Merge tag 'spi-fix-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[linux-2.6-microblaze.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct sched_param;
67 struct seq_file;
68 struct sighand_struct;
69 struct signal_struct;
70 struct task_delay_info;
71 struct task_group;
72 struct user_event_mm;
73
74 /*
75  * Task state bitmask. NOTE! These bits are also
76  * encoded in fs/proc/array.c: get_task_state().
77  *
78  * We have two separate sets of flags: task->state
79  * is about runnability, while task->exit_state are
80  * about the task exiting. Confusing, but this way
81  * modifying one set can't modify the other one by
82  * mistake.
83  */
84
85 /* Used in tsk->state: */
86 #define TASK_RUNNING                    0x00000000
87 #define TASK_INTERRUPTIBLE              0x00000001
88 #define TASK_UNINTERRUPTIBLE            0x00000002
89 #define __TASK_STOPPED                  0x00000004
90 #define __TASK_TRACED                   0x00000008
91 /* Used in tsk->exit_state: */
92 #define EXIT_DEAD                       0x00000010
93 #define EXIT_ZOMBIE                     0x00000020
94 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
95 /* Used in tsk->state again: */
96 #define TASK_PARKED                     0x00000040
97 #define TASK_DEAD                       0x00000080
98 #define TASK_WAKEKILL                   0x00000100
99 #define TASK_WAKING                     0x00000200
100 #define TASK_NOLOAD                     0x00000400
101 #define TASK_NEW                        0x00000800
102 #define TASK_RTLOCK_WAIT                0x00001000
103 #define TASK_FREEZABLE                  0x00002000
104 #define __TASK_FREEZABLE_UNSAFE        (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
105 #define TASK_FROZEN                     0x00008000
106 #define TASK_STATE_MAX                  0x00010000
107
108 #define TASK_ANY                        (TASK_STATE_MAX-1)
109
110 /*
111  * DO NOT ADD ANY NEW USERS !
112  */
113 #define TASK_FREEZABLE_UNSAFE           (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
114
115 /* Convenience macros for the sake of set_current_state: */
116 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
117 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
118 #define TASK_TRACED                     __TASK_TRACED
119
120 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
121
122 /* Convenience macros for the sake of wake_up(): */
123 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
124
125 /* get_task_state(): */
126 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
127                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
128                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
129                                          TASK_PARKED)
130
131 #define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
132
133 #define task_is_traced(task)            ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
134 #define task_is_stopped(task)           ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
135 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
136
137 /*
138  * Special states are those that do not use the normal wait-loop pattern. See
139  * the comment with set_special_state().
140  */
141 #define is_special_task_state(state)                            \
142         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
143
144 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
145 # define debug_normal_state_change(state_value)                         \
146         do {                                                            \
147                 WARN_ON_ONCE(is_special_task_state(state_value));       \
148                 current->task_state_change = _THIS_IP_;                 \
149         } while (0)
150
151 # define debug_special_state_change(state_value)                        \
152         do {                                                            \
153                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
154                 current->task_state_change = _THIS_IP_;                 \
155         } while (0)
156
157 # define debug_rtlock_wait_set_state()                                  \
158         do {                                                             \
159                 current->saved_state_change = current->task_state_change;\
160                 current->task_state_change = _THIS_IP_;                  \
161         } while (0)
162
163 # define debug_rtlock_wait_restore_state()                              \
164         do {                                                             \
165                 current->task_state_change = current->saved_state_change;\
166         } while (0)
167
168 #else
169 # define debug_normal_state_change(cond)        do { } while (0)
170 # define debug_special_state_change(cond)       do { } while (0)
171 # define debug_rtlock_wait_set_state()          do { } while (0)
172 # define debug_rtlock_wait_restore_state()      do { } while (0)
173 #endif
174
175 /*
176  * set_current_state() includes a barrier so that the write of current->state
177  * is correctly serialised wrt the caller's subsequent test of whether to
178  * actually sleep:
179  *
180  *   for (;;) {
181  *      set_current_state(TASK_UNINTERRUPTIBLE);
182  *      if (CONDITION)
183  *         break;
184  *
185  *      schedule();
186  *   }
187  *   __set_current_state(TASK_RUNNING);
188  *
189  * If the caller does not need such serialisation (because, for instance, the
190  * CONDITION test and condition change and wakeup are under the same lock) then
191  * use __set_current_state().
192  *
193  * The above is typically ordered against the wakeup, which does:
194  *
195  *   CONDITION = 1;
196  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
197  *
198  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
199  * accessing p->state.
200  *
201  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
202  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
203  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
204  *
205  * However, with slightly different timing the wakeup TASK_RUNNING store can
206  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
207  * a problem either because that will result in one extra go around the loop
208  * and our @cond test will save the day.
209  *
210  * Also see the comments of try_to_wake_up().
211  */
212 #define __set_current_state(state_value)                                \
213         do {                                                            \
214                 debug_normal_state_change((state_value));               \
215                 WRITE_ONCE(current->__state, (state_value));            \
216         } while (0)
217
218 #define set_current_state(state_value)                                  \
219         do {                                                            \
220                 debug_normal_state_change((state_value));               \
221                 smp_store_mb(current->__state, (state_value));          \
222         } while (0)
223
224 /*
225  * set_special_state() should be used for those states when the blocking task
226  * can not use the regular condition based wait-loop. In that case we must
227  * serialize against wakeups such that any possible in-flight TASK_RUNNING
228  * stores will not collide with our state change.
229  */
230 #define set_special_state(state_value)                                  \
231         do {                                                            \
232                 unsigned long flags; /* may shadow */                   \
233                                                                         \
234                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
235                 debug_special_state_change((state_value));              \
236                 WRITE_ONCE(current->__state, (state_value));            \
237                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
238         } while (0)
239
240 /*
241  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
242  *
243  * RT's spin/rwlock substitutions are state preserving. The state of the
244  * task when blocking on the lock is saved in task_struct::saved_state and
245  * restored after the lock has been acquired.  These operations are
246  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
247  * lock related wakeups while the task is blocked on the lock are
248  * redirected to operate on task_struct::saved_state to ensure that these
249  * are not dropped. On restore task_struct::saved_state is set to
250  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
251  *
252  * The lock operation looks like this:
253  *
254  *      current_save_and_set_rtlock_wait_state();
255  *      for (;;) {
256  *              if (try_lock())
257  *                      break;
258  *              raw_spin_unlock_irq(&lock->wait_lock);
259  *              schedule_rtlock();
260  *              raw_spin_lock_irq(&lock->wait_lock);
261  *              set_current_state(TASK_RTLOCK_WAIT);
262  *      }
263  *      current_restore_rtlock_saved_state();
264  */
265 #define current_save_and_set_rtlock_wait_state()                        \
266         do {                                                            \
267                 lockdep_assert_irqs_disabled();                         \
268                 raw_spin_lock(&current->pi_lock);                       \
269                 current->saved_state = current->__state;                \
270                 debug_rtlock_wait_set_state();                          \
271                 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
272                 raw_spin_unlock(&current->pi_lock);                     \
273         } while (0);
274
275 #define current_restore_rtlock_saved_state()                            \
276         do {                                                            \
277                 lockdep_assert_irqs_disabled();                         \
278                 raw_spin_lock(&current->pi_lock);                       \
279                 debug_rtlock_wait_restore_state();                      \
280                 WRITE_ONCE(current->__state, current->saved_state);     \
281                 current->saved_state = TASK_RUNNING;                    \
282                 raw_spin_unlock(&current->pi_lock);                     \
283         } while (0);
284
285 #define get_current_state()     READ_ONCE(current->__state)
286
287 /*
288  * Define the task command name length as enum, then it can be visible to
289  * BPF programs.
290  */
291 enum {
292         TASK_COMM_LEN = 16,
293 };
294
295 extern void scheduler_tick(void);
296
297 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
298
299 extern long schedule_timeout(long timeout);
300 extern long schedule_timeout_interruptible(long timeout);
301 extern long schedule_timeout_killable(long timeout);
302 extern long schedule_timeout_uninterruptible(long timeout);
303 extern long schedule_timeout_idle(long timeout);
304 asmlinkage void schedule(void);
305 extern void schedule_preempt_disabled(void);
306 asmlinkage void preempt_schedule_irq(void);
307 #ifdef CONFIG_PREEMPT_RT
308  extern void schedule_rtlock(void);
309 #endif
310
311 extern int __must_check io_schedule_prepare(void);
312 extern void io_schedule_finish(int token);
313 extern long io_schedule_timeout(long timeout);
314 extern void io_schedule(void);
315
316 /**
317  * struct prev_cputime - snapshot of system and user cputime
318  * @utime: time spent in user mode
319  * @stime: time spent in system mode
320  * @lock: protects the above two fields
321  *
322  * Stores previous user/system time values such that we can guarantee
323  * monotonicity.
324  */
325 struct prev_cputime {
326 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
327         u64                             utime;
328         u64                             stime;
329         raw_spinlock_t                  lock;
330 #endif
331 };
332
333 enum vtime_state {
334         /* Task is sleeping or running in a CPU with VTIME inactive: */
335         VTIME_INACTIVE = 0,
336         /* Task is idle */
337         VTIME_IDLE,
338         /* Task runs in kernelspace in a CPU with VTIME active: */
339         VTIME_SYS,
340         /* Task runs in userspace in a CPU with VTIME active: */
341         VTIME_USER,
342         /* Task runs as guests in a CPU with VTIME active: */
343         VTIME_GUEST,
344 };
345
346 struct vtime {
347         seqcount_t              seqcount;
348         unsigned long long      starttime;
349         enum vtime_state        state;
350         unsigned int            cpu;
351         u64                     utime;
352         u64                     stime;
353         u64                     gtime;
354 };
355
356 /*
357  * Utilization clamp constraints.
