Merge tag 'integrity-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar...
[linux-2.6-microblaze.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81
82 /* Used in tsk->state: */
83 #define TASK_RUNNING                    0x0000
84 #define TASK_INTERRUPTIBLE              0x0001
85 #define TASK_UNINTERRUPTIBLE            0x0002
86 #define __TASK_STOPPED                  0x0004
87 #define __TASK_TRACED                   0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD                       0x0010
90 #define EXIT_ZOMBIE                     0x0020
91 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED                     0x0040
94 #define TASK_DEAD                       0x0080
95 #define TASK_WAKEKILL                   0x0100
96 #define TASK_WAKING                     0x0200
97 #define TASK_NOLOAD                     0x0400
98 #define TASK_NEW                        0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT                0x1000
101 #define TASK_STATE_MAX                  0x2000
102
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
107
108 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112
113 /* get_task_state(): */
114 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117                                          TASK_PARKED)
118
119 #define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
120
121 #define task_is_traced(task)            ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122
123 #define task_is_stopped(task)           ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124
125 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126
127 /*
128  * Special states are those that do not use the normal wait-loop pattern. See
129  * the comment with set_special_state().
130  */
131 #define is_special_task_state(state)                            \
132         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value)                         \
136         do {                                                            \
137                 WARN_ON_ONCE(is_special_task_state(state_value));       \
138                 current->task_state_change = _THIS_IP_;                 \
139         } while (0)
140
141 # define debug_special_state_change(state_value)                        \
142         do {                                                            \
143                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
144                 current->task_state_change = _THIS_IP_;                 \
145         } while (0)
146
147 # define debug_rtlock_wait_set_state()                                  \
148         do {                                                             \
149                 current->saved_state_change = current->task_state_change;\
150                 current->task_state_change = _THIS_IP_;                  \
151         } while (0)
152
153 # define debug_rtlock_wait_restore_state()                              \
154         do {                                                             \
155                 current->task_state_change = current->saved_state_change;\
156         } while (0)
157
158 #else
159 # define debug_normal_state_change(cond)        do { } while (0)
160 # define debug_special_state_change(cond)       do { } while (0)
161 # define debug_rtlock_wait_set_state()          do { } while (0)
162 # define debug_rtlock_wait_restore_state()      do { } while (0)
163 #endif
164
165 /*
166  * set_current_state() includes a barrier so that the write of current->state
167  * is correctly serialised wrt the caller's subsequent test of whether to
168  * actually sleep:
169  *
170  *   for (;;) {
171  *      set_current_state(TASK_UNINTERRUPTIBLE);
172  *      if (CONDITION)
173  *         break;
174  *
175  *      schedule();
176  *   }
177  *   __set_current_state(TASK_RUNNING);
178  *
179  * If the caller does not need such serialisation (because, for instance, the
180  * CONDITION test and condition change and wakeup are under the same lock) then
181  * use __set_current_state().
182  *
183  * The above is typically ordered against the wakeup, which does:
184  *
185  *   CONDITION = 1;
186  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187  *
188  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189  * accessing p->state.
190  *
191  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194  *
195  * However, with slightly different timing the wakeup TASK_RUNNING store can
196  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197  * a problem either because that will result in one extra go around the loop
198  * and our @cond test will save the day.
199  *
200  * Also see the comments of try_to_wake_up().
201  */
202 #define __set_current_state(state_value)                                \
203         do {                                                            \
204                 debug_normal_state_change((state_value));               \
205                 WRITE_ONCE(current->__state, (state_value));            \
206         } while (0)
207
208 #define set_current_state(state_value)                                  \
209         do {                                                            \
210                 debug_normal_state_change((state_value));               \
211                 smp_store_mb(current->__state, (state_value));          \
212         } while (0)
213
214 /*
215  * set_special_state() should be used for those states when the blocking task
216  * can not use the regular condition based wait-loop. In that case we must
217  * serialize against wakeups such that any possible in-flight TASK_RUNNING
218  * stores will not collide with our state change.
219  */
220 #define set_special_state(state_value)                                  \
221         do {                                                            \
222                 unsigned long flags; /* may shadow */                   \
223                                                                         \
224                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
225                 debug_special_state_change((state_value));              \
226                 WRITE_ONCE(current->__state, (state_value));            \
227                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
228         } while (0)
229
230 /*
231  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232  *
233  * RT's spin/rwlock substitutions are state preserving. The state of the
234  * task when blocking on the lock is saved in task_struct::saved_state and
235  * restored after the lock has been acquired.  These operations are
236  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237  * lock related wakeups while the task is blocked on the lock are
238  * redirected to operate on task_struct::saved_state to ensure that these
239  * are not dropped. On restore task_struct::saved_state is set to
240  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241  *
242  * The lock operation looks like this:
243  *
244  *      current_save_and_set_rtlock_wait_state();
245  *      for (;;) {
246  *              if (try_lock())
247  *                      break;
248  *              raw_spin_unlock_irq(&lock->wait_lock);
249  *              schedule_rtlock();
250  *              raw_spin_lock_irq(&lock->wait_lock);
251  *              set_current_state(TASK_RTLOCK_WAIT);
252  *      }
253  *      current_restore_rtlock_saved_state();
254  */
255 #define current_save_and_set_rtlock_wait_state()                        \
256         do {                                                            \
257                 lockdep_assert_irqs_disabled();                         \
258                 raw_spin_lock(&current->pi_lock);                       \
259                 current->saved_state = current->__state;                \
260                 debug_rtlock_wait_set_state();                          \
261                 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
262                 raw_spin_unlock(&current->pi_lock);                     \
263         } while (0);
264
265 #define current_restore_rtlock_saved_state()                            \
266         do {                                                            \
267                 lockdep_assert_irqs_disabled();                         \
268                 raw_spin_lock(&current->pi_lock);                       \
269                 debug_rtlock_wait_restore_state();                      \
270                 WRITE_ONCE(current->__state, current->saved_state);     \
271                 current->saved_state = TASK_RUNNING;                    \
272                 raw_spin_unlock(&current->pi_lock);                     \
273         } while (0);
274
275 #define get_current_state()     READ_ONCE(current->__state)
276
277 /* Task command name length: */
278 #define TASK_COMM_LEN                   16
279
280 extern void scheduler_tick(void);
281
282 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
283
284 extern long schedule_timeout(long timeout);
285 extern long schedule_timeout_interruptible(long timeout);
286 extern long schedule_timeout_killable(long timeout);
287 extern long schedule_timeout_uninterruptible(long timeout);
288 extern long schedule_timeout_idle(long timeout);
289 asmlinkage void schedule(void);
290 extern void schedule_preempt_disabled(void);
291 asmlinkage void preempt_schedule_irq(void);
292 #ifdef CONFIG_PREEMPT_RT
293  extern void schedule_rtlock(void);
294 #endif
295
296 extern int __must_check io_schedule_prepare(void);
297 extern void io_schedule_finish(int token);
298 extern long io_schedule_timeout(long timeout);
299 extern void io_schedule(void);
300
301 /**
302  * struct prev_cputime - snapshot of system and user cputime
303  * @utime: time spent in user mode
304  * @stime: time spent in system mode
305  * @lock: protects the above two fields
306  *
307  * Stores previous user/system time values such that we can guarantee
308  * monotonicity.
309  */
310 struct prev_cputime {
311 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
312         u64                             utime;
313         u64                             stime;
314         raw_spinlock_t                  lock;
315 #endif
316 };
317
318 enum vtime_state {
319         /* Task is sleeping or running in a CPU with VTIME inactive: */
320         VTIME_INACTIVE = 0,
321         /* Task is idle */
322         VTIME_IDLE,
323         /* Task runs in kernelspace in a CPU with VTIME active: */
324         VTIME_SYS,
325         /* Task runs in userspace in a CPU with VTIME active: */
326         VTIME_USER,
327         /* Task runs as guests in a CPU with VTIME active: */
328         VTIME_GUEST,
329 };
330
331 struct vtime {
332         seqcount_t              seqcount;
333         unsigned long long      starttime;
334         enum vtime_state        state;
335         unsigned int            cpu;
336         u64                     utime;
337         u64                     stime;
338         u64                     gtime;
339 };
340
341 /*
342  * Utilization clamp constraints.
