Merge tag 'xfs-5.3-merge-13' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *      struct A {
124  *              struct B b;
125  *      };
126  *
127  *      struct B {
128  *              struct A a;
129  *      };
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *      struct A {
147  *              int m;
148  *              struct A *a;
149  *      };
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159
160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177
178 #define for_each_member(i, struct_type, member)                 \
179         for (i = 0, member = btf_type_member(struct_type);      \
180              i < btf_type_vlen(struct_type);                    \
181              i++, member++)
182
183 #define for_each_member_from(i, from, struct_type, member)              \
184         for (i = from, member = btf_type_member(struct_type) + from;    \
185              i < btf_type_vlen(struct_type);                            \
186              i++, member++)
187
188 #define for_each_vsi(i, struct_type, member)                    \
189         for (i = 0, member = btf_type_var_secinfo(struct_type); \
190              i < btf_type_vlen(struct_type);                    \
191              i++, member++)
192
193 #define for_each_vsi_from(i, from, struct_type, member)                         \
194         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
195              i < btf_type_vlen(struct_type);                                    \
196              i++, member++)
197
198 static DEFINE_IDR(btf_idr);
199 static DEFINE_SPINLOCK(btf_idr_lock);
200
201 struct btf {
202         void *data;
203         struct btf_type **types;
204         u32 *resolved_ids;
205         u32 *resolved_sizes;
206         const char *strings;
207         void *nohdr_data;
208         struct btf_header hdr;
209         u32 nr_types;
210         u32 types_size;
211         u32 data_size;
212         refcount_t refcnt;
213         u32 id;
214         struct rcu_head rcu;
215 };
216
217 enum verifier_phase {
218         CHECK_META,
219         CHECK_TYPE,
220 };
221
222 struct resolve_vertex {
223         const struct btf_type *t;
224         u32 type_id;
225         u16 next_member;
226 };
227
228 enum visit_state {
229         NOT_VISITED,
230         VISITED,
231         RESOLVED,
232 };
233
234 enum resolve_mode {
235         RESOLVE_TBD,    /* To Be Determined */
236         RESOLVE_PTR,    /* Resolving for Pointer */
237         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
238                                          * or array
239                                          */
240 };
241
242 #define MAX_RESOLVE_DEPTH 32
243
244 struct btf_sec_info {
245         u32 off;
246         u32 len;
247 };
248
249 struct btf_verifier_env {
250         struct btf *btf;
251         u8 *visit_states;
252         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253         struct bpf_verifier_log log;
254         u32 log_type_id;
255         u32 top_stack;
256         enum verifier_phase phase;
257         enum resolve_mode resolve_mode;
258 };
259
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261         [BTF_KIND_UNKN]         = "UNKNOWN",
262         [BTF_KIND_INT]          = "INT",
263         [BTF_KIND_PTR]          = "PTR",
264         [BTF_KIND_ARRAY]        = "ARRAY",
265         [BTF_KIND_STRUCT]       = "STRUCT",
266         [BTF_KIND_UNION]        = "UNION",
267         [BTF_KIND_ENUM]         = "ENUM",
268         [BTF_KIND_FWD]          = "FWD",
269         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
270         [BTF_KIND_VOLATILE]     = "VOLATILE",
271         [BTF_KIND_CONST]        = "CONST",
272         [BTF_KIND_RESTRICT]     = "RESTRICT",
273         [BTF_KIND_FUNC]         = "FUNC",
274         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
275         [BTF_KIND_VAR]          = "VAR",
276         [BTF_KIND_DATASEC]      = "DATASEC",
277 };
278
279 struct btf_kind_operations {
280         s32 (*check_meta)(struct btf_verifier_env *env,
281                           const struct btf_type *t,
282                           u32 meta_left);
283         int (*resolve)(struct btf_verifier_env *env,
284                        const struct resolve_vertex *v);
285         int (*check_member)(struct btf_verifier_env *env,
286                             const struct btf_type *struct_type,
287                             const struct btf_member *member,
288                             const struct btf_type *member_type);
289         int (*check_kflag_member)(struct btf_verifier_env *env,
290                                   const struct btf_type *struct_type,
291                                   const struct btf_member *member,
292                                   const struct btf_type *member_type);
293         void (*log_details)(struct btf_verifier_env *env,
294                             const struct btf_type *t);
295         void (*seq_show)(const struct btf *btf, const struct btf_type *t,
296                          u32 type_id, void *data, u8 bits_offsets,
297                          struct seq_file *m);
298 };
299
300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
301 static struct btf_type btf_void;
302
303 static int btf_resolve(struct btf_verifier_env *env,
304                        const struct btf_type *t, u32 type_id);
305
306 static bool btf_type_is_modifier(const struct btf_type *t)
307 {
308         /* Some of them is not strictly a C modifier
309          * but they are grouped into the same bucket
310          * for BTF concern:
311          *   A type (t) that refers to another
312          *   type through t->type AND its size cannot
313          *   be determined without following the t->type.
314          *
315          * ptr does not fall into this bucket
316          * because its size is always sizeof(void *).
317          */
318         switch (BTF_INFO_KIND(t->info)) {
319         case BTF_KIND_TYPEDEF:
320         case BTF_KIND_VOLATILE:
321         case BTF_KIND_CONST:
322         case BTF_KIND_RESTRICT:
323                 return true;
324         }
325
326         return false;
327 }
328
329 bool btf_type_is_void(const struct btf_type *t)
330 {
331         return t == &btf_void;
332 }
333
334 static bool btf_type_is_fwd(const struct btf_type *t)
335 {
336         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
337 }
338
339 static bool btf_type_is_func(const struct btf_type *t)
340 {
341         return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
342 }
343
344 static bool btf_type_is_func_proto(const struct btf_type *t)
345 {
346         return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
347 }
348
349 static bool btf_type_nosize(const struct btf_type *t)
350 {
351         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
352                btf_type_is_func(t) || btf_type_is_func_proto(t);
353 }
354
355 static bool btf_type_nosize_or_null(const struct btf_type *t)
356 {
357         return !t || btf_type_nosize(t);
358 }
359
360 /* union is only a special case of struct:
361  * all its offsetof(member) == 0
362  */
363 static bool btf_type_is_struct(const struct btf_type *t)
364 {
365         u8 kind = BTF_INFO_KIND(t->info);
366
367         return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
368 }
369
370 static bool __btf_type_is_struct(const struct btf_type *t)
371 {
372         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
373 }
374
375 static bool btf_type_is_array(const struct btf_type *t)
376 {
377         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
378 }
379
380 static bool btf_type_is_ptr(const struct btf_type *t)
381 {
382         return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
383 }
384
385 static bool btf_type_is_int(const struct btf_type *t)
386 {
387         return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
388 }
389
390 static bool btf_type_is_var(const struct btf_type *t)
391 {
392         return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
393 }
394
395 static bool btf_type_is_datasec(const struct btf_type *t)
396 {
397         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
398 }
399
400 /* Types that act only as a source, not sink or intermediate
401  * type when resolving.
402  */
403 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
404 {
405         return btf_type_is_var(t) ||
406                btf_type_is_datasec(t);
407 }
408
409 /* What types need to be resolved?
410  *
411  * btf_type_is_modifier() is an obvious one.
412  *
413  * btf_type_is_struct() because its member refers to
414  * another type (through member->type).
415  *
416  * btf_type_is_var() because the variable refers to
417  * another type. btf_type_is_datasec() holds multiple
418  * btf_type_is_var() types that need resolving.
419  *
420  * btf_type_is_array() because its element (array->type)
421  * refers to another type.  Array can be thought of a
422  * special case of struct while array just has the same
423  * member-type repeated by array->nelems of times.
424  */
425 static bool btf_type_needs_resolve(const struct btf_type *t)
426 {
427         return btf_type_is_modifier(t) ||
428                btf_type_is_ptr(t) ||
429                btf_type_is_struct(t) ||
430                btf_type_is_array(t) ||
431                btf_type_is_var(t) ||
432                btf_type_is_datasec(t);
433 }
434
435 /* t->size can be used */
436 static bool btf_type_has_size(const struct btf_type *t)
437 {
438         switch (BTF_INFO_KIND(t->info)) {
439         case BTF_KIND_INT:
440         case BTF_KIND_STRUCT:
441         case BTF_KIND_UNION:
442         case BTF_KIND_ENUM:
443         case BTF_KIND_DATASEC:
444                 return true;
445         }
446
447         return false;
448 }
449
450 static const char *btf_int_encoding_str(u8 encoding)
451 {
452         if (encoding == 0)
453                 return "(none)";
454         else if (encoding == BTF_INT_SIGNED)
455                 return "SIGNED";
456         else if (encoding == BTF_INT_CHAR)
457                 return "CHAR";
458         else if (encoding == BTF_INT_BOOL)
459                 return "BOOL";
460         else
461                 return "UNKN";
462 }
463
464 static u16 btf_type_vlen(const struct btf_type *t)
465 {
466         return BTF_INFO_VLEN(t->info);
467 }
468
469 static bool btf_type_kflag(const struct btf_type *t)
470 {
471         return BTF_INFO_KFLAG(t->info);
472 }
473
474 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
475                              const struct btf_member *member)
476 {
477         return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
478                                            : member->offset;
479 }
480
481 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
482                                     const struct btf_member *member)
483 {
484         return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
485                                            : 0;
486 }
487
488 static u32 btf_type_int(const struct btf_type *t)
489 {
490         return *(u32 *)(t + 1);
491 }
492
493 static const struct btf_array *btf_type_array(const struct btf_type *t)
494 {
495         return (const struct btf_array *)(t + 1);
496 }
497
498 static const struct btf_member *btf_type_member(const struct btf_type *t)
499 {
500         return (const struct btf_member *)(t + 1);
501 }
502
503 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
504 {
505         return (const struct btf_enum *)(t + 1);
506 }
507
508 static const struct btf_var *btf_type_var(const struct btf_type *t)
509 {
510         return (const struct btf_var *)(t + 1);
511 }
512
513 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
514 {
515         return (const struct btf_var_secinfo *)(t + 1);
516 }
517
518 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
519 {
520         return kind_ops[BTF_INFO_KIND(t->info)];
521 }
522
523 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
524 {
525         return BTF_STR_OFFSET_VALID(offset) &&
526                 offset < btf->hdr.str_len;
527 }
528
529 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
530 {
531         if ((first ? !isalpha(c) :
532                      !isalnum(c)) &&
533             c != '_' &&
534             ((c == '.' && !dot_ok) ||
535               c != '.'))
536                 return false;
537         return true;
538 }
539
540 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
541 {
542         /* offset must be valid */
543         const char *src = &btf->strings[offset];
544         const char *src_limit;
545
546         if (!__btf_name_char_ok(*src, true, dot_ok))
547                 return false;
548
549         /* set a limit on identifier length */
550         src_limit = src + KSYM_NAME_LEN;
551         src++;
552         while (*src && src < src_limit) {
553                 if (!__btf_name_char_ok(*src, false, dot_ok))
554                         return false;
555                 src++;
556         }
557
558         return !*src;
559 }
560
561 /* Only C-style identifier is permitted. This can be relaxed if
562  * necessary.
563  */
564 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
565 {
566         return __btf_name_valid(btf, offset, false);
567 }
568
569 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
570 {
571         return __btf_name_valid(btf, offset, true);
572 }
573
574 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
575 {
576         if (!offset)
577                 return "(anon)";
578         else if (offset < btf->hdr.str_len)
579                 return &btf->strings[offset];
580         else
581                 return "(invalid-name-offset)";
582 }
583
584 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
585 {
586         if (offset < btf->hdr.str_len)
587                 return &btf->strings[offset];
588
589         return NULL;
590 }
591
592 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
593 {
594         if (type_id > btf->nr_types)
595                 return NULL;
596
597         return btf->types[type_id];
598 }
599
600 /*
601  * Regular int is not a bit field and it must be either
602  * u8/u16/u32/u64 or __int128.
603  */
604 static bool btf_type_int_is_regular(const struct btf_type *t)
605 {
606         u8 nr_bits, nr_bytes;
607         u32 int_data;
608
609         int_data = btf_type_int(t);
610         nr_bits = BTF_INT_BITS(int_data);
611         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
612         if (BITS_PER_BYTE_MASKED(nr_bits) ||
613             BTF_INT_OFFSET(int_data) ||
614             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
615              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
616              nr_bytes != (2 * sizeof(u64)))) {
617                 return false;
618         }
619
620         return true;
621 }
622
623 /*
624  * Check that given struct member is a regular int with expected
625  * offset and size.
626  */
627 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
628                            const struct btf_member *m,
629                            u32 expected_offset, u32 expected_size)
630 {
631         const struct btf_type *t;
632         u32 id, int_data;
633         u8 nr_bits;
634
635         id = m->type;
636         t = btf_type_id_size(btf, &id, NULL);
637         if (!t || !btf_type_is_int(t))
638                 return false;
639
640         int_data = btf_type_int(t);
641         nr_bits = BTF_INT_BITS(int_data);
642         if (btf_type_kflag(s)) {
643                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
644                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
645
646                 /* if kflag set, int should be a regular int and
647                  * bit offset should be at byte boundary.
