Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / include / linux / rculist.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4
5 #ifdef __KERNEL__
6
7 /*
8  * RCU-protected list version
9  */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12
13 /*
14  * Why is there no list_empty_rcu()?  Because list_empty() serves this
15  * purpose.  The list_empty() function fetches the RCU-protected pointer
16  * and compares it to the address of the list head, but neither dereferences
17  * this pointer itself nor provides this pointer to the caller.  Therefore,
18  * it is not necessary to use rcu_dereference(), so that list_empty() can
19  * be used anywhere you would want to use a list_empty_rcu().
20  */
21
22 /*
23  * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
24  * @list: list to be initialized
25  *
26  * You should instead use INIT_LIST_HEAD() for normal initialization and
27  * cleanup tasks, when readers have no access to the list being initialized.
28  * However, if the list being initialized is visible to readers, you
29  * need to keep the compiler from being too mischievous.
30  */
31 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
32 {
33         WRITE_ONCE(list->next, list);
34         WRITE_ONCE(list->prev, list);
35 }
36
37 /*
38  * return the ->next pointer of a list_head in an rcu safe
39  * way, we must not access it directly
40  */
41 #define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
42
43 /*
44  * Insert a new entry between two known consecutive entries.
45  *
46  * This is only for internal list manipulation where we know
47  * the prev/next entries already!
48  */
49 static inline void __list_add_rcu(struct list_head *new,
50                 struct list_head *prev, struct list_head *next)
51 {
52         if (!__list_add_valid(new, prev, next))
53                 return;
54
55         new->next = next;
56         new->prev = prev;
57         rcu_assign_pointer(list_next_rcu(prev), new);
58         next->prev = new;
59 }
60
61 /**
62  * list_add_rcu - add a new entry to rcu-protected list
63  * @new: new entry to be added
64  * @head: list head to add it after
65  *
66  * Insert a new entry after the specified head.
67  * This is good for implementing stacks.
68  *
69  * The caller must take whatever precautions are necessary
70  * (such as holding appropriate locks) to avoid racing
71  * with another list-mutation primitive, such as list_add_rcu()
72  * or list_del_rcu(), running on this same list.
73  * However, it is perfectly legal to run concurrently with
74  * the _rcu list-traversal primitives, such as
75  * list_for_each_entry_rcu().
76  */
77 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
78 {
79         __list_add_rcu(new, head, head->next);
80 }
81
82 /**
83  * list_add_tail_rcu - add a new entry to rcu-protected list
84  * @new: new entry to be added
85  * @head: list head to add it before
86  *
87  * Insert a new entry before the specified head.
88  * This is useful for implementing queues.
89  *
90  * The caller must take whatever precautions are necessary
91  * (such as holding appropriate locks) to avoid racing
92  * with another list-mutation primitive, such as list_add_tail_rcu()
93  * or list_del_rcu(), running on this same list.
94  * However, it is perfectly legal to run concurrently with
95  * the _rcu list-traversal primitives, such as
96  * list_for_each_entry_rcu().
97  */
98 static inline void list_add_tail_rcu(struct list_head *new,
99                                         struct list_head *head)
100 {
101         __list_add_rcu(new, head->prev, head);
102 }
103
104 /**
105  * list_del_rcu - deletes entry from list without re-initialization
106  * @entry: the element to delete from the list.
107  *
108  * Note: list_empty() on entry does not return true after this,
109  * the entry is in an undefined state. It is useful for RCU based
110  * lockfree traversal.
111  *
112  * In particular, it means that we can not poison the forward
113  * pointers that may still be used for walking the list.
114  *
115  * The caller must take whatever precautions are necessary
116  * (such as holding appropriate locks) to avoid racing
117  * with another list-mutation primitive, such as list_del_rcu()
118  * or list_add_rcu(), running on this same list.
119  * However, it is perfectly legal to run concurrently with
120  * the _rcu list-traversal primitives, such as
121  * list_for_each_entry_rcu().
122  *
123  * Note that the caller is not permitted to immediately free
124  * the newly deleted entry.  Instead, either synchronize_rcu()
125  * or call_rcu() must be used to defer freeing until an RCU
126  * grace period has elapsed.
