1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the TCP module.
9 * Version: @(#)tcp.h 1.0.5 05/23/93
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
17 #define FASTRETRANS_DEBUG 1
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
43 #include <net/mptcp.h>
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
50 extern struct inet_hashinfo tcp_hashinfo;
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
55 void tcp_time_wait(struct sock *sk, int state, int timeo);
57 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
58 #define MAX_TCP_OPTION_SPACE 40
59 #define TCP_MIN_SND_MSS 48
60 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
63 * Never offer a window over 32767 without using window scaling. Some
64 * poor stacks do signed 16bit maths!
66 #define MAX_TCP_WINDOW 32767U
68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69 #define TCP_MIN_MSS 88U
71 /* The initial MTU to use for probing */
72 #define TCP_BASE_MSS 1024
74 /* probing interval, default to 10 minutes as per RFC4821 */
75 #define TCP_PROBE_INTERVAL 600
77 /* Specify interval when tcp mtu probing will stop */
78 #define TCP_PROBE_THRESHOLD 8
80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
81 #define TCP_FASTRETRANS_THRESH 3
83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
84 #define TCP_MAX_QUICKACKS 16U
86 /* Maximal number of window scale according to RFC1323 */
87 #define TCP_MAX_WSCALE 14U
90 #define TCP_URG_VALID 0x0100
91 #define TCP_URG_NOTYET 0x0200
92 #define TCP_URG_READ 0x0400
94 #define TCP_RETR1 3 /*
95 * This is how many retries it does before it
96 * tries to figure out if the gateway is
97 * down. Minimal RFC value is 3; it corresponds
98 * to ~3sec-8min depending on RTO.
101 #define TCP_RETR2 15 /*
102 * This should take at least
103 * 90 minutes to time out.
104 * RFC1122 says that the limit is 100 sec.
105 * 15 is ~13-30min depending on RTO.
108 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
109 * when active opening a connection.
110 * RFC1122 says the minimum retry MUST
111 * be at least 180secs. Nevertheless
112 * this value is corresponding to
113 * 63secs of retransmission with the
114 * current initial RTO.
117 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
118 * when passive opening a connection.
119 * This is corresponding to 31secs of
120 * retransmission with the current
124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125 * state, about 60 seconds */
126 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
127 /* BSD style FIN_WAIT2 deadlock breaker.
128 * It used to be 3min, new value is 60sec,
129 * to combine FIN-WAIT-2 timeout with
132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
134 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
135 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
138 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
139 #define TCP_ATO_MIN ((unsigned)(HZ/25))
141 #define TCP_DELACK_MIN 4U
142 #define TCP_ATO_MIN 4U
144 #define TCP_RTO_MAX ((unsigned)(120*HZ))
145 #define TCP_RTO_MIN ((unsigned)(HZ/5))
146 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
148 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
150 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
151 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
152 * used as a fallback RTO for the
153 * initial data transmission if no
154 * valid RTT sample has been acquired,
155 * most likely due to retrans in 3WHS.
158 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
159 * for local resources.
161 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
162 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
163 #define TCP_KEEPALIVE_INTVL (75*HZ)
165 #define MAX_TCP_KEEPIDLE 32767
166 #define MAX_TCP_KEEPINTVL 32767
167 #define MAX_TCP_KEEPCNT 127
168 #define MAX_TCP_SYNCNT 127
170 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
171 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
172 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
174 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
176 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
177 * after this time. It should be equal
178 * (or greater than) TCP_TIMEWAIT_LEN
179 * to provide reliability equal to one
180 * provided by timewait state.
182 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
183 * timestamps. It must be less than
184 * minimal timewait lifetime.
190 #define TCPOPT_NOP 1 /* Padding */
191 #define TCPOPT_EOL 0 /* End of options */
192 #define TCPOPT_MSS 2 /* Segment size negotiating */
193 #define TCPOPT_WINDOW 3 /* Window scaling */
194 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
195 #define TCPOPT_SACK 5 /* SACK Block */
196 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
197 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
198 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */
199 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
200 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
201 #define TCPOPT_EXP 254 /* Experimental */
202 /* Magic number to be after the option value for sharing TCP
203 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
205 #define TCPOPT_FASTOPEN_MAGIC 0xF989
206 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
212 #define TCPOLEN_MSS 4
213 #define TCPOLEN_WINDOW 3
214 #define TCPOLEN_SACK_PERM 2
215 #define TCPOLEN_TIMESTAMP 10
216 #define TCPOLEN_MD5SIG 18
217 #define TCPOLEN_FASTOPEN_BASE 2
218 #define TCPOLEN_EXP_FASTOPEN_BASE 4
219 #define TCPOLEN_EXP_SMC_BASE 6
221 /* But this is what stacks really send out. */
222 #define TCPOLEN_TSTAMP_ALIGNED 12
223 #define TCPOLEN_WSCALE_ALIGNED 4
224 #define TCPOLEN_SACKPERM_ALIGNED 4
225 #define TCPOLEN_SACK_BASE 2
226 #define TCPOLEN_SACK_BASE_ALIGNED 4
227 #define TCPOLEN_SACK_PERBLOCK 8
228 #define TCPOLEN_MD5SIG_ALIGNED 20
229 #define TCPOLEN_MSS_ALIGNED 4
230 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
232 /* Flags in tp->nonagle */
233 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
234 #define TCP_NAGLE_CORK 2 /* Socket is corked */
235 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
237 /* TCP thin-stream limits */
238 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
240 /* TCP initial congestion window as per rfc6928 */
241 #define TCP_INIT_CWND 10
243 /* Bit Flags for sysctl_tcp_fastopen */
244 #define TFO_CLIENT_ENABLE 1
245 #define TFO_SERVER_ENABLE 2
246 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
248 /* Accept SYN data w/o any cookie option */
249 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
251 /* Force enable TFO on all listeners, i.e., not requiring the
252 * TCP_FASTOPEN socket option.
254 #define TFO_SERVER_WO_SOCKOPT1 0x400
257 /* sysctl variables for tcp */
258 extern int sysctl_tcp_max_orphans;
259 extern long sysctl_tcp_mem[3];
261 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
262 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
263 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
265 extern atomic_long_t tcp_memory_allocated;
266 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
268 extern struct percpu_counter tcp_sockets_allocated;
269 extern unsigned long tcp_memory_pressure;
271 /* optimized version of sk_under_memory_pressure() for TCP sockets */
272 static inline bool tcp_under_memory_pressure(const struct sock *sk)
274 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
275 mem_cgroup_under_socket_pressure(sk->sk_memcg))
278 return READ_ONCE(tcp_memory_pressure);
281 * The next routines deal with comparing 32 bit unsigned ints
282 * and worry about wraparound (automatic with unsigned arithmetic).
