Merge branch 'rework/kthreads' into for-linus
[linux-2.6-microblaze.git] / include / linux / seqlock.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4
5 /*
6  * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7  * lockless readers (read-only retry loops), and no writer starvation.
8  *
9  * See Documentation/locking/seqlock.rst
10  *
11  * Copyrights:
12  * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13  * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14  */
15
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <linux/lockdep.h>
19 #include <linux/mutex.h>
20 #include <linux/preempt.h>
21 #include <linux/spinlock.h>
22
23 #include <asm/processor.h>
24
25 /*
26  * The seqlock seqcount_t interface does not prescribe a precise sequence of
27  * read begin/retry/end. For readers, typically there is a call to
28  * read_seqcount_begin() and read_seqcount_retry(), however, there are more
29  * esoteric cases which do not follow this pattern.
30  *
31  * As a consequence, we take the following best-effort approach for raw usage
32  * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
33  * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
34  * atomics; if there is a matching read_seqcount_retry() call, no following
35  * memory operations are considered atomic. Usage of the seqlock_t interface
36  * is not affected.
37  */
38 #define KCSAN_SEQLOCK_REGION_MAX 1000
39
40 /*
41  * Sequence counters (seqcount_t)
42  *
43  * This is the raw counting mechanism, without any writer protection.
44  *
45  * Write side critical sections must be serialized and non-preemptible.
46  *
47  * If readers can be invoked from hardirq or softirq contexts,
48  * interrupts or bottom halves must also be respectively disabled before
49  * entering the write section.
50  *
51  * This mechanism can't be used if the protected data contains pointers,
52  * as the writer can invalidate a pointer that a reader is following.
53  *
54  * If the write serialization mechanism is one of the common kernel
55  * locking primitives, use a sequence counter with associated lock
56  * (seqcount_LOCKNAME_t) instead.
57  *
58  * If it's desired to automatically handle the sequence counter writer
59  * serialization and non-preemptibility requirements, use a sequential
60  * lock (seqlock_t) instead.
61  *
62  * See Documentation/locking/seqlock.rst
63  */
64 typedef struct seqcount {
65         unsigned sequence;
66 #ifdef CONFIG_DEBUG_LOCK_ALLOC
67         struct lockdep_map dep_map;
68 #endif
69 } seqcount_t;
70
71 static inline void __seqcount_init(seqcount_t *s, const char *name,
72                                           struct lock_class_key *key)
73 {
74         /*
75          * Make sure we are not reinitializing a held lock:
76          */
77         lockdep_init_map(&s->dep_map, name, key, 0);
78         s->sequence = 0;
79 }
80
81 #ifdef CONFIG_DEBUG_LOCK_ALLOC
82
83 # define SEQCOUNT_DEP_MAP_INIT(lockname)                                \
84                 .dep_map = { .name = #lockname }
85
86 /**
87  * seqcount_init() - runtime initializer for seqcount_t
88  * @s: Pointer to the seqcount_t instance
89  */
90 # define seqcount_init(s)                                               \
91         do {                                                            \
92                 static struct lock_class_key __key;                     \
93                 __seqcount_init((s), #s, &__key);                       \
94         } while (0)
95
96 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
97 {
98         seqcount_t *l = (seqcount_t *)s;
99         unsigned long flags;
100
101         local_irq_save(flags);
102         seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
103         seqcount_release(&l->dep_map, _RET_IP_);
104         local_irq_restore(flags);
105 }
106
107 #else
108 # define SEQCOUNT_DEP_MAP_INIT(lockname)
109 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
110 # define seqcount_lockdep_reader_access(x)
111 #endif
112
113 /**
114  * SEQCNT_ZERO() - static initializer for seqcount_t
115  * @name: Name of the seqcount_t instance
116  */
117 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
118
119 /*
120  * Sequence counters with associated locks (seqcount_LOCKNAME_t)
121  *
122  * A sequence counter which associates the lock used for writer
123  * serialization at initialization time. This enables lockdep to validate
124  * that the write side critical section is properly serialized.
125  *
126  * For associated locks which do not implicitly disable preemption,
127  * preemption protection is enforced in the write side function.
128  *
129  * Lockdep is never used in any for the raw write variants.
130  *
131  * See Documentation/locking/seqlock.rst
132  */
133
134 /*
135  * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot
136  * disable preemption. It can lead to higher latencies, and the write side
137  * sections will not be able to acquire locks which become sleeping locks
138  * (e.g. spinlock_t).
139  *
140  * To remain preemptible while avoiding a possible livelock caused by the
141  * reader preempting the writer, use a different technique: let the reader
142  * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the
143  * case, acquire then release the associated LOCKNAME writer serialization
144  * lock. This will allow any possibly-preempted writer to make progress
145  * until the end of its writer serialization lock critical section.
146  *
147  * This lock-unlock technique must be implemented for all of PREEMPT_RT
148  * sleeping locks.  See Documentation/locking/locktypes.rst
149  */
150 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT)
151 #define __SEQ_LOCK(expr)        expr
152 #else
153 #define __SEQ_LOCK(expr)
154 #endif
155
156 /*
157  * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
158  * @seqcount:   The real sequence counter
159  * @lock:       Pointer to the associated lock
160  *
161  * A plain sequence counter with external writer synchronization by
162  * LOCKNAME @lock. The lock is associated to the sequence counter in the
163  * static initializer or init function. This enables lockdep to validate
164  * that the write side critical section is properly serialized.