127  */
128 static inline void list_del_rcu(struct list_head *entry)
129 {
130         __list_del_entry(entry);
131         entry->prev = LIST_POISON2;
132 }
133
134 /**
135  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
136  * @n: the element to delete from the hash list.
137  *
138  * Note: list_unhashed() on the node return true after this. It is
139  * useful for RCU based read lockfree traversal if the writer side
140  * must know if the list entry is still hashed or already unhashed.
141  *
142  * In particular, it means that we can not poison the forward pointers
143  * that may still be used for walking the hash list and we can only
144  * zero the pprev pointer so list_unhashed() will return true after
145  * this.
146  *
147  * The caller must take whatever precautions are necessary (such as
148  * holding appropriate locks) to avoid racing with another
149  * list-mutation primitive, such as hlist_add_head_rcu() or
150  * hlist_del_rcu(), running on this same list.  However, it is
151  * perfectly legal to run concurrently with the _rcu list-traversal
152  * primitives, such as hlist_for_each_entry_rcu().
153  */
154 static inline void hlist_del_init_rcu(struct hlist_node *n)
155 {
156         if (!hlist_unhashed(n)) {
157                 __hlist_del(n);
158                 n->pprev = NULL;
159         }
160 }
161
162 /**
163  * list_replace_rcu - replace old entry by new one
164  * @old : the element to be replaced
165  * @new : the new element to insert
166  *
167  * The @old entry will be replaced with the @new entry atomically.
168  * Note: @old should not be empty.
169  */
170 static inline void list_replace_rcu(struct list_head *old,
171                                 struct list_head *new)
172 {
173         new->next = old->next;
174         new->prev = old->prev;
175         rcu_assign_pointer(list_next_rcu(new->prev), new);
176         new->next->prev = new;
177         old->prev = LIST_POISON2;
178 }
179
180 /**
181  * __list_splice_init_rcu - join an RCU-protected list into an existing list.
182  * @list:       the RCU-protected list to splice
183  * @prev:       points to the last element of the existing list
184  * @next:       points to the first element of the existing list
185  * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
186  *
187  * The list pointed to by @prev and @next can be RCU-read traversed
188  * concurrently with this function.
189  *
190  * Note that this function blocks.
191  *
192  * Important note: the caller must take whatever action is necessary to prevent
193  * any other updates to the existing list.  In principle, it is possible to
194  * modify the list as soon as sync() begins execution. If this sort of thing
195  * becomes necessary, an alternative version based on call_rcu() could be
196  * created.  But only if -really- needed -- there is no shortage of RCU API
197  * members.
198  */
199 static inline void __list_splice_init_rcu(struct list_head *list,
200                                           struct list_head *prev,
201                                           struct list_head *next,
202                                           void (*sync)(void))
203 {
204         struct list_head *first = list->next;
205         struct list_head *last = list->prev;
206
207         /*
208          * "first" and "last" tracking list, so initialize it.  RCU readers
209          * have access to this list, so we must use INIT_LIST_HEAD_RCU()
210          * instead of INIT_LIST_HEAD().
211          */
212
213         INIT_LIST_HEAD_RCU(list);
214
215         /*
216          * At this point, the list body still points to the source list.
217          * Wait for any readers to finish using the list before splicing
218          * the list body into the new list.  Any new readers will see
219          * an empty list.
220          */
221
222         sync();
223
224         /*
225          * Readers are finished with the source list, so perform splice.
226          * The order is important if the new list is global and accessible
227          * to concurrent RCU readers.  Note that RCU readers are not
228          * permitted to traverse the prev pointers without excluding
229          * this function.
230          */
231
232         last->next = next;
233         rcu_assign_pointer(list_next_rcu(prev), first);
234         first->prev = prev;
235         next->prev = last;
236 }
237
238 /**
239  * list_splice_init_rcu - splice an RCU-protected list into an existing list,
240  *                        designed for stacks.
