Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / include / linux / swapops.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SWAPOPS_H
3 #define _LINUX_SWAPOPS_H
4
5 #include <linux/radix-tree.h>
6 #include <linux/bug.h>
7 #include <linux/mm_types.h>
8
9 #ifdef CONFIG_MMU
10
11 /*
12  * swapcache pages are stored in the swapper_space radix tree.  We want to
13  * get good packing density in that tree, so the index should be dense in
14  * the low-order bits.
15  *
16  * We arrange the `type' and `offset' fields so that `type' is at the six
17  * high-order bits of the swp_entry_t and `offset' is right-aligned in the
18  * remaining bits.  Although `type' itself needs only five bits, we allow for
19  * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
20  *
21  * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
22  */
23 #define SWP_TYPE_SHIFT  (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
24 #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1)
25
26 /* Clear all flags but only keep swp_entry_t related information */
27 static inline pte_t pte_swp_clear_flags(pte_t pte)
28 {
29         if (pte_swp_exclusive(pte))
30                 pte = pte_swp_clear_exclusive(pte);
31         if (pte_swp_soft_dirty(pte))
32                 pte = pte_swp_clear_soft_dirty(pte);
33         if (pte_swp_uffd_wp(pte))
34                 pte = pte_swp_clear_uffd_wp(pte);
35         return pte;
36 }
37
38 /*
39  * Store a type+offset into a swp_entry_t in an arch-independent format
40  */
41 static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
42 {
43         swp_entry_t ret;
44
45         ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
46         return ret;
47 }
48
49 /*
50  * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
51  * arch-independent format
52  */
53 static inline unsigned swp_type(swp_entry_t entry)
54 {
55         return (entry.val >> SWP_TYPE_SHIFT);
56 }
57
58 /*
59  * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
60  * arch-independent format
61  */
62 static inline pgoff_t swp_offset(swp_entry_t entry)
63 {
64         return entry.val & SWP_OFFSET_MASK;
65 }
66
67 /* check whether a pte points to a swap entry */
68 static inline int is_swap_pte(pte_t pte)
69 {
70         return !pte_none(pte) && !pte_present(pte);
71 }
72
73 /*
74  * Convert the arch-dependent pte representation of a swp_entry_t into an
75  * arch-independent swp_entry_t.
76  */
77 static inline swp_entry_t pte_to_swp_entry(pte_t pte)
78 {
79         swp_entry_t arch_entry;
80
81         pte = pte_swp_clear_flags(pte);
82         arch_entry = __pte_to_swp_entry(pte);
83         return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
84 }
85
86 /*
87  * Convert the arch-independent representation of a swp_entry_t into the
88  * arch-dependent pte representation.
89  */
90 static inline pte_t swp_entry_to_pte(swp_entry_t entry)
91 {
92         swp_entry_t arch_entry;
93
94         arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
95         return __swp_entry_to_pte(arch_entry);
96 }
97
98 static inline swp_entry_t radix_to_swp_entry(void *arg)
99 {
100         swp_entry_t entry;
101
102         entry.val = xa_to_value(arg);
103         return entry;
104 }
105
106 static inline void *swp_to_radix_entry(swp_entry_t entry)
107 {
108         return xa_mk_value(entry.val);
109 }
110
111 static inline swp_entry_t make_swapin_error_entry(struct page *page)
112 {
113         return swp_entry(SWP_SWAPIN_ERROR, page_to_pfn(page));
114 }
115
116 static inline int is_swapin_error_entry(swp_entry_t entry)
117 {
118         return swp_type(entry) == SWP_SWAPIN_ERROR;
119 }
120
121 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
122 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
123 {
124         return swp_entry(SWP_DEVICE_READ, offset);
125 }
126
127 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
128 {
129         return swp_entry(SWP_DEVICE_WRITE, offset);
130 }
131
132 static inline bool is_device_private_entry(swp_entry_t entry)
133 {
134         int type = swp_type(entry);
135         return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
136 }
137
138 static inline bool is_writable_device_private_entry(swp_entry_t entry)
139 {
140         return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
141 }
142
143 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
144 {
145         return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
146 }
147
148 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
149 {
150         return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
151 }
152
153 static inline bool is_device_exclusive_entry(swp_entry_t entry)
154 {
155         return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
156                 swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
157 }
158
159 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
160 {
161         return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
162 }
163 #else /* CONFIG_DEVICE_PRIVATE */
164 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
165 {
166         return swp_entry(0, 0);
167 }
168
169 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
170 {
171         return swp_entry(0, 0);
