_id, data);
3093         if (!safe_data)
3094                 return;
3095
3096         for_each_member(i, t, member) {
3097                 const struct btf_type *member_type = btf_type_by_id(btf,
3098                                                                 member->type);
3099                 const struct btf_kind_operations *ops;
3100                 u32 member_offset, bitfield_size;
3101                 u32 bytes_offset;
3102                 u8 bits8_offset;
3103
3104                 btf_show_start_member(show, member);
3105
3106                 member_offset = btf_member_bit_offset(t, member);
3107                 bitfield_size = btf_member_bitfield_size(t, member);
3108                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3109                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3110                 if (bitfield_size) {
3111                         safe_data = btf_show_start_type(show, member_type,
3112                                                         member->type,
3113                                                         data + bytes_offset);
3114                         if (safe_data)
3115                                 btf_bitfield_show(safe_data,
3116                                                   bits8_offset,
3117                                                   bitfield_size, show);
3118                         btf_show_end_type(show);
3119                 } else {
3120                         ops = btf_type_ops(member_type);
3121                         ops->show(btf, member_type, member->type,
3122                                   data + bytes_offset, bits8_offset, show);
3123                 }
3124
3125                 btf_show_end_member(show);
3126         }
3127
3128         btf_show_end_struct_type(show);
3129 }
3130
3131 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3132                             u32 type_id, void *data, u8 bits_offset,
3133                             struct btf_show *show)
3134 {
3135         const struct btf_member *m = show->state.member;
3136
3137         /*
3138          * First check if any members would be shown (are non-zero).
3139          * See comments above "struct btf_show" definition for more
3140          * details on how this works at a high-level.
3141          */
3142         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3143                 if (!show->state.depth_check) {
3144                         show->state.depth_check = show->state.depth + 1;
3145                         show->state.depth_to_show = 0;
3146                 }
3147                 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3148                 /* Restore saved member data here */
3149                 show->state.member = m;
3150                 if (show->state.depth_check != show->state.depth + 1)
3151                         return;
3152                 show->state.depth_check = 0;
3153
3154                 if (show->state.depth_to_show <= show->state.depth)
3155                         return;
3156                 /*
3157                  * Reaching here indicates we have recursed and found
3158                  * non-zero child values.
3159                  */
3160         }
3161
3162         __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3163 }
3164
3165 static struct btf_kind_operations struct_ops = {
3166         .check_meta = btf_struct_check_meta,
3167         .resolve = btf_struct_resolve,
3168         .check_member = btf_struct_check_member,
3169         .check_kflag_member = btf_generic_check_kflag_member,
3170         .log_details = btf_struct_log,
3171         .show = btf_struct_show,
3172 };
3173
3174 static int btf_enum_check_member(struct btf_verifier_env *env,
3175                                  const struct btf_type *struct_type,
3176                                  const struct btf_member *member,
3177                                  const struct btf_type *member_type)
3178 {
3179         u32 struct_bits_off = member->offset;
3180         u32 struct_size, bytes_offset;
3181
3182         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3183                 btf_verifier_log_member(env, struct_type, member,
3184                                         "Member is not byte aligned");
3185                 return -EINVAL;
3186         }
3187
3188         struct_size = struct_type->size;
3189         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3190         if (struct_size - bytes_offset < member_type->size) {
3191                 btf_verifier_log_member(env, struct_type, member,
3192                                         "Member exceeds struct_size");
3193                 return -EINVAL;
3194         }
3195
3196         return 0;
3197 }
3198
3199 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3200                                        const struct btf_type *struct_type,
3201                                        const struct btf_member *member,
3202                                        const struct btf_type *member_type)
3203 {
3204         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3205         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3206
3207         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3208         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3209         if (!nr_bits) {
3210                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3211                         btf_verifier_log_member(env, struct_type, member,
3212                                                 "Member is not byte aligned");
3213                         return -EINVAL;
3214                 }
3215
3216                 nr_bits = int_bitsize;
3217         } else if (nr_bits > int_bitsize) {
3218                 btf_verifier_log_member(env, struct_type, member,
3219                                         "Invalid member bitfield_size");
3220                 return -EINVAL;
3221         }
3222
3223         struct_size = struct_type->size;
3224         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3225         if (struct_size < bytes_end) {
3226                 btf_verifier_log_member(env, struct_type, member,
3227                                         "Member exceeds struct_size");
3228                 return -EINVAL;
3229         }
3230
3231         return 0;
3232 }
3233
3234 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3235                                const struct btf_type *t,
3236                                u32 meta_left)
3237 {
3238         const struct btf_enum *enums = btf_type_enum(t);
3239         struct btf *btf = env->btf;
3240         u16 i, nr_enums;
3241         u32 meta_needed;
3242
3243         nr_enums = btf_type_vlen(t);
3244         meta_needed = nr_enums * sizeof(*enums);
3245
3246         if (meta_left < meta_needed) {
3247                 btf_verifier_log_basic(env, t,
3248                                        "meta_left:%u meta_needed:%u",
3249                                        meta_left, meta_needed);
3250                 return -EINVAL;
3251         }
3252
3253         if (btf_type_kflag(t)) {
3254                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3255                 return -EINVAL;
3256         }
3257
3258         if (t->size > 8 || !is_power_of_2(t->size)) {
3259                 btf_verifier_log_type(env, t, "Unexpected size");
3260                 return -EINVAL;
3261         }
3262
3263         /* enum type either no name or a valid one */
3264         if (t->name_off &&
3265             !btf_name_valid_identifier(env->btf, t->name_off)) {
3266                 btf_verifier_log_type(env, t, "Invalid name");
3267                 return -EINVAL;
3268         }
3269
3270         btf_verifier_log_type(env, t, NULL);
3271
3272         for (i = 0; i < nr_enums; i++) {
3273                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3274                         btf_verifier_log(env, "\tInvalid name_offset:%u",
3275                                          enums[i].name_off);
3276                         return -EINVAL;
3277                 }
3278
3279                 /* enum member must have a valid name */
3280                 if (!enums[i].name_off ||
3281                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
3282                         btf_verifier_log_type(env, t, "Invalid name");
3283                         return -EINVAL;
3284                 }
3285
3286                 if (env->log.level == BPF_LOG_KERNEL)
3287                         continue;
3288                 btf_verifier_log(env, "\t%s val=%d\n",
3289                                  __btf_name_by_offset(btf, enums[i].name_off),
3290                                  enums[i].val);
3291         }
3292
3293         return meta_needed;
3294 }
3295
3296 static void btf_enum_log(struct btf_verifier_env *env,
3297                          const struct btf_type *t)
3298 {
3299         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3300 }
3301
3302 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3303                           u32 type_id, void *data, u8 bits_offset,
3304                           struct btf_show *show)
3305 {
3306         const struct btf_enum *enums = btf_type_enum(t);
3307         u32 i, nr_enums = btf_type_vlen(t);
3308         void *safe_data;
3309         int v;
3310
3311         safe_data = btf_show_start_type(show, t, type_id, data);
3312         if (!safe_data)
3313                 return;
3314
3315         v = *(int *)safe_data;
3316
3317         for (i = 0; i < nr_enums; i++) {
3318                 if (v != enums[i].val)
3319                         continue;
3320
3321                 btf_show_type_value(show, "%s",
3322                                     __btf_name_by_offset(btf,
3323                                                          enums[i].name_off));
3324
3325                 btf_show_end_type(show);
3326                 return;
3327         }
3328
3329         btf_show_type_value(show, "%d", v);
3330         btf_show_end_type(show);
3331 }
3332
3333 static struct btf_kind_operations enum_ops = {
3334         .check_meta = btf_enum_check_meta,
3335         .resolve = btf_df_resolve,
3336         .check_member = btf_enum_check_member,
3337         .check_kflag_member = btf_enum_check_kflag_member,
3338         .log_details = btf_enum_log,
3339         .show = btf_enum_show,
3340 };
3341
3342 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3343                                      const struct btf_type *t,
3344                                      u32 meta_left)
3345 {
3346         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3347
3348         if (meta_left < meta_needed) {
3349                 btf_verifier_log_basic(env, t,
3350                                        "meta_left:%u meta_needed:%u",
3351                                        meta_left, meta_needed);
3352                 return -EINVAL;
3353         }
3354
3355         if (t->name_off) {
3356                 btf_verifier_log_type(env, t, "Invalid name");
3357                 return -EINVAL;
3358         }
3359
3360         if (btf_type_kflag(t)) {
3361                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3362                 return -EINVAL;
3363         }
3364
3365         btf_verifier_log_type(env, t, NULL);
3366
3367         return meta_needed;
3368 }
3369
3370 static void btf_func_proto_log(struct btf_verifier_env *env,
3371                                const struct btf_type *t)
3372 {
3373         const struct btf_param *args = (const struct btf_param *)(t + 1);
3374         u16 nr_args = btf_type_vlen(t), i;
3375
3376         btf_verifier_log(env, "return=%u args=(", t->type);
3377         if (!nr_args) {
3378                 btf_verifier_log(env, "void");
3379                 goto done;
3380         }
3381
3382         if (nr_args == 1 && !args[0].type) {
3383                 /* Only one vararg */
3384                 btf_verifier_log(env, "vararg");
3385                 goto done;
3386         }
3387
3388         btf_verifier_log(env, "%u %s", args[0].type,
3389                          __btf_name_by_offset(env->btf,
3390                                               args[0].name_off));
3391         for (i = 1; i < nr_args - 1; i++)
3392                 btf_verifier_log(env, ", %u %s", args[i].type,
3393                                  __btf_name_by_offset(env->btf,
3394                                                       args[i].name_off));
3395
3396         if (nr_args > 1) {
3397                 const struct btf_param *last_arg = &args[nr_args - 1];
3398
3399                 if (last_arg->type)
3400                         btf_verifier_log(env, ", %u %s", last_arg->type,
3401                                          __btf_name_by_offset(env->btf,
3402                                                               last_arg->name_off));
3403                 else
3404                         btf_verifier_log(env, ", vararg");
3405         }
3406
3407 done:
3408         btf_verifier_log(env, ")");
3409 }
3410
3411 static struct btf_kind_operations func_proto_ops = {
3412         .check_meta = btf_func_proto_check_meta,
3413         .resolve = btf_df_resolve,
3414         /*
3415          * BTF_KIND_FUNC_PROTO cannot be directly referred by
3416          * a struct's member.
3417          *
3418          * It should be a funciton pointer instead.
3419          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3420          *
3421          * Hence, there is no btf_func_check_member().
