1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
4 #include <linux/compiler.h> /* For unlikely. */
5 #include <linux/sched.h> /* For struct task_struct. */
6 #include <linux/err.h> /* for IS_ERR_VALUE */
7 #include <linux/bug.h> /* For BUG_ON. */
8 #include <linux/pid_namespace.h> /* For task_active_pid_ns. */
9 #include <uapi/linux/ptrace.h>
14 * The owner ship rules for task->ptrace which holds the ptrace
15 * flags is simple. When a task is running it owns it's task->ptrace
16 * flags. When the a task is stopped the ptracer owns task->ptrace.
19 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
20 #define PT_PTRACED 0x00000001
21 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
22 #define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */
24 #define PT_OPT_FLAG_SHIFT 3
25 /* PT_TRACE_* event enable flags */
26 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
27 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
28 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
29 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
30 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
31 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
32 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
33 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
34 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
36 #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
37 #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
39 /* single stepping state bits (used on ARM and PA-RISC) */
40 #define PT_SINGLESTEP_BIT 31
41 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
42 #define PT_BLOCKSTEP_BIT 30
43 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
45 extern long arch_ptrace(struct task_struct *child, long request,
46 unsigned long addr, unsigned long data);
47 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
48 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
49 extern void ptrace_disable(struct task_struct *);
50 extern int ptrace_request(struct task_struct *child, long request,
51 unsigned long addr, unsigned long data);
52 extern void ptrace_notify(int exit_code);
53 extern void __ptrace_link(struct task_struct *child,
54 struct task_struct *new_parent);
55 extern void __ptrace_unlink(struct task_struct *child);
56 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
57 #define PTRACE_MODE_READ 0x01
58 #define PTRACE_MODE_ATTACH 0x02
59 #define PTRACE_MODE_NOAUDIT 0x04
60 /* Returns true on success, false on denial. */
61 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
63 static inline int ptrace_reparented(struct task_struct *child)
65 return !same_thread_group(child->real_parent, child->parent);
68 static inline void ptrace_unlink(struct task_struct *child)
70 if (unlikely(child->ptrace))
71 __ptrace_unlink(child);
74 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
76 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
80 * ptrace_parent - return the task that is tracing the given task
81 * @task: task to consider
83 * Returns %NULL if no one is tracing @task, or the &struct task_struct
84 * pointer to its tracer.
86 * Must called under rcu_read_lock(). The pointer returned might be kept
87 * live only by RCU. During exec, this may be called with task_lock() held
88 * on @task, still held from when check_unsafe_exec() was called.
90 static inline struct task_struct *ptrace_parent(struct task_struct *task)
92 if (unlikely(task->ptrace))
93 return rcu_dereference(task->parent);
98 * ptrace_event_enabled - test whether a ptrace event is enabled
99 * @task: ptracee of interest
100 * @event: %PTRACE_EVENT_* to test
102 * Test whether @event is enabled for ptracee @task.
104 * Returns %true if @event is enabled, %false otherwise.
106 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
108 return task->ptrace & PT_EVENT_FLAG(event);
112 * ptrace_event - possibly stop for a ptrace event notification
113 * @event: %PTRACE_EVENT_* value to report
114 * @message: value for %PTRACE_GETEVENTMSG to return
116 * Check whether @event is enabled and, if so, report @event and @message
117 * to the ptrace parent.
119 * Called without locks.
121 static inline void ptrace_event(int event, unsigned long message)
123 if (unlikely(ptrace_event_enabled(current, event))) {
124 current->ptrace_message = message;
125 ptrace_notify((event << 8) | SIGTRAP);
126 } else if (event == PTRACE_EVENT_EXEC) {
127 /* legacy EXEC report via SIGTRAP */
128 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
129 send_sig(SIGTRAP, current, 0);
134 * ptrace_event_pid - possibly stop for a ptrace event notification
135 * @event: %PTRACE_EVENT_* value to report
136 * @pid: process identifier for %PTRACE_GETEVENTMSG to return
138 * Check whether @event is enabled and, if so, report @event and @pid
139 * to the ptrace parent. @pid is reported as the pid_t seen from the
140 * the ptrace parent's pid namespace.
