Merge tag 'mfd-next-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-microblaze.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct pagevec;
20
21 static inline bool mapping_empty(struct address_space *mapping)
22 {
23         return xa_empty(&mapping->i_pages);
24 }
25
26 /*
27  * mapping_shrinkable - test if page cache state allows inode reclaim
28  * @mapping: the page cache mapping
29  *
30  * This checks the mapping's cache state for the pupose of inode
31  * reclaim and LRU management.
32  *
33  * The caller is expected to hold the i_lock, but is not required to
34  * hold the i_pages lock, which usually protects cache state. That's
35  * because the i_lock and the list_lru lock that protect the inode and
36  * its LRU state don't nest inside the irq-safe i_pages lock.
37  *
38  * Cache deletions are performed under the i_lock, which ensures that
39  * when an inode goes empty, it will reliably get queued on the LRU.
40  *
41  * Cache additions do not acquire the i_lock and may race with this
42  * check, in which case we'll report the inode as shrinkable when it
43  * has cache pages. This is okay: the shrinker also checks the
44  * refcount and the referenced bit, which will be elevated or set in
45  * the process of adding new cache pages to an inode.
46  */
47 static inline bool mapping_shrinkable(struct address_space *mapping)
48 {
49         void *head;
50
51         /*
52          * On highmem systems, there could be lowmem pressure from the
53          * inodes before there is highmem pressure from the page
54          * cache. Make inodes shrinkable regardless of cache state.
55          */
56         if (IS_ENABLED(CONFIG_HIGHMEM))
57                 return true;
58
59         /* Cache completely empty? Shrink away. */
60         head = rcu_access_pointer(mapping->i_pages.xa_head);
61         if (!head)
62                 return true;
63
64         /*
65          * The xarray stores single offset-0 entries directly in the
66          * head pointer, which allows non-resident page cache entries
67          * to escape the shadow shrinker's list of xarray nodes. The
68          * inode shrinker needs to pick them up under memory pressure.
69          */
70         if (!xa_is_node(head) && xa_is_value(head))
71                 return true;
72
73         return false;
74 }
75
76 /*
77  * Bits in mapping->flags.
78  */
79 enum mapping_flags {
80         AS_EIO          = 0,    /* IO error on async write */
81         AS_ENOSPC       = 1,    /* ENOSPC on async write */
82         AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
83         AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
84         AS_EXITING      = 4,    /* final truncate in progress */
85         /* writeback related tags are not used */
86         AS_NO_WRITEBACK_TAGS = 5,
87         AS_LARGE_FOLIO_SUPPORT = 6,
88 };
89
90 /**
91  * mapping_set_error - record a writeback error in the address_space
92  * @mapping: the mapping in which an error should be set
93  * @error: the error to set in the mapping
94  *
95  * When writeback fails in some way, we must record that error so that
96  * userspace can be informed when fsync and the like are called.  We endeavor
97  * to report errors on any file that was open at the time of the error.  Some
98  * internal callers also need to know when writeback errors have occurred.
99  *
100  * When a writeback error occurs, most filesystems will want to call
101  * mapping_set_error to record the error in the mapping so that it can be
102  * reported when the application calls fsync(2).
103  */
104 static inline void mapping_set_error(struct address_space *mapping, int error)
105 {
106         if (likely(!error))
107                 return;
108
109         /* Record in wb_err for checkers using errseq_t based tracking */
110         __filemap_set_wb_err(mapping, error);
111
112         /* Record it in superblock */
113         if (mapping->host)
114                 errseq_set(&mapping->host->i_sb->s_wb_err, error);
115
116         /* Record it in flags for now, for legacy callers */
117         if (error == -ENOSPC)
118                 set_bit(AS_ENOSPC, &mapping->flags);
119         else
120                 set_bit(AS_EIO, &mapping->flags);
121 }
122
123 static inline void mapping_set_unevictable(struct address_space *mapping)
124 {
125         set_bit(AS_UNEVICTABLE, &mapping->flags);
126 }
127
128 static inline void mapping_clear_unevictable(struct address_space *mapping)
129 {
130         clear_bit(AS_UNEVICTABLE, &mapping->flags);
131 }
132
133 static inline bool mapping_unevictable(struct address_space *mapping)
134 {
135         return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
136 }
137
138 static inline void mapping_set_exiting(struct address_space *mapping)
139 {
140         set_bit(AS_EXITING, &mapping->flags);
141 }
142
143 static inline int mapping_exiting(struct address_space *mapping)
144 {
145         return test_bit(AS_EXITING, &mapping->flags);
146 }
147
148 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
149 {
150         set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
151 }
152
153 static inline int mapping_use_writeback_tags(struct address_space *mapping)
154 {
155         return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
156 }
157
158 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
159 {
160         return mapping->gfp_mask;
161 }
162
163 /* Restricts the given gfp_mask to what the mapping allows. */
164 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
165                 gfp_t gfp_mask)
166 {
167         return mapping_gfp_mask(mapping) & gfp_mask;
168 }
169
170 /*
171  * This is non-atomic.  Only to be used before the mapping is activated.
