Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
[linux-2.6-microblaze.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct folio_batch;
20
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22                                         pgoff_t start, pgoff_t end);
23
24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27             S_ISLNK(inode->i_mode))
28                 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32                 pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35
36 int write_inode_now(struct inode *, int sync);
37 int filemap_fdatawrite(struct address_space *);
38 int filemap_flush(struct address_space *);
39 int filemap_fdatawait_keep_errors(struct address_space *mapping);
40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
42                 loff_t start_byte, loff_t end_byte);
43
44 static inline int filemap_fdatawait(struct address_space *mapping)
45 {
46         return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
47 }
48
49 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
50 int filemap_write_and_wait_range(struct address_space *mapping,
51                 loff_t lstart, loff_t lend);
52 int __filemap_fdatawrite_range(struct address_space *mapping,
53                 loff_t start, loff_t end, int sync_mode);
54 int filemap_fdatawrite_range(struct address_space *mapping,
55                 loff_t start, loff_t end);
56 int filemap_check_errors(struct address_space *mapping);
57 void __filemap_set_wb_err(struct address_space *mapping, int err);
58 int filemap_fdatawrite_wbc(struct address_space *mapping,
59                            struct writeback_control *wbc);
60 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
61
62 static inline int filemap_write_and_wait(struct address_space *mapping)
63 {
64         return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
65 }
66
67 /**
68  * filemap_set_wb_err - set a writeback error on an address_space
69  * @mapping: mapping in which to set writeback error
70  * @err: error to be set in mapping
71  *
72  * When writeback fails in some way, we must record that error so that
73  * userspace can be informed when fsync and the like are called.  We endeavor
74  * to report errors on any file that was open at the time of the error.  Some
75  * internal callers also need to know when writeback errors have occurred.
76  *
77  * When a writeback error occurs, most filesystems will want to call
78  * filemap_set_wb_err to record the error in the mapping so that it will be
79  * automatically reported whenever fsync is called on the file.
80  */
81 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
82 {
83         /* Fastpath for common case of no error */
84         if (unlikely(err))
85                 __filemap_set_wb_err(mapping, err);
86 }
87
88 /**
89  * filemap_check_wb_err - has an error occurred since the mark was sampled?
90  * @mapping: mapping to check for writeback errors
91  * @since: previously-sampled errseq_t
92  *
93  * Grab the errseq_t value from the mapping, and see if it has changed "since"
94  * the given value was sampled.
95  *
96  * If it has then report the latest error set, otherwise return 0.
97  */
98 static inline int filemap_check_wb_err(struct address_space *mapping,
99                                         errseq_t since)
100 {
101         return errseq_check(&mapping->wb_err, since);
102 }
103
104 /**
105  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
106  * @mapping: mapping to be sampled
107  *
108  * Writeback errors are always reported relative to a particular sample point
109  * in the past. This function provides those sample points.
110  */
111 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
112 {
113         return errseq_sample(&mapping->wb_err);
114 }
115
116 /**
117  * file_sample_sb_err - sample the current errseq_t to test for later errors
118  * @file: file pointer to be sampled
119  *
120  * Grab the most current superblock-level errseq_t value for the given
121  * struct file.
122  */
123 static inline errseq_t file_sample_sb_err(struct file *file)
124 {
125         return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
126 }
127
128 /*
129  * Flush file data before changing attributes.  Caller must hold any locks
130  * required to prevent further writes to this file until we're done setting
131  * flags.
132  */
133 static inline int inode_drain_writes(struct inode *inode)
134 {
135         inode_dio_wait(inode);
136         return filemap_write_and_wait(inode->i_mapping);
137 }
138
139 static inline bool mapping_empty(struct address_space *mapping)
140 {
141         return xa_empty(&mapping->i_pages);
142 }
143
144 /*
145  * mapping_shrinkable - test if page cache state allows inode reclaim
146  * @mapping: the page cache mapping
147  *
148  * This checks the mapping's cache state for the pupose of inode
149  * reclaim and LRU management.
150  *
151  * The caller is expected to hold the i_lock, but is not required to
152  * hold the i_pages lock, which usually protects cache state. That's
153  * because the i_lock and the list_lru lock that protect the inode and
154  * its LRU state don't nest inside the irq-safe i_pages lock.
155  *
156  * Cache deletions are performed under the i_lock, which ensures that
157  * when an inode goes empty, it will reliably get queued on the LRU.
158  *
159  * Cache additions do not acquire the i_lock and may race with this
160  * check, in which case we'll report the inode as shrinkable when it
161  * has cache pages. This is okay: the shrinker also checks the
162  * refcount and the referenced bit, which will be elevated or set in
163  * the process of adding new cache pages to an inode.
164  */
165 static inline bool mapping_shrinkable(struct address_space *mapping)
166 {
167         void *head;
168
169         /*
170          * On highmem systems, there could be lowmem pressure from the
171          * inodes before there is highmem pressure from the page
172          * cache. Make inodes shrinkable regardless of cache state.
173          */
174         if (IS_ENABLED(CONFIG_HIGHMEM))
175                 return true;
176
177         /* Cache completely empty? Shrink away. */
178         head = rcu_access_pointer(mapping->i_pages.xa_head);
179         if (!head)
180                 return true;
181
182         /*
183          * The xarray stores single offset-0 entries directly in the
184          * head pointer, which allows non-resident page cache entries
185          * to escape the shadow shrinker's list of xarray nodes. The
186          * inode shrinker needs to pick them up under memory pressure.
187          */
188         if (!xa_is_node(head) && xa_is_value(head))
189                 return true;
190
191         return false;
192 }
193
194 /*
195  * Bits in mapping->flags.
