locking/lockdep: Remove unnecessary unlikely()
[linux-2.6-microblaze.git] / include / net / tls.h
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43
44 #include <net/tcp.h>
45 #include <net/strparser.h>
46 #include <crypto/aead.h>
47 #include <uapi/linux/tls.h>
48
49
50 /* Maximum data size carried in a TLS record */
51 #define TLS_MAX_PAYLOAD_SIZE            ((size_t)1 << 14)
52
53 #define TLS_HEADER_SIZE                 5
54 #define TLS_NONCE_OFFSET                TLS_HEADER_SIZE
55
56 #define TLS_CRYPTO_INFO_READY(info)     ((info)->cipher_type)
57
58 #define TLS_RECORD_TYPE_DATA            0x17
59
60 #define TLS_AAD_SPACE_SIZE              13
61 #define TLS_DEVICE_NAME_MAX             32
62
63 /*
64  * This structure defines the routines for Inline TLS driver.
65  * The following routines are optional and filled with a
66  * null pointer if not defined.
67  *
68  * @name: Its the name of registered Inline tls device
69  * @dev_list: Inline tls device list
70  * int (*feature)(struct tls_device *device);
71  *     Called to return Inline TLS driver capability
72  *
73  * int (*hash)(struct tls_device *device, struct sock *sk);
74  *     This function sets Inline driver for listen and program
75  *     device specific functioanlity as required
76  *
77  * void (*unhash)(struct tls_device *device, struct sock *sk);
78  *     This function cleans listen state set by Inline TLS driver
79  *
80  * void (*release)(struct kref *kref);
81  *     Release the registered device and allocated resources
82  * @kref: Number of reference to tls_device
83  */
84 struct tls_device {
85         char name[TLS_DEVICE_NAME_MAX];
86         struct list_head dev_list;
87         int  (*feature)(struct tls_device *device);
88         int  (*hash)(struct tls_device *device, struct sock *sk);
89         void (*unhash)(struct tls_device *device, struct sock *sk);
90         void (*release)(struct kref *kref);
91         struct kref kref;
92 };
93
94 enum {
95         TLS_BASE,
96         TLS_SW,
97 #ifdef CONFIG_TLS_DEVICE
98         TLS_HW,
99 #endif
100         TLS_HW_RECORD,
101         TLS_NUM_CONFIG,
102 };
103
104 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
105  * allocated or mapped for each TLS record. After encryption, the records are
106  * stores in a linked list.
107  */
108 struct tls_rec {
109         struct list_head list;
110         int tx_ready;
111         int tx_flags;
112         int inplace_crypto;
113
114         struct sk_msg msg_plaintext;
115         struct sk_msg msg_encrypted;
116
117         /* AAD | msg_plaintext.sg.data | sg_tag */
118         struct scatterlist sg_aead_in[2];
119         /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
120         struct scatterlist sg_aead_out[2];
121
122         char content_type;
123         struct scatterlist sg_content_type;
124
125         char aad_space[TLS_AAD_SPACE_SIZE];
126         u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE +
127                    TLS_CIPHER_AES_GCM_128_SALT_SIZE];
128         struct aead_request aead_req;
129         u8 aead_req_ctx[];
130 };
131
132 struct tls_msg {
133         struct strp_msg rxm;
134         u8 control;
135 };
136
137 struct tx_work {
138         struct delayed_work work;
139         struct sock *sk;
140 };
141
142 struct tls_sw_context_tx {
143         struct crypto_aead *aead_send;
144         struct crypto_wait async_wait;
145         struct tx_work tx_work;
146         struct tls_rec *open_rec;
147         struct list_head tx_list;
148         atomic_t encrypt_pending;
149         int async_notify;
150         int async_capable;
151
152 #define BIT_TX_SCHEDULED        0
153         unsigned long tx_bitmask;
154 };
155
156 struct tls_sw_context_rx {
157         struct crypto_aead *aead_recv;
158         struct crypto_wait async_wait;
159         struct strparser strp;
160         struct sk_buff_head rx_list;    /* list of decrypted 'data' records */
161         void (*saved_data_ready)(struct sock *sk);
162
163         struct sk_buff *recv_pkt;
164         u8 control;
165         int async_capable;
166         bool decrypted;
167         atomic_t decrypt_pending;
168         bool async_notify;
169 };
170
171 struct tls_record_info {
172         struct list_head list;
173         u32 end_seq;
174         int len;
175         int num_frags;
176         skb_frag_t frags[MAX_SKB_FRAGS];
177 };
178
179 struct tls_offload_context_tx {
180         struct crypto_aead *aead_send;
181         spinlock_t lock;        /* protects records list */
182         struct list_head records_list;
183         struct tls_record_info *open_record;
184         struct tls_record_info *retransmit_hint;
185         u64 hint_record_sn;
186         u64 unacked_record_sn;
187
188         struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
189         void (*sk_destruct)(struct sock *sk);
190         u8 driver_state[];
191         /* The TLS layer reserves room for driver specific state
192          * Currently the belief is that there is not enough
193          * driver specific state to justify another layer of indirection
194          */
195 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
196 };
197
198 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
199         (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) +        \
200          TLS_DRIVER_STATE_SIZE)
201
202 struct cipher_context {
203         char *iv;
204         char *rec_seq;
205 };
206
207 union tls_crypto_context {
208         struct tls_crypto_info info;
209         union {
210                 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
211                 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
212         };
213 };
214
215 struct tls_prot_info {
216         u16 version;
217         u16 cipher_type;
218         u16 prepend_size;
219         u16 tag_size;
220         u16 overhead_size;
221         u16 iv_size;
222         u16 rec_seq_size;
223         u16 aad_size;