172  * Probably needs a barrier...
173  */
174 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
175 {
176         m->gfp_mask = mask;
177 }
178
179 /**
180  * mapping_set_large_folios() - Indicate the file supports large folios.
181  * @mapping: The file.
182  *
183  * The filesystem should call this function in its inode constructor to
184  * indicate that the VFS can use large folios to cache the contents of
185  * the file.
186  *
187  * Context: This should not be called while the inode is active as it
188  * is non-atomic.
189  */
190 static inline void mapping_set_large_folios(struct address_space *mapping)
191 {
192         __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
193 }
194
195 static inline bool mapping_large_folio_support(struct address_space *mapping)
196 {
197         return test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
198 }
199
200 static inline int filemap_nr_thps(struct address_space *mapping)
201 {
202 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
203         return atomic_read(&mapping->nr_thps);
204 #else
205         return 0;
206 #endif
207 }
208
209 static inline void filemap_nr_thps_inc(struct address_space *mapping)
210 {
211 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
212         if (!mapping_large_folio_support(mapping))
213                 atomic_inc(&mapping->nr_thps);
214 #else
215         WARN_ON_ONCE(1);
216 #endif
217 }
218
219 static inline void filemap_nr_thps_dec(struct address_space *mapping)
220 {
221 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
222         if (!mapping_large_folio_support(mapping))
223                 atomic_dec(&mapping->nr_thps);
224 #else
225         WARN_ON_ONCE(1);
226 #endif
227 }
228
229 void release_pages(struct page **pages, int nr);
230
231 struct address_space *page_mapping(struct page *);
232 struct address_space *folio_mapping(struct folio *);
233 struct address_space *swapcache_mapping(struct folio *);
234
235 /**
236  * folio_file_mapping - Find the mapping this folio belongs to.
237  * @folio: The folio.
238  *
239  * For folios which are in the page cache, return the mapping that this
240  * page belongs to.  Folios in the swap cache return the mapping of the
241  * swap file or swap device where the data is stored.  This is different
242  * from the mapping returned by folio_mapping().  The only reason to
243  * use it is if, like NFS, you return 0 from ->activate_swapfile.
244  *
245  * Do not call this for folios which aren't in the page cache or swap cache.
246  */
247 static inline struct address_space *folio_file_mapping(struct folio *folio)
248 {
249         if (unlikely(folio_test_swapcache(folio)))
250                 return swapcache_mapping(folio);
251
252         return folio->mapping;
253 }
254
255 static inline struct address_space *page_file_mapping(struct page *page)
256 {
257         return folio_file_mapping(page_folio(page));
258 }
259
260 /*
261  * For file cache pages, return the address_space, otherwise return NULL
262  */
263 static inline struct address_space *page_mapping_file(struct page *page)
264 {
265         struct folio *folio = page_folio(page);
266
267         if (unlikely(folio_test_swapcache(folio)))
268                 return NULL;
269         return folio_mapping(folio);
270 }
271
272 /**
273  * folio_inode - Get the host inode for this folio.
274  * @folio: The folio.
275  *
276  * For folios which are in the page cache, return the inode that this folio
277  * belongs to.
278  *
279  * Do not call this for folios which aren't in the page cache.
280  */
281 static inline struct inode *folio_inode(struct folio *folio)
282 {
283         return folio->mapping->host;
284 }
285
286 static inline bool page_cache_add_speculative(struct page *page, int count)
287 {
288         return folio_ref_try_add_rcu((struct folio *)page, count);
289 }
290
291 static inline bool page_cache_get_speculative(struct page *page)
292 {
293         return page_cache_add_speculative(page, 1);
294 }
295
296 /**
297  * folio_attach_private - Attach private data to a folio.
298  * @folio: Folio to attach data to.
299  * @data: Data to attach to folio.
300  *
301  * Attaching private data to a folio increments the page's reference count.
302  * The data must be detached before the folio will be freed.
303  */
304 static inline void folio_attach_private(struct folio *folio, void *data)
305 {
306         folio_get(folio);
307         folio->private = data;
308         folio_set_private(folio);
309 }
310
311 /**
312  * folio_change_private - Change private data on a folio.
313  * @folio: Folio to change the data on.
314  * @data: Data to set on the folio.
315  *
316  * Change the private data attached to a folio and return the old
317  * data.  The page must previously have had data attached and the data
318  * must be detached before the folio will be freed.
319  *
320  * Return: Data that was previously attached to the folio.
321  */
322 static inline void *folio_change_private(struct folio *folio, void *data)
323 {
324         void *old = folio_get_private(folio);
325
326         folio->private = data;
327         return old;
328 }
329
330 /**
331  * folio_detach_private - Detach private data from a folio.
332  * @folio: Folio to detach data from.
333  *
334  * Removes the data that was previously attached to the folio and decrements
335  * the refcount on the page.
336  *
337  * Return: Data that was attached to the folio.
