1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
4 #include <linux/compiler.h> /* For unlikely. */
5 #include <linux/sched.h> /* For struct task_struct. */
6 #include <linux/err.h> /* for IS_ERR_VALUE */
7 #include <linux/bug.h> /* For BUG_ON. */
8 #include <linux/pid_namespace.h> /* For task_active_pid_ns. */
9 #include <uapi/linux/ptrace.h>
14 * The owner ship rules for task->ptrace which holds the ptrace
15 * flags is simple. When a task is running it owns it's task->ptrace
16 * flags. When the a task is stopped the ptracer owns task->ptrace.
19 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
20 #define PT_PTRACED 0x00000001
21 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
22 #define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */
24 #define PT_OPT_FLAG_SHIFT 3
25 /* PT_TRACE_* event enable flags */
26 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
27 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
28 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
29 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
30 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
31 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
32 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
33 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
34 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
36 #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
38 /* single stepping state bits (used on ARM and PA-RISC) */
39 #define PT_SINGLESTEP_BIT 31
40 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
41 #define PT_BLOCKSTEP_BIT 30
42 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
44 extern long arch_ptrace(struct task_struct *child, long request,
45 unsigned long addr, unsigned long data);
46 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
47 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
48 extern void ptrace_disable(struct task_struct *);
49 extern int ptrace_request(struct task_struct *child, long request,
50 unsigned long addr, unsigned long data);
51 extern void ptrace_notify(int exit_code);
52 extern void __ptrace_link(struct task_struct *child,
53 struct task_struct *new_parent);
54 extern void __ptrace_unlink(struct task_struct *child);
55 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
56 #define PTRACE_MODE_READ 0x01
57 #define PTRACE_MODE_ATTACH 0x02
58 #define PTRACE_MODE_NOAUDIT 0x04
59 /* Returns true on success, false on denial. */
60 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
62 static inline int ptrace_reparented(struct task_struct *child)
64 return !same_thread_group(child->real_parent, child->parent);
67 static inline void ptrace_unlink(struct task_struct *child)
69 if (unlikely(child->ptrace))
70 __ptrace_unlink(child);
73 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
75 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
79 * ptrace_parent - return the task that is tracing the given task
80 * @task: task to consider
82 * Returns %NULL if no one is tracing @task, or the &struct task_struct
83 * pointer to its tracer.
85 * Must called under rcu_read_lock(). The pointer returned might be kept
86 * live only by RCU. During exec, this may be called with task_lock() held
87 * on @task, still held from when check_unsafe_exec() was called.
89 static inline struct task_struct *ptrace_parent(struct task_struct *task)
91 if (unlikely(task->ptrace))
92 return rcu_dereference(task->parent);
97 * ptrace_event_enabled - test whether a ptrace event is enabled
98 * @task: ptracee of interest
99 * @event: %PTRACE_EVENT_* to test
101 * Test whether @event is enabled for ptracee @task.
103 * Returns %true if @event is enabled, %false otherwise.
105 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
107 return task->ptrace & PT_EVENT_FLAG(event);
111 * ptrace_event - possibly stop for a ptrace event notification
112 * @event: %PTRACE_EVENT_* value to report
113 * @message: value for %PTRACE_GETEVENTMSG to return
115 * Check whether @event is enabled and, if so, report @event and @message
116 * to the ptrace parent.
118 * Called without locks.
120 static inline void ptrace_event(int event, unsigned long message)
122 if (unlikely(ptrace_event_enabled(current, event))) {
123 current->ptrace_message = message;
124 ptrace_notify((event << 8) | SIGTRAP);
125 } else if (event == PTRACE_EVENT_EXEC) {
126 /* legacy EXEC report via SIGTRAP */
127 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
128 send_sig(SIGTRAP, current, 0);
133 * ptrace_event_pid - possibly stop for a ptrace event notification
134 * @event: %PTRACE_EVENT_* value to report
135 * @pid: process identifier for %PTRACE_GETEVENTMSG to return
137 * Check whether @event is enabled and, if so, report @event and @pid
138 * to the ptrace parent. @pid is reported as the pid_t seen from the
139 * the ptrace parent's pid namespace.
