Merge tag 'drm-fixes-2018-09-07' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / include / linux / rcupdate.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Author: Dipankar Sarma <dipankar@in.ibm.com>
21  *
22  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24  * Papers:
25  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27  *
28  * For detailed explanation of Read-Copy Update mechanism see -
29  *              http://lse.sourceforge.net/locking/rcupdate.html
30  *
31  */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/compiler.h>
38 #include <linux/atomic.h>
39 #include <linux/irqflags.h>
40 #include <linux/preempt.h>
41 #include <linux/bottom_half.h>
42 #include <linux/lockdep.h>
43 #include <asm/processor.h>
44 #include <linux/cpumask.h>
45
46 #define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
47 #define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
48 #define ulong2long(a)           (*(long *)(&(a)))
49
50 /* Exported common interfaces */
51
52 #ifdef CONFIG_PREEMPT_RCU
53 void call_rcu(struct rcu_head *head, rcu_callback_t func);
54 #else /* #ifdef CONFIG_PREEMPT_RCU */
55 #define call_rcu        call_rcu_sched
56 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
57
58 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
59 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60 void synchronize_sched(void);
61 void rcu_barrier_tasks(void);
62
63 #ifdef CONFIG_PREEMPT_RCU
64
65 void __rcu_read_lock(void);
66 void __rcu_read_unlock(void);
67 void synchronize_rcu(void);
68
69 /*
70  * Defined as a macro as it is a very low level header included from
71  * areas that don't even know about current.  This gives the rcu_read_lock()
72  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
73  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
74  */
75 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
76
77 #else /* #ifdef CONFIG_PREEMPT_RCU */
78
79 static inline void __rcu_read_lock(void)
80 {
81         if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
82                 preempt_disable();
83 }
84
85 static inline void __rcu_read_unlock(void)
86 {
87         if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
88                 preempt_enable();
89 }
90
91 static inline void synchronize_rcu(void)
92 {
93         synchronize_sched();
94 }
95
96 static inline int rcu_preempt_depth(void)
97 {
98         return 0;
99 }
100
101 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
102
103 /* Internal to kernel */
104 void rcu_init(void);
105 extern int rcu_scheduler_active __read_mostly;
106 void rcu_sched_qs(void);
107 void rcu_bh_qs(void);
108 void rcu_check_callbacks(int user);
109 void rcu_report_dead(unsigned int cpu);
110 void rcutree_migrate_callbacks(int cpu);
111
112 #ifdef CONFIG_RCU_STALL_COMMON
113 void rcu_sysrq_start(void);
114 void rcu_sysrq_end(void);
115 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
116 static inline void rcu_sysrq_start(void) { }
117 static inline void rcu_sysrq_end(void) { }
118 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
119
120 #ifdef CONFIG_NO_HZ_FULL
121 void rcu_user_enter(void);
122 void rcu_user_exit(void);
123 #else
124 static inline void rcu_user_enter(void) { }
125 static inline void rcu_user_exit(void) { }
126 #endif /* CONFIG_NO_HZ_FULL */
127
128 #ifdef CONFIG_RCU_NOCB_CPU
129 void rcu_init_nohz(void);
130 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
131 static inline void rcu_init_nohz(void) { }
132 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
133
134 /**
135  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
136  * @a: Code that RCU needs to pay attention to.
137  *
138  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
139  * in the inner idle loop, that is, between the rcu_idle_enter() and
140  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
141  * critical sections.  However, things like powertop need tracepoints
142  * in the inner idle loop.
143  *
144  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
145  * will tell RCU that it needs to pay attention, invoke its argument
146  * (in this example, calling the do_something_with_RCU() function),
147  * and then tell RCU to go back to ignoring this CPU.  It is permissible
148  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
149  * on the order of a million or so, even on 32-bit systems).  It is
150  * not legal to block within RCU_NONIDLE(), nor is it permissible to
151  * transfer control either into or out of RCU_NONIDLE()'s statement.
152  */
153 #define RCU_NONIDLE(a) \
154         do { \
155                 rcu_irq_enter_irqson(); \
156                 do { a; } while (0); \
157                 rcu_irq_exit_irqson(); \
158         } while (0)
159
160 /*
161  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
162  * This is a macro rather than an inline function to avoid #include hell.