338  */
339 static inline void *folio_detach_private(struct folio *folio)
340 {
341         void *data = folio_get_private(folio);
342
343         if (!folio_test_private(folio))
344                 return NULL;
345         folio_clear_private(folio);
346         folio->private = NULL;
347         folio_put(folio);
348
349         return data;
350 }
351
352 static inline void attach_page_private(struct page *page, void *data)
353 {
354         folio_attach_private(page_folio(page), data);
355 }
356
357 static inline void *detach_page_private(struct page *page)
358 {
359         return folio_detach_private(page_folio(page));
360 }
361
362 #ifdef CONFIG_NUMA
363 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
364 #else
365 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
366 {
367         return folio_alloc(gfp, order);
368 }
369 #endif
370
371 static inline struct page *__page_cache_alloc(gfp_t gfp)
372 {
373         return &filemap_alloc_folio(gfp, 0)->page;
374 }
375
376 static inline struct page *page_cache_alloc(struct address_space *x)
377 {
378         return __page_cache_alloc(mapping_gfp_mask(x));
379 }
380
381 static inline gfp_t readahead_gfp_mask(struct address_space *x)
382 {
383         return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
384 }
385
386 typedef int filler_t(void *, struct page *);
387
388 pgoff_t page_cache_next_miss(struct address_space *mapping,
389                              pgoff_t index, unsigned long max_scan);
390 pgoff_t page_cache_prev_miss(struct address_space *mapping,
391                              pgoff_t index, unsigned long max_scan);
392
393 #define FGP_ACCESSED            0x00000001
394 #define FGP_LOCK                0x00000002
395 #define FGP_CREAT               0x00000004
396 #define FGP_WRITE               0x00000008
397 #define FGP_NOFS                0x00000010
398 #define FGP_NOWAIT              0x00000020
399 #define FGP_FOR_MMAP            0x00000040
400 #define FGP_HEAD                0x00000080
401 #define FGP_ENTRY               0x00000100
402 #define FGP_STABLE              0x00000200
403
404 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
405                 int fgp_flags, gfp_t gfp);
406 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
407                 int fgp_flags, gfp_t gfp);
408
409 /**
410  * filemap_get_folio - Find and get a folio.
411  * @mapping: The address_space to search.
412  * @index: The page index.
413  *
414  * Looks up the page cache entry at @mapping & @index.  If a folio is
415  * present, it is returned with an increased refcount.
416  *
417  * Otherwise, %NULL is returned.
418  */
419 static inline struct folio *filemap_get_folio(struct address_space *mapping,
420                                         pgoff_t index)
421 {
422         return __filemap_get_folio(mapping, index, 0, 0);
423 }
424
425 /**
426  * find_get_page - find and get a page reference
427  * @mapping: the address_space to search
428  * @offset: the page index
429  *
430  * Looks up the page cache slot at @mapping & @offset.  If there is a
431  * page cache page, it is returned with an increased refcount.
432  *
433  * Otherwise, %NULL is returned.
434  */
435 static inline struct page *find_get_page(struct address_space *mapping,
436                                         pgoff_t offset)
437 {
438         return pagecache_get_page(mapping, offset, 0, 0);
439 }
440
441 static inline struct page *find_get_page_flags(struct address_space *mapping,
442                                         pgoff_t offset, int fgp_flags)
443 {
444         return pagecache_get_page(mapping, offset, fgp_flags, 0);
445 }
446
447 /**
448  * find_lock_page - locate, pin and lock a pagecache page
449  * @mapping: the address_space to search
450  * @index: the page index
451  *
452  * Looks up the page cache entry at @mapping & @index.  If there is a
453  * page cache page, it is returned locked and with an increased
454  * refcount.
455  *
456  * Context: May sleep.
457  * Return: A struct page or %NULL if there is no page in the cache for this
458  * index.
459  */
460 static inline struct page *find_lock_page(struct address_space *mapping,
461                                         pgoff_t index)
462 {
463         return pagecache_get_page(mapping, index, FGP_LOCK, 0);
464 }
465
466 /**
467  * find_or_create_page - locate or add a pagecache page
468  * @mapping: the page's address_space
469  * @index: the page's index into the mapping
470  * @gfp_mask: page allocation mode
471  *
472  * Looks up the page cache slot at @mapping & @offset.  If there is a
473  * page cache page, it is returned locked and with an increased
474  * refcount.
475  *
476  * If the page is not present, a new page is allocated using @gfp_mask
477  * and added to the page cache and the VM's LRU list.  The page is
478  * returned locked and with an increased refcount.
479  *
480  * On memory exhaustion, %NULL is returned.
481  *
482  * find_or_create_page() may sleep, even if @gfp_flags specifies an
483  * atomic allocation!
484  */
485 static inline struct page *find_or_create_page(struct address_space *mapping,
486                                         pgoff_t index, gfp_t gfp_mask)
487 {
488         return pagecache_get_page(mapping, index,
489                                         FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
490                                         gfp_mask);
491 }
492
493 /**
494  * grab_cache_page_nowait - returns locked page at given index in given cache
495  * @mapping: target address_space
496  * @index: the page index
497  *
498  * Same as grab_cache_page(), but do not wait if the page is unavailable.
