Merge drm/drm-next into drm-xe-next
[linux-2.6-microblaze.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask.h>
17
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/task_io_accounting.h>
40 #include <linux/posix-timers_types.h>
41 #include <linux/restart_block.h>
42 #include <uapi/linux/rseq.h>
43 #include <linux/seqlock_types.h>
44 #include <linux/kcsan.h>
45 #include <linux/rv.h>
46 #include <linux/livepatch_sched.h>
47 #include <linux/uidgid_types.h>
48 #include <asm/kmap_size.h>
49
50 /* task_struct member predeclarations (sorted alphabetically): */
51 struct audit_context;
52 struct bio_list;
53 struct blk_plug;
54 struct bpf_local_storage;
55 struct bpf_run_ctx;
56 struct capture_control;
57 struct cfs_rq;
58 struct fs_struct;
59 struct futex_pi_state;
60 struct io_context;
61 struct io_uring_task;
62 struct mempolicy;
63 struct nameidata;
64 struct nsproxy;
65 struct perf_event_context;
66 struct pid_namespace;
67 struct pipe_inode_info;
68 struct rcu_node;
69 struct reclaim_state;
70 struct robust_list_head;
71 struct root_domain;
72 struct rq;
73 struct sched_attr;
74 struct sched_dl_entity;
75 struct seq_file;
76 struct sighand_struct;
77 struct signal_struct;
78 struct task_delay_info;
79 struct task_group;
80 struct task_struct;
81 struct user_event_mm;
82
83 /*
84  * Task state bitmask. NOTE! These bits are also
85  * encoded in fs/proc/array.c: get_task_state().
86  *
87  * We have two separate sets of flags: task->__state
88  * is about runnability, while task->exit_state are
89  * about the task exiting. Confusing, but this way
90  * modifying one set can't modify the other one by
91  * mistake.
92  */
93
94 /* Used in tsk->__state: */
95 #define TASK_RUNNING                    0x00000000
96 #define TASK_INTERRUPTIBLE              0x00000001
97 #define TASK_UNINTERRUPTIBLE            0x00000002
98 #define __TASK_STOPPED                  0x00000004
99 #define __TASK_TRACED                   0x00000008
100 /* Used in tsk->exit_state: */
101 #define EXIT_DEAD                       0x00000010
102 #define EXIT_ZOMBIE                     0x00000020
103 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
104 /* Used in tsk->__state again: */
105 #define TASK_PARKED                     0x00000040
106 #define TASK_DEAD                       0x00000080
107 #define TASK_WAKEKILL                   0x00000100
108 #define TASK_WAKING                     0x00000200
109 #define TASK_NOLOAD                     0x00000400
110 #define TASK_NEW                        0x00000800
111 #define TASK_RTLOCK_WAIT                0x00001000
112 #define TASK_FREEZABLE                  0x00002000
113 #define __TASK_FREEZABLE_UNSAFE        (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
114 #define TASK_FROZEN                     0x00008000
115 #define TASK_STATE_MAX                  0x00010000
116
117 #define TASK_ANY                        (TASK_STATE_MAX-1)
118
119 /*
120  * DO NOT ADD ANY NEW USERS !
121  */
122 #define TASK_FREEZABLE_UNSAFE           (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
123
124 /* Convenience macros for the sake of set_current_state: */
125 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
126 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
127 #define TASK_TRACED                     __TASK_TRACED
128
129 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
130
131 /* Convenience macros for the sake of wake_up(): */
132 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
133
134 /* get_task_state(): */
135 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
136                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
137                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
138                                          TASK_PARKED)
139
140 #define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
141
142 #define task_is_traced(task)            ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
143 #define task_is_stopped(task)           ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
144 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
145
146 /*
147  * Special states are those that do not use the normal wait-loop pattern. See
148  * the comment with set_special_state().
149  */
150 #define is_special_task_state(state)                            \
151         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
152
153 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
154 # define debug_normal_state_change(state_value)                         \
155         do {                                                            \
156                 WARN_ON_ONCE(is_special_task_state(state_value));       \
157                 current->task_state_change = _THIS_IP_;                 \
158         } while (0)
159
160 # define debug_special_state_change(state_value)                        \
161         do {                                                            \
162                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
163                 current->task_state_change = _THIS_IP_;                 \
164         } while (0)
165
166 # define debug_rtlock_wait_set_state()                                  \
167         do {                                                             \
168                 current->saved_state_change = current->task_state_change;\
169                 current->task_state_change = _THIS_IP_;                  \
170         } while (0)
171
172 # define debug_rtlock_wait_restore_state()                              \
173         do {                                                             \
174                 current->task_state_change = current->saved_state_change;\
175         } while (0)
176
177 #else
178 # define debug_normal_state_change(cond)        do { } while (0)
179 # define debug_special_state_change(cond)       do { } while (0)
180 # define debug_rtlock_wait_set_state()          do { } while (0)
181 # define debug_rtlock_wait_restore_state()      do { } while (0)
182 #endif
183
184 /*
185  * set_current_state() includes a barrier so that the write of current->__state
186  * is correctly serialised wrt the caller's subsequent test of whether to
187  * actually sleep:
188  *
189  *   for (;;) {
190  *      set_current_state(TASK_UNINTERRUPTIBLE);
191  *      if (CONDITION)
192  *         break;
193  *
194  *      schedule();
195  *   }
196  *   __set_current_state(TASK_RUNNING);
197  *
198  * If the caller does not need such serialisation (because, for instance, the
199  * CONDITION test and condition change and wakeup are under the same lock) then
200  * use __set_current_state().
201  *
202  * The above is typically ordered against the wakeup, which does:
203  *
204  *   CONDITION = 1;
205  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
206  *
207  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
208  * accessing p->__state.
209  *
210  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
211  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
212  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
213  *
214  * However, with slightly different timing the wakeup TASK_RUNNING store can
215  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
216  * a problem either because that will result in one extra go around the loop
217  * and our @cond test will save the day.
218  *
219  * Also see the comments of try_to_wake_up().
220  */
221 #define __set_current_state(state_value)                                \
222         do {                                                            \
223                 debug_normal_state_change((state_value));               \
224                 WRITE_ONCE(current->__state, (state_value));            \
225         } while (0)
226
227 #define set_current_state(state_value)                                  \
228         do {                                                            \
229                 debug_normal_state_change((state_value));               \
230                 smp_store_mb(current->__state, (state_value));          \
231         } while (0)
232
233 /*
234  * set_special_state() should be used for those states when the blocking task
235  * can not use the regular condition based wait-loop. In that case we must
236  * serialize against wakeups such that any possible in-flight TASK_RUNNING
237  * stores will not collide with our state change.
238  */
239 #define set_special_state(state_value)                                  \
240         do {                                                            \
241                 unsigned long flags; /* may shadow */                   \
242                                                                         \
243                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
244                 debug_special_state_change((state_value));              \
245                 WRITE_ONCE(current->__state, (state_value));            \
246                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
247         } while (0)
248
249 /*
250  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
251  *
252  * RT's spin/rwlock substitutions are state preserving. The state of the
253  * task when blocking on the lock is saved in task_struct::saved_state and
254  * restored after the lock has been acquired.  These operations are
255  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
256  * lock related wakeups while the task is blocked on the lock are
257  * redirected to operate on task_struct::saved_state to ensure that these
258  * are not dropped. On restore task_struct::saved_state is set to
259  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
260  *
261  * The lock operation looks like this:
262  *
263  *      current_save_and_set_rtlock_wait_state();
264  *      for (;;) {
265  *              if (try_lock())
266  *                      break;
267  *              raw_spin_unlock_irq(&lock->wait_lock);
268  *              schedule_rtlock();
269  *              raw_spin_lock_irq(&lock->wait_lock);
270  *              set_current_state(TASK_RTLOCK_WAIT);
271  *      }
272  *      current_restore_rtlock_saved_state();
273  */
274 #define current_save_and_set_rtlock_wait_state()                        \
275         do {                                                            \
276                 lockdep_assert_irqs_disabled();                         \
277                 raw_spin_lock(&current->pi_lock);                       \
278                 current->saved_state = current->__state;                \
279                 debug_rtlock_wait_set_state();                          \
280                 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
281                 raw_spin_unlock(&current->pi_lock);                     \
282         } while (0);
283
284 #define current_restore_rtlock_saved_state()                            \
285         do {                                                            \
286                 lockdep_assert_irqs_disabled();                         \
287                 raw_spin_lock(&current->pi_lock);                       \
288                 debug_rtlock_wait_restore_state();                      \
289                 WRITE_ONCE(current->__state, current->saved_state);     \
290                 current->saved_state = TASK_RUNNING;                    \
291                 raw_spin_unlock(&current->pi_lock);                     \
292         } while (0);
293
294 #define get_current_state()     READ_ONCE(current->__state)
295
296 /*
297  * Define the task command name length as enum, then it can be visible to
298  * BPF programs.