285 static inline bool before(__u32 seq1, __u32 seq2)
287 return (__s32)(seq1-seq2) < 0;
289 #define after(seq2, seq1) before(seq1, seq2)
291 /* is s2<=s1<=s3 ? */
292 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
294 return seq3 - seq2 >= seq1 - seq2;
297 static inline bool tcp_out_of_memory(struct sock *sk)
299 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
300 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
305 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
307 sk_wmem_queued_add(sk, -skb->truesize);
308 if (!skb_zcopy_pure(skb))
309 sk_mem_uncharge(sk, skb->truesize);
311 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
315 void sk_forced_mem_schedule(struct sock *sk, int size);
317 bool tcp_check_oom(struct sock *sk, int shift);
320 extern struct proto tcp_prot;
322 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
323 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
324 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
325 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
327 void tcp_tasklet_init(void);
329 int tcp_v4_err(struct sk_buff *skb, u32);
331 void tcp_shutdown(struct sock *sk, int how);
333 int tcp_v4_early_demux(struct sk_buff *skb);
334 int tcp_v4_rcv(struct sk_buff *skb);
336 void tcp_remove_empty_skb(struct sock *sk);
337 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
338 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
339 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
340 size_t size, struct ubuf_info *uarg);
341 void tcp_splice_eof(struct socket *sock);
342 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
343 int tcp_wmem_schedule(struct sock *sk, int copy);
344 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
346 void tcp_release_cb(struct sock *sk);
347 void tcp_wfree(struct sk_buff *skb);
348 void tcp_write_timer_handler(struct sock *sk);
349 void tcp_delack_timer_handler(struct sock *sk);
350 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
351 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
353 void tcp_rcv_space_adjust(struct sock *sk);
354 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
355 void tcp_twsk_destructor(struct sock *sk);
356 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
357 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
358 struct pipe_inode_info *pipe, size_t len,
360 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
361 bool force_schedule);
363 static inline void tcp_dec_quickack_mode(struct sock *sk)
365 struct inet_connection_sock *icsk = inet_csk(sk);
367 if (icsk->icsk_ack.quick) {
368 /* How many ACKs S/ACKing new data have we sent? */
369 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
371 if (pkts >= icsk->icsk_ack.quick) {
372 icsk->icsk_ack.quick = 0;
373 /* Leaving quickack mode we deflate ATO. */
374 icsk->icsk_ack.ato = TCP_ATO_MIN;
376 icsk->icsk_ack.quick -= pkts;
381 #define TCP_ECN_QUEUE_CWR 2
382 #define TCP_ECN_DEMAND_CWR 4
383 #define TCP_ECN_SEEN 8
393 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
395 const struct tcphdr *th);
396 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
397 struct request_sock *req, bool fastopen,
399 int tcp_child_process(struct sock *parent, struct sock *child,
400 struct sk_buff *skb);
401 void tcp_enter_loss(struct sock *sk);
402 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
403 void tcp_clear_retrans(struct tcp_sock *tp);
404 void tcp_update_metrics(struct sock *sk);
405 void tcp_init_metrics(struct sock *sk);
406 void tcp_metrics_init(void);
407 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
408 void __tcp_close(struct sock *sk, long timeout);
409 void tcp_close(struct sock *sk, long timeout);
410 void tcp_init_sock(struct sock *sk);
411 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
412 __poll_t tcp_poll(struct file *file, struct socket *sock,
413 struct poll_table_struct *wait);
414 int do_tcp_getsockopt(struct sock *sk, int level,
415 int optname, sockptr_t optval, sockptr_t optlen);
416 int tcp_getsockopt(struct sock *sk, int level, int optname,
417 char __user *optval, int __user *optlen);
418 bool tcp_bpf_bypass_getsockopt(int level, int optname);
419 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
420 sockptr_t optval, unsigned int optlen);
421 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
422 unsigned int optlen);
423 void tcp_set_keepalive(struct sock *sk, int val);
424 void tcp_syn_ack_timeout(const struct request_sock *req);
425 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
426 int flags, int *addr_len);
427 int tcp_set_rcvlowat(struct sock *sk, int val);
428 int tcp_set_window_clamp(struct sock *sk, int val);
429 void tcp_update_recv_tstamps(struct sk_buff *skb,
430 struct scm_timestamping_internal *tss);
431 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
432 struct scm_timestamping_internal *tss);
433 void tcp_data_ready(struct sock *sk);
435 int tcp_mmap(struct file *file, struct socket *sock,
436 struct vm_area_struct *vma);
438 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
439 struct tcp_options_received *opt_rx,
440 int estab, struct tcp_fastopen_cookie *foc);
443 * BPF SKB-less helpers
445 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
446 struct tcphdr *th, u32 *cookie);
447 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
448 struct tcphdr *th, u32 *cookie);
449 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
450 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
451 const struct tcp_request_sock_ops *af_ops,
452 struct sock *sk, struct tcphdr *th);
454 * TCP v4 functions exported for the inet6 API
457 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
458 void tcp_v4_mtu_reduced(struct sock *sk);
459 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
460 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
461 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
462 struct sock *tcp_create_openreq_child(const struct sock *sk,
463 struct request_sock *req,
464 struct sk_buff *skb);
465 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
466 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
467 struct request_sock *req,
468 struct dst_entry *dst,
469 struct request_sock *req_unhash,
471 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
472 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
473 int tcp_connect(struct sock *sk);
474 enum tcp_synack_type {
479 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
480 struct request_sock *req,
481 struct tcp_fastopen_cookie *foc,
482 enum tcp_synack_type synack_type,
483 struct sk_buff *syn_skb);
484 int tcp_disconnect(struct sock *sk, int flags);
486 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
487 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
488 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
490 /* From syncookies.c */
491 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
492 struct request_sock *req,
493 struct dst_entry *dst);
494 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
495 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
496 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
497 struct sock *sk, struct sk_buff *skb,
498 struct tcp_options_received *tcp_opt,
501 #ifdef CONFIG_SYN_COOKIES
503 /* Syncookies use a monotonic timer which increments every 60 seconds.
504 * This counter is used both as a hash input and partially encoded into
505 * the cookie value. A cookie is only validated further if the delta
506 * between the current counter value and the encoded one is less than this,
507 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
508 * the counter advances immediately after a cookie is generated).
510 #define MAX_SYNCOOKIE_AGE 2
511 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
512 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
514 /* syncookies: remember time of last synqueue overflow
515 * But do not dirty this field too often (once per second is enough)
516 * It is racy as we do not hold a lock, but race is very minor.
518 static inline void tcp_synq_overflow(const struct sock *sk)
520 unsigned int last_overflow;
521 unsigned int now = jiffies;
523 if (sk->sk_reuseport) {
524 struct sock_reuseport *reuse;
526 reuse = rcu_dereference(sk->sk_reuseport_cb);
528 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
529 if (!time_between32(now, last_overflow,
531 WRITE_ONCE(reuse->synq_overflow_ts, now);
536 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
537 if (!time_between32(now, last_overflow, last_overflow + HZ))
538 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
541 /* syncookies: no recent synqueue overflow on this listening socket? */
542 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
544 unsigned int last_overflow;
545 unsigned int now = jiffies;
547 if (sk->sk_reuseport) {
548 struct sock_reuseport *reuse;
550 reuse = rcu_dereference(sk->sk_reuseport_cb);
552 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
553 return !time_between32(now, last_overflow - HZ,
555 TCP_SYNCOOKIE_VALID);
559 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
561 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
562 * then we're under synflood. However, we have to use
563 * 'last_overflow - HZ' as lower bound. That's because a concurrent
564 * tcp_synq_overflow() could update .ts_recent_stamp after we read
565 * jiffies but before we store .ts_recent_stamp into last_overflow,
566 * which could lead to rejecting a valid syncookie.
