Merge tag 'jfs-6.6' of github.com:kleikamp/linux-shaggy
[linux-2.6-microblaze.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21  * Kernel-internal data types and definitions:
22  */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 #define PERF_GUEST_ACTIVE       0x01
30 #define PERF_GUEST_USER 0x02
31
32 struct perf_guest_info_callbacks {
33         unsigned int                    (*state)(void);
34         unsigned long                   (*get_ip)(void);
35         unsigned int                    (*handle_intel_pt_intr)(void);
36 };
37
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66
67 struct perf_callchain_entry {
68         __u64                           nr;
69         __u64                           ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71
72 struct perf_callchain_entry_ctx {
73         struct perf_callchain_entry *entry;
74         u32                         max_stack;
75         u32                         nr;
76         short                       contexts;
77         bool                        contexts_maxed;
78 };
79
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81                                      unsigned long off, unsigned long len);
82
83 struct perf_raw_frag {
84         union {
85                 struct perf_raw_frag    *next;
86                 unsigned long           pad;
87         };
88         perf_copy_f                     copy;
89         void                            *data;
90         u32                             size;
91 } __packed;
92
93 struct perf_raw_record {
94         struct perf_raw_frag            frag;
95         u32                             size;
96 };
97
98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100         return frag->pad < sizeof(u64);
101 }
102
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124         __u64                           nr;
125         __u64                           hw_idx;
126         struct perf_branch_entry        entries[];
127 };
128
129 struct task_struct;
130
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135         u64             config; /* register value */
136         unsigned int    reg;    /* register address or index */
137         int             alloc;  /* extra register already allocated */
138         int             idx;    /* index in shared_regs->regs[] */
139 };
140
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH                    0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT           0x80000000
149
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157         union {
158                 struct { /* hardware */
159                         u64             config;
160                         u64             last_tag;
161                         unsigned long   config_base;
162                         unsigned long   event_base;
163                         int             event_base_rdpmc;
164                         int             idx;
165                         int             last_cpu;
166                         int             flags;
167
168                         struct hw_perf_event_extra extra_reg;
169                         struct hw_perf_event_extra branch_reg;
170                 };
171                 struct { /* software */
172                         struct hrtimer  hrtimer;
173                 };
174                 struct { /* tracepoint */
175                         /* for tp_event->class */
176                         struct list_head        tp_list;
177                 };
178                 struct { /* amd_power */
179                         u64     pwr_acc;
180                         u64     ptsc;
181                 };
182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
183                 struct { /* breakpoint */
184                         /*
185                          * Crufty hack to avoid the chicken and egg
186                          * problem hw_breakpoint has with context
187                          * creation and event initalization.
188                          */
189                         struct arch_hw_breakpoint       info;
190                         struct rhlist_head              bp_list;
191                 };
192 #endif
193                 struct { /* amd_iommu */
194                         u8      iommu_bank;
195                         u8      iommu_cntr;
196                         u16     padding;
197                         u64     conf;
198                         u64     conf1;
199                 };
200         };
201         /*
202          * If the event is a per task event, this will point to the task in
203          * question. See the comment in perf_event_alloc().
204          */
205         struct task_struct              *target;
206
207         /*
208          * PMU would store hardware filter configuration
209          * here.
210          */
211         void                            *addr_filters;
212
213         /* Last sync'ed generation of filters */
214         unsigned long                   addr_filters_gen;
215
216 /*
217  * hw_perf_event::state flags; used to track the PERF_EF_* state.
218  */
219 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
220 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
221 #define PERF_HES_ARCH           0x04
222
223         int                             state;
224
225         /*
226          * The last observed hardware counter value, updated with a
227          * local64_cmpxchg() such that pmu::read() can be called nested.
228          */
229         local64_t                       prev_count;
230
231         /*
232          * The period to start the next sample with.
233          */
234         u64                             sample_period;
235
236         union {
237                 struct { /* Sampling */
238                         /*
239                          * The period we started this sample with.
240                          */
241                         u64                             last_period;
242
243                         /*
244                          * However much is left of the current period;
245                          * note that this is a full 64bit value and
246                          * allows for generation of periods longer
247                          * than hardware might allow.
248                          */
249                         local64_t                       period_left;
250                 };
251                 struct { /* Topdown events counting for context switch */
252                         u64                             saved_metric;
253                         u64                             saved_slots;
254                 };
255         };
256
257         /*
258          * State for throttling the event, see __perf_event_overflow() and
259          * perf_adjust_freq_unthr_context().
260          */
261         u64                             interrupts_seq;
262         u64                             interrupts;
263
264         /*
265          * State for freq target events, see __perf_event_overflow() and
266          * perf_adjust_freq_unthr_context().
267          */
268         u64                             freq_time_stamp;
269         u64                             freq_count_stamp;
270 #endif
271 };
272
273 struct perf_event;
274 struct perf_event_pmu_context;
275
276 /*
277  * Common implementation detail of pmu::{start,commit,cancel}_txn
278  */
279 #define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
280 #define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
281
282 /**
283  * pmu::capabilities flags
284  */
285 #define PERF_PMU_CAP_NO_INTERRUPT               0x0001
286 #define PERF_PMU_CAP_NO_NMI                     0x0002
287 #define PERF_PMU_CAP_AUX_NO_SG                  0x0004
288 #define PERF_PMU_CAP_EXTENDED_REGS              0x0008
289 #define PERF_PMU_CAP_EXCLUSIVE                  0x0010
290 #define PERF_PMU_CAP_ITRACE                     0x0020
291 #define PERF_PMU_CAP_NO_EXCLUDE                 0x0040
292 #define PERF_PMU_CAP_AUX_OUTPUT                 0x0080
293 #define PERF_PMU_CAP_EXTENDED_HW_TYPE           0x0100
294
295 struct perf_output_handle;
296
297 #define PMU_NULL_DEV    ((void *)(~0UL))
298
299 /**
300  * struct pmu - generic performance monitoring unit
301  */
302 struct pmu {
303         struct list_head                entry;
304
305         struct module                   *module;
306         struct device                   *dev;
307         struct device                   *parent;
308         const struct attribute_group    **attr_groups;
309         const struct attribute_group    **attr_update;
310         const char                      *name;
311         int                             type;
312
313         /*
314          * various common per-pmu feature flags
315          */
316         int                             capabilities;
317
318         int __percpu                    *pmu_disable_count;
319         struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
320         atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
321         int                             task_ctx_nr;
322         int                             hrtimer_interval_ms;
323
324         /* number of address filters this PMU can do */
325         unsigned int                    nr_addr_filters;
326
327         /*
328          * Fully disable/enable this PMU, can be used to protect from the PMI
329          * as well as for lazy/batch writing of the MSRs.
330          */
331         void (*pmu_enable)              (struct pmu *pmu); /* optional */
332         void (*pmu_disable)             (struct pmu *pmu); /* optional */
333
334         /*
335          * Try and initialize the event for this PMU.
336          *
337          * Returns:
338          *  -ENOENT     -- @event is not for this PMU
339          *
340          *  -ENODEV     -- @event is for this PMU but PMU not present
341          *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
342          *  -EINVAL     -- @event is for this PMU but @event is not valid
343          *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
344          *  -EACCES     -- @event is for this PMU, @event is valid, but no privileges
345          *
346          *  0           -- @event is for this PMU and valid
347          *
348          * Other error return values are allowed.