165  *
166  * LOCKNAME:    raw_spinlock, spinlock, rwlock or mutex
167  */
168
169 /*
170  * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
171  * @s:          Pointer to the seqcount_LOCKNAME_t instance
172  * @lock:       Pointer to the associated lock
173  */
174
175 #define seqcount_LOCKNAME_init(s, _lock, lockname)                      \
176         do {                                                            \
177                 seqcount_##lockname##_t *____s = (s);                   \
178                 seqcount_init(&____s->seqcount);                        \
179                 __SEQ_LOCK(____s->lock = (_lock));                      \
180         } while (0)
181
182 #define seqcount_raw_spinlock_init(s, lock)     seqcount_LOCKNAME_init(s, lock, raw_spinlock)
183 #define seqcount_spinlock_init(s, lock)         seqcount_LOCKNAME_init(s, lock, spinlock)
184 #define seqcount_rwlock_init(s, lock)           seqcount_LOCKNAME_init(s, lock, rwlock)
185 #define seqcount_mutex_init(s, lock)            seqcount_LOCKNAME_init(s, lock, mutex)
186
187 /*
188  * SEQCOUNT_LOCKNAME()  - Instantiate seqcount_LOCKNAME_t and helpers
189  * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t
190  *
191  * @lockname:           "LOCKNAME" part of seqcount_LOCKNAME_t
192  * @locktype:           LOCKNAME canonical C data type
193  * @preemptible:        preemptibility of above locktype
194  * @lockmember:         argument for lockdep_assert_held()
195  * @lockbase:           associated lock release function (prefix only)
196  * @lock_acquire:       associated lock acquisition function (full call)
197  */
198 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \
199 typedef struct seqcount_##lockname {                                    \
200         seqcount_t              seqcount;                               \
201         __SEQ_LOCK(locktype     *lock);                                 \
202 } seqcount_##lockname##_t;                                              \
203                                                                         \
204 static __always_inline seqcount_t *                                     \
205 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s)                  \
206 {                                                                       \
207         return &s->seqcount;                                            \
208 }                                                                       \
209                                                                         \
210 static __always_inline unsigned                                         \
211 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s)       \
212 {                                                                       \
213         unsigned seq = READ_ONCE(s->seqcount.sequence);                 \
214                                                                         \
215         if (!IS_ENABLED(CONFIG_PREEMPT_RT))                             \
216                 return seq;                                             \
217                                                                         \
218         if (preemptible && unlikely(seq & 1)) {                         \
219                 __SEQ_LOCK(lock_acquire);                               \
220                 __SEQ_LOCK(lockbase##_unlock(s->lock));                 \
221                                                                         \
222                 /*                                                      \
223                  * Re-read the sequence counter since the (possibly     \
224                  * preempted) writer made progress.                     \
225                  */                                                     \
226                 seq = READ_ONCE(s->seqcount.sequence);                  \
227         }                                                               \
228                                                                         \
229         return seq;                                                     \
230 }                                                                       \
231                                                                         \
232 static __always_inline bool                                             \
233 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s)    \
234 {                                                                       \
235         if (!IS_ENABLED(CONFIG_PREEMPT_RT))                             \
236                 return preemptible;                                     \
237                                                                         \
238         /* PREEMPT_RT relies on the above LOCK+UNLOCK */                \
239         return false;                                                   \
240 }                                                                       \
241                                                                         \
242 static __always_inline void                                             \
243 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s)         \
244 {                                                                       \
245         __SEQ_LOCK(lockdep_assert_held(lockmember));                    \
246 }
247
248 /*
249  * __seqprop() for seqcount_t
250  */
251
252 static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
253 {
254         return s;
255 }
256
257 static inline unsigned __seqprop_sequence(const seqcount_t *s)
258 {
259         return READ_ONCE(s->sequence);
260 }
261
262 static inline bool __seqprop_preemptible(const seqcount_t *s)
263 {
264         return false;
265 }
266
267 static inline void __seqprop_assert(const seqcount_t *s)
268 {
269         lockdep_assert_preemption_disabled();
270 }
271
272 #define __SEQ_RT        IS_ENABLED(CONFIG_PREEMPT_RT)
273
274 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t,  false,    s->lock,        raw_spin, raw_spin_lock(s->lock))
275 SEQCOUNT_LOCKNAME(spinlock,     spinlock_t,      __SEQ_RT, s->lock,        spin,     spin_lock(s->lock))
276 SEQCOUNT_LOCKNAME(rwlock,       rwlock_t,        __SEQ_RT, s->lock,        read,     read_lock(s->lock))
277 SEQCOUNT_LOCKNAME(mutex,        struct mutex,    true,     s->lock,        mutex,    mutex_lock(s->lock))
278
279 /*
280  * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
281  * @name:       Name of the seqcount_LOCKNAME_t instance
282  * @lock:       Pointer to the associated LOCKNAME
283  */
284
285 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) {                  \
286         .seqcount               = SEQCNT_ZERO(seq_name.seqcount),       \
287         __SEQ_LOCK(.lock        = (assoc_lock))                         \
288 }
289
290 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock)    SEQCOUNT_LOCKNAME_ZERO(name, lock)
291 #define SEQCNT_SPINLOCK_ZERO(name, lock)        SEQCOUNT_LOCKNAME_ZERO(name, lock)
292 #define SEQCNT_RWLOCK_ZERO(name, lock)          SEQCOUNT_LOCKNAME_ZERO(name, lock)
293 #define SEQCNT_MUTEX_ZERO(name, lock)           SEQCOUNT_LOCKNAME_ZERO(name, lock)
