Merge branch 'asoc-5.3' into asoc-5.4
[linux-2.6-microblaze.git] / include / linux / uwb.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Ultra Wide Band
4  * UWB API
5  *
6  * Copyright (C) 2005-2006 Intel Corporation
7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8  *
9  * FIXME: doc: overview of the API, different parts and pointers
10  */
11
12 #ifndef __LINUX__UWB_H__
13 #define __LINUX__UWB_H__
14
15 #include <linux/limits.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/timer.h>
19 #include <linux/wait.h>
20 #include <linux/workqueue.h>
21 #include <linux/uwb/spec.h>
22 #include <asm/page.h>
23
24 struct uwb_dev;
25 struct uwb_beca_e;
26 struct uwb_rc;
27 struct uwb_rsv;
28 struct uwb_dbg;
29
30 /**
31  * struct uwb_dev - a UWB Device
32  * @rc: UWB Radio Controller that discovered the device (kind of its
33  *     parent).
34  * @bce: a beacon cache entry for this device; or NULL if the device
35  *     is a local radio controller.
36  * @mac_addr: the EUI-48 address of this device.
37  * @dev_addr: the current DevAddr used by this device.
38  * @beacon_slot: the slot number the beacon is using.
39  * @streams: bitmap of streams allocated to reservations targeted at
40  *     this device.  For an RC, this is the streams allocated for
41  *     reservations targeted at DevAddrs.
42  *
43  * A UWB device may either by a neighbor or part of a local radio
44  * controller.
45  */
46 struct uwb_dev {
47         struct mutex mutex;
48         struct list_head list_node;
49         struct device dev;
50         struct uwb_rc *rc;              /* radio controller */
51         struct uwb_beca_e *bce;         /* Beacon Cache Entry */
52
53         struct uwb_mac_addr mac_addr;
54         struct uwb_dev_addr dev_addr;
55         int beacon_slot;
56         DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
57         DECLARE_BITMAP(last_availability_bm, UWB_NUM_MAS);
58 };
59 #define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
60
61 /**
62  * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
63  *
64  * RC[CE]Bs have a 'context ID' field that matches the command with
65  * the event received to confirm it.
66  *
67  * Maximum number of context IDs
68  */
69 enum { UWB_RC_CTX_MAX = 256 };
70
71
72 /** Notification chain head for UWB generated events to listeners */
73 struct uwb_notifs_chain {
74         struct list_head list;
75         struct mutex mutex;
76 };
77
78 /* Beacon cache list */
79 struct uwb_beca {
80         struct list_head list;
81         size_t entries;
82         struct mutex mutex;
83 };
84
85 /* Event handling thread. */
86 struct uwbd {
87         int pid;
88         struct task_struct *task;
89         wait_queue_head_t wq;
90         struct list_head event_list;
91         spinlock_t event_list_lock;
92 };
93
94 /**
95  * struct uwb_mas_bm - a bitmap of all MAS in a superframe
96  * @bm: a bitmap of length #UWB_NUM_MAS
97  */
98 struct uwb_mas_bm {
99         DECLARE_BITMAP(bm, UWB_NUM_MAS);
100         DECLARE_BITMAP(unsafe_bm, UWB_NUM_MAS);
101         int safe;
102         int unsafe;
103 };
104
105 /**
106  * uwb_rsv_state - UWB Reservation state.
107  *
108  * NONE - reservation is not active (no DRP IE being transmitted).
109  *
110  * Owner reservation states:
111  *
112  * INITIATED - owner has sent an initial DRP request.
113  * PENDING - target responded with pending Reason Code.
114  * MODIFIED - reservation manager is modifying an established
115  * reservation with a different MAS allocation.
116  * ESTABLISHED - the reservation has been successfully negotiated.
117  *
118  * Target reservation states:
119  *
120  * DENIED - request is denied.
121  * ACCEPTED - request is accepted.
