Linux 6.9-rc1
[linux-2.6-microblaze.git] / include / linux / preempt.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_PREEMPT_H
3 #define __LINUX_PREEMPT_H
4
5 /*
6  * include/linux/preempt.h - macros for accessing and manipulating
7  * preempt_count (used for kernel preemption, interrupt count, etc.)
8  */
9
10 #include <linux/linkage.h>
11 #include <linux/cleanup.h>
12 #include <linux/types.h>
13
14 /*
15  * We put the hardirq and softirq counter into the preemption
16  * counter. The bitmask has the following meaning:
17  *
18  * - bits 0-7 are the preemption count (max preemption depth: 256)
19  * - bits 8-15 are the softirq count (max # of softirqs: 256)
20  *
21  * The hardirq count could in theory be the same as the number of
22  * interrupts in the system, but we run all interrupt handlers with
23  * interrupts disabled, so we cannot have nesting interrupts. Though
24  * there are a few palaeontologic drivers which reenable interrupts in
25  * the handler, so we need more than one bit here.
26  *
27  *         PREEMPT_MASK:        0x000000ff
28  *         SOFTIRQ_MASK:        0x0000ff00
29  *         HARDIRQ_MASK:        0x000f0000
30  *             NMI_MASK:        0x00f00000
31  * PREEMPT_NEED_RESCHED:        0x80000000
32  */
33 #define PREEMPT_BITS    8
34 #define SOFTIRQ_BITS    8
35 #define HARDIRQ_BITS    4
36 #define NMI_BITS        4
37
38 #define PREEMPT_SHIFT   0
39 #define SOFTIRQ_SHIFT   (PREEMPT_SHIFT + PREEMPT_BITS)
40 #define HARDIRQ_SHIFT   (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
41 #define NMI_SHIFT       (HARDIRQ_SHIFT + HARDIRQ_BITS)
42
43 #define __IRQ_MASK(x)   ((1UL << (x))-1)
44
45 #define PREEMPT_MASK    (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
46 #define SOFTIRQ_MASK    (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
47 #define HARDIRQ_MASK    (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
48 #define NMI_MASK        (__IRQ_MASK(NMI_BITS)     << NMI_SHIFT)
49
50 #define PREEMPT_OFFSET  (1UL << PREEMPT_SHIFT)
51 #define SOFTIRQ_OFFSET  (1UL << SOFTIRQ_SHIFT)
52 #define HARDIRQ_OFFSET  (1UL << HARDIRQ_SHIFT)
53 #define NMI_OFFSET      (1UL << NMI_SHIFT)
54
55 #define SOFTIRQ_DISABLE_OFFSET  (2 * SOFTIRQ_OFFSET)
56
57 #define PREEMPT_DISABLED        (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
58
59 /*
60  * Disable preemption until the scheduler is running -- use an unconditional
61  * value so that it also works on !PREEMPT_COUNT kernels.
62  *
63  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
64  */
65 #define INIT_PREEMPT_COUNT      PREEMPT_OFFSET
66
67 /*
68  * Initial preempt_count value; reflects the preempt_count schedule invariant
69  * which states that during context switches:
70  *
71  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
72  *
73  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
74  * Note: See finish_task_switch().
75  */
76 #define FORK_PREEMPT_COUNT      (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
77
78 /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
79 #include <asm/preempt.h>
80
81 /**
82  * interrupt_context_level - return interrupt context level
83  *
84  * Returns the current interrupt context level.
85  *  0 - normal context
86  *  1 - softirq context
87  *  2 - hardirq context
88  *  3 - NMI context
89  */
90 static __always_inline unsigned char interrupt_context_level(void)
91 {
92         unsigned long pc = preempt_count();
93         unsigned char level = 0;
94
95         level += !!(pc & (NMI_MASK));
96         level += !!(pc & (NMI_MASK | HARDIRQ_MASK));
97         level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET));
98
99         return level;
100 }
101
102 /*
103  * These macro definitions avoid redundant invocations of preempt_count()
104  * because such invocations would result in redundant loads given that
105  * preempt_count() is commonly implemented with READ_ONCE().