294 #define SEQCNT_WW_MUTEX_ZERO(name, lock)        SEQCOUNT_LOCKNAME_ZERO(name, lock)
295
296 #define __seqprop_case(s, lockname, prop)                               \
297         seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s))
298
299 #define __seqprop(s, prop) _Generic(*(s),                               \
300         seqcount_t:             __seqprop_##prop((void *)(s)),          \
301         __seqprop_case((s),     raw_spinlock,   prop),                  \
302         __seqprop_case((s),     spinlock,       prop),                  \
303         __seqprop_case((s),     rwlock,         prop),                  \
304         __seqprop_case((s),     mutex,          prop))
305
306 #define seqprop_ptr(s)                  __seqprop(s, ptr)
307 #define seqprop_sequence(s)             __seqprop(s, sequence)
308 #define seqprop_preemptible(s)          __seqprop(s, preemptible)
309 #define seqprop_assert(s)               __seqprop(s, assert)
310
311 /**
312  * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier
313  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
314  *
315  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
316  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
317  * provided before actually loading any of the variables that are to be
318  * protected in this critical section.
319  *
320  * Use carefully, only in critical code, and comment how the barrier is
321  * provided.
322  *
323  * Return: count to be passed to read_seqcount_retry()
324  */
325 #define __read_seqcount_begin(s)                                        \
326 ({                                                                      \
327         unsigned __seq;                                                 \
328                                                                         \
329         while ((__seq = seqprop_sequence(s)) & 1)                       \
330                 cpu_relax();                                            \
331                                                                         \
332         kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);                    \
333         __seq;                                                          \
334 })
335
336 /**
337  * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
338  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
339  *
340  * Return: count to be passed to read_seqcount_retry()
341  */
342 #define raw_read_seqcount_begin(s)                                      \
343 ({                                                                      \
344         unsigned _seq = __read_seqcount_begin(s);                       \
345                                                                         \
346         smp_rmb();                                                      \
347         _seq;                                                           \
348 })
349
350 /**
351  * read_seqcount_begin() - begin a seqcount_t read critical section
352  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
353  *
354  * Return: count to be passed to read_seqcount_retry()
355  */
356 #define read_seqcount_begin(s)                                          \
357 ({                                                                      \
358         seqcount_lockdep_reader_access(seqprop_ptr(s));                 \
359         raw_read_seqcount_begin(s);                                     \
360 })
361
362 /**
363  * raw_read_seqcount() - read the raw seqcount_t counter value
364  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
365  *
366  * raw_read_seqcount opens a read critical section of the given
367  * seqcount_t, without any lockdep checking, and without checking or
368  * masking the sequence counter LSB. Calling code is responsible for
369  * handling that.
370  *
371  * Return: count to be passed to read_seqcount_retry()
372  */
373 #define raw_read_seqcount(s)                                            \
374 ({                                                                      \
375         unsigned __seq = seqprop_sequence(s);                           \
376                                                                         \
377         smp_rmb();                                                      \
378         kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);                    \
379         __seq;                                                          \
380 })
381
382 /**
383  * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
384  *                        lockdep and w/o counter stabilization
385  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
386  *
387  * raw_seqcount_begin opens a read critical section of the given
388  * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
389  * for the count to stabilize. If a writer is active when it begins, it
390  * will fail the read_seqcount_retry() at the end of the read critical
391  * section instead of stabilizing at the beginning of it.
392  *
393  * Use this only in special kernel hot paths where the read section is
394  * small and has a high probability of success through other external
395  * means. It will save a single branching instruction.
396  *
397  * Return: count to be passed to read_seqcount_retry()
398  */
399 #define raw_seqcount_begin(s)                                           \
400 ({                                                                      \
401         /*                                                              \
402          * If the counter is odd, let read_seqcount_retry() fail        \
403          * by decrementing the counter.                                 \
404          */                                                             \
405         raw_read_seqcount(s) & ~1;                                      \
406 })
407
408 /**
409  * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
410  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
411  * @start: count, from read_seqcount_begin()
412  *
413  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
414  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
415  * provided before actually loading any of the variables that are to be
416  * protected in this critical section.
417  *
418  * Use carefully, only in critical code, and comment how the barrier is
419  * provided.
420  *
421  * Return: true if a read section retry is required, else false
422  */
423 #define __read_seqcount_retry(s, start)                                 \
424         do___read_seqcount_retry(seqprop_ptr(s), start)
425
426 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
427 {
428         kcsan_atomic_next(0);
429         return unlikely(READ_ONCE(s->sequence) != start);
430 }
431
432 /**
433  * read_seqcount_retry() - end a seqcount_t read critical section
434  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
435  * @start: count, from read_seqcount_begin()
436  *
437  * read_seqcount_retry closes the read critical section of given
438  * seqcount_t.  If the critical section was invalid, it must be ignored
439  * (and typically retried).