163  */
164 #ifdef CONFIG_TASKS_RCU
165 #define rcu_tasks_qs(t) \
166         do { \
167                 if (READ_ONCE((t)->rcu_tasks_holdout)) \
168                         WRITE_ONCE((t)->rcu_tasks_holdout, false); \
169         } while (0)
170 #define rcu_note_voluntary_context_switch(t) \
171         do { \
172                 rcu_all_qs(); \
173                 rcu_tasks_qs(t); \
174         } while (0)
175 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
176 void synchronize_rcu_tasks(void);
177 void exit_tasks_rcu_start(void);
178 void exit_tasks_rcu_finish(void);
179 #else /* #ifdef CONFIG_TASKS_RCU */
180 #define rcu_tasks_qs(t) do { } while (0)
181 #define rcu_note_voluntary_context_switch(t)            rcu_all_qs()
182 #define call_rcu_tasks call_rcu_sched
183 #define synchronize_rcu_tasks synchronize_sched
184 static inline void exit_tasks_rcu_start(void) { }
185 static inline void exit_tasks_rcu_finish(void) { }
186 #endif /* #else #ifdef CONFIG_TASKS_RCU */
187
188 /**
189  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
190  *
191  * This macro resembles cond_resched(), except that it is defined to
192  * report potential quiescent states to RCU-tasks even if the cond_resched()
193  * machinery were to be shut off, as some advocate for PREEMPT kernels.
194  */
195 #define cond_resched_tasks_rcu_qs() \
196 do { \
197         rcu_tasks_qs(current); \
198         cond_resched(); \
199 } while (0)
200
201 /*
202  * Infrastructure to implement the synchronize_() primitives in
203  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
204  */
205
206 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
207 #include <linux/rcutree.h>
208 #elif defined(CONFIG_TINY_RCU)
209 #include <linux/rcutiny.h>
210 #else
211 #error "Unknown RCU implementation specified to kernel configuration"
212 #endif
213
214 /*
215  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
216  * are needed for dynamic initialization and destruction of rcu_head
217  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
218  * dynamic initialization and destruction of statically allocated rcu_head
219  * structures.  However, rcu_head structures allocated dynamically in the
220  * heap don't need any initialization.
221  */
222 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
223 void init_rcu_head(struct rcu_head *head);
224 void destroy_rcu_head(struct rcu_head *head);
225 void init_rcu_head_on_stack(struct rcu_head *head);
226 void destroy_rcu_head_on_stack(struct rcu_head *head);
227 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
228 static inline void init_rcu_head(struct rcu_head *head) { }
229 static inline void destroy_rcu_head(struct rcu_head *head) { }
230 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
231 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
232 #endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
233
234 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
235 bool rcu_lockdep_current_cpu_online(void);
236 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
237 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
238 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
239
240 #ifdef CONFIG_DEBUG_LOCK_ALLOC
241
242 static inline void rcu_lock_acquire(struct lockdep_map *map)
243 {
244         lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
245 }
246
247 static inline void rcu_lock_release(struct lockdep_map *map)
248 {
249         lock_release(map, 1, _THIS_IP_);
250 }
251
252 extern struct lockdep_map rcu_lock_map;
253 extern struct lockdep_map rcu_bh_lock_map;
254 extern struct lockdep_map rcu_sched_lock_map;
255 extern struct lockdep_map rcu_callback_map;
256 int debug_lockdep_rcu_enabled(void);
257 int rcu_read_lock_held(void);
258 int rcu_read_lock_bh_held(void);
259 int rcu_read_lock_sched_held(void);
260
261 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
262
263 # define rcu_lock_acquire(a)            do { } while (0)
264 # define rcu_lock_release(a)            do { } while (0)
265
266 static inline int rcu_read_lock_held(void)
267 {
268         return 1;
269 }
270
271 static inline int rcu_read_lock_bh_held(void)
272 {
273         return 1;
274 }
275
276 static inline int rcu_read_lock_sched_held(void)
277 {
278         return !preemptible();
279 }
280 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
281
282 #ifdef CONFIG_PROVE_RCU
283
284 /**
285  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
286  * @c: condition to check
287  * @s: informative message
288  */
289 #define RCU_LOCKDEP_WARN(c, s)                                          \
290         do {                                                            \
291                 static bool __section(.data.unlikely) __warned;         \
292                 if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
293                         __warned = true;                                \
294                         lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
295                 }                                                       \
296         } while (0)
297
298 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
299 static inline void rcu_preempt_sleep_check(void)
300 {
301         RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
302                          "Illegal context switch in RCU read-side critical section");
303 }
304 #else /* #ifdef CONFIG_PROVE_RCU */
305 static inline void rcu_preempt_sleep_check(void) { }
306 #endif /* #else #ifdef CONFIG_PROVE_RCU */
307
308 #define rcu_sleep_check()                                               \
309         do {                                                            \
310                 rcu_preempt_sleep_check();                              \
311                 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
312                                  "Illegal context switch in RCU-bh read-side critical section"); \
313                 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
314                                  "Illegal context switch in RCU-sched read-side critical section"); \
315         } while (0)
316
317 #else /* #ifdef CONFIG_PROVE_RCU */
318
319 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
320 #define rcu_sleep_check() do { } while (0)
321
322 #endif /* #else #ifdef CONFIG_PROVE_RCU */
323
324 /*
325  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
326  * and rcu_assign_pointer().  Some of these could be folded into their
327  * callers, but they are left separate in order to ease introduction of
328  * multiple flavors of pointers to match the multiple flavors of RCU
329  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
330  * the future.