3422          */
3423         .check_member = btf_df_check_member,
3424         .check_kflag_member = btf_df_check_kflag_member,
3425         .log_details = btf_func_proto_log,
3426         .show = btf_df_show,
3427 };
3428
3429 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3430                                const struct btf_type *t,
3431                                u32 meta_left)
3432 {
3433         if (!t->name_off ||
3434             !btf_name_valid_identifier(env->btf, t->name_off)) {
3435                 btf_verifier_log_type(env, t, "Invalid name");
3436                 return -EINVAL;
3437         }
3438
3439         if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3440                 btf_verifier_log_type(env, t, "Invalid func linkage");
3441                 return -EINVAL;
3442         }
3443
3444         if (btf_type_kflag(t)) {
3445                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3446                 return -EINVAL;
3447         }
3448
3449         btf_verifier_log_type(env, t, NULL);
3450
3451         return 0;
3452 }
3453
3454 static struct btf_kind_operations func_ops = {
3455         .check_meta = btf_func_check_meta,
3456         .resolve = btf_df_resolve,
3457         .check_member = btf_df_check_member,
3458         .check_kflag_member = btf_df_check_kflag_member,
3459         .log_details = btf_ref_type_log,
3460         .show = btf_df_show,
3461 };
3462
3463 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3464                               const struct btf_type *t,
3465                               u32 meta_left)
3466 {
3467         const struct btf_var *var;
3468         u32 meta_needed = sizeof(*var);
3469
3470         if (meta_left < meta_needed) {
3471                 btf_verifier_log_basic(env, t,
3472                                        "meta_left:%u meta_needed:%u",
3473                                        meta_left, meta_needed);
3474                 return -EINVAL;
3475         }
3476
3477         if (btf_type_vlen(t)) {
3478                 btf_verifier_log_type(env, t, "vlen != 0");
3479                 return -EINVAL;
3480         }
3481
3482         if (btf_type_kflag(t)) {
3483                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3484                 return -EINVAL;
3485         }
3486
3487         if (!t->name_off ||
3488             !__btf_name_valid(env->btf, t->name_off, true)) {
3489                 btf_verifier_log_type(env, t, "Invalid name");
3490                 return -EINVAL;
3491         }
3492
3493         /* A var cannot be in type void */
3494         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3495                 btf_verifier_log_type(env, t, "Invalid type_id");
3496                 return -EINVAL;
3497         }
3498
3499         var = btf_type_var(t);
3500         if (var->linkage != BTF_VAR_STATIC &&
3501             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3502                 btf_verifier_log_type(env, t, "Linkage not supported");
3503                 return -EINVAL;
3504         }
3505
3506         btf_verifier_log_type(env, t, NULL);
3507
3508         return meta_needed;
3509 }
3510
3511 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3512 {
3513         const struct btf_var *var = btf_type_var(t);
3514
3515         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3516 }
3517
3518 static const struct btf_kind_operations var_ops = {
3519         .check_meta             = btf_var_check_meta,
3520         .resolve                = btf_var_resolve,
3521         .check_member           = btf_df_check_member,
3522         .check_kflag_member     = btf_df_check_kflag_member,
3523         .log_details            = btf_var_log,
3524         .show                   = btf_var_show,
3525 };
3526
3527 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3528                                   const struct btf_type *t,
3529                                   u32 meta_left)
3530 {
3531         const struct btf_var_secinfo *vsi;
3532         u64 last_vsi_end_off = 0, sum = 0;
3533         u32 i, meta_needed;
3534
3535         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3536         if (meta_left < meta_needed) {
3537                 btf_verifier_log_basic(env, t,
3538                                        "meta_left:%u meta_needed:%u",
3539                                        meta_left, meta_needed);
3540                 return -EINVAL;
3541         }
3542
3543         if (!t->size) {
3544                 btf_verifier_log_type(env, t, "size == 0");
3545                 return -EINVAL;
3546         }
3547
3548         if (btf_type_kflag(t)) {
3549                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3550                 return -EINVAL;
3551         }
3552
3553         if (!t->name_off ||
3554             !btf_name_valid_section(env->btf, t->name_off)) {
3555                 btf_verifier_log_type(env, t, "Invalid name");
3556                 return -EINVAL;
3557         }
3558
3559         btf_verifier_log_type(env, t, NULL);
3560
3561         for_each_vsi(i, t, vsi) {
3562                 /* A var cannot be in type void */
3563                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3564                         btf_verifier_log_vsi(env, t, vsi,
3565                                              "Invalid type_id");
3566                         return -EINVAL;
3567                 }
3568
3569                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3570                         btf_verifier_log_vsi(env, t, vsi,
3571                                              "Invalid offset");
3572                         return -EINVAL;
3573                 }
3574
3575                 if (!vsi->size || vsi->size > t->size) {
3576                         btf_verifier_log_vsi(env, t, vsi,
3577                                              "Invalid size");
3578                         return -EINVAL;
3579                 }
3580
3581                 last_vsi_end_off = vsi->offset + vsi->size;
3582                 if (last_vsi_end_off > t->size) {
3583                         btf_verifier_log_vsi(env, t, vsi,
3584                                              "Invalid offset+size");
3585                         return -EINVAL;
3586                 }
3587
3588                 btf_verifier_log_vsi(env, t, vsi, NULL);
3589                 sum += vsi->size;
3590         }
3591
3592         if (t->size < sum) {
3593                 btf_verifier_log_type(env, t, "Invalid btf_info size");
3594                 return -EINVAL;
3595         }
3596
3597         return meta_needed;
3598 }
3599
3600 static int btf_datasec_resolve(struct btf_verifier_env *env,
3601                                const struct resolve_vertex *v)
3602 {
3603         const struct btf_var_secinfo *vsi;
3604         struct btf *btf = env->btf;
3605         u16 i;
3606
3607         for_each_vsi_from(i, v->next_member, v->t, vsi) {
3608                 u32 var_type_id = vsi->type, type_id, type_size = 0;
3609                 const struct btf_type *var_type = btf_type_by_id(env->btf,
3610                                                                  var_type_id);
3611                 if (!var_type || !btf_type_is_var(var_type)) {
3612                         btf_verifier_log_vsi(env, v->t, vsi,
3613                                              "Not a VAR kind member");
3614                         return -EINVAL;
3615                 }
3616
3617                 if (!env_type_is_resolve_sink(env, var_type) &&
3618                     !env_type_is_resolved(env, var_type_id)) {
3619                         env_stack_set_next_member(env, i + 1);
3620                         return env_stack_push(env, var_type, var_type_id);
3621                 }
3622
3623                 type_id = var_type->type;
3624                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3625                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3626                         return -EINVAL;
3627                 }
3628
3629                 if (vsi->size < type_size) {
3630                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3631                         return -EINVAL;
3632                 }
3633         }
3634
3635         env_stack_pop_resolved(env, 0, 0);
3636         return 0;
3637 }
3638
3639 static void btf_datasec_log(struct btf_verifier_env *env,
3640                             const struct btf_type *t)
3641 {
3642         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3643 }
3644
3645 static void btf_datasec_show(const struct btf *btf,
3646                              const struct btf_type *t, u32 type_id,
3647                              void *data, u8 bits_offset,
3648                              struct btf_show *show)
3649 {
3650         const struct btf_var_secinfo *vsi;
3651         const struct btf_type *var;
3652         u32 i;
3653
3654         if (!btf_show_start_type(show, t, type_id, data))
3655                 return;
3656
3657         btf_show_type_value(show, "section (\"%s\") = {",
3658                             __btf_name_by_offset(btf, t->name_off));
3659         for_each_vsi(i, t, vsi) {
3660                 var = btf_type_by_id(btf, vsi->type);
3661                 if (i)
3662                         btf_show(show, ",");
3663                 btf_type_ops(var)->show(btf, var, vsi->type,
3664                                         data + vsi->offset, bits_offset, show);
3665         }
3666         btf_show_end_type(show);
3667 }
3668
3669 static const struct btf_kind_operations datasec_ops = {
3670         .check_meta             = btf_datasec_check_meta,
3671         .resolve                = btf_datasec_resolve,
3672         .check_member           = btf_df_check_member,
3673         .check_kflag_member     = btf_df_check_kflag_member,
3674         .log_details            = btf_datasec_log,
3675         .show                   = btf_datasec_show,
3676 };
3677
3678 static int btf_func_proto_check(struct btf_verifier_env *env,
3679                                 const struct btf_type *t)
3680 {
3681         const struct btf_type *ret_type;
3682         const struct btf_param *args;
3683         const struct btf *btf;
3684         u16 nr_args, i;
3685         int err;
3686
3687         btf = env->btf;
3688         args = (const struct btf_param *)(t + 1);
3689         nr_args = btf_type_vlen(t);
3690
3691         /* Check func return type which could be "void" (t->type == 0) */
3692         if (t->type) {
3693                 u32 ret_type_id = t->type;
3694
3695                 ret_type = btf_type_by_id(btf, ret_type_id);
3696                 if (!ret_type) {
3697                         btf_verifier_log_type(env, t, "Invalid return type");
3698                         return -EINVAL;
3699                 }
3700
3701                 if (btf_type_needs_resolve(ret_type) &&
3702                     !env_type_is_resolved(env, ret_type_id)) {
3703                         err = btf_resolve(env, ret_type, ret_type_id);
3704                         if (err)
3705                                 return err;
3706                 }
3707
3708                 /* Ensure the return type is a type that has a size */
3709                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3710                         btf_verifier_log_type(env, t, "Invalid return type");
3711                         return -EINVAL;
3712                 }
3713         }
3714
3715         if (!nr_args)
3716                 return 0;
3717
3718         /* Last func arg type_id could be 0 if it is a vararg */
3719         if (!args[nr_args - 1].type) {
3720                 if (args[nr_args - 1].name_off) {
3721                         btf_verifier_log_type(env, t, "Invalid arg#%u",
3722                                               nr_args);
3723                         return -EINVAL;
3724                 }
3725                 nr_args--;
3726         }
3727
3728         err = 0;
3729         for (i = 0; i < nr_args; i++) {
3730                 const struct btf_type *arg_type;
3731                 u32 arg_type_id;
3732
3733                 arg_type_id = args[i].type;
3734                 arg_type = btf_type_by_id(btf, arg_type_id);
3735                 if (!arg_type) {
3736                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3737                         err = -EINVAL;
3738                         break;
3739                 }
3740
3741                 if (args[i].name_off &&
3742                     (!btf_name_offset_valid(btf, args[i].name_off) ||
3743                      !btf_name_valid_identifier(btf, args[i].name_off))) {
3744                         btf_verifier_log_type(env, t,
3745                                               "Invalid arg#%u", i + 1);
3746                         err = -EINVAL;
3747                         break;
3748                 }
3749
3750                 if (btf_type_needs_resolve(arg_type) &&
3751                     !env_type_is_resolved(env, arg_type_id)) {
3752                         err = btf_resolve(env, arg_type, arg_type_id);
3753                         if (err)
3754                                 break;
3755                 }
3756
3757                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3758                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3759                         err = -EINVAL;
3760                         break;
3761                 }
3762         }
3763
3764         return err;
3765 }
3766
3767 static int btf_func_check(struct btf_verifier_env *env,
3768                           const struct btf_type *t)
3769 {
3770         const struct btf_type *proto_type;
3771         const struct btf_param *args;
3772         const struct btf *btf;
3773         u16 nr_args, i;
3774
3775         btf = env->btf;
3776         proto_type = btf_type_by_id(btf, t->type);
3777
3778         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3779                 btf_verifier_log_type(env, t, "Invalid type_id");
3780                 return -EINVAL;
3781         }
3782
3783         args = (const struct btf_param *)(proto_type + 1);
3784         nr_args = btf_type_vlen(proto_type);
3785         for (i = 0; i < nr_args; i++) {
3786                 if (!args[i].name_off && args[i].type) {
3787                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3788                         return -EINVAL;
3789                 }
3790         }
3791
3792         return 0;
3793 }
3794
3795 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3796         [BTF_KIND_INT] = &int_ops,
3797         [BTF_KIND_PTR] = &ptr_ops,
3798         [BTF_KIND_ARRAY] = &array_ops,