122  * PENDING - PAL has yet to make a decision to whether to accept or
123  * deny.
124  *
125  * FIXME: further target states TBD.
126  */
127 enum uwb_rsv_state {
128         UWB_RSV_STATE_NONE = 0,
129         UWB_RSV_STATE_O_INITIATED,
130         UWB_RSV_STATE_O_PENDING,
131         UWB_RSV_STATE_O_MODIFIED,
132         UWB_RSV_STATE_O_ESTABLISHED,
133         UWB_RSV_STATE_O_TO_BE_MOVED,
134         UWB_RSV_STATE_O_MOVE_EXPANDING,
135         UWB_RSV_STATE_O_MOVE_COMBINING,
136         UWB_RSV_STATE_O_MOVE_REDUCING,
137         UWB_RSV_STATE_T_ACCEPTED,
138         UWB_RSV_STATE_T_DENIED,
139         UWB_RSV_STATE_T_CONFLICT,
140         UWB_RSV_STATE_T_PENDING,
141         UWB_RSV_STATE_T_EXPANDING_ACCEPTED,
142         UWB_RSV_STATE_T_EXPANDING_CONFLICT,
143         UWB_RSV_STATE_T_EXPANDING_PENDING,
144         UWB_RSV_STATE_T_EXPANDING_DENIED,
145         UWB_RSV_STATE_T_RESIZED,
146
147         UWB_RSV_STATE_LAST,
148 };
149
150 enum uwb_rsv_target_type {
151         UWB_RSV_TARGET_DEV,
152         UWB_RSV_TARGET_DEVADDR,
153 };
154
155 /**
156  * struct uwb_rsv_target - the target of a reservation.
157  *
158  * Reservations unicast and targeted at a single device
159  * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
160  * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
161  */
162 struct uwb_rsv_target {
163         enum uwb_rsv_target_type type;
164         union {
165                 struct uwb_dev *dev;
166                 struct uwb_dev_addr devaddr;
167         };
168 };
169
170 struct uwb_rsv_move {
171         struct uwb_mas_bm final_mas;
172         struct uwb_ie_drp *companion_drp_ie;
173         struct uwb_mas_bm companion_mas;
174 };
175
176 /*
177  * Number of streams reserved for reservations targeted at DevAddrs.
178  */
179 #define UWB_NUM_GLOBAL_STREAMS 1
180
181 typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
182
183 /**
184  * struct uwb_rsv - a DRP reservation
185  *
186  * Data structure management:
187  *
188  * @rc:             the radio controller this reservation is for
189  *                  (as target or owner)
190  * @rc_node:        a list node for the RC
191  * @pal_node:       a list node for the PAL
192  *
193  * Owner and target parameters:
194  *
195  * @owner:          the UWB device owning this reservation
196  * @target:         the target UWB device
197  * @type:           reservation type
198  *
199  * Owner parameters:
200  *
201  * @max_mas:        maxiumum number of MAS
202  * @min_mas:        minimum number of MAS
203  * @sparsity:       owner selected sparsity
204  * @is_multicast:   true iff multicast
205  *
206  * @callback:       callback function when the reservation completes
207  * @pal_priv:       private data for the PAL making the reservation
208  *
209  * Reservation status:
210  *
211  * @status:         negotiation status
212  * @stream:         stream index allocated for this reservation
213  * @tiebreaker:     conflict tiebreaker for this reservation
214  * @mas:            reserved MAS
215  * @drp_ie:         the DRP IE
216  * @ie_valid:       true iff the DRP IE matches the reservation parameters
217  *
218  * DRP reservations are uniquely identified by the owner, target and
219  * stream index.  However, when using a DevAddr as a target (e.g., for
220  * a WUSB cluster reservation) the responses may be received from
221  * devices with different DevAddrs.  In this case, reservations are
222  * uniquely identified by just the stream index.  A number of stream
223  * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
224  */
225 struct uwb_rsv {
226         struct uwb_rc *rc;
227         struct list_head rc_node;
228         struct list_head pal_node;
229         struct kref kref;
230
231         struct uwb_dev *owner;