224         u16 tail_size;
225 };
226
227 struct tls_context {
228         struct tls_prot_info prot_info;
229
230         union tls_crypto_context crypto_send;
231         union tls_crypto_context crypto_recv;
232
233         struct list_head list;
234         struct net_device *netdev;
235         refcount_t refcount;
236
237         void *priv_ctx_tx;
238         void *priv_ctx_rx;
239
240         u8 tx_conf:3;
241         u8 rx_conf:3;
242
243         struct cipher_context tx;
244         struct cipher_context rx;
245
246         struct scatterlist *partially_sent_record;
247         u16 partially_sent_offset;
248
249         unsigned long flags;
250         bool in_tcp_sendpages;
251         bool pending_open_record_frags;
252
253         int (*push_pending_record)(struct sock *sk, int flags);
254
255         void (*sk_write_space)(struct sock *sk);
256         void (*sk_destruct)(struct sock *sk);
257         void (*sk_proto_close)(struct sock *sk, long timeout);
258
259         int  (*setsockopt)(struct sock *sk, int level,
260                            int optname, char __user *optval,
261                            unsigned int optlen);
262         int  (*getsockopt)(struct sock *sk, int level,
263                            int optname, char __user *optval,
264                            int __user *optlen);
265         int  (*hash)(struct sock *sk);
266         void (*unhash)(struct sock *sk);
267 };
268
269 struct tls_offload_context_rx {
270         /* sw must be the first member of tls_offload_context_rx */
271         struct tls_sw_context_rx sw;
272         atomic64_t resync_req;
273         u8 driver_state[];
274         /* The TLS layer reserves room for driver specific state
275          * Currently the belief is that there is not enough
276          * driver specific state to justify another layer of indirection
277          */
278 };
279
280 #define TLS_OFFLOAD_CONTEXT_SIZE_RX                                     \
281         (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
282          TLS_DRIVER_STATE_SIZE)
283
284 int wait_on_pending_writer(struct sock *sk, long *timeo);
285 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
286                 int __user *optlen);
287 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
288                   unsigned int optlen);
289
290 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
291 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
292 int tls_sw_sendpage(struct sock *sk, struct page *page,
293                     int offset, size_t size, int flags);
294 void tls_sw_close(struct sock *sk, long timeout);
295 void tls_sw_free_resources_tx(struct sock *sk);
296 void tls_sw_free_resources_rx(struct sock *sk);
297 void tls_sw_release_resources_rx(struct sock *sk);
298 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
299                    int nonblock, int flags, int *addr_len);
300 bool tls_sw_stream_read(const struct sock *sk);
301 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
302                            struct pipe_inode_info *pipe,
303                            size_t len, unsigned int flags);
304
305 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
306 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
307 int tls_device_sendpage(struct sock *sk, struct page *page,
308                         int offset, size_t size, int flags);
309 void tls_device_sk_destruct(struct sock *sk);
310 void tls_device_init(void);
311 void tls_device_cleanup(void);
312 int tls_tx_records(struct sock *sk, int flags);
313
314 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
315                                        u32 seq, u64 *p_record_sn);
316
317 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
318 {
319         return rec->len == 0;
320 }
321
322 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
323 {
324         return rec->end_seq - rec->len;
325 }
326
327 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
328 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
329                 struct scatterlist *sg, u16 first_offset,
330                 int flags);
331 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
332                             int flags);
333
334 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
335 {
336         return (struct tls_msg *)strp_msg(skb);
337 }
338
339 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
340 {
341         return !!ctx->partially_sent_record;
342 }
343
344 static inline int tls_complete_pending_work(struct sock *sk,
345                                             struct tls_context *ctx,
346                                             int flags, long *timeo)
347 {
348         int rc = 0;
349
350         if (unlikely(sk->sk_write_pending))
351                 rc = wait_on_pending_writer(sk, timeo);
352
353         if (!rc && tls_is_partially_sent_record(ctx))
354                 rc = tls_push_partial_record(sk, ctx, flags);
355
356         return rc;
357 }
358
359 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
360 {
361         return tls_ctx->pending_open_record_frags;
362 }
363
364 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
365 {
366         struct tls_rec *rec;
367
368         rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
369         if (!rec)
370                 return false;
371
372         return READ_ONCE(rec->tx_ready);
373 }
374
375 struct sk_buff *
376 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
377                       struct sk_buff *skb);
378
379 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
380 {
381 #ifdef CONFIG_SOCK_VALIDATE_XMIT
382         return sk_fullsock(sk) &
383                (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
384                &tls_validate_xmit_skb);
385 #else
386         return false;
387 #endif
388 }
389
390 static inline void tls_err_abort(struct sock *sk, int err)
391 {
392         sk->sk_err = err;
393         sk->sk_error_report(sk);