440  *
441  * Return: true if a read section retry is required, else false
442  */
443 #define read_seqcount_retry(s, start)                                   \
444         do_read_seqcount_retry(seqprop_ptr(s), start)
445
446 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
447 {
448         smp_rmb();
449         return do___read_seqcount_retry(s, start);
450 }
451
452 /**
453  * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
454  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
455  *
456  * Context: check write_seqcount_begin()
457  */
458 #define raw_write_seqcount_begin(s)                                     \
459 do {                                                                    \
460         if (seqprop_preemptible(s))                                     \
461                 preempt_disable();                                      \
462                                                                         \
463         do_raw_write_seqcount_begin(seqprop_ptr(s));                    \
464 } while (0)
465
466 static inline void do_raw_write_seqcount_begin(seqcount_t *s)
467 {
468         kcsan_nestable_atomic_begin();
469         s->sequence++;
470         smp_wmb();
471 }
472
473 /**
474  * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
475  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
476  *
477  * Context: check write_seqcount_end()
478  */
479 #define raw_write_seqcount_end(s)                                       \
480 do {                                                                    \
481         do_raw_write_seqcount_end(seqprop_ptr(s));                      \
482                                                                         \
483         if (seqprop_preemptible(s))                                     \
484                 preempt_enable();                                       \
485 } while (0)
486
487 static inline void do_raw_write_seqcount_end(seqcount_t *s)
488 {
489         smp_wmb();
490         s->sequence++;
491         kcsan_nestable_atomic_end();
492 }
493
494 /**
495  * write_seqcount_begin_nested() - start a seqcount_t write section with
496  *                                 custom lockdep nesting level
497  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
498  * @subclass: lockdep nesting level
499  *
500  * See Documentation/locking/lockdep-design.rst
501  * Context: check write_seqcount_begin()
502  */
503 #define write_seqcount_begin_nested(s, subclass)                        \
504 do {                                                                    \
505         seqprop_assert(s);                                              \
506                                                                         \
507         if (seqprop_preemptible(s))                                     \
508                 preempt_disable();                                      \
509                                                                         \
510         do_write_seqcount_begin_nested(seqprop_ptr(s), subclass);       \
511 } while (0)
512
513 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
514 {
515         do_raw_write_seqcount_begin(s);
516         seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
517 }
518
519 /**
520  * write_seqcount_begin() - start a seqcount_t write side critical section
521  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
522  *
523  * Context: sequence counter write side sections must be serialized and
524  * non-preemptible. Preemption will be automatically disabled if and
525  * only if the seqcount write serialization lock is associated, and
526  * preemptible.  If readers can be invoked from hardirq or softirq
527  * context, interrupts or bottom halves must be respectively disabled.
528  */
529 #define write_seqcount_begin(s)                                         \
530 do {                                                                    \
531         seqprop_assert(s);                                              \
532                                                                         \
533         if (seqprop_preemptible(s))                                     \
534                 preempt_disable();                                      \
535                                                                         \
536         do_write_seqcount_begin(seqprop_ptr(s));                        \
537 } while (0)
538
539 static inline void do_write_seqcount_begin(seqcount_t *s)
540 {
541         do_write_seqcount_begin_nested(s, 0);
542 }
543
544 /**
545  * write_seqcount_end() - end a seqcount_t write side critical section
546  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
547  *
548  * Context: Preemption will be automatically re-enabled if and only if
549  * the seqcount write serialization lock is associated, and preemptible.
550  */
551 #define write_seqcount_end(s)                                           \
552 do {                                                                    \
553         do_write_seqcount_end(seqprop_ptr(s));                          \
554                                                                         \
555         if (seqprop_preemptible(s))                                     \
556                 preempt_enable();                                       \
557 } while (0)
558
559 static inline void do_write_seqcount_end(seqcount_t *s)
560 {
561         seqcount_release(&s->dep_map, _RET_IP_);
562         do_raw_write_seqcount_end(s);
563 }
564
565 /**
566  * raw_write_seqcount_barrier() - do a seqcount_t write barrier
567  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
568  *
569  * This can be used to provide an ordering guarantee instead of the usual
570  * consistency guarantee. It is one wmb cheaper, because it can collapse
571  * the two back-to-back wmb()s.
572  *
573  * Note that writes surrounding the barrier should be declared atomic (e.g.