3799         [BTF_KIND_STRUCT] = &struct_ops,
3800         [BTF_KIND_UNION] = &struct_ops,
3801         [BTF_KIND_ENUM] = &enum_ops,
3802         [BTF_KIND_FWD] = &fwd_ops,
3803         [BTF_KIND_TYPEDEF] = &modifier_ops,
3804         [BTF_KIND_VOLATILE] = &modifier_ops,
3805         [BTF_KIND_CONST] = &modifier_ops,
3806         [BTF_KIND_RESTRICT] = &modifier_ops,
3807         [BTF_KIND_FUNC] = &func_ops,
3808         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3809         [BTF_KIND_VAR] = &var_ops,
3810         [BTF_KIND_DATASEC] = &datasec_ops,
3811 };
3812
3813 static s32 btf_check_meta(struct btf_verifier_env *env,
3814                           const struct btf_type *t,
3815                           u32 meta_left)
3816 {
3817         u32 saved_meta_left = meta_left;
3818         s32 var_meta_size;
3819
3820         if (meta_left < sizeof(*t)) {
3821                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3822                                  env->log_type_id, meta_left, sizeof(*t));
3823                 return -EINVAL;
3824         }
3825         meta_left -= sizeof(*t);
3826
3827         if (t->info & ~BTF_INFO_MASK) {
3828                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3829                                  env->log_type_id, t->info);
3830                 return -EINVAL;
3831         }
3832
3833         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3834             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3835                 btf_verifier_log(env, "[%u] Invalid kind:%u",
3836                                  env->log_type_id, BTF_INFO_KIND(t->info));
3837                 return -EINVAL;
3838         }
3839
3840         if (!btf_name_offset_valid(env->btf, t->name_off)) {
3841                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3842                                  env->log_type_id, t->name_off);
3843                 return -EINVAL;
3844         }
3845
3846         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3847         if (var_meta_size < 0)
3848                 return var_meta_size;
3849
3850         meta_left -= var_meta_size;
3851
3852         return saved_meta_left - meta_left;
3853 }
3854
3855 static int btf_check_all_metas(struct btf_verifier_env *env)
3856 {
3857         struct btf *btf = env->btf;
3858         struct btf_header *hdr;
3859         void *cur, *end;
3860
3861         hdr = &btf->hdr;
3862         cur = btf->nohdr_data + hdr->type_off;
3863         end = cur + hdr->type_len;
3864
3865         env->log_type_id = btf->base_btf ? btf->start_id : 1;
3866         while (cur < end) {
3867                 struct btf_type *t = cur;
3868                 s32 meta_size;
3869
3870                 meta_size = btf_check_meta(env, t, end - cur);
3871                 if (meta_size < 0)
3872                         return meta_size;
3873
3874                 btf_add_type(env, t);
3875                 cur += meta_size;
3876                 env->log_type_id++;
3877         }
3878
3879         return 0;
3880 }
3881
3882 static bool btf_resolve_valid(struct btf_verifier_env *env,
3883                               const struct btf_type *t,
3884                               u32 type_id)
3885 {
3886         struct btf *btf = env->btf;
3887
3888         if (!env_type_is_resolved(env, type_id))
3889                 return false;
3890
3891         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3892                 return !btf_resolved_type_id(btf, type_id) &&
3893                        !btf_resolved_type_size(btf, type_id);
3894
3895         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3896             btf_type_is_var(t)) {
3897                 t = btf_type_id_resolve(btf, &type_id);
3898                 return t &&
3899                        !btf_type_is_modifier(t) &&
3900                        !btf_type_is_var(t) &&
3901                        !btf_type_is_datasec(t);
3902         }
3903
3904         if (btf_type_is_array(t)) {
3905                 const struct btf_array *array = btf_type_array(t);
3906                 const struct btf_type *elem_type;
3907                 u32 elem_type_id = array->type;
3908                 u32 elem_size;
3909
3910                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3911                 return elem_type && !btf_type_is_modifier(elem_type) &&
3912                         (array->nelems * elem_size ==
3913                          btf_resolved_type_size(btf, type_id));
3914         }
3915
3916         return false;
3917 }
3918
3919 static int btf_resolve(struct btf_verifier_env *env,
3920                        const struct btf_type *t, u32 type_id)
3921 {
3922         u32 save_log_type_id = env->log_type_id;
3923         const struct resolve_vertex *v;
3924         int err = 0;
3925
3926         env->resolve_mode = RESOLVE_TBD;
3927         env_stack_push(env, t, type_id);
3928         while (!err && (v = env_stack_peak(env))) {
3929                 env->log_type_id = v->type_id;
3930                 err = btf_type_ops(v->t)->resolve(env, v);
3931         }
3932
3933         env->log_type_id = type_id;
3934         if (err == -E2BIG) {
3935                 btf_verifier_log_type(env, t,
3936                                       "Exceeded max resolving depth:%u",
3937                                       MAX_RESOLVE_DEPTH);
3938         } else if (err == -EEXIST) {
3939                 btf_verifier_log_type(env, t, "Loop detected");
3940         }
3941
3942         /* Final sanity check */
3943         if (!err && !btf_resolve_valid(env, t, type_id)) {
3944                 btf_verifier_log_type(env, t, "Invalid resolve state");
3945                 err = -EINVAL;
3946         }
3947
3948         env->log_type_id = save_log_type_id;
3949         return err;
3950 }
3951
3952 static int btf_check_all_types(struct btf_verifier_env *env)
3953 {
3954         struct btf *btf = env->btf;
3955         const struct btf_type *t;
3956         u32 type_id, i;
3957         int err;
3958
3959         err = env_resolve_init(env);
3960         if (err)
3961                 return err;
3962
3963         env->phase++;
3964         for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
3965                 type_id = btf->start_id + i;
3966                 t = btf_type_by_id(btf, type_id);
3967
3968                 env->log_type_id = type_id;
3969                 if (btf_type_needs_resolve(t) &&
3970                     !env_type_is_resolved(env, type_id)) {
3971                         err = btf_resolve(env, t, type_id);
3972                         if (err)
3973                                 return err;
3974                 }
3975
3976                 if (btf_type_is_func_proto(t)) {
3977                         err = btf_func_proto_check(env, t);
3978                         if (err)
3979                                 return err;
3980                 }
3981
3982                 if (btf_type_is_func(t)) {
3983                         err = btf_func_check(env, t);
3984                         if (err)
3985                                 return err;
3986                 }
3987         }
3988
3989         return 0;
3990 }
3991
3992 static int btf_parse_type_sec(struct btf_verifier_env *env)
3993 {
3994         const struct btf_header *hdr = &env->btf->hdr;
3995         int err;
3996
3997         /* Type section must align to 4 bytes */
3998         if (hdr->type_off & (sizeof(u32) - 1)) {
3999                 btf_verifier_log(env, "Unaligned type_off");
4000                 return -EINVAL;
4001         }
4002
4003         if (!env->btf->base_btf && !hdr->type_len) {
4004                 btf_verifier_log(env, "No type found");
4005                 return -EINVAL;
4006         }
4007
4008         err = btf_check_all_metas(env);
4009         if (err)
4010                 return err;
4011
4012         return btf_check_all_types(env);
4013 }
4014
4015 static int btf_parse_str_sec(struct btf_verifier_env *env)
4016 {
4017         const struct btf_header *hdr;
4018         struct btf *btf = env->btf;
4019         const char *start, *end;
4020
4021         hdr = &btf->hdr;
4022         start = btf->nohdr_data + hdr->str_off;
4023         end = start + hdr->str_len;
4024
4025         if (end != btf->data + btf->data_size) {
4026                 btf_verifier_log(env, "String section is not at the end");
4027                 return -EINVAL;
4028         }
4029
4030         btf->strings = start;
4031
4032         if (btf->base_btf && !hdr->str_len)
4033                 return 0;
4034         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4035                 btf_verifier_log(env, "Invalid string section");
4036                 return -EINVAL;
4037         }
4038         if (!btf->base_btf && start[0]) {
4039                 btf_verifier_log(env, "Invalid string section");
4040                 return -EINVAL;
4041         }
4042
4043         return 0;
4044 }
4045
4046 static const size_t btf_sec_info_offset[] = {
4047         offsetof(struct btf_header, type_off),
4048         offsetof(struct btf_header, str_off),
4049 };
4050
4051 static int btf_sec_info_cmp(const void *a, const void *b)
4052 {
4053         const struct btf_sec_info *x = a;
4054         const struct btf_sec_info *y = b;
4055
4056         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4057 }
4058
4059 static int btf_check_sec_info(struct btf_verifier_env *env,
4060                               u32 btf_data_size)
4061 {
4062         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4063         u32 total, expected_total, i;
4064         const struct btf_header *hdr;
4065         const struct btf *btf;
4066
4067         btf = env->btf;
4068         hdr = &btf->hdr;
4069
4070         /* Populate the secs from hdr */
4071         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4072                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4073                                                    btf_sec_info_offset[i]);
4074
4075         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4076              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4077
4078         /* Check for gaps and overlap among sections */
4079         total = 0;
4080         expected_total = btf_data_size - hdr->hdr_len;
4081         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4082                 if (expected_total < secs[i].off) {
4083                         btf_verifier_log(env, "Invalid section offset");
4084                         return -EINVAL;
4085                 }
4086                 if (total < secs[i].off) {
4087                         /* gap */
4088                         btf_verifier_log(env, "Unsupported section found");
4089                         return -EINVAL;
4090                 }
4091                 if (total > secs[i].off) {
4092                         btf_verifier_log(env, "Section overlap found");
4093                         return -EINVAL;
4094                 }
4095                 if (expected_total - total < secs[i].len) {
4096                         btf_verifier_log(env,
4097                                          "Total section length too long");
4098                         return -EINVAL;
4099                 }
4100                 total += secs[i].len;
4101         }
4102
4103         /* There is data other than hdr and known sections */
4104         if (expected_total != total) {
4105                 btf_verifier_log(env, "Unsupported section found");
4106                 return -EINVAL;
4107         }
4108
4109         return 0;
4110 }
4111
4112 static int btf_parse_hdr(struct btf_verifier_env *env)
4113 {
4114         u32 hdr_len, hdr_copy, btf_data_size;
4115         const struct btf_header *hdr;
4116         struct btf *btf;
4117         int err;
4118
4119         btf = env->btf;
4120         btf_data_size = btf->data_size;
4121
4122         if (btf_data_size <
4123             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4124                 btf_verifier_log(env, "hdr_len not found");
4125                 return -EINVAL;
4126         }
4127
4128         hdr = btf->data;
4129         hdr_len = hdr->hdr_len;
4130         if (btf_data_size < hdr_len) {
4131                 btf_verifier_log(env, "btf_header not found");
4132                 return -EINVAL;
4133         }
4134
4135         /* Ensure the unsupported header fields are zero */
4136         if (hdr_len > sizeof(btf->hdr)) {
4137                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4138                 u8 *end = btf->data + hdr_len;
4139
4140                 for (; expected_zero < end; expected_zero++) {
4141                         if (*expected_zero) {
4142                                 btf_verifier_log(env, "Unsupported btf_header");
4143                                 return -E2BIG;
4144                         }
4145                 }
4146         }
4147
4148         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4149         memcpy(&btf->hdr, btf->data, hdr_copy);
4150
4151         hdr = &btf->hdr;
4152
4153         btf_verifier_log_hdr(env, btf_data_size);
4154
4155         if (hdr->magic != BTF_MAGIC) {
4156                 btf_verifier_log(env, "Invalid magic");
4157                 return -EINVAL;
4158         }
4159
4160         if (hdr->version != BTF_VERSION) {
4161                 btf_verifier_log(env, "Unsupported version");
4162                 return -ENOTSUPP;
4163         }
4164
4165         if (hdr->flags) {
4166                 btf_verifier_log(env, "Unsupported flags");
4167                 return -ENOTSUPP;
4168         }
4169
4170         if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4171                 btf_verifier_log(env, "No data");
4172                 return -EINVAL;
4173         }
4174
4175         err = btf_check_sec_info(env, btf_data_size);
4176         if (err)
4177                 return err;
4178
4179         return 0;
4180 }
4181
4182 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4183                              u32 log_level, char __user *log_ubuf, u32 log_size)
4184 {
4185         struct btf_verifier_env *env = NULL;
4186         struct bpf_verifier_log *log;
4187         struct btf *btf = NULL;
4188         u8 *data;
4189         int err;
4190
4191         if (btf_data_size > BTF_MAX_SIZE)
4192                 return ERR_PTR(-E2BIG);
4193
4194         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4195         if (!env)
4196                 return ERR_PTR(-ENOMEM);
4197
4198         log = &env->log;
4199         if (log_level || log_ubuf || log_size) {
4200                 /* user requested verbose verifier output