648                  */
649                 return !bitfield_size &&
650                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
651                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
652         }
653
654         if (BTF_INT_OFFSET(int_data) ||
655             BITS_PER_BYTE_MASKED(m->offset) ||
656             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
657             BITS_PER_BYTE_MASKED(nr_bits) ||
658             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
659                 return false;
660
661         return true;
662 }
663
664 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
665                                               const char *fmt, ...)
666 {
667         va_list args;
668
669         va_start(args, fmt);
670         bpf_verifier_vlog(log, fmt, args);
671         va_end(args);
672 }
673
674 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
675                                             const char *fmt, ...)
676 {
677         struct bpf_verifier_log *log = &env->log;
678         va_list args;
679
680         if (!bpf_verifier_log_needed(log))
681                 return;
682
683         va_start(args, fmt);
684         bpf_verifier_vlog(log, fmt, args);
685         va_end(args);
686 }
687
688 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
689                                                    const struct btf_type *t,
690                                                    bool log_details,
691                                                    const char *fmt, ...)
692 {
693         struct bpf_verifier_log *log = &env->log;
694         u8 kind = BTF_INFO_KIND(t->info);
695         struct btf *btf = env->btf;
696         va_list args;
697
698         if (!bpf_verifier_log_needed(log))
699                 return;
700
701         __btf_verifier_log(log, "[%u] %s %s%s",
702                            env->log_type_id,
703                            btf_kind_str[kind],
704                            __btf_name_by_offset(btf, t->name_off),
705                            log_details ? " " : "");
706
707         if (log_details)
708                 btf_type_ops(t)->log_details(env, t);
709
710         if (fmt && *fmt) {
711                 __btf_verifier_log(log, " ");
712                 va_start(args, fmt);
713                 bpf_verifier_vlog(log, fmt, args);
714                 va_end(args);
715         }
716
717         __btf_verifier_log(log, "\n");
718 }
719
720 #define btf_verifier_log_type(env, t, ...) \
721         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
722 #define btf_verifier_log_basic(env, t, ...) \
723         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
724
725 __printf(4, 5)
726 static void btf_verifier_log_member(struct btf_verifier_env *env,
727                                     const struct btf_type *struct_type,
728                                     const struct btf_member *member,
729                                     const char *fmt, ...)
730 {
731         struct bpf_verifier_log *log = &env->log;
732         struct btf *btf = env->btf;
733         va_list args;
734
735         if (!bpf_verifier_log_needed(log))
736                 return;
737
738         /* The CHECK_META phase already did a btf dump.
739          *
740          * If member is logged again, it must hit an error in
741          * parsing this member.  It is useful to print out which
742          * struct this member belongs to.
743          */
744         if (env->phase != CHECK_META)
745                 btf_verifier_log_type(env, struct_type, NULL);
746
747         if (btf_type_kflag(struct_type))
748                 __btf_verifier_log(log,
749                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
750                                    __btf_name_by_offset(btf, member->name_off),
751                                    member->type,
752                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
753                                    BTF_MEMBER_BIT_OFFSET(member->offset));
754         else
755                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
756                                    __btf_name_by_offset(btf, member->name_off),
757                                    member->type, member->offset);
758
759         if (fmt && *fmt) {
760                 __btf_verifier_log(log, " ");
761                 va_start(args, fmt);
762                 bpf_verifier_vlog(log, fmt, args);
763                 va_end(args);
764         }
765
766         __btf_verifier_log(log, "\n");
767 }
768
769 __printf(4, 5)
770 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
771                                  const struct btf_type *datasec_type,
772                                  const struct btf_var_secinfo *vsi,
773                                  const char *fmt, ...)
774 {
775         struct bpf_verifier_log *log = &env->log;
776         va_list args;
777
778         if (!bpf_verifier_log_needed(log))
779                 return;
780         if (env->phase != CHECK_META)
781                 btf_verifier_log_type(env, datasec_type, NULL);
782
783         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
784                            vsi->type, vsi->offset, vsi->size);
785         if (fmt && *fmt) {
786                 __btf_verifier_log(log, " ");
787                 va_start(args, fmt);
788                 bpf_verifier_vlog(log, fmt, args);
789                 va_end(args);
790         }
791
792         __btf_verifier_log(log, "\n");
793 }
794
795 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
796                                  u32 btf_data_size)
797 {
798         struct bpf_verifier_log *log = &env->log;
799         const struct btf *btf = env->btf;
800         const struct btf_header *hdr;
801
802         if (!bpf_verifier_log_needed(log))
803                 return;
804
805         hdr = &btf->hdr;
806         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
807         __btf_verifier_log(log, "version: %u\n", hdr->version);
808         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
809         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
810         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
811         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
812         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
813         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
814         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
815 }
816
817 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
818 {
819         struct btf *btf = env->btf;
820
821         /* < 2 because +1 for btf_void which is always in btf->types[0].
822          * btf_void is not accounted in btf->nr_types because btf_void
823          * does not come from the BTF file.
824          */
825         if (btf->types_size - btf->nr_types < 2) {
826                 /* Expand 'types' array */
827
828                 struct btf_type **new_types;
829                 u32 expand_by, new_size;
830
831                 if (btf->types_size == BTF_MAX_TYPE) {
832                         btf_verifier_log(env, "Exceeded max num of types");
833                         return -E2BIG;
834                 }
835
836                 expand_by = max_t(u32, btf->types_size >> 2, 16);
837                 new_size = min_t(u32, BTF_MAX_TYPE,
838                                  btf->types_size + expand_by);
839
840                 new_types = kvcalloc(new_size, sizeof(*new_types),
841                                      GFP_KERNEL | __GFP_NOWARN);
842                 if (!new_types)
843                         return -ENOMEM;
844
845                 if (btf->nr_types == 0)
846                         new_types[0] = &btf_void;
847                 else
848                         memcpy(new_types, btf->types,
849                                sizeof(*btf->types) * (btf->nr_types + 1));
850
851                 kvfree(btf->types);
852                 btf->types = new_types;
853                 btf->types_size = new_size;
854         }
855
856         btf->types[++(btf->nr_types)] = t;
857
858         return 0;
859 }
860
861 static int btf_alloc_id(struct btf *btf)
862 {
863         int id;
864
865         idr_preload(GFP_KERNEL);
866         spin_lock_bh(&btf_idr_lock);
867         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
868         if (id > 0)
869                 btf->id = id;
870         spin_unlock_bh(&btf_idr_lock);
871         idr_preload_end();
872
873         if (WARN_ON_ONCE(!id))
874                 return -ENOSPC;
875
876         return id > 0 ? 0 : id;
877 }
878
879 static void btf_free_id(struct btf *btf)
880 {
881         unsigned long flags;
882
883         /*
884          * In map-in-map, calling map_delete_elem() on outer
885          * map will call bpf_map_put on the inner map.
886          * It will then eventually call btf_free_id()
887          * on the inner map.  Some of the map_delete_elem()
888          * implementation may have irq disabled, so
889          * we need to use the _irqsave() version instead
890          * of the _bh() version.
891          */
892         spin_lock_irqsave(&btf_idr_lock, flags);
893         idr_remove(&btf_idr, btf->id);
894         spin_unlock_irqrestore(&btf_idr_lock, flags);
895 }
896
897 static void btf_free(struct btf *btf)
898 {
899         kvfree(btf->types);
900         kvfree(btf->resolved_sizes);
901         kvfree(btf->resolved_ids);
902         kvfree(btf->data);
903         kfree(btf);
904 }
905
906 static void btf_free_rcu(struct rcu_head *rcu)
907 {
908         struct btf *btf = container_of(rcu, struct btf, rcu);
909
910         btf_free(btf);
911 }
912
913 void btf_put(struct btf *btf)
914 {
915         if (btf && refcount_dec_and_test(&btf->refcnt)) {
916                 btf_free_id(btf);
917                 call_rcu(&btf->rcu, btf_free_rcu);
918         }
919 }
920
921 static int env_resolve_init(struct btf_verifier_env *env)
922 {
923         struct btf *btf = env->btf;
924         u32 nr_types = btf->nr_types;
925         u32 *resolved_sizes = NULL;
926         u32 *resolved_ids = NULL;
927         u8 *visit_states = NULL;
928
929         /* +1 for btf_void */
930         resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
931                                   GFP_KERNEL | __GFP_NOWARN);
932         if (!resolved_sizes)
933                 goto nomem;
934
935         resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
936                                 GFP_KERNEL | __GFP_NOWARN);
937         if (!resolved_ids)
938                 goto nomem;
939
940         visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
941                                 GFP_KERNEL | __GFP_NOWARN);
942         if (!visit_states)
943                 goto nomem;
944
945         btf->resolved_sizes = resolved_sizes;
946         btf->resolved_ids = resolved_ids;
947         env->visit_states = visit_states;
948
949         return 0;
950
951 nomem:
952         kvfree(resolved_sizes);
953         kvfree(resolved_ids);
954         kvfree(visit_states);
955         return -ENOMEM;
956 }
957
958 static void btf_verifier_env_free(struct btf_verifier_env *env)
959 {
960         kvfree(env->visit_states);
961         kfree(env);
962 }
963
964 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
965                                      const struct btf_type *next_type)
966 {
967         switch (env->resolve_mode) {
968         case RESOLVE_TBD:
969                 /* int, enum or void is a sink */
970                 return !btf_type_needs_resolve(next_type);
971         case RESOLVE_PTR:
972                 /* int, enum, void, struct, array, func or func_proto is a sink
973                  * for ptr
974                  */
975                 return !btf_type_is_modifier(next_type) &&
976                         !btf_type_is_ptr(next_type);
977         case RESOLVE_STRUCT_OR_ARRAY:
978                 /* int, enum, void, ptr, func or func_proto is a sink
979                  * for struct and array
980                  */
981                 return !btf_type_is_modifier(next_type) &&
982                         !btf_type_is_array(next_type) &&
983                         !btf_type_is_struct(next_type);
984         default:
985                 BUG();
986         }
987 }
988
989 static bool env_type_is_resolved(const struct btf_verifier_env *env,
990                                  u32 type_id)
991 {
992         return env->visit_states[type_id] == RESOLVED;
993 }
994
995 static int env_stack_push(struct btf_verifier_env *env,
996                           const struct btf_type *t, u32 type_id)
997 {
998         struct resolve_vertex *v;
999
1000         if (env->top_stack == MAX_RESOLVE_DEPTH)
1001                 return -E2BIG;
1002
1003         if (env->visit_states[type_id] != NOT_VISITED)
1004                 return -EEXIST;
1005
1006         env->visit_states[type_id] = VISITED;
1007
1008         v = &env->stack[env->top_stack++];
1009         v->t = t;
1010         v->type_id = type_id;
1011         v->next_member = 0;
1012
1013         if (env->resolve_mode == RESOLVE_TBD) {
1014                 if (btf_type_is_ptr(t))
1015                         env->resolve_mode = RESOLVE_PTR;
1016                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1017                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1018         }
1019
1020         return 0;
1021 }
1022
1023 static void env_stack_set_next_member(struct btf_verifier_env *env,
1024                                       u16 next_member)
1025 {
1026         env->stack[env->top_stack - 1].next_member = next_member;
1027 }
1028
1029 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1030                                    u32 resolved_type_id,
1031                                    u32 resolved_size)
1032 {
1033         u32 type_id = env->stack[--(env->top_stack)].type_id;
1034         struct btf *btf = env->btf;
1035
1036         btf->resolved_sizes[type_id] = resolved_size;
1037         btf->resolved_ids[type_id] = resolved_type_id;
1038         env->visit_states[type_id] = RESOLVED;
1039 }
1040
1041 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1042 {
1043         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1044 }
1045
1046 /* The input param "type_id" must point to a needs_resolve type */
1047 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1048                                                   u32 *type_id)
1049 {
1050         *type_id = btf->resolved_ids[*type_id];
1051         return btf_type_by_id(btf, *type_id);
1052 }
1053
1054 const struct btf_type *btf_type_id_size(const struct btf *btf,
1055                                         u32 *type_id, u32 *ret_size)
1056 {
1057         const struct btf_type *size_type;
1058         u32 size_type_id = *type_id;
1059         u32 size = 0;
1060
1061         size_type = btf_type_by_id(btf, size_type_id);
1062         if (btf_type_nosize_or_null(size_type))
1063                 return NULL;
1064
1065         if (btf_type_has_size(size_type)) {
1066                 size = size_type->size;
1067         } else if (btf_type_is_array(size_type)) {
1068                 size = btf->resolved_sizes[size_type_id];
1069         } else if (btf_type_is_ptr(size_type)) {
1070                 size = sizeof(void *);
1071         } else {
1072                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1073                                  !btf_type_is_var(size_type)))
1074                         return NULL;
1075
1076                 size = btf->resolved_sizes[size_type_id];
1077                 size_type_id = btf->resolved_ids[size_type_id];
1078                 size_type = btf_type_by_id(btf, size_type_id);
1079                 if (btf_type_nosize_or_null(size_type))
1080                         return NULL;
1081         }
1082
1083         *type_id = size_type_id;
1084         if (ret_size)
1085                 *ret_size = size;
1086
1087         return size_type;
1088 }
1089
1090 static int btf_df_check_member(struct btf_verifier_env *env,
1091                                const struct btf_type *struct_type,
1092                                const struct btf_member *member,
1093                                const struct btf_type *member_type)
1094 {
1095         btf_verifier_log_basic(env, struct_type,
1096                                "Unsupported check_member");
1097         return -EINVAL;
1098 }
1099
1100 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1101                                      const struct btf_type *struct_type,
1102                                      const struct btf_member *member,
1103                                      const struct btf_type *member_type)
1104 {
1105         btf_verifier_log_basic(env, struct_type,
1106                                "Unsupported check_kflag_member");
1107         return -EINVAL;
1108 }
1109
1110 /* Used for ptr, array and struct/union type members.