568 return !time_between32(now, last_overflow - HZ,
569 last_overflow + TCP_SYNCOOKIE_VALID);
572 static inline u32 tcp_cookie_time(void)
574 u64 val = get_jiffies_64();
576 do_div(val, TCP_SYNCOOKIE_PERIOD);
580 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
582 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
583 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
584 bool cookie_timestamp_decode(const struct net *net,
585 struct tcp_options_received *opt);
587 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
589 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
590 dst_feature(dst, RTAX_FEATURE_ECN);
593 /* From net/ipv6/syncookies.c */
594 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
595 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
597 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
598 const struct tcphdr *th, u16 *mssp);
599 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
603 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
604 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
605 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
607 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
608 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
609 void tcp_retransmit_timer(struct sock *sk);
610 void tcp_xmit_retransmit_queue(struct sock *);
611 void tcp_simple_retransmit(struct sock *);
612 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
613 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
615 TCP_FRAG_IN_WRITE_QUEUE,
616 TCP_FRAG_IN_RTX_QUEUE,
618 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
619 struct sk_buff *skb, u32 len,
620 unsigned int mss_now, gfp_t gfp);
622 void tcp_send_probe0(struct sock *);
623 int tcp_write_wakeup(struct sock *, int mib);
624 void tcp_send_fin(struct sock *sk);
625 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
626 int tcp_send_synack(struct sock *);
627 void tcp_push_one(struct sock *, unsigned int mss_now);
628 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
629 void tcp_send_ack(struct sock *sk);
630 void tcp_send_delayed_ack(struct sock *sk);
631 void tcp_send_loss_probe(struct sock *sk);
632 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
633 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
634 const struct sk_buff *next_skb);
637 void tcp_rearm_rto(struct sock *sk);
638 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
639 void tcp_reset(struct sock *sk, struct sk_buff *skb);
640 void tcp_fin(struct sock *sk);
641 void tcp_check_space(struct sock *sk);
642 void tcp_sack_compress_send_ack(struct sock *sk);
645 void tcp_init_xmit_timers(struct sock *);
646 static inline void tcp_clear_xmit_timers(struct sock *sk)
648 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
651 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
654 inet_csk_clear_xmit_timers(sk);
657 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
658 unsigned int tcp_current_mss(struct sock *sk);
659 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
661 /* Bound MSS / TSO packet size with the half of the window */
662 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
666 /* When peer uses tiny windows, there is no use in packetizing
667 * to sub-MSS pieces for the sake of SWS or making sure there
668 * are enough packets in the pipe for fast recovery.
670 * On the other hand, for extremely large MSS devices, handling
671 * smaller than MSS windows in this way does make sense.
673 if (tp->max_window > TCP_MSS_DEFAULT)
674 cutoff = (tp->max_window >> 1);
676 cutoff = tp->max_window;
678 if (cutoff && pktsize > cutoff)
679 return max_t(int, cutoff, 68U - tp->tcp_header_len);
685 void tcp_get_info(struct sock *, struct tcp_info *);
687 /* Read 'sendfile()'-style from a TCP socket */
688 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
689 sk_read_actor_t recv_actor);
690 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
691 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
692 void tcp_read_done(struct sock *sk, size_t len);
694 void tcp_initialize_rcv_mss(struct sock *sk);
696 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
697 int tcp_mss_to_mtu(struct sock *sk, int mss);
698 void tcp_mtup_init(struct sock *sk);
700 static inline void tcp_bound_rto(const struct sock *sk)
702 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
703 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
706 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
708 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
711 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
713 /* mptcp hooks are only on the slow path */
714 if (sk_is_mptcp((struct sock *)tp))
717 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
718 ntohl(TCP_FLAG_ACK) |
722 static inline void tcp_fast_path_on(struct tcp_sock *tp)
724 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
727 static inline void tcp_fast_path_check(struct sock *sk)
729 struct tcp_sock *tp = tcp_sk(sk);
731 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
733 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
735 tcp_fast_path_on(tp);
738 u32 tcp_delack_max(const struct sock *sk);
740 /* Compute the actual rto_min value */
741 static inline u32 tcp_rto_min(const struct sock *sk)
743 const struct dst_entry *dst = __sk_dst_get(sk);
744 u32 rto_min = inet_csk(sk)->icsk_rto_min;
746 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
747 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
751 static inline u32 tcp_rto_min_us(const struct sock *sk)
753 return jiffies_to_usecs(tcp_rto_min(sk));
756 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
758 return dst_metric_locked(dst, RTAX_CC_ALGO);
761 /* Minimum RTT in usec. ~0 means not available. */
762 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
764 return minmax_get(&tp->rtt_min);
767 /* Compute the actual receive window we are currently advertising.
768 * Rcv_nxt can be after the window if our peer push more data
769 * than the offered window.
771 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
773 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
780 /* Choose a new window, without checks for shrinking, and without
781 * scaling applied to the result. The caller does these things
782 * if necessary. This is a "raw" window selection.
784 u32 __tcp_select_window(struct sock *sk);
786 void tcp_send_window_probe(struct sock *sk);
788 /* TCP uses 32bit jiffies to save some space.
789 * Note that this is different from tcp_time_stamp, which
790 * historically has been the same until linux-4.13.
792 #define tcp_jiffies32 ((u32)jiffies)
795 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
796 * It is no longer tied to jiffies, but to 1 ms clock.
797 * Note: double check if you want to use tcp_jiffies32 instead of this.
799 #define TCP_TS_HZ 1000
801 static inline u64 tcp_clock_ns(void)
803 return ktime_get_ns();
806 static inline u64 tcp_clock_us(void)
808 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
811 static inline u64 tcp_clock_ms(void)
813 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
816 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
817 * or usec resolution. Each socket carries a flag to select one or other
818 * resolution, as the route attribute could change anytime.
819 * Each flow must stick to initial resolution.
821 static inline u32 tcp_clock_ts(bool usec_ts)
823 return usec_ts ? tcp_clock_us() : tcp_clock_ms();
826 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
828 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
831 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
834 return tp->tcp_mstamp;
835 return tcp_time_stamp_ms(tp);
838 void tcp_mstamp_refresh(struct tcp_sock *tp);
840 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
842 return max_t(s64, t1 - t0, 0);
845 /* provide the departure time in us unit */
846 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
848 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
851 /* Provide skb TSval in usec or ms unit */
852 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
855 return tcp_skb_timestamp_us(skb);
857 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
860 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
862 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
865 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
867 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
870 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
872 #define TCPHDR_FIN 0x01
873 #define TCPHDR_SYN 0x02
874 #define TCPHDR_RST 0x04
875 #define TCPHDR_PSH 0x08
876 #define TCPHDR_ACK 0x10
877 #define TCPHDR_URG 0x20
878 #define TCPHDR_ECE 0x40
879 #define TCPHDR_CWR 0x80
881 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
883 /* This is what the send packet queuing engine uses to pass
884 * TCP per-packet control information to the transmission code.
885 * We also store the host-order sequence numbers in here too.
886 * This is 44 bytes if IPV6 is enabled.
887 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
890 __u32 seq; /* Starting sequence number */
891 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
893 /* Note : tcp_tw_isn is used in input path only
894 * (isn chosen by tcp_timewait_state_process())
896 * tcp_gso_segs/size are used in write queue only,
897 * cf tcp_skb_pcount()/tcp_skb_mss()
905 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
907 __u8 sacked; /* State flags for SACK. */
908 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
909 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
910 #define TCPCB_LOST 0x04 /* SKB is lost */
911 #define TCPCB_TAGBITS 0x07 /* All tag bits */
912 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
913 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
914 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
917 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
918 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
919 eor:1, /* Is skb MSG_EOR marked? */
920 has_rxtstamp:1, /* SKB has a RX timestamp */
922 __u32 ack_seq; /* Sequence number ACK'd */
925 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
926 /* There is space for up to 24 bytes */
927 __u32 is_app_limited:1, /* cwnd not fully used? */
930 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
932 /* start of send pipeline phase */
934 /* when we reached the "delivered" count */
935 u64 delivered_mstamp;
936 } tx; /* only used for outgoing skbs */
938 struct inet_skb_parm h4;
939 #if IS_ENABLED(CONFIG_IPV6)
940 struct inet6_skb_parm h6;
942 } header; /* For incoming skbs */
946 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
948 extern const struct inet_connection_sock_af_ops ipv4_specific;
950 #if IS_ENABLED(CONFIG_IPV6)
951 /* This is the variant of inet6_iif() that must be used by TCP,
952 * as TCP moves IP6CB into a different location in skb->cb[]
954 static inline int tcp_v6_iif(const struct sk_buff *skb)
956 return TCP_SKB_CB(skb)->header.h6.iif;
959 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
961 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
963 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
966 /* TCP_SKB_CB reference means this can not be used from early demux */
967 static inline int tcp_v6_sdif(const struct sk_buff *skb)
969 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
970 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
971 return TCP_SKB_CB(skb)->header.h6.iif;
976 extern const struct inet_connection_sock_af_ops ipv6_specific;
978 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
979 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
980 void tcp_v6_early_demux(struct sk_buff *skb);
984 /* TCP_SKB_CB reference means this can not be used from early demux */
985 static inline int tcp_v4_sdif(struct sk_buff *skb)
987 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
988 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
989 return TCP_SKB_CB(skb)->header.h4.iif;
994 /* Due to TSO, an SKB can be composed of multiple actual
995 * packets. To keep these tracked properly, we use this.