349          */
350         int (*event_init)               (struct perf_event *event);
351
352         /*
353          * Notification that the event was mapped or unmapped.  Called
354          * in the context of the mapping task.
355          */
356         void (*event_mapped)            (struct perf_event *event, struct mm_struct *mm); /* optional */
357         void (*event_unmapped)          (struct perf_event *event, struct mm_struct *mm); /* optional */
358
359         /*
360          * Flags for ->add()/->del()/ ->start()/->stop(). There are
361          * matching hw_perf_event::state flags.
362          */
363 #define PERF_EF_START   0x01            /* start the counter when adding    */
364 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
365 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
366
367         /*
368          * Adds/Removes a counter to/from the PMU, can be done inside a
369          * transaction, see the ->*_txn() methods.
370          *
371          * The add/del callbacks will reserve all hardware resources required
372          * to service the event, this includes any counter constraint
373          * scheduling etc.
374          *
375          * Called with IRQs disabled and the PMU disabled on the CPU the event
376          * is on.
377          *
378          * ->add() called without PERF_EF_START should result in the same state
379          *  as ->add() followed by ->stop().
380          *
381          * ->del() must always PERF_EF_UPDATE stop an event. If it calls
382          *  ->stop() that must deal with already being stopped without
383          *  PERF_EF_UPDATE.
384          */
385         int  (*add)                     (struct perf_event *event, int flags);
386         void (*del)                     (struct perf_event *event, int flags);
387
388         /*
389          * Starts/Stops a counter present on the PMU.
390          *
391          * The PMI handler should stop the counter when perf_event_overflow()
392          * returns !0. ->start() will be used to continue.
393          *
394          * Also used to change the sample period.
395          *
396          * Called with IRQs disabled and the PMU disabled on the CPU the event
397          * is on -- will be called from NMI context with the PMU generates
398          * NMIs.
399          *
400          * ->stop() with PERF_EF_UPDATE will read the counter and update
401          *  period/count values like ->read() would.
402          *
403          * ->start() with PERF_EF_RELOAD will reprogram the counter
404          *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
405          */
406         void (*start)                   (struct perf_event *event, int flags);
407         void (*stop)                    (struct perf_event *event, int flags);
408
409         /*
410          * Updates the counter value of the event.
411          *
412          * For sampling capable PMUs this will also update the software period
413          * hw_perf_event::period_left field.
414          */
415         void (*read)                    (struct perf_event *event);
416
417         /*
418          * Group events scheduling is treated as a transaction, add
419          * group events as a whole and perform one schedulability test.
420          * If the test fails, roll back the whole group
421          *
422          * Start the transaction, after this ->add() doesn't need to
423          * do schedulability tests.
424          *
425          * Optional.
426          */
427         void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
428         /*
429          * If ->start_txn() disabled the ->add() schedulability test
430          * then ->commit_txn() is required to perform one. On success
431          * the transaction is closed. On error the transaction is kept
432          * open until ->cancel_txn() is called.
433          *
434          * Optional.
435          */
436         int  (*commit_txn)              (struct pmu *pmu);
437         /*
438          * Will cancel the transaction, assumes ->del() is called
439          * for each successful ->add() during the transaction.
440          *
441          * Optional.
442          */
443         void (*cancel_txn)              (struct pmu *pmu);
444
445         /*
446          * Will return the value for perf_event_mmap_page::index for this event,
447          * if no implementation is provided it will default to: event->hw.idx + 1.
448          */
449         int (*event_idx)                (struct perf_event *event); /*optional */
450
451         /*
452          * context-switches callback
453          */
454         void (*sched_task)              (struct perf_event_pmu_context *pmu_ctx,
455                                         bool sched_in);
456
457         /*
458          * Kmem cache of PMU specific data
459          */
460         struct kmem_cache               *task_ctx_cache;
461
462         /*
463          * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
464          * can be synchronized using this function. See Intel LBR callstack support
465          * implementation and Perf core context switch handling callbacks for usage
466          * examples.
467          */
468         void (*swap_task_ctx)           (struct perf_event_pmu_context *prev_epc,
469                                          struct perf_event_pmu_context *next_epc);
470                                         /* optional */
471
472         /*
473          * Set up pmu-private data structures for an AUX area
474          */
475         void *(*setup_aux)              (struct perf_event *event, void **pages,
476                                          int nr_pages, bool overwrite);
477                                         /* optional */
478
479         /*
480          * Free pmu-private AUX data structures
481          */
482         void (*free_aux)                (void *aux); /* optional */
483
484         /*
485          * Take a snapshot of the AUX buffer without touching the event
486          * state, so that preempting ->start()/->stop() callbacks does
487          * not interfere with their logic. Called in PMI context.
488          *
489          * Returns the size of AUX data copied to the output handle.
490          *
491          * Optional.
492          */
493         long (*snapshot_aux)            (struct perf_event *event,
494                                          struct perf_output_handle *handle,
495                                          unsigned long size);
496
497         /*
498          * Validate address range filters: make sure the HW supports the
499          * requested configuration and number of filters; return 0 if the
500          * supplied filters are valid, -errno otherwise.
501          *
502          * Runs in the context of the ioctl()ing process and is not serialized
503          * with the rest of the PMU callbacks.
504          */
505         int (*addr_filters_validate)    (struct list_head *filters);
506                                         /* optional */
507
508         /*
509          * Synchronize address range filter configuration:
510          * translate hw-agnostic filters into hardware configuration in
511          * event::hw::addr_filters.
512          *
513          * Runs as a part of filter sync sequence that is done in ->start()
514          * callback by calling perf_event_addr_filters_sync().
515          *
516          * May (and should) traverse event::addr_filters::list, for which its
517          * caller provides necessary serialization.
518          */
519         void (*addr_filters_sync)       (struct perf_event *event);
520                                         /* optional */
521
522         /*
523          * Check if event can be used for aux_output purposes for
524          * events of this PMU.
525          *
526          * Runs from perf_event_open(). Should return 0 for "no match"
527          * or non-zero for "match".
528          */
529         int (*aux_output_match)         (struct perf_event *event);
530                                         /* optional */
531
532         /*
533          * Skip programming this PMU on the given CPU. Typically needed for
534          * big.LITTLE things.
535          */
536         bool (*filter)                  (struct pmu *pmu, int cpu); /* optional */
537
538         /*
539          * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
540          */
541         int (*check_period)             (struct perf_event *event, u64 value); /* optional */
542 };
543
544 enum perf_addr_filter_action_t {
545         PERF_ADDR_FILTER_ACTION_STOP = 0,
546         PERF_ADDR_FILTER_ACTION_START,
547         PERF_ADDR_FILTER_ACTION_FILTER,
548 };
549
550 /**
551  * struct perf_addr_filter - address range filter definition
552  * @entry:      event's filter list linkage
553  * @path:       object file's path for file-based filters
554  * @offset:     filter range offset
555  * @size:       filter range size (size==0 means single address trigger)
556  * @action:     filter/start/stop
557  *
558  * This is a hardware-agnostic filter configuration as specified by the user.