343  * @UCLAMP_MIN: Minimum utilization
344  * @UCLAMP_MAX: Maximum utilization
345  * @UCLAMP_CNT: Utilization clamp constraints count
346  */
347 enum uclamp_id {
348         UCLAMP_MIN = 0,
349         UCLAMP_MAX,
350         UCLAMP_CNT
351 };
352
353 #ifdef CONFIG_SMP
354 extern struct root_domain def_root_domain;
355 extern struct mutex sched_domains_mutex;
356 #endif
357
358 struct sched_info {
359 #ifdef CONFIG_SCHED_INFO
360         /* Cumulative counters: */
361
362         /* # of times we have run on this CPU: */
363         unsigned long                   pcount;
364
365         /* Time spent waiting on a runqueue: */
366         unsigned long long              run_delay;
367
368         /* Timestamps: */
369
370         /* When did we last run on a CPU? */
371         unsigned long long              last_arrival;
372
373         /* When were we last queued to run? */
374         unsigned long long              last_queued;
375
376 #endif /* CONFIG_SCHED_INFO */
377 };
378
379 /*
380  * Integer metrics need fixed point arithmetic, e.g., sched/fair
381  * has a few: load, load_avg, util_avg, freq, and capacity.
382  *
383  * We define a basic fixed point arithmetic range, and then formalize
384  * all these metrics based on that basic range.
385  */
386 # define SCHED_FIXEDPOINT_SHIFT         10
387 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
388
389 /* Increase resolution of cpu_capacity calculations */
390 # define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
391 # define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
392
393 struct load_weight {
394         unsigned long                   weight;
395         u32                             inv_weight;
396 };
397
398 /**
399  * struct util_est - Estimation utilization of FAIR tasks
400  * @enqueued: instantaneous estimated utilization of a task/cpu
401  * @ewma:     the Exponential Weighted Moving Average (EWMA)
402  *            utilization of a task
403  *
404  * Support data structure to track an Exponential Weighted Moving Average
405  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
406  * average each time a task completes an activation. Sample's weight is chosen
407  * so that the EWMA will be relatively insensitive to transient changes to the
408  * task's workload.
409  *
410  * The enqueued attribute has a slightly different meaning for tasks and cpus:
411  * - task:   the task's util_avg at last task dequeue time
412  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
413  * Thus, the util_est.enqueued of a task represents the contribution on the
414  * estimated utilization of the CPU where that task is currently enqueued.
415  *
416  * Only for tasks we track a moving average of the past instantaneous
417  * estimated utilization. This allows to absorb sporadic drops in utilization
418  * of an otherwise almost periodic task.
419  *
420  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
421  * updates. When a task is dequeued, its util_est should not be updated if its
422  * util_avg has not been updated in the meantime.
423  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
424  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
425  * for a task) it is safe to use MSB.
426  */
427 struct util_est {
428         unsigned int                    enqueued;
429         unsigned int                    ewma;
430 #define UTIL_EST_WEIGHT_SHIFT           2
431 #define UTIL_AVG_UNCHANGED              0x80000000
432 } __attribute__((__aligned__(sizeof(u64))));
433
434 /*
435  * The load/runnable/util_avg accumulates an infinite geometric series
436  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
437  *
438  * [load_avg definition]
439  *
440  *   load_avg = runnable% * scale_load_down(load)
441  *
442  * [runnable_avg definition]
443  *
444  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
445  *
446  * [util_avg definition]
447  *
448  *   util_avg = running% * SCHED_CAPACITY_SCALE
449  *
450  * where runnable% is the time ratio that a sched_entity is runnable and
451  * running% the time ratio that a sched_entity is running.
452  *
453  * For cfs_rq, they are the aggregated values of all runnable and blocked
454  * sched_entities.
455  *
456  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
457  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458  * for computing those signals (see update_rq_clock_pelt())
459  *
460  * N.B., the above ratios (runnable% and running%) themselves are in the
461  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462  * to as large a range as necessary. This is for example reflected by
463  * util_avg's SCHED_CAPACITY_SCALE.
464  *
465  * [Overflow issue]
466  *
467  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468  * with the highest load (=88761), always runnable on a single cfs_rq,
469  * and should not overflow as the number already hits PID_MAX_LIMIT.
470  *
471  * For all other cases (including 32-bit kernels), struct load_weight's
472  * weight will overflow first before we do, because:
473  *
474  *    Max(load_avg) <= Max(load.weight)
475  *
476  * Then it is the load_weight's responsibility to consider overflow
477  * issues.
478  */
479 struct sched_avg {
480         u64                             last_update_time;
481         u64                             load_sum;
482         u64                             runnable_sum;
483         u32                             util_sum;
484         u32                             period_contrib;
485         unsigned long                   load_avg;
486         unsigned long                   runnable_avg;
487         unsigned long                   util_avg;
488         struct util_est                 util_est;
489 } ____cacheline_aligned;
490
491 struct sched_statistics {
492 #ifdef CONFIG_SCHEDSTATS
493         u64                             wait_start;
494         u64                             wait_max;
495         u64                             wait_count;
496         u64                             wait_sum;
497         u64                             iowait_count;
498         u64                             iowait_sum;
499
500         u64                             sleep_start;
501         u64                             sleep_max;
502         s64                             sum_sleep_runtime;
503
504         u64                             block_start;
505         u64                             block_max;
506         s64                             sum_block_runtime;
507
508         u64                             exec_max;
509         u64                             slice_max;
510
511         u64                             nr_migrations_cold;
512         u64                             nr_failed_migrations_affine;
513         u64                             nr_failed_migrations_running;
514         u64                             nr_failed_migrations_hot;
515         u64                             nr_forced_migrations;
516
517         u64                             nr_wakeups;
518         u64                             nr_wakeups_sync;
519         u64                             nr_wakeups_migrate;
520         u64                             nr_wakeups_local;
521         u64                             nr_wakeups_remote;
522         u64                             nr_wakeups_affine;
523         u64                             nr_wakeups_affine_attempts;
524         u64                             nr_wakeups_passive;
525         u64                             nr_wakeups_idle;
526 #endif
527 } ____cacheline_aligned;
528
529 struct sched_entity {
530         /* For load-balancing: */
531         struct load_weight              load;
532         struct rb_node                  run_node;
533         struct list_head                group_node;
534         unsigned int                    on_rq;
535
536         u64                             exec_start;
537         u64                             sum_exec_runtime;
538         u64                             vruntime;
539         u64                             prev_sum_exec_runtime;
540
541         u64                             nr_migrations;
542
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544         int                             depth;
545         struct sched_entity             *parent;
546         /* rq on which this entity is (to be) queued: */
547         struct cfs_rq                   *cfs_rq;
548         /* rq "owned" by this entity/group: */
549         struct cfs_rq                   *my_q;
550         /* cached value of my_q->h_nr_running */
551         unsigned long                   runnable_weight;
552 #endif
553
554 #ifdef CONFIG_SMP
555         /*
556          * Per entity load average tracking.
557          *
558          * Put into separate cache line so it does not
559          * collide with read-mostly values above.
560          */
561         struct sched_avg                avg;
562 #endif
563 };
564
565 struct sched_rt_entity {
566         struct list_head                run_list;
567         unsigned long                   timeout;
568         unsigned long                   watchdog_stamp;
569         unsigned int                    time_slice;
570         unsigned short                  on_rq;
571         unsigned short                  on_list;
572
573         struct sched_rt_entity          *back;
574 #ifdef CONFIG_RT_GROUP_SCHED
575         struct sched_rt_entity          *parent;
576         /* rq on which this entity is (to be) queued: */
577         struct rt_rq                    *rt_rq;
578         /* rq "owned" by this entity/group: */
579         struct rt_rq                    *my_q;
580 #endif
581 } __randomize_layout;
582
583 struct sched_dl_entity {
584         struct rb_node                  rb_node;
585
586         /*
587          * Original scheduling parameters. Copied here from sched_attr
588          * during sched_setattr(), they will remain the same until
589          * the next sched_setattr().
590          */
591         u64                             dl_runtime;     /* Maximum runtime for each instance    */
592         u64                             dl_deadline;    /* Relative deadline of each instance   */
593         u64                             dl_period;      /* Separation of two instances (period) */
594         u64                             dl_bw;          /* dl_runtime / dl_period               */
595         u64                             dl_density;     /* dl_runtime / dl_deadline             */
596
597         /*
598          * Actual scheduling parameters. Initialized with the values above,
599          * they are continuously updated during task execution. Note that
600          * the remaining runtime could be < 0 in case we are in overrun.
601          */
602         s64                             runtime;        /* Remaining runtime for this instance  */
603         u64                             deadline;       /* Absolute deadline for this instance  */
604         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
605
606         /*
607          * Some bool flags:
608          *
609          * @dl_throttled tells if we exhausted the runtime. If so, the
610          * task has to wait for a replenishment to be performed at the
611          * next firing of dl_timer.
612          *
613          * @dl_boosted tells if we are boosted due to DI. If so we are
614          * outside bandwidth enforcement mechanism (but only until we
615          * exit the critical section);
616          *
617          * @dl_yielded tells if task gave up the CPU before consuming
618          * all its available runtime during the last job.