499  * This is intended for speculative data generators, where the data can
500  * be regenerated if the page couldn't be grabbed.  This routine should
501  * be safe to call while holding the lock for another page.
502  *
503  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
504  * and deadlock against the caller's locked page.
505  */
506 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
507                                 pgoff_t index)
508 {
509         return pagecache_get_page(mapping, index,
510                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
511                         mapping_gfp_mask(mapping));
512 }
513
514 /* Does this page contain this index? */
515 static inline bool thp_contains(struct page *head, pgoff_t index)
516 {
517         /* HugeTLBfs indexes the page cache in units of hpage_size */
518         if (PageHuge(head))
519                 return head->index == index;
520         return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
521 }
522
523 #define swapcache_index(folio)  __page_file_index(&(folio)->page)
524
525 /**
526  * folio_index - File index of a folio.
527  * @folio: The folio.
528  *
529  * For a folio which is either in the page cache or the swap cache,
530  * return its index within the address_space it belongs to.  If you know
531  * the page is definitely in the page cache, you can look at the folio's
532  * index directly.
533  *
534  * Return: The index (offset in units of pages) of a folio in its file.
535  */
536 static inline pgoff_t folio_index(struct folio *folio)
537 {
538         if (unlikely(folio_test_swapcache(folio)))
539                 return swapcache_index(folio);
540         return folio->index;
541 }
542
543 /**
544  * folio_next_index - Get the index of the next folio.
545  * @folio: The current folio.
546  *
547  * Return: The index of the folio which follows this folio in the file.
548  */
549 static inline pgoff_t folio_next_index(struct folio *folio)
550 {
551         return folio->index + folio_nr_pages(folio);
552 }
553
554 /**
555  * folio_file_page - The page for a particular index.
556  * @folio: The folio which contains this index.
557  * @index: The index we want to look up.
558  *
559  * Sometimes after looking up a folio in the page cache, we need to
560  * obtain the specific page for an index (eg a page fault).
561  *
562  * Return: The page containing the file data for this index.
563  */
564 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
565 {
566         /* HugeTLBfs indexes the page cache in units of hpage_size */
567         if (folio_test_hugetlb(folio))
568                 return &folio->page;
569         return folio_page(folio, index & (folio_nr_pages(folio) - 1));
570 }
571
572 /**
573  * folio_contains - Does this folio contain this index?
574  * @folio: The folio.
575  * @index: The page index within the file.
576  *
577  * Context: The caller should have the page locked in order to prevent
578  * (eg) shmem from moving the page between the page cache and swap cache
579  * and changing its index in the middle of the operation.
580  * Return: true or false.
581  */
582 static inline bool folio_contains(struct folio *folio, pgoff_t index)
583 {
584         /* HugeTLBfs indexes the page cache in units of hpage_size */
585         if (folio_test_hugetlb(folio))
586                 return folio->index == index;
587         return index - folio_index(folio) < folio_nr_pages(folio);
588 }
589
590 /*
591  * Given the page we found in the page cache, return the page corresponding
592  * to this index in the file
593  */
594 static inline struct page *find_subpage(struct page *head, pgoff_t index)
595 {
596         /* HugeTLBfs wants the head page regardless */
597         if (PageHuge(head))
598                 return head;
599
600         return head + (index & (thp_nr_pages(head) - 1));
601 }
602
603 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
604                 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
605 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
606                         pgoff_t end, unsigned int nr_pages,
607                         struct page **pages);
608 static inline unsigned find_get_pages(struct address_space *mapping,
609                         pgoff_t *start, unsigned int nr_pages,
610                         struct page **pages)
611 {
612         return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
613                                     pages);
614 }
615 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
616                                unsigned int nr_pages, struct page **pages);
617 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
618                         pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
619                         struct page **pages);
620 static inline unsigned find_get_pages_tag(struct address_space *mapping,
621                         pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
622                         struct page **pages)
623 {
624         return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
625                                         nr_pages, pages);
626 }
627
628 struct page *grab_cache_page_write_begin(struct address_space *mapping,
629                         pgoff_t index, unsigned flags);
630
631 /*
632  * Returns locked page at given index in given cache, creating it if needed.
633  */
634 static inline struct page *grab_cache_page(struct address_space *mapping,
635                                                                 pgoff_t index)
636 {
637         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
638 }
639
640 extern struct page * read_cache_page(struct address_space *mapping,
641                                 pgoff_t index, filler_t *filler, void *data);
642 extern struct page * read_cache_page_gfp(struct address_space *mapping,
643                                 pgoff_t index, gfp_t gfp_mask);
644 extern int read_cache_pages(struct address_space *mapping,
645                 struct list_head *pages, filler_t *filler, void *data);
646
647 static inline struct page *read_mapping_page(struct address_space *mapping,
648                                 pgoff_t index, void *data)
649 {
650         return read_cache_page(mapping, index, NULL, data);
651 }
652
653 /*
654  * Get index of the page within radix-tree (but not for hugetlb pages).