559  */
560 struct perf_addr_filter {
561         struct list_head        entry;
562         struct path             path;
563         unsigned long           offset;
564         unsigned long           size;
565         enum perf_addr_filter_action_t  action;
566 };
567
568 /**
569  * struct perf_addr_filters_head - container for address range filters
570  * @list:       list of filters for this event
571  * @lock:       spinlock that serializes accesses to the @list and event's
572  *              (and its children's) filter generations.
573  * @nr_file_filters:    number of file-based filters
574  *
575  * A child event will use parent's @list (and therefore @lock), so they are
576  * bundled together; see perf_event_addr_filters().
577  */
578 struct perf_addr_filters_head {
579         struct list_head        list;
580         raw_spinlock_t          lock;
581         unsigned int            nr_file_filters;
582 };
583
584 struct perf_addr_filter_range {
585         unsigned long           start;
586         unsigned long           size;
587 };
588
589 /**
590  * enum perf_event_state - the states of an event:
591  */
592 enum perf_event_state {
593         PERF_EVENT_STATE_DEAD           = -4,
594         PERF_EVENT_STATE_EXIT           = -3,
595         PERF_EVENT_STATE_ERROR          = -2,
596         PERF_EVENT_STATE_OFF            = -1,
597         PERF_EVENT_STATE_INACTIVE       =  0,
598         PERF_EVENT_STATE_ACTIVE         =  1,
599 };
600
601 struct file;
602 struct perf_sample_data;
603
604 typedef void (*perf_overflow_handler_t)(struct perf_event *,
605                                         struct perf_sample_data *,
606                                         struct pt_regs *regs);
607
608 /*
609  * Event capabilities. For event_caps and groups caps.
610  *
611  * PERF_EV_CAP_SOFTWARE: Is a software event.
612  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
613  * from any CPU in the package where it is active.
614  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
615  * cannot be a group leader. If an event with this flag is detached from the
616  * group it is scheduled out and moved into an unrecoverable ERROR state.
617  */
618 #define PERF_EV_CAP_SOFTWARE            BIT(0)
619 #define PERF_EV_CAP_READ_ACTIVE_PKG     BIT(1)
620 #define PERF_EV_CAP_SIBLING             BIT(2)
621
622 #define SWEVENT_HLIST_BITS              8
623 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
624
625 struct swevent_hlist {
626         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
627         struct rcu_head                 rcu_head;
628 };
629
630 #define PERF_ATTACH_CONTEXT     0x01
631 #define PERF_ATTACH_GROUP       0x02
632 #define PERF_ATTACH_TASK        0x04
633 #define PERF_ATTACH_TASK_DATA   0x08
634 #define PERF_ATTACH_ITRACE      0x10
635 #define PERF_ATTACH_SCHED_CB    0x20
636 #define PERF_ATTACH_CHILD       0x40
637
638 struct bpf_prog;
639 struct perf_cgroup;
640 struct perf_buffer;
641
642 struct pmu_event_list {
643         raw_spinlock_t          lock;
644         struct list_head        list;
645 };
646
647 /*
648  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
649  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
650  * safe lock, and is only held by the CPU doing the modification, having IRQs
651  * disabled is sufficient since it will hold-off the IPIs.
652  */
653 #ifdef CONFIG_PROVE_LOCKING
654 #define lockdep_assert_event_ctx(event)                         \
655         WARN_ON_ONCE(__lockdep_enabled &&                       \
656                      (this_cpu_read(hardirqs_enabled) &&        \
657                       lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
658 #else
659 #define lockdep_assert_event_ctx(event)
660 #endif
661
662 #define for_each_sibling_event(sibling, event)                  \
663         lockdep_assert_event_ctx(event);                        \
664         if ((event)->group_leader == (event))                   \
665                 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
666
667 /**
668  * struct perf_event - performance event kernel representation:
669  */
670 struct perf_event {
671 #ifdef CONFIG_PERF_EVENTS
672         /*
673          * entry onto perf_event_context::event_list;
674          *   modifications require ctx->lock
675          *   RCU safe iterations.
676          */
677         struct list_head                event_entry;
678
679         /*
680          * Locked for modification by both ctx->mutex and ctx->lock; holding
681          * either sufficies for read.
682          */
683         struct list_head                sibling_list;
684         struct list_head                active_list;
685         /*
686          * Node on the pinned or flexible tree located at the event context;
687          */
688         struct rb_node                  group_node;
689         u64                             group_index;
690         /*
691          * We need storage to track the entries in perf_pmu_migrate_context; we
692          * cannot use the event_entry because of RCU and we want to keep the
693          * group in tact which avoids us using the other two entries.
694          */
695         struct list_head                migrate_entry;
696
697         struct hlist_node               hlist_entry;
698         struct list_head                active_entry;
699         int                             nr_siblings;
700
701         /* Not serialized. Only written during event initialization. */
702         int                             event_caps;
703         /* The cumulative AND of all event_caps for events in this group. */
704         int                             group_caps;
705
706         struct perf_event               *group_leader;
707         /*
708          * event->pmu will always point to pmu in which this event belongs.
709          * Whereas event->pmu_ctx->pmu may point to other pmu when group of
710          * different pmu events is created.
711          */
712         struct pmu                      *pmu;
713         void                            *pmu_private;
714
715         enum perf_event_state           state;
716         unsigned int                    attach_state;
717         local64_t                       count;
718         atomic64_t                      child_count;
719
720         /*
721          * These are the total time in nanoseconds that the event
722          * has been enabled (i.e. eligible to run, and the task has
723          * been scheduled in, if this is a per-task event)
724          * and running (scheduled onto the CPU), respectively.
725          */
726         u64                             total_time_enabled;
727         u64                             total_time_running;
728         u64                             tstamp;
729
730         struct perf_event_attr          attr;
731         u16                             header_size;
732         u16                             id_header_size;
733         u16                             read_size;
734         struct hw_perf_event            hw;
735
736         struct perf_event_context       *ctx;
737         /*
738          * event->pmu_ctx points to perf_event_pmu_context in which the event
739          * is added. This pmu_ctx can be of other pmu for sw event when that
740          * sw event is part of a group which also contains non-sw events.
741          */
742         struct perf_event_pmu_context   *pmu_ctx;
743         atomic_long_t                   refcount;
744
745         /*
746          * These accumulate total time (in nanoseconds) that children
747          * events have been enabled and running, respectively.