358  * @UCLAMP_MIN: Minimum utilization
359  * @UCLAMP_MAX: Maximum utilization
360  * @UCLAMP_CNT: Utilization clamp constraints count
361  */
362 enum uclamp_id {
363         UCLAMP_MIN = 0,
364         UCLAMP_MAX,
365         UCLAMP_CNT
366 };
367
368 #ifdef CONFIG_SMP
369 extern struct root_domain def_root_domain;
370 extern struct mutex sched_domains_mutex;
371 #endif
372
373 struct sched_info {
374 #ifdef CONFIG_SCHED_INFO
375         /* Cumulative counters: */
376
377         /* # of times we have run on this CPU: */
378         unsigned long                   pcount;
379
380         /* Time spent waiting on a runqueue: */
381         unsigned long long              run_delay;
382
383         /* Timestamps: */
384
385         /* When did we last run on a CPU? */
386         unsigned long long              last_arrival;
387
388         /* When were we last queued to run? */
389         unsigned long long              last_queued;
390
391 #endif /* CONFIG_SCHED_INFO */
392 };
393
394 /*
395  * Integer metrics need fixed point arithmetic, e.g., sched/fair
396  * has a few: load, load_avg, util_avg, freq, and capacity.
397  *
398  * We define a basic fixed point arithmetic range, and then formalize
399  * all these metrics based on that basic range.
400  */
401 # define SCHED_FIXEDPOINT_SHIFT         10
402 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
403
404 /* Increase resolution of cpu_capacity calculations */
405 # define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
406 # define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
407
408 struct load_weight {
409         unsigned long                   weight;
410         u32                             inv_weight;
411 };
412
413 /**
414  * struct util_est - Estimation utilization of FAIR tasks
415  * @enqueued: instantaneous estimated utilization of a task/cpu
416  * @ewma:     the Exponential Weighted Moving Average (EWMA)
417  *            utilization of a task
418  *
419  * Support data structure to track an Exponential Weighted Moving Average
420  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
421  * average each time a task completes an activation. Sample's weight is chosen
422  * so that the EWMA will be relatively insensitive to transient changes to the
423  * task's workload.
424  *
425  * The enqueued attribute has a slightly different meaning for tasks and cpus:
426  * - task:   the task's util_avg at last task dequeue time
427  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
428  * Thus, the util_est.enqueued of a task represents the contribution on the
429  * estimated utilization of the CPU where that task is currently enqueued.
430  *
431  * Only for tasks we track a moving average of the past instantaneous
432  * estimated utilization. This allows to absorb sporadic drops in utilization
433  * of an otherwise almost periodic task.
434  *
435  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
436  * updates. When a task is dequeued, its util_est should not be updated if its
437  * util_avg has not been updated in the meantime.
438  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
439  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
440  * for a task) it is safe to use MSB.
441  */
442 struct util_est {
443         unsigned int                    enqueued;
444         unsigned int                    ewma;
445 #define UTIL_EST_WEIGHT_SHIFT           2
446 #define UTIL_AVG_UNCHANGED              0x80000000
447 } __attribute__((__aligned__(sizeof(u64))));
448
449 /*
450  * The load/runnable/util_avg accumulates an infinite geometric series
451  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
452  *
453  * [load_avg definition]
454  *
455  *   load_avg = runnable% * scale_load_down(load)
456  *
457  * [runnable_avg definition]
458  *
459  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
460  *
461  * [util_avg definition]
462  *
463  *   util_avg = running% * SCHED_CAPACITY_SCALE
464  *
465  * where runnable% is the time ratio that a sched_entity is runnable and
466  * running% the time ratio that a sched_entity is running.
467  *
468  * For cfs_rq, they are the aggregated values of all runnable and blocked
469  * sched_entities.
470  *
471  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
472  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
473  * for computing those signals (see update_rq_clock_pelt())
474  *
475  * N.B., the above ratios (runnable% and running%) themselves are in the
476  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
477  * to as large a range as necessary. This is for example reflected by
478  * util_avg's SCHED_CAPACITY_SCALE.
479  *
480  * [Overflow issue]
481  *
482  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
483  * with the highest load (=88761), always runnable on a single cfs_rq,
484  * and should not overflow as the number already hits PID_MAX_LIMIT.
485  *
486  * For all other cases (including 32-bit kernels), struct load_weight's
487  * weight will overflow first before we do, because:
488  *
489  *    Max(load_avg) <= Max(load.weight)
490  *
491  * Then it is the load_weight's responsibility to consider overflow
492  * issues.
493  */
494 struct sched_avg {
495         u64                             last_update_time;
496         u64                             load_sum;
497         u64                             runnable_sum;
498         u32                             util_sum;
499         u32                             period_contrib;
500         unsigned long                   load_avg;
501         unsigned long                   runnable_avg;
502         unsigned long                   util_avg;
503         struct util_est                 util_est;
504 } ____cacheline_aligned;
505
506 struct sched_statistics {
507 #ifdef CONFIG_SCHEDSTATS
508         u64                             wait_start;
509         u64                             wait_max;
510         u64                             wait_count;
511         u64                             wait_sum;
512         u64                             iowait_count;
513         u64                             iowait_sum;
514
515         u64                             sleep_start;
516         u64                             sleep_max;
517         s64                             sum_sleep_runtime;
518
519         u64                             block_start;
520         u64                             block_max;
521         s64                             sum_block_runtime;
522
523         u64                             exec_max;
524         u64                             slice_max;
525
526         u64                             nr_migrations_cold;
527         u64                             nr_failed_migrations_affine;
528         u64                             nr_failed_migrations_running;
529         u64                             nr_failed_migrations_hot;
530         u64                             nr_forced_migrations;
531
532         u64                             nr_wakeups;
533         u64                             nr_wakeups_sync;
534         u64                             nr_wakeups_migrate;
535         u64                             nr_wakeups_local;
536         u64                             nr_wakeups_remote;
537         u64                             nr_wakeups_affine;
538         u64                             nr_wakeups_affine_attempts;
539         u64                             nr_wakeups_passive;
540         u64                             nr_wakeups_idle;
541
542 #ifdef CONFIG_SCHED_CORE
543         u64                             core_forceidle_sum;
544 #endif
545 #endif /* CONFIG_SCHEDSTATS */
546 } ____cacheline_aligned;
547
548 struct sched_entity {
549         /* For load-balancing: */
550         struct load_weight              load;
551         struct rb_node                  run_node;
552         struct list_head                group_node;
553         unsigned int                    on_rq;
554
555         u64                             exec_start;
556         u64                             sum_exec_runtime;
557         u64                             vruntime;
558         u64                             prev_sum_exec_runtime;
559
560         u64                             nr_migrations;
561
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563         int                             depth;
564         struct sched_entity             *parent;
565         /* rq on which this entity is (to be) queued: */
566         struct cfs_rq                   *cfs_rq;
567         /* rq "owned" by this entity/group: */
568         struct cfs_rq                   *my_q;
569         /* cached value of my_q->h_nr_running */
570         unsigned long                   runnable_weight;
571 #endif
572
573 #ifdef CONFIG_SMP
574         /*
575          * Per entity load average tracking.
576          *
577          * Put into separate cache line so it does not
578          * collide with read-mostly values above.
579          */
580         struct sched_avg                avg;
581 #endif
582 };
583
584 struct sched_rt_entity {
585         struct list_head                run_list;
586         unsigned long                   timeout;
587         unsigned long                   watchdog_stamp;
588         unsigned int                    time_slice;
589         unsigned short                  on_rq;
590         unsigned short                  on_list;
591
592         struct sched_rt_entity          *back;
593 #ifdef CONFIG_RT_GROUP_SCHED
594         struct sched_rt_entity          *parent;
595         /* rq on which this entity is (to be) queued: */
596         struct rt_rq                    *rt_rq;
597         /* rq "owned" by this entity/group: */
598         struct rt_rq                    *my_q;
599 #endif
600 } __randomize_layout;
601
602 struct sched_dl_entity {
603         struct rb_node                  rb_node;
604
605         /*
606          * Original scheduling parameters. Copied here from sched_attr
607          * during sched_setattr(), they will remain the same until
608          * the next sched_setattr().
609          */
610         u64                             dl_runtime;     /* Maximum runtime for each instance    */
611         u64                             dl_deadline;    /* Relative deadline of each instance   */
612         u64                             dl_period;      /* Separation of two instances (period) */
613         u64                             dl_bw;          /* dl_runtime / dl_period               */
614         u64                             dl_density;     /* dl_runtime / dl_deadline             */
615
616         /*
617          * Actual scheduling parameters. Initialized with the values above,
618          * they are continuously updated during task execution. Note that
619          * the remaining runtime could be < 0 in case we are in overrun.
620          */
621         s64                             runtime;        /* Remaining runtime for this instance  */
622         u64                             deadline;       /* Absolute deadline for this instance  */
623         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
624
625         /*
626          * Some bool flags:
627          *
628          * @dl_throttled tells if we exhausted the runtime. If so, the
629          * task has to wait for a replenishment to be performed at the
630          * next firing of dl_timer.