232         struct uwb_rsv_target target;
233         enum uwb_drp_type type;
234         int max_mas;
235         int min_mas;
236         int max_interval;
237         bool is_multicast;
238
239         uwb_rsv_cb_f callback;
240         void *pal_priv;
241
242         enum uwb_rsv_state state;
243         bool needs_release_companion_mas;
244         u8 stream;
245         u8 tiebreaker;
246         struct uwb_mas_bm mas;
247         struct uwb_ie_drp *drp_ie;
248         struct uwb_rsv_move mv;
249         bool ie_valid;
250         struct timer_list timer;
251         struct work_struct handle_timeout_work;
252 };
253
254 static const
255 struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
256
257 static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
258 {
259         bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
260 }
261
262 /**
263  * struct uwb_drp_avail - a radio controller's view of MAS usage
264  * @global:   MAS unused by neighbors (excluding reservations targeted
265  *            or owned by the local radio controller) or the beaon period
266  * @local:    MAS unused by local established reservations
267  * @pending:  MAS unused by local pending reservations
268  * @ie:       DRP Availability IE to be included in the beacon
269  * @ie_valid: true iff @ie is valid and does not need to regenerated from
270  *            @global and @local
271  *
272  * Each radio controller maintains a view of MAS usage or
273  * availability. MAS available for a new reservation are determined
274  * from the intersection of @global, @local, and @pending.
275  *
276  * The radio controller must transmit a DRP Availability IE that's the
277  * intersection of @global and @local.
278  *
279  * A set bit indicates the MAS is unused and available.
280  *
281  * rc->rsvs_mutex should be held before accessing this data structure.
282  *
283  * [ECMA-368] section 17.4.3.
284  */
285 struct uwb_drp_avail {
286         DECLARE_BITMAP(global, UWB_NUM_MAS);
287         DECLARE_BITMAP(local, UWB_NUM_MAS);
288         DECLARE_BITMAP(pending, UWB_NUM_MAS);
289         struct uwb_ie_drp_avail ie;
290         bool ie_valid;
291 };
292
293 struct uwb_drp_backoff_win {
294         u8 window;
295         u8 n;
296         int total_expired;
297         struct timer_list timer;
298         bool can_reserve_extra_mases;
299 };
300
301 const char *uwb_rsv_state_str(enum uwb_rsv_state state);
302 const char *uwb_rsv_type_str(enum uwb_drp_type type);
303
304 struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
305                                void *pal_priv);
306 void uwb_rsv_destroy(struct uwb_rsv *rsv);
307
308 int uwb_rsv_establish(struct uwb_rsv *rsv);
309 int uwb_rsv_modify(struct uwb_rsv *rsv,
310                    int max_mas, int min_mas, int sparsity);
311 void uwb_rsv_terminate(struct uwb_rsv *rsv);
312
313 void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
314
315 void uwb_rsv_get_usable_mas(struct uwb_rsv *orig_rsv, struct uwb_mas_bm *mas);
316
317 /**
318  * Radio Control Interface instance
319  *
320  *
321  * Life cycle rules: those of the UWB Device.
322  *
323  * @index:    an index number for this radio controller, as used in the
324  *            device name.
325  * @version:  version of protocol supported by this device
326  * @priv:     Backend implementation; rw with uwb_dev.dev.sem taken.
327  * @cmd:      Backend implementation to execute commands; rw and call
328  *            only  with uwb_dev.dev.sem taken.
329  * @reset:    Hardware reset of radio controller and any PAL controllers.
330  * @filter:   Backend implementation to manipulate data to and from device
331  *            to be compliant to specification assumed by driver (WHCI
332  *            0.95).