748          */
749         atomic64_t                      child_total_time_enabled;
750         atomic64_t                      child_total_time_running;
751
752         /*
753          * Protect attach/detach and child_list:
754          */
755         struct mutex                    child_mutex;
756         struct list_head                child_list;
757         struct perf_event               *parent;
758
759         int                             oncpu;
760         int                             cpu;
761
762         struct list_head                owner_entry;
763         struct task_struct              *owner;
764
765         /* mmap bits */
766         struct mutex                    mmap_mutex;
767         atomic_t                        mmap_count;
768
769         struct perf_buffer              *rb;
770         struct list_head                rb_entry;
771         unsigned long                   rcu_batches;
772         int                             rcu_pending;
773
774         /* poll related */
775         wait_queue_head_t               waitq;
776         struct fasync_struct            *fasync;
777
778         /* delayed work for NMIs and such */
779         unsigned int                    pending_wakeup;
780         unsigned int                    pending_kill;
781         unsigned int                    pending_disable;
782         unsigned int                    pending_sigtrap;
783         unsigned long                   pending_addr;   /* SIGTRAP */
784         struct irq_work                 pending_irq;
785         struct callback_head            pending_task;
786         unsigned int                    pending_work;
787
788         atomic_t                        event_limit;
789
790         /* address range filters */
791         struct perf_addr_filters_head   addr_filters;
792         /* vma address array for file-based filders */
793         struct perf_addr_filter_range   *addr_filter_ranges;
794         unsigned long                   addr_filters_gen;
795
796         /* for aux_output events */
797         struct perf_event               *aux_event;
798
799         void (*destroy)(struct perf_event *);
800         struct rcu_head                 rcu_head;
801
802         struct pid_namespace            *ns;
803         u64                             id;
804
805         atomic64_t                      lost_samples;
806
807         u64                             (*clock)(void);
808         perf_overflow_handler_t         overflow_handler;
809         void                            *overflow_handler_context;
810 #ifdef CONFIG_BPF_SYSCALL
811         perf_overflow_handler_t         orig_overflow_handler;
812         struct bpf_prog                 *prog;
813         u64                             bpf_cookie;
814 #endif
815
816 #ifdef CONFIG_EVENT_TRACING
817         struct trace_event_call         *tp_event;
818         struct event_filter             *filter;
819 #ifdef CONFIG_FUNCTION_TRACER
820         struct ftrace_ops               ftrace_ops;
821 #endif
822 #endif
823
824 #ifdef CONFIG_CGROUP_PERF
825         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
826 #endif
827
828 #ifdef CONFIG_SECURITY
829         void *security;
830 #endif
831         struct list_head                sb_list;
832
833         /*
834          * Certain events gets forwarded to another pmu internally by over-
835          * writing kernel copy of event->attr.type without user being aware
836          * of it. event->orig_type contains original 'type' requested by
837          * user.
838          */
839         __u32                           orig_type;
840 #endif /* CONFIG_PERF_EVENTS */
841 };
842
843 /*
844  *           ,-----------------------[1:n]----------------------.
845  *           V                                                  V
846  * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
847  *           ^                      ^     |                     |
848  *           `--------[1:n]---------'     `-[n:1]-> pmu <-[1:n]-'
849  *
850  *
851  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
852  * (similar to perf_event_context). Locking is as if it were a member of
853  * perf_event_context; specifically:
854  *
855  *   modification, both: ctx->mutex && ctx->lock
856  *   reading, either:    ctx->mutex || ctx->lock
857  *
858  * There is one exception to this; namely put_pmu_ctx() isn't always called
859  * with ctx->mutex held; this means that as long as we can guarantee the epc
860  * has events the above rules hold.
861  *
862  * Specificially, sys_perf_event_open()'s group_leader case depends on
863  * ctx->mutex pinning the configuration. Since we hold a reference on
864  * group_leader (through the filedesc) it can't go away, therefore it's
865  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
866  */
867 struct perf_event_pmu_context {
868         struct pmu                      *pmu;
869         struct perf_event_context       *ctx;
870
871         struct list_head                pmu_ctx_entry;
872
873         struct list_head                pinned_active;
874         struct list_head                flexible_active;
875
876         /* Used to avoid freeing per-cpu perf_event_pmu_context */
877         unsigned int                    embedded : 1;
878
879         unsigned int                    nr_events;
880
881         atomic_t                        refcount; /* event <-> epc */
882         struct rcu_head                 rcu_head;
883
884         void                            *task_ctx_data; /* pmu specific data */
885         /*
886          * Set when one or more (plausibly active) event can't be scheduled
887          * due to pmu overcommit or pmu constraints, except tolerant to
888          * events not necessary to be active due to scheduling constraints,
889          * such as cgroups.
890          */
891         int                             rotate_necessary;
892 };
893
894 struct perf_event_groups {
895         struct rb_root  tree;
896         u64             index;
897 };
898
899
900 /**
901  * struct perf_event_context - event context structure
902  *
903  * Used as a container for task events and CPU events as well:
904  */
905 struct perf_event_context {
906         /*
907          * Protect the states of the events in the list,
908          * nr_active, and the list:
909          */
910         raw_spinlock_t                  lock;
911         /*
912          * Protect the list of events.  Locking either mutex or lock
913          * is sufficient to ensure the list doesn't change; to change
914          * the list you need to lock both the mutex and the spinlock.
915          */
916         struct mutex                    mutex;
917
918         struct list_head                pmu_ctx_list;
919         struct perf_event_groups        pinned_groups;
920         struct perf_event_groups        flexible_groups;
921         struct list_head                event_list;
922
923         int                             nr_events;
924         int                             nr_user;
925         int                             is_active;
926
927         int                             nr_task_data;
928         int                             nr_stat;
929         int                             nr_freq;
930         int                             rotate_disable;
931
932         refcount_t                      refcount; /* event <-> ctx */
933         struct task_struct              *task;
934
935         /*
936          * Context clock, runs when context enabled.
937          */
938         u64                             time;
939         u64                             timestamp;
940         u64                             timeoffset;
941
942         /*
943          * These fields let us detect when two contexts have both
944          * been cloned (inherited) from a common ancestor.
945          */
946         struct perf_event_context       *parent_ctx;
947         u64                             parent_gen;
948         u64                             generation;
949         int                             pin_count;
950 #ifdef CONFIG_CGROUP_PERF
951         int                             nr_cgroups;      /* cgroup evts */
952 #endif
953         struct rcu_head                 rcu_head;
954
955         /*
956          * Sum (event->pending_sigtrap + event->pending_work)
957          *
958          * The SIGTRAP is targeted at ctx->task, as such it won't do changing
959          * that until the signal is delivered.
960          */
961         local_t                         nr_pending;
962 };
963
964 /*
965  * Number of contexts where an event can trigger:
966  *      task, softirq, hardirq, nmi.
967  */
968 #define PERF_NR_CONTEXTS        4
969
970 struct perf_cpu_pmu_context {
971         struct perf_event_pmu_context   epc;
972         struct perf_event_pmu_context   *task_epc;
973
974         struct list_head                sched_cb_entry;
975         int                             sched_cb_usage;
976
977         int                             active_oncpu;
978         int                             exclusive;
979
980         raw_spinlock_t                  hrtimer_lock;
981         struct hrtimer                  hrtimer;
982         ktime_t                         hrtimer_interval;
983         unsigned int                    hrtimer_active;
984 };
985
986 /**
987  * struct perf_event_cpu_context - per cpu event context structure
988  */
989 struct perf_cpu_context {
990         struct perf_event_context       ctx;
991         struct perf_event_context       *task_ctx;
992         int                             online;
993
994 #ifdef CONFIG_CGROUP_PERF
995         struct perf_cgroup              *cgrp;
996 #endif
997
998         /*
999          * Per-CPU storage for iterators used in visit_groups_merge. The default
1000          * storage is of size 2 to hold the CPU and any CPU event iterators.