299  */
300 enum {
301         TASK_COMM_LEN = 16,
302 };
303
304 extern void scheduler_tick(void);
305
306 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
307
308 extern long schedule_timeout(long timeout);
309 extern long schedule_timeout_interruptible(long timeout);
310 extern long schedule_timeout_killable(long timeout);
311 extern long schedule_timeout_uninterruptible(long timeout);
312 extern long schedule_timeout_idle(long timeout);
313 asmlinkage void schedule(void);
314 extern void schedule_preempt_disabled(void);
315 asmlinkage void preempt_schedule_irq(void);
316 #ifdef CONFIG_PREEMPT_RT
317  extern void schedule_rtlock(void);
318 #endif
319
320 extern int __must_check io_schedule_prepare(void);
321 extern void io_schedule_finish(int token);
322 extern long io_schedule_timeout(long timeout);
323 extern void io_schedule(void);
324
325 /**
326  * struct prev_cputime - snapshot of system and user cputime
327  * @utime: time spent in user mode
328  * @stime: time spent in system mode
329  * @lock: protects the above two fields
330  *
331  * Stores previous user/system time values such that we can guarantee
332  * monotonicity.
333  */
334 struct prev_cputime {
335 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
336         u64                             utime;
337         u64                             stime;
338         raw_spinlock_t                  lock;
339 #endif
340 };
341
342 enum vtime_state {
343         /* Task is sleeping or running in a CPU with VTIME inactive: */
344         VTIME_INACTIVE = 0,
345         /* Task is idle */
346         VTIME_IDLE,
347         /* Task runs in kernelspace in a CPU with VTIME active: */
348         VTIME_SYS,
349         /* Task runs in userspace in a CPU with VTIME active: */
350         VTIME_USER,
351         /* Task runs as guests in a CPU with VTIME active: */
352         VTIME_GUEST,
353 };
354
355 struct vtime {
356         seqcount_t              seqcount;
357         unsigned long long      starttime;
358         enum vtime_state        state;
359         unsigned int            cpu;
360         u64                     utime;
361         u64                     stime;
362         u64                     gtime;
363 };
364
365 /*
366  * Utilization clamp constraints.
367  * @UCLAMP_MIN: Minimum utilization
368  * @UCLAMP_MAX: Maximum utilization
369  * @UCLAMP_CNT: Utilization clamp constraints count
370  */
371 enum uclamp_id {
372         UCLAMP_MIN = 0,
373         UCLAMP_MAX,
374         UCLAMP_CNT
375 };
376
377 #ifdef CONFIG_SMP
378 extern struct root_domain def_root_domain;
379 extern struct mutex sched_domains_mutex;
380 #endif
381
382 struct sched_param {
383         int sched_priority;
384 };
385
386 struct sched_info {
387 #ifdef CONFIG_SCHED_INFO
388         /* Cumulative counters: */
389
390         /* # of times we have run on this CPU: */
391         unsigned long                   pcount;
392
393         /* Time spent waiting on a runqueue: */
394         unsigned long long              run_delay;
395
396         /* Timestamps: */
397
398         /* When did we last run on a CPU? */
399         unsigned long long              last_arrival;
400
401         /* When were we last queued to run? */
402         unsigned long long              last_queued;
403
404 #endif /* CONFIG_SCHED_INFO */
405 };
406
407 /*
408  * Integer metrics need fixed point arithmetic, e.g., sched/fair
409  * has a few: load, load_avg, util_avg, freq, and capacity.
410  *
411  * We define a basic fixed point arithmetic range, and then formalize
412  * all these metrics based on that basic range.
413  */
414 # define SCHED_FIXEDPOINT_SHIFT         10
415 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
416
417 /* Increase resolution of cpu_capacity calculations */
418 # define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
419 # define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
420
421 struct load_weight {
422         unsigned long                   weight;
423         u32                             inv_weight;
424 };
425
426 /*
427  * The load/runnable/util_avg accumulates an infinite geometric series
428  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
429  *
430  * [load_avg definition]
431  *
432  *   load_avg = runnable% * scale_load_down(load)
433  *
434  * [runnable_avg definition]
435  *
436  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
437  *
438  * [util_avg definition]
439  *
440  *   util_avg = running% * SCHED_CAPACITY_SCALE
441  *
442  * where runnable% is the time ratio that a sched_entity is runnable and
443  * running% the time ratio that a sched_entity is running.
444  *
445  * For cfs_rq, they are the aggregated values of all runnable and blocked
446  * sched_entities.
447  *
448  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
449  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
450  * for computing those signals (see update_rq_clock_pelt())
451  *
452  * N.B., the above ratios (runnable% and running%) themselves are in the
453  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
454  * to as large a range as necessary. This is for example reflected by
455  * util_avg's SCHED_CAPACITY_SCALE.
456  *
457  * [Overflow issue]
458  *
459  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
460  * with the highest load (=88761), always runnable on a single cfs_rq,
461  * and should not overflow as the number already hits PID_MAX_LIMIT.
462  *
463  * For all other cases (including 32-bit kernels), struct load_weight's
464  * weight will overflow first before we do, because:
465  *
466  *    Max(load_avg) <= Max(load.weight)
467  *
468  * Then it is the load_weight's responsibility to consider overflow
469  * issues.
470  */
471 struct sched_avg {
472         u64                             last_update_time;
473         u64                             load_sum;
474         u64                             runnable_sum;
475         u32                             util_sum;
476         u32                             period_contrib;
477         unsigned long                   load_avg;
478         unsigned long                   runnable_avg;
479         unsigned long                   util_avg;
480         unsigned int                    util_est;
481 } ____cacheline_aligned;
482
483 /*
484  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
485  * updates. When a task is dequeued, its util_est should not be updated if its
486  * util_avg has not been updated in the meantime.
487  * This information is mapped into the MSB bit of util_est at dequeue time.
488  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
489  * it is safe to use MSB.
490  */
491 #define UTIL_EST_WEIGHT_SHIFT           2
492 #define UTIL_AVG_UNCHANGED              0x80000000
493
494 struct sched_statistics {
495 #ifdef CONFIG_SCHEDSTATS
496         u64                             wait_start;
497         u64                             wait_max;
498         u64                             wait_count;
499         u64                             wait_sum;
500         u64                             iowait_count;
501         u64                             iowait_sum;
502
503         u64                             sleep_start;
504         u64                             sleep_max;
505         s64                             sum_sleep_runtime;
506
507         u64                             block_start;
508         u64                             block_max;
509         s64                             sum_block_runtime;
510
511         s64                             exec_max;
512         u64                             slice_max;
513
514         u64                             nr_migrations_cold;
515         u64                             nr_failed_migrations_affine;
516         u64                             nr_failed_migrations_running;
517         u64                             nr_failed_migrations_hot;
518         u64                             nr_forced_migrations;
519
520         u64                             nr_wakeups;
521         u64                             nr_wakeups_sync;
522         u64                             nr_wakeups_migrate;
523         u64                             nr_wakeups_local;
524         u64                             nr_wakeups_remote;
525         u64                             nr_wakeups_affine;
526         u64                             nr_wakeups_affine_attempts;
527         u64                             nr_wakeups_passive;
528         u64                             nr_wakeups_idle;
529
530 #ifdef CONFIG_SCHED_CORE
531         u64                             core_forceidle_sum;
532 #endif
533 #endif /* CONFIG_SCHEDSTATS */
534 } ____cacheline_aligned;
535
536 struct sched_entity {
537         /* For load-balancing: */
538         struct load_weight              load;
539         struct rb_node                  run_node;
540         u64                             deadline;
541         u64                             min_vruntime;
542
543         struct list_head                group_node;
544         unsigned int                    on_rq;
545
546         u64                             exec_start;
547         u64                             sum_exec_runtime;
548         u64                             prev_sum_exec_runtime;
549         u64                             vruntime;
550         s64                             vlag;
551         u64                             slice;
552
553         u64                             nr_migrations;
554
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556         int                             depth;
557         struct sched_entity             *parent;
558         /* rq on which this entity is (to be) queued: */
559         struct cfs_rq                   *cfs_rq;
560         /* rq "owned" by this entity/group: */
561         struct cfs_rq                   *my_q;
562         /* cached value of my_q->h_nr_running */
563         unsigned long                   runnable_weight;
564 #endif
565
566 #ifdef CONFIG_SMP
567         /*
568          * Per entity load average tracking.
569          *
570          * Put into separate cache line so it does not
571          * collide with read-mostly values above.