196  */
197 enum mapping_flags {
198         AS_EIO          = 0,    /* IO error on async write */
199         AS_ENOSPC       = 1,    /* ENOSPC on async write */
200         AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
201         AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
202         AS_EXITING      = 4,    /* final truncate in progress */
203         /* writeback related tags are not used */
204         AS_NO_WRITEBACK_TAGS = 5,
205         AS_LARGE_FOLIO_SUPPORT = 6,
206 };
207
208 /**
209  * mapping_set_error - record a writeback error in the address_space
210  * @mapping: the mapping in which an error should be set
211  * @error: the error to set in the mapping
212  *
213  * When writeback fails in some way, we must record that error so that
214  * userspace can be informed when fsync and the like are called.  We endeavor
215  * to report errors on any file that was open at the time of the error.  Some
216  * internal callers also need to know when writeback errors have occurred.
217  *
218  * When a writeback error occurs, most filesystems will want to call
219  * mapping_set_error to record the error in the mapping so that it can be
220  * reported when the application calls fsync(2).
221  */
222 static inline void mapping_set_error(struct address_space *mapping, int error)
223 {
224         if (likely(!error))
225                 return;
226
227         /* Record in wb_err for checkers using errseq_t based tracking */
228         __filemap_set_wb_err(mapping, error);
229
230         /* Record it in superblock */
231         if (mapping->host)
232                 errseq_set(&mapping->host->i_sb->s_wb_err, error);
233
234         /* Record it in flags for now, for legacy callers */
235         if (error == -ENOSPC)
236                 set_bit(AS_ENOSPC, &mapping->flags);
237         else
238                 set_bit(AS_EIO, &mapping->flags);
239 }
240
241 static inline void mapping_set_unevictable(struct address_space *mapping)
242 {
243         set_bit(AS_UNEVICTABLE, &mapping->flags);
244 }
245
246 static inline void mapping_clear_unevictable(struct address_space *mapping)
247 {
248         clear_bit(AS_UNEVICTABLE, &mapping->flags);
249 }
250
251 static inline bool mapping_unevictable(struct address_space *mapping)
252 {
253         return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
254 }
255
256 static inline void mapping_set_exiting(struct address_space *mapping)
257 {
258         set_bit(AS_EXITING, &mapping->flags);
259 }
260
261 static inline int mapping_exiting(struct address_space *mapping)
262 {
263         return test_bit(AS_EXITING, &mapping->flags);
264 }
265
266 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
267 {
268         set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
269 }
270
271 static inline int mapping_use_writeback_tags(struct address_space *mapping)
272 {
273         return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
274 }
275
276 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
277 {
278         return mapping->gfp_mask;
279 }
280
281 /* Restricts the given gfp_mask to what the mapping allows. */
282 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
283                 gfp_t gfp_mask)
284 {
285         return mapping_gfp_mask(mapping) & gfp_mask;
286 }
287
288 /*
289  * This is non-atomic.  Only to be used before the mapping is activated.
290  * Probably needs a barrier...
291  */
292 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
293 {
294         m->gfp_mask = mask;
295 }
296
297 /**
298  * mapping_set_large_folios() - Indicate the file supports large folios.
299  * @mapping: The file.
300  *
301  * The filesystem should call this function in its inode constructor to
302  * indicate that the VFS can use large folios to cache the contents of
303  * the file.
304  *
305  * Context: This should not be called while the inode is active as it
306  * is non-atomic.
307  */
308 static inline void mapping_set_large_folios(struct address_space *mapping)
309 {
310         __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
311 }
312
313 /*
314  * Large folio support currently depends on THP.  These dependencies are
315  * being worked on but are not yet fixed.
316  */
317 static inline bool mapping_large_folio_support(struct address_space *mapping)
318 {
319         return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
320                 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
321 }
322
323 static inline int filemap_nr_thps(struct address_space *mapping)
324 {
325 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
326         return atomic_read(&mapping->nr_thps);
327 #else
328         return 0;
329 #endif
330 }
331
332 static inline void filemap_nr_thps_inc(struct address_space *mapping)
333 {
334 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
335         if (!mapping_large_folio_support(mapping))
336                 atomic_inc(&mapping->nr_thps);
337 #else
338         WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
339 #endif
340 }
341
342 static inline void filemap_nr_thps_dec(struct address_space *mapping)
343 {
344 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
345         if (!mapping_large_folio_support(mapping))
346                 atomic_dec(&mapping->nr_thps);
347 #else
348         WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
349 #endif
350 }
351
352 struct address_space *page_mapping(struct page *);
353 struct address_space *folio_mapping(struct folio *);
354 struct address_space *swapcache_mapping(struct folio *);
355
356 /**
357  * folio_file_mapping - Find the mapping this folio belongs to.
358  * @folio: The folio.
359  *
360  * For folios which are in the page cache, return the mapping that this
361  * page belongs to.  Folios in the swap cache return the mapping of the
362  * swap file or swap device where the data is stored.  This is different
363  * from the mapping returned by folio_mapping().  The only reason to
364  * use it is if, like NFS, you return 0 from ->activate_swapfile.
365  *
366  * Do not call this for folios which aren't in the page cache or swap cache.
367  */
368 static inline struct address_space *folio_file_mapping(struct folio *folio)
369 {
370         if (unlikely(folio_test_swapcache(folio)))
371                 return swapcache_mapping(folio);
372
373         return folio->mapping;
374 }
375
376 static inline struct address_space *page_file_mapping(struct page *page)
377 {
378         return folio_file_mapping(page_folio(page));
379 }
380
381 /*
382  * For file cache pages, return the address_space, otherwise return NULL
383  */
384 static inline struct address_space *page_mapping_file(struct page *page)
385 {
386         struct folio *folio = page_folio(page);
387
388         if (unlikely(folio_test_swapcache(folio)))
389                 return NULL;
390         return folio_mapping(folio);
391 }
392
393 /**
394  * folio_inode - Get the host inode for this folio.