631          *
632          * @dl_yielded tells if task gave up the CPU before consuming
633          * all its available runtime during the last job.
634          *
635          * @dl_non_contending tells if the task is inactive while still
636          * contributing to the active utilization. In other words, it
637          * indicates if the inactive timer has been armed and its handler
638          * has not been executed yet. This flag is useful to avoid race
639          * conditions between the inactive timer handler and the wakeup
640          * code.
641          *
642          * @dl_overrun tells if the task asked to be informed about runtime
643          * overruns.
644          */
645         unsigned int                    dl_throttled      : 1;
646         unsigned int                    dl_yielded        : 1;
647         unsigned int                    dl_non_contending : 1;
648         unsigned int                    dl_overrun        : 1;
649
650         /*
651          * Bandwidth enforcement timer. Each -deadline task has its
652          * own bandwidth to be enforced, thus we need one timer per task.
653          */
654         struct hrtimer                  dl_timer;
655
656         /*
657          * Inactive timer, responsible for decreasing the active utilization
658          * at the "0-lag time". When a -deadline task blocks, it contributes
659          * to GRUB's active utilization until the "0-lag time", hence a
660          * timer is needed to decrease the active utilization at the correct
661          * time.
662          */
663         struct hrtimer inactive_timer;
664
665 #ifdef CONFIG_RT_MUTEXES
666         /*
667          * Priority Inheritance. When a DEADLINE scheduling entity is boosted
668          * pi_se points to the donor, otherwise points to the dl_se it belongs
669          * to (the original one/itself).
670          */
671         struct sched_dl_entity *pi_se;
672 #endif
673 };
674
675 #ifdef CONFIG_UCLAMP_TASK
676 /* Number of utilization clamp buckets (shorter alias) */
677 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
678
679 /*
680  * Utilization clamp for a scheduling entity
681  * @value:              clamp value "assigned" to a se
682  * @bucket_id:          bucket index corresponding to the "assigned" value
683  * @active:             the se is currently refcounted in a rq's bucket
684  * @user_defined:       the requested clamp value comes from user-space
685  *
686  * The bucket_id is the index of the clamp bucket matching the clamp value
687  * which is pre-computed and stored to avoid expensive integer divisions from
688  * the fast path.
689  *
690  * The active bit is set whenever a task has got an "effective" value assigned,
691  * which can be different from the clamp value "requested" from user-space.
692  * This allows to know a task is refcounted in the rq's bucket corresponding
693  * to the "effective" bucket_id.
694  *
695  * The user_defined bit is set whenever a task has got a task-specific clamp
696  * value requested from userspace, i.e. the system defaults apply to this task
697  * just as a restriction. This allows to relax default clamps when a less
698  * restrictive task-specific value has been requested, thus allowing to
699  * implement a "nice" semantic. For example, a task running with a 20%
700  * default boost can still drop its own boosting to 0%.
701  */
702 struct uclamp_se {
703         unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
704         unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
705         unsigned int active             : 1;
706         unsigned int user_defined       : 1;
707 };
708 #endif /* CONFIG_UCLAMP_TASK */
709
710 union rcu_special {
711         struct {
712                 u8                      blocked;
713                 u8                      need_qs;
714                 u8                      exp_hint; /* Hint for performance. */
715                 u8                      need_mb; /* Readers need smp_mb(). */
716         } b; /* Bits. */
717         u32 s; /* Set of bits. */
718 };
719
720 enum perf_event_task_context {
721         perf_invalid_context = -1,
722         perf_hw_context = 0,
723         perf_sw_context,
724         perf_nr_task_contexts,
725 };
726
727 struct wake_q_node {
728         struct wake_q_node *next;
729 };
730
731 struct kmap_ctrl {
732 #ifdef CONFIG_KMAP_LOCAL
733         int                             idx;
734         pte_t                           pteval[KM_MAX_IDX];
735 #endif
736 };
737
738 struct task_struct {
739 #ifdef CONFIG_THREAD_INFO_IN_TASK
740         /*
741          * For reasons of header soup (see current_thread_info()), this
742          * must be the first element of task_struct.
743          */
744         struct thread_info              thread_info;
745 #endif
746         unsigned int                    __state;
747
748 #ifdef CONFIG_PREEMPT_RT
749         /* saved state for "spinlock sleepers" */
750         unsigned int                    saved_state;
751 #endif
752
753         /*
754          * This begins the randomizable portion of task_struct. Only
755          * scheduling-critical items should be added above here.
756          */
757         randomized_struct_fields_start
758
759         void                            *stack;
760         refcount_t                      usage;
761         /* Per task flags (PF_*), defined further below: */
762         unsigned int                    flags;
763         unsigned int                    ptrace;
764
765 #ifdef CONFIG_SMP
766         int                             on_cpu;
767         struct __call_single_node       wake_entry;
768         unsigned int                    wakee_flips;
769         unsigned long                   wakee_flip_decay_ts;
770         struct task_struct              *last_wakee;
771
772         /*
773          * recent_used_cpu is initially set as the last CPU used by a task
774          * that wakes affine another task. Waker/wakee relationships can
775          * push tasks around a CPU where each wakeup moves to the next one.
776          * Tracking a recently used CPU allows a quick search for a recently
777          * used CPU that may be idle.
778          */
779         int                             recent_used_cpu;
780         int                             wake_cpu;
781 #endif
782         int                             on_rq;
783
784         int                             prio;
785         int                             static_prio;
786         int                             normal_prio;
787         unsigned int                    rt_priority;
788
789         struct sched_entity             se;
790         struct sched_rt_entity          rt;
791         struct sched_dl_entity          dl;
792         const struct sched_class        *sched_class;
793
794 #ifdef CONFIG_SCHED_CORE
795         struct rb_node                  core_node;
796         unsigned long                   core_cookie;
797         unsigned int                    core_occupation;
798 #endif
799
800 #ifdef CONFIG_CGROUP_SCHED
801         struct task_group               *sched_task_group;
802 #endif
803
804 #ifdef CONFIG_UCLAMP_TASK
805         /*
806          * Clamp values requested for a scheduling entity.
807          * Must be updated with task_rq_lock() held.
808          */
809         struct uclamp_se                uclamp_req[UCLAMP_CNT];
810         /*
811          * Effective clamp values used for a scheduling entity.
812          * Must be updated with task_rq_lock() held.
813          */
814         struct uclamp_se                uclamp[UCLAMP_CNT];
815 #endif
816
817         struct sched_statistics         stats;
818
819 #ifdef CONFIG_PREEMPT_NOTIFIERS
820         /* List of struct preempt_notifier: */
821         struct hlist_head               preempt_notifiers;
822 #endif
823
824 #ifdef CONFIG_BLK_DEV_IO_TRACE
825         unsigned int                    btrace_seq;
826 #endif
827
828         unsigned int                    policy;
829         int                             nr_cpus_allowed;
830         const cpumask_t                 *cpus_ptr;
831         cpumask_t                       *user_cpus_ptr;
832         cpumask_t                       cpus_mask;
833         void                            *migration_pending;
834 #ifdef CONFIG_SMP
835         unsigned short                  migration_disabled;
836 #endif
837         unsigned short                  migration_flags;
838
839 #ifdef CONFIG_PREEMPT_RCU
840         int                             rcu_read_lock_nesting;
841         union rcu_special               rcu_read_unlock_special;
842         struct list_head                rcu_node_entry;
843         struct rcu_node                 *rcu_blocked_node;
844 #endif /* #ifdef CONFIG_PREEMPT_RCU */
845
846 #ifdef CONFIG_TASKS_RCU
847         unsigned long                   rcu_tasks_nvcsw;
848         u8                              rcu_tasks_holdout;
849         u8                              rcu_tasks_idx;
850         int                             rcu_tasks_idle_cpu;
851         struct list_head                rcu_tasks_holdout_list;
852 #endif /* #ifdef CONFIG_TASKS_RCU */
853
854 #ifdef CONFIG_TASKS_TRACE_RCU
855         int                             trc_reader_nesting;
856         int                             trc_ipi_to_cpu;
857         union rcu_special               trc_reader_special;
858         struct list_head                trc_holdout_list;
859         struct list_head                trc_blkd_node;
860         int                             trc_blkd_cpu;
861 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
862
863         struct sched_info               sched_info;
864
865         struct list_head                tasks;
866 #ifdef CONFIG_SMP
867         struct plist_node               pushable_tasks;
868         struct rb_node                  pushable_dl_tasks;
869 #endif
870
871         struct mm_struct                *mm;
872         struct mm_struct                *active_mm;
873
874         int                             exit_state;
875         int                             exit_code;
876         int                             exit_signal;
877         /* The signal sent when the parent dies: */
878         int                             pdeath_signal;
879         /* JOBCTL_*, siglock protected: */
880         unsigned long                   jobctl;
881
882         /* Used for emulating ABI behavior of previous Linux versions: */
883         unsigned int                    personality;
884
885         /* Scheduler bits, serialized by scheduler locks: */
886         unsigned                        sched_reset_on_fork:1;
887         unsigned                        sched_contributes_to_load:1;
888         unsigned                        sched_migrated:1;
889
890         /* Force alignment to the next boundary: */
891         unsigned                        :0;
892
893         /* Unserialized, strictly 'current' */
894
895         /*
896          * This field must not be in the scheduler word above due to wakelist
897          * queueing no longer being serialized by p->on_cpu. However:
898          *
899          * p->XXX = X;                  ttwu()
900          * schedule()                     if (p->on_rq && ..) // false
901          *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
902          *   deactivate_task()                ttwu_queue_wakelist())
903          *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
904          *
905          * guarantees all stores of 'current' are visible before
906          * ->sched_remote_wakeup gets used, so it can be in this word.