4201                  * and supplied buffer to store the verification trace
4202                  */
4203                 log->level = log_level;
4204                 log->ubuf = log_ubuf;
4205                 log->len_total = log_size;
4206
4207                 /* log attributes have to be sane */
4208                 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4209                     !log->level || !log->ubuf) {
4210                         err = -EINVAL;
4211                         goto errout;
4212                 }
4213         }
4214
4215         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4216         if (!btf) {
4217                 err = -ENOMEM;
4218                 goto errout;
4219         }
4220         env->btf = btf;
4221
4222         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4223         if (!data) {
4224                 err = -ENOMEM;
4225                 goto errout;
4226         }
4227
4228         btf->data = data;
4229         btf->data_size = btf_data_size;
4230
4231         if (copy_from_user(data, btf_data, btf_data_size)) {
4232                 err = -EFAULT;
4233                 goto errout;
4234         }
4235
4236         err = btf_parse_hdr(env);
4237         if (err)
4238                 goto errout;
4239
4240         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4241
4242         err = btf_parse_str_sec(env);
4243         if (err)
4244                 goto errout;
4245
4246         err = btf_parse_type_sec(env);
4247         if (err)
4248                 goto errout;
4249
4250         if (log->level && bpf_verifier_log_full(log)) {
4251                 err = -ENOSPC;
4252                 goto errout;
4253         }
4254
4255         btf_verifier_env_free(env);
4256         refcount_set(&btf->refcnt, 1);
4257         return btf;
4258
4259 errout:
4260         btf_verifier_env_free(env);
4261         if (btf)
4262                 btf_free(btf);
4263         return ERR_PTR(err);
4264 }
4265
4266 extern char __weak __start_BTF[];
4267 extern char __weak __stop_BTF[];
4268 extern struct btf *btf_vmlinux;
4269
4270 #define BPF_MAP_TYPE(_id, _ops)
4271 #define BPF_LINK_TYPE(_id, _name)
4272 static union {
4273         struct bpf_ctx_convert {
4274 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4275         prog_ctx_type _id##_prog; \
4276         kern_ctx_type _id##_kern;
4277 #include <linux/bpf_types.h>
4278 #undef BPF_PROG_TYPE
4279         } *__t;
4280         /* 't' is written once under lock. Read many times. */
4281         const struct btf_type *t;
4282 } bpf_ctx_convert;
4283 enum {
4284 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4285         __ctx_convert##_id,
4286 #include <linux/bpf_types.h>
4287 #undef BPF_PROG_TYPE
4288         __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4289 };
4290 static u8 bpf_ctx_convert_map[] = {
4291 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4292         [_id] = __ctx_convert##_id,
4293 #include <linux/bpf_types.h>
4294 #undef BPF_PROG_TYPE
4295         0, /* avoid empty array */
4296 };
4297 #undef BPF_MAP_TYPE
4298 #undef BPF_LINK_TYPE
4299
4300 static const struct btf_member *
4301 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4302                       const struct btf_type *t, enum bpf_prog_type prog_type,
4303                       int arg)
4304 {
4305         const struct btf_type *conv_struct;
4306         const struct btf_type *ctx_struct;
4307         const struct btf_member *ctx_type;
4308         const char *tname, *ctx_tname;
4309
4310         conv_struct = bpf_ctx_convert.t;
4311         if (!conv_struct) {
4312                 bpf_log(log, "btf_vmlinux is malformed\n");
4313                 return NULL;
4314         }
4315         t = btf_type_by_id(btf, t->type);
4316         while (btf_type_is_modifier(t))
4317                 t = btf_type_by_id(btf, t->type);
4318         if (!btf_type_is_struct(t)) {
4319                 /* Only pointer to struct is supported for now.
4320                  * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4321                  * is not supported yet.
4322                  * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4323                  */
4324                 if (log->level & BPF_LOG_LEVEL)
4325                         bpf_log(log, "arg#%d type is not a struct\n", arg);
4326                 return NULL;
4327         }
4328         tname = btf_name_by_offset(btf, t->name_off);
4329         if (!tname) {
4330                 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4331                 return NULL;
4332         }
4333         /* prog_type is valid bpf program type. No need for bounds check. */
4334         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4335         /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4336          * Like 'struct __sk_buff'
4337          */
4338         ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4339         if (!ctx_struct)
4340                 /* should not happen */
4341                 return NULL;
4342         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4343         if (!ctx_tname) {
4344                 /* should not happen */
4345                 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4346                 return NULL;
4347         }
4348         /* only compare that prog's ctx type name is the same as
4349          * kernel expects. No need to compare field by field.
4350          * It's ok for bpf prog to do:
4351          * struct __sk_buff {};
4352          * int socket_filter_bpf_prog(struct __sk_buff *skb)
4353          * { // no fields of skb are ever used }
4354          */
4355         if (strcmp(ctx_tname, tname))
4356                 return NULL;
4357         return ctx_type;
4358 }
4359
4360 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4361 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4362 #define BPF_LINK_TYPE(_id, _name)
4363 #define BPF_MAP_TYPE(_id, _ops) \
4364         [_id] = &_ops,
4365 #include <linux/bpf_types.h>
4366 #undef BPF_PROG_TYPE
4367 #undef BPF_LINK_TYPE
4368 #undef BPF_MAP_TYPE
4369 };
4370
4371 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4372                                     struct bpf_verifier_log *log)
4373 {
4374         const struct bpf_map_ops *ops;
4375         int i, btf_id;
4376
4377         for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4378                 ops = btf_vmlinux_map_ops[i];
4379                 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4380                         continue;
4381                 if (!ops->map_btf_name || !ops->map_btf_id) {
4382                         bpf_log(log, "map type %d is misconfigured\n", i);
4383                         return -EINVAL;
4384                 }
4385                 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4386                                                BTF_KIND_STRUCT);
4387                 if (btf_id < 0)
4388                         return btf_id;
4389                 *ops->map_btf_id = btf_id;
4390         }
4391
4392         return 0;
4393 }
4394
4395 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4396                                      struct btf *btf,
4397                                      const struct btf_type *t,
4398                                      enum bpf_prog_type prog_type,
4399                                      int arg)
4400 {
4401         const struct btf_member *prog_ctx_type, *kern_ctx_type;
4402
4403         prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4404         if (!prog_ctx_type)
4405                 return -ENOENT;
4406         kern_ctx_type = prog_ctx_type + 1;
4407         return kern_ctx_type->type;
4408 }
4409
4410 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4411 BTF_ID(struct, bpf_ctx_convert)
4412
4413 struct btf *btf_parse_vmlinux(void)
4414 {
4415         struct btf_verifier_env *env = NULL;
4416         struct bpf_verifier_log *log;
4417         struct btf *btf = NULL;
4418         int err;
4419
4420         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4421         if (!env)
4422                 return ERR_PTR(-ENOMEM);
4423
4424         log = &env->log;
4425         log->level = BPF_LOG_KERNEL;
4426
4427         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4428         if (!btf) {
4429                 err = -ENOMEM;
4430                 goto errout;
4431         }
4432         env->btf = btf;
4433
4434         btf->data = __start_BTF;
4435         btf->data_size = __stop_BTF - __start_BTF;
4436         btf->kernel_btf = true;
4437         snprintf(btf->name, sizeof(btf->name), "vmlinux");
4438
4439         err = btf_parse_hdr(env);
4440         if (err)
4441                 goto errout;
4442
4443         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4444
4445         err = btf_parse_str_sec(env);
4446         if (err)
4447                 goto errout;
4448
4449         err = btf_check_all_metas(env);
4450         if (err)
4451                 goto errout;
4452
4453         /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4454         bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4455
4456         /* find bpf map structs for map_ptr access checking */
4457         err = btf_vmlinux_map_ids_init(btf, log);
4458         if (err < 0)
4459                 goto errout;
4460
4461         bpf_struct_ops_init(btf, log);
4462
4463         refcount_set(&btf->refcnt, 1);
4464
4465         err = btf_alloc_id(btf);
4466         if (err)
4467                 goto errout;
4468
4469         btf_verifier_env_free(env);
4470         return btf;
4471
4472 errout:
4473         btf_verifier_env_free(env);
4474         if (btf) {
4475                 kvfree(btf->types);
4476                 kfree(btf);
4477         }
4478         return ERR_PTR(err);
4479 }
4480
4481 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4482
4483 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4484 {
4485         struct btf_verifier_env *env = NULL;
4486         struct bpf_verifier_log *log;
4487         struct btf *btf = NULL, *base_btf;
4488         int err;
4489
4490         base_btf = bpf_get_btf_vmlinux();
4491         if (IS_ERR(base_btf))
4492                 return base_btf;
4493         if (!base_btf)
4494                 return ERR_PTR(-EINVAL);
4495
4496         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4497         if (!env)
4498                 return ERR_PTR(-ENOMEM);
4499
4500         log = &env->log;
4501         log->level = BPF_LOG_KERNEL;
4502
4503         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4504         if (!btf) {
4505                 err = -ENOMEM;
4506                 goto errout;
4507         }
4508         env->btf = btf;
4509
4510         btf->base_btf = base_btf;
4511         btf->start_id = base_btf->nr_types;
4512         btf->start_str_off = base_btf->hdr.str_len;
4513         btf->kernel_btf = true;
4514         snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4515
4516         btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4517         if (!btf->data) {
4518                 err = -ENOMEM;
4519                 goto errout;
4520         }
4521         memcpy(btf->data, data, data_size);
4522         btf->data_size = data_size;
4523
4524         err = btf_parse_hdr(env);
4525         if (err)
4526                 goto errout;
4527
4528         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4529
4530         err = btf_parse_str_sec(env);
4531         if (err)
4532                 goto errout;
4533
4534         err = btf_check_all_metas(env);
4535         if (err)
4536                 goto errout;
4537
4538         btf_verifier_env_free(env);
4539         refcount_set(&btf->refcnt, 1);
4540         return btf;
4541
4542 errout:
4543         btf_verifier_env_free(env);
4544         if (btf) {
4545                 kvfree(btf->data);
4546                 kvfree(btf->types);
4547                 kfree(btf);
4548         }
4549         return ERR_PTR(err);
4550 }
4551
4552 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4553
4554 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4555 {
4556         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4557
4558         if (tgt_prog)
4559                 return tgt_prog->aux->btf;
4560         else
4561                 return prog->aux->attach_btf;
4562 }
4563
4564 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4565 {
4566         /* t comes in already as a pointer */
4567         t = btf_type_by_id(btf, t->type);
4568
4569         /* allow const */
4570         if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4571                 t = btf_type_by_id(btf, t->type);
4572
4573         /* char, signed char, unsigned char */
4574         return btf_type_is_int(t) && t->size == 1;
4575 }
4576
4577 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4578                     const struct bpf_prog *prog,
4579                     struct bpf_insn_access_aux *info)
4580 {
4581         const struct btf_type *t = prog->aux->attach_func_proto;
4582         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4583         struct btf *btf = bpf_prog_get_target_btf(prog);
4584         const char *tname = prog->aux->attach_func_name;
4585         struct bpf_verifier_log *log = info->log;
4586         const struct btf_param *args;
4587         u32 nr_args, arg;
4588         int i, ret;
4589
4590         if (off % 8) {
4591                 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4592                         tname, off);
4593                 return false;
4594         }
4595         arg = off / 8;
4596         args = (const struct btf_param *)(t + 1);
4597         /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4598         nr_args = t ? btf_type_vlen(t) : 5;
4599         if (prog->aux->attach_btf_trace) {
4600                 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4601                 args++;
4602                 nr_args--;
4603         }
4604
4605         if (arg > nr_args) {
4606                 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4607                         tname, arg + 1);
4608                 return false;
4609         }
4610
4611         if (arg == nr_args) {
4612                 switch (prog->expected_attach_type) {
4613                 case BPF_LSM_MAC:
4614                 case BPF_TRACE_FEXIT:
4615                         /* When LSM programs are attached to void LSM hooks
4616                          * they use FEXIT trampolines and when attached to
4617                          * int LSM hooks, they use MODIFY_RETURN trampolines.