241  * @list:       the RCU-protected list to splice
242  * @head:       the place in the existing list to splice the first list into
243  * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
244  */
245 static inline void list_splice_init_rcu(struct list_head *list,
246                                         struct list_head *head,
247                                         void (*sync)(void))
248 {
249         if (!list_empty(list))
250                 __list_splice_init_rcu(list, head, head->next, sync);
251 }
252
253 /**
254  * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
255  *                             list, designed for queues.
256  * @list:       the RCU-protected list to splice
257  * @head:       the place in the existing list to splice the first list into
258  * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
259  */
260 static inline void list_splice_tail_init_rcu(struct list_head *list,
261                                              struct list_head *head,
262                                              void (*sync)(void))
263 {
264         if (!list_empty(list))
265                 __list_splice_init_rcu(list, head->prev, head, sync);
266 }
267
268 /**
269  * list_entry_rcu - get the struct for this entry
270  * @ptr:        the &struct list_head pointer.
271  * @type:       the type of the struct this is embedded in.
272  * @member:     the name of the list_head within the struct.
273  *
274  * This primitive may safely run concurrently with the _rcu list-mutation
275  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
276  */
277 #define list_entry_rcu(ptr, type, member) \
278         container_of(READ_ONCE(ptr), type, member)
279
280 /*
281  * Where are list_empty_rcu() and list_first_entry_rcu()?
282  *
283  * Implementing those functions following their counterparts list_empty() and
284  * list_first_entry() is not advisable because they lead to subtle race
285  * conditions as the following snippet shows:
286  *
287  * if (!list_empty_rcu(mylist)) {
288  *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
289  *      do_something(bar);
290  * }
291  *
292  * The list may not be empty when list_empty_rcu checks it, but it may be when
293  * list_first_entry_rcu rereads the ->next pointer.
294  *
295  * Rereading the ->next pointer is not a problem for list_empty() and
296  * list_first_entry() because they would be protected by a lock that blocks
297  * writers.
298  *
299  * See list_first_or_null_rcu for an alternative.
300  */
301
302 /**
303  * list_first_or_null_rcu - get the first element from a list
304  * @ptr:        the list head to take the element from.
305  * @type:       the type of the struct this is embedded in.
306  * @member:     the name of the list_head within the struct.
307  *
308  * Note that if the list is empty, it returns NULL.
309  *
310  * This primitive may safely run concurrently with the _rcu list-mutation
311  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
312  */
313 #define list_first_or_null_rcu(ptr, type, member) \
314 ({ \
315         struct list_head *__ptr = (ptr); \
316         struct list_head *__next = READ_ONCE(__ptr->next); \
317         likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
318 })
319
320 /**
321  * list_next_or_null_rcu - get the first element from a list
322  * @head:       the head for the list.
323  * @ptr:        the list head to take the next element from.
324  * @type:       the type of the struct this is embedded in.
325  * @member:     the name of the list_head within the struct.
326  *
327  * Note that if the ptr is at the end of the list, NULL is returned.
328  *
329  * This primitive may safely run concurrently with the _rcu list-mutation
330  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
331  */
332 #define list_next_or_null_rcu(head, ptr, type, member) \
333 ({ \
334         struct list_head *__head = (head); \
335         struct list_head *__ptr = (ptr); \
336         struct list_head *__next = READ_ONCE(__ptr->next); \
337         likely(__next != __head) ? list_entry_rcu(__next, type, \
338                                                   member) : NULL; \
339 })
340
341 /**
342  * list_for_each_entry_rcu      -       iterate over rcu list of given type
343  * @pos:        the type * to use as a loop cursor.
344  * @head:       the head for your list.
345  * @member:     the name of the list_head within the struct.
346  *
347  * This list-traversal primitive may safely run concurrently with
348  * the _rcu list-mutation primitives such as list_add_rcu()
349  * as long as the traversal is guarded by rcu_read_lock().
350  */
351 #define list_for_each_entry_rcu(pos, head, member) \
352         for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
353                 &pos->member != (head); \
354                 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
355
356 /**
357  * list_entry_lockless - get the struct for this entry
358  * @ptr:        the &struct list_head pointer.
359  * @type:       the type of the struct this is embedded in.