141 * Called without locks.
143 static inline void ptrace_event_pid(int event, struct pid *pid)
146 * FIXME: There's a potential race if a ptracer in a different pid
147 * namespace than parent attaches between computing message below and
148 * when we acquire tasklist_lock in ptrace_stop(). If this happens,
149 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
151 unsigned long message = 0;
152 struct pid_namespace *ns;
155 ns = task_active_pid_ns(rcu_dereference(current->parent));
157 message = pid_nr_ns(pid, ns);
160 ptrace_event(event, message);
164 * ptrace_init_task - initialize ptrace state for a new child
165 * @child: new child task
166 * @ptrace: true if child should be ptrace'd by parent's tracer
168 * This is called immediately after adding @child to its parent's children
169 * list. @ptrace is false in the normal case, and true to ptrace @child.
171 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
173 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
175 INIT_LIST_HEAD(&child->ptrace_entry);
176 INIT_LIST_HEAD(&child->ptraced);
179 child->parent = child->real_parent;
181 if (unlikely(ptrace) && current->ptrace) {
182 child->ptrace = current->ptrace;
183 __ptrace_link(child, current->parent);
185 if (child->ptrace & PT_SEIZED)
186 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
188 sigaddset(&child->pending.signal, SIGSTOP);
190 set_tsk_thread_flag(child, TIF_SIGPENDING);
195 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
196 * @task: task in %EXIT_DEAD state
198 * Called with write_lock(&tasklist_lock) held.
200 static inline void ptrace_release_task(struct task_struct *task)
202 BUG_ON(!list_empty(&task->ptraced));
204 BUG_ON(!list_empty(&task->ptrace_entry));
207 #ifndef force_successful_syscall_return
209 * System call handlers that, upon successful completion, need to return a
210 * negative value should call force_successful_syscall_return() right before
211 * returning. On architectures where the syscall convention provides for a
212 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
213 * others), this macro can be used to ensure that the error flag will not get
214 * set. On architectures which do not support a separate error flag, the macro
215 * is a no-op and the spurious error condition needs to be filtered out by some
216 * other means (e.g., in user-level, by passing an extra argument to the
217 * syscall handler, or something along those lines).
219 #define force_successful_syscall_return() do { } while (0)
222 #ifndef is_syscall_success
224 * On most systems we can tell if a syscall is a success based on if the retval
225 * is an error value. On some systems like ia64 and powerpc they have different
226 * indicators of success/failure and must define their own.
228 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
232 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
234 * These do-nothing inlines are used when the arch does not
235 * implement single-step. The kerneldoc comments are here
236 * to document the interface for all arch definitions.
239 #ifndef arch_has_single_step
241 * arch_has_single_step - does this CPU support user-mode single-step?
243 * If this is defined, then there must be function declarations or
244 * inlines for user_enable_single_step() and user_disable_single_step().
245 * arch_has_single_step() should evaluate to nonzero iff the machine
246 * supports instruction single-step for user mode.
247 * It can be a constant or it can test a CPU feature bit.
249 #define arch_has_single_step() (0)
252 * user_enable_single_step - single-step in user-mode task
253 * @task: either current or a task stopped in %TASK_TRACED
255 * This can only be called when arch_has_single_step() has returned nonzero.
256 * Set @task so that when it returns to user mode, it will trap after the
257 * next single instruction executes. If arch_has_block_step() is defined,
258 * this must clear the effects of user_enable_block_step() too.