333  *
334  *            uwb_dev.dev.mutex is used to execute commands and update
335  *            the corresponding structures; can't use a spinlock
336  *            because rc->cmd() can sleep.
337  * @ies:         This is a dynamically allocated array cacheing the
338  *               IEs (settable by the host) that the beacon of this
339  *               radio controller is currently sending.
340  *
341  *               In reality, we store here the full command we set to
342  *               the radio controller (which is basically a command
343  *               prefix followed by all the IEs the beacon currently
344  *               contains). This way we don't have to realloc and
345  *               memcpy when setting it.
346  *
347  *               We set this up in uwb_rc_ie_setup(), where we alloc
348  *               this struct, call get_ie() [so we know which IEs are
349  *               currently being sent, if any].
350  *
351  * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
352  *               amount used is given by sizeof(*ies) plus ies->wIELength
353  *               (which is a little endian quantity all the time).
354  * @ies_mutex:   protect the IE cache
355  * @dbg:         information for the debug interface
356  */
357 struct uwb_rc {
358         struct uwb_dev uwb_dev;
359         int index;
360         u16 version;
361
362         struct module *owner;
363         void *priv;
364         int (*start)(struct uwb_rc *rc);
365         void (*stop)(struct uwb_rc *rc);
366         int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
367         int (*reset)(struct uwb_rc *rc);
368         int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
369         int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
370                             size_t *, size_t *);
371
372         spinlock_t neh_lock;            /* protects neh_* and ctx_* */
373         struct list_head neh_list;      /* Open NE handles */
374         unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
375         u8 ctx_roll;
376
377         int beaconing;                  /* Beaconing state [channel number] */
378         int beaconing_forced;
379         int scanning;
380         enum uwb_scan_type scan_type:3;
381         unsigned ready:1;
382         struct uwb_notifs_chain notifs_chain;
383         struct uwb_beca uwb_beca;
384
385         struct uwbd uwbd;
386
387         struct uwb_drp_backoff_win bow;
388         struct uwb_drp_avail drp_avail;
389         struct list_head reservations;
390         struct list_head cnflt_alien_list;
391         struct uwb_mas_bm cnflt_alien_bitmap;
392         struct mutex rsvs_mutex;
393         spinlock_t rsvs_lock;
394         struct workqueue_struct *rsv_workq;
395
396         struct delayed_work rsv_update_work;
397         struct delayed_work rsv_alien_bp_work;
398         int set_drp_ie_pending;
399         struct mutex ies_mutex;
400         struct uwb_rc_cmd_set_ie *ies;
401         size_t ies_capacity;
402
403         struct list_head pals;
404         int active_pals;
405
406         struct uwb_dbg *dbg;
407 };
408
409
410 /**
411  * struct uwb_pal - a UWB PAL
412  * @name:    descriptive name for this PAL (wusbhc, wlp, etc.).
413  * @device:  a device for the PAL.  Used to link the PAL and the radio
414  *           controller in sysfs.
415  * @rc:      the radio controller the PAL uses.
416  * @channel_changed: called when the channel used by the radio changes.
417  *           A channel of -1 means the channel has been stopped.
418  * @new_rsv: called when a peer requests a reservation (may be NULL if
419  *           the PAL cannot accept reservation requests).
420  * @channel: channel being used by the PAL; 0 if the PAL isn't using
421  *           the radio; -1 if the PAL wishes to use the radio but
422  *           cannot.
423  * @debugfs_dir: a debugfs directory which the PAL can use for its own
424  *           debugfs files.
425  *
426  * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
427  * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
428  *
429  * The PALs using a radio controller must register themselves to
430  * permit the UWB stack to coordinate usage of the radio between the
431  * various PALs or to allow PALs to response to certain requests from
432  * peers.
433  *
434  * A struct uwb_pal should be embedded in a containing structure
435  * belonging to the PAL and initialized with uwb_pal_init()).  Fields
436  * should be set appropriately by the PAL before registering the PAL
437  * with uwb_pal_register().