1111  * int, enum and modifier types have their specific callback functions.
1112  */
1113 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1114                                           const struct btf_type *struct_type,
1115                                           const struct btf_member *member,
1116                                           const struct btf_type *member_type)
1117 {
1118         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1119                 btf_verifier_log_member(env, struct_type, member,
1120                                         "Invalid member bitfield_size");
1121                 return -EINVAL;
1122         }
1123
1124         /* bitfield size is 0, so member->offset represents bit offset only.
1125          * It is safe to call non kflag check_member variants.
1126          */
1127         return btf_type_ops(member_type)->check_member(env, struct_type,
1128                                                        member,
1129                                                        member_type);
1130 }
1131
1132 static int btf_df_resolve(struct btf_verifier_env *env,
1133                           const struct resolve_vertex *v)
1134 {
1135         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1136         return -EINVAL;
1137 }
1138
1139 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1140                             u32 type_id, void *data, u8 bits_offsets,
1141                             struct seq_file *m)
1142 {
1143         seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1144 }
1145
1146 static int btf_int_check_member(struct btf_verifier_env *env,
1147                                 const struct btf_type *struct_type,
1148                                 const struct btf_member *member,
1149                                 const struct btf_type *member_type)
1150 {
1151         u32 int_data = btf_type_int(member_type);
1152         u32 struct_bits_off = member->offset;
1153         u32 struct_size = struct_type->size;
1154         u32 nr_copy_bits;
1155         u32 bytes_offset;
1156
1157         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1158                 btf_verifier_log_member(env, struct_type, member,
1159                                         "bits_offset exceeds U32_MAX");
1160                 return -EINVAL;
1161         }
1162
1163         struct_bits_off += BTF_INT_OFFSET(int_data);
1164         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1165         nr_copy_bits = BTF_INT_BITS(int_data) +
1166                 BITS_PER_BYTE_MASKED(struct_bits_off);
1167
1168         if (nr_copy_bits > BITS_PER_U128) {
1169                 btf_verifier_log_member(env, struct_type, member,
1170                                         "nr_copy_bits exceeds 128");
1171                 return -EINVAL;
1172         }
1173
1174         if (struct_size < bytes_offset ||
1175             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1176                 btf_verifier_log_member(env, struct_type, member,
1177                                         "Member exceeds struct_size");
1178                 return -EINVAL;
1179         }
1180
1181         return 0;
1182 }
1183
1184 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1185                                       const struct btf_type *struct_type,
1186                                       const struct btf_member *member,
1187                                       const struct btf_type *member_type)
1188 {
1189         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1190         u32 int_data = btf_type_int(member_type);
1191         u32 struct_size = struct_type->size;
1192         u32 nr_copy_bits;
1193
1194         /* a regular int type is required for the kflag int member */
1195         if (!btf_type_int_is_regular(member_type)) {
1196                 btf_verifier_log_member(env, struct_type, member,
1197                                         "Invalid member base type");
1198                 return -EINVAL;
1199         }
1200
1201         /* check sanity of bitfield size */
1202         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1203         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1204         nr_int_data_bits = BTF_INT_BITS(int_data);
1205         if (!nr_bits) {
1206                 /* Not a bitfield member, member offset must be at byte
1207                  * boundary.
1208                  */
1209                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1210                         btf_verifier_log_member(env, struct_type, member,
1211                                                 "Invalid member offset");
1212                         return -EINVAL;
1213                 }
1214
1215                 nr_bits = nr_int_data_bits;
1216         } else if (nr_bits > nr_int_data_bits) {
1217                 btf_verifier_log_member(env, struct_type, member,
1218                                         "Invalid member bitfield_size");
1219                 return -EINVAL;
1220         }
1221
1222         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1223         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1224         if (nr_copy_bits > BITS_PER_U128) {
1225                 btf_verifier_log_member(env, struct_type, member,
1226                                         "nr_copy_bits exceeds 128");
1227                 return -EINVAL;
1228         }
1229
1230         if (struct_size < bytes_offset ||
1231             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1232                 btf_verifier_log_member(env, struct_type, member,
1233                                         "Member exceeds struct_size");
1234                 return -EINVAL;
1235         }
1236
1237         return 0;
1238 }
1239
1240 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1241                               const struct btf_type *t,
1242                               u32 meta_left)
1243 {
1244         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1245         u16 encoding;
1246
1247         if (meta_left < meta_needed) {
1248                 btf_verifier_log_basic(env, t,
1249                                        "meta_left:%u meta_needed:%u",
1250                                        meta_left, meta_needed);
1251                 return -EINVAL;
1252         }
1253
1254         if (btf_type_vlen(t)) {
1255                 btf_verifier_log_type(env, t, "vlen != 0");
1256                 return -EINVAL;
1257         }
1258
1259         if (btf_type_kflag(t)) {
1260                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1261                 return -EINVAL;
1262         }
1263
1264         int_data = btf_type_int(t);
1265         if (int_data & ~BTF_INT_MASK) {
1266                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1267                                        int_data);
1268                 return -EINVAL;
1269         }
1270
1271         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1272
1273         if (nr_bits > BITS_PER_U128) {
1274                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1275                                       BITS_PER_U128);
1276                 return -EINVAL;
1277         }
1278
1279         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1280                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1281                 return -EINVAL;
1282         }
1283
1284         /*
1285          * Only one of the encoding bits is allowed and it
1286          * should be sufficient for the pretty print purpose (i.e. decoding).
1287          * Multiple bits can be allowed later if it is found
1288          * to be insufficient.
1289          */
1290         encoding = BTF_INT_ENCODING(int_data);
1291         if (encoding &&
1292             encoding != BTF_INT_SIGNED &&
1293             encoding != BTF_INT_CHAR &&
1294             encoding != BTF_INT_BOOL) {
1295                 btf_verifier_log_type(env, t, "Unsupported encoding");
1296                 return -ENOTSUPP;
1297         }
1298
1299         btf_verifier_log_type(env, t, NULL);
1300
1301         return meta_needed;
1302 }
1303
1304 static void btf_int_log(struct btf_verifier_env *env,
1305                         const struct btf_type *t)
1306 {
1307         int int_data = btf_type_int(t);
1308
1309         btf_verifier_log(env,
1310                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1311                          t->size, BTF_INT_OFFSET(int_data),
1312                          BTF_INT_BITS(int_data),
1313                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1314 }
1315
1316 static void btf_int128_print(struct seq_file *m, void *data)
1317 {
1318         /* data points to a __int128 number.
1319          * Suppose
1320          *     int128_num = *(__int128 *)data;
1321          * The below formulas shows what upper_num and lower_num represents:
1322          *     upper_num = int128_num >> 64;
1323          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1324          */
1325         u64 upper_num, lower_num;
1326
1327 #ifdef __BIG_ENDIAN_BITFIELD
1328         upper_num = *(u64 *)data;
1329         lower_num = *(u64 *)(data + 8);
1330 #else
1331         upper_num = *(u64 *)(data + 8);
1332         lower_num = *(u64 *)data;
1333 #endif
1334         if (upper_num == 0)
1335                 seq_printf(m, "0x%llx", lower_num);
1336         else
1337                 seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1338 }
1339
1340 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1341                              u16 right_shift_bits)
1342 {
1343         u64 upper_num, lower_num;
1344
1345 #ifdef __BIG_ENDIAN_BITFIELD
1346         upper_num = print_num[0];
1347         lower_num = print_num[1];
1348 #else
1349         upper_num = print_num[1];
1350         lower_num = print_num[0];
1351 #endif
1352
1353         /* shake out un-needed bits by shift/or operations */
1354         if (left_shift_bits >= 64) {
1355                 upper_num = lower_num << (left_shift_bits - 64);
1356                 lower_num = 0;
1357         } else {
1358                 upper_num = (upper_num << left_shift_bits) |
1359                             (lower_num >> (64 - left_shift_bits));
1360                 lower_num = lower_num << left_shift_bits;
1361         }
1362
1363         if (right_shift_bits >= 64) {
1364                 lower_num = upper_num >> (right_shift_bits - 64);
1365                 upper_num = 0;
1366         } else {
1367                 lower_num = (lower_num >> right_shift_bits) |
1368                             (upper_num << (64 - right_shift_bits));
1369                 upper_num = upper_num >> right_shift_bits;
1370         }
1371
1372 #ifdef __BIG_ENDIAN_BITFIELD
1373         print_num[0] = upper_num;
1374         print_num[1] = lower_num;
1375 #else
1376         print_num[0] = lower_num;
1377         print_num[1] = upper_num;
1378 #endif
1379 }
1380
1381 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1382                                   u8 nr_bits, struct seq_file *m)
1383 {
1384         u16 left_shift_bits, right_shift_bits;
1385         u8 nr_copy_bytes;
1386         u8 nr_copy_bits;
1387         u64 print_num[2] = {};
1388
1389         nr_copy_bits = nr_bits + bits_offset;
1390         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1391
1392         memcpy(print_num, data, nr_copy_bytes);
1393
1394 #ifdef __BIG_ENDIAN_BITFIELD
1395         left_shift_bits = bits_offset;
1396 #else
1397         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1398 #endif
1399         right_shift_bits = BITS_PER_U128 - nr_bits;
1400
1401         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1402         btf_int128_print(m, print_num);
1403 }
1404
1405
1406 static void btf_int_bits_seq_show(const struct btf *btf,
1407                                   const struct btf_type *t,
1408                                   void *data, u8 bits_offset,
1409                                   struct seq_file *m)
1410 {
1411         u32 int_data = btf_type_int(t);
1412         u8 nr_bits = BTF_INT_BITS(int_data);
1413         u8 total_bits_offset;
1414
1415         /*
1416          * bits_offset is at most 7.
1417          * BTF_INT_OFFSET() cannot exceed 128 bits.