331  */
332
333 #ifdef __CHECKER__
334 #define rcu_dereference_sparse(p, space) \
335         ((void)(((typeof(*p) space *)p) == p))
336 #else /* #ifdef __CHECKER__ */
337 #define rcu_dereference_sparse(p, space)
338 #endif /* #else #ifdef __CHECKER__ */
339
340 #define __rcu_access_pointer(p, space) \
341 ({ \
342         typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
343         rcu_dereference_sparse(p, space); \
344         ((typeof(*p) __force __kernel *)(_________p1)); \
345 })
346 #define __rcu_dereference_check(p, c, space) \
347 ({ \
348         /* Dependency order vs. p above. */ \
349         typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
350         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
351         rcu_dereference_sparse(p, space); \
352         ((typeof(*p) __force __kernel *)(________p1)); \
353 })
354 #define __rcu_dereference_protected(p, c, space) \
355 ({ \
356         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
357         rcu_dereference_sparse(p, space); \
358         ((typeof(*p) __force __kernel *)(p)); \
359 })
360 #define rcu_dereference_raw(p) \
361 ({ \
362         /* Dependency order vs. p above. */ \
363         typeof(p) ________p1 = READ_ONCE(p); \
364         ((typeof(*p) __force __kernel *)(________p1)); \
365 })
366
367 /**
368  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
369  * @v: The value to statically initialize with.
370  */
371 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
372
373 /**
374  * rcu_assign_pointer() - assign to RCU-protected pointer
375  * @p: pointer to assign to
376  * @v: value to assign (publish)
377  *
378  * Assigns the specified value to the specified RCU-protected
379  * pointer, ensuring that any concurrent RCU readers will see
380  * any prior initialization.
381  *
382  * Inserts memory barriers on architectures that require them
383  * (which is most of them), and also prevents the compiler from
384  * reordering the code that initializes the structure after the pointer
385  * assignment.  More importantly, this call documents which pointers
386  * will be dereferenced by RCU read-side code.
387  *
388  * In some special cases, you may use RCU_INIT_POINTER() instead
389  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
390  * to the fact that it does not constrain either the CPU or the compiler.
391  * That said, using RCU_INIT_POINTER() when you should have used
392  * rcu_assign_pointer() is a very bad thing that results in
393  * impossible-to-diagnose memory corruption.  So please be careful.
394  * See the RCU_INIT_POINTER() comment header for details.
395  *
396  * Note that rcu_assign_pointer() evaluates each of its arguments only
397  * once, appearances notwithstanding.  One of the "extra" evaluations
398  * is in typeof() and the other visible only to sparse (__CHECKER__),
399  * neither of which actually execute the argument.  As with most cpp
400  * macros, this execute-arguments-only-once property is important, so
401  * please be careful when making changes to rcu_assign_pointer() and the
402  * other macros that it invokes.