572          */
573         struct sched_avg                avg;
574 #endif
575 };
576
577 struct sched_rt_entity {
578         struct list_head                run_list;
579         unsigned long                   timeout;
580         unsigned long                   watchdog_stamp;
581         unsigned int                    time_slice;
582         unsigned short                  on_rq;
583         unsigned short                  on_list;
584
585         struct sched_rt_entity          *back;
586 #ifdef CONFIG_RT_GROUP_SCHED
587         struct sched_rt_entity          *parent;
588         /* rq on which this entity is (to be) queued: */
589         struct rt_rq                    *rt_rq;
590         /* rq "owned" by this entity/group: */
591         struct rt_rq                    *my_q;
592 #endif
593 } __randomize_layout;
594
595 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
596 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
597
598 struct sched_dl_entity {
599         struct rb_node                  rb_node;
600
601         /*
602          * Original scheduling parameters. Copied here from sched_attr
603          * during sched_setattr(), they will remain the same until
604          * the next sched_setattr().
605          */
606         u64                             dl_runtime;     /* Maximum runtime for each instance    */
607         u64                             dl_deadline;    /* Relative deadline of each instance   */
608         u64                             dl_period;      /* Separation of two instances (period) */
609         u64                             dl_bw;          /* dl_runtime / dl_period               */
610         u64                             dl_density;     /* dl_runtime / dl_deadline             */
611
612         /*
613          * Actual scheduling parameters. Initialized with the values above,
614          * they are continuously updated during task execution. Note that
615          * the remaining runtime could be < 0 in case we are in overrun.
616          */
617         s64                             runtime;        /* Remaining runtime for this instance  */
618         u64                             deadline;       /* Absolute deadline for this instance  */
619         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
620
621         /*
622          * Some bool flags:
623          *
624          * @dl_throttled tells if we exhausted the runtime. If so, the
625          * task has to wait for a replenishment to be performed at the
626          * next firing of dl_timer.
627          *
628          * @dl_yielded tells if task gave up the CPU before consuming
629          * all its available runtime during the last job.
630          *
631          * @dl_non_contending tells if the task is inactive while still
632          * contributing to the active utilization. In other words, it
633          * indicates if the inactive timer has been armed and its handler
634          * has not been executed yet. This flag is useful to avoid race
635          * conditions between the inactive timer handler and the wakeup
636          * code.
637          *
638          * @dl_overrun tells if the task asked to be informed about runtime
639          * overruns.
640          */
641         unsigned int                    dl_throttled      : 1;
642         unsigned int                    dl_yielded        : 1;
643         unsigned int                    dl_non_contending : 1;
644         unsigned int                    dl_overrun        : 1;
645         unsigned int                    dl_server         : 1;
646
647         /*
648          * Bandwidth enforcement timer. Each -deadline task has its
649          * own bandwidth to be enforced, thus we need one timer per task.
650          */
651         struct hrtimer                  dl_timer;
652
653         /*
654          * Inactive timer, responsible for decreasing the active utilization
655          * at the "0-lag time". When a -deadline task blocks, it contributes
656          * to GRUB's active utilization until the "0-lag time", hence a
657          * timer is needed to decrease the active utilization at the correct
658          * time.
659          */
660         struct hrtimer                  inactive_timer;
661
662         /*
663          * Bits for DL-server functionality. Also see the comment near
664          * dl_server_update().
665          *
666          * @rq the runqueue this server is for
667          *
668          * @server_has_tasks() returns true if @server_pick return a
669          * runnable task.
670          */
671         struct rq                       *rq;
672         dl_server_has_tasks_f           server_has_tasks;
673         dl_server_pick_f                server_pick;
674
675 #ifdef CONFIG_RT_MUTEXES
676         /*
677          * Priority Inheritance. When a DEADLINE scheduling entity is boosted
678          * pi_se points to the donor, otherwise points to the dl_se it belongs
679          * to (the original one/itself).
680          */
681         struct sched_dl_entity *pi_se;
682 #endif
683 };
684
685 #ifdef CONFIG_UCLAMP_TASK
686 /* Number of utilization clamp buckets (shorter alias) */
687 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
688
689 /*
690  * Utilization clamp for a scheduling entity
691  * @value:              clamp value "assigned" to a se
692  * @bucket_id:          bucket index corresponding to the "assigned" value
693  * @active:             the se is currently refcounted in a rq's bucket
694  * @user_defined:       the requested clamp value comes from user-space
695  *
696  * The bucket_id is the index of the clamp bucket matching the clamp value
697  * which is pre-computed and stored to avoid expensive integer divisions from
698  * the fast path.
699  *
700  * The active bit is set whenever a task has got an "effective" value assigned,
701  * which can be different from the clamp value "requested" from user-space.
702  * This allows to know a task is refcounted in the rq's bucket corresponding
703  * to the "effective" bucket_id.
704  *
705  * The user_defined bit is set whenever a task has got a task-specific clamp
706  * value requested from userspace, i.e. the system defaults apply to this task
707  * just as a restriction. This allows to relax default clamps when a less
708  * restrictive task-specific value has been requested, thus allowing to
709  * implement a "nice" semantic. For example, a task running with a 20%
710  * default boost can still drop its own boosting to 0%.
711  */
712 struct uclamp_se {
713         unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
714         unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
715         unsigned int active             : 1;
716         unsigned int user_defined       : 1;
717 };
718 #endif /* CONFIG_UCLAMP_TASK */
719
720 union rcu_special {
721         struct {
722                 u8                      blocked;
723                 u8                      need_qs;
724                 u8                      exp_hint; /* Hint for performance. */
725                 u8                      need_mb; /* Readers need smp_mb(). */
726         } b; /* Bits. */
727         u32 s; /* Set of bits. */
728 };
729
730 enum perf_event_task_context {
731         perf_invalid_context = -1,
732         perf_hw_context = 0,
733         perf_sw_context,
734         perf_nr_task_contexts,
735 };
736
737 struct wake_q_node {
738         struct wake_q_node *next;
739 };
740
741 struct kmap_ctrl {
742 #ifdef CONFIG_KMAP_LOCAL
743         int                             idx;
744         pte_t                           pteval[KM_MAX_IDX];
745 #endif
746 };
747
748 struct task_struct {
749 #ifdef CONFIG_THREAD_INFO_IN_TASK
750         /*
751          * For reasons of header soup (see current_thread_info()), this
752          * must be the first element of task_struct.
753          */
754         struct thread_info              thread_info;
755 #endif
756         unsigned int                    __state;
757
758         /* saved state for "spinlock sleepers" */
759         unsigned int                    saved_state;
760
761         /*
762          * This begins the randomizable portion of task_struct. Only
763          * scheduling-critical items should be added above here.
764          */
765         randomized_struct_fields_start
766
767         void                            *stack;
768         refcount_t                      usage;
769         /* Per task flags (PF_*), defined further below: */
770         unsigned int                    flags;
771         unsigned int                    ptrace;
772
773 #ifdef CONFIG_SMP
774         int                             on_cpu;
775         struct __call_single_node       wake_entry;
776         unsigned int                    wakee_flips;
777         unsigned long                   wakee_flip_decay_ts;
778         struct task_struct              *last_wakee;
779
780         /*
781          * recent_used_cpu is initially set as the last CPU used by a task
782          * that wakes affine another task. Waker/wakee relationships can
783          * push tasks around a CPU where each wakeup moves to the next one.
784          * Tracking a recently used CPU allows a quick search for a recently
785          * used CPU that may be idle.
786          */
787         int                             recent_used_cpu;
788         int                             wake_cpu;
789 #endif
790         int                             on_rq;
791
792         int                             prio;
793         int                             static_prio;
794         int                             normal_prio;
795         unsigned int                    rt_priority;
796
797         struct sched_entity             se;
798         struct sched_rt_entity          rt;
799         struct sched_dl_entity          dl;
800         struct sched_dl_entity          *dl_server;
801         const struct sched_class        *sched_class;
802
803 #ifdef CONFIG_SCHED_CORE
804         struct rb_node                  core_node;
805         unsigned long                   core_cookie;
806         unsigned int                    core_occupation;
807 #endif
808
809 #ifdef CONFIG_CGROUP_SCHED
810         struct task_group               *sched_task_group;
811 #endif
812
813 #ifdef CONFIG_UCLAMP_TASK
814         /*
815          * Clamp values requested for a scheduling entity.
816          * Must be updated with task_rq_lock() held.
817          */
818         struct uclamp_se                uclamp_req[UCLAMP_CNT];
819         /*
820          * Effective clamp values used for a scheduling entity.
821          * Must be updated with task_rq_lock() held.