619          *
620          * @dl_non_contending tells if the task is inactive while still
621          * contributing to the active utilization. In other words, it
622          * indicates if the inactive timer has been armed and its handler
623          * has not been executed yet. This flag is useful to avoid race
624          * conditions between the inactive timer handler and the wakeup
625          * code.
626          *
627          * @dl_overrun tells if the task asked to be informed about runtime
628          * overruns.
629          */
630         unsigned int                    dl_throttled      : 1;
631         unsigned int                    dl_yielded        : 1;
632         unsigned int                    dl_non_contending : 1;
633         unsigned int                    dl_overrun        : 1;
634
635         /*
636          * Bandwidth enforcement timer. Each -deadline task has its
637          * own bandwidth to be enforced, thus we need one timer per task.
638          */
639         struct hrtimer                  dl_timer;
640
641         /*
642          * Inactive timer, responsible for decreasing the active utilization
643          * at the "0-lag time". When a -deadline task blocks, it contributes
644          * to GRUB's active utilization until the "0-lag time", hence a
645          * timer is needed to decrease the active utilization at the correct
646          * time.
647          */
648         struct hrtimer inactive_timer;
649
650 #ifdef CONFIG_RT_MUTEXES
651         /*
652          * Priority Inheritance. When a DEADLINE scheduling entity is boosted
653          * pi_se points to the donor, otherwise points to the dl_se it belongs
654          * to (the original one/itself).
655          */
656         struct sched_dl_entity *pi_se;
657 #endif
658 };
659
660 #ifdef CONFIG_UCLAMP_TASK
661 /* Number of utilization clamp buckets (shorter alias) */
662 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
663
664 /*
665  * Utilization clamp for a scheduling entity
666  * @value:              clamp value "assigned" to a se
667  * @bucket_id:          bucket index corresponding to the "assigned" value
668  * @active:             the se is currently refcounted in a rq's bucket
669  * @user_defined:       the requested clamp value comes from user-space
670  *
671  * The bucket_id is the index of the clamp bucket matching the clamp value
672  * which is pre-computed and stored to avoid expensive integer divisions from
673  * the fast path.
674  *
675  * The active bit is set whenever a task has got an "effective" value assigned,
676  * which can be different from the clamp value "requested" from user-space.
677  * This allows to know a task is refcounted in the rq's bucket corresponding
678  * to the "effective" bucket_id.
679  *
680  * The user_defined bit is set whenever a task has got a task-specific clamp
681  * value requested from userspace, i.e. the system defaults apply to this task
682  * just as a restriction. This allows to relax default clamps when a less
683  * restrictive task-specific value has been requested, thus allowing to
684  * implement a "nice" semantic. For example, a task running with a 20%
685  * default boost can still drop its own boosting to 0%.
686  */
687 struct uclamp_se {
688         unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
689         unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
690         unsigned int active             : 1;
691         unsigned int user_defined       : 1;
692 };
693 #endif /* CONFIG_UCLAMP_TASK */
694
695 union rcu_special {
696         struct {
697                 u8                      blocked;
698                 u8                      need_qs;
699                 u8                      exp_hint; /* Hint for performance. */
700                 u8                      need_mb; /* Readers need smp_mb(). */
701         } b; /* Bits. */
702         u32 s; /* Set of bits. */
703 };
704
705 enum perf_event_task_context {
706         perf_invalid_context = -1,
707         perf_hw_context = 0,
708         perf_sw_context,
709         perf_nr_task_contexts,
710 };
711
712 struct wake_q_node {
713         struct wake_q_node *next;
714 };
715
716 struct kmap_ctrl {
717 #ifdef CONFIG_KMAP_LOCAL
718         int                             idx;
719         pte_t                           pteval[KM_MAX_IDX];
720 #endif
721 };
722
723 struct task_struct {
724 #ifdef CONFIG_THREAD_INFO_IN_TASK
725         /*
726          * For reasons of header soup (see current_thread_info()), this
727          * must be the first element of task_struct.
728          */
729         struct thread_info              thread_info;
730 #endif
731         unsigned int                    __state;
732
733 #ifdef CONFIG_PREEMPT_RT
734         /* saved state for "spinlock sleepers" */
735         unsigned int                    saved_state;
736 #endif
737
738         /*
739          * This begins the randomizable portion of task_struct. Only
740          * scheduling-critical items should be added above here.
741          */
742         randomized_struct_fields_start
743
744         void                            *stack;
745         refcount_t                      usage;
746         /* Per task flags (PF_*), defined further below: */
747         unsigned int                    flags;
748         unsigned int                    ptrace;
749
750 #ifdef CONFIG_SMP
751         int                             on_cpu;
752         struct __call_single_node       wake_entry;
753         unsigned int                    wakee_flips;
754         unsigned long                   wakee_flip_decay_ts;
755         struct task_struct              *last_wakee;
756
757         /*
758          * recent_used_cpu is initially set as the last CPU used by a task
759          * that wakes affine another task. Waker/wakee relationships can
760          * push tasks around a CPU where each wakeup moves to the next one.
761          * Tracking a recently used CPU allows a quick search for a recently
762          * used CPU that may be idle.
763          */
764         int                             recent_used_cpu;
765         int                             wake_cpu;
766 #endif
767         int                             on_rq;
768
769         int                             prio;
770         int                             static_prio;
771         int                             normal_prio;
772         unsigned int                    rt_priority;
773
774         struct sched_entity             se;
775         struct sched_rt_entity          rt;
776         struct sched_dl_entity          dl;
777         const struct sched_class        *sched_class;
778
779 #ifdef CONFIG_SCHED_CORE
780         struct rb_node                  core_node;
781         unsigned long                   core_cookie;
782         unsigned int                    core_occupation;
783 #endif
784
785 #ifdef CONFIG_CGROUP_SCHED
786         struct task_group               *sched_task_group;
787 #endif
788
789 #ifdef CONFIG_UCLAMP_TASK
790         /*
791          * Clamp values requested for a scheduling entity.
792          * Must be updated with task_rq_lock() held.
793          */
794         struct uclamp_se                uclamp_req[UCLAMP_CNT];
795         /*
796          * Effective clamp values used for a scheduling entity.
797          * Must be updated with task_rq_lock() held.
798          */
799         struct uclamp_se                uclamp[UCLAMP_CNT];
800 #endif
801
802         struct sched_statistics         stats;
803
804 #ifdef CONFIG_PREEMPT_NOTIFIERS
805         /* List of struct preempt_notifier: */
806         struct hlist_head               preempt_notifiers;
807 #endif
808
809 #ifdef CONFIG_BLK_DEV_IO_TRACE
810         unsigned int                    btrace_seq;
811 #endif
812
813         unsigned int                    policy;
814         int                             nr_cpus_allowed;
815         const cpumask_t                 *cpus_ptr;
816         cpumask_t                       *user_cpus_ptr;
817         cpumask_t                       cpus_mask;
818         void                            *migration_pending;
819 #ifdef CONFIG_SMP
820         unsigned short                  migration_disabled;
821 #endif
822         unsigned short                  migration_flags;
823
824 #ifdef CONFIG_PREEMPT_RCU
825         int                             rcu_read_lock_nesting;
826         union rcu_special               rcu_read_unlock_special;
827         struct list_head                rcu_node_entry;
828         struct rcu_node                 *rcu_blocked_node;
829 #endif /* #ifdef CONFIG_PREEMPT_RCU */
830
831 #ifdef CONFIG_TASKS_RCU
832         unsigned long                   rcu_tasks_nvcsw;
833         u8                              rcu_tasks_holdout;
834         u8                              rcu_tasks_idx;
835         int                             rcu_tasks_idle_cpu;
836         struct list_head                rcu_tasks_holdout_list;
837 #endif /* #ifdef CONFIG_TASKS_RCU */
838
839 #ifdef CONFIG_TASKS_TRACE_RCU
840         int                             trc_reader_nesting;
841         int                             trc_ipi_to_cpu;
842         union rcu_special               trc_reader_special;
843         bool                            trc_reader_checked;
844         struct list_head                trc_holdout_list;
845 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
846
847         struct sched_info               sched_info;
848
849         struct list_head                tasks;
850 #ifdef CONFIG_SMP
851         struct plist_node               pushable_tasks;
852         struct rb_node                  pushable_dl_tasks;
853 #endif
854
855         struct mm_struct                *mm;
856         struct mm_struct                *active_mm;
857
858         /* Per-thread vma caching: */
859         struct vmacache                 vmacache;
860
861 #ifdef SPLIT_RSS_COUNTING
862         struct task_rss_stat            rss_stat;
863 #endif
864         int                             exit_state;
865         int                             exit_code;
866         int                             exit_signal;
867         /* The signal sent when the parent dies: */
868         int                             pdeath_signal;
869         /* JOBCTL_*, siglock protected: */
870         unsigned long                   jobctl;
871
872         /* Used for emulating ABI behavior of previous Linux versions: */
873         unsigned int                    personality;
874
875         /* Scheduler bits, serialized by scheduler locks: */
876         unsigned                        sched_reset_on_fork:1;
877         unsigned                        sched_contributes_to_load:1;
878         unsigned                        sched_migrated:1;
879 #ifdef CONFIG_PSI
880         unsigned                        sched_psi_wake_requeue:1;
881 #endif
882
883         /* Force alignment to the next boundary: */
884         unsigned                        :0;
885
886         /* Unserialized, strictly 'current' */
887
888         /*
889          * This field must not be in the scheduler word above due to wakelist
890          * queueing no longer being serialized by p->on_cpu. However:
891          *
892          * p->XXX = X;                  ttwu()
893          * schedule()                     if (p->on_rq && ..) // false
894          *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
895          *   deactivate_task()                ttwu_queue_wakelist())
896          *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
897          *
898          * guarantees all stores of 'current' are visible before
899          * ->sched_remote_wakeup gets used, so it can be in this word.