655  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
656  */
657 static inline pgoff_t page_to_index(struct page *page)
658 {
659         struct page *head;
660
661         if (likely(!PageTransTail(page)))
662                 return page->index;
663
664         head = compound_head(page);
665         /*
666          *  We don't initialize ->index for tail pages: calculate based on
667          *  head page
668          */
669         return head->index + page - head;
670 }
671
672 extern pgoff_t hugetlb_basepage_index(struct page *page);
673
674 /*
675  * Get the offset in PAGE_SIZE (even for hugetlb pages).
676  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
677  */
678 static inline pgoff_t page_to_pgoff(struct page *page)
679 {
680         if (unlikely(PageHuge(page)))
681                 return hugetlb_basepage_index(page);
682         return page_to_index(page);
683 }
684
685 /*
686  * Return byte-offset into filesystem object for page.
687  */
688 static inline loff_t page_offset(struct page *page)
689 {
690         return ((loff_t)page->index) << PAGE_SHIFT;
691 }
692
693 static inline loff_t page_file_offset(struct page *page)
694 {
695         return ((loff_t)page_index(page)) << PAGE_SHIFT;
696 }
697
698 /**
699  * folio_pos - Returns the byte position of this folio in its file.
700  * @folio: The folio.
701  */
702 static inline loff_t folio_pos(struct folio *folio)
703 {
704         return page_offset(&folio->page);
705 }
706
707 /**
708  * folio_file_pos - Returns the byte position of this folio in its file.
709  * @folio: The folio.
710  *
711  * This differs from folio_pos() for folios which belong to a swap file.
712  * NFS is the only filesystem today which needs to use folio_file_pos().
713  */
714 static inline loff_t folio_file_pos(struct folio *folio)
715 {
716         return page_file_offset(&folio->page);
717 }
718
719 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
720                                      unsigned long address);
721
722 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
723                                         unsigned long address)
724 {
725         pgoff_t pgoff;
726         if (unlikely(is_vm_hugetlb_page(vma)))
727                 return linear_hugepage_index(vma, address);
728         pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
729         pgoff += vma->vm_pgoff;
730         return pgoff;
731 }
732
733 struct wait_page_key {
734         struct folio *folio;
735         int bit_nr;
736         int page_match;
737 };
738
739 struct wait_page_queue {
740         struct folio *folio;
741         int bit_nr;
742         wait_queue_entry_t wait;
743 };
744
745 static inline bool wake_page_match(struct wait_page_queue *wait_page,
746                                   struct wait_page_key *key)
747 {
748         if (wait_page->folio != key->folio)
749                return false;
750         key->page_match = 1;
751
752         if (wait_page->bit_nr != key->bit_nr)
753                 return false;
754
755         return true;
756 }
757
758 void __folio_lock(struct folio *folio);
759 int __folio_lock_killable(struct folio *folio);
760 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
761                                 unsigned int flags);
762 void unlock_page(struct page *page);
763 void folio_unlock(struct folio *folio);
764
765 static inline bool folio_trylock(struct folio *folio)
766 {
767         return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
768 }
769
770 /*
771  * Return true if the page was successfully locked
772  */
773 static inline int trylock_page(struct page *page)
774 {
775         return folio_trylock(page_folio(page));
776 }
777
778 static inline void folio_lock(struct folio *folio)
779 {
780         might_sleep();
781         if (!folio_trylock(folio))
782                 __folio_lock(folio);
783 }
784
785 /*
786  * lock_page may only be called if we have the page's inode pinned.
787  */
788 static inline void lock_page(struct page *page)
789 {
790         struct folio *folio;
791         might_sleep();
792
793         folio = page_folio(page);
794         if (!folio_trylock(folio))
795                 __folio_lock(folio);
796 }
797
798 static inline int folio_lock_killable(struct folio *folio)
799 {
800         might_sleep();
801         if (!folio_trylock(folio))
802                 return __folio_lock_killable(folio);
803         return 0;
804 }
805
806 /*
807  * lock_page_killable is like lock_page but can be interrupted by fatal
808  * signals.  It returns 0 if it locked the page and -EINTR if it was
809  * killed while waiting.
810  */
811 static inline int lock_page_killable(struct page *page)
812 {
813         return folio_lock_killable(page_folio(page));
814 }
815
816 /*
817  * lock_page_or_retry - Lock the page, unless this would block and the
818  * caller indicated that it can handle a retry.
819  *
820  * Return value and mmap_lock implications depend on flags; see
821  * __folio_lock_or_retry().
822  */
823 static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm,
824                                      unsigned int flags)
825 {
826         struct folio *folio;
827         might_sleep();
828
829         folio = page_folio(page);
830         return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
831 }
832
833 /*
834  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
835  * and should not be used directly.
836  */
837 void folio_wait_bit(struct folio *folio, int bit_nr);
838 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
839
840 /* 
841  * Wait for a folio to be unlocked.
842  *
843  * This must be called with the caller "holding" the folio,
844  * ie with increased "page->count" so that the folio won't
845  * go away during the wait..