907          */
908         unsigned                        sched_remote_wakeup:1;
909
910         /* Bit to tell LSMs we're in execve(): */
911         unsigned                        in_execve:1;
912         unsigned                        in_iowait:1;
913 #ifndef TIF_RESTORE_SIGMASK
914         unsigned                        restore_sigmask:1;
915 #endif
916 #ifdef CONFIG_MEMCG
917         unsigned                        in_user_fault:1;
918 #endif
919 #ifdef CONFIG_LRU_GEN
920         /* whether the LRU algorithm may apply to this access */
921         unsigned                        in_lru_fault:1;
922 #endif
923 #ifdef CONFIG_COMPAT_BRK
924         unsigned                        brk_randomized:1;
925 #endif
926 #ifdef CONFIG_CGROUPS
927         /* disallow userland-initiated cgroup migration */
928         unsigned                        no_cgroup_migration:1;
929         /* task is frozen/stopped (used by the cgroup freezer) */
930         unsigned                        frozen:1;
931 #endif
932 #ifdef CONFIG_BLK_CGROUP
933         unsigned                        use_memdelay:1;
934 #endif
935 #ifdef CONFIG_PSI
936         /* Stalled due to lack of memory */
937         unsigned                        in_memstall:1;
938 #endif
939 #ifdef CONFIG_PAGE_OWNER
940         /* Used by page_owner=on to detect recursion in page tracking. */
941         unsigned                        in_page_owner:1;
942 #endif
943 #ifdef CONFIG_EVENTFD
944         /* Recursion prevention for eventfd_signal() */
945         unsigned                        in_eventfd:1;
946 #endif
947 #ifdef CONFIG_IOMMU_SVA
948         unsigned                        pasid_activated:1;
949 #endif
950 #ifdef  CONFIG_CPU_SUP_INTEL
951         unsigned                        reported_split_lock:1;
952 #endif
953 #ifdef CONFIG_TASK_DELAY_ACCT
954         /* delay due to memory thrashing */
955         unsigned                        in_thrashing:1;
956 #endif
957
958         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
959
960         struct restart_block            restart_block;
961
962         pid_t                           pid;
963         pid_t                           tgid;
964
965 #ifdef CONFIG_STACKPROTECTOR
966         /* Canary value for the -fstack-protector GCC feature: */
967         unsigned long                   stack_canary;
968 #endif
969         /*
970          * Pointers to the (original) parent process, youngest child, younger sibling,
971          * older sibling, respectively.  (p->father can be replaced with
972          * p->real_parent->pid)
973          */
974
975         /* Real parent process: */
976         struct task_struct __rcu        *real_parent;
977
978         /* Recipient of SIGCHLD, wait4() reports: */
979         struct task_struct __rcu        *parent;
980
981         /*
982          * Children/sibling form the list of natural children:
983          */
984         struct list_head                children;
985         struct list_head                sibling;
986         struct task_struct              *group_leader;
987
988         /*
989          * 'ptraced' is the list of tasks this task is using ptrace() on.
990          *
991          * This includes both natural children and PTRACE_ATTACH targets.
992          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
993          */
994         struct list_head                ptraced;
995         struct list_head                ptrace_entry;
996
997         /* PID/PID hash table linkage. */
998         struct pid                      *thread_pid;
999         struct hlist_node               pid_links[PIDTYPE_MAX];
1000         struct list_head                thread_group;
1001         struct list_head                thread_node;
1002
1003         struct completion               *vfork_done;
1004
1005         /* CLONE_CHILD_SETTID: */
1006         int __user                      *set_child_tid;
1007
1008         /* CLONE_CHILD_CLEARTID: */
1009         int __user                      *clear_child_tid;
1010
1011         /* PF_KTHREAD | PF_IO_WORKER */
1012         void                            *worker_private;
1013
1014         u64                             utime;
1015         u64                             stime;
1016 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1017         u64                             utimescaled;
1018         u64                             stimescaled;
1019 #endif
1020         u64                             gtime;
1021         struct prev_cputime             prev_cputime;
1022 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1023         struct vtime                    vtime;
1024 #endif
1025
1026 #ifdef CONFIG_NO_HZ_FULL
1027         atomic_t                        tick_dep_mask;
1028 #endif
1029         /* Context switch counts: */
1030         unsigned long                   nvcsw;
1031         unsigned long                   nivcsw;
1032
1033         /* Monotonic time in nsecs: */
1034         u64                             start_time;
1035
1036         /* Boot based time in nsecs: */
1037         u64                             start_boottime;
1038
1039         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1040         unsigned long                   min_flt;
1041         unsigned long                   maj_flt;
1042
1043         /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1044         struct posix_cputimers          posix_cputimers;
1045
1046 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1047         struct posix_cputimers_work     posix_cputimers_work;
1048 #endif
1049
1050         /* Process credentials: */
1051
1052         /* Tracer's credentials at attach: */
1053         const struct cred __rcu         *ptracer_cred;
1054
1055         /* Objective and real subjective task credentials (COW): */
1056         const struct cred __rcu         *real_cred;
1057
1058         /* Effective (overridable) subjective task credentials (COW): */
1059         const struct cred __rcu         *cred;
1060
1061 #ifdef CONFIG_KEYS
1062         /* Cached requested key. */
1063         struct key                      *cached_requested_key;
1064 #endif
1065
1066         /*
1067          * executable name, excluding path.
1068          *
1069          * - normally initialized setup_new_exec()
1070          * - access it with [gs]et_task_comm()
1071          * - lock it with task_lock()
1072          */
1073         char                            comm[TASK_COMM_LEN];
1074
1075         struct nameidata                *nameidata;
1076
1077 #ifdef CONFIG_SYSVIPC
1078         struct sysv_sem                 sysvsem;
1079         struct sysv_shm                 sysvshm;
1080 #endif
1081 #ifdef CONFIG_DETECT_HUNG_TASK
1082         unsigned long                   last_switch_count;
1083         unsigned long                   last_switch_time;
1084 #endif
1085         /* Filesystem information: */
1086         struct fs_struct                *fs;
1087
1088         /* Open file information: */
1089         struct files_struct             *files;
1090
1091 #ifdef CONFIG_IO_URING
1092         struct io_uring_task            *io_uring;
1093 #endif
1094
1095         /* Namespaces: */
1096         struct nsproxy                  *nsproxy;
1097
1098         /* Signal handlers: */
1099         struct signal_struct            *signal;
1100         struct sighand_struct __rcu             *sighand;
1101         sigset_t                        blocked;
1102         sigset_t                        real_blocked;
1103         /* Restored if set_restore_sigmask() was used: */
1104         sigset_t                        saved_sigmask;
1105         struct sigpending               pending;
1106         unsigned long                   sas_ss_sp;
1107         size_t                          sas_ss_size;
1108         unsigned int                    sas_ss_flags;
1109
1110         struct callback_head            *task_works;
1111
1112 #ifdef CONFIG_AUDIT
1113 #ifdef CONFIG_AUDITSYSCALL
1114         struct audit_context            *audit_context;
1115 #endif
1116         kuid_t                          loginuid;
1117         unsigned int                    sessionid;
1118 #endif
1119         struct seccomp                  seccomp;
1120         struct syscall_user_dispatch    syscall_dispatch;
1121
1122         /* Thread group tracking: */
1123         u64                             parent_exec_id;
1124         u64                             self_exec_id;
1125
1126         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1127         spinlock_t                      alloc_lock;
1128
1129         /* Protection of the PI data structures: */
1130         raw_spinlock_t                  pi_lock;
1131
1132         struct wake_q_node              wake_q;
1133
1134 #ifdef CONFIG_RT_MUTEXES
1135         /* PI waiters blocked on a rt_mutex held by this task: */
1136         struct rb_root_cached           pi_waiters;
1137         /* Updated under owner's pi_lock and rq lock */
1138         struct task_struct              *pi_top_task;
1139         /* Deadlock detection and priority inheritance handling: */