900          */
901         unsigned                        sched_remote_wakeup:1;
902
903         /* Bit to tell LSMs we're in execve(): */
904         unsigned                        in_execve:1;
905         unsigned                        in_iowait:1;
906 #ifndef TIF_RESTORE_SIGMASK
907         unsigned                        restore_sigmask:1;
908 #endif
909 #ifdef CONFIG_MEMCG
910         unsigned                        in_user_fault:1;
911 #endif
912 #ifdef CONFIG_COMPAT_BRK
913         unsigned                        brk_randomized:1;
914 #endif
915 #ifdef CONFIG_CGROUPS
916         /* disallow userland-initiated cgroup migration */
917         unsigned                        no_cgroup_migration:1;
918         /* task is frozen/stopped (used by the cgroup freezer) */
919         unsigned                        frozen:1;
920 #endif
921 #ifdef CONFIG_BLK_CGROUP
922         unsigned                        use_memdelay:1;
923 #endif
924 #ifdef CONFIG_PSI
925         /* Stalled due to lack of memory */
926         unsigned                        in_memstall:1;
927 #endif
928 #ifdef CONFIG_PAGE_OWNER
929         /* Used by page_owner=on to detect recursion in page tracking. */
930         unsigned                        in_page_owner:1;
931 #endif
932 #ifdef CONFIG_EVENTFD
933         /* Recursion prevention for eventfd_signal() */
934         unsigned                        in_eventfd_signal:1;
935 #endif
936
937         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
938
939         struct restart_block            restart_block;
940
941         pid_t                           pid;
942         pid_t                           tgid;
943
944 #ifdef CONFIG_STACKPROTECTOR
945         /* Canary value for the -fstack-protector GCC feature: */
946         unsigned long                   stack_canary;
947 #endif
948         /*
949          * Pointers to the (original) parent process, youngest child, younger sibling,
950          * older sibling, respectively.  (p->father can be replaced with
951          * p->real_parent->pid)
952          */
953
954         /* Real parent process: */
955         struct task_struct __rcu        *real_parent;
956
957         /* Recipient of SIGCHLD, wait4() reports: */
958         struct task_struct __rcu        *parent;
959
960         /*
961          * Children/sibling form the list of natural children:
962          */
963         struct list_head                children;
964         struct list_head                sibling;
965         struct task_struct              *group_leader;
966
967         /*
968          * 'ptraced' is the list of tasks this task is using ptrace() on.
969          *
970          * This includes both natural children and PTRACE_ATTACH targets.
971          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
972          */
973         struct list_head                ptraced;
974         struct list_head                ptrace_entry;
975
976         /* PID/PID hash table linkage. */
977         struct pid                      *thread_pid;
978         struct hlist_node               pid_links[PIDTYPE_MAX];
979         struct list_head                thread_group;
980         struct list_head                thread_node;
981
982         struct completion               *vfork_done;
983
984         /* CLONE_CHILD_SETTID: */
985         int __user                      *set_child_tid;
986
987         /* CLONE_CHILD_CLEARTID: */
988         int __user                      *clear_child_tid;
989
990         /* PF_IO_WORKER */
991         void                            *pf_io_worker;
992
993         u64                             utime;
994         u64                             stime;
995 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
996         u64                             utimescaled;
997         u64                             stimescaled;
998 #endif
999         u64                             gtime;
1000         struct prev_cputime             prev_cputime;
1001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1002         struct vtime                    vtime;
1003 #endif
1004
1005 #ifdef CONFIG_NO_HZ_FULL
1006         atomic_t                        tick_dep_mask;
1007 #endif
1008         /* Context switch counts: */
1009         unsigned long                   nvcsw;
1010         unsigned long                   nivcsw;
1011
1012         /* Monotonic time in nsecs: */
1013         u64                             start_time;
1014
1015         /* Boot based time in nsecs: */
1016         u64                             start_boottime;
1017
1018         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1019         unsigned long                   min_flt;
1020         unsigned long                   maj_flt;
1021
1022         /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1023         struct posix_cputimers          posix_cputimers;
1024
1025 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1026         struct posix_cputimers_work     posix_cputimers_work;
1027 #endif
1028
1029         /* Process credentials: */
1030
1031         /* Tracer's credentials at attach: */
1032         const struct cred __rcu         *ptracer_cred;
1033
1034         /* Objective and real subjective task credentials (COW): */
1035         const struct cred __rcu         *real_cred;
1036
1037         /* Effective (overridable) subjective task credentials (COW): */
1038         const struct cred __rcu         *cred;
1039
1040 #ifdef CONFIG_KEYS
1041         /* Cached requested key. */
1042         struct key                      *cached_requested_key;
1043 #endif
1044
1045         /*
1046          * executable name, excluding path.
1047          *
1048          * - normally initialized setup_new_exec()
1049          * - access it with [gs]et_task_comm()
1050          * - lock it with task_lock()
1051          */
1052         char                            comm[TASK_COMM_LEN];
1053
1054         struct nameidata                *nameidata;
1055
1056 #ifdef CONFIG_SYSVIPC
1057         struct sysv_sem                 sysvsem;
1058         struct sysv_shm                 sysvshm;
1059 #endif
1060 #ifdef CONFIG_DETECT_HUNG_TASK
1061         unsigned long                   last_switch_count;
1062         unsigned long                   last_switch_time;
1063 #endif
1064         /* Filesystem information: */
1065         struct fs_struct                *fs;
1066
1067         /* Open file information: */
1068         struct files_struct             *files;
1069
1070 #ifdef CONFIG_IO_URING
1071         struct io_uring_task            *io_uring;
1072 #endif
1073
1074         /* Namespaces: */
1075         struct nsproxy                  *nsproxy;
1076
1077         /* Signal handlers: */
1078         struct signal_struct            *signal;
1079         struct sighand_struct __rcu             *sighand;
1080         sigset_t                        blocked;
1081         sigset_t                        real_blocked;
1082         /* Restored if set_restore_sigmask() was used: */
1083         sigset_t                        saved_sigmask;
1084         struct sigpending               pending;
1085         unsigned long                   sas_ss_sp;
1086         size_t                          sas_ss_size;
1087         unsigned int                    sas_ss_flags;
1088
1089         struct callback_head            *task_works;
1090
1091 #ifdef CONFIG_AUDIT
1092 #ifdef CONFIG_AUDITSYSCALL
1093         struct audit_context            *audit_context;
1094 #endif
1095         kuid_t                          loginuid;
1096         unsigned int                    sessionid;
1097 #endif
1098         struct seccomp                  seccomp;
1099         struct syscall_user_dispatch    syscall_dispatch;
1100
1101         /* Thread group tracking: */
1102         u64                             parent_exec_id;
1103         u64                             self_exec_id;
1104
1105         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1106         spinlock_t                      alloc_lock;
1107
1108         /* Protection of the PI data structures: */
1109         raw_spinlock_t                  pi_lock;
1110
1111         struct wake_q_node              wake_q;
1112
1113 #ifdef CONFIG_RT_MUTEXES
1114         /* PI waiters blocked on a rt_mutex held by this task: */
1115         struct rb_root_cached           pi_waiters;
1116         /* Updated under owner's pi_lock and rq lock */
1117         struct task_struct              *pi_top_task;
1118         /* Deadlock detection and priority inheritance handling: */
1119         struct rt_mutex_waiter          *pi_blocked_on;
1120 #endif
1121
1122 #ifdef CONFIG_DEBUG_MUTEXES
1123         /* Mutex deadlock detection: */