1001          */
1002         int                             heap_size;
1003         struct perf_event               **heap;
1004         struct perf_event               *heap_default[2];
1005 };
1006
1007 struct perf_output_handle {
1008         struct perf_event               *event;
1009         struct perf_buffer              *rb;
1010         unsigned long                   wakeup;
1011         unsigned long                   size;
1012         u64                             aux_flags;
1013         union {
1014                 void                    *addr;
1015                 unsigned long           head;
1016         };
1017         int                             page;
1018 };
1019
1020 struct bpf_perf_event_data_kern {
1021         bpf_user_pt_regs_t *regs;
1022         struct perf_sample_data *data;
1023         struct perf_event *event;
1024 };
1025
1026 #ifdef CONFIG_CGROUP_PERF
1027
1028 /*
1029  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1030  * This is a per-cpu dynamically allocated data structure.
1031  */
1032 struct perf_cgroup_info {
1033         u64                             time;
1034         u64                             timestamp;
1035         u64                             timeoffset;
1036         int                             active;
1037 };
1038
1039 struct perf_cgroup {
1040         struct cgroup_subsys_state      css;
1041         struct perf_cgroup_info __percpu *info;
1042 };
1043
1044 /*
1045  * Must ensure cgroup is pinned (css_get) before calling
1046  * this function. In other words, we cannot call this function
1047  * if there is no cgroup event for the current CPU context.
1048  */
1049 static inline struct perf_cgroup *
1050 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1051 {
1052         return container_of(task_css_check(task, perf_event_cgrp_id,
1053                                            ctx ? lockdep_is_held(&ctx->lock)
1054                                                : true),
1055                             struct perf_cgroup, css);
1056 }
1057 #endif /* CONFIG_CGROUP_PERF */
1058
1059 #ifdef CONFIG_PERF_EVENTS
1060
1061 extern struct perf_event_context *perf_cpu_task_ctx(void);
1062
1063 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1064                                    struct perf_event *event);
1065 extern void perf_aux_output_end(struct perf_output_handle *handle,
1066                                 unsigned long size);
1067 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1068                                 unsigned long size);
1069 extern void *perf_get_aux(struct perf_output_handle *handle);
1070 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1071 extern void perf_event_itrace_started(struct perf_event *event);
1072
1073 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1074 extern void perf_pmu_unregister(struct pmu *pmu);
1075
1076 extern void __perf_event_task_sched_in(struct task_struct *prev,
1077                                        struct task_struct *task);
1078 extern void __perf_event_task_sched_out(struct task_struct *prev,
1079                                         struct task_struct *next);
1080 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1081 extern void perf_event_exit_task(struct task_struct *child);
1082 extern void perf_event_free_task(struct task_struct *task);
1083 extern void perf_event_delayed_put(struct task_struct *task);
1084 extern struct file *perf_event_get(unsigned int fd);
1085 extern const struct perf_event *perf_get_event(struct file *file);
1086 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1087 extern void perf_event_print_debug(void);
1088 extern void perf_pmu_disable(struct pmu *pmu);
1089 extern void perf_pmu_enable(struct pmu *pmu);
1090 extern void perf_sched_cb_dec(struct pmu *pmu);
1091 extern void perf_sched_cb_inc(struct pmu *pmu);
1092 extern int perf_event_task_disable(void);
1093 extern int perf_event_task_enable(void);
1094
1095 extern void perf_pmu_resched(struct pmu *pmu);
1096
1097 extern int perf_event_refresh(struct perf_event *event, int refresh);
1098 extern void perf_event_update_userpage(struct perf_event *event);
1099 extern int perf_event_release_kernel(struct perf_event *event);
1100 extern struct perf_event *
1101 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1102                                 int cpu,
1103                                 struct task_struct *task,
1104                                 perf_overflow_handler_t callback,
1105                                 void *context);
1106 extern void perf_pmu_migrate_context(struct pmu *pmu,
1107                                 int src_cpu, int dst_cpu);
1108 int perf_event_read_local(struct perf_event *event, u64 *value,
1109                           u64 *enabled, u64 *running);
1110 extern u64 perf_event_read_value(struct perf_event *event,
1111                                  u64 *enabled, u64 *running);
1112
1113 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1114
1115 static inline bool branch_sample_no_flags(const struct perf_event *event)
1116 {
1117         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1118 }
1119
1120 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1121 {
1122         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1123 }
1124
1125 static inline bool branch_sample_type(const struct perf_event *event)
1126 {
1127         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1128 }
1129
1130 static inline bool branch_sample_hw_index(const struct perf_event *event)
1131 {
1132         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1133 }
1134
1135 static inline bool branch_sample_priv(const struct perf_event *event)
1136 {
1137         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1138 }
1139
1140
1141 struct perf_sample_data {
1142         /*
1143          * Fields set by perf_sample_data_init() unconditionally,
1144          * group so as to minimize the cachelines touched.
1145          */
1146         u64                             sample_flags;
1147         u64                             period;
1148         u64                             dyn_size;
1149
1150         /*
1151          * Fields commonly set by __perf_event_header__init_id(),
1152          * group so as to minimize the cachelines touched.
1153          */
1154         u64                             type;
1155         struct {
1156                 u32     pid;
1157                 u32     tid;
1158         }                               tid_entry;
1159         u64                             time;
1160         u64                             id;
1161         struct {
1162                 u32     cpu;
1163                 u32     reserved;
1164         }                               cpu_entry;
1165
1166         /*
1167          * The other fields, optionally {set,used} by
1168          * perf_{prepare,output}_sample().
1169          */
1170         u64                             ip;
1171         struct perf_callchain_entry     *callchain;
1172         struct perf_raw_record          *raw;
1173         struct perf_branch_stack        *br_stack;
1174         union perf_sample_weight        weight;
1175         union  perf_mem_data_src        data_src;
1176         u64                             txn;
1177
1178         struct perf_regs                regs_user;
1179         struct perf_regs                regs_intr;
1180         u64                             stack_user_size;
1181
1182         u64                             stream_id;
1183         u64                             cgroup;
1184         u64                             addr;
1185         u64                             phys_addr;
1186         u64                             data_page_size;
1187         u64                             code_page_size;
1188         u64                             aux_size;
1189 } ____cacheline_aligned;
1190
1191 /* default value for data source */
1192 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1193                     PERF_MEM_S(LVL, NA)   |\
1194                     PERF_MEM_S(SNOOP, NA) |\
1195                     PERF_MEM_S(LOCK, NA)  |\
1196                     PERF_MEM_S(TLB, NA)   |\
1197                     PERF_MEM_S(LVLNUM, NA))
1198
1199 static inline void perf_sample_data_init(struct perf_sample_data *data,
1200                                          u64 addr, u64 period)
1201 {
1202         /* remaining struct members initialized in perf_prepare_sample() */
1203         data->sample_flags = PERF_SAMPLE_PERIOD;
1204         data->period = period;
1205         data->dyn_size = 0;
1206
1207         if (addr) {
1208                 data->addr = addr;
1209                 data->sample_flags |= PERF_SAMPLE_ADDR;
1210         }
1211 }
1212
1213 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1214                                               struct perf_event *event,
1215                                               struct pt_regs *regs)
1216 {
1217         int size = 1;
1218
1219         data->callchain = perf_callchain(event, regs);
1220         size += data->callchain->nr;
1221
1222         data->dyn_size += size * sizeof(u64);
1223         data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1224 }
1225
1226 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1227                                              struct perf_raw_record *raw)
1228 {
1229         struct perf_raw_frag *frag = &raw->frag;
1230         u32 sum = 0;
1231         int size;
1232
1233         do {
1234                 sum += frag->size;
1235                 if (perf_raw_frag_last(frag))
1236                         break;
1237                 frag = frag->next;
1238         } while (1);
1239
1240         size = round_up(sum + sizeof(u32), sizeof(u64));
1241         raw->size = size - sizeof(u32);
1242         frag->pad = raw->size - sum;
1243
1244         data->raw = raw;
1245         data->dyn_size += size;
1246         data->sample_flags |= PERF_SAMPLE_RAW;
1247 }
1248
1249 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1250                                             struct perf_event *event,
1251                                             struct perf_branch_stack *brs)
1252 {
1253         int size = sizeof(u64); /* nr */
1254
1255         if (branch_sample_hw_index(event))
1256                 size += sizeof(u64);
1257         size += brs->nr * sizeof(struct perf_branch_entry);
1258
1259         data->br_stack = brs;
1260         data->dyn_size += size;
1261         data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1262 }
1263
1264 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1265                                         struct perf_event *event)
1266 {
1267         u32 size = sizeof(struct perf_event_header);
1268
1269         size += event->header_size + event->id_header_size;
1270         size += data->dyn_size;
1271
1272         return size;
1273 }
1274
1275 /*
1276  * Clear all bitfields in the perf_branch_entry.