1418          */
1419         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1420         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1421         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1422         btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1423 }
1424
1425 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1426                              u32 type_id, void *data, u8 bits_offset,
1427                              struct seq_file *m)
1428 {
1429         u32 int_data = btf_type_int(t);
1430         u8 encoding = BTF_INT_ENCODING(int_data);
1431         bool sign = encoding & BTF_INT_SIGNED;
1432         u8 nr_bits = BTF_INT_BITS(int_data);
1433
1434         if (bits_offset || BTF_INT_OFFSET(int_data) ||
1435             BITS_PER_BYTE_MASKED(nr_bits)) {
1436                 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1437                 return;
1438         }
1439
1440         switch (nr_bits) {
1441         case 128:
1442                 btf_int128_print(m, data);
1443                 break;
1444         case 64:
1445                 if (sign)
1446                         seq_printf(m, "%lld", *(s64 *)data);
1447                 else
1448                         seq_printf(m, "%llu", *(u64 *)data);
1449                 break;
1450         case 32:
1451                 if (sign)
1452                         seq_printf(m, "%d", *(s32 *)data);
1453                 else
1454                         seq_printf(m, "%u", *(u32 *)data);
1455                 break;
1456         case 16:
1457                 if (sign)
1458                         seq_printf(m, "%d", *(s16 *)data);
1459                 else
1460                         seq_printf(m, "%u", *(u16 *)data);
1461                 break;
1462         case 8:
1463                 if (sign)
1464                         seq_printf(m, "%d", *(s8 *)data);
1465                 else
1466                         seq_printf(m, "%u", *(u8 *)data);
1467                 break;
1468         default:
1469                 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1470         }
1471 }
1472
1473 static const struct btf_kind_operations int_ops = {
1474         .check_meta = btf_int_check_meta,
1475         .resolve = btf_df_resolve,
1476         .check_member = btf_int_check_member,
1477         .check_kflag_member = btf_int_check_kflag_member,
1478         .log_details = btf_int_log,
1479         .seq_show = btf_int_seq_show,
1480 };
1481
1482 static int btf_modifier_check_member(struct btf_verifier_env *env,
1483                                      const struct btf_type *struct_type,
1484                                      const struct btf_member *member,
1485                                      const struct btf_type *member_type)
1486 {
1487         const struct btf_type *resolved_type;
1488         u32 resolved_type_id = member->type;
1489         struct btf_member resolved_member;
1490         struct btf *btf = env->btf;
1491
1492         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1493         if (!resolved_type) {
1494                 btf_verifier_log_member(env, struct_type, member,
1495                                         "Invalid member");
1496                 return -EINVAL;
1497         }
1498
1499         resolved_member = *member;
1500         resolved_member.type = resolved_type_id;
1501
1502         return btf_type_ops(resolved_type)->check_member(env, struct_type,
1503                                                          &resolved_member,
1504                                                          resolved_type);
1505 }
1506
1507 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1508                                            const struct btf_type *struct_type,
1509                                            const struct btf_member *member,
1510                                            const struct btf_type *member_type)
1511 {
1512         const struct btf_type *resolved_type;
1513         u32 resolved_type_id = member->type;
1514         struct btf_member resolved_member;
1515         struct btf *btf = env->btf;
1516
1517         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1518         if (!resolved_type) {
1519                 btf_verifier_log_member(env, struct_type, member,
1520                                         "Invalid member");
1521                 return -EINVAL;
1522         }
1523
1524         resolved_member = *member;
1525         resolved_member.type = resolved_type_id;
1526
1527         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1528                                                                &resolved_member,
1529                                                                resolved_type);
1530 }
1531
1532 static int btf_ptr_check_member(struct btf_verifier_env *env,
1533                                 const struct btf_type *struct_type,
1534                                 const struct btf_member *member,
1535                                 const struct btf_type *member_type)
1536 {
1537         u32 struct_size, struct_bits_off, bytes_offset;
1538
1539         struct_size = struct_type->size;
1540         struct_bits_off = member->offset;
1541         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1542
1543         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1544                 btf_verifier_log_member(env, struct_type, member,
1545                                         "Member is not byte aligned");
1546                 return -EINVAL;
1547         }
1548
1549         if (struct_size - bytes_offset < sizeof(void *)) {
1550                 btf_verifier_log_member(env, struct_type, member,
1551                                         "Member exceeds struct_size");
1552                 return -EINVAL;
1553         }
1554
1555         return 0;
1556 }
1557
1558 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1559                                    const struct btf_type *t,
1560                                    u32 meta_left)
1561 {
1562         if (btf_type_vlen(t)) {
1563                 btf_verifier_log_type(env, t, "vlen != 0");
1564                 return -EINVAL;
1565         }
1566
1567         if (btf_type_kflag(t)) {
1568                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1569                 return -EINVAL;
1570         }
1571
1572         if (!BTF_TYPE_ID_VALID(t->type)) {
1573                 btf_verifier_log_type(env, t, "Invalid type_id");
1574                 return -EINVAL;
1575         }
1576
1577         /* typedef type must have a valid name, and other ref types,
1578          * volatile, const, restrict, should have a null name.
1579          */
1580         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1581                 if (!t->name_off ||
1582                     !btf_name_valid_identifier(env->btf, t->name_off)) {
1583                         btf_verifier_log_type(env, t, "Invalid name");
1584                         return -EINVAL;
1585                 }
1586         } else {
1587                 if (t->name_off) {
1588                         btf_verifier_log_type(env, t, "Invalid name");
1589                         return -EINVAL;
1590                 }
1591         }
1592
1593         btf_verifier_log_type(env, t, NULL);
1594
1595         return 0;
1596 }
1597
1598 static int btf_modifier_resolve(struct btf_verifier_env *env,
1599                                 const struct resolve_vertex *v)
1600 {
1601         const struct btf_type *t = v->t;
1602         const struct btf_type *next_type;
1603         u32 next_type_id = t->type;
1604         struct btf *btf = env->btf;
1605         u32 next_type_size = 0;
1606
1607         next_type = btf_type_by_id(btf, next_type_id);
1608         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1609                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1610                 return -EINVAL;
1611         }
1612
1613         if (!env_type_is_resolve_sink(env, next_type) &&
1614             !env_type_is_resolved(env, next_type_id))
1615                 return env_stack_push(env, next_type, next_type_id);
1616
1617         /* Figure out the resolved next_type_id with size.
1618          * They will be stored in the current modifier's
1619          * resolved_ids and resolved_sizes such that it can
1620          * save us a few type-following when we use it later (e.g. in
1621          * pretty print).
1622          */
1623         if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1624                 if (env_type_is_resolved(env, next_type_id))
1625                         next_type = btf_type_id_resolve(btf, &next_type_id);
1626
1627                 /* "typedef void new_void", "const void"...etc */
1628                 if (!btf_type_is_void(next_type) &&
1629                     !btf_type_is_fwd(next_type) &&
1630                     !btf_type_is_func_proto(next_type)) {
1631                         btf_verifier_log_type(env, v->t, "Invalid type_id");
1632                         return -EINVAL;
1633                 }
1634         }
1635
1636         env_stack_pop_resolved(env, next_type_id, next_type_size);
1637
1638         return 0;
1639 }
1640
1641 static int btf_var_resolve(struct btf_verifier_env *env,
1642                            const struct resolve_vertex *v)
1643 {
1644         const struct btf_type *next_type;
1645         const struct btf_type *t = v->t;
1646         u32 next_type_id = t->type;
1647         struct btf *btf = env->btf;
1648         u32 next_type_size;
1649
1650         next_type = btf_type_by_id(btf, next_type_id);
1651         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1652                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1653                 return -EINVAL;
1654         }
1655
1656         if (!env_type_is_resolve_sink(env, next_type) &&
1657             !env_type_is_resolved(env, next_type_id))
1658                 return env_stack_push(env, next_type, next_type_id);
1659
1660         if (btf_type_is_modifier(next_type)) {
1661                 const struct btf_type *resolved_type;
1662                 u32 resolved_type_id;
1663
1664                 resolved_type_id = next_type_id;
1665                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1666
1667                 if (btf_type_is_ptr(resolved_type) &&
1668                     !env_type_is_resolve_sink(env, resolved_type) &&
1669                     !env_type_is_resolved(env, resolved_type_id))
1670                         return env_stack_push(env, resolved_type,
1671                                               resolved_type_id);
1672         }
1673
1674         /* We must resolve to something concrete at this point, no
1675          * forward types or similar that would resolve to size of
1676          * zero is allowed.
1677          */
1678         if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1679                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1680                 return -EINVAL;
1681         }
1682
1683         env_stack_pop_resolved(env, next_type_id, next_type_size);
1684
1685         return 0;
1686 }
1687
1688 static int btf_ptr_resolve(struct btf_verifier_env *env,
1689                            const struct resolve_vertex *v)
1690 {
1691         const struct btf_type *next_type;
1692         const struct btf_type *t = v->t;
1693         u32 next_type_id = t->type;
1694         struct btf *btf = env->btf;
1695
1696         next_type = btf_type_by_id(btf, next_type_id);
1697         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1698                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1699                 return -EINVAL;
1700         }
1701
1702         if (!env_type_is_resolve_sink(env, next_type) &&
1703             !env_type_is_resolved(env, next_type_id))
1704                 return env_stack_push(env, next_type, next_type_id);
1705
1706         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1707          * the modifier may have stopped resolving when it was resolved
1708          * to a ptr (last-resolved-ptr).
1709          *
1710          * We now need to continue from the last-resolved-ptr to
1711          * ensure the last-resolved-ptr will not referring back to
1712          * the currenct ptr (t).
1713          */
1714         if (btf_type_is_modifier(next_type)) {
1715                 const struct btf_type *resolved_type;
1716                 u32 resolved_type_id;
1717
1718                 resolved_type_id = next_type_id;
1719                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1720
1721                 if (btf_type_is_ptr(resolved_type) &&
1722                     !env_type_is_resolve_sink(env, resolved_type) &&
1723                     !env_type_is_resolved(env, resolved_type_id))
1724                         return env_stack_push(env, resolved_type,
1725                                               resolved_type_id);
1726         }
1727
1728         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1729                 if (env_type_is_resolved(env, next_type_id))
1730                         next_type = btf_type_id_resolve(btf, &next_type_id);
1731
1732                 if (!btf_type_is_void(next_type) &&
1733                     !btf_type_is_fwd(next_type) &&
1734                     !btf_type_is_func_proto(next_type)) {
1735                         btf_verifier_log_type(env, v->t, "Invalid type_id");
1736                         return -EINVAL;
1737                 }
1738         }
1739
1740         env_stack_pop_resolved(env, next_type_id, 0);
1741
1742         return 0;
1743 }
1744
1745 static void btf_modifier_seq_show(const struct btf *btf,
1746                                   const struct btf_type *t,
1747                                   u32 type_id, void *data,
1748                                   u8 bits_offset, struct seq_file *m)
1749 {
1750         t = btf_type_id_resolve(btf, &type_id);
1751
1752         btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1753 }
1754
1755 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1756                              u32 type_id, void *data, u8 bits_offset,
1757                              struct seq_file *m)
1758 {
1759         t = btf_type_id_resolve(btf, &type_id);
1760
1761         btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1762 }
1763
1764 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1765                              u32 type_id, void *data, u8 bits_offset,
1766                              struct seq_file *m)
1767 {
1768         /* It is a hashed value */
1769         seq_printf(m, "%p", *(void **)data);
1770 }
1771
1772 static void btf_ref_type_log(struct btf_verifier_env *env,
1773                              const struct btf_type *t)
1774 {
1775         btf_verifier_log(env, "type_id=%u", t->type);
1776 }
1777
1778 static struct btf_kind_operations modifier_ops = {
1779         .check_meta = btf_ref_type_check_meta,
1780         .resolve = btf_modifier_resolve,
1781         .check_member = btf_modifier_check_member,
1782         .check_kflag_member = btf_modifier_check_kflag_member,
1783         .log_details = btf_ref_type_log,
1784         .seq_show = btf_modifier_seq_show,
1785 };
1786
1787 static struct btf_kind_operations ptr_ops = {
1788         .check_meta = btf_ref_type_check_meta,
1789         .resolve = btf_ptr_resolve,
1790         .check_member = btf_ptr_check_member,
1791         .check_kflag_member = btf_generic_check_kflag_member,
1792         .log_details = btf_ref_type_log,
1793         .seq_show = btf_ptr_seq_show,
1794 };
1795
1796 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1797                               const struct btf_type *t,
1798                               u32 meta_left)
1799 {
1800         if (btf_type_vlen(t)) {
1801                 btf_verifier_log_type(env, t, "vlen != 0");
1802                 return -EINVAL;
1803         }
1804
1805         if (t->type) {
1806                 btf_verifier_log_type(env, t, "type != 0");
1807                 return -EINVAL;
1808         }
1809
1810         /* fwd type must have a valid name */
1811         if (!t->name_off ||
1812             !btf_name_valid_identifier(env->btf, t->name_off)) {
1813                 btf_verifier_log_type(env, t, "Invalid name");
1814                 return -EINVAL;
1815         }
1816
1817         btf_verifier_log_type(env, t, NULL);
1818
1819         return 0;
1820 }
1821
1822 static void btf_fwd_type_log(struct btf_verifier_env *env,
1823                              const struct btf_type *t)
1824 {
1825         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1826 }
1827
1828 static struct btf_kind_operations fwd_ops = {
1829         .check_meta = btf_fwd_check_meta,
1830         .resolve = btf_df_resolve,
1831         .check_member = btf_df_check_member,
1832         .check_kflag_member = btf_df_check_kflag_member,
1833         .log_details = btf_fwd_type_log,
1834         .seq_show = btf_df_seq_show,
1835 };
1836
1837 static int btf_array_check_member(struct btf_verifier_env *env,
1838                                   const struct btf_type *struct_type,
1839                                   const struct btf_member *member,
1840                                   const struct btf_type *member_type)
1841 {
1842         u32 struct_bits_off = member->offset;
1843         u32 struct_size, bytes_offset;
1844         u32 array_type_id, array_size;
1845         struct btf *btf = env->btf;
1846
1847         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1848                 btf_verifier_log_member(env, struct_type, member,
1849                                         "Member is not byte aligned");
1850                 return -EINVAL;
1851         }
1852
1853         array_type_id = member->type;
1854         btf_type_id_size(btf, &array_type_id, &array_size);
1855         struct_size = struct_type->size;
1856         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1857         if (struct_size - bytes_offset < array_size) {
1858                 btf_verifier_log_member(env, struct_type, member,
1859                                         "Member exceeds struct_size");
1860                 return -EINVAL;
1861         }
1862
1863         return 0;
1864 }
1865
1866 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1867                                 const struct btf_type *t,
1868                                 u32 meta_left)
1869 {
1870         const struct btf_array *array = btf_type_array(t);
1871         u32 meta_needed = sizeof(*array);
1872
1873         if (meta_left < meta_needed) {
1874                 btf_verifier_log_basic(env, t,
1875                                        "meta_left:%u meta_needed:%u",
1876                                        meta_left, meta_needed);
1877                 return -EINVAL;
1878         }
1879
1880         /* array type should not have a name */
1881         if (t->name_off) {
1882                 btf_verifier_log_type(env, t, "Invalid name");
1883                 return -EINVAL;
1884         }
1885
1886         if (btf_type_vlen(t)) {
1887                 btf_verifier_log_type(env, t, "vlen != 0");
1888                 return -EINVAL;
1889         }
1890
1891         if (btf_type_kflag(t)) {
1892                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1893                 return -EINVAL;
1894         }
1895
1896         if (t->size) {
1897                 btf_verifier_log_type(env, t, "size != 0");
1898                 return -EINVAL;
1899         }
1900
1901         /* Array elem type and index type cannot be in type void,
1902          * so !array->type and !array->index_type are not allowed.
