Merge tag 'regulator-fix-v5.16-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct pagevec;
20
21 static inline bool mapping_empty(struct address_space *mapping)
22 {
23         return xa_empty(&mapping->i_pages);
24 }
25
26 /*
27  * mapping_shrinkable - test if page cache state allows inode reclaim
28  * @mapping: the page cache mapping
29  *
30  * This checks the mapping's cache state for the pupose of inode
31  * reclaim and LRU management.
32  *
33  * The caller is expected to hold the i_lock, but is not required to
34  * hold the i_pages lock, which usually protects cache state. That's
35  * because the i_lock and the list_lru lock that protect the inode and
36  * its LRU state don't nest inside the irq-safe i_pages lock.
37  *
38  * Cache deletions are performed under the i_lock, which ensures that
39  * when an inode goes empty, it will reliably get queued on the LRU.
40  *
41  * Cache additions do not acquire the i_lock and may race with this
42  * check, in which case we'll report the inode as shrinkable when it
43  * has cache pages. This is okay: the shrinker also checks the
44  * refcount and the referenced bit, which will be elevated or set in
45  * the process of adding new cache pages to an inode.
46  */
47 static inline bool mapping_shrinkable(struct address_space *mapping)
48 {
49         void *head;
50
51         /*
52          * On highmem systems, there could be lowmem pressure from the
53          * inodes before there is highmem pressure from the page
54          * cache. Make inodes shrinkable regardless of cache state.
55          */
56         if (IS_ENABLED(CONFIG_HIGHMEM))
57                 return true;
58
59         /* Cache completely empty? Shrink away. */
60         head = rcu_access_pointer(mapping->i_pages.xa_head);
61         if (!head)
62                 return true;
63
64         /*
65          * The xarray stores single offset-0 entries directly in the
66          * head pointer, which allows non-resident page cache entries
67          * to escape the shadow shrinker's list of xarray nodes. The
68          * inode shrinker needs to pick them up under memory pressure.
69          */
70         if (!xa_is_node(head) && xa_is_value(head))
71                 return true;
72
73         return false;
74 }
75
76 /*
77  * Bits in mapping->flags.
78  */
79 enum mapping_flags {
80         AS_EIO          = 0,    /* IO error on async write */
81         AS_ENOSPC       = 1,    /* ENOSPC on async write */
82         AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
83         AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
84         AS_EXITING      = 4,    /* final truncate in progress */
85         /* writeback related tags are not used */
86         AS_NO_WRITEBACK_TAGS = 5,
87         AS_LARGE_FOLIO_SUPPORT = 6,
88 };
89
90 /**
91  * mapping_set_error - record a writeback error in the address_space
92  * @mapping: the mapping in which an error should be set
93  * @error: the error to set in the mapping
94  *
95  * When writeback fails in some way, we must record that error so that
96  * userspace can be informed when fsync and the like are called.  We endeavor
97  * to report errors on any file that was open at the time of the error.  Some
98  * internal callers also need to know when writeback errors have occurred.
99  *
100  * When a writeback error occurs, most filesystems will want to call
101  * mapping_set_error to record the error in the mapping so that it can be
102  * reported when the application calls fsync(2).