846  */
847 static inline void folio_wait_locked(struct folio *folio)
848 {
849         if (folio_test_locked(folio))
850                 folio_wait_bit(folio, PG_locked);
851 }
852
853 static inline int folio_wait_locked_killable(struct folio *folio)
854 {
855         if (!folio_test_locked(folio))
856                 return 0;
857         return folio_wait_bit_killable(folio, PG_locked);
858 }
859
860 static inline void wait_on_page_locked(struct page *page)
861 {
862         folio_wait_locked(page_folio(page));
863 }
864
865 static inline int wait_on_page_locked_killable(struct page *page)
866 {
867         return folio_wait_locked_killable(page_folio(page));
868 }
869
870 int put_and_wait_on_page_locked(struct page *page, int state);
871 void wait_on_page_writeback(struct page *page);
872 void folio_wait_writeback(struct folio *folio);
873 int folio_wait_writeback_killable(struct folio *folio);
874 void end_page_writeback(struct page *page);
875 void folio_end_writeback(struct folio *folio);
876 void wait_for_stable_page(struct page *page);
877 void folio_wait_stable(struct folio *folio);
878 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
879 static inline void __set_page_dirty(struct page *page,
880                 struct address_space *mapping, int warn)
881 {
882         __folio_mark_dirty(page_folio(page), mapping, warn);
883 }
884 void folio_account_cleaned(struct folio *folio, struct address_space *mapping,
885                           struct bdi_writeback *wb);
886 static inline void account_page_cleaned(struct page *page,
887                 struct address_space *mapping, struct bdi_writeback *wb)
888 {
889         return folio_account_cleaned(page_folio(page), mapping, wb);
890 }
891 void __folio_cancel_dirty(struct folio *folio);
892 static inline void folio_cancel_dirty(struct folio *folio)
893 {
894         /* Avoid atomic ops, locking, etc. when not actually needed. */
895         if (folio_test_dirty(folio))
896                 __folio_cancel_dirty(folio);
897 }
898 static inline void cancel_dirty_page(struct page *page)
899 {
900         folio_cancel_dirty(page_folio(page));
901 }
902 bool folio_clear_dirty_for_io(struct folio *folio);
903 bool clear_page_dirty_for_io(struct page *page);
904 int __must_check folio_write_one(struct folio *folio);
905 static inline int __must_check write_one_page(struct page *page)
906 {
907         return folio_write_one(page_folio(page));
908 }
909
910 int __set_page_dirty_nobuffers(struct page *page);
911 int __set_page_dirty_no_writeback(struct page *page);
912
913 void page_endio(struct page *page, bool is_write, int err);
914
915 void folio_end_private_2(struct folio *folio);
916 void folio_wait_private_2(struct folio *folio);
917 int folio_wait_private_2_killable(struct folio *folio);
918
919 /*
920  * Add an arbitrary waiter to a page's wait queue
921  */
922 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
923
924 /*
925  * Fault in userspace address range.
926  */
927 size_t fault_in_writeable(char __user *uaddr, size_t size);
928 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
929 size_t fault_in_readable(const char __user *uaddr, size_t size);
930
931 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
932                 pgoff_t index, gfp_t gfp);
933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
934                 pgoff_t index, gfp_t gfp);
935 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
936                 pgoff_t index, gfp_t gfp);
937 extern void delete_from_page_cache(struct page *page);
938 extern void __delete_from_page_cache(struct page *page, void *shadow);
939 void replace_page_cache_page(struct page *old, struct page *new);
940 void delete_from_page_cache_batch(struct address_space *mapping,
941                                   struct pagevec *pvec);
942 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
943                 int whence);
944
945 /*
946  * Like add_to_page_cache_locked, but used to add newly allocated pages:
947  * the page is new, so we can just run __SetPageLocked() against it.
948  */
949 static inline int add_to_page_cache(struct page *page,
950                 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
951 {
952         int error;
953
954         __SetPageLocked(page);
955         error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
956         if (unlikely(error))
957                 __ClearPageLocked(page);
958         return error;
959 }
960
961 /* Must be non-static for BPF error injection */
962 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
963                 pgoff_t index, gfp_t gfp, void **shadowp);
964
965 /**
966  * struct readahead_control - Describes a readahead request.
967  *
968  * A readahead request is for consecutive pages.  Filesystems which
969  * implement the ->readahead method should call readahead_page() or
970  * readahead_page_batch() in a loop and attempt to start I/O against
971  * each page in the request.
972  *
973  * Most of the fields in this struct are private and should be accessed
974  * by the functions below.
975  *
976  * @file: The file, used primarily by network filesystems for authentication.
977  *        May be NULL if invoked internally by the filesystem.
978  * @mapping: Readahead this filesystem object.
979  * @ra: File readahead state.  May be NULL.