106  */
107
108 #define nmi_count()     (preempt_count() & NMI_MASK)
109 #define hardirq_count() (preempt_count() & HARDIRQ_MASK)
110 #ifdef CONFIG_PREEMPT_RT
111 # define softirq_count()        (current->softirq_disable_cnt & SOFTIRQ_MASK)
112 # define irq_count()            ((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | softirq_count())
113 #else
114 # define softirq_count()        (preempt_count() & SOFTIRQ_MASK)
115 # define irq_count()            (preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_MASK))
116 #endif
117
118 /*
119  * Macros to retrieve the current execution context:
120  *
121  * in_nmi()             - We're in NMI context
122  * in_hardirq()         - We're in hard IRQ context
123  * in_serving_softirq() - We're in softirq context
124  * in_task()            - We're in task context
125  */
126 #define in_nmi()                (nmi_count())
127 #define in_hardirq()            (hardirq_count())
128 #define in_serving_softirq()    (softirq_count() & SOFTIRQ_OFFSET)
129 #ifdef CONFIG_PREEMPT_RT
130 # define in_task()              (!((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | in_serving_softirq()))
131 #else
132 # define in_task()              (!(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
133 #endif
134
135 /*
136  * The following macros are deprecated and should not be used in new code:
137  * in_irq()       - Obsolete version of in_hardirq()
138  * in_softirq()   - We have BH disabled, or are processing softirqs
139  * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
140  */
141 #define in_irq()                (hardirq_count())
142 #define in_softirq()            (softirq_count())
143 #define in_interrupt()          (irq_count())
144
145 /*
146  * The preempt_count offset after preempt_disable();
147  */
148 #if defined(CONFIG_PREEMPT_COUNT)
149 # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET
150 #else
151 # define PREEMPT_DISABLE_OFFSET 0
152 #endif
153
154 /*
155  * The preempt_count offset after spin_lock()
156  */
157 #if !defined(CONFIG_PREEMPT_RT)
158 #define PREEMPT_LOCK_OFFSET             PREEMPT_DISABLE_OFFSET
159 #else
160 /* Locks on RT do not disable preemption */
161 #define PREEMPT_LOCK_OFFSET             0
162 #endif
163
164 /*
165  * The preempt_count offset needed for things like:
166  *
167  *  spin_lock_bh()
168  *
169  * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
170  * softirqs, such that unlock sequences of:
171  *
172  *  spin_unlock();
173  *  local_bh_enable();
174  *
175  * Work as expected.
176  */
177 #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
178
179 /*
180  * Are we running in atomic context?  WARNING: this macro cannot
181  * always detect atomic context; in particular, it cannot know about
182  * held spinlocks in non-preemptible kernels.  Thus it should not be
183  * used in the general case to determine whether sleeping is possible.
184  * Do not use in_atomic() in driver code.
185  */
186 #define in_atomic()     (preempt_count() != 0)
187
188 /*
189  * Check whether we were atomic before we did preempt_disable():
190  * (used by the scheduler)
191  */
192 #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)
193
194 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
195 extern void preempt_count_add(int val);
196 extern void preempt_count_sub(int val);
197 #define preempt_count_dec_and_test() \
198         ({ preempt_count_sub(1); should_resched(0); })
199 #else
200 #define preempt_count_add(val)  __preempt_count_add(val)
201 #define preempt_count_sub(val)  __preempt_count_sub(val)
202 #define preempt_count_dec_and_test() __preempt_count_dec_and_test()
203 #endif
204
205 #define __preempt_count_inc() __preempt_count_add(1)
206 #define __preempt_count_dec() __preempt_count_sub(1)
207
208 #define preempt_count_inc() preempt_count_add(1)
209 #define preempt_count_dec() preempt_count_sub(1)
210
211 #ifdef CONFIG_PREEMPT_COUNT
212
213 #define preempt_disable() \
214 do { \
215         preempt_count_inc(); \
216         barrier(); \
217 } while (0)
218
219 #define sched_preempt_enable_no_resched() \
220 do { \
221         barrier(); \
222         preempt_count_dec(); \
223 } while (0)
224
225 #define preempt_enable_no_resched() sched_preempt_enable_no_resched()
226
227 #define preemptible()   (preempt_count() == 0 && !irqs_disabled())
228
229 #ifdef CONFIG_PREEMPTION
230 #define preempt_enable() \
231 do { \
232         barrier(); \
233         if (unlikely(preempt_count_dec_and_test())) \
234                 __preempt_schedule(); \