997 static inline int tcp_skb_pcount(const struct sk_buff *skb)
999 return TCP_SKB_CB(skb)->tcp_gso_segs;
1002 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1004 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1007 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1009 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1012 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1013 static inline int tcp_skb_mss(const struct sk_buff *skb)
1015 return TCP_SKB_CB(skb)->tcp_gso_size;
1018 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1020 return likely(!TCP_SKB_CB(skb)->eor);
1023 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1024 const struct sk_buff *from)
1026 return likely(tcp_skb_can_collapse_to(to) &&
1027 mptcp_skb_can_collapse(to, from) &&
1028 skb_pure_zcopy_same(to, from));
1031 /* Events passed to congestion control interface */
1033 CA_EVENT_TX_START, /* first transmit when no packets in flight */
1034 CA_EVENT_CWND_RESTART, /* congestion window restart */
1035 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
1036 CA_EVENT_LOSS, /* loss timeout */
1037 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1038 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1041 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1042 enum tcp_ca_ack_event_flags {
1043 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1044 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1045 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1049 * Interface for adding new TCP congestion control handlers
1051 #define TCP_CA_NAME_MAX 16
1052 #define TCP_CA_MAX 128
1053 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1055 #define TCP_CA_UNSPEC 0
1057 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1058 #define TCP_CONG_NON_RESTRICTED 0x1
1059 /* Requires ECN/ECT set on all packets */
1060 #define TCP_CONG_NEEDS_ECN 0x2
1061 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1071 /* A rate sample measures the number of (original/retransmitted) data
1072 * packets delivered "delivered" over an interval of time "interval_us".
1073 * The tcp_rate.c code fills in the rate sample, and congestion
1074 * control modules that define a cong_control function to run at the end
1075 * of ACK processing can optionally chose to consult this sample when
1076 * setting cwnd and pacing rate.
1077 * A sample is invalid if "delivered" or "interval_us" is negative.
1079 struct rate_sample {
1080 u64 prior_mstamp; /* starting timestamp for interval */
1081 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1082 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1083 s32 delivered; /* number of packets delivered over interval */
1084 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1085 long interval_us; /* time for tp->delivered to incr "delivered" */
1086 u32 snd_interval_us; /* snd interval for delivered packets */
1087 u32 rcv_interval_us; /* rcv interval for delivered packets */
1088 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1089 int losses; /* number of packets marked lost upon ACK */
1090 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1091 u32 prior_in_flight; /* in flight before this ACK */
1092 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1093 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1094 bool is_retrans; /* is sample from retransmission? */
1095 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1098 struct tcp_congestion_ops {
1099 /* fast path fields are put first to fill one cache line */
1101 /* return slow start threshold (required) */
1102 u32 (*ssthresh)(struct sock *sk);
1104 /* do new cwnd calculation (required) */
1105 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1107 /* call before changing ca_state (optional) */
1108 void (*set_state)(struct sock *sk, u8 new_state);
1110 /* call when cwnd event occurs (optional) */
1111 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1113 /* call when ack arrives (optional) */
1114 void (*in_ack_event)(struct sock *sk, u32 flags);
1116 /* hook for packet ack accounting (optional) */
1117 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1119 /* override sysctl_tcp_min_tso_segs */
1120 u32 (*min_tso_segs)(struct sock *sk);
1122 /* call when packets are delivered to update cwnd and pacing rate,
1123 * after all the ca_state processing. (optional)
1125 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1128 /* new value of cwnd after loss (required) */
1129 u32 (*undo_cwnd)(struct sock *sk);
1130 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1131 u32 (*sndbuf_expand)(struct sock *sk);
1133 /* control/slow paths put last */
1134 /* get info for inet_diag (optional) */
1135 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1136 union tcp_cc_info *info);
1138 char name[TCP_CA_NAME_MAX];
1139 struct module *owner;
1140 struct list_head list;
1144 /* initialize private data (optional) */
1145 void (*init)(struct sock *sk);
1146 /* cleanup private data (optional) */
1147 void (*release)(struct sock *sk);
1148 } ____cacheline_aligned_in_smp;
1150 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1151 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1152 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1153 struct tcp_congestion_ops *old_type);
1154 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1156 void tcp_assign_congestion_control(struct sock *sk);
1157 void tcp_init_congestion_control(struct sock *sk);
1158 void tcp_cleanup_congestion_control(struct sock *sk);
1159 int tcp_set_default_congestion_control(struct net *net, const char *name);
1160 void tcp_get_default_congestion_control(struct net *net, char *name);
1161 void tcp_get_available_congestion_control(char *buf, size_t len);
1162 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1163 int tcp_set_allowed_congestion_control(char *allowed);
1164 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1165 bool cap_net_admin);
1166 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1167 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1169 u32 tcp_reno_ssthresh(struct sock *sk);
1170 u32 tcp_reno_undo_cwnd(struct sock *sk);
1171 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1172 extern struct tcp_congestion_ops tcp_reno;
1174 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1175 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1176 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1178 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1180 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1186 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1188 const struct inet_connection_sock *icsk = inet_csk(sk);
1190 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1193 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1195 const struct inet_connection_sock *icsk = inet_csk(sk);
1197 if (icsk->icsk_ca_ops->cwnd_event)
1198 icsk->icsk_ca_ops->cwnd_event(sk, event);
1201 /* From tcp_cong.c */
1202 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1204 /* From tcp_rate.c */
1205 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1206 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1207 struct rate_sample *rs);
1208 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1209 bool is_sack_reneg, struct rate_sample *rs);
1210 void tcp_rate_check_app_limited(struct sock *sk);
1212 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1214 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1217 /* These functions determine how the current flow behaves in respect of SACK
1218 * handling. SACK is negotiated with the peer, and therefore it can vary
1219 * between different flows.
1221 * tcp_is_sack - SACK enabled
1222 * tcp_is_reno - No SACK
1224 static inline int tcp_is_sack(const struct tcp_sock *tp)
1226 return likely(tp->rx_opt.sack_ok);
1229 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1231 return !tcp_is_sack(tp);
1234 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1236 return tp->sacked_out + tp->lost_out;
1239 /* This determines how many packets are "in the network" to the best
1240 * of our knowledge. In many cases it is conservative, but where
1241 * detailed information is available from the receiver (via SACK
1242 * blocks etc.) we can make more aggressive calculations.
1244 * Use this for decisions involving congestion control, use just
1245 * tp->packets_out to determine if the send queue is empty or not.
1247 * Read this equation as:
1249 * "Packets sent once on transmission queue" MINUS
1250 * "Packets left network, but not honestly ACKed yet" PLUS
1251 * "Packets fast retransmitted"
1253 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1255 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1258 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1260 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1262 return tp->snd_cwnd;
1265 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1267 WARN_ON_ONCE((int)val <= 0);
1271 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1273 return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1276 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1278 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1281 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1283 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1284 (1 << inet_csk(sk)->icsk_ca_state);
1287 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1288 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1291 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1293 const struct tcp_sock *tp = tcp_sk(sk);
1295 if (tcp_in_cwnd_reduction(sk))
1296 return tp->snd_ssthresh;
1298 return max(tp->snd_ssthresh,
1299 ((tcp_snd_cwnd(tp) >> 1) +
1300 (tcp_snd_cwnd(tp) >> 2)));
1303 /* Use define here intentionally to get WARN_ON location shown at the caller */
1304 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1306 void tcp_enter_cwr(struct sock *sk);
1307 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1309 /* The maximum number of MSS of available cwnd for which TSO defers
1310 * sending if not using sysctl_tcp_tso_win_divisor.