4618                          *
4619                          * While the LSM programs are BPF_MODIFY_RETURN-like
4620                          * the check:
4621                          *
4622                          *      if (ret_type != 'int')
4623                          *              return -EINVAL;
4624                          *
4625                          * is _not_ done here. This is still safe as LSM hooks
4626                          * have only void and int return types.
4627                          */
4628                         if (!t)
4629                                 return true;
4630                         t = btf_type_by_id(btf, t->type);
4631                         break;
4632                 case BPF_MODIFY_RETURN:
4633                         /* For now the BPF_MODIFY_RETURN can only be attached to
4634                          * functions that return an int.
4635                          */
4636                         if (!t)
4637                                 return false;
4638
4639                         t = btf_type_skip_modifiers(btf, t->type, NULL);
4640                         if (!btf_type_is_small_int(t)) {
4641                                 bpf_log(log,
4642                                         "ret type %s not allowed for fmod_ret\n",
4643                                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4644                                 return false;
4645                         }
4646                         break;
4647                 default:
4648                         bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4649                                 tname, arg + 1);
4650                         return false;
4651                 }
4652         } else {
4653                 if (!t)
4654                         /* Default prog with 5 args */
4655                         return true;
4656                 t = btf_type_by_id(btf, args[arg].type);
4657         }
4658
4659         /* skip modifiers */
4660         while (btf_type_is_modifier(t))
4661                 t = btf_type_by_id(btf, t->type);
4662         if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4663                 /* accessing a scalar */
4664                 return true;
4665         if (!btf_type_is_ptr(t)) {
4666                 bpf_log(log,
4667                         "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4668                         tname, arg,
4669                         __btf_name_by_offset(btf, t->name_off),
4670                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4671                 return false;
4672         }
4673
4674         /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4675         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4676                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4677
4678                 if (ctx_arg_info->offset == off &&
4679                     (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4680                      ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4681                         info->reg_type = ctx_arg_info->reg_type;
4682                         return true;
4683                 }
4684         }
4685
4686         if (t->type == 0)
4687                 /* This is a pointer to void.
4688                  * It is the same as scalar from the verifier safety pov.
4689                  * No further pointer walking is allowed.
4690                  */
4691                 return true;
4692
4693         if (is_string_ptr(btf, t))
4694                 return true;
4695
4696         /* this is a pointer to another type */
4697         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4698                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4699
4700                 if (ctx_arg_info->offset == off) {
4701                         info->reg_type = ctx_arg_info->reg_type;
4702                         info->btf = btf_vmlinux;
4703                         info->btf_id = ctx_arg_info->btf_id;
4704                         return true;
4705                 }
4706         }
4707
4708         info->reg_type = PTR_TO_BTF_ID;
4709         if (tgt_prog) {
4710                 enum bpf_prog_type tgt_type;
4711
4712                 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4713                         tgt_type = tgt_prog->aux->saved_dst_prog_type;
4714                 else
4715                         tgt_type = tgt_prog->type;
4716
4717                 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4718                 if (ret > 0) {
4719                         info->btf = btf_vmlinux;
4720                         info->btf_id = ret;
4721                         return true;
4722                 } else {
4723                         return false;
4724                 }
4725         }
4726
4727         info->btf = btf;
4728         info->btf_id = t->type;
4729         t = btf_type_by_id(btf, t->type);
4730         /* skip modifiers */
4731         while (btf_type_is_modifier(t)) {
4732                 info->btf_id = t->type;
4733                 t = btf_type_by_id(btf, t->type);
4734         }
4735         if (!btf_type_is_struct(t)) {
4736                 bpf_log(log,
4737                         "func '%s' arg%d type %s is not a struct\n",
4738                         tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4739                 return false;
4740         }
4741         bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4742                 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4743                 __btf_name_by_offset(btf, t->name_off));
4744         return true;
4745 }
4746
4747 enum bpf_struct_walk_result {
4748         /* < 0 error */
4749         WALK_SCALAR = 0,
4750         WALK_PTR,
4751         WALK_STRUCT,
4752 };
4753
4754 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4755                            const struct btf_type *t, int off, int size,
4756                            u32 *next_btf_id)
4757 {
4758         u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4759         const struct btf_type *mtype, *elem_type = NULL;
4760         const struct btf_member *member;
4761         const char *tname, *mname;
4762         u32 vlen, elem_id, mid;
4763
4764 again:
4765         tname = __btf_name_by_offset(btf, t->name_off);
4766         if (!btf_type_is_struct(t)) {
4767                 bpf_log(log, "Type '%s' is not a struct\n", tname);
4768                 return -EINVAL;
4769         }
4770
4771         vlen = btf_type_vlen(t);
4772         if (off + size > t->size) {
4773                 /* If the last element is a variable size array, we may
4774                  * need to relax the rule.
4775                  */
4776                 struct btf_array *array_elem;
4777
4778                 if (vlen == 0)
4779                         goto error;
4780
4781                 member = btf_type_member(t) + vlen - 1;
4782                 mtype = btf_type_skip_modifiers(btf, member->type,
4783                                                 NULL);
4784                 if (!btf_type_is_array(mtype))
4785                         goto error;
4786
4787                 array_elem = (struct btf_array *)(mtype + 1);
4788                 if (array_elem->nelems != 0)
4789                         goto error;
4790
4791                 moff = btf_member_bit_offset(t, member) / 8;
4792                 if (off < moff)
4793                         goto error;
4794
4795                 /* Only allow structure for now, can be relaxed for
4796                  * other types later.
4797                  */
4798                 t = btf_type_skip_modifiers(btf, array_elem->type,
4799                                             NULL);
4800                 if (!btf_type_is_struct(t))
4801                         goto error;
4802
4803                 off = (off - moff) % t->size;
4804                 goto again;
4805
4806 error:
4807                 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4808                         tname, off, size);
4809                 return -EACCES;
4810         }
4811
4812         for_each_member(i, t, member) {
4813                 /* offset of the field in bytes */
4814                 moff = btf_member_bit_offset(t, member) / 8;
4815                 if (off + size <= moff)
4816                         /* won't find anything, field is already too far */
4817                         break;
4818
4819                 if (btf_member_bitfield_size(t, member)) {
4820                         u32 end_bit = btf_member_bit_offset(t, member) +
4821                                 btf_member_bitfield_size(t, member);
4822
4823                         /* off <= moff instead of off == moff because clang
4824                          * does not generate a BTF member for anonymous
4825                          * bitfield like the ":16" here:
4826                          * struct {
4827                          *      int :16;
4828                          *      int x:8;
4829                          * };
4830                          */
4831                         if (off <= moff &&
4832                             BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4833                                 return WALK_SCALAR;
4834
4835                         /* off may be accessing a following member
4836                          *
4837                          * or
4838                          *
4839                          * Doing partial access at either end of this
4840                          * bitfield.  Continue on this case also to
4841                          * treat it as not accessing this bitfield
4842                          * and eventually error out as field not
4843                          * found to keep it simple.
4844                          * It could be relaxed if there was a legit
4845                          * partial access case later.
4846                          */
4847                         continue;
4848                 }
4849
4850                 /* In case of "off" is pointing to holes of a struct */
4851                 if (off < moff)
4852                         break;
4853
4854                 /* type of the field */
4855                 mid = member->type;
4856                 mtype = btf_type_by_id(btf, member->type);
4857                 mname = __btf_name_by_offset(btf, member->name_off);
4858
4859                 mtype = __btf_resolve_size(btf, mtype, &msize,
4860                                            &elem_type, &elem_id, &total_nelems,
4861                                            &mid);
4862                 if (IS_ERR(mtype)) {
4863                         bpf_log(log, "field %s doesn't have size\n", mname);
4864                         return -EFAULT;
4865                 }
4866
4867                 mtrue_end = moff + msize;
4868                 if (off >= mtrue_end)
4869                         /* no overlap with member, keep iterating */
4870                         continue;
4871
4872                 if (btf_type_is_array(mtype)) {
4873                         u32 elem_idx;
4874
4875                         /* __btf_resolve_size() above helps to
4876                          * linearize a multi-dimensional array.