103  */
104 static inline void mapping_set_error(struct address_space *mapping, int error)
105 {
106         if (likely(!error))
107                 return;
108
109         /* Record in wb_err for checkers using errseq_t based tracking */
110         __filemap_set_wb_err(mapping, error);
111
112         /* Record it in superblock */
113         if (mapping->host)
114                 errseq_set(&mapping->host->i_sb->s_wb_err, error);
115
116         /* Record it in flags for now, for legacy callers */
117         if (error == -ENOSPC)
118                 set_bit(AS_ENOSPC, &mapping->flags);
119         else
120                 set_bit(AS_EIO, &mapping->flags);
121 }
122
123 static inline void mapping_set_unevictable(struct address_space *mapping)
124 {
125         set_bit(AS_UNEVICTABLE, &mapping->flags);
126 }
127
128 static inline void mapping_clear_unevictable(struct address_space *mapping)
129 {
130         clear_bit(AS_UNEVICTABLE, &mapping->flags);
131 }
132
133 static inline bool mapping_unevictable(struct address_space *mapping)
134 {
135         return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
136 }
137
138 static inline void mapping_set_exiting(struct address_space *mapping)
139 {
140         set_bit(AS_EXITING, &mapping->flags);
141 }
142
143 static inline int mapping_exiting(struct address_space *mapping)
144 {
145         return test_bit(AS_EXITING, &mapping->flags);
146 }
147
148 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
149 {
150         set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
151 }
152
153 static inline int mapping_use_writeback_tags(struct address_space *mapping)
154 {
155         return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
156 }
157
158 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
159 {
160         return mapping->gfp_mask;
161 }
162
163 /* Restricts the given gfp_mask to what the mapping allows. */
164 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
165                 gfp_t gfp_mask)
166 {
167         return mapping_gfp_mask(mapping) & gfp_mask;
168 }
169
170 /*
171  * This is non-atomic.  Only to be used before the mapping is activated.
172  * Probably needs a barrier...
173  */
174 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
175 {
176         m->gfp_mask = mask;
177 }
178
179 /**
180  * mapping_set_large_folios() - Indicate the file supports large folios.
181  * @mapping: The file.
182  *
183  * The filesystem should call this function in its inode constructor to
184  * indicate that the VFS can use large folios to cache the contents of
185  * the file.
186  *
187  * Context: This should not be called while the inode is active as it
188  * is non-atomic.
189  */
190 static inline void mapping_set_large_folios(struct address_space *mapping)
191 {
192         __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
193 }
194
195 static inline bool mapping_large_folio_support(struct address_space *mapping)
196 {
197         return test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
198 }
199
200 static inline int filemap_nr_thps(struct address_space *mapping)
201 {
202 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
203         return atomic_read(&mapping->nr_thps);
204 #else
205         return 0;
206 #endif
207 }
208
209 static inline void filemap_nr_thps_inc(struct address_space *mapping)
210 {
211 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
212         if (!mapping_large_folio_support(mapping))
213                 atomic_inc(&mapping->nr_thps);
214 #else
215         WARN_ON_ONCE(1);
216 #endif
217 }
218
219 static inline void filemap_nr_thps_dec(struct address_space *mapping)
220 {
221 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
222         if (!mapping_large_folio_support(mapping))
223                 atomic_dec(&mapping->nr_thps);
224 #else
225         WARN_ON_ONCE(1);
226 #endif
227 }
228
229 void release_pages(struct page **pages, int nr);
230
231 struct address_space *page_mapping(struct page *);
232 struct address_space *folio_mapping(struct folio *);
233 struct address_space *swapcache_mapping(struct folio *);
234
235 /**
236  * folio_file_mapping - Find the mapping this folio belongs to.
237  * @folio: The folio.
238  *
239  * For folios which are in the page cache, return the mapping that this
240  * page belongs to.  Folios in the swap cache return the mapping of the
241  * swap file or swap device where the data is stored.  This is different
242  * from the mapping returned by folio_mapping().  The only reason to
243  * use it is if, like NFS, you return 0 from ->activate_swapfile.
244  *
245  * Do not call this for folios which aren't in the page cache or swap cache.
246  */
247 static inline struct address_space *folio_file_mapping(struct folio *folio)
248 {
249         if (unlikely(folio_test_swapcache(folio)))
250                 return swapcache_mapping(folio);
251
252         return folio->mapping;
253 }
254
255 static inline struct address_space *page_file_mapping(struct page *page)
256 {
257         return folio_file_mapping(page_folio(page));
258 }
259
260 /*
261  * For file cache pages, return the address_space, otherwise return NULL
262  */
263 static inline struct address_space *page_mapping_file(struct page *page)
264 {
265         struct folio *folio = page_folio(page);
266
267         if (unlikely(folio_test_swapcache(folio)))
268                 return NULL;
269         return folio_mapping(folio);
270 }
271
272 /**
273  * folio_inode - Get the host inode for this folio.
274  * @folio: The folio.
275  *
276  * For folios which are in the page cache, return the inode that this folio
277  * belongs to.