395  * @folio: The folio.
396  *
397  * For folios which are in the page cache, return the inode that this folio
398  * belongs to.
399  *
400  * Do not call this for folios which aren't in the page cache.
401  */
402 static inline struct inode *folio_inode(struct folio *folio)
403 {
404         return folio->mapping->host;
405 }
406
407 /**
408  * folio_attach_private - Attach private data to a folio.
409  * @folio: Folio to attach data to.
410  * @data: Data to attach to folio.
411  *
412  * Attaching private data to a folio increments the page's reference count.
413  * The data must be detached before the folio will be freed.
414  */
415 static inline void folio_attach_private(struct folio *folio, void *data)
416 {
417         folio_get(folio);
418         folio->private = data;
419         folio_set_private(folio);
420 }
421
422 /**
423  * folio_change_private - Change private data on a folio.
424  * @folio: Folio to change the data on.
425  * @data: Data to set on the folio.
426  *
427  * Change the private data attached to a folio and return the old
428  * data.  The page must previously have had data attached and the data
429  * must be detached before the folio will be freed.
430  *
431  * Return: Data that was previously attached to the folio.
432  */
433 static inline void *folio_change_private(struct folio *folio, void *data)
434 {
435         void *old = folio_get_private(folio);
436
437         folio->private = data;
438         return old;
439 }
440
441 /**
442  * folio_detach_private - Detach private data from a folio.
443  * @folio: Folio to detach data from.
444  *
445  * Removes the data that was previously attached to the folio and decrements
446  * the refcount on the page.
447  *
448  * Return: Data that was attached to the folio.
449  */
450 static inline void *folio_detach_private(struct folio *folio)
451 {
452         void *data = folio_get_private(folio);
453
454         if (!folio_test_private(folio))
455                 return NULL;
456         folio_clear_private(folio);
457         folio->private = NULL;
458         folio_put(folio);
459
460         return data;
461 }
462
463 static inline void attach_page_private(struct page *page, void *data)
464 {
465         folio_attach_private(page_folio(page), data);
466 }
467
468 static inline void *detach_page_private(struct page *page)
469 {
470         return folio_detach_private(page_folio(page));
471 }
472
473 #ifdef CONFIG_NUMA
474 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
475 #else
476 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
477 {
478         return folio_alloc(gfp, order);
479 }
480 #endif
481
482 static inline struct page *__page_cache_alloc(gfp_t gfp)
483 {
484         return &filemap_alloc_folio(gfp, 0)->page;
485 }
486
487 static inline struct page *page_cache_alloc(struct address_space *x)
488 {
489         return __page_cache_alloc(mapping_gfp_mask(x));
490 }
491
492 static inline gfp_t readahead_gfp_mask(struct address_space *x)
493 {
494         return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
495 }
496
497 typedef int filler_t(struct file *, struct folio *);
498
499 pgoff_t page_cache_next_miss(struct address_space *mapping,
500                              pgoff_t index, unsigned long max_scan);
501 pgoff_t page_cache_prev_miss(struct address_space *mapping,
502                              pgoff_t index, unsigned long max_scan);
503
504 #define FGP_ACCESSED            0x00000001
505 #define FGP_LOCK                0x00000002
506 #define FGP_CREAT               0x00000004
507 #define FGP_WRITE               0x00000008
508 #define FGP_NOFS                0x00000010
509 #define FGP_NOWAIT              0x00000020
510 #define FGP_FOR_MMAP            0x00000040
511 #define FGP_STABLE              0x00000080
512
513 #define FGP_WRITEBEGIN          (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
514
515 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
516 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
517                 int fgp_flags, gfp_t gfp);
518 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
519                 int fgp_flags, gfp_t gfp);
520
521 /**
522  * filemap_get_folio - Find and get a folio.
523  * @mapping: The address_space to search.
524  * @index: The page index.
525  *
526  * Looks up the page cache entry at @mapping & @index.  If a folio is
527  * present, it is returned with an increased refcount.
528  *
529  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
530  * this index.  Will not return a shadow, swap or DAX entry.
531  */
532 static inline struct folio *filemap_get_folio(struct address_space *mapping,
533                                         pgoff_t index)
534 {
535         return __filemap_get_folio(mapping, index, 0, 0);
536 }
537
538 /**
539  * filemap_lock_folio - Find and lock a folio.
540  * @mapping: The address_space to search.
541  * @index: The page index.
542  *
543  * Looks up the page cache entry at @mapping & @index.  If a folio is
544  * present, it is returned locked with an increased refcount.
545  *
546  * Context: May sleep.
547  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
548  * this index.  Will not return a shadow, swap or DAX entry.
549  */
550 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
551                                         pgoff_t index)
552 {
553         return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
554 }
555
556 /**
557  * filemap_grab_folio - grab a folio from the page cache
558  * @mapping: The address space to search
559  * @index: The page index
560  *
561  * Looks up the page cache entry at @mapping & @index. If no folio is found,
562  * a new folio is created. The folio is locked, marked as accessed, and
563  * returned.
564  *
565  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
566  * and failed to create a folio.
567  */
568 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
569                                         pgoff_t index)
570 {
571         return __filemap_get_folio(mapping, index,
572                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
573                         mapping_gfp_mask(mapping));
574 }
575
576 /**
577  * find_get_page - find and get a page reference
578  * @mapping: the address_space to search
579  * @offset: the page index
580  *
581  * Looks up the page cache slot at @mapping & @offset.  If there is a
582  * page cache page, it is returned with an increased refcount.
583  *
584  * Otherwise, %NULL is returned.