360  * @member:     the name of the list_head within the struct.
361  *
362  * This primitive may safely run concurrently with the _rcu
363  * list-mutation primitives such as list_add_rcu(), but requires some
364  * implicit RCU read-side guarding.  One example is running within a special
365  * exception-time environment where preemption is disabled and where lockdep
366  * cannot be invoked.  Another example is when items are added to the list,
367  * but never deleted.
368  */
369 #define list_entry_lockless(ptr, type, member) \
370         container_of((typeof(ptr))READ_ONCE(ptr), type, member)
371
372 /**
373  * list_for_each_entry_lockless - iterate over rcu list of given type
374  * @pos:        the type * to use as a loop cursor.
375  * @head:       the head for your list.
376  * @member:     the name of the list_struct within the struct.
377  *
378  * This primitive may safely run concurrently with the _rcu
379  * list-mutation primitives such as list_add_rcu(), but requires some
380  * implicit RCU read-side guarding.  One example is running within a special
381  * exception-time environment where preemption is disabled and where lockdep
382  * cannot be invoked.  Another example is when items are added to the list,
383  * but never deleted.
384  */
385 #define list_for_each_entry_lockless(pos, head, member) \
386         for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
387              &pos->member != (head); \
388              pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
389
390 /**
391  * list_for_each_entry_continue_rcu - continue iteration over list of given type
392  * @pos:        the type * to use as a loop cursor.
393  * @head:       the head for your list.
394  * @member:     the name of the list_head within the struct.
395  *
396  * Continue to iterate over list of given type, continuing after
397  * the current position which must have been in the list when the RCU read
398  * lock was taken.
399  * This would typically require either that you obtained the node from a
400  * previous walk of the list in the same RCU read-side critical section, or
401  * that you held some sort of non-RCU reference (such as a reference count)
402  * to keep the node alive *and* in the list.
403  *
404  * This iterator is similar to list_for_each_entry_from_rcu() except
405  * this starts after the given position and that one starts at the given
406  * position.
407  */
408 #define list_for_each_entry_continue_rcu(pos, head, member)             \
409         for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
410              &pos->member != (head);    \
411              pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
412
413 /**
414  * list_for_each_entry_from_rcu - iterate over a list from current point
415  * @pos:        the type * to use as a loop cursor.
416  * @head:       the head for your list.
417  * @member:     the name of the list_node within the struct.
418  *
419  * Iterate over the tail of a list starting from a given position,
420  * which must have been in the list when the RCU read lock was taken.
421  * This would typically require either that you obtained the node from a
422  * previous walk of the list in the same RCU read-side critical section, or
423  * that you held some sort of non-RCU reference (such as a reference count)
424  * to keep the node alive *and* in the list.
425  *
426  * This iterator is similar to list_for_each_entry_continue_rcu() except
427  * this starts from the given position and that one starts from the position
428  * after the given position.
429  */
430 #define list_for_each_entry_from_rcu(pos, head, member)                 \
431         for (; &(pos)->member != (head);                                        \
432                 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
433
434 /**
435  * hlist_del_rcu - deletes entry from hash list without re-initialization
436  * @n: the element to delete from the hash list.
437  *
438  * Note: list_unhashed() on entry does not return true after this,
439  * the entry is in an undefined state. It is useful for RCU based
440  * lockfree traversal.
441  *
442  * In particular, it means that we can not poison the forward
443  * pointers that may still be used for walking the hash list.
444  *
445  * The caller must take whatever precautions are necessary
446  * (such as holding appropriate locks) to avoid racing
447  * with another list-mutation primitive, such as hlist_add_head_rcu()
448  * or hlist_del_rcu(), running on this same list.
449  * However, it is perfectly legal to run concurrently with
450  * the _rcu list-traversal primitives, such as
451  * hlist_for_each_entry().
452  */
453 static inline void hlist_del_rcu(struct hlist_node *n)
454 {
455         __hlist_del(n);
456         n->pprev = LIST_POISON2;
457 }
458
459 /**
460  * hlist_replace_rcu - replace old entry by new one
461  * @old : the element to be replaced
462  * @new : the new element to insert
463  *
464  * The @old entry will be replaced with the @new entry atomically.