142 * Called without locks.
144 static inline void ptrace_event_pid(int event, struct pid *pid)
147 * FIXME: There's a potential race if a ptracer in a different pid
148 * namespace than parent attaches between computing message below and
149 * when we acquire tasklist_lock in ptrace_stop(). If this happens,
150 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
152 unsigned long message = 0;
153 struct pid_namespace *ns;
156 ns = task_active_pid_ns(rcu_dereference(current->parent));
158 message = pid_nr_ns(pid, ns);
161 ptrace_event(event, message);
165 * ptrace_init_task - initialize ptrace state for a new child
166 * @child: new child task
167 * @ptrace: true if child should be ptrace'd by parent's tracer
169 * This is called immediately after adding @child to its parent's children
170 * list. @ptrace is false in the normal case, and true to ptrace @child.
172 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
174 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
176 INIT_LIST_HEAD(&child->ptrace_entry);
177 INIT_LIST_HEAD(&child->ptraced);
180 child->parent = child->real_parent;
182 if (unlikely(ptrace) && current->ptrace) {
183 child->ptrace = current->ptrace;
184 __ptrace_link(child, current->parent);
186 if (child->ptrace & PT_SEIZED)
187 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
189 sigaddset(&child->pending.signal, SIGSTOP);
191 set_tsk_thread_flag(child, TIF_SIGPENDING);
196 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
197 * @task: task in %EXIT_DEAD state
199 * Called with write_lock(&tasklist_lock) held.
201 static inline void ptrace_release_task(struct task_struct *task)
203 BUG_ON(!list_empty(&task->ptraced));
205 BUG_ON(!list_empty(&task->ptrace_entry));
208 #ifndef force_successful_syscall_return
210 * System call handlers that, upon successful completion, need to return a
211 * negative value should call force_successful_syscall_return() right before
212 * returning. On architectures where the syscall convention provides for a
213 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
214 * others), this macro can be used to ensure that the error flag will not get
215 * set. On architectures which do not support a separate error flag, the macro
216 * is a no-op and the spurious error condition needs to be filtered out by some
217 * other means (e.g., in user-level, by passing an extra argument to the
218 * syscall handler, or something along those lines).
220 #define force_successful_syscall_return() do { } while (0)
223 #ifndef is_syscall_success
225 * On most systems we can tell if a syscall is a success based on if the retval
226 * is an error value. On some systems like ia64 and powerpc they have different
227 * indicators of success/failure and must define their own.
229 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
233 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
235 * These do-nothing inlines are used when the arch does not
236 * implement single-step. The kerneldoc comments are here
237 * to document the interface for all arch definitions.
240 #ifndef arch_has_single_step
242 * arch_has_single_step - does this CPU support user-mode single-step?
244 * If this is defined, then there must be function declarations or
245 * inlines for user_enable_single_step() and user_disable_single_step().
246 * arch_has_single_step() should evaluate to nonzero iff the machine
247 * supports instruction single-step for user mode.
248 * It can be a constant or it can test a CPU feature bit.
250 #define arch_has_single_step() (0)
253 * user_enable_single_step - single-step in user-mode task
254 * @task: either current or a task stopped in %TASK_TRACED
256 * This can only be called when arch_has_single_step() has returned nonzero.
257 * Set @task so that when it returns to user mode, it will trap after the
258 * next single instruction executes. If arch_has_block_step() is defined,
259 * this must clear the effects of user_enable_block_step() too.