278  *
279  * Do not call this for folios which aren't in the page cache.
280  */
281 static inline struct inode *folio_inode(struct folio *folio)
282 {
283         return folio->mapping->host;
284 }
285
286 static inline bool page_cache_add_speculative(struct page *page, int count)
287 {
288         VM_BUG_ON_PAGE(PageTail(page), page);
289         return folio_ref_try_add_rcu((struct folio *)page, count);
290 }
291
292 static inline bool page_cache_get_speculative(struct page *page)
293 {
294         return page_cache_add_speculative(page, 1);
295 }
296
297 /**
298  * folio_attach_private - Attach private data to a folio.
299  * @folio: Folio to attach data to.
300  * @data: Data to attach to folio.
301  *
302  * Attaching private data to a folio increments the page's reference count.
303  * The data must be detached before the folio will be freed.
304  */
305 static inline void folio_attach_private(struct folio *folio, void *data)
306 {
307         folio_get(folio);
308         folio->private = data;
309         folio_set_private(folio);
310 }
311
312 /**
313  * folio_change_private - Change private data on a folio.
314  * @folio: Folio to change the data on.
315  * @data: Data to set on the folio.
316  *
317  * Change the private data attached to a folio and return the old
318  * data.  The page must previously have had data attached and the data
319  * must be detached before the folio will be freed.
320  *
321  * Return: Data that was previously attached to the folio.
322  */
323 static inline void *folio_change_private(struct folio *folio, void *data)
324 {
325         void *old = folio_get_private(folio);
326
327         folio->private = data;
328         return old;
329 }
330
331 /**
332  * folio_detach_private - Detach private data from a folio.
333  * @folio: Folio to detach data from.
334  *
335  * Removes the data that was previously attached to the folio and decrements
336  * the refcount on the page.
337  *
338  * Return: Data that was attached to the folio.
339  */
340 static inline void *folio_detach_private(struct folio *folio)
341 {
342         void *data = folio_get_private(folio);
343
344         if (!folio_test_private(folio))
345                 return NULL;
346         folio_clear_private(folio);
347         folio->private = NULL;
348         folio_put(folio);
349
350         return data;
351 }
352
353 static inline void attach_page_private(struct page *page, void *data)
354 {
355         folio_attach_private(page_folio(page), data);
356 }
357
358 static inline void *detach_page_private(struct page *page)
359 {
360         return folio_detach_private(page_folio(page));
361 }
362
363 #ifdef CONFIG_NUMA
364 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
365 #else
366 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
367 {
368         return folio_alloc(gfp, order);
369 }
370 #endif
371
372 static inline struct page *__page_cache_alloc(gfp_t gfp)
373 {
374         return &filemap_alloc_folio(gfp, 0)->page;
375 }
376
377 static inline struct page *page_cache_alloc(struct address_space *x)
378 {
379         return __page_cache_alloc(mapping_gfp_mask(x));
380 }
381
382 static inline gfp_t readahead_gfp_mask(struct address_space *x)
383 {
384         return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
385 }
386
387 typedef int filler_t(void *, struct page *);
388
389 pgoff_t page_cache_next_miss(struct address_space *mapping,
390                              pgoff_t index, unsigned long max_scan);
391 pgoff_t page_cache_prev_miss(struct address_space *mapping,
392                              pgoff_t index, unsigned long max_scan);
393
394 #define FGP_ACCESSED            0x00000001
395 #define FGP_LOCK                0x00000002
396 #define FGP_CREAT               0x00000004
397 #define FGP_WRITE               0x00000008
398 #define FGP_NOFS                0x00000010
399 #define FGP_NOWAIT              0x00000020
400 #define FGP_FOR_MMAP            0x00000040
401 #define FGP_HEAD                0x00000080
402 #define FGP_ENTRY               0x00000100
403 #define FGP_STABLE              0x00000200
404
405 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
406                 int fgp_flags, gfp_t gfp);
407 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
408                 int fgp_flags, gfp_t gfp);
409
410 /**
411  * filemap_get_folio - Find and get a folio.