1140         struct rt_mutex_waiter          *pi_blocked_on;
1141 #endif
1142
1143 #ifdef CONFIG_DEBUG_MUTEXES
1144         /* Mutex deadlock detection: */
1145         struct mutex_waiter             *blocked_on;
1146 #endif
1147
1148 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1149         int                             non_block_count;
1150 #endif
1151
1152 #ifdef CONFIG_TRACE_IRQFLAGS
1153         struct irqtrace_events          irqtrace;
1154         unsigned int                    hardirq_threaded;
1155         u64                             hardirq_chain_key;
1156         int                             softirqs_enabled;
1157         int                             softirq_context;
1158         int                             irq_config;
1159 #endif
1160 #ifdef CONFIG_PREEMPT_RT
1161         int                             softirq_disable_cnt;
1162 #endif
1163
1164 #ifdef CONFIG_LOCKDEP
1165 # define MAX_LOCK_DEPTH                 48UL
1166         u64                             curr_chain_key;
1167         int                             lockdep_depth;
1168         unsigned int                    lockdep_recursion;
1169         struct held_lock                held_locks[MAX_LOCK_DEPTH];
1170 #endif
1171
1172 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1173         unsigned int                    in_ubsan;
1174 #endif
1175
1176         /* Journalling filesystem info: */
1177         void                            *journal_info;
1178
1179         /* Stacked block device info: */
1180         struct bio_list                 *bio_list;
1181
1182         /* Stack plugging: */
1183         struct blk_plug                 *plug;
1184
1185         /* VM state: */
1186         struct reclaim_state            *reclaim_state;
1187
1188         struct io_context               *io_context;
1189
1190 #ifdef CONFIG_COMPACTION
1191         struct capture_control          *capture_control;
1192 #endif
1193         /* Ptrace state: */
1194         unsigned long                   ptrace_message;
1195         kernel_siginfo_t                *last_siginfo;
1196
1197         struct task_io_accounting       ioac;
1198 #ifdef CONFIG_PSI
1199         /* Pressure stall state */
1200         unsigned int                    psi_flags;
1201 #endif
1202 #ifdef CONFIG_TASK_XACCT
1203         /* Accumulated RSS usage: */
1204         u64                             acct_rss_mem1;
1205         /* Accumulated virtual memory usage: */
1206         u64                             acct_vm_mem1;
1207         /* stime + utime since last update: */
1208         u64                             acct_timexpd;
1209 #endif
1210 #ifdef CONFIG_CPUSETS
1211         /* Protected by ->alloc_lock: */
1212         nodemask_t                      mems_allowed;
1213         /* Sequence number to catch updates: */
1214         seqcount_spinlock_t             mems_allowed_seq;
1215         int                             cpuset_mem_spread_rotor;
1216         int                             cpuset_slab_spread_rotor;
1217 #endif
1218 #ifdef CONFIG_CGROUPS
1219         /* Control Group info protected by css_set_lock: */
1220         struct css_set __rcu            *cgroups;
1221         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1222         struct list_head                cg_list;
1223 #endif
1224 #ifdef CONFIG_X86_CPU_RESCTRL
1225         u32                             closid;
1226         u32                             rmid;
1227 #endif
1228 #ifdef CONFIG_FUTEX
1229         struct robust_list_head __user  *robust_list;
1230 #ifdef CONFIG_COMPAT
1231         struct compat_robust_list_head __user *compat_robust_list;
1232 #endif
1233         struct list_head                pi_state_list;
1234         struct futex_pi_state           *pi_state_cache;
1235         struct mutex                    futex_exit_mutex;
1236         unsigned int                    futex_state;
1237 #endif
1238 #ifdef CONFIG_PERF_EVENTS
1239         struct perf_event_context       *perf_event_ctxp;
1240         struct mutex                    perf_event_mutex;
1241         struct list_head                perf_event_list;
1242 #endif
1243 #ifdef CONFIG_DEBUG_PREEMPT
1244         unsigned long                   preempt_disable_ip;
1245 #endif
1246 #ifdef CONFIG_NUMA
1247         /* Protected by alloc_lock: */
1248         struct mempolicy                *mempolicy;
1249         short                           il_prev;
1250         short                           pref_node_fork;
1251 #endif
1252 #ifdef CONFIG_NUMA_BALANCING
1253         int                             numa_scan_seq;
1254         unsigned int                    numa_scan_period;
1255         unsigned int                    numa_scan_period_max;
1256         int                             numa_preferred_nid;
1257         unsigned long                   numa_migrate_retry;
1258         /* Migration stamp: */
1259         u64                             node_stamp;
1260         u64                             last_task_numa_placement;
1261         u64                             last_sum_exec_runtime;
1262         struct callback_head            numa_work;
1263
1264         /*
1265          * This pointer is only modified for current in syscall and
1266          * pagefault context (and for tasks being destroyed), so it can be read
1267          * from any of the following contexts:
1268          *  - RCU read-side critical section
1269          *  - current->numa_group from everywhere
1270          *  - task's runqueue locked, task not running
1271          */
1272         struct numa_group __rcu         *numa_group;
1273
1274         /*
1275          * numa_faults is an array split into four regions:
1276          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1277          * in this precise order.
1278          *
1279          * faults_memory: Exponential decaying average of faults on a per-node
1280          * basis. Scheduling placement decisions are made based on these
1281          * counts. The values remain static for the duration of a PTE scan.
1282          * faults_cpu: Track the nodes the process was running on when a NUMA
1283          * hinting fault was incurred.
1284          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1285          * during the current scan window. When the scan completes, the counts
1286          * in faults_memory and faults_cpu decay and these values are copied.
1287          */
1288         unsigned long                   *numa_faults;
1289         unsigned long                   total_numa_faults;
1290
1291         /*
1292          * numa_faults_locality tracks if faults recorded during the last
1293          * scan window were remote/local or failed to migrate. The task scan
1294          * period is adapted based on the locality of the faults with different
1295          * weights depending on whether they were shared or private faults
1296          */
1297         unsigned long                   numa_faults_locality[3];
1298
1299         unsigned long                   numa_pages_migrated;
1300 #endif /* CONFIG_NUMA_BALANCING */
1301
1302 #ifdef CONFIG_RSEQ
1303         struct rseq __user *rseq;
1304         u32 rseq_len;
1305         u32 rseq_sig;
1306         /*
1307          * RmW on rseq_event_mask must be performed atomically
1308          * with respect to preemption.
1309          */
1310         unsigned long rseq_event_mask;
1311 #endif
1312
1313 #ifdef CONFIG_SCHED_MM_CID
1314         int                             mm_cid;         /* Current cid in mm */
1315         int                             last_mm_cid;    /* Most recent cid in mm */
1316         int                             migrate_from_cpu;
1317         int                             mm_cid_active;  /* Whether cid bitmap is active */
1318         struct callback_head            cid_work;
1319 #endif
1320
1321         struct tlbflush_unmap_batch     tlb_ubc;
1322
1323         /* Cache last used pipe for splice(): */
1324         struct pipe_inode_info          *splice_pipe;
1325
1326         struct page_frag                task_frag;
1327
1328 #ifdef CONFIG_TASK_DELAY_ACCT
1329         struct task_delay_info          *delays;
1330 #endif
1331
1332 #ifdef CONFIG_FAULT_INJECTION
1333         int                             make_it_fail;
1334         unsigned int                    fail_nth;
1335 #endif
1336         /*
1337          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1338          * balance_dirty_pages() for a dirty throttling pause:
1339          */
1340         int                             nr_dirtied;
1341         int                             nr_dirtied_pause;
1342         /* Start of a write-and-pause period: */
1343         unsigned long                   dirty_paused_when;
1344
1345 #ifdef CONFIG_LATENCYTOP
1346         int                             latency_record_count;
1347         struct latency_record           latency_record[LT_SAVECOUNT];
1348 #endif
1349         /*
1350          * Time slack values; these are used to round up poll() and
1351          * select() etc timeout values. These are in nanoseconds.