585  */
586 static inline struct page *find_get_page(struct address_space *mapping,
587                                         pgoff_t offset)
588 {
589         return pagecache_get_page(mapping, offset, 0, 0);
590 }
591
592 static inline struct page *find_get_page_flags(struct address_space *mapping,
593                                         pgoff_t offset, int fgp_flags)
594 {
595         return pagecache_get_page(mapping, offset, fgp_flags, 0);
596 }
597
598 /**
599  * find_lock_page - locate, pin and lock a pagecache page
600  * @mapping: the address_space to search
601  * @index: the page index
602  *
603  * Looks up the page cache entry at @mapping & @index.  If there is a
604  * page cache page, it is returned locked and with an increased
605  * refcount.
606  *
607  * Context: May sleep.
608  * Return: A struct page or %NULL if there is no page in the cache for this
609  * index.
610  */
611 static inline struct page *find_lock_page(struct address_space *mapping,
612                                         pgoff_t index)
613 {
614         return pagecache_get_page(mapping, index, FGP_LOCK, 0);
615 }
616
617 /**
618  * find_or_create_page - locate or add a pagecache page
619  * @mapping: the page's address_space
620  * @index: the page's index into the mapping
621  * @gfp_mask: page allocation mode
622  *
623  * Looks up the page cache slot at @mapping & @offset.  If there is a
624  * page cache page, it is returned locked and with an increased
625  * refcount.
626  *
627  * If the page is not present, a new page is allocated using @gfp_mask
628  * and added to the page cache and the VM's LRU list.  The page is
629  * returned locked and with an increased refcount.
630  *
631  * On memory exhaustion, %NULL is returned.
632  *
633  * find_or_create_page() may sleep, even if @gfp_flags specifies an
634  * atomic allocation!
635  */
636 static inline struct page *find_or_create_page(struct address_space *mapping,
637                                         pgoff_t index, gfp_t gfp_mask)
638 {
639         return pagecache_get_page(mapping, index,
640                                         FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
641                                         gfp_mask);
642 }
643
644 /**
645  * grab_cache_page_nowait - returns locked page at given index in given cache
646  * @mapping: target address_space
647  * @index: the page index
648  *
649  * Same as grab_cache_page(), but do not wait if the page is unavailable.
650  * This is intended for speculative data generators, where the data can
651  * be regenerated if the page couldn't be grabbed.  This routine should
652  * be safe to call while holding the lock for another page.
653  *
654  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
655  * and deadlock against the caller's locked page.
656  */
657 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
658                                 pgoff_t index)
659 {
660         return pagecache_get_page(mapping, index,
661                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
662                         mapping_gfp_mask(mapping));
663 }
664
665 #define swapcache_index(folio)  __page_file_index(&(folio)->page)
666
667 /**
668  * folio_index - File index of a folio.
669  * @folio: The folio.
670  *
671  * For a folio which is either in the page cache or the swap cache,
672  * return its index within the address_space it belongs to.  If you know
673  * the page is definitely in the page cache, you can look at the folio's
674  * index directly.
675  *
676  * Return: The index (offset in units of pages) of a folio in its file.
677  */
678 static inline pgoff_t folio_index(struct folio *folio)
679 {
680         if (unlikely(folio_test_swapcache(folio)))
681                 return swapcache_index(folio);
682         return folio->index;
683 }
684
685 /**
686  * folio_next_index - Get the index of the next folio.
687  * @folio: The current folio.
688  *
689  * Return: The index of the folio which follows this folio in the file.
690  */
691 static inline pgoff_t folio_next_index(struct folio *folio)
692 {
693         return folio->index + folio_nr_pages(folio);
694 }
695
696 /**
697  * folio_file_page - The page for a particular index.
698  * @folio: The folio which contains this index.
699  * @index: The index we want to look up.
700  *
701  * Sometimes after looking up a folio in the page cache, we need to
702  * obtain the specific page for an index (eg a page fault).
703  *
704  * Return: The page containing the file data for this index.
705  */
706 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
707 {
708         /* HugeTLBfs indexes the page cache in units of hpage_size */
709         if (folio_test_hugetlb(folio))
710                 return &folio->page;
711         return folio_page(folio, index & (folio_nr_pages(folio) - 1));
712 }
713
714 /**
715  * folio_contains - Does this folio contain this index?
716  * @folio: The folio.
717  * @index: The page index within the file.
718  *
719  * Context: The caller should have the page locked in order to prevent
720  * (eg) shmem from moving the page between the page cache and swap cache
721  * and changing its index in the middle of the operation.
722  * Return: true or false.
723  */
724 static inline bool folio_contains(struct folio *folio, pgoff_t index)
725 {
726         /* HugeTLBfs indexes the page cache in units of hpage_size */
727         if (folio_test_hugetlb(folio))
728                 return folio->index == index;
729         return index - folio_index(folio) < folio_nr_pages(folio);
730 }
731
732 /*
733  * Given the page we found in the page cache, return the page corresponding
734  * to this index in the file
735  */
736 static inline struct page *find_subpage(struct page *head, pgoff_t index)
737 {
738         /* HugeTLBfs wants the head page regardless */
739         if (PageHuge(head))
740                 return head;
741
742         return head + (index & (thp_nr_pages(head) - 1));
743 }
744
745 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
746                 pgoff_t end, struct folio_batch *fbatch);
747 unsigned filemap_get_folios_contig(struct address_space *mapping,
748                 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
749 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
750                 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
751
752 struct page *grab_cache_page_write_begin(struct address_space *mapping,
753                         pgoff_t index);
754
755 /*
756  * Returns locked page at given index in given cache, creating it if needed.