412  * @mapping: The address_space to search.
413  * @index: The page index.
414  *
415  * Looks up the page cache entry at @mapping & @index.  If a folio is
416  * present, it is returned with an increased refcount.
417  *
418  * Otherwise, %NULL is returned.
419  */
420 static inline struct folio *filemap_get_folio(struct address_space *mapping,
421                                         pgoff_t index)
422 {
423         return __filemap_get_folio(mapping, index, 0, 0);
424 }
425
426 /**
427  * find_get_page - find and get a page reference
428  * @mapping: the address_space to search
429  * @offset: the page index
430  *
431  * Looks up the page cache slot at @mapping & @offset.  If there is a
432  * page cache page, it is returned with an increased refcount.
433  *
434  * Otherwise, %NULL is returned.
435  */
436 static inline struct page *find_get_page(struct address_space *mapping,
437                                         pgoff_t offset)
438 {
439         return pagecache_get_page(mapping, offset, 0, 0);
440 }
441
442 static inline struct page *find_get_page_flags(struct address_space *mapping,
443                                         pgoff_t offset, int fgp_flags)
444 {
445         return pagecache_get_page(mapping, offset, fgp_flags, 0);
446 }
447
448 /**
449  * find_lock_page - locate, pin and lock a pagecache page
450  * @mapping: the address_space to search
451  * @index: the page index
452  *
453  * Looks up the page cache entry at @mapping & @index.  If there is a
454  * page cache page, it is returned locked and with an increased
455  * refcount.
456  *
457  * Context: May sleep.
458  * Return: A struct page or %NULL if there is no page in the cache for this
459  * index.
460  */
461 static inline struct page *find_lock_page(struct address_space *mapping,
462                                         pgoff_t index)
463 {
464         return pagecache_get_page(mapping, index, FGP_LOCK, 0);
465 }
466
467 /**
468  * find_or_create_page - locate or add a pagecache page
469  * @mapping: the page's address_space
470  * @index: the page's index into the mapping
471  * @gfp_mask: page allocation mode
472  *
473  * Looks up the page cache slot at @mapping & @offset.  If there is a
474  * page cache page, it is returned locked and with an increased
475  * refcount.
476  *
477  * If the page is not present, a new page is allocated using @gfp_mask
478  * and added to the page cache and the VM's LRU list.  The page is
479  * returned locked and with an increased refcount.
480  *
481  * On memory exhaustion, %NULL is returned.
482  *
483  * find_or_create_page() may sleep, even if @gfp_flags specifies an
484  * atomic allocation!
485  */
486 static inline struct page *find_or_create_page(struct address_space *mapping,
487                                         pgoff_t index, gfp_t gfp_mask)
488 {
489         return pagecache_get_page(mapping, index,
490                                         FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
491                                         gfp_mask);
492 }
493
494 /**
495  * grab_cache_page_nowait - returns locked page at given index in given cache
496  * @mapping: target address_space
497  * @index: the page index
498  *
499  * Same as grab_cache_page(), but do not wait if the page is unavailable.
500  * This is intended for speculative data generators, where the data can
501  * be regenerated if the page couldn't be grabbed.  This routine should
502  * be safe to call while holding the lock for another page.
503  *
504  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
505  * and deadlock against the caller's locked page.
506  */
507 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
508                                 pgoff_t index)
509 {
510         return pagecache_get_page(mapping, index,
511                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
512                         mapping_gfp_mask(mapping));
513 }
514
515 /* Does this page contain this index? */
516 static inline bool thp_contains(struct page *head, pgoff_t index)
517 {
518         /* HugeTLBfs indexes the page cache in units of hpage_size */
519         if (PageHuge(head))
520                 return head->index == index;
521         return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
522 }
523
524 #define swapcache_index(folio)  __page_file_index(&(folio)->page)
525
526 /**
527  * folio_index - File index of a folio.
528  * @folio: The folio.
529  *
530  * For a folio which is either in the page cache or the swap cache,
531  * return its index within the address_space it belongs to.  If you know
532  * the page is definitely in the page cache, you can look at the folio's
533  * index directly.