4877                          *
4878                          * The logic here is treating an array
4879                          * in a struct as the following way:
4880                          *
4881                          * struct outer {
4882                          *      struct inner array[2][2];
4883                          * };
4884                          *
4885                          * looks like:
4886                          *
4887                          * struct outer {
4888                          *      struct inner array_elem0;
4889                          *      struct inner array_elem1;
4890                          *      struct inner array_elem2;
4891                          *      struct inner array_elem3;
4892                          * };
4893                          *
4894                          * When accessing outer->array[1][0], it moves
4895                          * moff to "array_elem2", set mtype to
4896                          * "struct inner", and msize also becomes
4897                          * sizeof(struct inner).  Then most of the
4898                          * remaining logic will fall through without
4899                          * caring the current member is an array or
4900                          * not.
4901                          *
4902                          * Unlike mtype/msize/moff, mtrue_end does not
4903                          * change.  The naming difference ("_true") tells
4904                          * that it is not always corresponding to
4905                          * the current mtype/msize/moff.
4906                          * It is the true end of the current
4907                          * member (i.e. array in this case).  That
4908                          * will allow an int array to be accessed like
4909                          * a scratch space,
4910                          * i.e. allow access beyond the size of
4911                          *      the array's element as long as it is
4912                          *      within the mtrue_end boundary.
4913                          */
4914
4915                         /* skip empty array */
4916                         if (moff == mtrue_end)
4917                                 continue;
4918
4919                         msize /= total_nelems;
4920                         elem_idx = (off - moff) / msize;
4921                         moff += elem_idx * msize;
4922                         mtype = elem_type;
4923                         mid = elem_id;
4924                 }
4925
4926                 /* the 'off' we're looking for is either equal to start
4927                  * of this field or inside of this struct
4928                  */
4929                 if (btf_type_is_struct(mtype)) {
4930                         /* our field must be inside that union or struct */
4931                         t = mtype;
4932
4933                         /* return if the offset matches the member offset */
4934                         if (off == moff) {
4935                                 *next_btf_id = mid;
4936                                 return WALK_STRUCT;
4937                         }
4938
4939                         /* adjust offset we're looking for */
4940                         off -= moff;
4941                         goto again;
4942                 }
4943
4944                 if (btf_type_is_ptr(mtype)) {
4945                         const struct btf_type *stype;
4946                         u32 id;
4947
4948                         if (msize != size || off != moff) {
4949                                 bpf_log(log,
4950                                         "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4951                                         mname, moff, tname, off, size);
4952                                 return -EACCES;
4953                         }
4954                         stype = btf_type_skip_modifiers(btf, mtype->type, &id);
4955                         if (btf_type_is_struct(stype)) {
4956                                 *next_btf_id = id;
4957                                 return WALK_PTR;
4958                         }
4959                 }
4960
4961                 /* Allow more flexible access within an int as long as
4962                  * it is within mtrue_end.
4963                  * Since mtrue_end could be the end of an array,
4964                  * that also allows using an array of int as a scratch
4965                  * space. e.g. skb->cb[].
4966                  */
4967                 if (off + size > mtrue_end) {
4968                         bpf_log(log,
4969                                 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4970                                 mname, mtrue_end, tname, off, size);
4971                         return -EACCES;
4972                 }
4973
4974                 return WALK_SCALAR;
4975         }
4976         bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4977         return -EINVAL;
4978 }
4979
4980 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
4981                       const struct btf_type *t, int off, int size,
4982                       enum bpf_access_type atype __maybe_unused,
4983                       u32 *next_btf_id)
4984 {
4985         int err;
4986         u32 id;
4987
4988         do {
4989                 err = btf_struct_walk(log, btf, t, off, size, &id);
4990
4991                 switch (err) {
4992                 case WALK_PTR:
4993                         /* If we found the pointer or scalar on t+off,
4994                          * we're done.
4995                          */
4996                         *next_btf_id = id;
4997                         return PTR_TO_BTF_ID;
4998                 case WALK_SCALAR:
4999                         return SCALAR_VALUE;
5000                 case WALK_STRUCT:
5001                         /* We found nested struct, so continue the search
5002                          * by diving in it. At this point the offset is
5003                          * aligned with the new type, so set it to 0.
5004                          */
5005                         t = btf_type_by_id(btf, id);
5006                         off = 0;
5007                         break;
5008                 default:
5009                         /* It's either error or unknown return value..
5010                          * scream and leave.
5011                          */
5012                         if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5013                                 return -EINVAL;
5014                         return err;
5015                 }
5016         } while (t);
5017
5018         return -EINVAL;
5019 }
5020
5021 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5022  * the same. Trivial ID check is not enough due to module BTFs, because we can
5023  * end up with two different module BTFs, but IDs point to the common type in
5024  * vmlinux BTF.
5025  */
5026 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5027                                const struct btf *btf2, u32 id2)
5028 {
5029         if (id1 != id2)
5030                 return false;
5031         if (btf1 == btf2)
5032                 return true;
5033         return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5034 }
5035
5036 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5037                           const struct btf *btf, u32 id, int off,
5038                           const struct btf *need_btf, u32 need_type_id)
5039 {
5040         const struct btf_type *type;
5041         int err;
5042
5043         /* Are we already done? */
5044         if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5045                 return true;
5046
5047 again:
5048         type = btf_type_by_id(btf, id);
5049         if (!type)
5050                 return false;
5051         err = btf_struct_walk(log, btf, type, off, 1, &id);
5052         if (err != WALK_STRUCT)
5053                 return false;
5054
5055         /* We found nested struct object. If it matches
5056          * the requested ID, we're done. Otherwise let's
5057          * continue the search with offset 0 in the new
5058          * type.
5059          */
5060         if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5061                 off = 0;
5062                 goto again;
5063         }
5064
5065         return true;
5066 }
5067
5068 static int __get_type_size(struct btf *btf, u32 btf_id,
5069                            const struct btf_type **bad_type)
5070 {
5071         const struct btf_type *t;
5072
5073         if (!btf_id)
5074                 /* void */
5075                 return 0;
5076         t = btf_type_by_id(btf, btf_id);
5077         while (t && btf_type_is_modifier(t))
5078                 t = btf_type_by_id(btf, t->type);
5079         if (!t) {
5080                 *bad_type = btf_type_by_id(btf, 0);
5081                 return -EINVAL;
5082         }
5083         if (btf_type_is_ptr(t))
5084                 /* kernel size of pointer. Not BPF's size of pointer*/
5085                 return sizeof(void *);
5086         if (btf_type_is_int(t) || btf_type_is_enum(t))
5087                 return t->size;
5088         *bad_type = t;
5089         return -EINVAL;
5090 }
5091
5092 int btf_distill_func_proto(struct bpf_verifier_log *log,
5093                            struct btf *btf,
5094                            const struct btf_type *func,
5095                            const char *tname,
5096                            struct btf_func_model *m)
5097 {
5098         const struct btf_param *args;
5099         const struct btf_type *t;
5100         u32 i, nargs;
5101         int ret;
5102
5103         if (!func) {
5104                 /* BTF function prototype doesn't match the verifier types.
5105                  * Fall back to 5 u64 args.
5106                  */
5107                 for (i = 0; i < 5; i++)
5108                         m->arg_size[i] = 8;
5109                 m->ret_size = 8;
5110                 m->nr_args = 5;
5111                 return 0;
5112         }
5113         args = (const struct btf_param *)(func + 1);
5114         nargs = btf_type_vlen(func);
5115         if (nargs >= MAX_BPF_FUNC_ARGS) {
5116                 bpf_log(log,
5117                         "The function %s has %d arguments. Too many.\n",
5118                         tname, nargs);
5119                 return -EINVAL;
5120         }
5121         ret = __get_type_size(btf, func->type, &t);
5122         if (ret < 0) {
5123                 bpf_log(log,
5124                         "The function %s return type %s is unsupported.\n",
5125                         tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5126                 return -EINVAL;
5127         }
5128         m->ret_size = ret;
5129
5130         for (i = 0; i < nargs; i++) {
5131                 ret = __get_type_size(btf, args[i].type, &t);
5132                 if (ret < 0) {
5133                         bpf_log(log,
5134                                 "The function %s arg%d type %s is unsupported.\n",
5135                                 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5136                         return -EINVAL;
5137                 }
5138                 m->arg_size[i] = ret;
5139         }
5140         m->nr_args = nargs;
5141         return 0;
5142 }
5143
5144 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5145  * t1 points to BTF_KIND_FUNC in btf1
5146  * t2 points to BTF_KIND_FUNC in btf2
5147  * Returns:
5148  * EINVAL - function prototype mismatch
5149  * EFAULT - verifier bug
5150  * 0 - 99% match. The last 1% is validated by the verifier.
5151  */
5152 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5153                                      struct btf *btf1, const struct btf_type *t1,
5154                                      struct btf *btf2, const struct btf_type *t2)
5155 {
5156         const struct btf_param *args1, *args2;
5157         const char *fn1, *fn2, *s1, *s2;
5158         u32 nargs1, nargs2, i;
5159
5160         fn1 = btf_name_by_offset(btf1, t1->name_off);
5161         fn2 = btf_name_by_offset(btf2, t2->name_off);
5162
5163         if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5164                 bpf_log(log, "%s() is not a global function\n", fn1);
5165                 return -EINVAL;
5166         }
5167         if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5168                 bpf_log(log, "%s() is not a global function\n", fn2);
5169                 return -EINVAL;
5170         }
5171
5172         t1 = btf_type_by_id(btf1, t1->type);
5173         if (!t1 || !btf_type_is_func_proto(t1))
5174                 return -EFAULT;
5175         t2 = btf_type_by_id(btf2, t2->type);
5176         if (!t2 || !btf_type_is_func_proto(t2))
5177                 return -EFAULT;
5178
5179         args1 = (const struct btf_param *)(t1 + 1);
5180         nargs1 = btf_type_vlen(t1);
5181         args2 = (const struct btf_param *)(t2 + 1);
5182         nargs2 = btf_type_vlen(t2);
5183
5184         if (nargs1 != nargs2) {
5185                 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5186                         fn1, nargs1, fn2, nargs2);
5187                 return -EINVAL;
5188         }
5189
5190         t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5191         t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5192         if (t1->info != t2->info) {
5193                 bpf_log(log,
5194                         "Return type %s of %s() doesn't match type %s of %s()\n",
5195                         btf_type_str(t1), fn1,
5196                         btf_type_str(t2), fn2);
5197                 return -EINVAL;
5198         }
5199
5200         for (i = 0; i < nargs1; i++) {
5201                 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5202                 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5203
5204                 if (t1->info != t2->info) {
5205                         bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5206                                 i, fn1, btf_type_str(t1),
5207                                 fn2, btf_type_str(t2));
5208                         return -EINVAL;
5209                 }
5210                 if (btf_type_has_size(t1) && t1->size != t2->size) {
5211                         bpf_log(log,
5212                                 "arg%d in %s() has size %d while %s() has %d\n",
5213                                 i, fn1, t1->size,
5214                                 fn2, t2->size);
5215                         return -EINVAL;
5216                 }
5217
5218                 /* global functions are validated with scalars and pointers
5219                  * to context only. And only global functions can be replaced.
5220                  * Hence type check only those types.