574  * via WRITE_ONCE): a) to ensure the writes become visible to other threads
575  * atomically, avoiding compiler optimizations; b) to document which writes are
576  * meant to propagate to the reader critical section. This is necessary because
577  * neither writes before and after the barrier are enclosed in a seq-writer
578  * critical section that would ensure readers are aware of ongoing writes::
579  *
580  *      seqcount_t seq;
581  *      bool X = true, Y = false;
582  *
583  *      void read(void)
584  *      {
585  *              bool x, y;
586  *
587  *              do {
588  *                      int s = read_seqcount_begin(&seq);
589  *
590  *                      x = X; y = Y;
591  *
592  *              } while (read_seqcount_retry(&seq, s));
593  *
594  *              BUG_ON(!x && !y);
595  *      }
596  *
597  *      void write(void)
598  *      {
599  *              WRITE_ONCE(Y, true);
600  *
601  *              raw_write_seqcount_barrier(seq);
602  *
603  *              WRITE_ONCE(X, false);
604  *      }
605  */
606 #define raw_write_seqcount_barrier(s)                                   \
607         do_raw_write_seqcount_barrier(seqprop_ptr(s))
608
609 static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
610 {
611         kcsan_nestable_atomic_begin();
612         s->sequence++;
613         smp_wmb();
614         s->sequence++;
615         kcsan_nestable_atomic_end();
616 }
617
618 /**
619  * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
620  *                               side operations
621  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
622  *
623  * After write_seqcount_invalidate, no seqcount_t read side operations
624  * will complete successfully and see data older than this.
625  */
626 #define write_seqcount_invalidate(s)                                    \
627         do_write_seqcount_invalidate(seqprop_ptr(s))
628
629 static inline void do_write_seqcount_invalidate(seqcount_t *s)
630 {
631         smp_wmb();
632         kcsan_nestable_atomic_begin();
633         s->sequence+=2;
634         kcsan_nestable_atomic_end();
635 }
636
637 /*
638  * Latch sequence counters (seqcount_latch_t)
639  *
640  * A sequence counter variant where the counter even/odd value is used to
641  * switch between two copies of protected data. This allows the read path,
642  * typically NMIs, to safely interrupt the write side critical section.
643  *
644  * As the write sections are fully preemptible, no special handling for
645  * PREEMPT_RT is needed.
646  */
647 typedef struct {
648         seqcount_t seqcount;
649 } seqcount_latch_t;
650
651 /**
652  * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
653  * @seq_name: Name of the seqcount_latch_t instance
654  */
655 #define SEQCNT_LATCH_ZERO(seq_name) {                                   \
656         .seqcount               = SEQCNT_ZERO(seq_name.seqcount),       \
657 }
658
659 /**
660  * seqcount_latch_init() - runtime initializer for seqcount_latch_t
661  * @s: Pointer to the seqcount_latch_t instance
662  */
663 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount)
664
665 /**
666  * raw_read_seqcount_latch() - pick even/odd latch data copy
667  * @s: Pointer to seqcount_latch_t
668  *
669  * See raw_write_seqcount_latch() for details and a full reader/writer
670  * usage example.
671  *
672  * Return: sequence counter raw value. Use the lowest bit as an index for
673  * picking which data copy to read. The full counter must then be checked
674  * with read_seqcount_latch_retry().
675  */
676 static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
677 {
678         /*
679          * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
680          * Due to the dependent load, a full smp_rmb() is not needed.
681          */
682         return READ_ONCE(s->seqcount.sequence);
683 }
684
685 /**
686  * read_seqcount_latch_retry() - end a seqcount_latch_t read section
687  * @s:          Pointer to seqcount_latch_t
688  * @start:      count, from raw_read_seqcount_latch()
689  *
690  * Return: true if a read section retry is required, else false
691  */
692 static inline int
693 read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
694 {
695         return read_seqcount_retry(&s->seqcount, start);
696 }
697
698 /**
699  * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
700  * @s: Pointer to seqcount_latch_t
701  *
702  * The latch technique is a multiversion concurrency control method that allows
703  * queries during non-atomic modifications. If you can guarantee queries never
704  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
705  * -- you most likely do not need this.
706  *
707  * Where the traditional RCU/lockless data structures rely on atomic
708  * modifications to ensure queries observe either the old or the new state the
709  * latch allows the same for non-atomic updates. The trade-off is doubling the
710  * cost of storage; we have to maintain two copies of the entire data
711  * structure.
712  *
713  * Very simply put: we first modify one copy and then the other. This ensures
714  * there is always one copy in a stable state, ready to give us an answer.
715  *
716  * The basic form is a data structure like::
717  *
718  *      struct latch_struct {
719  *              seqcount_latch_t        seq;
720  *              struct data_struct      data[2];
721  *      };
722  *
723  * Where a modification, which is assumed to be externally serialized, does the
724  * following::
725  *
726  *      void latch_modify(struct latch_struct *latch, ...)
727  *      {
728  *              smp_wmb();      // Ensure that the last data[1] update is visible
729  *              latch->seq.sequence++;
730  *              smp_wmb();      // Ensure that the seqcount update is visible
731  *
732  *              modify(latch->data[0], ...);
733  *
734  *              smp_wmb();      // Ensure that the data[0] update is visible
735  *              latch->seq.sequence++;
736  *              smp_wmb();      // Ensure that the seqcount update is visible
737  *
738  *              modify(latch->data[1], ...);
739  *      }
740  *
741  * The query will have a form like::
742  *
743  *      struct entry *latch_query(struct latch_struct *latch, ...)
744  *      {
745  *              struct entry *entry;
746  *              unsigned seq, idx;
747  *
748  *              do {
749  *                      seq = raw_read_seqcount_latch(&latch->seq);
750  *
751  *                      idx = seq & 0x01;
752  *                      entry = data_query(latch->data[idx], ...);
753  *
754  *              // This includes needed smp_rmb()
755  *              } while (read_seqcount_latch_retry(&latch->seq, seq));
756  *
757  *              return entry;
758  *      }
759  *
760  * So during the modification, queries are first redirected to data[1]. Then we
761  * modify data[0]. When that is complete, we redirect queries back to data[0]
762  * and we can modify data[1].