534  *
535  * Return: The index (offset in units of pages) of a folio in its file.
536  */
537 static inline pgoff_t folio_index(struct folio *folio)
538 {
539         if (unlikely(folio_test_swapcache(folio)))
540                 return swapcache_index(folio);
541         return folio->index;
542 }
543
544 /**
545  * folio_next_index - Get the index of the next folio.
546  * @folio: The current folio.
547  *
548  * Return: The index of the folio which follows this folio in the file.
549  */
550 static inline pgoff_t folio_next_index(struct folio *folio)
551 {
552         return folio->index + folio_nr_pages(folio);
553 }
554
555 /**
556  * folio_file_page - The page for a particular index.
557  * @folio: The folio which contains this index.
558  * @index: The index we want to look up.
559  *
560  * Sometimes after looking up a folio in the page cache, we need to
561  * obtain the specific page for an index (eg a page fault).
562  *
563  * Return: The page containing the file data for this index.
564  */
565 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
566 {
567         /* HugeTLBfs indexes the page cache in units of hpage_size */
568         if (folio_test_hugetlb(folio))
569                 return &folio->page;
570         return folio_page(folio, index & (folio_nr_pages(folio) - 1));
571 }
572
573 /**
574  * folio_contains - Does this folio contain this index?
575  * @folio: The folio.
576  * @index: The page index within the file.
577  *
578  * Context: The caller should have the page locked in order to prevent
579  * (eg) shmem from moving the page between the page cache and swap cache
580  * and changing its index in the middle of the operation.
581  * Return: true or false.
582  */
583 static inline bool folio_contains(struct folio *folio, pgoff_t index)
584 {
585         /* HugeTLBfs indexes the page cache in units of hpage_size */
586         if (folio_test_hugetlb(folio))
587                 return folio->index == index;
588         return index - folio_index(folio) < folio_nr_pages(folio);
589 }
590
591 /*
592  * Given the page we found in the page cache, return the page corresponding
593  * to this index in the file
594  */
595 static inline struct page *find_subpage(struct page *head, pgoff_t index)
596 {
597         /* HugeTLBfs wants the head page regardless */
598         if (PageHuge(head))
599                 return head;
600
601         return head + (index & (thp_nr_pages(head) - 1));
602 }
603
604 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
605                 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
606 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
607                         pgoff_t end, unsigned int nr_pages,
608                         struct page **pages);
609 static inline unsigned find_get_pages(struct address_space *mapping,
610                         pgoff_t *start, unsigned int nr_pages,
611                         struct page **pages)
612 {
613         return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
614                                     pages);
615 }
616 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
617                                unsigned int nr_pages, struct page **pages);
618 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
619                         pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
620                         struct page **pages);
621 static inline unsigned find_get_pages_tag(struct address_space *mapping,
622                         pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
623                         struct page **pages)
624 {
625         return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
626                                         nr_pages, pages);
627 }
628
629 struct page *grab_cache_page_write_begin(struct address_space *mapping,
630                         pgoff_t index, unsigned flags);
631
632 /*
633  * Returns locked page at given index in given cache, creating it if needed.
634  */
635 static inline struct page *grab_cache_page(struct address_space *mapping,
636                                                                 pgoff_t index)
637 {
638         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
639 }
640
641 extern struct page * read_cache_page(struct address_space *mapping,
642                                 pgoff_t index, filler_t *filler, void *data);
643 extern struct page * read_cache_page_gfp(struct address_space *mapping,
644                                 pgoff_t index, gfp_t gfp_mask);
645 extern int read_cache_pages(struct address_space *mapping,
646                 struct list_head *pages, filler_t *filler, void *data);
647
648 static inline struct page *read_mapping_page(struct address_space *mapping,
649                                 pgoff_t index, void *data)
650 {
651         return read_cache_page(mapping, index, NULL, data);
652 }
653
654 /*
655  * Get index of the page within radix-tree (but not for hugetlb pages).