1312 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1317 /* Returns end sequence number of the receiver's advertised window */
1318 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1320 return tp->snd_una + tp->snd_wnd;
1323 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1324 * flexible approach. The RFC suggests cwnd should not be raised unless
1325 * it was fully used previously. And that's exactly what we do in
1326 * congestion avoidance mode. But in slow start we allow cwnd to grow
1327 * as long as the application has used half the cwnd.
1329 * cwnd is 10 (IW10), but application sends 9 frames.
1330 * We allow cwnd to reach 18 when all frames are ACKed.
1331 * This check is safe because it's as aggressive as slow start which already
1332 * risks 100% overshoot. The advantage is that we discourage application to
1333 * either send more filler packets or data to artificially blow up the cwnd
1334 * usage, and allow application-limited process to probe bw more aggressively.
1336 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1338 const struct tcp_sock *tp = tcp_sk(sk);
1340 if (tp->is_cwnd_limited)
1343 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1344 if (tcp_in_slow_start(tp))
1345 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1350 /* BBR congestion control needs pacing.
1351 * Same remark for SO_MAX_PACING_RATE.
1352 * sch_fq packet scheduler is efficiently handling pacing,
1353 * but is not always installed/used.
1354 * Return true if TCP stack should pace packets itself.
1356 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1358 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1361 /* Estimates in how many jiffies next packet for this flow can be sent.
1362 * Scheduling a retransmit timer too early would be silly.
1364 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1366 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1368 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1371 static inline void tcp_reset_xmit_timer(struct sock *sk,
1374 const unsigned long max_when)
1376 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1380 /* Something is really bad, we could not queue an additional packet,
1381 * because qdisc is full or receiver sent a 0 window, or we are paced.
1382 * We do not want to add fuel to the fire, or abort too early,
1383 * so make sure the timer we arm now is at least 200ms in the future,
1384 * regardless of current icsk_rto value (as it could be ~2ms)
1386 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1388 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1391 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1392 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1393 unsigned long max_when)
1395 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1396 inet_csk(sk)->icsk_backoff);
1397 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1399 return (unsigned long)min_t(u64, when, max_when);
1402 static inline void tcp_check_probe_timer(struct sock *sk)
1404 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1405 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1406 tcp_probe0_base(sk), TCP_RTO_MAX);
1409 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1414 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1420 * Calculate(/check) TCP checksum
1422 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1423 __be32 daddr, __wsum base)
1425 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1428 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1430 return !skb_csum_unnecessary(skb) &&
1431 __skb_checksum_complete(skb);
1434 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1435 enum skb_drop_reason *reason);
1438 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1439 void tcp_set_state(struct sock *sk, int state);
1440 void tcp_done(struct sock *sk);
1441 int tcp_abort(struct sock *sk, int err);
1443 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1446 rx_opt->num_sacks = 0;
1449 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1451 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1453 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1454 struct tcp_sock *tp = tcp_sk(sk);
1457 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1458 tp->packets_out || ca_ops->cong_control)
1460 delta = tcp_jiffies32 - tp->lsndtime;
1461 if (delta > inet_csk(sk)->icsk_rto)
1462 tcp_cwnd_restart(sk, delta);
1465 /* Determine a window scaling and initial window to offer. */
1466 void tcp_select_initial_window(const struct sock *sk, int __space,
1467 __u32 mss, __u32 *rcv_wnd,
1468 __u32 *window_clamp, int wscale_ok,
1469 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1471 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1473 s64 scaled_space = (s64)space * scaling_ratio;
1475 return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1478 static inline int tcp_win_from_space(const struct sock *sk, int space)
1480 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1483 /* inverse of __tcp_win_from_space() */
1484 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1486 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1488 do_div(val, scaling_ratio);
1492 static inline int tcp_space_from_win(const struct sock *sk, int win)
1494 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1497 /* Assume a conservative default of 1200 bytes of payload per 4K page.
1498 * This may be adjusted later in tcp_measure_rcv_mss().
1500 #define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1503 static inline void tcp_scaling_ratio_init(struct sock *sk)
1505 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1508 /* Note: caller must be prepared to deal with negative returns */
1509 static inline int tcp_space(const struct sock *sk)
1511 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1512 READ_ONCE(sk->sk_backlog.len) -
1513 atomic_read(&sk->sk_rmem_alloc));
1516 static inline int tcp_full_space(const struct sock *sk)
1518 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1521 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1523 int unused_mem = sk_unused_reserved_mem(sk);
1524 struct tcp_sock *tp = tcp_sk(sk);
1526 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1528 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1529 tcp_win_from_space(sk, unused_mem));
1532 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1534 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1537 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1538 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1541 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1542 * If 87.5 % (7/8) of the space has been consumed, we want to override
1543 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1544 * len/truesize ratio.
1546 static inline bool tcp_rmem_pressure(const struct sock *sk)
1548 int rcvbuf, threshold;
1550 if (tcp_under_memory_pressure(sk))
1553 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1554 threshold = rcvbuf - (rcvbuf >> 3);
1556 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1559 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1561 const struct tcp_sock *tp = tcp_sk(sk);
1562 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1567 return (avail >= target) || tcp_rmem_pressure(sk) ||
1568 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1571 extern void tcp_openreq_init_rwin(struct request_sock *req,
1572 const struct sock *sk_listener,
1573 const struct dst_entry *dst);
1575 void tcp_enter_memory_pressure(struct sock *sk);
1576 void tcp_leave_memory_pressure(struct sock *sk);
1578 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1580 struct net *net = sock_net((struct sock *)tp);
1583 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1584 * and do_tcp_setsockopt().
1586 val = READ_ONCE(tp->keepalive_intvl);
1588 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1591 static inline int keepalive_time_when(const struct tcp_sock *tp)
1593 struct net *net = sock_net((struct sock *)tp);
1596 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1597 val = READ_ONCE(tp->keepalive_time);
1599 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1602 static inline int keepalive_probes(const struct tcp_sock *tp)
1604 struct net *net = sock_net((struct sock *)tp);
1607 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1608 * and do_tcp_setsockopt().
1610 val = READ_ONCE(tp->keepalive_probes);
1612 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1615 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1617 const struct inet_connection_sock *icsk = &tp->inet_conn;
1619 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1620 tcp_jiffies32 - tp->rcv_tstamp);
1623 static inline int tcp_fin_time(const struct sock *sk)
1625 int fin_timeout = tcp_sk(sk)->linger2 ? :
1626 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1627 const int rto = inet_csk(sk)->icsk_rto;
1629 if (fin_timeout < (rto << 2) - (rto >> 1))
1630 fin_timeout = (rto << 2) - (rto >> 1);
1635 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1638 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1640 if (unlikely(!time_before32(ktime_get_seconds(),
1641 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1644 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1645 * then following tcp messages have valid values. Ignore 0 value,
1646 * or else 'negative' tsval might forbid us to accept their packets.
1648 if (!rx_opt->ts_recent)
1653 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1656 if (tcp_paws_check(rx_opt, 0))
1659 /* RST segments are not recommended to carry timestamp,
1660 and, if they do, it is recommended to ignore PAWS because
1661 "their cleanup function should take precedence over timestamps."
1662 Certainly, it is mistake. It is necessary to understand the reasons
1663 of this constraint to relax it: if peer reboots, clock may go
1664 out-of-sync and half-open connections will not be reset.
1665 Actually, the problem would be not existing if all
1666 the implementations followed draft about maintaining clock
1667 via reboots. Linux-2.2 DOES NOT!