763  *
764  * NOTE:
765  *
766  *      The non-requirement for atomic modifications does _NOT_ include
767  *      the publishing of new entries in the case where data is a dynamic
768  *      data structure.
769  *
770  *      An iteration might start in data[0] and get suspended long enough
771  *      to miss an entire modification sequence, once it resumes it might
772  *      observe the new entry.
773  *
774  * NOTE2:
775  *
776  *      When data is a dynamic data structure; one should use regular RCU
777  *      patterns to manage the lifetimes of the objects within.
778  */
779 static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
780 {
781         smp_wmb();      /* prior stores before incrementing "sequence" */
782         s->seqcount.sequence++;
783         smp_wmb();      /* increment "sequence" before following stores */
784 }
785
786 /*
787  * Sequential locks (seqlock_t)
788  *
789  * Sequence counters with an embedded spinlock for writer serialization
790  * and non-preemptibility.
791  *
792  * For more info, see:
793  *    - Comments on top of seqcount_t
794  *    - Documentation/locking/seqlock.rst
795  */
796 typedef struct {
797         /*
798          * Make sure that readers don't starve writers on PREEMPT_RT: use
799          * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK().
800          */
801         seqcount_spinlock_t seqcount;
802         spinlock_t lock;
803 } seqlock_t;
804
805 #define __SEQLOCK_UNLOCKED(lockname)                                    \
806         {                                                               \
807                 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
808                 .lock = __SPIN_LOCK_UNLOCKED(lockname)                  \
809         }
810
811 /**
812  * seqlock_init() - dynamic initializer for seqlock_t
813  * @sl: Pointer to the seqlock_t instance
814  */
815 #define seqlock_init(sl)                                                \
816         do {                                                            \
817                 spin_lock_init(&(sl)->lock);                            \
818                 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock);   \
819         } while (0)
820
821 /**
822  * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
823  * @sl: Name of the seqlock_t instance
824  */
825 #define DEFINE_SEQLOCK(sl) \
826                 seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
827
828 /**
829  * read_seqbegin() - start a seqlock_t read side critical section
830  * @sl: Pointer to seqlock_t
831  *
832  * Return: count, to be passed to read_seqretry()
833  */
834 static inline unsigned read_seqbegin(const seqlock_t *sl)
835 {
836         unsigned ret = read_seqcount_begin(&sl->seqcount);
837
838         kcsan_atomic_next(0);  /* non-raw usage, assume closing read_seqretry() */
839         kcsan_flat_atomic_begin();
840         return ret;
841 }
842
843 /**
844  * read_seqretry() - end a seqlock_t read side section
845  * @sl: Pointer to seqlock_t
846  * @start: count, from read_seqbegin()
847  *
848  * read_seqretry closes the read side critical section of given seqlock_t.
849  * If the critical section was invalid, it must be ignored (and typically
850  * retried).
851  *
852  * Return: true if a read section retry is required, else false
853  */
854 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
855 {
856         /*
857          * Assume not nested: read_seqretry() may be called multiple times when
858          * completing read critical section.
859          */
860         kcsan_flat_atomic_end();
861
862         return read_seqcount_retry(&sl->seqcount, start);
863 }
864
865 /*
866  * For all seqlock_t write side functions, use the the internal
867  * do_write_seqcount_begin() instead of generic write_seqcount_begin().
868  * This way, no redundant lockdep_assert_held() checks are added.
869  */
870
871 /**
872  * write_seqlock() - start a seqlock_t write side critical section
873  * @sl: Pointer to seqlock_t
874  *
875  * write_seqlock opens a write side critical section for the given
876  * seqlock_t.  It also implicitly acquires the spinlock_t embedded inside
877  * that sequential lock. All seqlock_t write side sections are thus
878  * automatically serialized and non-preemptible.
879  *
880  * Context: if the seqlock_t read section, or other write side critical
881  * sections, can be invoked from hardirq or softirq contexts, use the
882  * _irqsave or _bh variants of this function instead.
883  */
884 static inline void write_seqlock(seqlock_t *sl)
885 {
886         spin_lock(&sl->lock);
887         do_write_seqcount_begin(&sl->seqcount.seqcount);
888 }
889
890 /**
891  * write_sequnlock() - end a seqlock_t write side critical section
892  * @sl: Pointer to seqlock_t
893  *
894  * write_sequnlock closes the (serialized and non-preemptible) write side
895  * critical section of given seqlock_t.
896  */
897 static inline void write_sequnlock(seqlock_t *sl)
898 {
899         do_write_seqcount_end(&sl->seqcount.seqcount);
900         spin_unlock(&sl->lock);
901 }
902
903 /**
904  * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
905  * @sl: Pointer to seqlock_t
906  *
907  * _bh variant of write_seqlock(). Use only if the read side section, or
908  * other write side sections, can be invoked from softirq contexts.