757  */
758 static inline struct page *grab_cache_page(struct address_space *mapping,
759                                                                 pgoff_t index)
760 {
761         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
762 }
763
764 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
765                 filler_t *filler, struct file *file);
766 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
767                 gfp_t flags);
768 struct page *read_cache_page(struct address_space *, pgoff_t index,
769                 filler_t *filler, struct file *file);
770 extern struct page * read_cache_page_gfp(struct address_space *mapping,
771                                 pgoff_t index, gfp_t gfp_mask);
772
773 static inline struct page *read_mapping_page(struct address_space *mapping,
774                                 pgoff_t index, struct file *file)
775 {
776         return read_cache_page(mapping, index, NULL, file);
777 }
778
779 static inline struct folio *read_mapping_folio(struct address_space *mapping,
780                                 pgoff_t index, struct file *file)
781 {
782         return read_cache_folio(mapping, index, NULL, file);
783 }
784
785 /*
786  * Get index of the page within radix-tree (but not for hugetlb pages).
787  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
788  */
789 static inline pgoff_t page_to_index(struct page *page)
790 {
791         struct page *head;
792
793         if (likely(!PageTransTail(page)))
794                 return page->index;
795
796         head = compound_head(page);
797         /*
798          *  We don't initialize ->index for tail pages: calculate based on
799          *  head page
800          */
801         return head->index + page - head;
802 }
803
804 extern pgoff_t hugetlb_basepage_index(struct page *page);
805
806 /*
807  * Get the offset in PAGE_SIZE (even for hugetlb pages).
808  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
809  */
810 static inline pgoff_t page_to_pgoff(struct page *page)
811 {
812         if (unlikely(PageHuge(page)))
813                 return hugetlb_basepage_index(page);
814         return page_to_index(page);
815 }
816
817 /*
818  * Return byte-offset into filesystem object for page.
819  */
820 static inline loff_t page_offset(struct page *page)
821 {
822         return ((loff_t)page->index) << PAGE_SHIFT;
823 }
824
825 static inline loff_t page_file_offset(struct page *page)
826 {
827         return ((loff_t)page_index(page)) << PAGE_SHIFT;
828 }
829
830 /**
831  * folio_pos - Returns the byte position of this folio in its file.
832  * @folio: The folio.
833  */
834 static inline loff_t folio_pos(struct folio *folio)
835 {
836         return page_offset(&folio->page);
837 }
838
839 /**
840  * folio_file_pos - Returns the byte position of this folio in its file.
841  * @folio: The folio.
842  *
843  * This differs from folio_pos() for folios which belong to a swap file.
844  * NFS is the only filesystem today which needs to use folio_file_pos().
845  */
846 static inline loff_t folio_file_pos(struct folio *folio)
847 {
848         return page_file_offset(&folio->page);
849 }
850
851 /*
852  * Get the offset in PAGE_SIZE (even for hugetlb folios).
853  * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
854  */
855 static inline pgoff_t folio_pgoff(struct folio *folio)
856 {
857         if (unlikely(folio_test_hugetlb(folio)))
858                 return hugetlb_basepage_index(&folio->page);
859         return folio->index;
860 }
861
862 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
863                                      unsigned long address);
864
865 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
866                                         unsigned long address)
867 {
868         pgoff_t pgoff;
869         if (unlikely(is_vm_hugetlb_page(vma)))
870                 return linear_hugepage_index(vma, address);
871         pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
872         pgoff += vma->vm_pgoff;
873         return pgoff;
874 }
875
876 struct wait_page_key {
877         struct folio *folio;
878         int bit_nr;
879         int page_match;
880 };
881
882 struct wait_page_queue {
883         struct folio *folio;
884         int bit_nr;
885         wait_queue_entry_t wait;
886 };
887
888 static inline bool wake_page_match(struct wait_page_queue *wait_page,
889                                   struct wait_page_key *key)
890 {
891         if (wait_page->folio != key->folio)
892                return false;
893         key->page_match = 1;
894
895         if (wait_page->bit_nr != key->bit_nr)
896                 return false;
897
898         return true;
899 }
900
901 void __folio_lock(struct folio *folio);
902 int __folio_lock_killable(struct folio *folio);
903 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
904                                 unsigned int flags);
905 void unlock_page(struct page *page);
906 void folio_unlock(struct folio *folio);
907
908 /**
909  * folio_trylock() - Attempt to lock a folio.
910  * @folio: The folio to attempt to lock.
911  *
912  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
913  * when the locks are being taken in the wrong order, or if making
914  * progress through a batch of folios is more important than processing
915  * them in order).  Usually folio_lock() is the correct function to call.
916  *
917  * Context: Any context.
918  * Return: Whether the lock was successfully acquired.
919  */
920 static inline bool folio_trylock(struct folio *folio)
921 {
922         return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
923 }
924
925 /*
926  * Return true if the page was successfully locked
927  */
928 static inline int trylock_page(struct page *page)
929 {
930         return folio_trylock(page_folio(page));
931 }
932
933 /**
934  * folio_lock() - Lock this folio.
935  * @folio: The folio to lock.
936  *
937  * The folio lock protects against many things, probably more than it
938  * should.  It is primarily held while a folio is being brought uptodate,
939  * either from its backing file or from swap.  It is also held while a
940  * folio is being truncated from its address_space, so holding the lock
941  * is sufficient to keep folio->mapping stable.
942  *
943  * The folio lock is also held while write() is modifying the page to
944  * provide POSIX atomicity guarantees (as long as the write does not
945  * cross a page boundary).  Other modifications to the data in the folio
946  * do not hold the folio lock and can race with writes, eg DMA and stores
947  * to mapped pages.
948  *
949  * Context: May sleep.  If you need to acquire the locks of two or
950  * more folios, they must be in order of ascending index, if they are
951  * in the same address_space.  If they are in different address_spaces,
952  * acquire the lock of the folio which belongs to the address_space which
953  * has the lowest address in memory first.