403  */
404 #define rcu_assign_pointer(p, v)                                              \
405 ({                                                                            \
406         uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
407                                                                               \
408         if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
409                 WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
410         else                                                                  \
411                 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
412         _r_a_p__v;                                                            \
413 })
414
415 /**
416  * rcu_swap_protected() - swap an RCU and a regular pointer
417  * @rcu_ptr: RCU pointer
418  * @ptr: regular pointer
419  * @c: the conditions under which the dereference will take place
420  *
421  * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
422  * @c is the argument that is passed to the rcu_dereference_protected() call
423  * used to read that pointer.
424  */
425 #define rcu_swap_protected(rcu_ptr, ptr, c) do {                        \
426         typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
427         rcu_assign_pointer((rcu_ptr), (ptr));                           \
428         (ptr) = __tmp;                                                  \
429 } while (0)
430
431 /**
432  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
433  * @p: The pointer to read
434  *
435  * Return the value of the specified RCU-protected pointer, but omit the
436  * lockdep checks for being in an RCU read-side critical section.  This is
437  * useful when the value of this pointer is accessed, but the pointer is
438  * not dereferenced, for example, when testing an RCU-protected pointer
439  * against NULL.  Although rcu_access_pointer() may also be used in cases
440  * where update-side locks prevent the value of the pointer from changing,
441  * you should instead use rcu_dereference_protected() for this use case.
442  *
443  * It is also permissible to use rcu_access_pointer() when read-side
444  * access to the pointer was removed at least one grace period ago, as
445  * is the case in the context of the RCU callback that is freeing up
446  * the data, or after a synchronize_rcu() returns.  This can be useful
447  * when tearing down multi-linked structures after a grace period
448  * has elapsed.
449  */
450 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
451
452 /**
453  * rcu_dereference_check() - rcu_dereference with debug checking
454  * @p: The pointer to read, prior to dereferencing
455  * @c: The conditions under which the dereference will take place
456  *
457  * Do an rcu_dereference(), but check that the conditions under which the
458  * dereference will take place are correct.  Typically the conditions
459  * indicate the various locking conditions that should be held at that
460  * point.  The check should return true if the conditions are satisfied.
461  * An implicit check for being in an RCU read-side critical section
462  * (rcu_read_lock()) is included.
463  *
464  * For example:
465  *
466  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
467  *
468  * could be used to indicate to lockdep that foo->bar may only be dereferenced
469  * if either rcu_read_lock() is held, or that the lock required to replace
470  * the bar struct at foo->bar is held.
471  *
472  * Note that the list of conditions may also include indications of when a lock
473  * need not be held, for example during initialisation or destruction of the
474  * target struct:
475  *
476  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
477  *                                            atomic_read(&foo->usage) == 0);
478  *
479  * Inserts memory barriers on architectures that require them
480  * (currently only the Alpha), prevents the compiler from refetching
481  * (and from merging fetches), and, more importantly, documents exactly
482  * which pointers are protected by RCU and checks that the pointer is
483  * annotated as __rcu.
484  */
485 #define rcu_dereference_check(p, c) \
486         __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
487
488 /**
489  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
490  * @p: The pointer to read, prior to dereferencing
491  * @c: The conditions under which the dereference will take place
492  *
493  * This is the RCU-bh counterpart to rcu_dereference_check().
494  */
495 #define rcu_dereference_bh_check(p, c) \
496         __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
497
498 /**
499  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
500  * @p: The pointer to read, prior to dereferencing
501  * @c: The conditions under which the dereference will take place
502  *
503  * This is the RCU-sched counterpart to rcu_dereference_check().
504  */
505 #define rcu_dereference_sched_check(p, c) \
506         __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
507                                 __rcu)
508
509 /*
510  * The tracing infrastructure traces RCU (we want that), but unfortunately
511  * some of the RCU checks causes tracing to lock up the system.
512  *
513  * The no-tracing version of rcu_dereference_raw() must not call
514  * rcu_read_lock_held().
515  */
516 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
517
518 /**
519  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
520  * @p: The pointer to read, prior to dereferencing
521  * @c: The conditions under which the dereference will take place
522  *
523  * Return the value of the specified RCU-protected pointer, but omit
524  * the READ_ONCE().  This is useful in cases where update-side locks
525  * prevent the value of the pointer from changing.  Please note that this
526  * primitive does *not* prevent the compiler from repeating this reference
527  * or combining it with other references, so it should not be used without
528  * protection of appropriate locks.
529  *
530  * This function is only for update-side use.  Using this function
531  * when protected only by rcu_read_lock() will result in infrequent
532  * but very ugly failures.