1352          */
1353         u64                             timer_slack_ns;
1354         u64                             default_timer_slack_ns;
1355
1356 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1357         unsigned int                    kasan_depth;
1358 #endif
1359
1360 #ifdef CONFIG_KCSAN
1361         struct kcsan_ctx                kcsan_ctx;
1362 #ifdef CONFIG_TRACE_IRQFLAGS
1363         struct irqtrace_events          kcsan_save_irqtrace;
1364 #endif
1365 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1366         int                             kcsan_stack_depth;
1367 #endif
1368 #endif
1369
1370 #ifdef CONFIG_KMSAN
1371         struct kmsan_ctx                kmsan_ctx;
1372 #endif
1373
1374 #if IS_ENABLED(CONFIG_KUNIT)
1375         struct kunit                    *kunit_test;
1376 #endif
1377
1378 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1379         /* Index of current stored address in ret_stack: */
1380         int                             curr_ret_stack;
1381         int                             curr_ret_depth;
1382
1383         /* Stack of return addresses for return function tracing: */
1384         struct ftrace_ret_stack         *ret_stack;
1385
1386         /* Timestamp for last schedule: */
1387         unsigned long long              ftrace_timestamp;
1388
1389         /*
1390          * Number of functions that haven't been traced
1391          * because of depth overrun:
1392          */
1393         atomic_t                        trace_overrun;
1394
1395         /* Pause tracing: */
1396         atomic_t                        tracing_graph_pause;
1397 #endif
1398
1399 #ifdef CONFIG_TRACING
1400         /* Bitmask and counter of trace recursion: */
1401         unsigned long                   trace_recursion;
1402 #endif /* CONFIG_TRACING */
1403
1404 #ifdef CONFIG_KCOV
1405         /* See kernel/kcov.c for more details. */
1406
1407         /* Coverage collection mode enabled for this task (0 if disabled): */
1408         unsigned int                    kcov_mode;
1409
1410         /* Size of the kcov_area: */
1411         unsigned int                    kcov_size;
1412
1413         /* Buffer for coverage collection: */
1414         void                            *kcov_area;
1415
1416         /* KCOV descriptor wired with this task or NULL: */
1417         struct kcov                     *kcov;
1418
1419         /* KCOV common handle for remote coverage collection: */
1420         u64                             kcov_handle;
1421
1422         /* KCOV sequence number: */
1423         int                             kcov_sequence;
1424
1425         /* Collect coverage from softirq context: */
1426         unsigned int                    kcov_softirq;
1427 #endif
1428
1429 #ifdef CONFIG_MEMCG
1430         struct mem_cgroup               *memcg_in_oom;
1431         gfp_t                           memcg_oom_gfp_mask;
1432         int                             memcg_oom_order;
1433
1434         /* Number of pages to reclaim on returning to userland: */
1435         unsigned int                    memcg_nr_pages_over_high;
1436
1437         /* Used by memcontrol for targeted memcg charge: */
1438         struct mem_cgroup               *active_memcg;
1439 #endif
1440
1441 #ifdef CONFIG_BLK_CGROUP
1442         struct gendisk                  *throttle_disk;
1443 #endif
1444
1445 #ifdef CONFIG_UPROBES
1446         struct uprobe_task              *utask;
1447 #endif
1448 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1449         unsigned int                    sequential_io;
1450         unsigned int                    sequential_io_avg;
1451 #endif
1452         struct kmap_ctrl                kmap_ctrl;
1453 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1454         unsigned long                   task_state_change;
1455 # ifdef CONFIG_PREEMPT_RT
1456         unsigned long                   saved_state_change;
1457 # endif
1458 #endif
1459         struct rcu_head                 rcu;
1460         refcount_t                      rcu_users;
1461         int                             pagefault_disabled;
1462 #ifdef CONFIG_MMU
1463         struct task_struct              *oom_reaper_list;
1464         struct timer_list               oom_reaper_timer;
1465 #endif
1466 #ifdef CONFIG_VMAP_STACK
1467         struct vm_struct                *stack_vm_area;
1468 #endif
1469 #ifdef CONFIG_THREAD_INFO_IN_TASK
1470         /* A live task holds one reference: */
1471         refcount_t                      stack_refcount;
1472 #endif
1473 #ifdef CONFIG_LIVEPATCH
1474         int patch_state;
1475 #endif
1476 #ifdef CONFIG_SECURITY
1477         /* Used by LSM modules for access restriction: */
1478         void                            *security;
1479 #endif
1480 #ifdef CONFIG_BPF_SYSCALL
1481         /* Used by BPF task local storage */
1482         struct bpf_local_storage __rcu  *bpf_storage;
1483         /* Used for BPF run context */
1484         struct bpf_run_ctx              *bpf_ctx;
1485 #endif
1486
1487 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1488         unsigned long                   lowest_stack;
1489         unsigned long                   prev_lowest_stack;
1490 #endif
1491
1492 #ifdef CONFIG_X86_MCE
1493         void __user                     *mce_vaddr;
1494         __u64                           mce_kflags;
1495         u64                             mce_addr;
1496         __u64                           mce_ripv : 1,
1497                                         mce_whole_page : 1,
1498                                         __mce_reserved : 62;
1499         struct callback_head            mce_kill_me;
1500         int                             mce_count;
1501 #endif
1502
1503 #ifdef CONFIG_KRETPROBES
1504         struct llist_head               kretprobe_instances;
1505 #endif
1506 #ifdef CONFIG_RETHOOK
1507         struct llist_head               rethooks;
1508 #endif
1509
1510 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1511         /*
1512          * If L1D flush is supported on mm context switch
1513          * then we use this callback head to queue kill work
1514          * to kill tasks that are not running on SMT disabled
1515          * cores
1516          */
1517         struct callback_head            l1d_flush_kill;
1518 #endif
1519
1520 #ifdef CONFIG_RV
1521         /*
1522          * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1523          * If we find justification for more monitors, we can think
1524          * about adding more or developing a dynamic method. So far,
1525          * none of these are justified.
1526          */
1527         union rv_task_monitor           rv[RV_PER_TASK_MONITORS];
1528 #endif
1529
1530 #ifdef CONFIG_USER_EVENTS
1531         struct user_event_mm            *user_event_mm;
1532 #endif
1533
1534         /*
1535          * New fields for task_struct should be added above here, so that
1536          * they are included in the randomized portion of task_struct.
1537          */
1538         randomized_struct_fields_end
1539
1540         /* CPU-specific state of this task: */
1541         struct thread_struct            thread;
1542
1543         /*
1544          * WARNING: on x86, 'thread_struct' contains a variable-sized
1545          * structure.  It *MUST* be at the end of 'task_struct'.
1546          *
1547          * Do not put anything below here!
1548          */
1549 };
1550
1551 static inline struct pid *task_pid(struct task_struct *task)
1552 {
1553         return task->thread_pid;
1554 }
1555
1556 /*
1557  * the helpers to get the task's different pids as they are seen
1558  * from various namespaces
1559  *
1560  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1561  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1562  *                     current.
1563  * task_xid_nr_ns()  : id seen from the ns specified;
1564  *
1565  * see also pid_nr() etc in include/linux/pid.h
1566  */
1567 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1568
1569 static inline pid_t task_pid_nr(struct task_struct *tsk)
1570 {
1571         return tsk->pid;
1572 }
1573
1574 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1575 {
1576         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1577 }
1578
1579 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1580 {
1581         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1582 }
1583
1584
1585 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1586 {
1587         return tsk->tgid;
1588 }
1589
1590 /**
1591  * pid_alive - check that a task structure is not stale
1592  * @p: Task structure to be checked.
1593  *
1594  * Test if a process is not yet dead (at most zombie state)
1595  * If pid_alive fails, then pointers within the task structure
1596  * can be stale and must not be dereferenced.
1597  *
1598  * Return: 1 if the process is alive. 0 otherwise.
1599  */
1600 static inline int pid_alive(const struct task_struct *p)
1601 {
1602         return p->thread_pid != NULL;
1603 }
1604
1605 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1606 {
1607         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1608 }
1609
1610 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1611 {
1612         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1613 }
1614
1615
1616 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1617 {
1618         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1619 }
1620
1621 static inline pid_t task_session_vnr(struct task_struct *tsk)
1622 {
1623         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1624 }
1625
1626 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1627 {
1628         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1629 }
1630
1631 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1632 {
1633         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1634 }
1635
1636 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1637 {
1638         pid_t pid = 0;
1639
1640         rcu_read_lock();
1641         if (pid_alive(tsk))
1642                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1643         rcu_read_unlock();
1644
1645         return pid;
1646 }
1647
1648 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1649 {
1650         return task_ppid_nr_ns(tsk, &init_pid_ns);
1651 }
1652
1653 /* Obsolete, do not use: */
1654 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1655 {
1656         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1657 }
1658
1659 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1660 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1661
1662 static inline unsigned int __task_state_index(unsigned int tsk_state,
1663                                               unsigned int tsk_exit_state)
1664 {
1665         unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1666
1667         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1668
1669         if (tsk_state == TASK_IDLE)
1670                 state = TASK_REPORT_IDLE;
1671
1672         /*
1673          * We're lying here, but rather than expose a completely new task state
1674          * to userspace, we can make this appear as if the task has gone through
1675          * a regular rt_mutex_lock() call.
1676          */
1677         if (tsk_state == TASK_RTLOCK_WAIT)
1678                 state = TASK_UNINTERRUPTIBLE;
1679
1680         return fls(state);
1681 }
1682
1683 static inline unsigned int task_state_index(struct task_struct *tsk)
1684 {
1685         return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1686 }
1687
1688 static inline char task_index_to_char(unsigned int state)
1689 {
1690         static const char state_char[] = "RSDTtXZPI";
1691
1692         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1693
1694         return state_char[state];
1695 }
1696
1697 static inline char task_state_to_char(struct task_struct *tsk)
1698 {
1699         return task_index_to_char(task_state_index(tsk));
1700 }
1701
1702 /**
1703  * is_global_init - check if a task structure is init. Since init
1704  * is free to have sub-threads we need to check tgid.
1705  * @tsk: Task structure to be checked.
1706  *
1707  * Check if a task structure is the first user space task the kernel created.
1708  *
1709  * Return: 1 if the task structure is init. 0 otherwise.
1710  */
1711 static inline int is_global_init(struct task_struct *tsk)
1712 {
1713         return task_tgid_nr(tsk) == 1;
1714 }
1715
1716 extern struct pid *cad_pid;
1717
1718 /*
1719  * Per process flags
1720  */
1721 #define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1722 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1723 #define PF_EXITING              0x00000004      /* Getting shut down */
1724 #define PF_POSTCOREDUMP         0x00000008      /* Coredumps should ignore this task */
1725 #define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1726 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1727 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1728 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1729 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1730 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1731 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1732 #define PF_MEMALLOC             0x00000800      /* Allocating memory */
1733 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1734 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1735 #define PF_USER_WORKER          0x00004000      /* Kernel thread cloned from userspace thread */
1736 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1737 #define PF__HOLE__00010000      0x00010000
1738 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1739 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1740 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1741 #define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1742                                                  * I am cleaning dirty pages from some other bdi. */
1743 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1744 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1745 #define PF__HOLE__00800000      0x00800000
1746 #define PF__HOLE__01000000      0x01000000
1747 #define PF__HOLE__02000000      0x02000000
1748 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1749 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1750 #define PF_MEMALLOC_PIN         0x10000000      /* Allocation context constrained to zones which allow long term pinning. */
1751 #define PF__HOLE__20000000      0x20000000
1752 #define PF__HOLE__40000000      0x40000000
1753 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1754
1755 /*
1756  * Only the _current_ task can read/write to tsk->flags, but other
1757  * tasks can access tsk->flags in readonly mode for example
1758  * with tsk_used_math (like during threaded core dumping).