1903          */
1904         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1905                 btf_verifier_log_type(env, t, "Invalid elem");
1906                 return -EINVAL;
1907         }
1908
1909         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1910                 btf_verifier_log_type(env, t, "Invalid index");
1911                 return -EINVAL;
1912         }
1913
1914         btf_verifier_log_type(env, t, NULL);
1915
1916         return meta_needed;
1917 }
1918
1919 static int btf_array_resolve(struct btf_verifier_env *env,
1920                              const struct resolve_vertex *v)
1921 {
1922         const struct btf_array *array = btf_type_array(v->t);
1923         const struct btf_type *elem_type, *index_type;
1924         u32 elem_type_id, index_type_id;
1925         struct btf *btf = env->btf;
1926         u32 elem_size;
1927
1928         /* Check array->index_type */
1929         index_type_id = array->index_type;
1930         index_type = btf_type_by_id(btf, index_type_id);
1931         if (btf_type_nosize_or_null(index_type) ||
1932             btf_type_is_resolve_source_only(index_type)) {
1933                 btf_verifier_log_type(env, v->t, "Invalid index");
1934                 return -EINVAL;
1935         }
1936
1937         if (!env_type_is_resolve_sink(env, index_type) &&
1938             !env_type_is_resolved(env, index_type_id))
1939                 return env_stack_push(env, index_type, index_type_id);
1940
1941         index_type = btf_type_id_size(btf, &index_type_id, NULL);
1942         if (!index_type || !btf_type_is_int(index_type) ||
1943             !btf_type_int_is_regular(index_type)) {
1944                 btf_verifier_log_type(env, v->t, "Invalid index");
1945                 return -EINVAL;
1946         }
1947
1948         /* Check array->type */
1949         elem_type_id = array->type;
1950         elem_type = btf_type_by_id(btf, elem_type_id);
1951         if (btf_type_nosize_or_null(elem_type) ||
1952             btf_type_is_resolve_source_only(elem_type)) {
1953                 btf_verifier_log_type(env, v->t,
1954                                       "Invalid elem");
1955                 return -EINVAL;
1956         }
1957
1958         if (!env_type_is_resolve_sink(env, elem_type) &&
1959             !env_type_is_resolved(env, elem_type_id))
1960                 return env_stack_push(env, elem_type, elem_type_id);
1961
1962         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1963         if (!elem_type) {
1964                 btf_verifier_log_type(env, v->t, "Invalid elem");
1965                 return -EINVAL;
1966         }
1967
1968         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1969                 btf_verifier_log_type(env, v->t, "Invalid array of int");
1970                 return -EINVAL;
1971         }
1972
1973         if (array->nelems && elem_size > U32_MAX / array->nelems) {
1974                 btf_verifier_log_type(env, v->t,
1975                                       "Array size overflows U32_MAX");
1976                 return -EINVAL;
1977         }
1978
1979         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1980
1981         return 0;
1982 }
1983
1984 static void btf_array_log(struct btf_verifier_env *env,
1985                           const struct btf_type *t)
1986 {
1987         const struct btf_array *array = btf_type_array(t);
1988
1989         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1990                          array->type, array->index_type, array->nelems);
1991 }
1992
1993 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1994                                u32 type_id, void *data, u8 bits_offset,
1995                                struct seq_file *m)
1996 {
1997         const struct btf_array *array = btf_type_array(t);
1998         const struct btf_kind_operations *elem_ops;
1999         const struct btf_type *elem_type;
2000         u32 i, elem_size, elem_type_id;
2001
2002         elem_type_id = array->type;
2003         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2004         elem_ops = btf_type_ops(elem_type);
2005         seq_puts(m, "[");
2006         for (i = 0; i < array->nelems; i++) {
2007                 if (i)
2008                         seq_puts(m, ",");
2009
2010                 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2011                                    bits_offset, m);
2012                 data += elem_size;
2013         }
2014         seq_puts(m, "]");
2015 }
2016
2017 static struct btf_kind_operations array_ops = {
2018         .check_meta = btf_array_check_meta,
2019         .resolve = btf_array_resolve,
2020         .check_member = btf_array_check_member,
2021         .check_kflag_member = btf_generic_check_kflag_member,
2022         .log_details = btf_array_log,
2023         .seq_show = btf_array_seq_show,
2024 };
2025
2026 static int btf_struct_check_member(struct btf_verifier_env *env,
2027                                    const struct btf_type *struct_type,
2028                                    const struct btf_member *member,
2029                                    const struct btf_type *member_type)
2030 {
2031         u32 struct_bits_off = member->offset;
2032         u32 struct_size, bytes_offset;
2033
2034         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2035                 btf_verifier_log_member(env, struct_type, member,
2036                                         "Member is not byte aligned");
2037                 return -EINVAL;
2038         }
2039
2040         struct_size = struct_type->size;
2041         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2042         if (struct_size - bytes_offset < member_type->size) {
2043                 btf_verifier_log_member(env, struct_type, member,
2044                                         "Member exceeds struct_size");
2045                 return -EINVAL;
2046         }
2047
2048         return 0;
2049 }
2050
2051 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2052                                  const struct btf_type *t,
2053                                  u32 meta_left)
2054 {
2055         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2056         const struct btf_member *member;
2057         u32 meta_needed, last_offset;
2058         struct btf *btf = env->btf;
2059         u32 struct_size = t->size;
2060         u32 offset;
2061         u16 i;
2062
2063         meta_needed = btf_type_vlen(t) * sizeof(*member);
2064         if (meta_left < meta_needed) {
2065                 btf_verifier_log_basic(env, t,
2066                                        "meta_left:%u meta_needed:%u",
2067                                        meta_left, meta_needed);
2068                 return -EINVAL;
2069         }
2070
2071         /* struct type either no name or a valid one */
2072         if (t->name_off &&
2073             !btf_name_valid_identifier(env->btf, t->name_off)) {
2074                 btf_verifier_log_type(env, t, "Invalid name");
2075                 return -EINVAL;
2076         }
2077
2078         btf_verifier_log_type(env, t, NULL);
2079
2080         last_offset = 0;
2081         for_each_member(i, t, member) {
2082                 if (!btf_name_offset_valid(btf, member->name_off)) {
2083                         btf_verifier_log_member(env, t, member,
2084                                                 "Invalid member name_offset:%u",
2085                                                 member->name_off);
2086                         return -EINVAL;
2087                 }
2088
2089                 /* struct member either no name or a valid one */
2090                 if (member->name_off &&
2091                     !btf_name_valid_identifier(btf, member->name_off)) {
2092                         btf_verifier_log_member(env, t, member, "Invalid name");
2093                         return -EINVAL;
2094                 }
2095                 /* A member cannot be in type void */
2096                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2097                         btf_verifier_log_member(env, t, member,
2098                                                 "Invalid type_id");
2099                         return -EINVAL;
2100                 }
2101
2102                 offset = btf_member_bit_offset(t, member);
2103                 if (is_union && offset) {
2104                         btf_verifier_log_member(env, t, member,
2105                                                 "Invalid member bits_offset");
2106                         return -EINVAL;
2107                 }
2108
2109                 /*
2110                  * ">" instead of ">=" because the last member could be
2111                  * "char a[0];"
2112                  */
2113                 if (last_offset > offset) {
2114                         btf_verifier_log_member(env, t, member,
2115                                                 "Invalid member bits_offset");
2116                         return -EINVAL;
2117                 }
2118
2119                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2120                         btf_verifier_log_member(env, t, member,
2121                                                 "Member bits_offset exceeds its struct size");
2122                         return -EINVAL;
2123                 }
2124
2125                 btf_verifier_log_member(env, t, member, NULL);
2126                 last_offset = offset;
2127         }
2128
2129         return meta_needed;
2130 }
2131
2132 static int btf_struct_resolve(struct btf_verifier_env *env,
2133                               const struct resolve_vertex *v)
2134 {
2135         const struct btf_member *member;
2136         int err;
2137         u16 i;
2138
2139         /* Before continue resolving the next_member,
2140          * ensure the last member is indeed resolved to a
2141          * type with size info.
2142          */
2143         if (v->next_member) {
2144                 const struct btf_type *last_member_type;
2145                 const struct btf_member *last_member;
2146                 u16 last_member_type_id;
2147
2148                 last_member = btf_type_member(v->t) + v->next_member - 1;
2149                 last_member_type_id = last_member->type;
2150                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2151                                                        last_member_type_id)))
2152                         return -EINVAL;
2153
2154                 last_member_type = btf_type_by_id(env->btf,
2155                                                   last_member_type_id);
2156                 if (btf_type_kflag(v->t))
2157                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2158                                                                 last_member,
2159                                                                 last_member_type);
2160                 else
2161                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
2162                                                                 last_member,
2163                                                                 last_member_type);
2164                 if (err)
2165                         return err;
2166         }
2167
2168         for_each_member_from(i, v->next_member, v->t, member) {
2169                 u32 member_type_id = member->type;
2170                 const struct btf_type *member_type = btf_type_by_id(env->btf,
2171                                                                 member_type_id);
2172
2173                 if (btf_type_nosize_or_null(member_type) ||
2174                     btf_type_is_resolve_source_only(member_type)) {
2175                         btf_verifier_log_member(env, v->t, member,
2176                                                 "Invalid member");
2177                         return -EINVAL;
2178                 }
2179
2180                 if (!env_type_is_resolve_sink(env, member_type) &&
2181                     !env_type_is_resolved(env, member_type_id)) {
2182                         env_stack_set_next_member(env, i + 1);
2183                         return env_stack_push(env, member_type, member_type_id);
2184                 }
2185
2186                 if (btf_type_kflag(v->t))
2187                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2188                                                                             member,
2189                                                                             member_type);
2190                 else
2191                         err = btf_type_ops(member_type)->check_member(env, v->t,
2192                                                                       member,
2193                                                                       member_type);
2194                 if (err)
2195                         return err;
2196         }
2197
2198         env_stack_pop_resolved(env, 0, 0);
2199
2200         return 0;
2201 }
2202
2203 static void btf_struct_log(struct btf_verifier_env *env,
2204                            const struct btf_type *t)
2205 {
2206         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2207 }
2208
2209 /* find 'struct bpf_spin_lock' in map value.