1277  * The to and from fields are not cleared because they are
1278  * systematically modified by caller.
1279  */
1280 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1281 {
1282         br->mispred = 0;
1283         br->predicted = 0;
1284         br->in_tx = 0;
1285         br->abort = 0;
1286         br->cycles = 0;
1287         br->type = 0;
1288         br->spec = PERF_BR_SPEC_NA;
1289         br->reserved = 0;
1290 }
1291
1292 extern void perf_output_sample(struct perf_output_handle *handle,
1293                                struct perf_event_header *header,
1294                                struct perf_sample_data *data,
1295                                struct perf_event *event);
1296 extern void perf_prepare_sample(struct perf_sample_data *data,
1297                                 struct perf_event *event,
1298                                 struct pt_regs *regs);
1299 extern void perf_prepare_header(struct perf_event_header *header,
1300                                 struct perf_sample_data *data,
1301                                 struct perf_event *event,
1302                                 struct pt_regs *regs);
1303
1304 extern int perf_event_overflow(struct perf_event *event,
1305                                  struct perf_sample_data *data,
1306                                  struct pt_regs *regs);
1307
1308 extern void perf_event_output_forward(struct perf_event *event,
1309                                      struct perf_sample_data *data,
1310                                      struct pt_regs *regs);
1311 extern void perf_event_output_backward(struct perf_event *event,
1312                                        struct perf_sample_data *data,
1313                                        struct pt_regs *regs);
1314 extern int perf_event_output(struct perf_event *event,
1315                              struct perf_sample_data *data,
1316                              struct pt_regs *regs);
1317
1318 static inline bool
1319 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1320 {
1321         if (likely(overflow_handler == perf_event_output_forward))
1322                 return true;
1323         if (unlikely(overflow_handler == perf_event_output_backward))
1324                 return true;
1325         return false;
1326 }
1327
1328 #define is_default_overflow_handler(event) \
1329         __is_default_overflow_handler((event)->overflow_handler)
1330
1331 #ifdef CONFIG_BPF_SYSCALL
1332 static inline bool uses_default_overflow_handler(struct perf_event *event)
1333 {
1334         if (likely(is_default_overflow_handler(event)))
1335                 return true;
1336
1337         return __is_default_overflow_handler(event->orig_overflow_handler);
1338 }
1339 #else
1340 #define uses_default_overflow_handler(event) \
1341         is_default_overflow_handler(event)
1342 #endif
1343
1344 extern void
1345 perf_event_header__init_id(struct perf_event_header *header,
1346                            struct perf_sample_data *data,
1347                            struct perf_event *event);
1348 extern void
1349 perf_event__output_id_sample(struct perf_event *event,
1350                              struct perf_output_handle *handle,
1351                              struct perf_sample_data *sample);
1352
1353 extern void
1354 perf_log_lost_samples(struct perf_event *event, u64 lost);
1355
1356 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1357 {
1358         struct perf_event_attr *attr = &event->attr;
1359
1360         return attr->exclude_idle || attr->exclude_user ||
1361                attr->exclude_kernel || attr->exclude_hv ||
1362                attr->exclude_guest || attr->exclude_host;
1363 }
1364
1365 static inline bool is_sampling_event(struct perf_event *event)
1366 {
1367         return event->attr.sample_period != 0;
1368 }
1369
1370 /*
1371  * Return 1 for a software event, 0 for a hardware event
1372  */
1373 static inline int is_software_event(struct perf_event *event)
1374 {
1375         return event->event_caps & PERF_EV_CAP_SOFTWARE;
1376 }
1377
1378 /*
1379  * Return 1 for event in sw context, 0 for event in hw context
1380  */
1381 static inline int in_software_context(struct perf_event *event)
1382 {
1383         return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1384 }
1385
1386 static inline int is_exclusive_pmu(struct pmu *pmu)
1387 {
1388         return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1389 }
1390
1391 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1392
1393 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1394 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1395
1396 #ifndef perf_arch_fetch_caller_regs
1397 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1398 #endif
1399
1400 /*
1401  * When generating a perf sample in-line, instead of from an interrupt /
1402  * exception, we lack a pt_regs. This is typically used from software events
1403  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1404  *
1405  * We typically don't need a full set, but (for x86) do require:
1406  * - ip for PERF_SAMPLE_IP
1407  * - cs for user_mode() tests
1408  * - sp for PERF_SAMPLE_CALLCHAIN
1409  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1410  *
1411  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1412  * things like PERF_SAMPLE_REGS_INTR.
1413  */
1414 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1415 {
1416         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1417 }
1418
1419 static __always_inline void
1420 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1421 {
1422         if (static_key_false(&perf_swevent_enabled[event_id]))
1423                 __perf_sw_event(event_id, nr, regs, addr);
1424 }
1425
1426 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1427
1428 /*
1429  * 'Special' version for the scheduler, it hard assumes no recursion,
1430  * which is guaranteed by us not actually scheduling inside other swevents
1431  * because those disable preemption.