980  */
981 struct readahead_control {
982         struct file *file;
983         struct address_space *mapping;
984         struct file_ra_state *ra;
985 /* private: use the readahead_* accessors instead */
986         pgoff_t _index;
987         unsigned int _nr_pages;
988         unsigned int _batch_count;
989 };
990
991 #define DEFINE_READAHEAD(ractl, f, r, m, i)                             \
992         struct readahead_control ractl = {                              \
993                 .file = f,                                              \
994                 .mapping = m,                                           \
995                 .ra = r,                                                \
996                 ._index = i,                                            \
997         }
998
999 #define VM_READAHEAD_PAGES      (SZ_128K / PAGE_SIZE)
1000
1001 void page_cache_ra_unbounded(struct readahead_control *,
1002                 unsigned long nr_to_read, unsigned long lookahead_count);
1003 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1004 void page_cache_async_ra(struct readahead_control *, struct page *,
1005                 unsigned long req_count);
1006 void readahead_expand(struct readahead_control *ractl,
1007                       loff_t new_start, size_t new_len);
1008
1009 /**
1010  * page_cache_sync_readahead - generic file readahead
1011  * @mapping: address_space which holds the pagecache and I/O vectors
1012  * @ra: file_ra_state which holds the readahead state
1013  * @file: Used by the filesystem for authentication.
1014  * @index: Index of first page to be read.
1015  * @req_count: Total number of pages being read by the caller.
1016  *
1017  * page_cache_sync_readahead() should be called when a cache miss happened:
1018  * it will submit the read.  The readahead logic may decide to piggyback more
1019  * pages onto the read request if access patterns suggest it will improve
1020  * performance.
1021  */
1022 static inline
1023 void page_cache_sync_readahead(struct address_space *mapping,
1024                 struct file_ra_state *ra, struct file *file, pgoff_t index,
1025                 unsigned long req_count)
1026 {
1027         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1028         page_cache_sync_ra(&ractl, req_count);
1029 }
1030
1031 /**
1032  * page_cache_async_readahead - file readahead for marked pages
1033  * @mapping: address_space which holds the pagecache and I/O vectors
1034  * @ra: file_ra_state which holds the readahead state
1035  * @file: Used by the filesystem for authentication.
1036  * @page: The page at @index which triggered the readahead call.
1037  * @index: Index of first page to be read.
1038  * @req_count: Total number of pages being read by the caller.
1039  *
1040  * page_cache_async_readahead() should be called when a page is used which
1041  * is marked as PageReadahead; this is a marker to suggest that the application
1042  * has used up enough of the readahead window that we should start pulling in
1043  * more pages.
1044  */
1045 static inline
1046 void page_cache_async_readahead(struct address_space *mapping,
1047                 struct file_ra_state *ra, struct file *file,
1048                 struct page *page, pgoff_t index, unsigned long req_count)
1049 {
1050         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1051         page_cache_async_ra(&ractl, page, req_count);
1052 }
1053
1054 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1055 {
1056         struct folio *folio;
1057
1058         BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1059         ractl->_nr_pages -= ractl->_batch_count;
1060         ractl->_index += ractl->_batch_count;
1061
1062         if (!ractl->_nr_pages) {
1063                 ractl->_batch_count = 0;
1064                 return NULL;
1065         }
1066
1067         folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1068         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1069         ractl->_batch_count = folio_nr_pages(folio);
1070
1071         return folio;
1072 }
1073
1074 /**
1075  * readahead_page - Get the next page to read.
1076  * @ractl: The current readahead request.
1077  *
1078  * Context: The page is locked and has an elevated refcount.  The caller
1079  * should decreases the refcount once the page has been submitted for I/O
1080  * and unlock the page once all I/O to that page has completed.
1081  * Return: A pointer to the next page, or %NULL if we are done.
1082  */
1083 static inline struct page *readahead_page(struct readahead_control *ractl)
1084 {
1085         struct folio *folio = __readahead_folio(ractl);
1086
1087         return &folio->page;
1088 }
1089
1090 /**
1091  * readahead_folio - Get the next folio to read.
1092  * @ractl: The current readahead request.
1093  *
1094  * Context: The folio is locked.  The caller should unlock the folio once
1095  * all I/O to that folio has completed.
1096  * Return: A pointer to the next folio, or %NULL if we are done.
1097  */
1098 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1099 {
1100         struct folio *folio = __readahead_folio(ractl);
1101
1102         if (folio)
1103                 folio_put(folio);
1104         return folio;
1105 }
1106
1107 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1108                 struct page **array, unsigned int array_sz)
1109 {
1110         unsigned int i = 0;
1111         XA_STATE(xas, &rac->mapping->i_pages, 0);
1112         struct page *page;
1113
1114         BUG_ON(rac->_batch_count > rac->_nr_pages);
1115         rac->_nr_pages -= rac->_batch_count;
1116         rac->_index += rac->_batch_count;
1117         rac->_batch_count = 0;
1118
1119         xas_set(&xas, rac->_index);
1120         rcu_read_lock();
1121         xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1122                 if (xas_retry(&xas, page))
1123                         continue;
1124                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1125                 VM_BUG_ON_PAGE(PageTail(page), page);
1126                 array[i++] = page;
1127                 rac->_batch_count += thp_nr_pages(page);
1128
1129                 /*
1130                  * The page cache isn't using multi-index entries yet,
1131                  * so the xas cursor needs to be manually moved to the
1132                  * next index.  This can be removed once the page cache
1133                  * is converted.