465  */
466 static inline void hlist_replace_rcu(struct hlist_node *old,
467                                         struct hlist_node *new)
468 {
469         struct hlist_node *next = old->next;
470
471         new->next = next;
472         new->pprev = old->pprev;
473         rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
474         if (next)
475                 new->next->pprev = &new->next;
476         old->pprev = LIST_POISON2;
477 }
478
479 /*
480  * return the first or the next element in an RCU protected hlist
481  */
482 #define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
483 #define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
484 #define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
485
486 /**
487  * hlist_add_head_rcu
488  * @n: the element to add to the hash list.
489  * @h: the list to add to.
490  *
491  * Description:
492  * Adds the specified element to the specified hlist,
493  * while permitting racing traversals.
494  *
495  * The caller must take whatever precautions are necessary
496  * (such as holding appropriate locks) to avoid racing
497  * with another list-mutation primitive, such as hlist_add_head_rcu()
498  * or hlist_del_rcu(), running on this same list.
499  * However, it is perfectly legal to run concurrently with
500  * the _rcu list-traversal primitives, such as
501  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
502  * problems on Alpha CPUs.  Regardless of the type of CPU, the
503  * list-traversal primitive must be guarded by rcu_read_lock().
504  */
505 static inline void hlist_add_head_rcu(struct hlist_node *n,
506                                         struct hlist_head *h)
507 {
508         struct hlist_node *first = h->first;
509
510         n->next = first;
511         n->pprev = &h->first;
512         rcu_assign_pointer(hlist_first_rcu(h), n);
513         if (first)
514                 first->pprev = &n->next;
515 }
516
517 /**
518  * hlist_add_tail_rcu
519  * @n: the element to add to the hash list.
520  * @h: the list to add to.
521  *
522  * Description:
523  * Adds the specified element to the specified hlist,
524  * while permitting racing traversals.
525  *
526  * The caller must take whatever precautions are necessary
527  * (such as holding appropriate locks) to avoid racing
528  * with another list-mutation primitive, such as hlist_add_head_rcu()
529  * or hlist_del_rcu(), running on this same list.
530  * However, it is perfectly legal to run concurrently with
531  * the _rcu list-traversal primitives, such as
532  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
533  * problems on Alpha CPUs.  Regardless of the type of CPU, the
534  * list-traversal primitive must be guarded by rcu_read_lock().
535  */
536 static inline void hlist_add_tail_rcu(struct hlist_node *n,
537                                       struct hlist_head *h)
538 {
539         struct hlist_node *i, *last = NULL;
540
541         /* Note: write side code, so rcu accessors are not needed. */
542         for (i = h->first; i; i = i->next)
543                 last = i;
544
545         if (last) {
546                 n->next = last->next;
547                 n->pprev = &last->next;
548                 rcu_assign_pointer(hlist_next_rcu(last), n);
549         } else {
550                 hlist_add_head_rcu(n, h);
551         }
552 }
553
554 /**
555  * hlist_add_before_rcu
556  * @n: the new element to add to the hash list.
557  * @next: the existing element to add the new element before.
558  *
559  * Description:
560  * Adds the specified element to the specified hlist
561  * before the specified node while permitting racing traversals.
562  *
563  * The caller must take whatever precautions are necessary
564  * (such as holding appropriate locks) to avoid racing
565  * with another list-mutation primitive, such as hlist_add_head_rcu()
566  * or hlist_del_rcu(), running on this same list.
567  * However, it is perfectly legal to run concurrently with
568  * the _rcu list-traversal primitives, such as
569  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
570  * problems on Alpha CPUs.
571  */
572 static inline void hlist_add_before_rcu(struct hlist_node *n,
573                                         struct hlist_node *next)
574 {
575         n->pprev = next->pprev;
576         n->next = next;
577         rcu_assign_pointer(hlist_pprev_rcu(n), n);
578         next->pprev = &n->next;
579 }
580
581 /**
582  * hlist_add_behind_rcu
583  * @n: the new element to add to the hash list.