438  */
439 struct uwb_pal {
440         struct list_head node;
441         const char *name;
442         struct device *device;
443         struct uwb_rc *rc;
444
445         void (*channel_changed)(struct uwb_pal *pal, int channel);
446         void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
447
448         int channel;
449         struct dentry *debugfs_dir;
450 };
451
452 void uwb_pal_init(struct uwb_pal *pal);
453 int uwb_pal_register(struct uwb_pal *pal);
454 void uwb_pal_unregister(struct uwb_pal *pal);
455
456 int uwb_radio_start(struct uwb_pal *pal);
457 void uwb_radio_stop(struct uwb_pal *pal);
458
459 /*
460  * General public API
461  *
462  * This API can be used by UWB device drivers or by those implementing
463  * UWB Radio Controllers
464  */
465 struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
466                                        const struct uwb_dev_addr *devaddr);
467 struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
468 static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
469 {
470         get_device(&uwb_dev->dev);
471 }
472 static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
473 {
474         put_device(&uwb_dev->dev);
475 }
476 struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
477
478 /**
479  * Callback function for 'uwb_{dev,rc}_foreach()'.
480  *
481  * @dev:  Linux device instance
482  *        'uwb_dev = container_of(dev, struct uwb_dev, dev)'
483  * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
484  *
485  * @returns: 0 to continue the iterations, any other val to stop
486  *           iterating and return the value to the caller of
487  *           _foreach().
488  */
489 typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
490 int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
491
492 struct uwb_rc *uwb_rc_alloc(void);
493 struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
494 struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
495 void uwb_rc_put(struct uwb_rc *rc);
496
497 typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
498                                 struct uwb_rceb *reply, ssize_t reply_size);
499
500 int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
501                      struct uwb_rccb *cmd, size_t cmd_size,
502                      u8 expected_type, u16 expected_event,
503                      uwb_rc_cmd_cb_f cb, void *arg);
504 ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
505                    struct uwb_rccb *cmd, size_t cmd_size,
506                    struct uwb_rceb *reply, size_t reply_size);
507 ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
508                     struct uwb_rccb *cmd, size_t cmd_size,
509                     u8 expected_type, u16 expected_event,
510                     struct uwb_rceb **preply);
511
512 size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
513
514 int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
515 int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
516 int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
517 int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
518 int __uwb_mac_addr_assigned_check(struct device *, void *);
519 int __uwb_dev_addr_assigned_check(struct device *, void *);
520
521 /* Print in @buf a pretty repr of @addr */
522 static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
523                                         const struct uwb_dev_addr *addr)
524 {
525         return __uwb_addr_print(buf, buf_size, addr->data, 0);
526 }
527
528 /* Print in @buf a pretty repr of @addr */
529 static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
530                                         const struct uwb_mac_addr *addr)
531 {
532         return __uwb_addr_print(buf, buf_size, addr->data, 1);
533 }
534
535 /* @returns 0 if device addresses @addr2 and @addr1 are equal */
536 static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
537                                    const struct uwb_dev_addr *addr2)
538 {
539         return memcmp(addr1, addr2, sizeof(*addr1));
540 }
541
542 /* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
543 static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
544                                    const struct uwb_mac_addr *addr2)
545 {
546         return memcmp(addr1, addr2, sizeof(*addr1));
547 }
548
549 /* @returns !0 if a MAC @addr is a broadcast address */
550 static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
551 {
552         struct uwb_mac_addr bcast = {
553                 .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
554         };
555         return !uwb_mac_addr_cmp(addr, &bcast);
556 }
557
558 /* @returns !0 if a MAC @addr is all zeroes*/
559 static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
560 {
561         struct uwb_mac_addr unset = {
562                 .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
563         };
564         return !uwb_mac_addr_cmp(addr, &unset);
565 }
566
567 /* @returns !0 if the address is in use. */
568 static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
569                                                struct uwb_dev_addr *addr)
570 {
571         return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
572 }
573
574 /*
575  * UWB Radio Controller API
576  *
577  * This API is used (in addition to the general API) to implement UWB
578  * Radio Controllers.