533  */
534 #define rcu_dereference_protected(p, c) \
535         __rcu_dereference_protected((p), (c), __rcu)
536
537
538 /**
539  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
540  * @p: The pointer to read, prior to dereferencing
541  *
542  * This is a simple wrapper around rcu_dereference_check().
543  */
544 #define rcu_dereference(p) rcu_dereference_check(p, 0)
545
546 /**
547  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
548  * @p: The pointer to read, prior to dereferencing
549  *
550  * Makes rcu_dereference_check() do the dirty work.
551  */
552 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
553
554 /**
555  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
556  * @p: The pointer to read, prior to dereferencing
557  *
558  * Makes rcu_dereference_check() do the dirty work.
559  */
560 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
561
562 /**
563  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
564  * @p: The pointer to hand off
565  *
566  * This is simply an identity function, but it documents where a pointer
567  * is handed off from RCU to some other synchronization mechanism, for
568  * example, reference counting or locking.  In C11, it would map to
569  * kill_dependency().  It could be used as follows::
570  *
571  *      rcu_read_lock();
572  *      p = rcu_dereference(gp);
573  *      long_lived = is_long_lived(p);
574  *      if (long_lived) {
575  *              if (!atomic_inc_not_zero(p->refcnt))
576  *                      long_lived = false;
577  *              else
578  *                      p = rcu_pointer_handoff(p);
579  *      }
580  *      rcu_read_unlock();
581  */
582 #define rcu_pointer_handoff(p) (p)
583
584 /**
585  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
586  *
587  * When synchronize_rcu() is invoked on one CPU while other CPUs
588  * are within RCU read-side critical sections, then the
589  * synchronize_rcu() is guaranteed to block until after all the other
590  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
591  * on one CPU while other CPUs are within RCU read-side critical
592  * sections, invocation of the corresponding RCU callback is deferred
593  * until after the all the other CPUs exit their critical sections.
594  *
595  * Note, however, that RCU callbacks are permitted to run concurrently
596  * with new RCU read-side critical sections.  One way that this can happen
597  * is via the following sequence of events: (1) CPU 0 enters an RCU
598  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
599  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
600  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
601  * callback is invoked.  This is legal, because the RCU read-side critical
602  * section that was running concurrently with the call_rcu() (and which
603  * therefore might be referencing something that the corresponding RCU
604  * callback would free up) has completed before the corresponding
605  * RCU callback is invoked.
606  *
607  * RCU read-side critical sections may be nested.  Any deferred actions
608  * will be deferred until the outermost RCU read-side critical section
609  * completes.
610  *
611  * You can avoid reading and understanding the next paragraph by
612  * following this rule: don't put anything in an rcu_read_lock() RCU
613  * read-side critical section that would block in a !PREEMPT kernel.
614  * But if you want the full story, read on!
615  *
616  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
617  * it is illegal to block while in an RCU read-side critical section.
618  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
619  * kernel builds, RCU read-side critical sections may be preempted,
620  * but explicit blocking is illegal.  Finally, in preemptible RCU
621  * implementations in real-time (with -rt patchset) kernel builds, RCU
622  * read-side critical sections may be preempted and they may also block, but
623  * only when acquiring spinlocks that are subject to priority inheritance.
624  */
625 static inline void rcu_read_lock(void)
626 {
627         __rcu_read_lock();
628         __acquire(RCU);
629         rcu_lock_acquire(&rcu_lock_map);
630         RCU_LOCKDEP_WARN(!rcu_is_watching(),
631                          "rcu_read_lock() used illegally while idle");
632 }
633
634 /*
635  * So where is rcu_write_lock()?  It does not exist, as there is no
636  * way for writers to lock out RCU readers.  This is a feature, not
637  * a bug -- this property is what provides RCU's performance benefits.
638  * Of course, writers must coordinate with each other.  The normal
639  * spinlock primitives work well for this, but any other technique may be
640  * used as well.  RCU does not care how the writers keep out of each
641  * others' way, as long as they do so.
642  */
643
644 /**
645  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
646  *
647  * In most situations, rcu_read_unlock() is immune from deadlock.
648  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
649  * is responsible for deboosting, which it does via rt_mutex_unlock().