261 static inline void user_enable_single_step(struct task_struct *task)
263 BUG(); /* This can never be called. */
267 * user_disable_single_step - cancel user-mode single-step
268 * @task: either current or a task stopped in %TASK_TRACED
270 * Clear @task of the effects of user_enable_single_step() and
271 * user_enable_block_step(). This can be called whether or not either
272 * of those was ever called on @task, and even if arch_has_single_step()
275 static inline void user_disable_single_step(struct task_struct *task)
279 extern void user_enable_single_step(struct task_struct *);
280 extern void user_disable_single_step(struct task_struct *);
281 #endif /* arch_has_single_step */
283 #ifndef arch_has_block_step
285 * arch_has_block_step - does this CPU support user-mode block-step?
287 * If this is defined, then there must be a function declaration or inline
288 * for user_enable_block_step(), and arch_has_single_step() must be defined
289 * too. arch_has_block_step() should evaluate to nonzero iff the machine
290 * supports step-until-branch for user mode. It can be a constant or it
291 * can test a CPU feature bit.
293 #define arch_has_block_step() (0)
296 * user_enable_block_step - step until branch in user-mode task
297 * @task: either current or a task stopped in %TASK_TRACED
299 * This can only be called when arch_has_block_step() has returned nonzero,
300 * and will never be called when single-instruction stepping is being used.
301 * Set @task so that when it returns to user mode, it will trap after the
302 * next branch or trap taken.
304 static inline void user_enable_block_step(struct task_struct *task)
306 BUG(); /* This can never be called. */
309 extern void user_enable_block_step(struct task_struct *);
310 #endif /* arch_has_block_step */
312 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
313 extern void user_single_step_siginfo(struct task_struct *tsk,
314 struct pt_regs *regs, siginfo_t *info);
316 static inline void user_single_step_siginfo(struct task_struct *tsk,
317 struct pt_regs *regs, siginfo_t *info)
319 memset(info, 0, sizeof(*info));
320 info->si_signo = SIGTRAP;
324 #ifndef arch_ptrace_stop_needed
326 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
327 * @code: current->exit_code value ptrace will stop with
328 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
330 * This is called with the siglock held, to decide whether or not it's
331 * necessary to release the siglock and call arch_ptrace_stop() with the
332 * same @code and @info arguments. It can be defined to a constant if
333 * arch_ptrace_stop() is never required, or always is. On machines where
334 * this makes sense, it should be defined to a quick test to optimize out
335 * calling arch_ptrace_stop() when it would be superfluous. For example,
336 * if the thread has not been back to user mode since the last stop, the
337 * thread state might indicate that nothing needs to be done.
339 * This is guaranteed to be invoked once before a task stops for ptrace and
340 * may include arch-specific operations necessary prior to a ptrace stop.
342 #define arch_ptrace_stop_needed(code, info) (0)
345 #ifndef arch_ptrace_stop
347 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
348 * @code: current->exit_code value ptrace will stop with
349 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
351 * This is called with no locks held when arch_ptrace_stop_needed() has
352 * just returned nonzero. It is allowed to block, e.g. for user memory
353 * access. The arch can have machine-specific work to be done before
354 * ptrace stops. On ia64, register backing store gets written back to user
355 * memory here. Since this can be costly (requires dropping the siglock),
356 * we only do it when the arch requires it for this particular stop, as
357 * indicated by arch_ptrace_stop_needed().
359 #define arch_ptrace_stop(code, info) do { } while (0)
362 #ifndef current_pt_regs
363 #define current_pt_regs() task_pt_regs(current)
366 #ifndef ptrace_signal_deliver
367 #define ptrace_signal_deliver() ((void)0)
371 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
372 * on *all* architectures; the only reason to have a per-arch definition
375 #ifndef signal_pt_regs
376 #define signal_pt_regs() task_pt_regs(current)
379 #ifndef current_user_stack_pointer
380 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
383 extern int task_current_syscall(struct task_struct *target, long *callno,
384 unsigned long args[6], unsigned int maxargs,
385 unsigned long *sp, unsigned long *pc);