172 }
173
174 static inline bool is_device_private_entry(swp_entry_t entry)
175 {
176         return false;
177 }
178
179 static inline bool is_writable_device_private_entry(swp_entry_t entry)
180 {
181         return false;
182 }
183
184 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
185 {
186         return swp_entry(0, 0);
187 }
188
189 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
190 {
191         return swp_entry(0, 0);
192 }
193
194 static inline bool is_device_exclusive_entry(swp_entry_t entry)
195 {
196         return false;
197 }
198
199 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
200 {
201         return false;
202 }
203 #endif /* CONFIG_DEVICE_PRIVATE */
204
205 #ifdef CONFIG_MIGRATION
206 static inline int is_migration_entry(swp_entry_t entry)
207 {
208         return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
209                         swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
210                         swp_type(entry) == SWP_MIGRATION_WRITE);
211 }
212
213 static inline int is_writable_migration_entry(swp_entry_t entry)
214 {
215         return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
216 }
217
218 static inline int is_readable_migration_entry(swp_entry_t entry)
219 {
220         return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
221 }
222
223 static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
224 {
225         return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
226 }
227
228 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
229 {
230         return swp_entry(SWP_MIGRATION_READ, offset);
231 }
232
233 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
234 {
235         return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
236 }
237
238 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
239 {
240         return swp_entry(SWP_MIGRATION_WRITE, offset);
241 }
242
243 extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
244                                         spinlock_t *ptl);
245 extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
246                                         unsigned long address);
247 #ifdef CONFIG_HUGETLB_PAGE
248 extern void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl);
249 extern void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte);
250 #endif
251 #else
252 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
253 {
254         return swp_entry(0, 0);
255 }
256
257 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
258 {
259         return swp_entry(0, 0);
260 }
261
262 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
263 {
264         return swp_entry(0, 0);
265 }
266
267 static inline int is_migration_entry(swp_entry_t swp)
268 {
269         return 0;
270 }
271
272 static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
273                                         spinlock_t *ptl) { }
274 static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
275                                          unsigned long address) { }
276 #ifdef CONFIG_HUGETLB_PAGE
277 static inline void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) { }
278 static inline void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) { }
279 #endif
280 static inline int is_writable_migration_entry(swp_entry_t entry)
281 {
282         return 0;
283 }
284 static inline int is_readable_migration_entry(swp_entry_t entry)
285 {
286         return 0;
287 }
288
289 #endif
290
291 typedef unsigned long pte_marker;
292
293 #define  PTE_MARKER_UFFD_WP  BIT(0)
294 #define  PTE_MARKER_MASK     (PTE_MARKER_UFFD_WP)
295
296 #ifdef CONFIG_PTE_MARKER
297
298 static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
299 {
300         return swp_entry(SWP_PTE_MARKER, marker);
301 }
302
303 static inline bool is_pte_marker_entry(swp_entry_t entry)
304 {
305         return swp_type(entry) == SWP_PTE_MARKER;
306 }
307
308 static inline pte_marker pte_marker_get(swp_entry_t entry)
309 {
310         return swp_offset(entry) & PTE_MARKER_MASK;
311 }
312
313 static inline bool is_pte_marker(pte_t pte)
314 {
315         return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
316 }
317
318 #else /* CONFIG_PTE_MARKER */
319
320 static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
321 {
322         /* This should never be called if !CONFIG_PTE_MARKER */
323         WARN_ON_ONCE(1);
324         return swp_entry(0, 0);
325 }
326
327 static inline bool is_pte_marker_entry(swp_entry_t entry)
328 {
329         return false;
330 }
331
332 static inline pte_marker pte_marker_get(swp_entry_t entry)
333 {
334         return 0;
335 }
336
337 static inline bool is_pte_marker(pte_t pte)
338 {
339         return false;
340 }
341
342 #endif /* CONFIG_PTE_MARKER */
343
344 static inline pte_t make_pte_marker(pte_marker marker)
345 {
346         return swp_entry_to_pte(make_pte_marker_entry(marker));
347 }
348
349 /*
350  * This is a special version to check pte_none() just to cover the case when
351  * the pte is a pte marker.  It existed because in many cases the pte marker
352  * should be seen as a none pte; it's just that we have stored some information
353  * onto the none pte so it becomes not-none any more.