650  * Unfortunately, this function acquires the scheduler's runqueue and
651  * priority-inheritance spinlocks.  This means that deadlock could result
652  * if the caller of rcu_read_unlock() already holds one of these locks or
653  * any lock that is ever acquired while holding them.
654  *
655  * That said, RCU readers are never priority boosted unless they were
656  * preempted.  Therefore, one way to avoid deadlock is to make sure
657  * that preemption never happens within any RCU read-side critical
658  * section whose outermost rcu_read_unlock() is called with one of
659  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
660  * a number of ways, for example, by invoking preempt_disable() before
661  * critical section's outermost rcu_read_lock().
662  *
663  * Given that the set of locks acquired by rt_mutex_unlock() might change
664  * at any time, a somewhat more future-proofed approach is to make sure
665  * that that preemption never happens within any RCU read-side critical
666  * section whose outermost rcu_read_unlock() is called with irqs disabled.
667  * This approach relies on the fact that rt_mutex_unlock() currently only
668  * acquires irq-disabled locks.
669  *
670  * The second of these two approaches is best in most situations,
671  * however, the first approach can also be useful, at least to those
672  * developers willing to keep abreast of the set of locks acquired by
673  * rt_mutex_unlock().
674  *
675  * See rcu_read_lock() for more information.
676  */
677 static inline void rcu_read_unlock(void)
678 {
679         RCU_LOCKDEP_WARN(!rcu_is_watching(),
680                          "rcu_read_unlock() used illegally while idle");
681         __release(RCU);
682         __rcu_read_unlock();
683         rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
684 }
685
686 /**
687  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
688  *
689  * This is equivalent of rcu_read_lock(), but to be used when updates
690  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
691  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
692  * softirq handler to be a quiescent state, a process in RCU read-side
693  * critical section must be protected by disabling softirqs. Read-side
694  * critical sections in interrupt context can use just rcu_read_lock(),
695  * though this should at least be commented to avoid confusing people
696  * reading the code.
697  *
698  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
699  * must occur in the same context, for example, it is illegal to invoke
700  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
701  * was invoked from some other task.
702  */
703 static inline void rcu_read_lock_bh(void)
704 {
705         local_bh_disable();
706         __acquire(RCU_BH);
707         rcu_lock_acquire(&rcu_bh_lock_map);
708         RCU_LOCKDEP_WARN(!rcu_is_watching(),
709                          "rcu_read_lock_bh() used illegally while idle");
710 }
711
712 /*
713  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
714  *
715  * See rcu_read_lock_bh() for more information.
716  */
717 static inline void rcu_read_unlock_bh(void)
718 {
719         RCU_LOCKDEP_WARN(!rcu_is_watching(),
720                          "rcu_read_unlock_bh() used illegally while idle");
721         rcu_lock_release(&rcu_bh_lock_map);
722         __release(RCU_BH);
723         local_bh_enable();
724 }
725
726 /**
727  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
728  *
729  * This is equivalent of rcu_read_lock(), but to be used when updates
730  * are being done using call_rcu_sched() or synchronize_rcu_sched().
731  * Read-side critical sections can also be introduced by anything that
732  * disables preemption, including local_irq_disable() and friends.
733  *
734  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
735  * must occur in the same context, for example, it is illegal to invoke
736  * rcu_read_unlock_sched() from process context if the matching
737  * rcu_read_lock_sched() was invoked from an NMI handler.
738  */
739 static inline void rcu_read_lock_sched(void)
740 {
741         preempt_disable();
742         __acquire(RCU_SCHED);
743         rcu_lock_acquire(&rcu_sched_lock_map);
744         RCU_LOCKDEP_WARN(!rcu_is_watching(),
745                          "rcu_read_lock_sched() used illegally while idle");
746 }
747
748 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
749 static inline notrace void rcu_read_lock_sched_notrace(void)
750 {
751         preempt_disable_notrace();
752         __acquire(RCU_SCHED);
753 }
754
755 /*
756  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
757  *
758  * See rcu_read_lock_sched for more information.
759  */
760 static inline void rcu_read_unlock_sched(void)
761 {
762         RCU_LOCKDEP_WARN(!rcu_is_watching(),
763                          "rcu_read_unlock_sched() used illegally while idle");
764         rcu_lock_release(&rcu_sched_lock_map);
765         __release(RCU_SCHED);
766         preempt_enable();
767 }
768
769 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
770 static inline notrace void rcu_read_unlock_sched_notrace(void)
771 {
772         __release(RCU_SCHED);
773         preempt_enable_notrace();
774 }
775
776 /**
777  * RCU_INIT_POINTER() - initialize an RCU protected pointer
778  * @p: The pointer to be initialized.