954  */
955 static inline void folio_lock(struct folio *folio)
956 {
957         might_sleep();
958         if (!folio_trylock(folio))
959                 __folio_lock(folio);
960 }
961
962 /**
963  * lock_page() - Lock the folio containing this page.
964  * @page: The page to lock.
965  *
966  * See folio_lock() for a description of what the lock protects.
967  * This is a legacy function and new code should probably use folio_lock()
968  * instead.
969  *
970  * Context: May sleep.  Pages in the same folio share a lock, so do not
971  * attempt to lock two pages which share a folio.
972  */
973 static inline void lock_page(struct page *page)
974 {
975         struct folio *folio;
976         might_sleep();
977
978         folio = page_folio(page);
979         if (!folio_trylock(folio))
980                 __folio_lock(folio);
981 }
982
983 /**
984  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
985  * @folio: The folio to lock.
986  *
987  * Attempts to lock the folio, like folio_lock(), except that the sleep
988  * to acquire the lock is interruptible by a fatal signal.
989  *
990  * Context: May sleep; see folio_lock().
991  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
992  */
993 static inline int folio_lock_killable(struct folio *folio)
994 {
995         might_sleep();
996         if (!folio_trylock(folio))
997                 return __folio_lock_killable(folio);
998         return 0;
999 }
1000
1001 /*
1002  * folio_lock_or_retry - Lock the folio, unless this would block and the
1003  * caller indicated that it can handle a retry.
1004  *
1005  * Return value and mmap_lock implications depend on flags; see
1006  * __folio_lock_or_retry().
1007  */
1008 static inline bool folio_lock_or_retry(struct folio *folio,
1009                 struct mm_struct *mm, unsigned int flags)
1010 {
1011         might_sleep();
1012         return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
1013 }
1014
1015 /*
1016  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1017  * and should not be used directly.
1018  */
1019 void folio_wait_bit(struct folio *folio, int bit_nr);
1020 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1021
1022 /* 
1023  * Wait for a folio to be unlocked.
1024  *
1025  * This must be called with the caller "holding" the folio,
1026  * ie with increased folio reference count so that the folio won't
1027  * go away during the wait.
1028  */
1029 static inline void folio_wait_locked(struct folio *folio)
1030 {
1031         if (folio_test_locked(folio))
1032                 folio_wait_bit(folio, PG_locked);
1033 }
1034
1035 static inline int folio_wait_locked_killable(struct folio *folio)
1036 {
1037         if (!folio_test_locked(folio))
1038                 return 0;
1039         return folio_wait_bit_killable(folio, PG_locked);
1040 }
1041
1042 static inline void wait_on_page_locked(struct page *page)
1043 {
1044         folio_wait_locked(page_folio(page));
1045 }
1046
1047 static inline int wait_on_page_locked_killable(struct page *page)
1048 {
1049         return folio_wait_locked_killable(page_folio(page));
1050 }
1051
1052 void wait_on_page_writeback(struct page *page);
1053 void folio_wait_writeback(struct folio *folio);
1054 int folio_wait_writeback_killable(struct folio *folio);
1055 void end_page_writeback(struct page *page);
1056 void folio_end_writeback(struct folio *folio);
1057 void wait_for_stable_page(struct page *page);
1058 void folio_wait_stable(struct folio *folio);
1059 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1060 static inline void __set_page_dirty(struct page *page,
1061                 struct address_space *mapping, int warn)
1062 {
1063         __folio_mark_dirty(page_folio(page), mapping, warn);
1064 }
1065 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1066 void __folio_cancel_dirty(struct folio *folio);
1067 static inline void folio_cancel_dirty(struct folio *folio)
1068 {
1069         /* Avoid atomic ops, locking, etc. when not actually needed. */
1070         if (folio_test_dirty(folio))
1071                 __folio_cancel_dirty(folio);
1072 }
1073 bool folio_clear_dirty_for_io(struct folio *folio);
1074 bool clear_page_dirty_for_io(struct page *page);
1075 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1076 int __set_page_dirty_nobuffers(struct page *page);
1077 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1078
1079 #ifdef CONFIG_MIGRATION
1080 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1081                 struct folio *src, enum migrate_mode mode);
1082 #else
1083 #define filemap_migrate_folio NULL
1084 #endif
1085 void folio_end_private_2(struct folio *folio);
1086 void folio_wait_private_2(struct folio *folio);
1087 int folio_wait_private_2_killable(struct folio *folio);
1088
1089 /*
1090  * Add an arbitrary waiter to a page's wait queue
1091  */
1092 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1093
1094 /*
1095  * Fault in userspace address range.
1096  */
1097 size_t fault_in_writeable(char __user *uaddr, size_t size);
1098 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1099 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1100 size_t fault_in_readable(const char __user *uaddr, size_t size);
1101
1102 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1103                 pgoff_t index, gfp_t gfp);
1104 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1105                 pgoff_t index, gfp_t gfp);
1106 void filemap_remove_folio(struct folio *folio);
1107 void __filemap_remove_folio(struct folio *folio, void *shadow);
1108 void replace_page_cache_folio(struct folio *old, struct folio *new);
1109 void delete_from_page_cache_batch(struct address_space *mapping,
1110                                   struct folio_batch *fbatch);
1111 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1112 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1113                 int whence);
1114
1115 /* Must be non-static for BPF error injection */
1116 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1117                 pgoff_t index, gfp_t gfp, void **shadowp);
1118
1119 bool filemap_range_has_writeback(struct address_space *mapping,
1120                                  loff_t start_byte, loff_t end_byte);
1121
1122 /**
1123  * filemap_range_needs_writeback - check if range potentially needs writeback
1124  * @mapping:           address space within which to check
1125  * @start_byte:        offset in bytes where the range starts
1126  * @end_byte:          offset in bytes where the range ends (inclusive)
1127  *
1128  * Find at least one page in the range supplied, usually used to check if
1129  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1130  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1131  * filemap_write_and_wait_range() before proceeding.