354  *
355  * It should be used when the pte is file-backed, ram-based and backing
356  * userspace pages, like shmem.  It is not needed upon pgtables that do not
357  * support pte markers at all.  For example, it's not needed on anonymous
358  * memory, kernel-only memory (including when the system is during-boot),
359  * non-ram based generic file-system.  It's fine to be used even there, but the
360  * extra pte marker check will be pure overhead.
361  *
362  * For systems configured with !CONFIG_PTE_MARKER this will be automatically
363  * optimized to pte_none().
364  */
365 static inline int pte_none_mostly(pte_t pte)
366 {
367         return pte_none(pte) || is_pte_marker(pte);
368 }
369
370 static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
371 {
372         struct page *p = pfn_to_page(swp_offset(entry));
373
374         /*
375          * Any use of migration entries may only occur while the
376          * corresponding page is locked
377          */
378         BUG_ON(is_migration_entry(entry) && !PageLocked(p));
379
380         return p;
381 }
382
383 /*
384  * A pfn swap entry is a special type of swap entry that always has a pfn stored
385  * in the swap offset. They are used to represent unaddressable device memory
386  * and to restrict access to a page undergoing migration.
387  */
388 static inline bool is_pfn_swap_entry(swp_entry_t entry)
389 {
390         return is_migration_entry(entry) || is_device_private_entry(entry) ||
391                is_device_exclusive_entry(entry);
392 }
393
394 struct page_vma_mapped_walk;
395
396 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
397 extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
398                 struct page *page);
399
400 extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
401                 struct page *new);
402
403 extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
404
405 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
406 {
407         swp_entry_t arch_entry;
408
409         if (pmd_swp_soft_dirty(pmd))
410                 pmd = pmd_swp_clear_soft_dirty(pmd);
411         if (pmd_swp_uffd_wp(pmd))
412                 pmd = pmd_swp_clear_uffd_wp(pmd);
413         arch_entry = __pmd_to_swp_entry(pmd);
414         return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
415 }
416
417 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
418 {
419         swp_entry_t arch_entry;
420
421         arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
422         return __swp_entry_to_pmd(arch_entry);
423 }
424
425 static inline int is_pmd_migration_entry(pmd_t pmd)
426 {
427         return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
428 }
429 #else
430 static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
431                 struct page *page)
432 {
433         BUILD_BUG();
434 }
435
436 static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
437                 struct page *new)
438 {
439         BUILD_BUG();
440 }
441
442 static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
443
444 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
445 {
446         return swp_entry(0, 0);
447 }
448
449 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
450 {
451         return __pmd(0);
452 }
453
454 static inline int is_pmd_migration_entry(pmd_t pmd)
455 {
456         return 0;
457 }
458 #endif
459
460 #ifdef CONFIG_MEMORY_FAILURE
461
462 extern atomic_long_t num_poisoned_pages __read_mostly;
463
464 /*
465  * Support for hardware poisoned pages
466  */
467 static inline swp_entry_t make_hwpoison_entry(struct page *page)
468 {
469         BUG_ON(!PageLocked(page));
470         return swp_entry(SWP_HWPOISON, page_to_pfn(page));
471 }
472
473 static inline int is_hwpoison_entry(swp_entry_t entry)
474 {
475         return swp_type(entry) == SWP_HWPOISON;
476 }
477
478 static inline unsigned long hwpoison_entry_to_pfn(swp_entry_t entry)
479 {
480         return swp_offset(entry);
481 }
482
483 static inline void num_poisoned_pages_inc(void)
484 {
485         atomic_long_inc(&num_poisoned_pages);
486 }
487
488 static inline void num_poisoned_pages_dec(void)
489 {
490         atomic_long_dec(&num_poisoned_pages);
491 }
492
493 static inline void num_poisoned_pages_sub(long i)
494 {
495         atomic_long_sub(i, &num_poisoned_pages);
496 }
497
498 #else
499
500 static inline swp_entry_t make_hwpoison_entry(struct page *page)
501 {
502         return swp_entry(0, 0);
503 }
504
505 static inline int is_hwpoison_entry(swp_entry_t swp)
506 {
507         return 0;
508 }
509
510 static inline void num_poisoned_pages_inc(void)
511 {
512 }
513
514 static inline void num_poisoned_pages_sub(long i)
515 {
516 }
517 #endif
518
519 static inline int non_swap_entry(swp_entry_t entry)
520 {
521         return swp_type(entry) >= MAX_SWAPFILES;
522 }
523
524 #endif /* CONFIG_MMU */
525 #endif /* _LINUX_SWAPOPS_H */