394 }
395
396 static inline bool tls_bigint_increment(unsigned char *seq, int len)
397 {
398         int i;
399
400         for (i = len - 1; i >= 0; i--) {
401                 ++seq[i];
402                 if (seq[i] != 0)
403                         break;
404         }
405
406         return (i == -1);
407 }
408
409 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
410 {
411         struct inet_connection_sock *icsk = inet_csk(sk);
412
413         return icsk->icsk_ulp_data;
414 }
415
416 static inline void tls_advance_record_sn(struct sock *sk,
417                                          struct cipher_context *ctx,
418                                          int version)
419 {
420         struct tls_context *tls_ctx = tls_get_ctx(sk);
421         struct tls_prot_info *prot = &tls_ctx->prot_info;
422
423         if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
424                 tls_err_abort(sk, EBADMSG);
425
426         if (version != TLS_1_3_VERSION) {
427                 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
428                                      prot->iv_size);
429         }
430 }
431
432 static inline void tls_fill_prepend(struct tls_context *ctx,
433                              char *buf,
434                              size_t plaintext_len,
435                              unsigned char record_type,
436                              int version)
437 {
438         struct tls_prot_info *prot = &ctx->prot_info;
439         size_t pkt_len, iv_size = prot->iv_size;
440
441         pkt_len = plaintext_len + prot->tag_size;
442         if (version != TLS_1_3_VERSION) {
443                 pkt_len += iv_size;
444
445                 memcpy(buf + TLS_NONCE_OFFSET,
446                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
447         }
448
449         /* we cover nonce explicit here as well, so buf should be of
450          * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
451          */
452         buf[0] = version == TLS_1_3_VERSION ?
453                    TLS_RECORD_TYPE_DATA : record_type;
454         /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
455         buf[1] = TLS_1_2_VERSION_MINOR;
456         buf[2] = TLS_1_2_VERSION_MAJOR;
457         /* we can use IV for nonce explicit according to spec */
458         buf[3] = pkt_len >> 8;
459         buf[4] = pkt_len & 0xFF;
460 }
461
462 static inline void tls_make_aad(char *buf,
463                                 size_t size,
464                                 char *record_sequence,
465                                 int record_sequence_size,
466                                 unsigned char record_type,
467                                 int version)
468 {
469         if (version != TLS_1_3_VERSION) {
470                 memcpy(buf, record_sequence, record_sequence_size);
471                 buf += 8;
472         } else {
473                 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
474         }
475
476         buf[0] = version == TLS_1_3_VERSION ?
477                   TLS_RECORD_TYPE_DATA : record_type;
478         buf[1] = TLS_1_2_VERSION_MAJOR;
479         buf[2] = TLS_1_2_VERSION_MINOR;
480         buf[3] = size >> 8;
481         buf[4] = size & 0xFF;
482 }
483
484 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
485 {
486         int i;
487
488         if (version == TLS_1_3_VERSION) {
489                 for (i = 0; i < 8; i++)
490                         iv[i + 4] ^= seq[i];
491         }
492 }
493
494
495 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
496                 const struct tls_context *tls_ctx)
497 {
498         return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
499 }
500
501 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
502                 const struct tls_context *tls_ctx)
503 {
504         return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
505 }
506
507 static inline struct tls_offload_context_tx *
508 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
509 {
510         return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
511 }
512
513 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
514 {
515         struct tls_context *ctx = tls_get_ctx(sk);
516
517         if (!ctx)
518                 return false;
519         return !!tls_sw_ctx_tx(ctx);
520 }
521
522 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
523 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
524
525 static inline struct tls_offload_context_rx *
526 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
527 {
528         return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
529 }
530
531 /* The TLS context is valid until sk_destruct is called */
532 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
533 {
534         struct tls_context *tls_ctx = tls_get_ctx(sk);
535         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
536
537         atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
538 }
539
540
541 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
542                       unsigned char *record_type);
543 void tls_register_device(struct tls_device *device);
544 void tls_unregister_device(struct tls_device *device);
545 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
546 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
547                 struct scatterlist *sgout);
548
549 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
550                                       struct net_device *dev,
551                                       struct sk_buff *skb);
552
553 int tls_sw_fallback_init(struct sock *sk,
554                          struct tls_offload_context_tx *offload_ctx,
555                          struct tls_crypto_info *crypto_info);
556
557 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
558
559 void tls_device_offload_cleanup_rx(struct sock *sk);
560 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
561
562 #endif /* _TLS_OFFLOAD_H */