822          */
823         struct uclamp_se                uclamp[UCLAMP_CNT];
824 #endif
825
826         struct sched_statistics         stats;
827
828 #ifdef CONFIG_PREEMPT_NOTIFIERS
829         /* List of struct preempt_notifier: */
830         struct hlist_head               preempt_notifiers;
831 #endif
832
833 #ifdef CONFIG_BLK_DEV_IO_TRACE
834         unsigned int                    btrace_seq;
835 #endif
836
837         unsigned int                    policy;
838         int                             nr_cpus_allowed;
839         const cpumask_t                 *cpus_ptr;
840         cpumask_t                       *user_cpus_ptr;
841         cpumask_t                       cpus_mask;
842         void                            *migration_pending;
843 #ifdef CONFIG_SMP
844         unsigned short                  migration_disabled;
845 #endif
846         unsigned short                  migration_flags;
847
848 #ifdef CONFIG_PREEMPT_RCU
849         int                             rcu_read_lock_nesting;
850         union rcu_special               rcu_read_unlock_special;
851         struct list_head                rcu_node_entry;
852         struct rcu_node                 *rcu_blocked_node;
853 #endif /* #ifdef CONFIG_PREEMPT_RCU */
854
855 #ifdef CONFIG_TASKS_RCU
856         unsigned long                   rcu_tasks_nvcsw;
857         u8                              rcu_tasks_holdout;
858         u8                              rcu_tasks_idx;
859         int                             rcu_tasks_idle_cpu;
860         struct list_head                rcu_tasks_holdout_list;
861         int                             rcu_tasks_exit_cpu;
862         struct list_head                rcu_tasks_exit_list;
863 #endif /* #ifdef CONFIG_TASKS_RCU */
864
865 #ifdef CONFIG_TASKS_TRACE_RCU
866         int                             trc_reader_nesting;
867         int                             trc_ipi_to_cpu;
868         union rcu_special               trc_reader_special;
869         struct list_head                trc_holdout_list;
870         struct list_head                trc_blkd_node;
871         int                             trc_blkd_cpu;
872 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
873
874         struct sched_info               sched_info;
875
876         struct list_head                tasks;
877 #ifdef CONFIG_SMP
878         struct plist_node               pushable_tasks;
879         struct rb_node                  pushable_dl_tasks;
880 #endif
881
882         struct mm_struct                *mm;
883         struct mm_struct                *active_mm;
884         struct address_space            *faults_disabled_mapping;
885
886         int                             exit_state;
887         int                             exit_code;
888         int                             exit_signal;
889         /* The signal sent when the parent dies: */
890         int                             pdeath_signal;
891         /* JOBCTL_*, siglock protected: */
892         unsigned long                   jobctl;
893
894         /* Used for emulating ABI behavior of previous Linux versions: */
895         unsigned int                    personality;
896
897         /* Scheduler bits, serialized by scheduler locks: */
898         unsigned                        sched_reset_on_fork:1;
899         unsigned                        sched_contributes_to_load:1;
900         unsigned                        sched_migrated:1;
901
902         /* Force alignment to the next boundary: */
903         unsigned                        :0;
904
905         /* Unserialized, strictly 'current' */
906
907         /*
908          * This field must not be in the scheduler word above due to wakelist
909          * queueing no longer being serialized by p->on_cpu. However:
910          *
911          * p->XXX = X;                  ttwu()
912          * schedule()                     if (p->on_rq && ..) // false
913          *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
914          *   deactivate_task()                ttwu_queue_wakelist())
915          *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
916          *
917          * guarantees all stores of 'current' are visible before
918          * ->sched_remote_wakeup gets used, so it can be in this word.
919          */
920         unsigned                        sched_remote_wakeup:1;
921 #ifdef CONFIG_RT_MUTEXES
922         unsigned                        sched_rt_mutex:1;
923 #endif
924
925         /* Bit to tell TOMOYO we're in execve(): */
926         unsigned                        in_execve:1;
927         unsigned                        in_iowait:1;
928 #ifndef TIF_RESTORE_SIGMASK
929         unsigned                        restore_sigmask:1;
930 #endif
931 #ifdef CONFIG_MEMCG
932         unsigned                        in_user_fault:1;
933 #endif
934 #ifdef CONFIG_LRU_GEN
935         /* whether the LRU algorithm may apply to this access */
936         unsigned                        in_lru_fault:1;
937 #endif
938 #ifdef CONFIG_COMPAT_BRK
939         unsigned                        brk_randomized:1;
940 #endif
941 #ifdef CONFIG_CGROUPS
942         /* disallow userland-initiated cgroup migration */
943         unsigned                        no_cgroup_migration:1;
944         /* task is frozen/stopped (used by the cgroup freezer) */
945         unsigned                        frozen:1;
946 #endif
947 #ifdef CONFIG_BLK_CGROUP
948         unsigned                        use_memdelay:1;
949 #endif
950 #ifdef CONFIG_PSI
951         /* Stalled due to lack of memory */
952         unsigned                        in_memstall:1;
953 #endif
954 #ifdef CONFIG_PAGE_OWNER
955         /* Used by page_owner=on to detect recursion in page tracking. */
956         unsigned                        in_page_owner:1;
957 #endif
958 #ifdef CONFIG_EVENTFD
959         /* Recursion prevention for eventfd_signal() */
960         unsigned                        in_eventfd:1;
961 #endif
962 #ifdef CONFIG_ARCH_HAS_CPU_PASID
963         unsigned                        pasid_activated:1;
964 #endif
965 #ifdef  CONFIG_CPU_SUP_INTEL
966         unsigned                        reported_split_lock:1;
967 #endif
968 #ifdef CONFIG_TASK_DELAY_ACCT
969         /* delay due to memory thrashing */
970         unsigned                        in_thrashing:1;
971 #endif
972
973         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
974
975         struct restart_block            restart_block;
976
977         pid_t                           pid;
978         pid_t                           tgid;
979
980 #ifdef CONFIG_STACKPROTECTOR
981         /* Canary value for the -fstack-protector GCC feature: */
982         unsigned long                   stack_canary;
983 #endif
984         /*
985          * Pointers to the (original) parent process, youngest child, younger sibling,
986          * older sibling, respectively.  (p->father can be replaced with
987          * p->real_parent->pid)
988          */
989
990         /* Real parent process: */
991         struct task_struct __rcu        *real_parent;
992
993         /* Recipient of SIGCHLD, wait4() reports: */
994         struct task_struct __rcu        *parent;
995
996         /*
997          * Children/sibling form the list of natural children:
998          */
999         struct list_head                children;
1000         struct list_head                sibling;
1001         struct task_struct              *group_leader;
1002
1003         /*
1004          * 'ptraced' is the list of tasks this task is using ptrace() on.
1005          *
1006          * This includes both natural children and PTRACE_ATTACH targets.
1007          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1008          */
1009         struct list_head                ptraced;
1010         struct list_head                ptrace_entry;
1011
1012         /* PID/PID hash table linkage. */
1013         struct pid                      *thread_pid;
1014         struct hlist_node               pid_links[PIDTYPE_MAX];
1015         struct list_head                thread_node;
1016
1017         struct completion               *vfork_done;
1018
1019         /* CLONE_CHILD_SETTID: */
1020         int __user                      *set_child_tid;
1021
1022         /* CLONE_CHILD_CLEARTID: */
1023         int __user                      *clear_child_tid;
1024
1025         /* PF_KTHREAD | PF_IO_WORKER */
1026         void                            *worker_private;
1027
1028         u64                             utime;
1029         u64                             stime;
1030 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1031         u64                             utimescaled;
1032         u64                             stimescaled;
1033 #endif
1034         u64                             gtime;
1035         struct prev_cputime             prev_cputime;
1036 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1037         struct vtime                    vtime;
1038 #endif
1039
1040 #ifdef CONFIG_NO_HZ_FULL
1041         atomic_t                        tick_dep_mask;
1042 #endif
1043         /* Context switch counts: */
1044         unsigned long                   nvcsw;
1045         unsigned long                   nivcsw;
1046
1047         /* Monotonic time in nsecs: */
1048         u64                             start_time;
1049
1050         /* Boot based time in nsecs: */
1051         u64                             start_boottime;
1052
1053         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1054         unsigned long                   min_flt;
1055         unsigned long                   maj_flt;
1056
1057         /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1058         struct posix_cputimers          posix_cputimers;
1059
1060 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1061         struct posix_cputimers_work     posix_cputimers_work;
1062 #endif
1063
1064         /* Process credentials: */
1065
1066         /* Tracer's credentials at attach: */
1067         const struct cred __rcu         *ptracer_cred;
1068
1069         /* Objective and real subjective task credentials (COW): */
1070         const struct cred __rcu         *real_cred;
1071
1072         /* Effective (overridable) subjective task credentials (COW): */
1073         const struct cred __rcu         *cred;
1074
1075 #ifdef CONFIG_KEYS
1076         /* Cached requested key. */
1077         struct key                      *cached_requested_key;
1078 #endif
1079
1080         /*
1081          * executable name, excluding path.