5221                  */
5222                 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5223                         continue;
5224                 if (!btf_type_is_ptr(t1)) {
5225                         bpf_log(log,
5226                                 "arg%d in %s() has unrecognized type\n",
5227                                 i, fn1);
5228                         return -EINVAL;
5229                 }
5230                 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5231                 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5232                 if (!btf_type_is_struct(t1)) {
5233                         bpf_log(log,
5234                                 "arg%d in %s() is not a pointer to context\n",
5235                                 i, fn1);
5236                         return -EINVAL;
5237                 }
5238                 if (!btf_type_is_struct(t2)) {
5239                         bpf_log(log,
5240                                 "arg%d in %s() is not a pointer to context\n",
5241                                 i, fn2);
5242                         return -EINVAL;
5243                 }
5244                 /* This is an optional check to make program writing easier.
5245                  * Compare names of structs and report an error to the user.
5246                  * btf_prepare_func_args() already checked that t2 struct
5247                  * is a context type. btf_prepare_func_args() will check
5248                  * later that t1 struct is a context type as well.
5249                  */
5250                 s1 = btf_name_by_offset(btf1, t1->name_off);
5251                 s2 = btf_name_by_offset(btf2, t2->name_off);
5252                 if (strcmp(s1, s2)) {
5253                         bpf_log(log,
5254                                 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5255                                 i, fn1, s1, fn2, s2);
5256                         return -EINVAL;
5257                 }
5258         }
5259         return 0;
5260 }
5261
5262 /* Compare BTFs of given program with BTF of target program */
5263 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5264                          struct btf *btf2, const struct btf_type *t2)
5265 {
5266         struct btf *btf1 = prog->aux->btf;
5267         const struct btf_type *t1;
5268         u32 btf_id = 0;
5269
5270         if (!prog->aux->func_info) {
5271                 bpf_log(log, "Program extension requires BTF\n");
5272                 return -EINVAL;
5273         }
5274
5275         btf_id = prog->aux->func_info[0].type_id;
5276         if (!btf_id)
5277                 return -EFAULT;
5278
5279         t1 = btf_type_by_id(btf1, btf_id);
5280         if (!t1 || !btf_type_is_func(t1))
5281                 return -EFAULT;
5282
5283         return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5284 }
5285
5286 /* Compare BTF of a function with given bpf_reg_state.
5287  * Returns:
5288  * EFAULT - there is a verifier bug. Abort verification.
5289  * EINVAL - there is a type mismatch or BTF is not available.
5290  * 0 - BTF matches with what bpf_reg_state expects.
5291  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5292  */
5293 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5294                              struct bpf_reg_state *regs)
5295 {
5296         struct bpf_verifier_log *log = &env->log;
5297         struct bpf_prog *prog = env->prog;
5298         struct btf *btf = prog->aux->btf;
5299         const struct btf_param *args;
5300         const struct btf_type *t, *ref_t;
5301         u32 i, nargs, btf_id, type_size;
5302         const char *tname;
5303         bool is_global;
5304
5305         if (!prog->aux->func_info)
5306                 return -EINVAL;
5307
5308         btf_id = prog->aux->func_info[subprog].type_id;
5309         if (!btf_id)
5310                 return -EFAULT;
5311
5312         if (prog->aux->func_info_aux[subprog].unreliable)
5313                 return -EINVAL;
5314
5315         t = btf_type_by_id(btf, btf_id);
5316         if (!t || !btf_type_is_func(t)) {
5317                 /* These checks were already done by the verifier while loading
5318                  * struct bpf_func_info
5319                  */
5320                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5321                         subprog);
5322                 return -EFAULT;
5323         }
5324         tname = btf_name_by_offset(btf, t->name_off);
5325
5326         t = btf_type_by_id(btf, t->type);
5327         if (!t || !btf_type_is_func_proto(t)) {
5328                 bpf_log(log, "Invalid BTF of func %s\n", tname);
5329                 return -EFAULT;
5330         }
5331         args = (const struct btf_param *)(t + 1);
5332         nargs = btf_type_vlen(t);
5333         if (nargs > 5) {
5334                 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5335                 goto out;
5336         }
5337
5338         is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5339         /* check that BTF function arguments match actual types that the
5340          * verifier sees.
5341          */
5342         for (i = 0; i < nargs; i++) {
5343                 struct bpf_reg_state *reg = &regs[i + 1];
5344
5345                 t = btf_type_by_id(btf, args[i].type);
5346                 while (btf_type_is_modifier(t))
5347                         t = btf_type_by_id(btf, t->type);
5348                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5349                         if (reg->type == SCALAR_VALUE)
5350                                 continue;
5351                         bpf_log(log, "R%d is not a scalar\n", i + 1);
5352                         goto out;
5353                 }
5354                 if (btf_type_is_ptr(t)) {
5355                         /* If function expects ctx type in BTF check that caller
5356                          * is passing PTR_TO_CTX.
5357                          */
5358                         if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5359                                 if (reg->type != PTR_TO_CTX) {
5360                                         bpf_log(log,
5361                                                 "arg#%d expected pointer to ctx, but got %s\n",
5362                                                 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5363                                         goto out;
5364                                 }
5365                                 if (check_ctx_reg(env, reg, i + 1))
5366                                         goto out;
5367                                 continue;
5368                         }
5369
5370                         if (!is_global)
5371                                 goto out;
5372
5373                         t = btf_type_skip_modifiers(btf, t->type, NULL);
5374
5375                         ref_t = btf_resolve_size(btf, t, &type_size);
5376                         if (IS_ERR(ref_t)) {
5377                                 bpf_log(log,
5378                                     "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5379                                     i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5380                                         PTR_ERR(ref_t));
5381                                 goto out;
5382                         }
5383
5384                         if (check_mem_reg(env, reg, i + 1, type_size))
5385                                 goto out;
5386
5387                         continue;
5388                 }
5389                 bpf_log(log, "Unrecognized arg#%d type %s\n",
5390                         i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5391                 goto out;
5392         }
5393         return 0;
5394 out:
5395         /* Compiler optimizations can remove arguments from static functions
5396          * or mismatched type can be passed into a global function.
5397          * In such cases mark the function as unreliable from BTF point of view.
5398          */
5399         prog->aux->func_info_aux[subprog].unreliable = true;
5400         return -EINVAL;
5401 }
5402
5403 /* Convert BTF of a function into bpf_reg_state if possible
5404  * Returns:
5405  * EFAULT - there is a verifier bug. Abort verification.
5406  * EINVAL - cannot convert BTF.
5407  * 0 - Successfully converted BTF into bpf_reg_state
5408  * (either PTR_TO_CTX or SCALAR_VALUE).
5409  */
5410 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5411                           struct bpf_reg_state *regs)
5412 {
5413         struct bpf_verifier_log *log = &env->log;
5414         struct bpf_prog *prog = env->prog;
5415         enum bpf_prog_type prog_type = prog->type;
5416         struct btf *btf = prog->aux->btf;
5417         const struct btf_param *args;
5418         const struct btf_type *t, *ref_t;
5419         u32 i, nargs, btf_id;
5420         const char *tname;
5421
5422         if (!prog->aux->func_info ||
5423             prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5424                 bpf_log(log, "Verifier bug\n");
5425                 return -EFAULT;
5426         }
5427
5428         btf_id = prog->aux->func_info[subprog].type_id;
5429         if (!btf_id) {
5430                 bpf_log(log, "Global functions need valid BTF\n");
5431                 return -EFAULT;
5432         }
5433
5434         t = btf_type_by_id(btf, btf_id);
5435         if (!t || !btf_type_is_func(t)) {
5436                 /* These checks were already done by the verifier while loading
5437                  * struct bpf_func_info
5438                  */
5439                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5440                         subprog);
5441                 return -EFAULT;
5442         }
5443         tname = btf_name_by_offset(btf, t->name_off);
5444
5445         if (log->level & BPF_LOG_LEVEL)
5446                 bpf_log(log, "Validating %s() func#%d...\n",
5447                         tname, subprog);
5448
5449         if (prog->aux->func_info_aux[subprog].unreliable) {
5450                 bpf_log(log, "Verifier bug in function %s()\n", tname);
5451                 return -EFAULT;
5452         }
5453         if (prog_type == BPF_PROG_TYPE_EXT)
5454                 prog_type = prog->aux->dst_prog->type;
5455
5456         t = btf_type_by_id(btf, t->type);
5457         if (!t || !btf_type_is_func_proto(t)) {
5458                 bpf_log(log, "Invalid type of function %s()\n", tname);
5459                 return -EFAULT;
5460         }
5461         args = (const struct btf_param *)(t + 1);
5462         nargs = btf_type_vlen(t);
5463         if (nargs > 5) {
5464                 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5465                         tname, nargs);
5466                 return -EINVAL;
5467         }
5468         /* check that function returns int */
5469         t = btf_type_by_id(btf, t->type);
5470         while (btf_type_is_modifier(t))
5471                 t = btf_type_by_id(btf, t->type);
5472         if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5473                 bpf_log(log,
5474                         "Global function %s() doesn't return scalar. Only those are supported.\n",
5475                         tname);
5476                 return -EINVAL;
5477         }
5478         /* Convert BTF function arguments into verifier types.
5479          * Only PTR_TO_CTX and SCALAR are supported atm.