2210  * return >= 0 offset if found
2211  * and < 0 in case of error
2212  */
2213 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2214 {
2215         const struct btf_member *member;
2216         u32 i, off = -ENOENT;
2217
2218         if (!__btf_type_is_struct(t))
2219                 return -EINVAL;
2220
2221         for_each_member(i, t, member) {
2222                 const struct btf_type *member_type = btf_type_by_id(btf,
2223                                                                     member->type);
2224                 if (!__btf_type_is_struct(member_type))
2225                         continue;
2226                 if (member_type->size != sizeof(struct bpf_spin_lock))
2227                         continue;
2228                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2229                            "bpf_spin_lock"))
2230                         continue;
2231                 if (off != -ENOENT)
2232                         /* only one 'struct bpf_spin_lock' is allowed */
2233                         return -E2BIG;
2234                 off = btf_member_bit_offset(t, member);
2235                 if (off % 8)
2236                         /* valid C code cannot generate such BTF */
2237                         return -EINVAL;
2238                 off /= 8;
2239                 if (off % __alignof__(struct bpf_spin_lock))
2240                         /* valid struct bpf_spin_lock will be 4 byte aligned */
2241                         return -EINVAL;
2242         }
2243         return off;
2244 }
2245
2246 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2247                                 u32 type_id, void *data, u8 bits_offset,
2248                                 struct seq_file *m)
2249 {
2250         const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2251         const struct btf_member *member;
2252         u32 i;
2253
2254         seq_puts(m, "{");
2255         for_each_member(i, t, member) {
2256                 const struct btf_type *member_type = btf_type_by_id(btf,
2257                                                                 member->type);
2258                 const struct btf_kind_operations *ops;
2259                 u32 member_offset, bitfield_size;
2260                 u32 bytes_offset;
2261                 u8 bits8_offset;
2262
2263                 if (i)
2264                         seq_puts(m, seq);
2265
2266                 member_offset = btf_member_bit_offset(t, member);
2267                 bitfield_size = btf_member_bitfield_size(t, member);
2268                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2269                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2270                 if (bitfield_size) {
2271                         btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2272                                               bitfield_size, m);
2273                 } else {
2274                         ops = btf_type_ops(member_type);
2275                         ops->seq_show(btf, member_type, member->type,
2276                                       data + bytes_offset, bits8_offset, m);
2277                 }
2278         }
2279         seq_puts(m, "}");
2280 }
2281
2282 static struct btf_kind_operations struct_ops = {
2283         .check_meta = btf_struct_check_meta,
2284         .resolve = btf_struct_resolve,
2285         .check_member = btf_struct_check_member,
2286         .check_kflag_member = btf_generic_check_kflag_member,
2287         .log_details = btf_struct_log,
2288         .seq_show = btf_struct_seq_show,
2289 };
2290
2291 static int btf_enum_check_member(struct btf_verifier_env *env,
2292                                  const struct btf_type *struct_type,
2293                                  const struct btf_member *member,
2294                                  const struct btf_type *member_type)
2295 {
2296         u32 struct_bits_off = member->offset;
2297         u32 struct_size, bytes_offset;
2298
2299         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2300                 btf_verifier_log_member(env, struct_type, member,
2301                                         "Member is not byte aligned");
2302                 return -EINVAL;
2303         }
2304
2305         struct_size = struct_type->size;
2306         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2307         if (struct_size - bytes_offset < sizeof(int)) {
2308                 btf_verifier_log_member(env, struct_type, member,
2309                                         "Member exceeds struct_size");
2310                 return -EINVAL;
2311         }
2312
2313         return 0;
2314 }
2315
2316 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2317                                        const struct btf_type *struct_type,
2318                                        const struct btf_member *member,
2319                                        const struct btf_type *member_type)
2320 {
2321         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2322         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2323
2324         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2325         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2326         if (!nr_bits) {
2327                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2328                         btf_verifier_log_member(env, struct_type, member,
2329                                                 "Member is not byte aligned");
2330                                 return -EINVAL;
2331                 }
2332
2333                 nr_bits = int_bitsize;
2334         } else if (nr_bits > int_bitsize) {
2335                 btf_verifier_log_member(env, struct_type, member,
2336                                         "Invalid member bitfield_size");
2337                 return -EINVAL;
2338         }
2339
2340         struct_size = struct_type->size;
2341         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2342         if (struct_size < bytes_end) {
2343                 btf_verifier_log_member(env, struct_type, member,
2344                                         "Member exceeds struct_size");
2345                 return -EINVAL;
2346         }
2347
2348         return 0;
2349 }
2350
2351 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2352                                const struct btf_type *t,
2353                                u32 meta_left)
2354 {
2355         const struct btf_enum *enums = btf_type_enum(t);
2356         struct btf *btf = env->btf;
2357         u16 i, nr_enums;
2358         u32 meta_needed;
2359
2360         nr_enums = btf_type_vlen(t);
2361         meta_needed = nr_enums * sizeof(*enums);
2362
2363         if (meta_left < meta_needed) {
2364                 btf_verifier_log_basic(env, t,
2365                                        "meta_left:%u meta_needed:%u",
2366                                        meta_left, meta_needed);
2367                 return -EINVAL;
2368         }
2369
2370         if (btf_type_kflag(t)) {
2371                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2372                 return -EINVAL;
2373         }
2374
2375         if (t->size != sizeof(int)) {
2376                 btf_verifier_log_type(env, t, "Expected size:%zu",
2377                                       sizeof(int));
2378                 return -EINVAL;
2379         }
2380
2381         /* enum type either no name or a valid one */
2382         if (t->name_off &&
2383             !btf_name_valid_identifier(env->btf, t->name_off)) {
2384                 btf_verifier_log_type(env, t, "Invalid name");
2385                 return -EINVAL;
2386         }
2387
2388         btf_verifier_log_type(env, t, NULL);
2389
2390         for (i = 0; i < nr_enums; i++) {
2391                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2392                         btf_verifier_log(env, "\tInvalid name_offset:%u",
2393                                          enums[i].name_off);
2394                         return -EINVAL;
2395                 }
2396
2397                 /* enum member must have a valid name */
2398                 if (!enums[i].name_off ||
2399                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
2400                         btf_verifier_log_type(env, t, "Invalid name");
2401                         return -EINVAL;
2402                 }
2403
2404
2405                 btf_verifier_log(env, "\t%s val=%d\n",
2406                                  __btf_name_by_offset(btf, enums[i].name_off),
2407                                  enums[i].val);
2408         }
2409
2410         return meta_needed;
2411 }
2412
2413 static void btf_enum_log(struct btf_verifier_env *env,
2414                          const struct btf_type *t)
2415 {
2416         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2417 }
2418
2419 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2420                               u32 type_id, void *data, u8 bits_offset,
2421                               struct seq_file *m)
2422 {
2423         const struct btf_enum *enums = btf_type_enum(t);
2424         u32 i, nr_enums = btf_type_vlen(t);
2425         int v = *(int *)data;
2426
2427         for (i = 0; i < nr_enums; i++) {
2428                 if (v == enums[i].val) {
2429                         seq_printf(m, "%s",
2430                                    __btf_name_by_offset(btf,
2431                                                         enums[i].name_off));
2432                         return;
2433                 }
2434         }
2435
2436         seq_printf(m, "%d", v);
2437 }
2438
2439 static struct btf_kind_operations enum_ops = {
2440         .check_meta = btf_enum_check_meta,
2441         .resolve = btf_df_resolve,
2442         .check_member = btf_enum_check_member,
2443         .check_kflag_member = btf_enum_check_kflag_member,
2444         .log_details = btf_enum_log,
2445         .seq_show = btf_enum_seq_show,
2446 };
2447
2448 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2449                                      const struct btf_type *t,
2450                                      u32 meta_left)
2451 {
2452         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2453
2454         if (meta_left < meta_needed) {
2455                 btf_verifier_log_basic(env, t,
2456                                        "meta_left:%u meta_needed:%u",
2457                                        meta_left, meta_needed);
2458                 return -EINVAL;
2459         }
2460
2461         if (t->name_off) {
2462                 btf_verifier_log_type(env, t, "Invalid name");
2463                 return -EINVAL;
2464         }
2465
2466         if (btf_type_kflag(t)) {
2467                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2468                 return -EINVAL;
2469         }
2470
2471         btf_verifier_log_type(env, t, NULL);
2472
2473         return meta_needed;
2474 }
2475
2476 static void btf_func_proto_log(struct btf_verifier_env *env,
2477                                const struct btf_type *t)
2478 {
2479         const struct btf_param *args = (const struct btf_param *)(t + 1);
2480         u16 nr_args = btf_type_vlen(t), i;
2481
2482         btf_verifier_log(env, "return=%u args=(", t->type);
2483         if (!nr_args) {
2484                 btf_verifier_log(env, "void");
2485                 goto done;
2486         }
2487
2488         if (nr_args == 1 && !args[0].type) {
2489                 /* Only one vararg */
2490                 btf_verifier_log(env, "vararg");
2491                 goto done;
2492         }
2493
2494         btf_verifier_log(env, "%u %s", args[0].type,
2495                          __btf_name_by_offset(env->btf,
2496                                               args[0].name_off));
2497         for (i = 1; i < nr_args - 1; i++)
2498                 btf_verifier_log(env, ", %u %s", args[i].type,
2499                                  __btf_name_by_offset(env->btf,
2500                                                       args[i].name_off));
2501
2502         if (nr_args > 1) {
2503                 const struct btf_param *last_arg = &args[nr_args - 1];
2504
2505                 if (last_arg->type)
2506                         btf_verifier_log(env, ", %u %s", last_arg->type,
2507                                          __btf_name_by_offset(env->btf,
2508                                                               last_arg->name_off));
2509                 else
2510                         btf_verifier_log(env, ", vararg");
2511         }
2512
2513 done:
2514         btf_verifier_log(env, ")");
2515 }
2516
2517 static struct btf_kind_operations func_proto_ops = {
2518         .check_meta = btf_func_proto_check_meta,
2519         .resolve = btf_df_resolve,
2520         /*
2521          * BTF_KIND_FUNC_PROTO cannot be directly referred by
2522          * a struct's member.
2523          *
2524          * It should be a funciton pointer instead.
2525          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2526          *
2527          * Hence, there is no btf_func_check_member().
2528          */
2529         .check_member = btf_df_check_member,
2530         .check_kflag_member = btf_df_check_kflag_member,
2531         .log_details = btf_func_proto_log,
2532         .seq_show = btf_df_seq_show,
2533 };
2534
2535 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2536                                const struct btf_type *t,
2537                                u32 meta_left)
2538 {
2539         if (!t->name_off ||
2540             !btf_name_valid_identifier(env->btf, t->name_off)) {
2541                 btf_verifier_log_type(env, t, "Invalid name");
2542                 return -EINVAL;
2543         }
2544
2545         if (btf_type_vlen(t)) {
2546                 btf_verifier_log_type(env, t, "vlen != 0");
2547                 return -EINVAL;
2548         }
2549
2550         if (btf_type_kflag(t)) {
2551                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2552                 return -EINVAL;
2553         }
2554
2555         btf_verifier_log_type(env, t, NULL);
2556
2557         return 0;
2558 }
2559
2560 static struct btf_kind_operations func_ops = {
2561         .check_meta = btf_func_check_meta,
2562         .resolve = btf_df_resolve,
2563         .check_member = btf_df_check_member,
2564         .check_kflag_member = btf_df_check_kflag_member,
2565         .log_details = btf_ref_type_log,
2566         .seq_show = btf_df_seq_show,
2567 };
2568
2569 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2570                               const struct btf_type *t,
2571                               u32 meta_left)
2572 {
2573         const struct btf_var *var;
2574         u32 meta_needed = sizeof(*var);
2575
2576         if (meta_left < meta_needed) {
2577                 btf_verifier_log_basic(env, t,
2578                                        "meta_left:%u meta_needed:%u",
2579                                        meta_left, meta_needed);
2580                 return -EINVAL;
2581         }
2582
2583         if (btf_type_vlen(t)) {
2584                 btf_verifier_log_type(env, t, "vlen != 0");
2585                 return -EINVAL;
2586         }
2587
2588         if (btf_type_kflag(t)) {
2589                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2590                 return -EINVAL;
2591         }
2592
2593         if (!t->name_off ||
2594             !__btf_name_valid(env->btf, t->name_off, true)) {
2595                 btf_verifier_log_type(env, t, "Invalid name");
2596                 return -EINVAL;
2597         }
2598
2599         /* A var cannot be in type void */
2600         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2601                 btf_verifier_log_type(env, t, "Invalid type_id");
2602                 return -EINVAL;
2603         }
2604
2605         var = btf_type_var(t);
2606         if (var->linkage != BTF_VAR_STATIC &&