1082          *
1083          * - normally initialized setup_new_exec()
1084          * - access it with [gs]et_task_comm()
1085          * - lock it with task_lock()
1086          */
1087         char                            comm[TASK_COMM_LEN];
1088
1089         struct nameidata                *nameidata;
1090
1091 #ifdef CONFIG_SYSVIPC
1092         struct sysv_sem                 sysvsem;
1093         struct sysv_shm                 sysvshm;
1094 #endif
1095 #ifdef CONFIG_DETECT_HUNG_TASK
1096         unsigned long                   last_switch_count;
1097         unsigned long                   last_switch_time;
1098 #endif
1099         /* Filesystem information: */
1100         struct fs_struct                *fs;
1101
1102         /* Open file information: */
1103         struct files_struct             *files;
1104
1105 #ifdef CONFIG_IO_URING
1106         struct io_uring_task            *io_uring;
1107 #endif
1108
1109         /* Namespaces: */
1110         struct nsproxy                  *nsproxy;
1111
1112         /* Signal handlers: */
1113         struct signal_struct            *signal;
1114         struct sighand_struct __rcu             *sighand;
1115         sigset_t                        blocked;
1116         sigset_t                        real_blocked;
1117         /* Restored if set_restore_sigmask() was used: */
1118         sigset_t                        saved_sigmask;
1119         struct sigpending               pending;
1120         unsigned long                   sas_ss_sp;
1121         size_t                          sas_ss_size;
1122         unsigned int                    sas_ss_flags;
1123
1124         struct callback_head            *task_works;
1125
1126 #ifdef CONFIG_AUDIT
1127 #ifdef CONFIG_AUDITSYSCALL
1128         struct audit_context            *audit_context;
1129 #endif
1130         kuid_t                          loginuid;
1131         unsigned int                    sessionid;
1132 #endif
1133         struct seccomp                  seccomp;
1134         struct syscall_user_dispatch    syscall_dispatch;
1135
1136         /* Thread group tracking: */
1137         u64                             parent_exec_id;
1138         u64                             self_exec_id;
1139
1140         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1141         spinlock_t                      alloc_lock;
1142
1143         /* Protection of the PI data structures: */
1144         raw_spinlock_t                  pi_lock;
1145
1146         struct wake_q_node              wake_q;
1147
1148 #ifdef CONFIG_RT_MUTEXES
1149         /* PI waiters blocked on a rt_mutex held by this task: */
1150         struct rb_root_cached           pi_waiters;
1151         /* Updated under owner's pi_lock and rq lock */
1152         struct task_struct              *pi_top_task;
1153         /* Deadlock detection and priority inheritance handling: */
1154         struct rt_mutex_waiter          *pi_blocked_on;
1155 #endif
1156
1157 #ifdef CONFIG_DEBUG_MUTEXES
1158         /* Mutex deadlock detection: */
1159         struct mutex_waiter             *blocked_on;
1160 #endif
1161
1162 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1163         int                             non_block_count;
1164 #endif
1165
1166 #ifdef CONFIG_TRACE_IRQFLAGS
1167         struct irqtrace_events          irqtrace;
1168         unsigned int                    hardirq_threaded;
1169         u64                             hardirq_chain_key;
1170         int                             softirqs_enabled;
1171         int                             softirq_context;
1172         int                             irq_config;
1173 #endif
1174 #ifdef CONFIG_PREEMPT_RT
1175         int                             softirq_disable_cnt;
1176 #endif
1177
1178 #ifdef CONFIG_LOCKDEP
1179 # define MAX_LOCK_DEPTH                 48UL
1180         u64                             curr_chain_key;
1181         int                             lockdep_depth;
1182         unsigned int                    lockdep_recursion;
1183         struct held_lock                held_locks[MAX_LOCK_DEPTH];
1184 #endif
1185
1186 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1187         unsigned int                    in_ubsan;
1188 #endif
1189
1190         /* Journalling filesystem info: */
1191         void                            *journal_info;
1192
1193         /* Stacked block device info: */
1194         struct bio_list                 *bio_list;
1195
1196         /* Stack plugging: */
1197         struct blk_plug                 *plug;
1198
1199         /* VM state: */
1200         struct reclaim_state            *reclaim_state;
1201
1202         struct io_context               *io_context;
1203
1204 #ifdef CONFIG_COMPACTION
1205         struct capture_control          *capture_control;
1206 #endif
1207         /* Ptrace state: */
1208         unsigned long                   ptrace_message;
1209         kernel_siginfo_t                *last_siginfo;
1210
1211         struct task_io_accounting       ioac;
1212 #ifdef CONFIG_PSI
1213         /* Pressure stall state */
1214         unsigned int                    psi_flags;
1215 #endif
1216 #ifdef CONFIG_TASK_XACCT
1217         /* Accumulated RSS usage: */
1218         u64                             acct_rss_mem1;
1219         /* Accumulated virtual memory usage: */
1220         u64                             acct_vm_mem1;
1221         /* stime + utime since last update: */
1222         u64                             acct_timexpd;
1223 #endif
1224 #ifdef CONFIG_CPUSETS
1225         /* Protected by ->alloc_lock: */
1226         nodemask_t                      mems_allowed;
1227         /* Sequence number to catch updates: */
1228         seqcount_spinlock_t             mems_allowed_seq;
1229         int                             cpuset_mem_spread_rotor;
1230         int                             cpuset_slab_spread_rotor;
1231 #endif
1232 #ifdef CONFIG_CGROUPS
1233         /* Control Group info protected by css_set_lock: */
1234         struct css_set __rcu            *cgroups;
1235         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1236         struct list_head                cg_list;
1237 #endif
1238 #ifdef CONFIG_X86_CPU_RESCTRL
1239         u32                             closid;
1240         u32                             rmid;
1241 #endif
1242 #ifdef CONFIG_FUTEX
1243         struct robust_list_head __user  *robust_list;
1244 #ifdef CONFIG_COMPAT
1245         struct compat_robust_list_head __user *compat_robust_list;
1246 #endif
1247         struct list_head                pi_state_list;
1248         struct futex_pi_state           *pi_state_cache;
1249         struct mutex                    futex_exit_mutex;
1250         unsigned int                    futex_state;
1251 #endif
1252 #ifdef CONFIG_PERF_EVENTS
1253         struct perf_event_context       *perf_event_ctxp;
1254         struct mutex                    perf_event_mutex;
1255         struct list_head                perf_event_list;
1256 #endif
1257 #ifdef CONFIG_DEBUG_PREEMPT
1258         unsigned long                   preempt_disable_ip;
1259 #endif
1260 #ifdef CONFIG_NUMA
1261         /* Protected by alloc_lock: */
1262         struct mempolicy                *mempolicy;
1263         short                           il_prev;
1264         u8                              il_weight;
1265         short                           pref_node_fork;
1266 #endif
1267 #ifdef CONFIG_NUMA_BALANCING
1268         int                             numa_scan_seq;
1269         unsigned int                    numa_scan_period;
1270         unsigned int                    numa_scan_period_max;
1271         int                             numa_preferred_nid;
1272         unsigned long                   numa_migrate_retry;
1273         /* Migration stamp: */
1274         u64                             node_stamp;
1275         u64                             last_task_numa_placement;
1276         u64                             last_sum_exec_runtime;
1277         struct callback_head            numa_work;
1278
1279         /*
1280          * This pointer is only modified for current in syscall and
1281          * pagefault context (and for tasks being destroyed), so it can be read
1282          * from any of the following contexts:
1283          *  - RCU read-side critical section
1284          *  - current->numa_group from everywhere
1285          *  - task's runqueue locked, task not running
1286          */
1287         struct numa_group __rcu         *numa_group;
1288
1289         /*
1290          * numa_faults is an array split into four regions:
1291          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1292          * in this precise order.
1293          *
1294          * faults_memory: Exponential decaying average of faults on a per-node
1295          * basis. Scheduling placement decisions are made based on these
1296          * counts. The values remain static for the duration of a PTE scan.
1297          * faults_cpu: Track the nodes the process was running on when a NUMA
1298          * hinting fault was incurred.
1299          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1300          * during the current scan window. When the scan completes, the counts
1301          * in faults_memory and faults_cpu decay and these values are copied.