584  * @prev: the existing element to add the new element after.
585  *
586  * Description:
587  * Adds the specified element to the specified hlist
588  * after the specified node while permitting racing traversals.
589  *
590  * The caller must take whatever precautions are necessary
591  * (such as holding appropriate locks) to avoid racing
592  * with another list-mutation primitive, such as hlist_add_head_rcu()
593  * or hlist_del_rcu(), running on this same list.
594  * However, it is perfectly legal to run concurrently with
595  * the _rcu list-traversal primitives, such as
596  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
597  * problems on Alpha CPUs.
598  */
599 static inline void hlist_add_behind_rcu(struct hlist_node *n,
600                                         struct hlist_node *prev)
601 {
602         n->next = prev->next;
603         n->pprev = &prev->next;
604         rcu_assign_pointer(hlist_next_rcu(prev), n);
605         if (n->next)
606                 n->next->pprev = &n->next;
607 }
608
609 #define __hlist_for_each_rcu(pos, head)                         \
610         for (pos = rcu_dereference(hlist_first_rcu(head));      \
611              pos;                                               \
612              pos = rcu_dereference(hlist_next_rcu(pos)))
613
614 /**
615  * hlist_for_each_entry_rcu - iterate over rcu list of given type
616  * @pos:        the type * to use as a loop cursor.
617  * @head:       the head for your list.
618  * @member:     the name of the hlist_node within the struct.
619  *
620  * This list-traversal primitive may safely run concurrently with
621  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
622  * as long as the traversal is guarded by rcu_read_lock().
623  */
624 #define hlist_for_each_entry_rcu(pos, head, member)                     \
625         for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
626                         typeof(*(pos)), member);                        \
627                 pos;                                                    \
628                 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
629                         &(pos)->member)), typeof(*(pos)), member))
630
631 /**
632  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
633  * @pos:        the type * to use as a loop cursor.
634  * @head:       the head for your list.
635  * @member:     the name of the hlist_node within the struct.
636  *
637  * This list-traversal primitive may safely run concurrently with
638  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
639  * as long as the traversal is guarded by rcu_read_lock().
640  *
641  * This is the same as hlist_for_each_entry_rcu() except that it does
642  * not do any RCU debugging or tracing.
643  */
644 #define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
645         for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
646                         typeof(*(pos)), member);                        \
647                 pos;                                                    \
648                 pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
649                         &(pos)->member)), typeof(*(pos)), member))
650
651 /**
652  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
653  * @pos:        the type * to use as a loop cursor.
654  * @head:       the head for your list.
655  * @member:     the name of the hlist_node within the struct.
656  *
657  * This list-traversal primitive may safely run concurrently with
658  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
659  * as long as the traversal is guarded by rcu_read_lock().
660  */
661 #define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
662         for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
663                         typeof(*(pos)), member);                        \
664                 pos;                                                    \
665                 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
666                         &(pos)->member)), typeof(*(pos)), member))
667
668 /**
669  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
670  * @pos:        the type * to use as a loop cursor.
671  * @member:     the name of the hlist_node within the struct.
672  */
673 #define hlist_for_each_entry_continue_rcu(pos, member)                  \
674         for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
675                         &(pos)->member)), typeof(*(pos)), member);      \
676              pos;                                                       \
677              pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
678                         &(pos)->member)), typeof(*(pos)), member))
679
680 /**
681  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
682  * @pos:        the type * to use as a loop cursor.
683  * @member:     the name of the hlist_node within the struct.
684  */
685 #define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
686         for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
687                         &(pos)->member)), typeof(*(pos)), member);      \
688              pos;                                                       \
689              pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
690                         &(pos)->member)), typeof(*(pos)), member))
691
692 /**
693  * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
694  * @pos:        the type * to use as a loop cursor.
695  * @member:     the name of the hlist_node within the struct.
696  */
697 #define hlist_for_each_entry_from_rcu(pos, member)                      \
698         for (; pos;                                                     \
699              pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
700                         &(pos)->member)), typeof(*(pos)), member))
701
702 #endif  /* __KERNEL__ */
703 #endif