1432  */
1433 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1434 {
1435         struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1436
1437         perf_fetch_caller_regs(regs);
1438         ___perf_sw_event(event_id, nr, regs, addr);
1439 }
1440
1441 extern struct static_key_false perf_sched_events;
1442
1443 static __always_inline bool __perf_sw_enabled(int swevt)
1444 {
1445         return static_key_false(&perf_swevent_enabled[swevt]);
1446 }
1447
1448 static inline void perf_event_task_migrate(struct task_struct *task)
1449 {
1450         if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1451                 task->sched_migrated = 1;
1452 }
1453
1454 static inline void perf_event_task_sched_in(struct task_struct *prev,
1455                                             struct task_struct *task)
1456 {
1457         if (static_branch_unlikely(&perf_sched_events))
1458                 __perf_event_task_sched_in(prev, task);
1459
1460         if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1461             task->sched_migrated) {
1462                 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1463                 task->sched_migrated = 0;
1464         }
1465 }
1466
1467 static inline void perf_event_task_sched_out(struct task_struct *prev,
1468                                              struct task_struct *next)
1469 {
1470         if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1471                 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1472
1473 #ifdef CONFIG_CGROUP_PERF
1474         if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1475             perf_cgroup_from_task(prev, NULL) !=
1476             perf_cgroup_from_task(next, NULL))
1477                 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1478 #endif
1479
1480         if (static_branch_unlikely(&perf_sched_events))
1481                 __perf_event_task_sched_out(prev, next);
1482 }
1483
1484 extern void perf_event_mmap(struct vm_area_struct *vma);
1485
1486 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1487                                bool unregister, const char *sym);
1488 extern void perf_event_bpf_event(struct bpf_prog *prog,
1489                                  enum perf_bpf_event_type type,
1490                                  u16 flags);
1491
1492 #ifdef CONFIG_GUEST_PERF_EVENTS
1493 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1494
1495 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1496 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1497 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1498
1499 static inline unsigned int perf_guest_state(void)
1500 {
1501         return static_call(__perf_guest_state)();
1502 }
1503 static inline unsigned long perf_guest_get_ip(void)
1504 {
1505         return static_call(__perf_guest_get_ip)();
1506 }
1507 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1508 {
1509         return static_call(__perf_guest_handle_intel_pt_intr)();
1510 }
1511 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1512 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1513 #else
1514 static inline unsigned int perf_guest_state(void)                { return 0; }
1515 static inline unsigned long perf_guest_get_ip(void)              { return 0; }
1516 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1517 #endif /* CONFIG_GUEST_PERF_EVENTS */
1518
1519 extern void perf_event_exec(void);
1520 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1521 extern void perf_event_namespaces(struct task_struct *tsk);
1522 extern void perf_event_fork(struct task_struct *tsk);
1523 extern void perf_event_text_poke(const void *addr,
1524                                  const void *old_bytes, size_t old_len,
1525                                  const void *new_bytes, size_t new_len);
1526
1527 /* Callchains */
1528 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1529
1530 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1531 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1532 extern struct perf_callchain_entry *
1533 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1534                    u32 max_stack, bool crosstask, bool add_mark);
1535 extern int get_callchain_buffers(int max_stack);
1536 extern void put_callchain_buffers(void);
1537 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1538 extern void put_callchain_entry(int rctx);
1539
1540 extern int sysctl_perf_event_max_stack;
1541 extern int sysctl_perf_event_max_contexts_per_stack;
1542
1543 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1544 {
1545         if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1546                 struct perf_callchain_entry *entry = ctx->entry;
1547                 entry->ip[entry->nr++] = ip;
1548                 ++ctx->contexts;
1549                 return 0;
1550         } else {
1551                 ctx->contexts_maxed = true;
1552                 return -1; /* no more room, stop walking the stack */
1553         }
1554 }
1555
1556 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1557 {
1558         if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1559                 struct perf_callchain_entry *entry = ctx->entry;
1560                 entry->ip[entry->nr++] = ip;
1561                 ++ctx->nr;
1562                 return 0;
1563         } else {
1564                 return -1; /* no more room, stop walking the stack */
1565         }
1566 }
1567
1568 extern int sysctl_perf_event_paranoid;
1569 extern int sysctl_perf_event_mlock;
1570 extern int sysctl_perf_event_sample_rate;
1571 extern int sysctl_perf_cpu_time_max_percent;
1572
1573 extern void perf_sample_event_took(u64 sample_len_ns);
1574
1575 int perf_proc_update_handler(struct ctl_table *table, int write,
1576                 void *buffer, size_t *lenp, loff_t *ppos);
1577 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1578                 void *buffer, size_t *lenp, loff_t *ppos);
1579 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1580                 void *buffer, size_t *lenp, loff_t *ppos);
1581
1582 /* Access to perf_event_open(2) syscall. */
1583 #define PERF_SECURITY_OPEN              0
1584
1585 /* Finer grained perf_event_open(2) access control. */
1586 #define PERF_SECURITY_CPU               1
1587 #define PERF_SECURITY_KERNEL            2
1588 #define PERF_SECURITY_TRACEPOINT        3
1589
1590 static inline int perf_is_paranoid(void)
1591 {
1592         return sysctl_perf_event_paranoid > -1;
1593 }
1594
1595 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1596 {
1597         if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1598                 return -EACCES;
1599
1600         return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1601 }
1602
1603 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1604 {
1605         if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1606                 return -EACCES;
1607
1608         return security_perf_event_open(attr, PERF_SECURITY_CPU);
1609 }
1610
1611 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1612 {
1613         if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1614                 return -EPERM;
1615
1616         return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1617 }
1618
1619 extern void perf_event_init(void);
1620 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1621                           int entry_size, struct pt_regs *regs,
1622                           struct hlist_head *head, int rctx,
1623                           struct task_struct *task);
1624 extern void perf_bp_event(struct perf_event *event, void *data);
1625
1626 #ifndef perf_misc_flags
1627 # define perf_misc_flags(regs) \
1628                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1629 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1630 #endif
1631 #ifndef perf_arch_bpf_user_pt_regs
1632 # define perf_arch_bpf_user_pt_regs(regs) regs
1633 #endif
1634
1635 static inline bool has_branch_stack(struct perf_event *event)
1636 {
1637         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1638 }
1639
1640 static inline bool needs_branch_stack(struct perf_event *event)
1641 {
1642         return event->attr.branch_sample_type != 0;
1643 }
1644
1645 static inline bool has_aux(struct perf_event *event)
1646 {
1647         return event->pmu->setup_aux;
1648 }
1649
1650 static inline bool is_write_backward(struct perf_event *event)
1651 {
1652         return !!event->attr.write_backward;
1653 }
1654
1655 static inline bool has_addr_filter(struct perf_event *event)
1656 {
1657         return event->pmu->nr_addr_filters;
1658 }
1659
1660 /*
1661  * An inherited event uses parent's filters
1662  */
1663 static inline struct perf_addr_filters_head *
1664 perf_event_addr_filters(struct perf_event *event)
1665 {
1666         struct perf_addr_filters_head *ifh = &event->addr_filters;
1667
1668         if (event->parent)
1669                 ifh = &event->parent->addr_filters;
1670
1671         return ifh;
1672 }
1673
1674 extern void perf_event_addr_filters_sync(struct perf_event *event);
1675 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1676
1677 extern int perf_output_begin(struct perf_output_handle *handle,
1678                              struct perf_sample_data *data,
1679                              struct perf_event *event, unsigned int size);
1680 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1681                                      struct perf_sample_data *data,
1682                                      struct perf_event *event,
1683                                      unsigned int size);
1684 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1685                                       struct perf_sample_data *data,
1686                                       struct perf_event *event,
1687                                       unsigned int size);
1688
1689 extern void perf_output_end(struct perf_output_handle *handle);
1690 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1691                              const void *buf, unsigned int len);
1692 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1693                                      unsigned int len);