1302          */
1303         unsigned long                   *numa_faults;
1304         unsigned long                   total_numa_faults;
1305
1306         /*
1307          * numa_faults_locality tracks if faults recorded during the last
1308          * scan window were remote/local or failed to migrate. The task scan
1309          * period is adapted based on the locality of the faults with different
1310          * weights depending on whether they were shared or private faults
1311          */
1312         unsigned long                   numa_faults_locality[3];
1313
1314         unsigned long                   numa_pages_migrated;
1315 #endif /* CONFIG_NUMA_BALANCING */
1316
1317 #ifdef CONFIG_RSEQ
1318         struct rseq __user *rseq;
1319         u32 rseq_len;
1320         u32 rseq_sig;
1321         /*
1322          * RmW on rseq_event_mask must be performed atomically
1323          * with respect to preemption.
1324          */
1325         unsigned long rseq_event_mask;
1326 #endif
1327
1328 #ifdef CONFIG_SCHED_MM_CID
1329         int                             mm_cid;         /* Current cid in mm */
1330         int                             last_mm_cid;    /* Most recent cid in mm */
1331         int                             migrate_from_cpu;
1332         int                             mm_cid_active;  /* Whether cid bitmap is active */
1333         struct callback_head            cid_work;
1334 #endif
1335
1336         struct tlbflush_unmap_batch     tlb_ubc;
1337
1338         /* Cache last used pipe for splice(): */
1339         struct pipe_inode_info          *splice_pipe;
1340
1341         struct page_frag                task_frag;
1342
1343 #ifdef CONFIG_TASK_DELAY_ACCT
1344         struct task_delay_info          *delays;
1345 #endif
1346
1347 #ifdef CONFIG_FAULT_INJECTION
1348         int                             make_it_fail;
1349         unsigned int                    fail_nth;
1350 #endif
1351         /*
1352          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1353          * balance_dirty_pages() for a dirty throttling pause:
1354          */
1355         int                             nr_dirtied;
1356         int                             nr_dirtied_pause;
1357         /* Start of a write-and-pause period: */
1358         unsigned long                   dirty_paused_when;
1359
1360 #ifdef CONFIG_LATENCYTOP
1361         int                             latency_record_count;
1362         struct latency_record           latency_record[LT_SAVECOUNT];
1363 #endif
1364         /*
1365          * Time slack values; these are used to round up poll() and
1366          * select() etc timeout values. These are in nanoseconds.
1367          */
1368         u64                             timer_slack_ns;
1369         u64                             default_timer_slack_ns;
1370
1371 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1372         unsigned int                    kasan_depth;
1373 #endif
1374
1375 #ifdef CONFIG_KCSAN
1376         struct kcsan_ctx                kcsan_ctx;
1377 #ifdef CONFIG_TRACE_IRQFLAGS
1378         struct irqtrace_events          kcsan_save_irqtrace;
1379 #endif
1380 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1381         int                             kcsan_stack_depth;
1382 #endif
1383 #endif
1384
1385 #ifdef CONFIG_KMSAN
1386         struct kmsan_ctx                kmsan_ctx;
1387 #endif
1388
1389 #if IS_ENABLED(CONFIG_KUNIT)
1390         struct kunit                    *kunit_test;
1391 #endif
1392
1393 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1394         /* Index of current stored address in ret_stack: */
1395         int                             curr_ret_stack;
1396         int                             curr_ret_depth;
1397
1398         /* Stack of return addresses for return function tracing: */
1399         struct ftrace_ret_stack         *ret_stack;
1400
1401         /* Timestamp for last schedule: */
1402         unsigned long long              ftrace_timestamp;
1403
1404         /*
1405          * Number of functions that haven't been traced
1406          * because of depth overrun:
1407          */
1408         atomic_t                        trace_overrun;
1409
1410         /* Pause tracing: */
1411         atomic_t                        tracing_graph_pause;
1412 #endif
1413
1414 #ifdef CONFIG_TRACING
1415         /* Bitmask and counter of trace recursion: */
1416         unsigned long                   trace_recursion;
1417 #endif /* CONFIG_TRACING */
1418
1419 #ifdef CONFIG_KCOV
1420         /* See kernel/kcov.c for more details. */
1421
1422         /* Coverage collection mode enabled for this task (0 if disabled): */
1423         unsigned int                    kcov_mode;
1424
1425         /* Size of the kcov_area: */
1426         unsigned int                    kcov_size;
1427
1428         /* Buffer for coverage collection: */
1429         void                            *kcov_area;
1430
1431         /* KCOV descriptor wired with this task or NULL: */
1432         struct kcov                     *kcov;
1433
1434         /* KCOV common handle for remote coverage collection: */
1435         u64                             kcov_handle;
1436
1437         /* KCOV sequence number: */
1438         int                             kcov_sequence;
1439
1440         /* Collect coverage from softirq context: */
1441         unsigned int                    kcov_softirq;
1442 #endif
1443
1444 #ifdef CONFIG_MEMCG
1445         struct mem_cgroup               *memcg_in_oom;
1446         gfp_t                           memcg_oom_gfp_mask;
1447         int                             memcg_oom_order;
1448
1449         /* Number of pages to reclaim on returning to userland: */
1450         unsigned int                    memcg_nr_pages_over_high;
1451
1452         /* Used by memcontrol for targeted memcg charge: */
1453         struct mem_cgroup               *active_memcg;
1454 #endif
1455
1456 #ifdef CONFIG_MEMCG_KMEM
1457         struct obj_cgroup               *objcg;
1458 #endif
1459
1460 #ifdef CONFIG_BLK_CGROUP
1461         struct gendisk                  *throttle_disk;
1462 #endif
1463
1464 #ifdef CONFIG_UPROBES
1465         struct uprobe_task              *utask;
1466 #endif
1467 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1468         unsigned int                    sequential_io;
1469         unsigned int                    sequential_io_avg;
1470 #endif
1471         struct kmap_ctrl                kmap_ctrl;
1472 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1473         unsigned long                   task_state_change;
1474 # ifdef CONFIG_PREEMPT_RT
1475         unsigned long                   saved_state_change;
1476 # endif
1477 #endif
1478         struct rcu_head                 rcu;
1479         refcount_t                      rcu_users;
1480         int                             pagefault_disabled;
1481 #ifdef CONFIG_MMU
1482         struct task_struct              *oom_reaper_list;
1483         struct timer_list               oom_reaper_timer;
1484 #endif
1485 #ifdef CONFIG_VMAP_STACK
1486         struct vm_struct                *stack_vm_area;
1487 #endif
1488 #ifdef CONFIG_THREAD_INFO_IN_TASK
1489         /* A live task holds one reference: */
1490         refcount_t                      stack_refcount;
1491 #endif
1492 #ifdef CONFIG_LIVEPATCH
1493         int patch_state;
1494 #endif
1495 #ifdef CONFIG_SECURITY
1496         /* Used by LSM modules for access restriction: */
1497         void                            *security;
1498 #endif
1499 #ifdef CONFIG_BPF_SYSCALL
1500         /* Used by BPF task local storage */
1501         struct bpf_local_storage __rcu  *bpf_storage;
1502         /* Used for BPF run context */
1503         struct bpf_run_ctx              *bpf_ctx;
1504 #endif
1505
1506 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1507         unsigned long                   lowest_stack;
1508         unsigned long                   prev_lowest_stack;
1509 #endif
1510
1511 #ifdef CONFIG_X86_MCE
1512         void __user                     *mce_vaddr;
1513         __u64                           mce_kflags;
1514         u64                             mce_addr;
1515         __u64                           mce_ripv : 1,
1516                                         mce_whole_page : 1,
1517                                         __mce_reserved : 62;
1518         struct callback_head            mce_kill_me;
1519         int                             mce_count;
1520 #endif
1521
1522 #ifdef CONFIG_KRETPROBES
1523         struct llist_head               kretprobe_instances;
1524 #endif
1525 #ifdef CONFIG_RETHOOK
1526         struct llist_head               rethooks;
1527 #endif
1528
1529 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1530         /*
1531          * If L1D flush is supported on mm context switch
1532          * then we use this callback head to queue kill work
1533          * to kill tasks that are not running on SMT disabled
1534          * cores
1535          */
1536         struct callback_head            l1d_flush_kill;
1537 #endif
1538
1539 #ifdef CONFIG_RV
1540         /*
1541          * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1542          * If we find justification for more monitors, we can think
1543          * about adding more or developing a dynamic method. So far,
1544          * none of these are justified.
1545          */
1546         union rv_task_monitor           rv[RV_PER_TASK_MONITORS];
1547 #endif
1548
1549 #ifdef CONFIG_USER_EVENTS
1550         struct user_event_mm            *user_event_mm;
1551 #endif
1552
1553         /*
1554          * New fields for task_struct should be added above here, so that
1555          * they are included in the randomized portion of task_struct.
1556          */
1557         randomized_struct_fields_end
1558
1559         /* CPU-specific state of this task: */
1560         struct thread_struct            thread;
1561
1562         /*
1563          * WARNING: on x86, 'thread_struct' contains a variable-sized
1564          * structure.  It *MUST* be at the end of 'task_struct'.