2607             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2608                 btf_verifier_log_type(env, t, "Linkage not supported");
2609                 return -EINVAL;
2610         }
2611
2612         btf_verifier_log_type(env, t, NULL);
2613
2614         return meta_needed;
2615 }
2616
2617 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2618 {
2619         const struct btf_var *var = btf_type_var(t);
2620
2621         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2622 }
2623
2624 static const struct btf_kind_operations var_ops = {
2625         .check_meta             = btf_var_check_meta,
2626         .resolve                = btf_var_resolve,
2627         .check_member           = btf_df_check_member,
2628         .check_kflag_member     = btf_df_check_kflag_member,
2629         .log_details            = btf_var_log,
2630         .seq_show               = btf_var_seq_show,
2631 };
2632
2633 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2634                                   const struct btf_type *t,
2635                                   u32 meta_left)
2636 {
2637         const struct btf_var_secinfo *vsi;
2638         u64 last_vsi_end_off = 0, sum = 0;
2639         u32 i, meta_needed;
2640
2641         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2642         if (meta_left < meta_needed) {
2643                 btf_verifier_log_basic(env, t,
2644                                        "meta_left:%u meta_needed:%u",
2645                                        meta_left, meta_needed);
2646                 return -EINVAL;
2647         }
2648
2649         if (!btf_type_vlen(t)) {
2650                 btf_verifier_log_type(env, t, "vlen == 0");
2651                 return -EINVAL;
2652         }
2653
2654         if (!t->size) {
2655                 btf_verifier_log_type(env, t, "size == 0");
2656                 return -EINVAL;
2657         }
2658
2659         if (btf_type_kflag(t)) {
2660                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2661                 return -EINVAL;
2662         }
2663
2664         if (!t->name_off ||
2665             !btf_name_valid_section(env->btf, t->name_off)) {
2666                 btf_verifier_log_type(env, t, "Invalid name");
2667                 return -EINVAL;
2668         }
2669
2670         btf_verifier_log_type(env, t, NULL);
2671
2672         for_each_vsi(i, t, vsi) {
2673                 /* A var cannot be in type void */
2674                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2675                         btf_verifier_log_vsi(env, t, vsi,
2676                                              "Invalid type_id");
2677                         return -EINVAL;
2678                 }
2679
2680                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2681                         btf_verifier_log_vsi(env, t, vsi,
2682                                              "Invalid offset");
2683                         return -EINVAL;
2684                 }
2685
2686                 if (!vsi->size || vsi->size > t->size) {
2687                         btf_verifier_log_vsi(env, t, vsi,
2688                                              "Invalid size");
2689                         return -EINVAL;
2690                 }
2691
2692                 last_vsi_end_off = vsi->offset + vsi->size;
2693                 if (last_vsi_end_off > t->size) {
2694                         btf_verifier_log_vsi(env, t, vsi,
2695                                              "Invalid offset+size");
2696                         return -EINVAL;
2697                 }
2698
2699                 btf_verifier_log_vsi(env, t, vsi, NULL);
2700                 sum += vsi->size;
2701         }
2702
2703         if (t->size < sum) {
2704                 btf_verifier_log_type(env, t, "Invalid btf_info size");
2705                 return -EINVAL;
2706         }
2707
2708         return meta_needed;
2709 }
2710
2711 static int btf_datasec_resolve(struct btf_verifier_env *env,
2712                                const struct resolve_vertex *v)
2713 {
2714         const struct btf_var_secinfo *vsi;
2715         struct btf *btf = env->btf;
2716         u16 i;
2717
2718         for_each_vsi_from(i, v->next_member, v->t, vsi) {
2719                 u32 var_type_id = vsi->type, type_id, type_size = 0;
2720                 const struct btf_type *var_type = btf_type_by_id(env->btf,
2721                                                                  var_type_id);
2722                 if (!var_type || !btf_type_is_var(var_type)) {
2723                         btf_verifier_log_vsi(env, v->t, vsi,
2724                                              "Not a VAR kind member");
2725                         return -EINVAL;
2726                 }
2727
2728                 if (!env_type_is_resolve_sink(env, var_type) &&
2729                     !env_type_is_resolved(env, var_type_id)) {
2730                         env_stack_set_next_member(env, i + 1);
2731                         return env_stack_push(env, var_type, var_type_id);
2732                 }
2733
2734                 type_id = var_type->type;
2735                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
2736                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2737                         return -EINVAL;
2738                 }
2739
2740                 if (vsi->size < type_size) {
2741                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2742                         return -EINVAL;
2743                 }
2744         }
2745
2746         env_stack_pop_resolved(env, 0, 0);
2747         return 0;
2748 }
2749
2750 static void btf_datasec_log(struct btf_verifier_env *env,
2751                             const struct btf_type *t)
2752 {
2753         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2754 }
2755
2756 static void btf_datasec_seq_show(const struct btf *btf,
2757                                  const struct btf_type *t, u32 type_id,
2758                                  void *data, u8 bits_offset,
2759                                  struct seq_file *m)
2760 {
2761         const struct btf_var_secinfo *vsi;
2762         const struct btf_type *var;
2763         u32 i;
2764
2765         seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2766         for_each_vsi(i, t, vsi) {
2767                 var = btf_type_by_id(btf, vsi->type);
2768                 if (i)
2769                         seq_puts(m, ",");
2770                 btf_type_ops(var)->seq_show(btf, var, vsi->type,
2771                                             data + vsi->offset, bits_offset, m);
2772         }
2773         seq_puts(m, "}");
2774 }
2775
2776 static const struct btf_kind_operations datasec_ops = {
2777         .check_meta             = btf_datasec_check_meta,
2778         .resolve                = btf_datasec_resolve,
2779         .check_member           = btf_df_check_member,
2780         .check_kflag_member     = btf_df_check_kflag_member,
2781         .log_details            = btf_datasec_log,
2782         .seq_show               = btf_datasec_seq_show,
2783 };
2784
2785 static int btf_func_proto_check(struct btf_verifier_env *env,
2786                                 const struct btf_type *t)
2787 {
2788         const struct btf_type *ret_type;
2789         const struct btf_param *args;
2790         const struct btf *btf;
2791         u16 nr_args, i;
2792         int err;
2793
2794         btf = env->btf;
2795         args = (const struct btf_param *)(t + 1);
2796         nr_args = btf_type_vlen(t);
2797
2798         /* Check func return type which could be "void" (t->type == 0) */
2799         if (t->type) {
2800                 u32 ret_type_id = t->type;
2801
2802                 ret_type = btf_type_by_id(btf, ret_type_id);
2803                 if (!ret_type) {
2804                         btf_verifier_log_type(env, t, "Invalid return type");
2805                         return -EINVAL;
2806                 }
2807
2808                 if (btf_type_needs_resolve(ret_type) &&
2809                     !env_type_is_resolved(env, ret_type_id)) {
2810                         err = btf_resolve(env, ret_type, ret_type_id);
2811                         if (err)
2812                                 return err;
2813                 }
2814
2815                 /* Ensure the return type is a type that has a size */
2816                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2817                         btf_verifier_log_type(env, t, "Invalid return type");
2818                         return -EINVAL;
2819                 }
2820         }
2821
2822         if (!nr_args)
2823                 return 0;
2824
2825         /* Last func arg type_id could be 0 if it is a vararg */
2826         if (!args[nr_args - 1].type) {
2827                 if (args[nr_args - 1].name_off) {
2828                         btf_verifier_log_type(env, t, "Invalid arg#%u",
2829                                               nr_args);
2830                         return -EINVAL;
2831                 }
2832                 nr_args--;
2833         }
2834
2835         err = 0;
2836         for (i = 0; i < nr_args; i++) {
2837                 const struct btf_type *arg_type;
2838                 u32 arg_type_id;
2839
2840                 arg_type_id = args[i].type;
2841                 arg_type = btf_type_by_id(btf, arg_type_id);
2842                 if (!arg_type) {
2843                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2844                         err = -EINVAL;
2845                         break;
2846                 }
2847
2848                 if (args[i].name_off &&
2849                     (!btf_name_offset_valid(btf, args[i].name_off) ||
2850                      !btf_name_valid_identifier(btf, args[i].name_off))) {
2851                         btf_verifier_log_type(env, t,
2852                                               "Invalid arg#%u", i + 1);
2853                         err = -EINVAL;
2854                         break;
2855                 }
2856
2857                 if (btf_type_needs_resolve(arg_type) &&
2858                     !env_type_is_resolved(env, arg_type_id)) {
2859                         err = btf_resolve(env, arg_type, arg_type_id);
2860                         if (err)
2861                                 break;
2862                 }
2863
2864                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2865                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2866                         err = -EINVAL;
2867                         break;
2868                 }
2869         }
2870
2871         return err;
2872 }
2873
2874 static int btf_func_check(struct btf_verifier_env *env,
2875                           const struct btf_type *t)
2876 {
2877         const struct btf_type *proto_type;
2878         const struct btf_param *args;
2879         const struct btf *btf;
2880         u16 nr_args, i;
2881
2882         btf = env->btf;
2883         proto_type = btf_type_by_id(btf, t->type);
2884
2885         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2886                 btf_verifier_log_type(env, t, "Invalid type_id");
2887                 return -EINVAL;
2888         }
2889
2890         args = (const struct btf_param *)(proto_type + 1);
2891         nr_args = btf_type_vlen(proto_type);
2892         for (i = 0; i < nr_args; i++) {
2893                 if (!args[i].name_off && args[i].type) {
2894                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2895                         return -EINVAL;
2896                 }
2897         }
2898
2899         return 0;
2900 }
2901
2902 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2903         [BTF_KIND_INT] = &int_ops,
2904         [BTF_KIND_PTR] = &ptr_ops,
2905         [BTF_KIND_ARRAY] = &array_ops,
2906         [BTF_KIND_STRUCT] = &struct_ops,
2907         [BTF_KIND_UNION] = &struct_ops,
2908         [BTF_KIND_ENUM] = &enum_ops,
2909         [BTF_KIND_FWD] = &fwd_ops,
2910         [BTF_KIND_TYPEDEF] = &modifier_ops,
2911         [BTF_KIND_VOLATILE] = &modifier_ops,
2912         [BTF_KIND_CONST] = &modifier_ops,
2913         [BTF_KIND_RESTRICT] = &modifier_ops,
2914         [BTF_KIND_FUNC] = &func_ops,
2915         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2916         [BTF_KIND_VAR] = &var_ops,
2917         [BTF_KIND_DATASEC] = &datasec_ops,
2918 };
2919
2920 static s32 btf_check_meta(struct btf_verifier_env *env,
2921                           const struct btf_type *t,
2922                           u32 meta_left)
2923 {
2924         u32 saved_meta_left = meta_left;
2925         s32 var_meta_size;
2926
2927         if (meta_left < sizeof(*t)) {
2928                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2929                                  env->log_type_id, meta_left, sizeof(*t));
2930                 return -EINVAL;
2931         }
2932         meta_left -= sizeof(*t);
2933
2934         if (t->info & ~BTF_INFO_MASK) {
2935                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2936                                  env->log_type_id, t->info);
2937                 return -EINVAL;
2938         }
2939
2940         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2941             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2942                 btf_verifier_log(env, "[%u] Invalid kind:%u",
2943                                  env->log_type_id, BTF_INFO_KIND(t->info));
2944                 return -EINVAL;
2945         }
2946
2947         if (!btf_name_offset_valid(env->btf, t->name_off)) {
2948                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2949                                  env->log_type_id, t->name_off);
2950                 return -EINVAL;
2951         }
2952
2953         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2954         if (var_meta_size < 0)
2955                 return var_meta_size;
2956
2957         meta_left -= var_meta_size;
2958
2959         return saved_meta_left - meta_left;
2960 }
2961
2962 static int btf_check_all_metas(struct btf_verifier_env *env)
2963 {
2964         struct btf *btf = env->btf;
2965         struct btf_header *hdr;
2966         void *cur, *end;
2967
2968         hdr = &btf->hdr;
2969         cur = btf->nohdr_data + hdr->type_off;
2970         end = cur + hdr->type_len;
2971
2972         env->log_type_id = 1;
2973         while (cur < end) {
2974                 struct btf_type *t = cur;
2975                 s32 meta_size;
2976
2977                 meta_size = btf_check_meta(env, t, end - cur);
2978                 if (meta_size < 0)
2979                         return meta_size;
2980
2981                 btf_add_type(env, t);
2982                 cur += meta_size;
2983                 env->log_type_id++;
2984         }
2985
2986         return 0;
2987 }
2988
2989 static bool btf_resolve_valid(struct btf_verifier_env *env,
2990                               const struct btf_type *t,
2991                               u32 type_id)
2992 {
2993         struct btf *btf = env->btf;
2994
2995         if (!env_type_is_resolved(env, type_id))
2996                 return false;
2997
2998         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
2999                 return !btf->resolved_ids[type_id] &&
3000                        !btf->resolved_sizes[type_id];
3001
3002         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3003             btf_type_is_var(t)) {
3004                 t = btf_type_id_resolve(btf, &type_id);
3005                 return t &&
3006                        !btf_type_is_modifier(t) &&
3007                        !btf_type_is_var(t) &&
3008                        !btf_type_is_datasec(t);
3009         }
3010
3011         if (btf_type_is_array(t)) {
3012                 const struct btf_array *array = btf_type_array(t);
3013                 const struct btf_type *elem_type;
3014                 u32 elem_type_id = array->type;