1124         struct mutex_waiter             *blocked_on;
1125 #endif
1126
1127 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1128         int                             non_block_count;
1129 #endif
1130
1131 #ifdef CONFIG_TRACE_IRQFLAGS
1132         struct irqtrace_events          irqtrace;
1133         unsigned int                    hardirq_threaded;
1134         u64                             hardirq_chain_key;
1135         int                             softirqs_enabled;
1136         int                             softirq_context;
1137         int                             irq_config;
1138 #endif
1139 #ifdef CONFIG_PREEMPT_RT
1140         int                             softirq_disable_cnt;
1141 #endif
1142
1143 #ifdef CONFIG_LOCKDEP
1144 # define MAX_LOCK_DEPTH                 48UL
1145         u64                             curr_chain_key;
1146         int                             lockdep_depth;
1147         unsigned int                    lockdep_recursion;
1148         struct held_lock                held_locks[MAX_LOCK_DEPTH];
1149 #endif
1150
1151 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1152         unsigned int                    in_ubsan;
1153 #endif
1154
1155         /* Journalling filesystem info: */
1156         void                            *journal_info;
1157
1158         /* Stacked block device info: */
1159         struct bio_list                 *bio_list;
1160
1161         /* Stack plugging: */
1162         struct blk_plug                 *plug;
1163
1164         /* VM state: */
1165         struct reclaim_state            *reclaim_state;
1166
1167         struct backing_dev_info         *backing_dev_info;
1168
1169         struct io_context               *io_context;
1170
1171 #ifdef CONFIG_COMPACTION
1172         struct capture_control          *capture_control;
1173 #endif
1174         /* Ptrace state: */
1175         unsigned long                   ptrace_message;
1176         kernel_siginfo_t                *last_siginfo;
1177
1178         struct task_io_accounting       ioac;
1179 #ifdef CONFIG_PSI
1180         /* Pressure stall state */
1181         unsigned int                    psi_flags;
1182 #endif
1183 #ifdef CONFIG_TASK_XACCT
1184         /* Accumulated RSS usage: */
1185         u64                             acct_rss_mem1;
1186         /* Accumulated virtual memory usage: */
1187         u64                             acct_vm_mem1;
1188         /* stime + utime since last update: */
1189         u64                             acct_timexpd;
1190 #endif
1191 #ifdef CONFIG_CPUSETS
1192         /* Protected by ->alloc_lock: */
1193         nodemask_t                      mems_allowed;
1194         /* Sequence number to catch updates: */
1195         seqcount_spinlock_t             mems_allowed_seq;
1196         int                             cpuset_mem_spread_rotor;
1197         int                             cpuset_slab_spread_rotor;
1198 #endif
1199 #ifdef CONFIG_CGROUPS
1200         /* Control Group info protected by css_set_lock: */
1201         struct css_set __rcu            *cgroups;
1202         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1203         struct list_head                cg_list;
1204 #endif
1205 #ifdef CONFIG_X86_CPU_RESCTRL
1206         u32                             closid;
1207         u32                             rmid;
1208 #endif
1209 #ifdef CONFIG_FUTEX
1210         struct robust_list_head __user  *robust_list;
1211 #ifdef CONFIG_COMPAT
1212         struct compat_robust_list_head __user *compat_robust_list;
1213 #endif
1214         struct list_head                pi_state_list;
1215         struct futex_pi_state           *pi_state_cache;
1216         struct mutex                    futex_exit_mutex;
1217         unsigned int                    futex_state;
1218 #endif
1219 #ifdef CONFIG_PERF_EVENTS
1220         struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1221         struct mutex                    perf_event_mutex;
1222         struct list_head                perf_event_list;
1223 #endif
1224 #ifdef CONFIG_DEBUG_PREEMPT
1225         unsigned long                   preempt_disable_ip;
1226 #endif
1227 #ifdef CONFIG_NUMA
1228         /* Protected by alloc_lock: */
1229         struct mempolicy                *mempolicy;
1230         short                           il_prev;
1231         short                           pref_node_fork;
1232 #endif
1233 #ifdef CONFIG_NUMA_BALANCING
1234         int                             numa_scan_seq;
1235         unsigned int                    numa_scan_period;
1236         unsigned int                    numa_scan_period_max;
1237         int                             numa_preferred_nid;
1238         unsigned long                   numa_migrate_retry;
1239         /* Migration stamp: */
1240         u64                             node_stamp;
1241         u64                             last_task_numa_placement;
1242         u64                             last_sum_exec_runtime;
1243         struct callback_head            numa_work;
1244
1245         /*
1246          * This pointer is only modified for current in syscall and
1247          * pagefault context (and for tasks being destroyed), so it can be read
1248          * from any of the following contexts:
1249          *  - RCU read-side critical section
1250          *  - current->numa_group from everywhere
1251          *  - task's runqueue locked, task not running
1252          */
1253         struct numa_group __rcu         *numa_group;
1254
1255         /*
1256          * numa_faults is an array split into four regions:
1257          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1258          * in this precise order.
1259          *
1260          * faults_memory: Exponential decaying average of faults on a per-node
1261          * basis. Scheduling placement decisions are made based on these
1262          * counts. The values remain static for the duration of a PTE scan.
1263          * faults_cpu: Track the nodes the process was running on when a NUMA
1264          * hinting fault was incurred.
1265          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1266          * during the current scan window. When the scan completes, the counts
1267          * in faults_memory and faults_cpu decay and these values are copied.
1268          */
1269         unsigned long                   *numa_faults;
1270         unsigned long                   total_numa_faults;
1271
1272         /*
1273          * numa_faults_locality tracks if faults recorded during the last
1274          * scan window were remote/local or failed to migrate. The task scan
1275          * period is adapted based on the locality of the faults with different
1276          * weights depending on whether they were shared or private faults
1277          */
1278         unsigned long                   numa_faults_locality[3];
1279
1280         unsigned long                   numa_pages_migrated;
1281 #endif /* CONFIG_NUMA_BALANCING */
1282
1283 #ifdef CONFIG_RSEQ
1284         struct rseq __user *rseq;
1285         u32 rseq_sig;
1286         /*
1287          * RmW on rseq_event_mask must be performed atomically
1288          * with respect to preemption.
1289          */
1290         unsigned long rseq_event_mask;
1291 #endif
1292
1293         struct tlbflush_unmap_batch     tlb_ubc;
1294
1295         union {
1296                 refcount_t              rcu_users;
1297                 struct rcu_head         rcu;
1298         };
1299
1300         /* Cache last used pipe for splice(): */
1301         struct pipe_inode_info          *splice_pipe;
1302
1303         struct page_frag                task_frag;
1304
1305 #ifdef CONFIG_TASK_DELAY_ACCT
1306         struct task_delay_info          *delays;
1307 #endif
1308
1309 #ifdef CONFIG_FAULT_INJECTION
1310         int                             make_it_fail;
1311         unsigned int                    fail_nth;
1312 #endif
1313         /*
1314          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1315          * balance_dirty_pages() for a dirty throttling pause:
1316          */
1317         int                             nr_dirtied;
1318         int                             nr_dirtied_pause;
1319         /* Start of a write-and-pause period: */
1320         unsigned long                   dirty_paused_when;
1321
1322 #ifdef CONFIG_LATENCYTOP
1323         int                             latency_record_count;
1324         struct latency_record           latency_record[LT_SAVECOUNT];
1325 #endif
1326         /*
1327          * Time slack values; these are used to round up poll() and
1328          * select() etc timeout values. These are in nanoseconds.