260 static inline void user_enable_single_step(struct task_struct *task)
262 BUG(); /* This can never be called. */
266 * user_disable_single_step - cancel user-mode single-step
267 * @task: either current or a task stopped in %TASK_TRACED
269 * Clear @task of the effects of user_enable_single_step() and
270 * user_enable_block_step(). This can be called whether or not either
271 * of those was ever called on @task, and even if arch_has_single_step()
274 static inline void user_disable_single_step(struct task_struct *task)
278 extern void user_enable_single_step(struct task_struct *);
279 extern void user_disable_single_step(struct task_struct *);
280 #endif /* arch_has_single_step */
282 #ifndef arch_has_block_step
284 * arch_has_block_step - does this CPU support user-mode block-step?
286 * If this is defined, then there must be a function declaration or inline
287 * for user_enable_block_step(), and arch_has_single_step() must be defined
288 * too. arch_has_block_step() should evaluate to nonzero iff the machine
289 * supports step-until-branch for user mode. It can be a constant or it
290 * can test a CPU feature bit.
292 #define arch_has_block_step() (0)
295 * user_enable_block_step - step until branch in user-mode task
296 * @task: either current or a task stopped in %TASK_TRACED
298 * This can only be called when arch_has_block_step() has returned nonzero,
299 * and will never be called when single-instruction stepping is being used.
300 * Set @task so that when it returns to user mode, it will trap after the
301 * next branch or trap taken.
303 static inline void user_enable_block_step(struct task_struct *task)
305 BUG(); /* This can never be called. */
308 extern void user_enable_block_step(struct task_struct *);
309 #endif /* arch_has_block_step */
311 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
312 extern void user_single_step_siginfo(struct task_struct *tsk,
313 struct pt_regs *regs, siginfo_t *info);
315 static inline void user_single_step_siginfo(struct task_struct *tsk,
316 struct pt_regs *regs, siginfo_t *info)
318 memset(info, 0, sizeof(*info));
319 info->si_signo = SIGTRAP;
323 #ifndef arch_ptrace_stop_needed
325 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
326 * @code: current->exit_code value ptrace will stop with
327 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
329 * This is called with the siglock held, to decide whether or not it's
330 * necessary to release the siglock and call arch_ptrace_stop() with the
331 * same @code and @info arguments. It can be defined to a constant if
332 * arch_ptrace_stop() is never required, or always is. On machines where
333 * this makes sense, it should be defined to a quick test to optimize out
334 * calling arch_ptrace_stop() when it would be superfluous. For example,
335 * if the thread has not been back to user mode since the last stop, the
336 * thread state might indicate that nothing needs to be done.
338 * This is guaranteed to be invoked once before a task stops for ptrace and
339 * may include arch-specific operations necessary prior to a ptrace stop.
341 #define arch_ptrace_stop_needed(code, info) (0)
344 #ifndef arch_ptrace_stop
346 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
347 * @code: current->exit_code value ptrace will stop with
348 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
350 * This is called with no locks held when arch_ptrace_stop_needed() has
351 * just returned nonzero. It is allowed to block, e.g. for user memory
352 * access. The arch can have machine-specific work to be done before
353 * ptrace stops. On ia64, register backing store gets written back to user
354 * memory here. Since this can be costly (requires dropping the siglock),
355 * we only do it when the arch requires it for this particular stop, as
356 * indicated by arch_ptrace_stop_needed().
358 #define arch_ptrace_stop(code, info) do { } while (0)
361 #ifndef current_pt_regs
362 #define current_pt_regs() task_pt_regs(current)
365 #ifndef ptrace_signal_deliver
366 #define ptrace_signal_deliver() ((void)0)
370 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
371 * on *all* architectures; the only reason to have a per-arch definition
374 #ifndef signal_pt_regs
375 #define signal_pt_regs() task_pt_regs(current)
378 #ifndef current_user_stack_pointer
379 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
382 extern int task_current_syscall(struct task_struct *target, long *callno,
383 unsigned long args[6], unsigned int maxargs,
384 unsigned long *sp, unsigned long *pc);