5480          */
5481         for (i = 0; i < nargs; i++) {
5482                 struct bpf_reg_state *reg = &regs[i + 1];
5483
5484                 t = btf_type_by_id(btf, args[i].type);
5485                 while (btf_type_is_modifier(t))
5486                         t = btf_type_by_id(btf, t->type);
5487                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5488                         reg->type = SCALAR_VALUE;
5489                         continue;
5490                 }
5491                 if (btf_type_is_ptr(t)) {
5492                         if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5493                                 reg->type = PTR_TO_CTX;
5494                                 continue;
5495                         }
5496
5497                         t = btf_type_skip_modifiers(btf, t->type, NULL);
5498
5499                         ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5500                         if (IS_ERR(ref_t)) {
5501                                 bpf_log(log,
5502                                     "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5503                                     i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5504                                         PTR_ERR(ref_t));
5505                                 return -EINVAL;
5506                         }
5507
5508                         reg->type = PTR_TO_MEM_OR_NULL;
5509                         reg->id = ++env->id_gen;
5510
5511                         continue;
5512                 }
5513                 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5514                         i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5515                 return -EINVAL;
5516         }
5517         return 0;
5518 }
5519
5520 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5521                           struct btf_show *show)
5522 {
5523         const struct btf_type *t = btf_type_by_id(btf, type_id);
5524
5525         show->btf = btf;
5526         memset(&show->state, 0, sizeof(show->state));
5527         memset(&show->obj, 0, sizeof(show->obj));
5528
5529         btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5530 }
5531
5532 static void btf_seq_show(struct btf_show *show, const char *fmt,
5533                          va_list args)
5534 {
5535         seq_vprintf((struct seq_file *)show->target, fmt, args);
5536 }
5537
5538 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5539                             void *obj, struct seq_file *m, u64 flags)
5540 {
5541         struct btf_show sseq;
5542
5543         sseq.target = m;
5544         sseq.showfn = btf_seq_show;
5545         sseq.flags = flags;
5546
5547         btf_type_show(btf, type_id, obj, &sseq);
5548
5549         return sseq.state.status;
5550 }
5551
5552 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5553                        struct seq_file *m)
5554 {
5555         (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5556                                        BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5557                                        BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5558 }
5559
5560 struct btf_show_snprintf {
5561         struct btf_show show;
5562         int len_left;           /* space left in string */
5563         int len;                /* length we would have written */
5564 };
5565
5566 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5567                               va_list args)
5568 {
5569         struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5570         int len;
5571
5572         len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5573
5574         if (len < 0) {
5575                 ssnprintf->len_left = 0;
5576                 ssnprintf->len = len;
5577         } else if (len > ssnprintf->len_left) {
5578                 /* no space, drive on to get length we would have written */
5579                 ssnprintf->len_left = 0;
5580                 ssnprintf->len += len;
5581         } else {
5582                 ssnprintf->len_left -= len;
5583                 ssnprintf->len += len;
5584                 show->target += len;
5585         }
5586 }
5587
5588 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5589                            char *buf, int len, u64 flags)
5590 {
5591         struct btf_show_snprintf ssnprintf;
5592
5593         ssnprintf.show.target = buf;
5594         ssnprintf.show.flags = flags;
5595         ssnprintf.show.showfn = btf_snprintf_show;
5596         ssnprintf.len_left = len;
5597         ssnprintf.len = 0;
5598
5599         btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5600
5601         /* If we encontered an error, return it. */
5602         if (ssnprintf.show.state.status)
5603                 return ssnprintf.show.state.status;
5604
5605         /* Otherwise return length we would have written */
5606         return ssnprintf.len;
5607 }
5608
5609 #ifdef CONFIG_PROC_FS
5610 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5611 {
5612         const struct btf *btf = filp->private_data;
5613
5614         seq_printf(m, "btf_id:\t%u\n", btf->id);
5615 }
5616 #endif
5617
5618 static int btf_release(struct inode *inode, struct file *filp)
5619 {
5620         btf_put(filp->private_data);
5621         return 0;
5622 }
5623
5624 const struct file_operations btf_fops = {
5625 #ifdef CONFIG_PROC_FS
5626         .show_fdinfo    = bpf_btf_show_fdinfo,
5627 #endif
5628         .release        = btf_release,
5629 };
5630
5631 static int __btf_new_fd(struct btf *btf)
5632 {
5633         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5634 }
5635
5636 int btf_new_fd(const union bpf_attr *attr)
5637 {
5638         struct btf *btf;
5639         int ret;
5640
5641         btf = btf_parse(u64_to_user_ptr(attr->btf),
5642                         attr->btf_size, attr->btf_log_level,
5643                         u64_to_user_ptr(attr->btf_log_buf),
5644                         attr->btf_log_size);
5645         if (IS_ERR(btf))
5646                 return PTR_ERR(btf);
5647
5648         ret = btf_alloc_id(btf);
5649         if (ret) {
5650                 btf_free(btf);
5651                 return ret;
5652         }
5653
5654         /*
5655          * The BTF ID is published to the userspace.
5656          * All BTF free must go through call_rcu() from
5657          * now on (i.e. free by calling btf_put()).
5658          */
5659
5660         ret = __btf_new_fd(btf);
5661         if (ret < 0)
5662                 btf_put(btf);
5663
5664         return ret;
5665 }
5666
5667 struct btf *btf_get_by_fd(int fd)
5668 {
5669         struct btf *btf;
5670         struct fd f;
5671
5672         f = fdget(fd);
5673
5674         if (!f.file)
5675                 return ERR_PTR(-EBADF);
5676
5677         if (f.file->f_op != &btf_fops) {
5678                 fdput(f);
5679                 return ERR_PTR(-EINVAL);
5680         }
5681
5682         btf = f.file->private_data;
5683         refcount_inc(&btf->refcnt);
5684         fdput(f);
5685
5686         return btf;
5687 }
5688
5689 int btf_get_info_by_fd(const struct btf *btf,
5690                        const union bpf_attr *attr,
5691                        union bpf_attr __user *uattr)
5692 {
5693         struct bpf_btf_info __user *uinfo;
5694         struct bpf_btf_info info;
5695         u32 info_copy, btf_copy;
5696         void __user *ubtf;
5697         char __user *uname;
5698         u32 uinfo_len, uname_len, name_len;
5699         int ret = 0;
5700
5701         uinfo = u64_to_user_ptr(attr->info.info);
5702         uinfo_len = attr->info.info_len;
5703
5704         info_copy = min_t(u32, uinfo_len, sizeof(info));
5705         memset(&info, 0, sizeof(info));
5706         if (copy_from_user(&info, uinfo, info_copy))
5707                 return -EFAULT;
5708
5709         info.id = btf->id;
5710         ubtf = u64_to_user_ptr(info.btf);
5711         btf_copy = min_t(u32, btf->data_size, info.btf_size);
5712         if (copy_to_user(ubtf, btf->data, btf_copy))
5713                 return -EFAULT;
5714         info.btf_size = btf->data_size;
5715
5716         info.kernel_btf = btf->kernel_btf;
5717
5718         uname = u64_to_user_ptr(info.name);
5719         uname_len = info.name_len;
5720         if (!uname ^ !uname_len)
5721                 return -EINVAL;
5722
5723         name_len = strlen(btf->name);
5724         info.name_len = name_len;
5725
5726         if (uname) {
5727                 if (uname_len >= name_len + 1) {
5728                         if (copy_to_user(uname, btf->name, name_len + 1))
5729                                 return -EFAULT;
5730                 } else {
5731                         char zero = '\0';
5732
5733                         if (copy_to_user(uname, btf->name, uname_len - 1))
5734                                 return -EFAULT;
5735                         if (put_user(zero, uname + uname_len - 1))
5736                                 return -EFAULT;
5737                         /* let user-space know about too short buffer */
5738                         ret = -ENOSPC;
5739                 }
5740         }
5741
5742         if (copy_to_user(uinfo, &info, info_copy) ||
5743             put_user(info_copy, &uattr->info.info_len))
5744                 return -EFAULT;
5745
5746         return ret;
5747 }
5748
5749 int btf_get_fd_by_id(u32 id)
5750 {
5751         struct btf *btf;
5752         int fd;
5753
5754         rcu_read_lock();
5755         btf = idr_find(&btf_idr, id);
5756         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5757                 btf = ERR_PTR(-ENOENT);
5758         rcu_read_unlock();
5759
5760         if (IS_ERR(btf))
5761                 return PTR_ERR(btf);
5762
5763         fd = __btf_new_fd(btf);
5764         if (fd < 0)
5765                 btf_put(btf);
5766
5767         return fd;
5768 }
5769
5770 u32 btf_obj_id(const struct btf *btf)
5771 {
5772         return btf->id;
5773 }
5774
5775 bool btf_is_kernel(const struct btf *btf)
5776 {
5777         return btf->kernel_btf;
5778 }
5779
5780 bool btf_is_module(const struct btf *btf)
5781 {
5782         return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5783 }
5784
5785 static int btf_id_cmp_func(const void *a, const void *b)
5786 {
5787         const int *pa = a, *pb = b;
5788
5789         return *pa - *pb;
5790 }
5791
5792 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5793 {
5794         return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5795 }
5796
5797 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5798 struct btf_module {
5799         struct list_head list;
5800         struct module *module;
5801         struct btf *btf;
5802         struct bin_attribute *sysfs_attr;
5803 };
5804
5805 static LIST_HEAD(btf_modules);
5806 static DEFINE_MUTEX(btf_module_mutex);
5807
5808 static ssize_t
5809 btf_module_read(struct file *file, struct kobject *kobj,
5810                 struct bin_attribute *bin_attr,
5811                 char *buf, loff_t off, size_t len)
5812 {
5813         const struct btf *btf = bin_attr->private;
5814
5815         memcpy(buf, btf->data + off, len);
5816         return len;
5817 }
5818
5819 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5820                              void *module)
5821 {
5822         struct btf_module *btf_mod, *tmp;
5823         struct module *mod = module;
5824         struct btf *btf;
5825         int err = 0;
5826
5827         if (mod->btf_data_size == 0 ||
5828             (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5829                 goto out;
5830
5831         switch (op) {
5832         case MODULE_STATE_COMING:
5833                 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5834                 if (!btf_mod) {
5835                         err = -ENOMEM;
5836                         goto out;
5837                 }
5838                 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5839                 if (IS_ERR(btf)) {
5840                         pr_warn("failed to validate module [%s] BTF: %ld\n",
5841                                 mod->name, PTR_ERR(btf));
5842                         kfree(btf_mod);
5843                         err = PTR_ERR(btf);
5844                         goto out;
5845                 }
5846                 err = btf_alloc_id(btf);
5847                 if (err) {
5848                         btf_free(btf);
5849                         kfree(btf_mod);
5850                         goto out;
5851                 }
5852
5853                 mutex_lock(&btf_module_mutex);
5854                 btf_mod->module = module;
5855                 btf_mod->btf = btf;
5856                 list_add(&btf_mod->list, &btf_modules);
5857                 mutex_unlock(&btf_module_mutex);
5858
5859                 if (IS_ENABLED(CONFIG_SYSFS)) {
5860                         struct bin_attribute *attr;
5861
5862                         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
5863                         if (!attr)
5864                                 goto out;
5865
5866                         sysfs_bin_attr_init(attr);
5867                         attr->attr.name = btf->name;
5868                         attr->attr.mode = 0444;
5869                         attr->size = btf->data_size;
5870                         attr->private = btf;
5871                         attr->read = btf_module_read;
5872
5873                         err = sysfs_create_bin_file(btf_kobj, attr);
5874                         if (err) {
5875                                 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
5876                                         mod->name, err);
5877                                 kfree(attr);
5878                                 err = 0;
5879                                 goto out;
5880                         }
5881
5882                         btf_mod->sysfs_attr = attr;
5883                 }
5884
5885                 break;
5886         case MODULE_STATE_GOING:
5887                 mutex_lock(&btf_module_mutex);
5888                 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
5889                         if (btf_mod->module != module)
5890                                 continue;
5891
5892                         list_del(&btf_mod->list);
5893                         if (btf_mod->sysfs_attr)
5894                                 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
5895                         btf_put(btf_mod->btf);
5896                         kfree(btf_mod->sysfs_attr);
5897                         kfree(btf_mod);
5898                         break;
5899                 }
5900                 mutex_unlock(&btf_module_mutex);
5901                 break;
5902         }
5903 out:
5904         return notifier_from_errno(err);
5905 }
5906
5907 static struct notifier_block btf_module_nb = {
5908         .notifier_call = btf_module_notify,
5909 };
5910
5911 static int __init btf_module_init(void)
5912 {
5913         register_module_notifier(&btf_module_nb);
5914         return 0;
5915 }
5916
5917 fs_initcall(btf_module_init);
5918 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5919
5920 struct module *btf_try_get_module(const struct btf *btf)
5921 {
5922         struct module *res = NULL;
5923 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5924         struct btf_module *btf_mod, *tmp;
5925
5926         mutex_lock(&btf_module_mutex);
5927         list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
5928                 if (btf_mod->btf != btf)
5929                         continue;
5930
5931                 if (try_module_get(btf_mod->module))
5932                         res = btf_mod->module;
5933
5934                 break;
5935         }
5936         mutex_unlock(&btf_module_mutex);
5937 #endif
5938
5939         return res;
5940 }