3015                 u32 elem_size;
3016
3017                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3018                 return elem_type && !btf_type_is_modifier(elem_type) &&
3019                         (array->nelems * elem_size ==
3020                          btf->resolved_sizes[type_id]);
3021         }
3022
3023         return false;
3024 }
3025
3026 static int btf_resolve(struct btf_verifier_env *env,
3027                        const struct btf_type *t, u32 type_id)
3028 {
3029         u32 save_log_type_id = env->log_type_id;
3030         const struct resolve_vertex *v;
3031         int err = 0;
3032
3033         env->resolve_mode = RESOLVE_TBD;
3034         env_stack_push(env, t, type_id);
3035         while (!err && (v = env_stack_peak(env))) {
3036                 env->log_type_id = v->type_id;
3037                 err = btf_type_ops(v->t)->resolve(env, v);
3038         }
3039
3040         env->log_type_id = type_id;
3041         if (err == -E2BIG) {
3042                 btf_verifier_log_type(env, t,
3043                                       "Exceeded max resolving depth:%u",
3044                                       MAX_RESOLVE_DEPTH);
3045         } else if (err == -EEXIST) {
3046                 btf_verifier_log_type(env, t, "Loop detected");
3047         }
3048
3049         /* Final sanity check */
3050         if (!err && !btf_resolve_valid(env, t, type_id)) {
3051                 btf_verifier_log_type(env, t, "Invalid resolve state");
3052                 err = -EINVAL;
3053         }
3054
3055         env->log_type_id = save_log_type_id;
3056         return err;
3057 }
3058
3059 static int btf_check_all_types(struct btf_verifier_env *env)
3060 {
3061         struct btf *btf = env->btf;
3062         u32 type_id;
3063         int err;
3064
3065         err = env_resolve_init(env);
3066         if (err)
3067                 return err;
3068
3069         env->phase++;
3070         for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3071                 const struct btf_type *t = btf_type_by_id(btf, type_id);
3072
3073                 env->log_type_id = type_id;
3074                 if (btf_type_needs_resolve(t) &&
3075                     !env_type_is_resolved(env, type_id)) {
3076                         err = btf_resolve(env, t, type_id);
3077                         if (err)
3078                                 return err;
3079                 }
3080
3081                 if (btf_type_is_func_proto(t)) {
3082                         err = btf_func_proto_check(env, t);
3083                         if (err)
3084                                 return err;
3085                 }
3086
3087                 if (btf_type_is_func(t)) {
3088                         err = btf_func_check(env, t);
3089                         if (err)
3090                                 return err;
3091                 }
3092         }
3093
3094         return 0;
3095 }
3096
3097 static int btf_parse_type_sec(struct btf_verifier_env *env)
3098 {
3099         const struct btf_header *hdr = &env->btf->hdr;
3100         int err;
3101
3102         /* Type section must align to 4 bytes */
3103         if (hdr->type_off & (sizeof(u32) - 1)) {
3104                 btf_verifier_log(env, "Unaligned type_off");
3105                 return -EINVAL;
3106         }
3107
3108         if (!hdr->type_len) {
3109                 btf_verifier_log(env, "No type found");
3110                 return -EINVAL;
3111         }
3112
3113         err = btf_check_all_metas(env);
3114         if (err)
3115                 return err;
3116
3117         return btf_check_all_types(env);
3118 }
3119
3120 static int btf_parse_str_sec(struct btf_verifier_env *env)
3121 {
3122         const struct btf_header *hdr;
3123         struct btf *btf = env->btf;
3124         const char *start, *end;
3125
3126         hdr = &btf->hdr;
3127         start = btf->nohdr_data + hdr->str_off;
3128         end = start + hdr->str_len;
3129
3130         if (end != btf->data + btf->data_size) {
3131                 btf_verifier_log(env, "String section is not at the end");
3132                 return -EINVAL;
3133         }
3134
3135         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3136             start[0] || end[-1]) {
3137                 btf_verifier_log(env, "Invalid string section");
3138                 return -EINVAL;
3139         }
3140
3141         btf->strings = start;
3142
3143         return 0;
3144 }
3145
3146 static const size_t btf_sec_info_offset[] = {
3147         offsetof(struct btf_header, type_off),
3148         offsetof(struct btf_header, str_off),
3149 };
3150
3151 static int btf_sec_info_cmp(const void *a, const void *b)
3152 {
3153         const struct btf_sec_info *x = a;
3154         const struct btf_sec_info *y = b;
3155
3156         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3157 }
3158
3159 static int btf_check_sec_info(struct btf_verifier_env *env,
3160                               u32 btf_data_size)
3161 {
3162         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3163         u32 total, expected_total, i;
3164         const struct btf_header *hdr;
3165         const struct btf *btf;
3166
3167         btf = env->btf;
3168         hdr = &btf->hdr;
3169
3170         /* Populate the secs from hdr */
3171         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3172                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
3173                                                    btf_sec_info_offset[i]);
3174
3175         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3176              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3177
3178         /* Check for gaps and overlap among sections */
3179         total = 0;
3180         expected_total = btf_data_size - hdr->hdr_len;
3181         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3182                 if (expected_total < secs[i].off) {
3183                         btf_verifier_log(env, "Invalid section offset");
3184                         return -EINVAL;
3185                 }
3186                 if (total < secs[i].off) {
3187                         /* gap */
3188                         btf_verifier_log(env, "Unsupported section found");
3189                         return -EINVAL;
3190                 }
3191                 if (total > secs[i].off) {
3192                         btf_verifier_log(env, "Section overlap found");
3193                         return -EINVAL;
3194                 }
3195                 if (expected_total - total < secs[i].len) {
3196                         btf_verifier_log(env,
3197                                          "Total section length too long");
3198                         return -EINVAL;
3199                 }
3200                 total += secs[i].len;
3201         }
3202
3203         /* There is data other than hdr and known sections */
3204         if (expected_total != total) {
3205                 btf_verifier_log(env, "Unsupported section found");
3206                 return -EINVAL;
3207         }
3208
3209         return 0;
3210 }
3211
3212 static int btf_parse_hdr(struct btf_verifier_env *env)
3213 {
3214         u32 hdr_len, hdr_copy, btf_data_size;
3215         const struct btf_header *hdr;
3216         struct btf *btf;
3217         int err;
3218
3219         btf = env->btf;
3220         btf_data_size = btf->data_size;
3221
3222         if (btf_data_size <
3223             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3224                 btf_verifier_log(env, "hdr_len not found");
3225                 return -EINVAL;
3226         }
3227
3228         hdr = btf->data;
3229         hdr_len = hdr->hdr_len;
3230         if (btf_data_size < hdr_len) {
3231                 btf_verifier_log(env, "btf_header not found");
3232                 return -EINVAL;
3233         }
3234
3235         /* Ensure the unsupported header fields are zero */
3236         if (hdr_len > sizeof(btf->hdr)) {
3237                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
3238                 u8 *end = btf->data + hdr_len;
3239
3240                 for (; expected_zero < end; expected_zero++) {
3241                         if (*expected_zero) {
3242                                 btf_verifier_log(env, "Unsupported btf_header");
3243                                 return -E2BIG;
3244                         }
3245                 }
3246         }
3247
3248         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3249         memcpy(&btf->hdr, btf->data, hdr_copy);
3250
3251         hdr = &btf->hdr;
3252
3253         btf_verifier_log_hdr(env, btf_data_size);
3254
3255         if (hdr->magic != BTF_MAGIC) {
3256                 btf_verifier_log(env, "Invalid magic");
3257                 return -EINVAL;
3258         }
3259
3260         if (hdr->version != BTF_VERSION) {
3261                 btf_verifier_log(env, "Unsupported version");
3262                 return -ENOTSUPP;
3263         }
3264
3265         if (hdr->flags) {
3266                 btf_verifier_log(env, "Unsupported flags");
3267                 return -ENOTSUPP;
3268         }
3269
3270         if (btf_data_size == hdr->hdr_len) {
3271                 btf_verifier_log(env, "No data");
3272                 return -EINVAL;
3273         }
3274
3275         err = btf_check_sec_info(env, btf_data_size);
3276         if (err)
3277                 return err;
3278
3279         return 0;
3280 }
3281
3282 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3283                              u32 log_level, char __user *log_ubuf, u32 log_size)
3284 {
3285         struct btf_verifier_env *env = NULL;
3286         struct bpf_verifier_log *log;
3287         struct btf *btf = NULL;
3288         u8 *data;
3289         int err;
3290
3291         if (btf_data_size > BTF_MAX_SIZE)
3292                 return ERR_PTR(-E2BIG);
3293
3294         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3295         if (!env)
3296                 return ERR_PTR(-ENOMEM);
3297
3298         log = &env->log;
3299         if (log_level || log_ubuf || log_size) {
3300                 /* user requested verbose verifier output
3301                  * and supplied buffer to store the verification trace
3302                  */
3303                 log->level = log_level;
3304                 log->ubuf = log_ubuf;
3305                 log->len_total = log_size;
3306
3307                 /* log attributes have to be sane */
3308                 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3309                     !log->level || !log->ubuf) {
3310                         err = -EINVAL;
3311                         goto errout;
3312                 }
3313         }
3314
3315         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3316         if (!btf) {
3317                 err = -ENOMEM;
3318                 goto errout;
3319         }
3320         env->btf = btf;
3321
3322         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3323         if (!data) {
3324                 err = -ENOMEM;
3325                 goto errout;
3326         }
3327
3328         btf->data = data;
3329         btf->data_size = btf_data_size;
3330
3331         if (copy_from_user(data, btf_data, btf_data_size)) {
3332                 err = -EFAULT;
3333                 goto errout;
3334         }
3335
3336         err = btf_parse_hdr(env);
3337         if (err)
3338                 goto errout;
3339
3340         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3341
3342         err = btf_parse_str_sec(env);
3343         if (err)
3344                 goto errout;
3345
3346         err = btf_parse_type_sec(env);
3347         if (err)
3348                 goto errout;
3349
3350         if (log->level && bpf_verifier_log_full(log)) {
3351                 err = -ENOSPC;
3352                 goto errout;
3353         }
3354
3355         btf_verifier_env_free(env);
3356         refcount_set(&btf->refcnt, 1);
3357         return btf;
3358
3359 errout:
3360         btf_verifier_env_free(env);
3361         if (btf)
3362                 btf_free(btf);
3363         return ERR_PTR(err);
3364 }
3365
3366 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
3367                        struct seq_file *m)
3368 {
3369         const struct btf_type *t = btf_type_by_id(btf, type_id);
3370
3371         btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
3372 }
3373
3374 static int btf_release(struct inode *inode, struct file *filp)
3375 {
3376         btf_put(filp->private_data);
3377         return 0;
3378 }
3379
3380 const struct file_operations btf_fops = {
3381         .release        = btf_release,
3382 };
3383
3384 static int __btf_new_fd(struct btf *btf)
3385 {
3386         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
3387 }
3388
3389 int btf_new_fd(const union bpf_attr *attr)
3390 {
3391         struct btf *btf;
3392         int ret;
3393
3394         btf = btf_parse(u64_to_user_ptr(attr->btf),
3395                         attr->btf_size, attr->btf_log_level,
3396                         u64_to_user_ptr(attr->btf_log_buf),
3397                         attr->btf_log_size);
3398         if (IS_ERR(btf))
3399                 return PTR_ERR(btf);
3400
3401         ret = btf_alloc_id(btf);
3402         if (ret) {
3403                 btf_free(btf);
3404                 return ret;
3405         }
3406
3407         /*
3408          * The BTF ID is published to the userspace.
3409          * All BTF free must go through call_rcu() from
3410          * now on (i.e. free by calling btf_put()).
3411          */
3412
3413         ret = __btf_new_fd(btf);
3414         if (ret < 0)
3415                 btf_put(btf);
3416
3417         return ret;
3418 }
3419
3420 struct btf *btf_get_by_fd(int fd)
3421 {
3422         struct btf *btf;
3423         struct fd f;
3424
3425         f = fdget(fd);
3426
3427         if (!f.file)
3428                 return ERR_PTR(-EBADF);
3429
3430         if (f.file->f_op != &btf_fops) {
3431                 fdput(f);
3432                 return ERR_PTR(-EINVAL);
3433         }
3434
3435         btf = f.file->private_data;
3436         refcount_inc(&btf->refcnt);
3437         fdput(f);
3438
3439         return btf;
3440 }
3441
3442 int btf_get_info_by_fd(const struct btf *btf,
3443                        const union bpf_attr *attr,
3444                        union bpf_attr __user *uattr)
3445 {
3446         struct bpf_btf_info __user *uinfo;
3447         struct bpf_btf_info info = {};
3448         u32 info_copy, btf_copy;
3449         void __user *ubtf;
3450         u32 uinfo_len;
3451
3452         uinfo = u64_to_user_ptr(attr->info.info);
3453         uinfo_len = attr->info.info_len;
3454
3455         info_copy = min_t(u32, uinfo_len, sizeof(info));
3456         if (copy_from_user(&info, uinfo, info_copy))
3457                 return -EFAULT;
3458
3459         info.id = btf->id;
3460         ubtf = u64_to_user_ptr(info.btf);
3461         btf_copy = min_t(u32, btf->data_size, info.btf_size);
3462         if (copy_to_user(ubtf, btf->data, btf_copy))
3463                 return -EFAULT;
3464         info.btf_size = btf->data_size;
3465
3466         if (copy_to_user(uinfo, &info, info_copy) ||
3467             put_user(info_copy, &uattr->info.info_len))
3468                 return -EFAULT;
3469
3470         return 0;
3471 }
3472
3473 int btf_get_fd_by_id(u32 id)
3474 {
3475         struct btf *btf;
3476         int fd;
3477
3478         rcu_read_lock();
3479         btf = idr_find(&btf_idr, id);
3480         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
3481                 btf = ERR_PTR(-ENOENT);
3482         rcu_read_unlock();
3483
3484         if (IS_ERR(btf))
3485                 return PTR_ERR(btf);
3486
3487         fd = __btf_new_fd(btf);
3488         if (fd < 0)
3489                 btf_put(btf);
3490
3491         return fd;
3492 }
3493
3494 u32 btf_id(const struct btf *btf)
3495 {
3496         return btf->id;
3497 }