235 } while (0)
236
237 #define preempt_enable_notrace() \
238 do { \
239         barrier(); \
240         if (unlikely(__preempt_count_dec_and_test())) \
241                 __preempt_schedule_notrace(); \
242 } while (0)
243
244 #define preempt_check_resched() \
245 do { \
246         if (should_resched(0)) \
247                 __preempt_schedule(); \
248 } while (0)
249
250 #else /* !CONFIG_PREEMPTION */
251 #define preempt_enable() \
252 do { \
253         barrier(); \
254         preempt_count_dec(); \
255 } while (0)
256
257 #define preempt_enable_notrace() \
258 do { \
259         barrier(); \
260         __preempt_count_dec(); \
261 } while (0)
262
263 #define preempt_check_resched() do { } while (0)
264 #endif /* CONFIG_PREEMPTION */
265
266 #define preempt_disable_notrace() \
267 do { \
268         __preempt_count_inc(); \
269         barrier(); \
270 } while (0)
271
272 #define preempt_enable_no_resched_notrace() \
273 do { \
274         barrier(); \
275         __preempt_count_dec(); \
276 } while (0)
277
278 #else /* !CONFIG_PREEMPT_COUNT */
279
280 /*
281  * Even if we don't have any preemption, we need preempt disable/enable
282  * to be barriers, so that we don't have things like get_user/put_user
283  * that can cause faults and scheduling migrate into our preempt-protected
284  * region.
285  */
286 #define preempt_disable()                       barrier()
287 #define sched_preempt_enable_no_resched()       barrier()
288 #define preempt_enable_no_resched()             barrier()
289 #define preempt_enable()                        barrier()
290 #define preempt_check_resched()                 do { } while (0)
291
292 #define preempt_disable_notrace()               barrier()
293 #define preempt_enable_no_resched_notrace()     barrier()
294 #define preempt_enable_notrace()                barrier()
295 #define preemptible()                           0
296
297 #endif /* CONFIG_PREEMPT_COUNT */
298
299 #ifdef MODULE
300 /*
301  * Modules have no business playing preemption tricks.
302  */
303 #undef sched_preempt_enable_no_resched
304 #undef preempt_enable_no_resched
305 #undef preempt_enable_no_resched_notrace
306 #undef preempt_check_resched
307 #endif
308
309 #define preempt_set_need_resched() \
310 do { \
311         set_preempt_need_resched(); \
312 } while (0)
313 #define preempt_fold_need_resched() \
314 do { \
315         if (tif_need_resched()) \
316                 set_preempt_need_resched(); \
317 } while (0)
318
319 #ifdef CONFIG_PREEMPT_NOTIFIERS
320
321 struct preempt_notifier;
322
323 /**
324  * preempt_ops - notifiers called when a task is preempted and rescheduled
325  * @sched_in: we're about to be rescheduled:
326  *    notifier: struct preempt_notifier for the task being scheduled
327  *    cpu:  cpu we're scheduled on
328  * @sched_out: we've just been preempted
329  *    notifier: struct preempt_notifier for the task being preempted
330  *    next: the task that's kicking us out
331  *
332  * Please note that sched_in and out are called under different
333  * contexts.  sched_out is called with rq lock held and irq disabled
334  * while sched_in is called without rq lock and irq enabled.  This
335  * difference is intentional and depended upon by its users.
336  */
337 struct preempt_ops {
338         void (*sched_in)(struct preempt_notifier *notifier, int cpu);
339         void (*sched_out)(struct preempt_notifier *notifier,
340                           struct task_struct *next);
341 };
342
343 /**
344  * preempt_notifier - key for installing preemption notifiers
345  * @link: internal use
346  * @ops: defines the notifier functions to be called
347  *
348  * Usually used in conjunction with container_of().
349  */
350 struct preempt_notifier {
351         struct hlist_node link;
352         struct preempt_ops *ops;
353 };
354
355 void preempt_notifier_inc(void);
356 void preempt_notifier_dec(void);
357 void preempt_notifier_register(struct preempt_notifier *notifier);
358 void preempt_notifier_unregister(struct preempt_notifier *notifier);
359
360 static inline void preempt_notifier_init(struct preempt_notifier *notifier,
361                                      struct preempt_ops *ops)
362 {
363         /* INIT_HLIST_NODE() open coded, to avoid dependency on list.h */
364         notifier->link.next = NULL;
365         notifier->link.pprev = NULL;
366         notifier->ops = ops;
367 }
368
369 #endif
370
371 #ifdef CONFIG_SMP
372
373 /*
374  * Migrate-Disable and why it is undesired.