1132  *
1133  * Return: %true if the caller should do filemap_write_and_wait_range() before
1134  * doing O_DIRECT to a page in this range, %false otherwise.
1135  */
1136 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1137                                                  loff_t start_byte,
1138                                                  loff_t end_byte)
1139 {
1140         if (!mapping->nrpages)
1141                 return false;
1142         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1143             !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1144                 return false;
1145         return filemap_range_has_writeback(mapping, start_byte, end_byte);
1146 }
1147
1148 /**
1149  * struct readahead_control - Describes a readahead request.
1150  *
1151  * A readahead request is for consecutive pages.  Filesystems which
1152  * implement the ->readahead method should call readahead_page() or
1153  * readahead_page_batch() in a loop and attempt to start I/O against
1154  * each page in the request.
1155  *
1156  * Most of the fields in this struct are private and should be accessed
1157  * by the functions below.
1158  *
1159  * @file: The file, used primarily by network filesystems for authentication.
1160  *        May be NULL if invoked internally by the filesystem.
1161  * @mapping: Readahead this filesystem object.
1162  * @ra: File readahead state.  May be NULL.
1163  */
1164 struct readahead_control {
1165         struct file *file;
1166         struct address_space *mapping;
1167         struct file_ra_state *ra;
1168 /* private: use the readahead_* accessors instead */
1169         pgoff_t _index;
1170         unsigned int _nr_pages;
1171         unsigned int _batch_count;
1172         bool _workingset;
1173         unsigned long _pflags;
1174 };
1175
1176 #define DEFINE_READAHEAD(ractl, f, r, m, i)                             \
1177         struct readahead_control ractl = {                              \
1178                 .file = f,                                              \
1179                 .mapping = m,                                           \
1180                 .ra = r,                                                \
1181                 ._index = i,                                            \
1182         }
1183
1184 #define VM_READAHEAD_PAGES      (SZ_128K / PAGE_SIZE)
1185
1186 void page_cache_ra_unbounded(struct readahead_control *,
1187                 unsigned long nr_to_read, unsigned long lookahead_count);
1188 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1189 void page_cache_async_ra(struct readahead_control *, struct folio *,
1190                 unsigned long req_count);
1191 void readahead_expand(struct readahead_control *ractl,
1192                       loff_t new_start, size_t new_len);
1193
1194 /**
1195  * page_cache_sync_readahead - generic file readahead
1196  * @mapping: address_space which holds the pagecache and I/O vectors
1197  * @ra: file_ra_state which holds the readahead state
1198  * @file: Used by the filesystem for authentication.
1199  * @index: Index of first page to be read.
1200  * @req_count: Total number of pages being read by the caller.
1201  *
1202  * page_cache_sync_readahead() should be called when a cache miss happened:
1203  * it will submit the read.  The readahead logic may decide to piggyback more
1204  * pages onto the read request if access patterns suggest it will improve
1205  * performance.
1206  */
1207 static inline
1208 void page_cache_sync_readahead(struct address_space *mapping,
1209                 struct file_ra_state *ra, struct file *file, pgoff_t index,
1210                 unsigned long req_count)
1211 {
1212         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1213         page_cache_sync_ra(&ractl, req_count);
1214 }
1215
1216 /**
1217  * page_cache_async_readahead - file readahead for marked pages
1218  * @mapping: address_space which holds the pagecache and I/O vectors
1219  * @ra: file_ra_state which holds the readahead state
1220  * @file: Used by the filesystem for authentication.
1221  * @folio: The folio at @index which triggered the readahead call.
1222  * @index: Index of first page to be read.
1223  * @req_count: Total number of pages being read by the caller.
1224  *
1225  * page_cache_async_readahead() should be called when a page is used which
1226  * is marked as PageReadahead; this is a marker to suggest that the application
1227  * has used up enough of the readahead window that we should start pulling in
1228  * more pages.
1229  */
1230 static inline
1231 void page_cache_async_readahead(struct address_space *mapping,
1232                 struct file_ra_state *ra, struct file *file,
1233                 struct folio *folio, pgoff_t index, unsigned long req_count)
1234 {
1235         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1236         page_cache_async_ra(&ractl, folio, req_count);
1237 }
1238
1239 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1240 {
1241         struct folio *folio;
1242
1243         BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1244         ractl->_nr_pages -= ractl->_batch_count;
1245         ractl->_index += ractl->_batch_count;
1246
1247         if (!ractl->_nr_pages) {
1248                 ractl->_batch_count = 0;
1249                 return NULL;
1250         }
1251
1252         folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1253         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1254         ractl->_batch_count = folio_nr_pages(folio);
1255
1256         return folio;
1257 }
1258
1259 /**
1260  * readahead_page - Get the next page to read.
1261  * @ractl: The current readahead request.
1262  *
1263  * Context: The page is locked and has an elevated refcount.  The caller
1264  * should decreases the refcount once the page has been submitted for I/O
1265  * and unlock the page once all I/O to that page has completed.
1266  * Return: A pointer to the next page, or %NULL if we are done.
1267  */
1268 static inline struct page *readahead_page(struct readahead_control *ractl)
1269 {
1270         struct folio *folio = __readahead_folio(ractl);
1271
1272         return &folio->page;
1273 }
1274
1275 /**
1276  * readahead_folio - Get the next folio to read.
1277  * @ractl: The current readahead request.
1278  *
1279  * Context: The folio is locked.  The caller should unlock the folio once
1280  * all I/O to that folio has completed.
1281  * Return: A pointer to the next folio, or %NULL if we are done.