1329          */
1330         u64                             timer_slack_ns;
1331         u64                             default_timer_slack_ns;
1332
1333 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1334         unsigned int                    kasan_depth;
1335 #endif
1336
1337 #ifdef CONFIG_KCSAN
1338         struct kcsan_ctx                kcsan_ctx;
1339 #ifdef CONFIG_TRACE_IRQFLAGS
1340         struct irqtrace_events          kcsan_save_irqtrace;
1341 #endif
1342 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1343         int                             kcsan_stack_depth;
1344 #endif
1345 #endif
1346
1347 #if IS_ENABLED(CONFIG_KUNIT)
1348         struct kunit                    *kunit_test;
1349 #endif
1350
1351 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1352         /* Index of current stored address in ret_stack: */
1353         int                             curr_ret_stack;
1354         int                             curr_ret_depth;
1355
1356         /* Stack of return addresses for return function tracing: */
1357         struct ftrace_ret_stack         *ret_stack;
1358
1359         /* Timestamp for last schedule: */
1360         unsigned long long              ftrace_timestamp;
1361
1362         /*
1363          * Number of functions that haven't been traced
1364          * because of depth overrun:
1365          */
1366         atomic_t                        trace_overrun;
1367
1368         /* Pause tracing: */
1369         atomic_t                        tracing_graph_pause;
1370 #endif
1371
1372 #ifdef CONFIG_TRACING
1373         /* State flags for use by tracers: */
1374         unsigned long                   trace;
1375
1376         /* Bitmask and counter of trace recursion: */
1377         unsigned long                   trace_recursion;
1378 #endif /* CONFIG_TRACING */
1379
1380 #ifdef CONFIG_KCOV
1381         /* See kernel/kcov.c for more details. */
1382
1383         /* Coverage collection mode enabled for this task (0 if disabled): */
1384         unsigned int                    kcov_mode;
1385
1386         /* Size of the kcov_area: */
1387         unsigned int                    kcov_size;
1388
1389         /* Buffer for coverage collection: */
1390         void                            *kcov_area;
1391
1392         /* KCOV descriptor wired with this task or NULL: */
1393         struct kcov                     *kcov;
1394
1395         /* KCOV common handle for remote coverage collection: */
1396         u64                             kcov_handle;
1397
1398         /* KCOV sequence number: */
1399         int                             kcov_sequence;
1400
1401         /* Collect coverage from softirq context: */
1402         unsigned int                    kcov_softirq;
1403 #endif
1404
1405 #ifdef CONFIG_MEMCG
1406         struct mem_cgroup               *memcg_in_oom;
1407         gfp_t                           memcg_oom_gfp_mask;
1408         int                             memcg_oom_order;
1409
1410         /* Number of pages to reclaim on returning to userland: */
1411         unsigned int                    memcg_nr_pages_over_high;
1412
1413         /* Used by memcontrol for targeted memcg charge: */
1414         struct mem_cgroup               *active_memcg;
1415 #endif
1416
1417 #ifdef CONFIG_BLK_CGROUP
1418         struct request_queue            *throttle_queue;
1419 #endif
1420
1421 #ifdef CONFIG_UPROBES
1422         struct uprobe_task              *utask;
1423 #endif
1424 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1425         unsigned int                    sequential_io;
1426         unsigned int                    sequential_io_avg;
1427 #endif
1428         struct kmap_ctrl                kmap_ctrl;
1429 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1430         unsigned long                   task_state_change;
1431 # ifdef CONFIG_PREEMPT_RT
1432         unsigned long                   saved_state_change;
1433 # endif
1434 #endif
1435         int                             pagefault_disabled;
1436 #ifdef CONFIG_MMU
1437         struct task_struct              *oom_reaper_list;
1438 #endif
1439 #ifdef CONFIG_VMAP_STACK
1440         struct vm_struct                *stack_vm_area;
1441 #endif
1442 #ifdef CONFIG_THREAD_INFO_IN_TASK
1443         /* A live task holds one reference: */
1444         refcount_t                      stack_refcount;
1445 #endif
1446 #ifdef CONFIG_LIVEPATCH
1447         int patch_state;
1448 #endif
1449 #ifdef CONFIG_SECURITY
1450         /* Used by LSM modules for access restriction: */
1451         void                            *security;
1452 #endif
1453 #ifdef CONFIG_BPF_SYSCALL
1454         /* Used by BPF task local storage */
1455         struct bpf_local_storage __rcu  *bpf_storage;
1456         /* Used for BPF run context */
1457         struct bpf_run_ctx              *bpf_ctx;
1458 #endif
1459
1460 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1461         unsigned long                   lowest_stack;
1462         unsigned long                   prev_lowest_stack;
1463 #endif
1464
1465 #ifdef CONFIG_X86_MCE
1466         void __user                     *mce_vaddr;
1467         __u64                           mce_kflags;
1468         u64                             mce_addr;
1469         __u64                           mce_ripv : 1,
1470                                         mce_whole_page : 1,
1471                                         __mce_reserved : 62;
1472         struct callback_head            mce_kill_me;
1473         int                             mce_count;
1474 #endif
1475
1476 #ifdef CONFIG_KRETPROBES
1477         struct llist_head               kretprobe_instances;
1478 #endif
1479
1480 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1481         /*
1482          * If L1D flush is supported on mm context switch
1483          * then we use this callback head to queue kill work
1484          * to kill tasks that are not running on SMT disabled
1485          * cores
1486          */
1487         struct callback_head            l1d_flush_kill;
1488 #endif
1489
1490         /*
1491          * New fields for task_struct should be added above here, so that
1492          * they are included in the randomized portion of task_struct.
1493          */
1494         randomized_struct_fields_end
1495
1496         /* CPU-specific state of this task: */
1497         struct thread_struct            thread;
1498
1499         /*
1500          * WARNING: on x86, 'thread_struct' contains a variable-sized
1501          * structure.  It *MUST* be at the end of 'task_struct'.
1502          *
1503          * Do not put anything below here!
1504          */
1505 };
1506
1507 static inline struct pid *task_pid(struct task_struct *task)
1508 {
1509         return task->thread_pid;
1510 }
1511
1512 /*
1513  * the helpers to get the task's different pids as they are seen
1514  * from various namespaces
1515  *
1516  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1517  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1518  *                     current.
1519  * task_xid_nr_ns()  : id seen from the ns specified;
1520  *
1521  * see also pid_nr() etc in include/linux/pid.h
1522  */
1523 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1524
1525 static inline pid_t task_pid_nr(struct task_struct *tsk)
1526 {
1527         return tsk->pid;
1528 }
1529
1530 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1531 {
1532         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1533 }
1534
1535 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1536 {
1537         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1538 }
1539
1540
1541 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1542 {
1543         return tsk->tgid;
1544 }
1545
1546 /**
1547  * pid_alive - check that a task structure is not stale
1548  * @p: Task structure to be checked.
1549  *
1550  * Test if a process is not yet dead (at most zombie state)
1551  * If pid_alive fails, then pointers within the task structure
1552  * can be stale and must not be dereferenced.
1553  *
1554  * Return: 1 if the process is alive. 0 otherwise.
1555  */
1556 static inline int pid_alive(const struct task_struct *p)
1557 {
1558         return p->thread_pid != NULL;
1559 }
1560
1561 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1562 {
1563         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1564 }
1565
1566 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1567 {
1568         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1569 }
1570
1571
1572 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1573 {
1574         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1575 }
1576
1577 static inline pid_t task_session_vnr(struct task_struct *tsk)
1578 {
1579         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1580 }
1581
1582 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1583 {
1584         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1585 }
1586
1587 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1588 {
1589         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1590 }
1591
1592 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1593 {
1594         pid_t pid = 0;
1595
1596         rcu_read_lock();
1597         if (pid_alive(tsk))
1598                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1599         rcu_read_unlock();
1600
1601         return pid;
1602 }
1603
1604 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1605 {
1606         return task_ppid_nr_ns(tsk, &init_pid_ns);
1607 }
1608
1609 /* Obsolete, do not use: */
1610 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1611 {
1612         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1613 }
1614
1615 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1616 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1617
1618 static inline unsigned int task_state_index(struct task_struct *tsk)
1619 {
1620         unsigned int tsk_state = READ_ONCE(tsk->__state);
1621         unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1622
1623         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1624
1625         if (tsk_state == TASK_IDLE)
1626                 state = TASK_REPORT_IDLE;
1627
1628         return fls(state);
1629 }
1630
1631 static inline char task_index_to_char(unsigned int state)
1632 {
1633         static const char state_char[] = "RSDTtXZPI";
1634
1635         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1636
1637         return state_char[state];
1638 }
1639
1640 static inline char task_state_to_char(struct task_struct *tsk)
1641 {
1642         return task_index_to_char(task_state_index(tsk));
1643 }
1644
1645 /**
1646  * is_global_init - check if a task structure is init. Since init
1647  * is free to have sub-threads we need to check tgid.
1648  * @tsk: Task structure to be checked.
1649  *
1650  * Check if a task structure is the first user space task the kernel created.
1651  *
1652  * Return: 1 if the task structure is init. 0 otherwise.
1653  */
1654 static inline int is_global_init(struct task_struct *tsk)
1655 {
1656         return task_tgid_nr(tsk) == 1;
1657 }
1658
1659 extern struct pid *cad_pid;
1660
1661 /*
1662  * Per process flags
1663  */
1664 #define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1665 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1666 #define PF_EXITING              0x00000004      /* Getting shut down */
1667 #define PF_POSTCOREDUMP         0x00000008      /* Coredumps should ignore this task */
1668 #define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1669 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1670 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1671 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1672 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1673 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1674 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1675 #define PF_MEMALLOC             0x00000800      /* Allocating memory */
1676 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1677 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1678 #define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1679 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1680 #define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1681 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1682 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1683 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1684 #define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1685                                                  * I am cleaning dirty pages from some other bdi. */
1686 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1687 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1688 #define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1689 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1690 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1691 #define PF_MEMALLOC_PIN         0x10000000      /* Allocation context constrained to zones which allow long term pinning. */
1692 #define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1693 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1694
1695 /*
1696  * Only the _current_ task can read/write to tsk->flags, but other
1697  * tasks can access tsk->flags in readonly mode for example
1698  * with tsk_used_math (like during threaded core dumping).