1759  * There is however an exception to this rule during ptrace
1760  * or during fork: the ptracer task is allowed to write to the
1761  * child->flags of its traced child (same goes for fork, the parent
1762  * can write to the child->flags), because we're guaranteed the
1763  * child is not running and in turn not changing child->flags
1764  * at the same time the parent does it.
1765  */
1766 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1767 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1768 #define clear_used_math()                       clear_stopped_child_used_math(current)
1769 #define set_used_math()                         set_stopped_child_used_math(current)
1770
1771 #define conditional_stopped_child_used_math(condition, child) \
1772         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1773
1774 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1775
1776 #define copy_to_stopped_child_used_math(child) \
1777         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1778
1779 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1780 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1781 #define used_math()                             tsk_used_math(current)
1782
1783 static __always_inline bool is_percpu_thread(void)
1784 {
1785 #ifdef CONFIG_SMP
1786         return (current->flags & PF_NO_SETAFFINITY) &&
1787                 (current->nr_cpus_allowed  == 1);
1788 #else
1789         return true;
1790 #endif
1791 }
1792
1793 /* Per-process atomic flags. */
1794 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1795 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1796 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1797 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1798 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1799 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1800 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1801 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1802
1803 #define TASK_PFA_TEST(name, func)                                       \
1804         static inline bool task_##func(struct task_struct *p)           \
1805         { return test_bit(PFA_##name, &p->atomic_flags); }
1806
1807 #define TASK_PFA_SET(name, func)                                        \
1808         static inline void task_set_##func(struct task_struct *p)       \
1809         { set_bit(PFA_##name, &p->atomic_flags); }
1810
1811 #define TASK_PFA_CLEAR(name, func)                                      \
1812         static inline void task_clear_##func(struct task_struct *p)     \
1813         { clear_bit(PFA_##name, &p->atomic_flags); }
1814
1815 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1816 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1817
1818 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1819 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1820 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1821
1822 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1823 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1824 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1825
1826 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1827 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1828 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1829
1830 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1831 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1832 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1833
1834 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1835 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1836
1837 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1838 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1839 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1840
1841 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1842 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1843
1844 static inline void
1845 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1846 {
1847         current->flags &= ~flags;
1848         current->flags |= orig_flags & flags;
1849 }
1850
1851 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1852 extern int task_can_attach(struct task_struct *p);
1853 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1854 extern void dl_bw_free(int cpu, u64 dl_bw);
1855 #ifdef CONFIG_SMP
1856 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1857 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1858 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1859 extern void release_user_cpus_ptr(struct task_struct *p);
1860 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1861 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1862 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1863 #else
1864 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1865 {
1866 }
1867 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1868 {
1869         if (!cpumask_test_cpu(0, new_mask))
1870                 return -EINVAL;
1871         return 0;
1872 }
1873 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1874 {
1875         if (src->user_cpus_ptr)
1876                 return -EINVAL;
1877         return 0;
1878 }
1879 static inline void release_user_cpus_ptr(struct task_struct *p)
1880 {
1881         WARN_ON(p->user_cpus_ptr);
1882 }
1883
1884 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1885 {
1886         return 0;
1887 }
1888 #endif
1889
1890 extern int yield_to(struct task_struct *p, bool preempt);
1891 extern void set_user_nice(struct task_struct *p, long nice);
1892 extern int task_prio(const struct task_struct *p);
1893
1894 /**
1895  * task_nice - return the nice value of a given task.
1896  * @p: the task in question.
1897  *
1898  * Return: The nice value [ -20 ... 0 ... 19 ].
1899  */
1900 static inline int task_nice(const struct task_struct *p)
1901 {
1902         return PRIO_TO_NICE((p)->static_prio);
1903 }
1904
1905 extern int can_nice(const struct task_struct *p, const int nice);
1906 extern int task_curr(const struct task_struct *p);
1907 extern int idle_cpu(int cpu);
1908 extern int available_idle_cpu(int cpu);
1909 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1910 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1911 extern void sched_set_fifo(struct task_struct *p);
1912 extern void sched_set_fifo_low(struct task_struct *p);
1913 extern void sched_set_normal(struct task_struct *p, int nice);
1914 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1915 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1916 extern struct task_struct *idle_task(int cpu);
1917
1918 /**
1919  * is_idle_task - is the specified task an idle task?
1920  * @p: the task in question.
1921  *
1922  * Return: 1 if @p is an idle task. 0 otherwise.
1923  */
1924 static __always_inline bool is_idle_task(const struct task_struct *p)
1925 {
1926         return !!(p->flags & PF_IDLE);
1927 }
1928
1929 extern struct task_struct *curr_task(int cpu);
1930 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1931
1932 void yield(void);
1933
1934 union thread_union {
1935 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1936         struct task_struct task;
1937 #endif
1938 #ifndef CONFIG_THREAD_INFO_IN_TASK
1939         struct thread_info thread_info;
1940 #endif
1941         unsigned long stack[THREAD_SIZE/sizeof(long)];
1942 };
1943
1944 #ifndef CONFIG_THREAD_INFO_IN_TASK
1945 extern struct thread_info init_thread_info;
1946 #endif
1947
1948 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1949
1950 #ifdef CONFIG_THREAD_INFO_IN_TASK
1951 # define task_thread_info(task) (&(task)->thread_info)
1952 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1953 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1954 #endif
1955
1956 /*
1957  * find a task by one of its numerical ids
1958  *
1959  * find_task_by_pid_ns():
1960  *      finds a task by its pid in the specified namespace
1961  * find_task_by_vpid():
1962  *      finds a task by its virtual pid
1963  *
1964  * see also find_vpid() etc in include/linux/pid.h
1965  */
1966
1967 extern struct task_struct *find_task_by_vpid(pid_t nr);
1968 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1969
1970 /*
1971  * find a task by its virtual pid and get the task struct
1972  */
1973 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1974
1975 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1976 extern int wake_up_process(struct task_struct *tsk);
1977 extern void wake_up_new_task(struct task_struct *tsk);
1978
1979 #ifdef CONFIG_SMP
1980 extern void kick_process(struct task_struct *tsk);
1981 #else
1982 static inline void kick_process(struct task_struct *tsk) { }
1983 #endif
1984
1985 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1986
1987 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1988 {
1989         __set_task_comm(tsk, from, false);
1990 }
1991
1992 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1993 #define get_task_comm(buf, tsk) ({                      \
1994         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1995         __get_task_comm(buf, sizeof(buf), tsk);         \
1996 })
1997
1998 #ifdef CONFIG_SMP
1999 static __always_inline void scheduler_ipi(void)
2000 {
2001         /*
2002          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2003          * TIF_NEED_RESCHED remotely (for the first time) will also send
2004          * this IPI.
2005          */
2006         preempt_fold_need_resched();
2007 }
2008 #else
2009 static inline void scheduler_ipi(void) { }
2010 #endif
2011
2012 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2013
2014 /*
2015  * Set thread flags in other task's structures.
2016  * See asm/thread_info.h for TIF_xxxx flags available:
2017  */
2018 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2019 {
2020         set_ti_thread_flag(task_thread_info(tsk), flag);
2021 }
2022
2023 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2024 {
2025         clear_ti_thread_flag(task_thread_info(tsk), flag);
2026 }
2027
2028 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2029                                           bool value)
2030 {
2031         update_ti_thread_flag(task_thread_info(tsk), flag, value);
2032 }
2033
2034 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2035 {
2036         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2037 }
2038
2039 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2040 {
2041         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2042 }
2043
2044 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2045 {
2046         return test_ti_thread_flag(task_thread_info(tsk), flag);
2047 }
2048
2049 static inline void set_tsk_need_resched(struct task_struct *tsk)
2050 {
2051         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2052 }
2053
2054 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2055 {
2056         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057 }
2058
2059 static inline int test_tsk_need_resched(struct task_struct *tsk)
2060 {
2061         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2062 }
2063
2064 /*
2065  * cond_resched() and cond_resched_lock(): latency reduction via
2066  * explicit rescheduling in places that are safe. The return
2067  * value indicates whether a reschedule was done in fact.
2068  * cond_resched_lock() will drop the spinlock before scheduling,
2069  */
2070 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2071 extern int __cond_resched(void);
2072
2073 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2074
2075 void sched_dynamic_klp_enable(void);
2076 void sched_dynamic_klp_disable(void);
2077
2078 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2079
2080 static __always_inline int _cond_resched(void)
2081 {
2082         return static_call_mod(cond_resched)();
2083 }
2084
2085 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2086
2087 extern int dynamic_cond_resched(void);
2088
2089 static __always_inline int _cond_resched(void)
2090 {
2091         return dynamic_cond_resched();
2092 }
2093
2094 #else /* !CONFIG_PREEMPTION */
2095
2096 static inline int _cond_resched(void)
2097 {
2098         klp_sched_try_switch();
2099         return __cond_resched();
2100 }
2101
2102 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2103
2104 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2105
2106 static inline int _cond_resched(void)
2107 {
2108         klp_sched_try_switch();
2109         return 0;
2110 }
2111
2112 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2113
2114 #define cond_resched() ({                       \
2115         __might_resched(__FILE__, __LINE__, 0); \
2116         _cond_resched();                        \
2117 })
2118
2119 extern int __cond_resched_lock(spinlock_t *lock);
2120 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2121 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2122
2123 #define MIGHT_RESCHED_RCU_SHIFT         8
2124 #define MIGHT_RESCHED_PREEMPT_MASK      ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2125
2126 #ifndef CONFIG_PREEMPT_RT
2127 /*
2128  * Non RT kernels have an elevated preempt count due to the held lock,
2129  * but are not allowed to be inside a RCU read side critical section
2130  */
2131 # define PREEMPT_LOCK_RESCHED_OFFSETS   PREEMPT_LOCK_OFFSET
2132 #else
2133 /*
2134  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2135  * cond_resched*lock() has to take that into account because it checks for
2136  * preempt_count() and rcu_preempt_depth().