779  * @v: The value to initialized the pointer to.
780  *
781  * Initialize an RCU-protected pointer in special cases where readers
782  * do not need ordering constraints on the CPU or the compiler.  These
783  * special cases are:
784  *
785  * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
786  * 2.   The caller has taken whatever steps are required to prevent
787  *      RCU readers from concurrently accessing this pointer *or*
788  * 3.   The referenced data structure has already been exposed to
789  *      readers either at compile time or via rcu_assign_pointer() *and*
790  *
791  *      a.      You have not made *any* reader-visible changes to
792  *              this structure since then *or*
793  *      b.      It is OK for readers accessing this structure from its
794  *              new location to see the old state of the structure.  (For
795  *              example, the changes were to statistical counters or to
796  *              other state where exact synchronization is not required.)
797  *
798  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
799  * result in impossible-to-diagnose memory corruption.  As in the structures
800  * will look OK in crash dumps, but any concurrent RCU readers might
801  * see pre-initialized values of the referenced data structure.  So
802  * please be very careful how you use RCU_INIT_POINTER()!!!
803  *
804  * If you are creating an RCU-protected linked structure that is accessed
805  * by a single external-to-structure RCU-protected pointer, then you may
806  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
807  * pointers, but you must use rcu_assign_pointer() to initialize the
808  * external-to-structure pointer *after* you have completely initialized
809  * the reader-accessible portions of the linked structure.
810  *
811  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
812  * ordering guarantees for either the CPU or the compiler.
813  */
814 #define RCU_INIT_POINTER(p, v) \
815         do { \
816                 rcu_dereference_sparse(p, __rcu); \
817                 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
818         } while (0)
819
820 /**
821  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
822  * @p: The pointer to be initialized.
823  * @v: The value to initialized the pointer to.
824  *
825  * GCC-style initialization for an RCU-protected pointer in a structure field.
826  */
827 #define RCU_POINTER_INITIALIZER(p, v) \
828                 .p = RCU_INITIALIZER(v)
829
830 /*
831  * Does the specified offset indicate that the corresponding rcu_head
832  * structure can be handled by kfree_rcu()?
833  */
834 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
835
836 /*
837  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
838  */
839 #define __kfree_rcu(head, offset) \
840         do { \
841                 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
842                 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
843         } while (0)
844
845 /**
846  * kfree_rcu() - kfree an object after a grace period.
847  * @ptr:        pointer to kfree
848  * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
849  *
850  * Many rcu callbacks functions just call kfree() on the base structure.
851  * These functions are trivial, but their size adds up, and furthermore
852  * when they are used in a kernel module, that module must invoke the
853  * high-latency rcu_barrier() function at module-unload time.
854  *
855  * The kfree_rcu() function handles this issue.  Rather than encoding a
856  * function address in the embedded rcu_head structure, kfree_rcu() instead
857  * encodes the offset of the rcu_head structure within the base structure.
858  * Because the functions are not allowed in the low-order 4096 bytes of
859  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
860  * If the offset is larger than 4095 bytes, a compile-time error will
861  * be generated in __kfree_rcu().  If this error is triggered, you can
862  * either fall back to use of call_rcu() or rearrange the structure to
863  * position the rcu_head structure into the first 4096 bytes.
864  *
865  * Note that the allowable offset might decrease in the future, for example,
866  * to allow something like kmem_cache_free_rcu().
867  *
868  * The BUILD_BUG_ON check must not involve any function calls, hence the
869  * checks are done in macros here.
870  */
871 #define kfree_rcu(ptr, rcu_head)                                        \
872         __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
873
874
875 /*
876  * Place this after a lock-acquisition primitive to guarantee that
877  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
878  * if the UNLOCK and LOCK are executed by the same CPU or if the
879  * UNLOCK and LOCK operate on the same lock variable.
880  */
881 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
882 #define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
883 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
884 #define smp_mb__after_unlock_lock()     do { } while (0)
885 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
886
887
888 #endif /* __LINUX_RCUPDATE_H */