1699  * There is however an exception to this rule during ptrace
1700  * or during fork: the ptracer task is allowed to write to the
1701  * child->flags of its traced child (same goes for fork, the parent
1702  * can write to the child->flags), because we're guaranteed the
1703  * child is not running and in turn not changing child->flags
1704  * at the same time the parent does it.
1705  */
1706 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1707 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1708 #define clear_used_math()                       clear_stopped_child_used_math(current)
1709 #define set_used_math()                         set_stopped_child_used_math(current)
1710
1711 #define conditional_stopped_child_used_math(condition, child) \
1712         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1713
1714 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1715
1716 #define copy_to_stopped_child_used_math(child) \
1717         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1718
1719 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1720 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1721 #define used_math()                             tsk_used_math(current)
1722
1723 static __always_inline bool is_percpu_thread(void)
1724 {
1725 #ifdef CONFIG_SMP
1726         return (current->flags & PF_NO_SETAFFINITY) &&
1727                 (current->nr_cpus_allowed  == 1);
1728 #else
1729         return true;
1730 #endif
1731 }
1732
1733 /* Per-process atomic flags. */
1734 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1735 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1736 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1737 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1738 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1739 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1740 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1741 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1742
1743 #define TASK_PFA_TEST(name, func)                                       \
1744         static inline bool task_##func(struct task_struct *p)           \
1745         { return test_bit(PFA_##name, &p->atomic_flags); }
1746
1747 #define TASK_PFA_SET(name, func)                                        \
1748         static inline void task_set_##func(struct task_struct *p)       \
1749         { set_bit(PFA_##name, &p->atomic_flags); }
1750
1751 #define TASK_PFA_CLEAR(name, func)                                      \
1752         static inline void task_clear_##func(struct task_struct *p)     \
1753         { clear_bit(PFA_##name, &p->atomic_flags); }
1754
1755 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1756 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1757
1758 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1759 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1760 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1761
1762 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1763 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1764 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1765
1766 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1767 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1768 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1769
1770 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1771 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1772 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1773
1774 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1775 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1776
1777 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1778 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1779 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1780
1781 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1782 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1783
1784 static inline void
1785 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1786 {
1787         current->flags &= ~flags;
1788         current->flags |= orig_flags & flags;
1789 }
1790
1791 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1792 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1793 #ifdef CONFIG_SMP
1794 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1795 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1796 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1797 extern void release_user_cpus_ptr(struct task_struct *p);
1798 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1799 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1800 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1801 #else
1802 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1803 {
1804 }
1805 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1806 {
1807         if (!cpumask_test_cpu(0, new_mask))
1808                 return -EINVAL;
1809         return 0;
1810 }
1811 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1812 {
1813         if (src->user_cpus_ptr)
1814                 return -EINVAL;
1815         return 0;
1816 }
1817 static inline void release_user_cpus_ptr(struct task_struct *p)
1818 {
1819         WARN_ON(p->user_cpus_ptr);
1820 }
1821
1822 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1823 {
1824         return 0;
1825 }
1826 #endif
1827
1828 extern int yield_to(struct task_struct *p, bool preempt);
1829 extern void set_user_nice(struct task_struct *p, long nice);
1830 extern int task_prio(const struct task_struct *p);
1831
1832 /**
1833  * task_nice - return the nice value of a given task.
1834  * @p: the task in question.
1835  *
1836  * Return: The nice value [ -20 ... 0 ... 19 ].
1837  */
1838 static inline int task_nice(const struct task_struct *p)
1839 {
1840         return PRIO_TO_NICE((p)->static_prio);
1841 }
1842
1843 extern int can_nice(const struct task_struct *p, const int nice);
1844 extern int task_curr(const struct task_struct *p);
1845 extern int idle_cpu(int cpu);
1846 extern int available_idle_cpu(int cpu);
1847 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1848 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1849 extern void sched_set_fifo(struct task_struct *p);
1850 extern void sched_set_fifo_low(struct task_struct *p);
1851 extern void sched_set_normal(struct task_struct *p, int nice);
1852 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1853 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1854 extern struct task_struct *idle_task(int cpu);
1855
1856 /**
1857  * is_idle_task - is the specified task an idle task?
1858  * @p: the task in question.
1859  *
1860  * Return: 1 if @p is an idle task. 0 otherwise.
1861  */
1862 static __always_inline bool is_idle_task(const struct task_struct *p)
1863 {
1864         return !!(p->flags & PF_IDLE);
1865 }
1866
1867 extern struct task_struct *curr_task(int cpu);
1868 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1869
1870 void yield(void);
1871
1872 union thread_union {
1873 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1874         struct task_struct task;
1875 #endif
1876 #ifndef CONFIG_THREAD_INFO_IN_TASK
1877         struct thread_info thread_info;
1878 #endif
1879         unsigned long stack[THREAD_SIZE/sizeof(long)];
1880 };
1881
1882 #ifndef CONFIG_THREAD_INFO_IN_TASK
1883 extern struct thread_info init_thread_info;
1884 #endif
1885
1886 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1887
1888 #ifdef CONFIG_THREAD_INFO_IN_TASK
1889 # define task_thread_info(task) (&(task)->thread_info)
1890 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1891 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1892 #endif
1893
1894 /*
1895  * find a task by one of its numerical ids
1896  *
1897  * find_task_by_pid_ns():
1898  *      finds a task by its pid in the specified namespace
1899  * find_task_by_vpid():
1900  *      finds a task by its virtual pid
1901  *
1902  * see also find_vpid() etc in include/linux/pid.h
1903  */
1904
1905 extern struct task_struct *find_task_by_vpid(pid_t nr);
1906 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1907
1908 /*
1909  * find a task by its virtual pid and get the task struct
1910  */
1911 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1912
1913 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1914 extern int wake_up_process(struct task_struct *tsk);
1915 extern void wake_up_new_task(struct task_struct *tsk);
1916
1917 #ifdef CONFIG_SMP
1918 extern void kick_process(struct task_struct *tsk);
1919 #else
1920 static inline void kick_process(struct task_struct *tsk) { }
1921 #endif
1922
1923 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1924
1925 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1926 {
1927         __set_task_comm(tsk, from, false);
1928 }
1929
1930 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1931 #define get_task_comm(buf, tsk) ({                      \
1932         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1933         __get_task_comm(buf, sizeof(buf), tsk);         \
1934 })
1935
1936 #ifdef CONFIG_SMP
1937 static __always_inline void scheduler_ipi(void)
1938 {
1939         /*
1940          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1941          * TIF_NEED_RESCHED remotely (for the first time) will also send
1942          * this IPI.
1943          */
1944         preempt_fold_need_resched();
1945 }
1946 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1947 #else
1948 static inline void scheduler_ipi(void) { }
1949 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1950 {
1951         return 1;
1952 }
1953 #endif
1954
1955 /*
1956  * Set thread flags in other task's structures.
1957  * See asm/thread_info.h for TIF_xxxx flags available:
1958  */
1959 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1960 {
1961         set_ti_thread_flag(task_thread_info(tsk), flag);
1962 }
1963
1964 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1965 {
1966         clear_ti_thread_flag(task_thread_info(tsk), flag);
1967 }
1968
1969 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1970                                           bool value)
1971 {
1972         update_ti_thread_flag(task_thread_info(tsk), flag, value);
1973 }
1974
1975 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1976 {
1977         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1978 }
1979
1980 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1981 {
1982         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1983 }
1984
1985 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1986 {
1987         return test_ti_thread_flag(task_thread_info(tsk), flag);
1988 }
1989
1990 static inline void set_tsk_need_resched(struct task_struct *tsk)
1991 {
1992         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1993 }
1994
1995 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1996 {
1997         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1998 }
1999
2000 static inline int test_tsk_need_resched(struct task_struct *tsk)
2001 {
2002         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2003 }
2004
2005 /*
2006  * cond_resched() and cond_resched_lock(): latency reduction via
2007  * explicit rescheduling in places that are safe. The return
2008  * value indicates whether a reschedule was done in fact.