579  */
580 void uwb_rc_init(struct uwb_rc *);
581 int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
582 void uwb_rc_rm(struct uwb_rc *);
583 void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
584 void uwb_rc_neh_error(struct uwb_rc *, int);
585 void uwb_rc_reset_all(struct uwb_rc *rc);
586 void uwb_rc_pre_reset(struct uwb_rc *rc);
587 int uwb_rc_post_reset(struct uwb_rc *rc);
588
589 /**
590  * uwb_rsv_is_owner - is the owner of this reservation the RC?
591  * @rsv: the reservation
592  */
593 static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
594 {
595         return rsv->owner == &rsv->rc->uwb_dev;
596 }
597
598 /**
599  * enum uwb_notifs - UWB events that can be passed to any listeners
600  * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
601  * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
602  *
603  * Higher layers can register callback functions with the radio
604  * controller using uwb_notifs_register(). The radio controller
605  * maintains a list of all registered handlers and will notify all
606  * nodes when an event occurs.
607  */
608 enum uwb_notifs {
609         UWB_NOTIF_ONAIR,
610         UWB_NOTIF_OFFAIR,
611 };
612
613 /* Callback function registered with UWB */
614 struct uwb_notifs_handler {
615         struct list_head list_node;
616         void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
617         void *data;
618 };
619
620 int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
621 int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
622
623
624 /**
625  * UWB radio controller Event Size Entry (for creating entry tables)
626  *
627  * WUSB and WHCI define events and notifications, and they might have
628  * fixed or variable size.
629  *
630  * Each event/notification has a size which is not necessarily known
631  * in advance based on the event code. As well, vendor specific
632  * events/notifications will have a size impossible to determine
633  * unless we know about the device's specific details.
634  *
635  * It was way too smart of the spec writers not to think that it would
636  * be impossible for a generic driver to skip over vendor specific
637  * events/notifications if there are no LENGTH fields in the HEADER of
638  * each message...the transaction size cannot be counted on as the
639  * spec does not forbid to pack more than one event in a single
640  * transaction.
641  *
642  * Thus, we guess sizes with tables (or for events, when you know the
643  * size ahead of time you can use uwb_rc_neh_extra_size*()). We
644  * register tables with the known events and their sizes, and then we
645  * traverse those tables. For those with variable length, we provide a
646  * way to lookup the size inside the event/notification's
647  * payload. This allows device-specific event size tables to be
648  * registered.
649  *
650  * @size:   Size of the payload
651  *
652  * @offset: if != 0, at offset @offset-1 starts a field with a length
653  *          that has to be added to @size. The format of the field is
654  *          given by @type.
655  *
656  * @type:   Type and length of the offset field. Most common is LE 16
657  *          bits (that's why that is zero); others are there mostly to
658  *          cover for bugs and weirdos.
659  */
660 struct uwb_est_entry {
661         size_t size;
662         unsigned offset;
663         enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
664 };
665
666 int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
667                      const struct uwb_est_entry *, size_t entries);
668 int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
669                        const struct uwb_est_entry *, size_t entries);
670 ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
671                           size_t len);
672
673 /* -- Misc */
674
675 enum {
676         EDC_MAX_ERRORS = 10,
677         EDC_ERROR_TIMEFRAME = HZ,
678 };
679
680 /* error density counter */
681 struct edc {
682         unsigned long timestart;
683         u16 errorcount;
684 };
685
686 static inline
687 void edc_init(struct edc *edc)
688 {
689         edc->timestart = jiffies;
690 }
691
692 /* Called when an error occurred.