909  */
910 static inline void write_seqlock_bh(seqlock_t *sl)
911 {
912         spin_lock_bh(&sl->lock);
913         do_write_seqcount_begin(&sl->seqcount.seqcount);
914 }
915
916 /**
917  * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
918  * @sl: Pointer to seqlock_t
919  *
920  * write_sequnlock_bh closes the serialized, non-preemptible, and
921  * softirqs-disabled, seqlock_t write side critical section opened with
922  * write_seqlock_bh().
923  */
924 static inline void write_sequnlock_bh(seqlock_t *sl)
925 {
926         do_write_seqcount_end(&sl->seqcount.seqcount);
927         spin_unlock_bh(&sl->lock);
928 }
929
930 /**
931  * write_seqlock_irq() - start a non-interruptible seqlock_t write section
932  * @sl: Pointer to seqlock_t
933  *
934  * _irq variant of write_seqlock(). Use only if the read side section, or
935  * other write sections, can be invoked from hardirq contexts.
936  */
937 static inline void write_seqlock_irq(seqlock_t *sl)
938 {
939         spin_lock_irq(&sl->lock);
940         do_write_seqcount_begin(&sl->seqcount.seqcount);
941 }
942
943 /**
944  * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
945  * @sl: Pointer to seqlock_t
946  *
947  * write_sequnlock_irq closes the serialized and non-interruptible
948  * seqlock_t write side section opened with write_seqlock_irq().
949  */
950 static inline void write_sequnlock_irq(seqlock_t *sl)
951 {
952         do_write_seqcount_end(&sl->seqcount.seqcount);
953         spin_unlock_irq(&sl->lock);
954 }
955
956 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
957 {
958         unsigned long flags;
959
960         spin_lock_irqsave(&sl->lock, flags);
961         do_write_seqcount_begin(&sl->seqcount.seqcount);
962         return flags;
963 }
964
965 /**
966  * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
967  *                           section
968  * @lock:  Pointer to seqlock_t
969  * @flags: Stack-allocated storage for saving caller's local interrupt
970  *         state, to be passed to write_sequnlock_irqrestore().
971  *
972  * _irqsave variant of write_seqlock(). Use it only if the read side
973  * section, or other write sections, can be invoked from hardirq context.
974  */
975 #define write_seqlock_irqsave(lock, flags)                              \
976         do { flags = __write_seqlock_irqsave(lock); } while (0)
977
978 /**
979  * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
980  *                                section
981  * @sl:    Pointer to seqlock_t
982  * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
983  *
984  * write_sequnlock_irqrestore closes the serialized and non-interruptible
985  * seqlock_t write section previously opened with write_seqlock_irqsave().
986  */
987 static inline void
988 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
989 {
990         do_write_seqcount_end(&sl->seqcount.seqcount);
991         spin_unlock_irqrestore(&sl->lock, flags);
992 }
993
994 /**
995  * read_seqlock_excl() - begin a seqlock_t locking reader section
996  * @sl: Pointer to seqlock_t
997  *
998  * read_seqlock_excl opens a seqlock_t locking reader critical section.  A
999  * locking reader exclusively locks out *both* other writers *and* other
1000  * locking readers, but it does not update the embedded sequence number.
1001  *
1002  * Locking readers act like a normal spin_lock()/spin_unlock().
1003  *
1004  * Context: if the seqlock_t write section, *or other read sections*, can
1005  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1006  * variant of this function instead.
1007  *
1008  * The opened read section must be closed with read_sequnlock_excl().
1009  */
1010 static inline void read_seqlock_excl(seqlock_t *sl)
1011 {
1012         spin_lock(&sl->lock);
1013 }
1014
1015 /**
1016  * read_sequnlock_excl() - end a seqlock_t locking reader critical section
1017  * @sl: Pointer to seqlock_t
1018  */
1019 static inline void read_sequnlock_excl(seqlock_t *sl)
1020 {
1021         spin_unlock(&sl->lock);
1022 }
1023
1024 /**
1025  * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
1026  *                          softirqs disabled
1027  * @sl: Pointer to seqlock_t
1028  *
1029  * _bh variant of read_seqlock_excl(). Use this variant only if the
1030  * seqlock_t write side section, *or other read sections*, can be invoked
1031  * from softirq contexts.
1032  */
1033 static inline void read_seqlock_excl_bh(seqlock_t *sl)
1034 {
1035         spin_lock_bh(&sl->lock);
1036 }
1037
1038 /**
1039  * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
1040  *                            reader section
1041  * @sl: Pointer to seqlock_t
1042  */
1043 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
1044 {
1045         spin_unlock_bh(&sl->lock);
1046 }
1047
1048 /**
1049  * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
1050  *                           reader section
1051  * @sl: Pointer to seqlock_t
1052  *
1053  * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
1054  * write side section, *or other read sections*, can be invoked from a
1055  * hardirq context.
1056  */
1057 static inline void read_seqlock_excl_irq(seqlock_t *sl)
1058 {
1059         spin_lock_irq(&sl->lock);
1060 }
1061
1062 /**
1063  * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
1064  *                             locking reader section
1065  * @sl: Pointer to seqlock_t
1066  */
1067 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
1068 {
1069         spin_unlock_irq(&sl->lock);
1070 }
1071
1072 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
1073 {
1074         unsigned long flags;
1075
1076         spin_lock_irqsave(&sl->lock, flags);
1077         return flags;
1078 }
1079
1080 /**
1081  * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1082  *                               locking reader section
1083  * @lock:  Pointer to seqlock_t
1084  * @flags: Stack-allocated storage for saving caller's local interrupt
1085  *         state, to be passed to read_sequnlock_excl_irqrestore().