1669 However, we can relax time bounds for RST segments to MSL.
1671 if (rst && !time_before32(ktime_get_seconds(),
1672 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1677 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1678 int mib_idx, u32 *last_oow_ack_time);
1680 static inline void tcp_mib_init(struct net *net)
1683 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1684 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1685 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1686 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1690 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1692 tp->lost_skb_hint = NULL;
1695 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1697 tcp_clear_retrans_hints_partial(tp);
1698 tp->retransmit_skb_hint = NULL;
1701 #define tcp_md5_addr tcp_ao_addr
1703 /* - key database */
1704 struct tcp_md5sig_key {
1705 struct hlist_node node;
1707 u8 family; /* AF_INET or AF_INET6 */
1710 union tcp_md5_addr addr;
1711 int l3index; /* set if key added with L3 scope */
1712 u8 key[TCP_MD5SIG_MAXKEYLEN];
1713 struct rcu_head rcu;
1717 struct tcp_md5sig_info {
1718 struct hlist_head head;
1719 struct rcu_head rcu;
1722 /* - pseudo header */
1723 struct tcp4_pseudohdr {
1731 struct tcp6_pseudohdr {
1732 struct in6_addr saddr;
1733 struct in6_addr daddr;
1735 __be32 protocol; /* including padding */
1738 union tcp_md5sum_block {
1739 struct tcp4_pseudohdr ip4;
1740 #if IS_ENABLED(CONFIG_IPV6)
1741 struct tcp6_pseudohdr ip6;
1746 * struct tcp_sigpool - per-CPU pool of ahash_requests
1747 * @scratch: per-CPU temporary area, that can be used between
1748 * tcp_sigpool_start() and tcp_sigpool_end() to perform
1750 * @req: pre-allocated ahash request
1752 struct tcp_sigpool {
1754 struct ahash_request *req;
1757 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1758 void tcp_sigpool_get(unsigned int id);
1759 void tcp_sigpool_release(unsigned int id);
1760 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1761 const struct sk_buff *skb,
1762 unsigned int header_len);
1765 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1766 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1767 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1769 * Returns 0 on success, error otherwise.
1771 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1773 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1774 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1776 void tcp_sigpool_end(struct tcp_sigpool *c);
1777 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1779 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1780 const struct sock *sk, const struct sk_buff *skb);
1781 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1782 int family, u8 prefixlen, int l3index, u8 flags,
1783 const u8 *newkey, u8 newkeylen);
1784 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1785 int family, u8 prefixlen, int l3index,
1786 struct tcp_md5sig_key *key);
1788 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1789 int family, u8 prefixlen, int l3index, u8 flags);
1790 void tcp_clear_md5_list(struct sock *sk);
1791 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1792 const struct sock *addr_sk);
1794 #ifdef CONFIG_TCP_MD5SIG
1795 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1796 const union tcp_md5_addr *addr,
1797 int family, bool any_l3index);
1798 static inline struct tcp_md5sig_key *
1799 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1800 const union tcp_md5_addr *addr, int family)
1802 if (!static_branch_unlikely(&tcp_md5_needed.key))
1804 return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1807 static inline struct tcp_md5sig_key *
1808 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1809 const union tcp_md5_addr *addr, int family)
1811 if (!static_branch_unlikely(&tcp_md5_needed.key))
1813 return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1816 enum skb_drop_reason
1817 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1818 const void *saddr, const void *daddr,
1819 int family, int l3index, const __u8 *hash_location);
1822 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1824 static inline struct tcp_md5sig_key *
1825 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1826 const union tcp_md5_addr *addr, int family)
1831 static inline struct tcp_md5sig_key *
1832 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1833 const union tcp_md5_addr *addr, int family)
1838 static inline enum skb_drop_reason
1839 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1840 const void *saddr, const void *daddr,
1841 int family, int l3index, const __u8 *hash_location)
1843 return SKB_NOT_DROPPED_YET;
1845 #define tcp_twsk_md5_key(twsk) NULL
1848 int tcp_md5_alloc_sigpool(void);
1849 void tcp_md5_release_sigpool(void);
1850 void tcp_md5_add_sigpool(void);
1851 extern int tcp_md5_sigpool_id;
1853 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1854 const struct tcp_md5sig_key *key);
1856 /* From tcp_fastopen.c */
1857 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1858 struct tcp_fastopen_cookie *cookie);
1859 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1860 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1862 struct tcp_fastopen_request {
1863 /* Fast Open cookie. Size 0 means a cookie request */
1864 struct tcp_fastopen_cookie cookie;
1865 struct msghdr *data; /* data in MSG_FASTOPEN */
1867 int copied; /* queued in tcp_connect() */
1868 struct ubuf_info *uarg;
1870 void tcp_free_fastopen_req(struct tcp_sock *tp);
1871 void tcp_fastopen_destroy_cipher(struct sock *sk);
1872 void tcp_fastopen_ctx_destroy(struct net *net);
1873 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1874 void *primary_key, void *backup_key);
1875 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1877 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1878 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1879 struct request_sock *req,
1880 struct tcp_fastopen_cookie *foc,
1881 const struct dst_entry *dst);
1882 void tcp_fastopen_init_key_once(struct net *net);
1883 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1884 struct tcp_fastopen_cookie *cookie);
1885 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1886 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1887 #define TCP_FASTOPEN_KEY_MAX 2
1888 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1889 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1891 /* Fastopen key context */
1892 struct tcp_fastopen_context {
1893 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1895 struct rcu_head rcu;
1898 void tcp_fastopen_active_disable(struct sock *sk);
1899 bool tcp_fastopen_active_should_disable(struct sock *sk);
1900 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1901 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1903 /* Caller needs to wrap with rcu_read_(un)lock() */
1905 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1907 struct tcp_fastopen_context *ctx;
1909 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1911 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1916 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1917 const struct tcp_fastopen_cookie *orig)
1919 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1920 orig->len == foc->len &&
1921 !memcmp(orig->val, foc->val, foc->len))
1927 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1932 /* Latencies incurred by various limits for a sender. They are
1933 * chronograph-like stats that are mutually exclusive.
1937 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1938 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1939 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1943 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1944 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1946 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1947 * the same memory storage than skb->destructor/_skb_refdst
1949 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1951 skb->destructor = NULL;
1952 skb->_skb_refdst = 0UL;
1955 #define tcp_skb_tsorted_save(skb) { \
1956 unsigned long _save = skb->_skb_refdst; \
1957 skb->_skb_refdst = 0UL;
1959 #define tcp_skb_tsorted_restore(skb) \
1960 skb->_skb_refdst = _save; \
1963 void tcp_write_queue_purge(struct sock *sk);
1965 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1967 return skb_rb_first(&sk->tcp_rtx_queue);
1970 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1972 return skb_rb_last(&sk->tcp_rtx_queue);
1975 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1977 return skb_peek_tail(&sk->sk_write_queue);
1980 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1981 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1983 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1985 return skb_peek(&sk->sk_write_queue);
1988 static inline bool tcp_skb_is_last(const struct sock *sk,
1989 const struct sk_buff *skb)
1991 return skb_queue_is_last(&sk->sk_write_queue, skb);
1995 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1998 * Since the write queue can have a temporary empty skb in it,
1999 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2001 static inline bool tcp_write_queue_empty(const struct sock *sk)
2003 const struct tcp_sock *tp = tcp_sk(sk);
2005 return tp->write_seq == tp->snd_nxt;
2008 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2010 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2013 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2015 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2018 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2020 __skb_queue_tail(&sk->sk_write_queue, skb);
2022 /* Queue it, remembering where we must start sending. */
2023 if (sk->sk_write_queue.next == skb)
2024 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2027 /* Insert new before skb on the write queue of sk. */
2028 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2029 struct sk_buff *skb,
2032 __skb_queue_before(&sk->sk_write_queue, skb, new);
2035 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2037 tcp_skb_tsorted_anchor_cleanup(skb);
2038 __skb_unlink(skb, &sk->sk_write_queue);
2041 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2043 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2045 tcp_skb_tsorted_anchor_cleanup(skb);
2046 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2049 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2051 list_del(&skb->tcp_tsorted_anchor);
2052 tcp_rtx_queue_unlink(skb, sk);
2053 tcp_wmem_free_skb(sk, skb);
2056 static inline void tcp_push_pending_frames(struct sock *sk)
2058 if (tcp_send_head(sk)) {
2059 struct tcp_sock *tp = tcp_sk(sk);
2061 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2065 /* Start sequence of the skb just after the highest skb with SACKed
2066 * bit, valid only if sacked_out > 0 or when the caller has ensured
2067 * validity by itself.