1565          *
1566          * Do not put anything below here!
1567          */
1568 };
1569
1570 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1571 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1572
1573 static inline unsigned int __task_state_index(unsigned int tsk_state,
1574                                               unsigned int tsk_exit_state)
1575 {
1576         unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1577
1578         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1579
1580         if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1581                 state = TASK_REPORT_IDLE;
1582
1583         /*
1584          * We're lying here, but rather than expose a completely new task state
1585          * to userspace, we can make this appear as if the task has gone through
1586          * a regular rt_mutex_lock() call.
1587          */
1588         if (tsk_state & TASK_RTLOCK_WAIT)
1589                 state = TASK_UNINTERRUPTIBLE;
1590
1591         return fls(state);
1592 }
1593
1594 static inline unsigned int task_state_index(struct task_struct *tsk)
1595 {
1596         return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1597 }
1598
1599 static inline char task_index_to_char(unsigned int state)
1600 {
1601         static const char state_char[] = "RSDTtXZPI";
1602
1603         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1604
1605         return state_char[state];
1606 }
1607
1608 static inline char task_state_to_char(struct task_struct *tsk)
1609 {
1610         return task_index_to_char(task_state_index(tsk));
1611 }
1612
1613 extern struct pid *cad_pid;
1614
1615 /*
1616  * Per process flags
1617  */
1618 #define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1619 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1620 #define PF_EXITING              0x00000004      /* Getting shut down */
1621 #define PF_POSTCOREDUMP         0x00000008      /* Coredumps should ignore this task */
1622 #define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1623 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1624 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1625 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1626 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1627 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1628 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1629 #define PF_MEMALLOC             0x00000800      /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1630 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1631 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1632 #define PF_USER_WORKER          0x00004000      /* Kernel thread cloned from userspace thread */
1633 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1634 #define PF__HOLE__00010000      0x00010000
1635 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1636 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1637 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1638 #define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1639                                                  * I am cleaning dirty pages from some other bdi. */
1640 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1641 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1642 #define PF_MEMALLOC_NORECLAIM   0x00800000      /* All allocation requests will clear __GFP_DIRECT_RECLAIM */
1643 #define PF_MEMALLOC_NOWARN      0x01000000      /* All allocation requests will inherit __GFP_NOWARN */
1644 #define PF__HOLE__02000000      0x02000000
1645 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1646 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1647 #define PF_MEMALLOC_PIN         0x10000000      /* Allocations constrained to zones which allow long term pinning.
1648                                                  * See memalloc_pin_save() */
1649 #define PF_BLOCK_TS             0x20000000      /* plug has ts that needs updating */
1650 #define PF__HOLE__40000000      0x40000000
1651 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1652
1653 /*
1654  * Only the _current_ task can read/write to tsk->flags, but other
1655  * tasks can access tsk->flags in readonly mode for example
1656  * with tsk_used_math (like during threaded core dumping).
1657  * There is however an exception to this rule during ptrace
1658  * or during fork: the ptracer task is allowed to write to the
1659  * child->flags of its traced child (same goes for fork, the parent
1660  * can write to the child->flags), because we're guaranteed the
1661  * child is not running and in turn not changing child->flags
1662  * at the same time the parent does it.
1663  */
1664 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1665 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1666 #define clear_used_math()                       clear_stopped_child_used_math(current)
1667 #define set_used_math()                         set_stopped_child_used_math(current)
1668
1669 #define conditional_stopped_child_used_math(condition, child) \
1670         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1671
1672 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1673
1674 #define copy_to_stopped_child_used_math(child) \
1675         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1676
1677 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1678 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1679 #define used_math()                             tsk_used_math(current)
1680
1681 static __always_inline bool is_percpu_thread(void)
1682 {
1683 #ifdef CONFIG_SMP
1684         return (current->flags & PF_NO_SETAFFINITY) &&
1685                 (current->nr_cpus_allowed  == 1);
1686 #else
1687         return true;
1688 #endif
1689 }
1690
1691 /* Per-process atomic flags. */
1692 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1693 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1694 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1695 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1696 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1697 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1698 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1699 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1700
1701 #define TASK_PFA_TEST(name, func)                                       \
1702         static inline bool task_##func(struct task_struct *p)           \
1703         { return test_bit(PFA_##name, &p->atomic_flags); }
1704
1705 #define TASK_PFA_SET(name, func)                                        \
1706         static inline void task_set_##func(struct task_struct *p)       \
1707         { set_bit(PFA_##name, &p->atomic_flags); }
1708
1709 #define TASK_PFA_CLEAR(name, func)                                      \
1710         static inline void task_clear_##func(struct task_struct *p)     \
1711         { clear_bit(PFA_##name, &p->atomic_flags); }
1712
1713 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1714 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1715
1716 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1717 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1718 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1719
1720 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1721 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1722 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1723
1724 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1725 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1726 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1727
1728 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1729 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1730 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1731
1732 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1733 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1734
1735 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1736 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1737 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1738
1739 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1740 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1741
1742 static inline void
1743 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1744 {
1745         current->flags &= ~flags;
1746         current->flags |= orig_flags & flags;
1747 }
1748
1749 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1750 extern int task_can_attach(struct task_struct *p);
1751 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1752 extern void dl_bw_free(int cpu, u64 dl_bw);
1753 #ifdef CONFIG_SMP
1754
1755 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1756 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1757
1758 /**
1759  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1760  * @p: the task
1761  * @new_mask: CPU affinity mask
1762  *
1763  * Return: zero if successful, or a negative error code
1764  */
1765 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1766 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1767 extern void release_user_cpus_ptr(struct task_struct *p);
1768 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1769 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1770 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1771 #else
1772 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1773 {
1774 }
1775 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1776 {
1777         if (!cpumask_test_cpu(0, new_mask))
1778                 return -EINVAL;
1779         return 0;
1780 }
1781 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1782 {
1783         if (src->user_cpus_ptr)
1784                 return -EINVAL;
1785         return 0;
1786 }
1787 static inline void release_user_cpus_ptr(struct task_struct *p)
1788 {
1789         WARN_ON(p->user_cpus_ptr);
1790 }
1791
1792 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1793 {
1794         return 0;
1795 }
1796 #endif
1797
1798 extern int yield_to(struct task_struct *p, bool preempt);
1799 extern void set_user_nice(struct task_struct *p, long nice);
1800 extern int task_prio(const struct task_struct *p);
1801
1802 /**
1803  * task_nice - return the nice value of a given task.
1804  * @p: the task in question.
1805  *
1806  * Return: The nice value [ -20 ... 0 ... 19 ].
1807  */
1808 static inline int task_nice(const struct task_struct *p)
1809 {
1810         return PRIO_TO_NICE((p)->static_prio);
1811 }
1812
1813 extern int can_nice(const struct task_struct *p, const int nice);
1814 extern int task_curr(const struct task_struct *p);
1815 extern int idle_cpu(int cpu);
1816 extern int available_idle_cpu(int cpu);
1817 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1818 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1819 extern void sched_set_fifo(struct task_struct *p);
1820 extern void sched_set_fifo_low(struct task_struct *p);
1821 extern void sched_set_normal(struct task_struct *p, int nice);
1822 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1823 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1824 extern struct task_struct *idle_task(int cpu);
1825
1826 /**
1827  * is_idle_task - is the specified task an idle task?
1828  * @p: the task in question.
1829  *
1830  * Return: 1 if @p is an idle task. 0 otherwise.
1831  */
1832 static __always_inline bool is_idle_task(const struct task_struct *p)
1833 {
1834         return !!(p->flags & PF_IDLE);
1835 }
1836
1837 extern struct task_struct *curr_task(int cpu);
1838 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1839
1840 void yield(void);
1841
1842 union thread_union {
1843         struct task_struct task;
1844 #ifndef CONFIG_THREAD_INFO_IN_TASK
1845         struct thread_info thread_info;
1846 #endif
1847         unsigned long stack[THREAD_SIZE/sizeof(long)];
1848 };
1849
1850 #ifndef CONFIG_THREAD_INFO_IN_TASK
1851 extern struct thread_info init_thread_info;
1852 #endif
1853
1854 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1855
1856 #ifdef CONFIG_THREAD_INFO_IN_TASK
1857 # define task_thread_info(task) (&(task)->thread_info)
1858 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1859 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1860 #endif
1861
1862 /*
1863  * find a task by one of its numerical ids
1864  *
1865  * find_task_by_pid_ns():
1866  *      finds a task by its pid in the specified namespace
1867  * find_task_by_vpid():
1868  *      finds a task by its virtual pid
1869  *
1870  * see also find_vpid() etc in include/linux/pid.h
1871  */
1872
1873 extern struct task_struct *find_task_by_vpid(pid_t nr);
1874 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1875
1876 /*
1877  * find a task by its virtual pid and get the task struct
1878  */
1879 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1880
1881 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1882 extern int wake_up_process(struct task_struct *tsk);
1883 extern void wake_up_new_task(struct task_struct *tsk);
1884
1885 #ifdef CONFIG_SMP
1886 extern void kick_process(struct task_struct *tsk);
1887 #else
1888 static inline void kick_process(struct task_struct *tsk) { }
1889 #endif
1890
1891 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1892
1893 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1894 {
1895         __set_task_comm(tsk, from, false);
1896 }
1897
1898 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1899 #define get_task_comm(buf, tsk) ({                      \
1900         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1901         __get_task_comm(buf, sizeof(buf), tsk);         \
1902 })
1903
1904 #ifdef CONFIG_SMP
1905 static __always_inline void scheduler_ipi(void)
1906 {
1907         /*
1908          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1909          * TIF_NEED_RESCHED remotely (for the first time) will also send
1910          * this IPI.