2009  * cond_resched_lock() will drop the spinlock before scheduling,
2010  */
2011 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2012 extern int __cond_resched(void);
2013
2014 #ifdef CONFIG_PREEMPT_DYNAMIC
2015
2016 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2017
2018 static __always_inline int _cond_resched(void)
2019 {
2020         return static_call_mod(cond_resched)();
2021 }
2022
2023 #else
2024
2025 static inline int _cond_resched(void)
2026 {
2027         return __cond_resched();
2028 }
2029
2030 #endif /* CONFIG_PREEMPT_DYNAMIC */
2031
2032 #else
2033
2034 static inline int _cond_resched(void) { return 0; }
2035
2036 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2037
2038 #define cond_resched() ({                       \
2039         __might_resched(__FILE__, __LINE__, 0); \
2040         _cond_resched();                        \
2041 })
2042
2043 extern int __cond_resched_lock(spinlock_t *lock);
2044 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2045 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2046
2047 #define MIGHT_RESCHED_RCU_SHIFT         8
2048 #define MIGHT_RESCHED_PREEMPT_MASK      ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2049
2050 #ifndef CONFIG_PREEMPT_RT
2051 /*
2052  * Non RT kernels have an elevated preempt count due to the held lock,
2053  * but are not allowed to be inside a RCU read side critical section
2054  */
2055 # define PREEMPT_LOCK_RESCHED_OFFSETS   PREEMPT_LOCK_OFFSET
2056 #else
2057 /*
2058  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2059  * cond_resched*lock() has to take that into account because it checks for
2060  * preempt_count() and rcu_preempt_depth().
2061  */
2062 # define PREEMPT_LOCK_RESCHED_OFFSETS   \
2063         (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2064 #endif
2065
2066 #define cond_resched_lock(lock) ({                                              \
2067         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2068         __cond_resched_lock(lock);                                              \
2069 })
2070
2071 #define cond_resched_rwlock_read(lock) ({                                       \
2072         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2073         __cond_resched_rwlock_read(lock);                                       \
2074 })
2075
2076 #define cond_resched_rwlock_write(lock) ({                                      \
2077         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2078         __cond_resched_rwlock_write(lock);                                      \
2079 })
2080
2081 static inline void cond_resched_rcu(void)
2082 {
2083 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2084         rcu_read_unlock();
2085         cond_resched();
2086         rcu_read_lock();
2087 #endif
2088 }
2089
2090 /*
2091  * Does a critical section need to be broken due to another
2092  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2093  * but a general need for low latency)
2094  */
2095 static inline int spin_needbreak(spinlock_t *lock)
2096 {
2097 #ifdef CONFIG_PREEMPTION
2098         return spin_is_contended(lock);
2099 #else
2100         return 0;
2101 #endif
2102 }
2103
2104 /*
2105  * Check if a rwlock is contended.
2106  * Returns non-zero if there is another task waiting on the rwlock.
2107  * Returns zero if the lock is not contended or the system / underlying
2108  * rwlock implementation does not support contention detection.
2109  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2110  * for low latency.
2111  */
2112 static inline int rwlock_needbreak(rwlock_t *lock)
2113 {
2114 #ifdef CONFIG_PREEMPTION
2115         return rwlock_is_contended(lock);
2116 #else
2117         return 0;
2118 #endif
2119 }
2120
2121 static __always_inline bool need_resched(void)
2122 {
2123         return unlikely(tif_need_resched());
2124 }
2125
2126 /*
2127  * Wrappers for p->thread_info->cpu access. No-op on UP.
2128  */
2129 #ifdef CONFIG_SMP
2130
2131 static inline unsigned int task_cpu(const struct task_struct *p)
2132 {
2133         return READ_ONCE(task_thread_info(p)->cpu);
2134 }
2135
2136 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2137
2138 #else
2139
2140 static inline unsigned int task_cpu(const struct task_struct *p)
2141 {
2142         return 0;
2143 }
2144
2145 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2146 {
2147 }
2148
2149 #endif /* CONFIG_SMP */
2150
2151 extern bool sched_task_on_rq(struct task_struct *p);
2152 extern unsigned long get_wchan(struct task_struct *p);
2153
2154 /*
2155  * In order to reduce various lock holder preemption latencies provide an
2156  * interface to see if a vCPU is currently running or not.
2157  *
2158  * This allows us to terminate optimistic spin loops and block, analogous to
2159  * the native optimistic spin heuristic of testing if the lock owner task is
2160  * running or not.
2161  */
2162 #ifndef vcpu_is_preempted
2163 static inline bool vcpu_is_preempted(int cpu)
2164 {
2165         return false;
2166 }
2167 #endif
2168
2169 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2170 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2171
2172 #ifndef TASK_SIZE_OF
2173 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2174 #endif
2175
2176 #ifdef CONFIG_SMP
2177 /* Returns effective CPU energy utilization, as seen by the scheduler */
2178 unsigned long sched_cpu_util(int cpu, unsigned long max);
2179 #endif /* CONFIG_SMP */
2180
2181 #ifdef CONFIG_RSEQ
2182
2183 /*
2184  * Map the event mask on the user-space ABI enum rseq_cs_flags
2185  * for direct mask checks.
2186  */
2187 enum rseq_event_mask_bits {
2188         RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2189         RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2190         RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2191 };
2192
2193 enum rseq_event_mask {
2194         RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
2195         RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
2196         RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
2197 };
2198
2199 static inline void rseq_set_notify_resume(struct task_struct *t)
2200 {
2201         if (t->rseq)
2202                 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2203 }
2204
2205 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2206
2207 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2208                                              struct pt_regs *regs)
2209 {
2210         if (current->rseq)
2211                 __rseq_handle_notify_resume(ksig, regs);
2212 }
2213
2214 static inline void rseq_signal_deliver(struct ksignal *ksig,
2215                                        struct pt_regs *regs)
2216 {
2217         preempt_disable();
2218         __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2219         preempt_enable();
2220         rseq_handle_notify_resume(ksig, regs);
2221 }
2222
2223 /* rseq_preempt() requires preemption to be disabled. */
2224 static inline void rseq_preempt(struct task_struct *t)
2225 {
2226         __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2227         rseq_set_notify_resume(t);
2228 }
2229
2230 /* rseq_migrate() requires preemption to be disabled. */
2231 static inline void rseq_migrate(struct task_struct *t)
2232 {
2233         __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2234         rseq_set_notify_resume(t);
2235 }
2236
2237 /*
2238  * If parent process has a registered restartable sequences area, the
2239  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2240  */
2241 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2242 {
2243         if (clone_flags & CLONE_VM) {
2244                 t->rseq = NULL;
2245                 t->rseq_sig = 0;
2246                 t->rseq_event_mask = 0;
2247         } else {
2248                 t->rseq = current->rseq;
2249                 t->rseq_sig = current->rseq_sig;
2250                 t->rseq_event_mask = current->rseq_event_mask;
2251         }
2252 }
2253
2254 static inline void rseq_execve(struct task_struct *t)
2255 {
2256         t->rseq = NULL;
2257         t->rseq_sig = 0;
2258         t->rseq_event_mask = 0;
2259 }
2260
2261 #else
2262
2263 static inline void rseq_set_notify_resume(struct task_struct *t)
2264 {
2265 }
2266 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2267                                              struct pt_regs *regs)
2268 {
2269 }
2270 static inline void rseq_signal_deliver(struct ksignal *ksig,
2271                                        struct pt_regs *regs)
2272 {
2273 }
2274 static inline void rseq_preempt(struct task_struct *t)
2275 {
2276 }
2277 static inline void rseq_migrate(struct task_struct *t)
2278 {
2279 }
2280 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2281 {
2282 }
2283 static inline void rseq_execve(struct task_struct *t)
2284 {
2285 }
2286
2287 #endif
2288
2289 #ifdef CONFIG_DEBUG_RSEQ
2290
2291 void rseq_syscall(struct pt_regs *regs);
2292
2293 #else
2294
2295 static inline void rseq_syscall(struct pt_regs *regs)
2296 {
2297 }
2298
2299 #endif
2300
2301 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2302 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2303 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2304
2305 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2306 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2307 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2308
2309 int sched_trace_rq_cpu(struct rq *rq);
2310 int sched_trace_rq_cpu_capacity(struct rq *rq);
2311 int sched_trace_rq_nr_running(struct rq *rq);
2312
2313 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2314
2315 #ifdef CONFIG_SCHED_CORE
2316 extern void sched_core_free(struct task_struct *tsk);
2317 extern void sched_core_fork(struct task_struct *p);
2318 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2319                                 unsigned long uaddr);
2320 #else
2321 static inline void sched_core_free(struct task_struct *tsk) { }
2322 static inline void sched_core_fork(struct task_struct *p) { }
2323 #endif
2324
2325 #endif