1282  */
1283 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1284 {
1285         struct folio *folio = __readahead_folio(ractl);
1286
1287         if (folio)
1288                 folio_put(folio);
1289         return folio;
1290 }
1291
1292 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1293                 struct page **array, unsigned int array_sz)
1294 {
1295         unsigned int i = 0;
1296         XA_STATE(xas, &rac->mapping->i_pages, 0);
1297         struct page *page;
1298
1299         BUG_ON(rac->_batch_count > rac->_nr_pages);
1300         rac->_nr_pages -= rac->_batch_count;
1301         rac->_index += rac->_batch_count;
1302         rac->_batch_count = 0;
1303
1304         xas_set(&xas, rac->_index);
1305         rcu_read_lock();
1306         xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1307                 if (xas_retry(&xas, page))
1308                         continue;
1309                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1310                 VM_BUG_ON_PAGE(PageTail(page), page);
1311                 array[i++] = page;
1312                 rac->_batch_count += thp_nr_pages(page);
1313                 if (i == array_sz)
1314                         break;
1315         }
1316         rcu_read_unlock();
1317
1318         return i;
1319 }
1320
1321 /**
1322  * readahead_page_batch - Get a batch of pages to read.
1323  * @rac: The current readahead request.
1324  * @array: An array of pointers to struct page.
1325  *
1326  * Context: The pages are locked and have an elevated refcount.  The caller
1327  * should decreases the refcount once the page has been submitted for I/O
1328  * and unlock the page once all I/O to that page has completed.
1329  * Return: The number of pages placed in the array.  0 indicates the request
1330  * is complete.
1331  */
1332 #define readahead_page_batch(rac, array)                                \
1333         __readahead_batch(rac, array, ARRAY_SIZE(array))
1334
1335 /**
1336  * readahead_pos - The byte offset into the file of this readahead request.
1337  * @rac: The readahead request.
1338  */
1339 static inline loff_t readahead_pos(struct readahead_control *rac)
1340 {
1341         return (loff_t)rac->_index * PAGE_SIZE;
1342 }
1343
1344 /**
1345  * readahead_length - The number of bytes in this readahead request.
1346  * @rac: The readahead request.
1347  */
1348 static inline size_t readahead_length(struct readahead_control *rac)
1349 {
1350         return rac->_nr_pages * PAGE_SIZE;
1351 }
1352
1353 /**
1354  * readahead_index - The index of the first page in this readahead request.
1355  * @rac: The readahead request.
1356  */
1357 static inline pgoff_t readahead_index(struct readahead_control *rac)
1358 {
1359         return rac->_index;
1360 }
1361
1362 /**
1363  * readahead_count - The number of pages in this readahead request.
1364  * @rac: The readahead request.
1365  */
1366 static inline unsigned int readahead_count(struct readahead_control *rac)
1367 {
1368         return rac->_nr_pages;
1369 }
1370
1371 /**
1372  * readahead_batch_length - The number of bytes in the current batch.
1373  * @rac: The readahead request.
1374  */
1375 static inline size_t readahead_batch_length(struct readahead_control *rac)
1376 {
1377         return rac->_batch_count * PAGE_SIZE;
1378 }
1379
1380 static inline unsigned long dir_pages(struct inode *inode)
1381 {
1382         return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1383                                PAGE_SHIFT;
1384 }
1385
1386 /**
1387  * folio_mkwrite_check_truncate - check if folio was truncated
1388  * @folio: the folio to check
1389  * @inode: the inode to check the folio against
1390  *
1391  * Return: the number of bytes in the folio up to EOF,
1392  * or -EFAULT if the folio was truncated.
1393  */
1394 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1395                                               struct inode *inode)
1396 {
1397         loff_t size = i_size_read(inode);
1398         pgoff_t index = size >> PAGE_SHIFT;
1399         size_t offset = offset_in_folio(folio, size);
1400
1401         if (!folio->mapping)
1402                 return -EFAULT;
1403
1404         /* folio is wholly inside EOF */
1405         if (folio_next_index(folio) - 1 < index)
1406                 return folio_size(folio);
1407         /* folio is wholly past EOF */
1408         if (folio->index > index || !offset)
1409                 return -EFAULT;
1410         /* folio is partially inside EOF */
1411         return offset;
1412 }
1413
1414 /**
1415  * page_mkwrite_check_truncate - check if page was truncated
1416  * @page: the page to check
1417  * @inode: the inode to check the page against
1418  *
1419  * Returns the number of bytes in the page up to EOF,
1420  * or -EFAULT if the page was truncated.
1421  */
1422 static inline int page_mkwrite_check_truncate(struct page *page,
1423                                               struct inode *inode)
1424 {
1425         loff_t size = i_size_read(inode);
1426         pgoff_t index = size >> PAGE_SHIFT;
1427         int offset = offset_in_page(size);
1428
1429         if (page->mapping != inode->i_mapping)
1430                 return -EFAULT;
1431
1432         /* page is wholly inside EOF */
1433         if (page->index < index)
1434                 return PAGE_SIZE;
1435         /* page is wholly past EOF */
1436         if (page->index > index || !offset)
1437                 return -EFAULT;
1438         /* page is partially inside EOF */
1439         return offset;
1440 }
1441
1442 /**
1443  * i_blocks_per_folio - How many blocks fit in this folio.
1444  * @inode: The inode which contains the blocks.
1445  * @folio: The folio.
1446  *
1447  * If the block size is larger than the size of this folio, return zero.
1448  *
1449  * Context: The caller should hold a refcount on the folio to prevent it
1450  * from being split.
1451  * Return: The number of filesystem blocks covered by this folio.
1452  */
1453 static inline
1454 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1455 {
1456         return folio_size(folio) >> inode->i_blkbits;
1457 }
1458
1459 static inline
1460 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1461 {
1462         return i_blocks_per_folio(inode, page_folio(page));
1463 }
1464 #endif /* _LINUX_PAGEMAP_H */