375  *
376  * When a preempted task becomes elegible to run under the ideal model (IOW it
377  * becomes one of the M highest priority tasks), it might still have to wait
378  * for the preemptee's migrate_disable() section to complete. Thereby suffering
379  * a reduction in bandwidth in the exact duration of the migrate_disable()
380  * section.
381  *
382  * Per this argument, the change from preempt_disable() to migrate_disable()
383  * gets us:
384  *
385  * - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
386  *   it would have had to wait for the lower priority task.
387  *
388  * - a lower priority tasks; which under preempt_disable() could've instantly
389  *   migrated away when another CPU becomes available, is now constrained
390  *   by the ability to push the higher priority task away, which might itself be
391  *   in a migrate_disable() section, reducing it's available bandwidth.
392  *
393  * IOW it trades latency / moves the interference term, but it stays in the
394  * system, and as long as it remains unbounded, the system is not fully
395  * deterministic.
396  *
397  *
398  * The reason we have it anyway.
399  *
400  * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
401  * number of primitives into becoming preemptible, they would also allow
402  * migration. This turns out to break a bunch of per-cpu usage. To this end,
403  * all these primitives employ migirate_disable() to restore this implicit
404  * assumption.
405  *
406  * This is a 'temporary' work-around at best. The correct solution is getting
407  * rid of the above assumptions and reworking the code to employ explicit
408  * per-cpu locking or short preempt-disable regions.
409  *
410  * The end goal must be to get rid of migrate_disable(), alternatively we need
411  * a schedulability theory that does not depend on abritrary migration.
412  *
413  *
414  * Notes on the implementation.
415  *
416  * The implementation is particularly tricky since existing code patterns
417  * dictate neither migrate_disable() nor migrate_enable() is allowed to block.
418  * This means that it cannot use cpus_read_lock() to serialize against hotplug,
419  * nor can it easily migrate itself into a pending affinity mask change on
420  * migrate_enable().
421  *
422  *
423  * Note: even non-work-conserving schedulers like semi-partitioned depends on
424  *       migration, so migrate_disable() is not only a problem for
425  *       work-conserving schedulers.
426  *
427  */
428 extern void migrate_disable(void);
429 extern void migrate_enable(void);
430
431 #else
432
433 static inline void migrate_disable(void) { }
434 static inline void migrate_enable(void) { }
435
436 #endif /* CONFIG_SMP */
437
438 /**
439  * preempt_disable_nested - Disable preemption inside a normally preempt disabled section
440  *
441  * Use for code which requires preemption protection inside a critical
442  * section which has preemption disabled implicitly on non-PREEMPT_RT
443  * enabled kernels, by e.g.:
444  *  - holding a spinlock/rwlock
445  *  - soft interrupt context
446  *  - regular interrupt handlers
447  *
448  * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft
449  * interrupt context and regular interrupt handlers are preemptible and
450  * only prevent migration. preempt_disable_nested() ensures that preemption
451  * is disabled for cases which require CPU local serialization even on
452  * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP.
453  *
454  * The use cases are code sequences which are not serialized by a
455  * particular lock instance, e.g.:
456  *  - seqcount write side critical sections where the seqcount is not
457  *    associated to a particular lock and therefore the automatic
458  *    protection mechanism does not work. This prevents a live lock
459  *    against a preempting high priority reader.
460  *  - RMW per CPU variable updates like vmstat.
461  */
462 /* Macro to avoid header recursion hell vs. lockdep */
463 #define preempt_disable_nested()                                \
464 do {                                                            \
465         if (IS_ENABLED(CONFIG_PREEMPT_RT))                      \
466                 preempt_disable();                              \
467         else                                                    \
468                 lockdep_assert_preemption_disabled();           \
469 } while (0)
470
471 /**
472  * preempt_enable_nested - Undo the effect of preempt_disable_nested()
473  */
474 static __always_inline void preempt_enable_nested(void)
475 {
476         if (IS_ENABLED(CONFIG_PREEMPT_RT))
477                 preempt_enable();
478 }
479
480 DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable())
481 DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace())
482 DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable())
483
484 #endif /* __LINUX_PREEMPT_H */