1134                  */
1135                 if (PageHead(page))
1136                         xas_set(&xas, rac->_index + rac->_batch_count);
1137
1138                 if (i == array_sz)
1139                         break;
1140         }
1141         rcu_read_unlock();
1142
1143         return i;
1144 }
1145
1146 /**
1147  * readahead_page_batch - Get a batch of pages to read.
1148  * @rac: The current readahead request.
1149  * @array: An array of pointers to struct page.
1150  *
1151  * Context: The pages are locked and have an elevated refcount.  The caller
1152  * should decreases the refcount once the page has been submitted for I/O
1153  * and unlock the page once all I/O to that page has completed.
1154  * Return: The number of pages placed in the array.  0 indicates the request
1155  * is complete.
1156  */
1157 #define readahead_page_batch(rac, array)                                \
1158         __readahead_batch(rac, array, ARRAY_SIZE(array))
1159
1160 /**
1161  * readahead_pos - The byte offset into the file of this readahead request.
1162  * @rac: The readahead request.
1163  */
1164 static inline loff_t readahead_pos(struct readahead_control *rac)
1165 {
1166         return (loff_t)rac->_index * PAGE_SIZE;
1167 }
1168
1169 /**
1170  * readahead_length - The number of bytes in this readahead request.
1171  * @rac: The readahead request.
1172  */
1173 static inline size_t readahead_length(struct readahead_control *rac)
1174 {
1175         return rac->_nr_pages * PAGE_SIZE;
1176 }
1177
1178 /**
1179  * readahead_index - The index of the first page in this readahead request.
1180  * @rac: The readahead request.
1181  */
1182 static inline pgoff_t readahead_index(struct readahead_control *rac)
1183 {
1184         return rac->_index;
1185 }
1186
1187 /**
1188  * readahead_count - The number of pages in this readahead request.
1189  * @rac: The readahead request.
1190  */
1191 static inline unsigned int readahead_count(struct readahead_control *rac)
1192 {
1193         return rac->_nr_pages;
1194 }
1195
1196 /**
1197  * readahead_batch_length - The number of bytes in the current batch.
1198  * @rac: The readahead request.
1199  */
1200 static inline size_t readahead_batch_length(struct readahead_control *rac)
1201 {
1202         return rac->_batch_count * PAGE_SIZE;
1203 }
1204
1205 static inline unsigned long dir_pages(struct inode *inode)
1206 {
1207         return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1208                                PAGE_SHIFT;
1209 }
1210
1211 /**
1212  * folio_mkwrite_check_truncate - check if folio was truncated
1213  * @folio: the folio to check
1214  * @inode: the inode to check the folio against
1215  *
1216  * Return: the number of bytes in the folio up to EOF,
1217  * or -EFAULT if the folio was truncated.
1218  */
1219 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1220                                               struct inode *inode)
1221 {
1222         loff_t size = i_size_read(inode);
1223         pgoff_t index = size >> PAGE_SHIFT;
1224         size_t offset = offset_in_folio(folio, size);
1225
1226         if (!folio->mapping)
1227                 return -EFAULT;
1228
1229         /* folio is wholly inside EOF */
1230         if (folio_next_index(folio) - 1 < index)
1231                 return folio_size(folio);
1232         /* folio is wholly past EOF */
1233         if (folio->index > index || !offset)
1234                 return -EFAULT;
1235         /* folio is partially inside EOF */
1236         return offset;
1237 }
1238
1239 /**
1240  * page_mkwrite_check_truncate - check if page was truncated
1241  * @page: the page to check
1242  * @inode: the inode to check the page against
1243  *
1244  * Returns the number of bytes in the page up to EOF,
1245  * or -EFAULT if the page was truncated.
1246  */
1247 static inline int page_mkwrite_check_truncate(struct page *page,
1248                                               struct inode *inode)
1249 {
1250         loff_t size = i_size_read(inode);
1251         pgoff_t index = size >> PAGE_SHIFT;
1252         int offset = offset_in_page(size);
1253
1254         if (page->mapping != inode->i_mapping)
1255                 return -EFAULT;
1256
1257         /* page is wholly inside EOF */
1258         if (page->index < index)
1259                 return PAGE_SIZE;
1260         /* page is wholly past EOF */
1261         if (page->index > index || !offset)
1262                 return -EFAULT;
1263         /* page is partially inside EOF */
1264         return offset;
1265 }
1266
1267 /**
1268  * i_blocks_per_folio - How many blocks fit in this folio.
1269  * @inode: The inode which contains the blocks.
1270  * @folio: The folio.
1271  *
1272  * If the block size is larger than the size of this folio, return zero.
1273  *
1274  * Context: The caller should hold a refcount on the folio to prevent it
1275  * from being split.
1276  * Return: The number of filesystem blocks covered by this folio.
1277  */
1278 static inline
1279 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1280 {
1281         return folio_size(folio) >> inode->i_blkbits;
1282 }
1283
1284 static inline
1285 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1286 {
1287         return i_blocks_per_folio(inode, page_folio(page));
1288 }
1289 #endif /* _LINUX_PAGEMAP_H */