2137  */
2138 # define PREEMPT_LOCK_RESCHED_OFFSETS   \
2139         (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2140 #endif
2141
2142 #define cond_resched_lock(lock) ({                                              \
2143         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2144         __cond_resched_lock(lock);                                              \
2145 })
2146
2147 #define cond_resched_rwlock_read(lock) ({                                       \
2148         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2149         __cond_resched_rwlock_read(lock);                                       \
2150 })
2151
2152 #define cond_resched_rwlock_write(lock) ({                                      \
2153         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2154         __cond_resched_rwlock_write(lock);                                      \
2155 })
2156
2157 static inline void cond_resched_rcu(void)
2158 {
2159 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2160         rcu_read_unlock();
2161         cond_resched();
2162         rcu_read_lock();
2163 #endif
2164 }
2165
2166 #ifdef CONFIG_PREEMPT_DYNAMIC
2167
2168 extern bool preempt_model_none(void);
2169 extern bool preempt_model_voluntary(void);
2170 extern bool preempt_model_full(void);
2171
2172 #else
2173
2174 static inline bool preempt_model_none(void)
2175 {
2176         return IS_ENABLED(CONFIG_PREEMPT_NONE);
2177 }
2178 static inline bool preempt_model_voluntary(void)
2179 {
2180         return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2181 }
2182 static inline bool preempt_model_full(void)
2183 {
2184         return IS_ENABLED(CONFIG_PREEMPT);
2185 }
2186
2187 #endif
2188
2189 static inline bool preempt_model_rt(void)
2190 {
2191         return IS_ENABLED(CONFIG_PREEMPT_RT);
2192 }
2193
2194 /*
2195  * Does the preemption model allow non-cooperative preemption?
2196  *
2197  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2198  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2199  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2200  * PREEMPT_NONE model.
2201  */
2202 static inline bool preempt_model_preemptible(void)
2203 {
2204         return preempt_model_full() || preempt_model_rt();
2205 }
2206
2207 /*
2208  * Does a critical section need to be broken due to another
2209  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2210  * but a general need for low latency)
2211  */
2212 static inline int spin_needbreak(spinlock_t *lock)
2213 {
2214 #ifdef CONFIG_PREEMPTION
2215         return spin_is_contended(lock);
2216 #else
2217         return 0;
2218 #endif
2219 }
2220
2221 /*
2222  * Check if a rwlock is contended.
2223  * Returns non-zero if there is another task waiting on the rwlock.
2224  * Returns zero if the lock is not contended or the system / underlying
2225  * rwlock implementation does not support contention detection.
2226  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2227  * for low latency.
2228  */
2229 static inline int rwlock_needbreak(rwlock_t *lock)
2230 {
2231 #ifdef CONFIG_PREEMPTION
2232         return rwlock_is_contended(lock);
2233 #else
2234         return 0;
2235 #endif
2236 }
2237
2238 static __always_inline bool need_resched(void)
2239 {
2240         return unlikely(tif_need_resched());
2241 }
2242
2243 /*
2244  * Wrappers for p->thread_info->cpu access. No-op on UP.
2245  */
2246 #ifdef CONFIG_SMP
2247
2248 static inline unsigned int task_cpu(const struct task_struct *p)
2249 {
2250         return READ_ONCE(task_thread_info(p)->cpu);
2251 }
2252
2253 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2254
2255 #else
2256
2257 static inline unsigned int task_cpu(const struct task_struct *p)
2258 {
2259         return 0;
2260 }
2261
2262 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2263 {
2264 }
2265
2266 #endif /* CONFIG_SMP */
2267
2268 extern bool sched_task_on_rq(struct task_struct *p);
2269 extern unsigned long get_wchan(struct task_struct *p);
2270 extern struct task_struct *cpu_curr_snapshot(int cpu);
2271
2272 /*
2273  * In order to reduce various lock holder preemption latencies provide an
2274  * interface to see if a vCPU is currently running or not.
2275  *
2276  * This allows us to terminate optimistic spin loops and block, analogous to
2277  * the native optimistic spin heuristic of testing if the lock owner task is
2278  * running or not.
2279  */
2280 #ifndef vcpu_is_preempted
2281 static inline bool vcpu_is_preempted(int cpu)
2282 {
2283         return false;
2284 }
2285 #endif
2286
2287 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2288 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2289
2290 #ifndef TASK_SIZE_OF
2291 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2292 #endif
2293
2294 #ifdef CONFIG_SMP
2295 static inline bool owner_on_cpu(struct task_struct *owner)
2296 {
2297         /*
2298          * As lock holder preemption issue, we both skip spinning if
2299          * task is not on cpu or its cpu is preempted
2300          */
2301         return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2302 }
2303
2304 /* Returns effective CPU energy utilization, as seen by the scheduler */
2305 unsigned long sched_cpu_util(int cpu);
2306 #endif /* CONFIG_SMP */
2307
2308 #ifdef CONFIG_RSEQ
2309
2310 /*
2311  * Map the event mask on the user-space ABI enum rseq_cs_flags
2312  * for direct mask checks.
2313  */
2314 enum rseq_event_mask_bits {
2315         RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2316         RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2317         RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2318 };
2319
2320 enum rseq_event_mask {
2321         RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
2322         RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
2323         RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
2324 };
2325
2326 static inline void rseq_set_notify_resume(struct task_struct *t)
2327 {
2328         if (t->rseq)
2329                 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2330 }
2331
2332 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2333
2334 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2335                                              struct pt_regs *regs)
2336 {
2337         if (current->rseq)
2338                 __rseq_handle_notify_resume(ksig, regs);
2339 }
2340
2341 static inline void rseq_signal_deliver(struct ksignal *ksig,
2342                                        struct pt_regs *regs)
2343 {
2344         preempt_disable();
2345         __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2346         preempt_enable();
2347         rseq_handle_notify_resume(ksig, regs);
2348 }
2349
2350 /* rseq_preempt() requires preemption to be disabled. */
2351 static inline void rseq_preempt(struct task_struct *t)
2352 {
2353         __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2354         rseq_set_notify_resume(t);
2355 }
2356
2357 /* rseq_migrate() requires preemption to be disabled. */
2358 static inline void rseq_migrate(struct task_struct *t)
2359 {
2360         __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2361         rseq_set_notify_resume(t);
2362 }
2363
2364 /*
2365  * If parent process has a registered restartable sequences area, the
2366  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2367  */
2368 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2369 {
2370         if (clone_flags & CLONE_VM) {
2371                 t->rseq = NULL;
2372                 t->rseq_len = 0;
2373                 t->rseq_sig = 0;
2374                 t->rseq_event_mask = 0;
2375         } else {
2376                 t->rseq = current->rseq;
2377                 t->rseq_len = current->rseq_len;
2378                 t->rseq_sig = current->rseq_sig;
2379                 t->rseq_event_mask = current->rseq_event_mask;
2380         }
2381 }
2382
2383 static inline void rseq_execve(struct task_struct *t)
2384 {
2385         t->rseq = NULL;
2386         t->rseq_len = 0;
2387         t->rseq_sig = 0;
2388         t->rseq_event_mask = 0;
2389 }
2390
2391 #else
2392
2393 static inline void rseq_set_notify_resume(struct task_struct *t)
2394 {
2395 }
2396 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2397                                              struct pt_regs *regs)
2398 {
2399 }
2400 static inline void rseq_signal_deliver(struct ksignal *ksig,
2401                                        struct pt_regs *regs)
2402 {
2403 }
2404 static inline void rseq_preempt(struct task_struct *t)
2405 {
2406 }
2407 static inline void rseq_migrate(struct task_struct *t)
2408 {
2409 }
2410 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2411 {
2412 }
2413 static inline void rseq_execve(struct task_struct *t)
2414 {
2415 }
2416
2417 #endif
2418
2419 #ifdef CONFIG_DEBUG_RSEQ
2420
2421 void rseq_syscall(struct pt_regs *regs);
2422
2423 #else
2424
2425 static inline void rseq_syscall(struct pt_regs *regs)
2426 {
2427 }
2428
2429 #endif
2430
2431 #ifdef CONFIG_SCHED_CORE
2432 extern void sched_core_free(struct task_struct *tsk);
2433 extern void sched_core_fork(struct task_struct *p);
2434 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2435                                 unsigned long uaddr);
2436 #else
2437 static inline void sched_core_free(struct task_struct *tsk) { }
2438 static inline void sched_core_fork(struct task_struct *p) { }
2439 #endif
2440
2441 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2442
2443 #endif