1086  *
1087  * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1088  * write side section, *or other read sections*, can be invoked from a
1089  * hardirq context.
1090  */
1091 #define read_seqlock_excl_irqsave(lock, flags)                          \
1092         do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1093
1094 /**
1095  * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1096  *                                    locking reader section
1097  * @sl:    Pointer to seqlock_t
1098  * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1099  */
1100 static inline void
1101 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1102 {
1103         spin_unlock_irqrestore(&sl->lock, flags);
1104 }
1105
1106 /**
1107  * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1108  * @lock: Pointer to seqlock_t
1109  * @seq : Marker and return parameter. If the passed value is even, the
1110  * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1111  * If the passed value is odd, the reader will become a *locking* reader
1112  * as in read_seqlock_excl().  In the first call to this function, the
1113  * caller *must* initialize and pass an even value to @seq; this way, a
1114  * lockless read can be optimistically tried first.
1115  *
1116  * read_seqbegin_or_lock is an API designed to optimistically try a normal
1117  * lockless seqlock_t read section first.  If an odd counter is found, the
1118  * lockless read trial has failed, and the next read iteration transforms
1119  * itself into a full seqlock_t locking reader.
1120  *
1121  * This is typically used to avoid seqlock_t lockless readers starvation
1122  * (too much retry loops) in the case of a sharp spike in write side
1123  * activity.
1124  *
1125  * Context: if the seqlock_t write section, *or other read sections*, can
1126  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1127  * variant of this function instead.
1128  *
1129  * Check Documentation/locking/seqlock.rst for template example code.
1130  *
1131  * Return: the encountered sequence counter value, through the @seq
1132  * parameter, which is overloaded as a return parameter. This returned
1133  * value must be checked with need_seqretry(). If the read section need to
1134  * be retried, this returned value must also be passed as the @seq
1135  * parameter of the next read_seqbegin_or_lock() iteration.
1136  */
1137 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1138 {
1139         if (!(*seq & 1))        /* Even */
1140                 *seq = read_seqbegin(lock);
1141         else                    /* Odd */
1142                 read_seqlock_excl(lock);
1143 }
1144
1145 /**
1146  * need_seqretry() - validate seqlock_t "locking or lockless" read section
1147  * @lock: Pointer to seqlock_t
1148  * @seq: sequence count, from read_seqbegin_or_lock()
1149  *
1150  * Return: true if a read section retry is required, false otherwise
1151  */
1152 static inline int need_seqretry(seqlock_t *lock, int seq)
1153 {
1154         return !(seq & 1) && read_seqretry(lock, seq);
1155 }
1156
1157 /**
1158  * done_seqretry() - end seqlock_t "locking or lockless" reader section
1159  * @lock: Pointer to seqlock_t
1160  * @seq: count, from read_seqbegin_or_lock()
1161  *
1162  * done_seqretry finishes the seqlock_t read side critical section started
1163  * with read_seqbegin_or_lock() and validated by need_seqretry().
1164  */
1165 static inline void done_seqretry(seqlock_t *lock, int seq)
1166 {
1167         if (seq & 1)
1168                 read_sequnlock_excl(lock);
1169 }
1170
1171 /**
1172  * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1173  *                                   a non-interruptible locking reader
1174  * @lock: Pointer to seqlock_t
1175  * @seq:  Marker and return parameter. Check read_seqbegin_or_lock().
1176  *
1177  * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1178  * the seqlock_t write section, *or other read sections*, can be invoked
1179  * from hardirq context.
1180  *
1181  * Note: Interrupts will be disabled only for "locking reader" mode.
1182  *
1183  * Return:
1184  *
1185  *   1. The saved local interrupts state in case of a locking reader, to
1186  *      be passed to done_seqretry_irqrestore().
1187  *
1188  *   2. The encountered sequence counter value, returned through @seq
1189  *      overloaded as a return parameter. Check read_seqbegin_or_lock().
1190  */
1191 static inline unsigned long
1192 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1193 {
1194         unsigned long flags = 0;
1195
1196         if (!(*seq & 1))        /* Even */
1197                 *seq = read_seqbegin(lock);
1198         else                    /* Odd */
1199                 read_seqlock_excl_irqsave(lock, flags);
1200
1201         return flags;
1202 }
1203
1204 /**
1205  * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1206  *                              non-interruptible locking reader section
1207  * @lock:  Pointer to seqlock_t
1208  * @seq:   Count, from read_seqbegin_or_lock_irqsave()
1209  * @flags: Caller's saved local interrupt state in case of a locking
1210  *         reader, also from read_seqbegin_or_lock_irqsave()
1211  *
1212  * This is the _irqrestore variant of done_seqretry(). The read section
1213  * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1214  * by need_seqretry().
1215  */
1216 static inline void
1217 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1218 {
1219         if (seq & 1)
1220                 read_sequnlock_excl_irqrestore(lock, flags);
1221 }
1222 #endif /* __LINUX_SEQLOCK_H */