2069 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2071 if (!tp->sacked_out)
2074 if (tp->highest_sack == NULL)
2077 return TCP_SKB_CB(tp->highest_sack)->seq;
2080 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2082 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2085 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2087 return tcp_sk(sk)->highest_sack;
2090 static inline void tcp_highest_sack_reset(struct sock *sk)
2092 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2095 /* Called when old skb is about to be deleted and replaced by new skb */
2096 static inline void tcp_highest_sack_replace(struct sock *sk,
2097 struct sk_buff *old,
2098 struct sk_buff *new)
2100 if (old == tcp_highest_sack(sk))
2101 tcp_sk(sk)->highest_sack = new;
2104 /* This helper checks if socket has IP_TRANSPARENT set */
2105 static inline bool inet_sk_transparent(const struct sock *sk)
2107 switch (sk->sk_state) {
2109 return inet_twsk(sk)->tw_transparent;
2110 case TCP_NEW_SYN_RECV:
2111 return inet_rsk(inet_reqsk(sk))->no_srccheck;
2113 return inet_test_bit(TRANSPARENT, sk);
2116 /* Determines whether this is a thin stream (which may suffer from
2117 * increased latency). Used to trigger latency-reducing mechanisms.
2119 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2121 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2125 enum tcp_seq_states {
2126 TCP_SEQ_STATE_LISTENING,
2127 TCP_SEQ_STATE_ESTABLISHED,
2130 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2131 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2132 void tcp_seq_stop(struct seq_file *seq, void *v);
2134 struct tcp_seq_afinfo {
2138 struct tcp_iter_state {
2139 struct seq_net_private p;
2140 enum tcp_seq_states state;
2141 struct sock *syn_wait_sk;
2142 int bucket, offset, sbucket, num;
2146 extern struct request_sock_ops tcp_request_sock_ops;
2147 extern struct request_sock_ops tcp6_request_sock_ops;
2149 void tcp_v4_destroy_sock(struct sock *sk);
2151 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2152 netdev_features_t features);
2153 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2154 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2155 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2156 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2157 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2159 void tcp_gro_complete(struct sk_buff *skb);
2161 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2164 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2166 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2168 struct net *net = sock_net((struct sock *)tp);
2171 val = READ_ONCE(tp->notsent_lowat);
2173 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2176 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2178 #ifdef CONFIG_PROC_FS
2179 int tcp4_proc_init(void);
2180 void tcp4_proc_exit(void);
2183 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2184 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2185 const struct tcp_request_sock_ops *af_ops,
2186 struct sock *sk, struct sk_buff *skb);
2188 /* TCP af-specific functions */
2189 struct tcp_sock_af_ops {
2190 #ifdef CONFIG_TCP_MD5SIG
2191 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2192 const struct sock *addr_sk);
2193 int (*calc_md5_hash)(char *location,
2194 const struct tcp_md5sig_key *md5,
2195 const struct sock *sk,
2196 const struct sk_buff *skb);
2197 int (*md5_parse)(struct sock *sk,
2202 #ifdef CONFIG_TCP_AO
2203 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2204 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2205 struct sock *addr_sk,
2206 int sndid, int rcvid);
2207 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2208 const struct sock *sk,
2209 __be32 sisn, __be32 disn, bool send);
2210 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2211 const struct sock *sk, const struct sk_buff *skb,
2212 const u8 *tkey, int hash_offset, u32 sne);
2216 struct tcp_request_sock_ops {
2218 #ifdef CONFIG_TCP_MD5SIG
2219 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2220 const struct sock *addr_sk);
2221 int (*calc_md5_hash) (char *location,
2222 const struct tcp_md5sig_key *md5,
2223 const struct sock *sk,
2224 const struct sk_buff *skb);
2226 #ifdef CONFIG_TCP_AO
2227 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2228 struct request_sock *req,
2229 int sndid, int rcvid);
2230 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2231 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2232 struct request_sock *req, const struct sk_buff *skb,
2233 int hash_offset, u32 sne);
2235 #ifdef CONFIG_SYN_COOKIES
2236 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2239 struct dst_entry *(*route_req)(const struct sock *sk,
2240 struct sk_buff *skb,
2242 struct request_sock *req);
2243 u32 (*init_seq)(const struct sk_buff *skb);
2244 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2245 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2246 struct flowi *fl, struct request_sock *req,
2247 struct tcp_fastopen_cookie *foc,
2248 enum tcp_synack_type synack_type,
2249 struct sk_buff *syn_skb);
2252 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2253 #if IS_ENABLED(CONFIG_IPV6)
2254 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2257 #ifdef CONFIG_SYN_COOKIES
2258 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2259 const struct sock *sk, struct sk_buff *skb,
2262 tcp_synq_overflow(sk);
2263 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2264 return ops->cookie_init_seq(skb, mss);
2267 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2268 const struct sock *sk, struct sk_buff *skb,
2278 struct tcp_ao_key *ao_key;
2283 struct tcp_md5sig_key *md5_key;
2292 static inline void tcp_get_current_key(const struct sock *sk,
2293 struct tcp_key *out)
2295 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2296 const struct tcp_sock *tp = tcp_sk(sk);
2299 #ifdef CONFIG_TCP_AO
2300 if (static_branch_unlikely(&tcp_ao_needed.key)) {
2301 struct tcp_ao_info *ao;
2303 ao = rcu_dereference_protected(tp->ao_info,
2304 lockdep_sock_is_held(sk));
2306 out->ao_key = READ_ONCE(ao->current_key);
2307 out->type = TCP_KEY_AO;
2312 #ifdef CONFIG_TCP_MD5SIG
2313 if (static_branch_unlikely(&tcp_md5_needed.key) &&
2314 rcu_access_pointer(tp->md5sig_info)) {
2315 out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2317 out->type = TCP_KEY_MD5;
2322 out->type = TCP_KEY_NONE;
2325 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2327 #ifdef CONFIG_TCP_MD5SIG
2328 if (static_branch_unlikely(&tcp_md5_needed.key) &&
2329 key->type == TCP_KEY_MD5)
2335 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2337 #ifdef CONFIG_TCP_AO
2338 if (static_branch_unlikely(&tcp_ao_needed.key) &&
2339 key->type == TCP_KEY_AO)
2345 int tcpv4_offload_init(void);
2347 void tcp_v4_init(void);
2348 void tcp_init(void);
2350 /* tcp_recovery.c */
2351 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2352 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2353 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2355 extern bool tcp_rack_mark_lost(struct sock *sk);
2356 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2358 extern void tcp_rack_reo_timeout(struct sock *sk);
2359 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2364 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2365 * expects cong_ratio which represents fraction of traffic that experienced
2366 * congestion over a single RTT. In order to avoid floating point operations,
2367 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2369 #define TCP_PLB_SCALE 8
2371 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2372 struct tcp_plb_state {
2373 u8 consec_cong_rounds:5, /* consecutive congested rounds */
2375 u32 pause_until; /* jiffies32 when PLB can resume rerouting */
2378 static inline void tcp_plb_init(const struct sock *sk,
2379 struct tcp_plb_state *plb)
2381 plb->consec_cong_rounds = 0;
2382 plb->pause_until = 0;
2384 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2385 const int cong_ratio);
2386 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2387 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2389 /* At how many usecs into the future should the RTO fire? */
2390 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2392 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2393 u32 rto = inet_csk(sk)->icsk_rto;
2394 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2396 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2400 * Save and compile IPv4 options, return a pointer to it
2402 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2403 struct sk_buff *skb)
2405 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2406 struct ip_options_rcu *dopt = NULL;
2409 int opt_size = sizeof(*dopt) + opt->optlen;
2411 dopt = kmalloc(opt_size, GFP_ATOMIC);
2412 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2420 /* locally generated TCP pure ACKs have skb->truesize == 2
2421 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2422 * This is much faster than dissecting the packet to find out.