1694 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1695                                  struct perf_output_handle *handle,
1696                                  unsigned long from, unsigned long to);
1697 extern int perf_swevent_get_recursion_context(void);
1698 extern void perf_swevent_put_recursion_context(int rctx);
1699 extern u64 perf_swevent_set_period(struct perf_event *event);
1700 extern void perf_event_enable(struct perf_event *event);
1701 extern void perf_event_disable(struct perf_event *event);
1702 extern void perf_event_disable_local(struct perf_event *event);
1703 extern void perf_event_disable_inatomic(struct perf_event *event);
1704 extern void perf_event_task_tick(void);
1705 extern int perf_event_account_interrupt(struct perf_event *event);
1706 extern int perf_event_period(struct perf_event *event, u64 value);
1707 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1708 #else /* !CONFIG_PERF_EVENTS: */
1709 static inline void *
1710 perf_aux_output_begin(struct perf_output_handle *handle,
1711                       struct perf_event *event)                         { return NULL; }
1712 static inline void
1713 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1714                                                                         { }
1715 static inline int
1716 perf_aux_output_skip(struct perf_output_handle *handle,
1717                      unsigned long size)                                { return -EINVAL; }
1718 static inline void *
1719 perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1720 static inline void
1721 perf_event_task_migrate(struct task_struct *task)                       { }
1722 static inline void
1723 perf_event_task_sched_in(struct task_struct *prev,
1724                          struct task_struct *task)                      { }
1725 static inline void
1726 perf_event_task_sched_out(struct task_struct *prev,
1727                           struct task_struct *next)                     { }
1728 static inline int perf_event_init_task(struct task_struct *child,
1729                                        u64 clone_flags)                 { return 0; }
1730 static inline void perf_event_exit_task(struct task_struct *child)      { }
1731 static inline void perf_event_free_task(struct task_struct *task)       { }
1732 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1733 static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1734 static inline const struct perf_event *perf_get_event(struct file *file)
1735 {
1736         return ERR_PTR(-EINVAL);
1737 }
1738 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1739 {
1740         return ERR_PTR(-EINVAL);
1741 }
1742 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1743                                         u64 *enabled, u64 *running)
1744 {
1745         return -EINVAL;
1746 }
1747 static inline void perf_event_print_debug(void)                         { }
1748 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1749 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1750 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1751 {
1752         return -EINVAL;
1753 }
1754
1755 static inline void
1756 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1757 static inline void
1758 perf_bp_event(struct perf_event *event, void *data)                     { }
1759
1760 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1761
1762 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1763 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1764                                       bool unregister, const char *sym) { }
1765 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1766                                         enum perf_bpf_event_type type,
1767                                         u16 flags)                      { }
1768 static inline void perf_event_exec(void)                                { }
1769 static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1770 static inline void perf_event_namespaces(struct task_struct *tsk)       { }
1771 static inline void perf_event_fork(struct task_struct *tsk)             { }
1772 static inline void perf_event_text_poke(const void *addr,
1773                                         const void *old_bytes,
1774                                         size_t old_len,
1775                                         const void *new_bytes,
1776                                         size_t new_len)                 { }
1777 static inline void perf_event_init(void)                                { }
1778 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1779 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1780 static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1781 static inline void perf_event_enable(struct perf_event *event)          { }
1782 static inline void perf_event_disable(struct perf_event *event)         { }
1783 static inline int __perf_event_disable(void *info)                      { return -1; }
1784 static inline void perf_event_task_tick(void)                           { }
1785 static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1786 static inline int perf_event_period(struct perf_event *event, u64 value)
1787 {
1788         return -EINVAL;
1789 }
1790 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1791 {
1792         return 0;
1793 }
1794 #endif
1795
1796 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1797 extern void perf_restore_debug_store(void);
1798 #else
1799 static inline void perf_restore_debug_store(void)                       { }
1800 #endif
1801
1802 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1803
1804 struct perf_pmu_events_attr {
1805         struct device_attribute attr;
1806         u64 id;
1807         const char *event_str;
1808 };
1809
1810 struct perf_pmu_events_ht_attr {
1811         struct device_attribute                 attr;
1812         u64                                     id;
1813         const char                              *event_str_ht;
1814         const char                              *event_str_noht;
1815 };
1816
1817 struct perf_pmu_events_hybrid_attr {
1818         struct device_attribute                 attr;
1819         u64                                     id;
1820         const char                              *event_str;
1821         u64                                     pmu_type;
1822 };
1823
1824 struct perf_pmu_format_hybrid_attr {
1825         struct device_attribute                 attr;
1826         u64                                     pmu_type;
1827 };
1828
1829 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1830                               char *page);
1831
1832 #define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1833 static struct perf_pmu_events_attr _var = {                             \
1834         .attr = __ATTR(_name, 0444, _show, NULL),                       \
1835         .id   =  _id,                                                   \
1836 };
1837
1838 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1839 static struct perf_pmu_events_attr _var = {                                 \
1840         .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1841         .id             = 0,                                                \
1842         .event_str      = _str,                                             \
1843 };
1844
1845 #define PMU_EVENT_ATTR_ID(_name, _show, _id)                            \
1846         (&((struct perf_pmu_events_attr[]) {                            \
1847                 { .attr = __ATTR(_name, 0444, _show, NULL),             \
1848                   .id = _id, }                                          \
1849         })[0].attr.attr)
1850
1851 #define PMU_FORMAT_ATTR_SHOW(_name, _format)                            \
1852 static ssize_t                                                          \
1853 _name##_show(struct device *dev,                                        \
1854                                struct device_attribute *attr,           \
1855                                char *page)                              \
1856 {                                                                       \
1857         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1858         return sprintf(page, _format "\n");                             \
1859 }                                                                       \
1860
1861 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1862         PMU_FORMAT_ATTR_SHOW(_name, _format)                            \
1863                                                                         \
1864 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1865
1866 /* Performance counter hotplug functions */
1867 #ifdef CONFIG_PERF_EVENTS
1868 int perf_event_init_cpu(unsigned int cpu);
1869 int perf_event_exit_cpu(unsigned int cpu);
1870 #else
1871 #define perf_event_init_cpu     NULL
1872 #define perf_event_exit_cpu     NULL
1873 #endif
1874
1875 extern void arch_perf_update_userpage(struct perf_event *event,
1876                                       struct perf_event_mmap_page *userpg,
1877                                       u64 now);
1878
1879 /*
1880  * Snapshot branch stack on software events.
1881  *
1882  * Branch stack can be very useful in understanding software events. For
1883  * example, when a long function, e.g. sys_perf_event_open, returns an
1884  * errno, it is not obvious why the function failed. Branch stack could
1885  * provide very helpful information in this type of scenarios.
1886  *
1887  * On software event, it is necessary to stop the hardware branch recorder
1888  * fast. Otherwise, the hardware register/buffer will be flushed with
1889  * entries of the triggering event. Therefore, static call is used to
1890  * stop the hardware recorder.
1891  */
1892
1893 /*
1894  * cnt is the number of entries allocated for entries.
1895  * Return number of entries copied to .
1896  */
1897 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1898                                            unsigned int cnt);
1899 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1900
1901 #ifndef PERF_NEEDS_LOPWR_CB
1902 static inline void perf_lopwr_cb(bool mode)
1903 {
1904 }
1905 #endif
1906
1907 #endif /* _LINUX_PERF_EVENT_H */