1911          */
1912         preempt_fold_need_resched();
1913 }
1914 #else
1915 static inline void scheduler_ipi(void) { }
1916 #endif
1917
1918 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1919
1920 /*
1921  * Set thread flags in other task's structures.
1922  * See asm/thread_info.h for TIF_xxxx flags available:
1923  */
1924 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1925 {
1926         set_ti_thread_flag(task_thread_info(tsk), flag);
1927 }
1928
1929 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1930 {
1931         clear_ti_thread_flag(task_thread_info(tsk), flag);
1932 }
1933
1934 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1935                                           bool value)
1936 {
1937         update_ti_thread_flag(task_thread_info(tsk), flag, value);
1938 }
1939
1940 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1941 {
1942         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1943 }
1944
1945 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1946 {
1947         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1948 }
1949
1950 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1951 {
1952         return test_ti_thread_flag(task_thread_info(tsk), flag);
1953 }
1954
1955 static inline void set_tsk_need_resched(struct task_struct *tsk)
1956 {
1957         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1958 }
1959
1960 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1961 {
1962         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1963 }
1964
1965 static inline int test_tsk_need_resched(struct task_struct *tsk)
1966 {
1967         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1968 }
1969
1970 /*
1971  * cond_resched() and cond_resched_lock(): latency reduction via
1972  * explicit rescheduling in places that are safe. The return
1973  * value indicates whether a reschedule was done in fact.
1974  * cond_resched_lock() will drop the spinlock before scheduling,
1975  */
1976 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1977 extern int __cond_resched(void);
1978
1979 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
1980
1981 void sched_dynamic_klp_enable(void);
1982 void sched_dynamic_klp_disable(void);
1983
1984 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1985
1986 static __always_inline int _cond_resched(void)
1987 {
1988         return static_call_mod(cond_resched)();
1989 }
1990
1991 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
1992
1993 extern int dynamic_cond_resched(void);
1994
1995 static __always_inline int _cond_resched(void)
1996 {
1997         return dynamic_cond_resched();
1998 }
1999
2000 #else /* !CONFIG_PREEMPTION */
2001
2002 static inline int _cond_resched(void)
2003 {
2004         klp_sched_try_switch();
2005         return __cond_resched();
2006 }
2007
2008 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2009
2010 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2011
2012 static inline int _cond_resched(void)
2013 {
2014         klp_sched_try_switch();
2015         return 0;
2016 }
2017
2018 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2019
2020 #define cond_resched() ({                       \
2021         __might_resched(__FILE__, __LINE__, 0); \
2022         _cond_resched();                        \
2023 })
2024
2025 extern int __cond_resched_lock(spinlock_t *lock);
2026 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2027 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2028
2029 #define MIGHT_RESCHED_RCU_SHIFT         8
2030 #define MIGHT_RESCHED_PREEMPT_MASK      ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2031
2032 #ifndef CONFIG_PREEMPT_RT
2033 /*
2034  * Non RT kernels have an elevated preempt count due to the held lock,
2035  * but are not allowed to be inside a RCU read side critical section
2036  */
2037 # define PREEMPT_LOCK_RESCHED_OFFSETS   PREEMPT_LOCK_OFFSET
2038 #else
2039 /*
2040  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2041  * cond_resched*lock() has to take that into account because it checks for
2042  * preempt_count() and rcu_preempt_depth().
2043  */
2044 # define PREEMPT_LOCK_RESCHED_OFFSETS   \
2045         (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2046 #endif
2047
2048 #define cond_resched_lock(lock) ({                                              \
2049         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2050         __cond_resched_lock(lock);                                              \
2051 })
2052
2053 #define cond_resched_rwlock_read(lock) ({                                       \
2054         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2055         __cond_resched_rwlock_read(lock);                                       \
2056 })
2057
2058 #define cond_resched_rwlock_write(lock) ({                                      \
2059         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2060         __cond_resched_rwlock_write(lock);                                      \
2061 })
2062
2063 #ifdef CONFIG_PREEMPT_DYNAMIC
2064
2065 extern bool preempt_model_none(void);
2066 extern bool preempt_model_voluntary(void);
2067 extern bool preempt_model_full(void);
2068
2069 #else
2070
2071 static inline bool preempt_model_none(void)
2072 {
2073         return IS_ENABLED(CONFIG_PREEMPT_NONE);
2074 }
2075 static inline bool preempt_model_voluntary(void)
2076 {
2077         return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2078 }
2079 static inline bool preempt_model_full(void)
2080 {
2081         return IS_ENABLED(CONFIG_PREEMPT);
2082 }
2083
2084 #endif
2085
2086 static inline bool preempt_model_rt(void)
2087 {
2088         return IS_ENABLED(CONFIG_PREEMPT_RT);
2089 }
2090
2091 /*
2092  * Does the preemption model allow non-cooperative preemption?
2093  *
2094  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2095  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2096  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2097  * PREEMPT_NONE model.
2098  */
2099 static inline bool preempt_model_preemptible(void)
2100 {
2101         return preempt_model_full() || preempt_model_rt();
2102 }
2103
2104 static __always_inline bool need_resched(void)
2105 {
2106         return unlikely(tif_need_resched());
2107 }
2108
2109 /*
2110  * Wrappers for p->thread_info->cpu access. No-op on UP.
2111  */
2112 #ifdef CONFIG_SMP
2113
2114 static inline unsigned int task_cpu(const struct task_struct *p)
2115 {
2116         return READ_ONCE(task_thread_info(p)->cpu);
2117 }
2118
2119 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2120
2121 #else
2122
2123 static inline unsigned int task_cpu(const struct task_struct *p)
2124 {
2125         return 0;
2126 }
2127
2128 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2129 {
2130 }
2131
2132 #endif /* CONFIG_SMP */
2133
2134 extern bool sched_task_on_rq(struct task_struct *p);
2135 extern unsigned long get_wchan(struct task_struct *p);
2136 extern struct task_struct *cpu_curr_snapshot(int cpu);
2137
2138 #include <linux/spinlock.h>
2139
2140 /*
2141  * In order to reduce various lock holder preemption latencies provide an
2142  * interface to see if a vCPU is currently running or not.
2143  *
2144  * This allows us to terminate optimistic spin loops and block, analogous to
2145  * the native optimistic spin heuristic of testing if the lock owner task is
2146  * running or not.
2147  */
2148 #ifndef vcpu_is_preempted
2149 static inline bool vcpu_is_preempted(int cpu)
2150 {
2151         return false;
2152 }
2153 #endif
2154
2155 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2156 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2157
2158 #ifndef TASK_SIZE_OF
2159 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2160 #endif
2161
2162 #ifdef CONFIG_SMP
2163 static inline bool owner_on_cpu(struct task_struct *owner)
2164 {
2165         /*
2166          * As lock holder preemption issue, we both skip spinning if
2167          * task is not on cpu or its cpu is preempted
2168          */
2169         return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2170 }
2171
2172 /* Returns effective CPU energy utilization, as seen by the scheduler */
2173 unsigned long sched_cpu_util(int cpu);
2174 #endif /* CONFIG_SMP */
2175
2176 #ifdef CONFIG_SCHED_CORE
2177 extern void sched_core_free(struct task_struct *tsk);
2178 extern void sched_core_fork(struct task_struct *p);
2179 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2180                                 unsigned long uaddr);
2181 extern int sched_core_idle_cpu(int cpu);
2182 #else
2183 static inline void sched_core_free(struct task_struct *tsk) { }
2184 static inline void sched_core_fork(struct task_struct *p) { }
2185 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2186 #endif
2187
2188 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2189
2190 #endif