2423 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2425 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2427 return skb->truesize == 2;
2430 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2435 static inline int tcp_inq(struct sock *sk)
2437 struct tcp_sock *tp = tcp_sk(sk);
2440 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2442 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2444 before(tp->urg_seq, tp->copied_seq) ||
2445 !before(tp->urg_seq, tp->rcv_nxt)) {
2447 answ = tp->rcv_nxt - tp->copied_seq;
2449 /* Subtract 1, if FIN was received */
2450 if (answ && sock_flag(sk, SOCK_DONE))
2453 answ = tp->urg_seq - tp->copied_seq;
2459 int tcp_peek_len(struct socket *sock);
2461 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2465 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2467 /* We update these fields while other threads might
2468 * read them from tcp_get_info()
2470 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2471 if (skb->len > tcp_hdrlen(skb))
2472 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2476 * TCP listen path runs lockless.
2477 * We forced "struct sock" to be const qualified to make sure
2478 * we don't modify one of its field by mistake.
2479 * Here, we increment sk_drops which is an atomic_t, so we can safely
2480 * make sock writable again.
2482 static inline void tcp_listendrop(const struct sock *sk)
2484 atomic_inc(&((struct sock *)sk)->sk_drops);
2485 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2488 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2491 * Interface for adding Upper Level Protocols over TCP
2494 #define TCP_ULP_NAME_MAX 16
2495 #define TCP_ULP_MAX 128
2496 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2498 struct tcp_ulp_ops {
2499 struct list_head list;
2501 /* initialize ulp */
2502 int (*init)(struct sock *sk);
2504 void (*update)(struct sock *sk, struct proto *p,
2505 void (*write_space)(struct sock *sk));
2507 void (*release)(struct sock *sk);
2509 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2510 size_t (*get_info_size)(const struct sock *sk);
2512 void (*clone)(const struct request_sock *req, struct sock *newsk,
2513 const gfp_t priority);
2515 char name[TCP_ULP_NAME_MAX];
2516 struct module *owner;
2518 int tcp_register_ulp(struct tcp_ulp_ops *type);
2519 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2520 int tcp_set_ulp(struct sock *sk, const char *name);
2521 void tcp_get_available_ulp(char *buf, size_t len);
2522 void tcp_cleanup_ulp(struct sock *sk);
2523 void tcp_update_ulp(struct sock *sk, struct proto *p,
2524 void (*write_space)(struct sock *sk));
2526 #define MODULE_ALIAS_TCP_ULP(name) \
2527 __MODULE_INFO(alias, alias_userspace, name); \
2528 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2530 #ifdef CONFIG_NET_SOCK_MSG
2534 #ifdef CONFIG_BPF_SYSCALL
2535 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2536 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2537 #endif /* CONFIG_BPF_SYSCALL */
2540 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2542 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2547 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2548 struct sk_msg *msg, u32 bytes, int flags);
2549 #endif /* CONFIG_NET_SOCK_MSG */
2551 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2552 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2557 #ifdef CONFIG_CGROUP_BPF
2558 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2559 struct sk_buff *skb,
2560 unsigned int end_offset)
2563 skops->skb_data_end = skb->data + end_offset;
2566 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2567 struct sk_buff *skb,
2568 unsigned int end_offset)
2573 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2574 * is < 0, then the BPF op failed (for example if the loaded BPF
2575 * program does not support the chosen operation or there is no BPF
2579 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2581 struct bpf_sock_ops_kern sock_ops;
2584 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2585 if (sk_fullsock(sk)) {
2586 sock_ops.is_fullsock = 1;
2587 sock_owned_by_me(sk);
2593 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2595 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2597 ret = sock_ops.reply;
2603 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2605 u32 args[2] = {arg1, arg2};
2607 return tcp_call_bpf(sk, op, 2, args);
2610 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2613 u32 args[3] = {arg1, arg2, arg3};
2615 return tcp_call_bpf(sk, op, 3, args);
2619 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2624 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2629 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2637 static inline u32 tcp_timeout_init(struct sock *sk)
2641 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2644 timeout = TCP_TIMEOUT_INIT;
2645 return min_t(int, timeout, TCP_RTO_MAX);
2648 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2652 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2659 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2661 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2664 static inline void tcp_bpf_rtt(struct sock *sk)
2666 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2667 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2670 #if IS_ENABLED(CONFIG_SMC)
2671 extern struct static_key_false tcp_have_smc;
2674 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2675 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2676 void (*cad)(struct sock *sk, u32 ack_seq));
2677 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2678 void clean_acked_data_flush(void);
2681 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2682 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2683 const struct tcp_sock *tp)
2685 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2686 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2689 /* Compute Earliest Departure Time for some control packets
2690 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2692 static inline u64 tcp_transmit_time(const struct sock *sk)
2694 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2695 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2696 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2698 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2703 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2704 const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2706 const u8 *md5_tmp, *ao_tmp;
2709 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2714 *md5_hash = md5_tmp;
2720 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2726 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2727 int family, int l3index, bool stat_inc)
2729 #ifdef CONFIG_TCP_AO
2730 struct tcp_ao_info *ao_info;
2731 struct tcp_ao_key *ao_key;
2733 if (!static_branch_unlikely(&tcp_ao_needed.key))
2736 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2737 lockdep_sock_is_held(sk));
2741 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2742 if (ao_info->ao_required || ao_key) {
2744 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2745 atomic64_inc(&ao_info->counters.ao_required);
2753 /* Called with rcu_read_lock() */
2754 static inline enum skb_drop_reason
2755 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2756 const struct sk_buff *skb,
2757 const void *saddr, const void *daddr,
2758 int family, int dif, int sdif)
2760 const struct tcphdr *th = tcp_hdr(skb);
2761 const struct tcp_ao_hdr *aoh;
2762 const __u8 *md5_location;
2765 /* Invalid option or two times meet any of auth options */
2766 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2767 tcp_hash_fail("TCP segment has incorrect auth options set",
2769 return SKB_DROP_REASON_TCP_AUTH_HDR;
2773 if (tcp_rsk_used_ao(req) != !!aoh) {
2774 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2775 tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2777 !aoh ? "missing AO" : "AO signed");
2778 return SKB_DROP_REASON_TCP_AOFAILURE;
2782 /* sdif set, means packet ingressed via a device
2783 * in an L3 domain and dif is set to the l3mdev
2785 l3index = sdif ? dif : 0;
2787 /* Fast path: unsigned segments */
2788 if (likely(!md5_location && !aoh)) {
2789 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2790 * for the remote peer. On TCP-AO established connection
2791 * the last key is impossible to remove, so there's
2792 * always at least one current_key.
2794 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2795 tcp_hash_fail("AO hash is required, but not found",
2796 family, skb, "L3 index %d", l3index);
2797 return SKB_DROP_REASON_TCP_AONOTFOUND;
2799 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2801 tcp_hash_fail("MD5 Hash not found",
2802 family, skb, "L3 index %d", l3index);
2803 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2805 return SKB_NOT_DROPPED_YET;
2809 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2811 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2812 l3index, md5_location);