693  * This is way to determine if the number of acceptable errors per time
694  * period has been exceeded. It is not accurate as there are cases in which
695  * this scheme will not work, for example if there are periodic occurrences
696  * of errors that straddle updates to the start time. This scheme is
697  * sufficient for our usage.
698  *
699  * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
700  */
701 static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
702 {
703         unsigned long now;
704
705         now = jiffies;
706         if (now - err_hist->timestart > timeframe) {
707                 err_hist->errorcount = 1;
708                 err_hist->timestart = now;
709         } else if (++err_hist->errorcount > max_err) {
710                         err_hist->errorcount = 0;
711                         err_hist->timestart = now;
712                         return 1;
713         }
714         return 0;
715 }
716
717
718 /* Information Element handling */
719
720 struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
721 int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
722 int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
723
724 /*
725  * Transmission statistics
726  *
727  * UWB uses LQI and RSSI (one byte values) for reporting radio signal
728  * strength and line quality indication. We do quick and dirty
729  * averages of those. They are signed values, btw.
730  *
731  * For 8 bit quantities, we keep the min, the max, an accumulator
732  * (@sigma) and a # of samples. When @samples gets to 255, we compute
733  * the average (@sigma / @samples), place it in @sigma and reset
734  * @samples to 1 (so we use it as the first sample).
735  *
736  * Now, statistically speaking, probably I am kicking the kidneys of
737  * some books I have in my shelves collecting dust, but I just want to
738  * get an approx, not the Nobel.
739  *
740  * LOCKING: there is no locking per se, but we try to keep a lockless
741  * schema. Only _add_samples() modifies the values--as long as you
742  * have other locking on top that makes sure that no two calls of
743  * _add_sample() happen at the same time, then we are fine. Now, for
744  * resetting the values we just set @samples to 0 and that makes the
745  * next _add_sample() to start with defaults. Reading the values in
746  * _show() currently can race, so you need to make sure the calls are
747  * under the same lock that protects calls to _add_sample(). FIXME:
748  * currently unlocked (It is not ultraprecise but does the trick. Bite
749  * me).
750  */
751 struct stats {
752         s8 min, max;
753         s16 sigma;
754         atomic_t samples;
755 };
756
757 static inline
758 void stats_init(struct stats *stats)
759 {
760         atomic_set(&stats->samples, 0);
761         wmb();
762 }
763
764 static inline
765 void stats_add_sample(struct stats *stats, s8 sample)
766 {
767         s8 min, max;
768         s16 sigma;
769         unsigned samples = atomic_read(&stats->samples);
770         if (samples == 0) {     /* it was zero before, so we initialize */
771                 min = 127;
772                 max = -128;
773                 sigma = 0;
774         } else {
775                 min = stats->min;
776                 max = stats->max;
777                 sigma = stats->sigma;
778         }
779
780         if (sample < min)       /* compute new values */
781                 min = sample;
782         else if (sample > max)
783                 max = sample;
784         sigma += sample;
785
786         stats->min = min;       /* commit */
787         stats->max = max;
788         stats->sigma = sigma;
789         if (atomic_add_return(1, &stats->samples) > 255) {
790                 /* wrapped around! reset */
791                 stats->sigma = sigma / 256;
792                 atomic_set(&stats->samples, 1);
793         }
794 }
795
796 static inline ssize_t stats_show(struct stats *stats, char *buf)
797 {
798         int min, max, avg;
799         int samples = atomic_read(&stats->samples);
800         if (samples == 0)
801                 min = max = avg = 0;
802         else {
803                 min = stats->min;
804                 max = stats->max;
805                 avg = stats->sigma / samples;
806         }
807         return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
808 }
809
810 static inline ssize_t stats_store(struct stats *stats, const char *buf,
811                                   size_t size)
812 {
813         stats_init(stats);
814         return size;
815 }
816
817 #endif /* #ifndef __LINUX__UWB_H__ */