656  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
657  */
658 static inline pgoff_t page_to_index(struct page *page)
659 {
660         struct page *head;
661
662         if (likely(!PageTransTail(page)))
663                 return page->index;
664
665         head = compound_head(page);
666         /*
667          *  We don't initialize ->index for tail pages: calculate based on
668          *  head page
669          */
670         return head->index + page - head;
671 }
672
673 extern pgoff_t hugetlb_basepage_index(struct page *page);
674
675 /*
676  * Get the offset in PAGE_SIZE (even for hugetlb pages).
677  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
678  */
679 static inline pgoff_t page_to_pgoff(struct page *page)
680 {
681         if (unlikely(PageHuge(page)))
682                 return hugetlb_basepage_index(page);
683         return page_to_index(page);
684 }
685
686 /*
687  * Return byte-offset into filesystem object for page.
688  */
689 static inline loff_t page_offset(struct page *page)
690 {
691         return ((loff_t)page->index) << PAGE_SHIFT;
692 }
693
694 static inline loff_t page_file_offset(struct page *page)
695 {
696         return ((loff_t)page_index(page)) << PAGE_SHIFT;
697 }
698
699 /**
700  * folio_pos - Returns the byte position of this folio in its file.
701  * @folio: The folio.
702  */
703 static inline loff_t folio_pos(struct folio *folio)
704 {
705         return page_offset(&folio->page);
706 }
707
708 /**
709  * folio_file_pos - Returns the byte position of this folio in its file.
710  * @folio: The folio.
711  *
712  * This differs from folio_pos() for folios which belong to a swap file.
713  * NFS is the only filesystem today which needs to use folio_file_pos().
714  */
715 static inline loff_t folio_file_pos(struct folio *folio)
716 {
717         return page_file_offset(&folio->page);
718 }
719
720 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
721                                      unsigned long address);
722
723 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
724                                         unsigned long address)
725 {
726         pgoff_t pgoff;
727         if (unlikely(is_vm_hugetlb_page(vma)))
728                 return linear_hugepage_index(vma, address);
729         pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
730         pgoff += vma->vm_pgoff;
731         return pgoff;
732 }
733
734 struct wait_page_key {
735         struct folio *folio;
736         int bit_nr;
737         int page_match;
738 };
739
740 struct wait_page_queue {
741         struct folio *folio;
742         int bit_nr;
743         wait_queue_entry_t wait;
744 };
745
746 static inline bool wake_page_match(struct wait_page_queue *wait_page,
747                                   struct wait_page_key *key)
748 {
749         if (wait_page->folio != key->folio)
750                return false;
751         key->page_match = 1;
752
753         if (wait_page->bit_nr != key->bit_nr)
754                 return false;
755
756         return true;
757 }
758
759 void __folio_lock(struct folio *folio);
760 int __folio_lock_killable(struct folio *folio);
761 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
762                                 unsigned int flags);
763 void unlock_page(struct page *page);
764 void folio_unlock(struct folio *folio);
765
766 static inline bool folio_trylock(struct folio *folio)
767 {
768         return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
769 }
770
771 /*
772  * Return true if the page was successfully locked
773  */
774 static inline int trylock_page(struct page *page)
775 {
776         return folio_trylock(page_folio(page));
777 }
778
779 static inline void folio_lock(struct folio *folio)
780 {
781         might_sleep();
782         if (!folio_trylock(folio))
783                 __folio_lock(folio);
784 }
785
786 /*
787  * lock_page may only be called if we have the page's inode pinned.
788  */
789 static inline void lock_page(struct page *page)
790 {
791         struct folio *folio;
792         might_sleep();
793
794         folio = page_folio(page);
795         if (!folio_trylock(folio))
796                 __folio_lock(folio);
797 }
798
799 static inline int folio_lock_killable(struct folio *folio)
800 {
801         might_sleep();
802         if (!folio_trylock(folio))
803                 return __folio_lock_killable(folio);
804         return 0;
805 }
806
807 /*
808  * lock_page_killable is like lock_page but can be interrupted by fatal
809  * signals.  It returns 0 if it locked the page and -EINTR if it was
810  * killed while waiting.
811  */
812 static inline int lock_page_killable(struct page *page)
813 {
814         return folio_lock_killable(page_folio(page));
815 }
816
817 /*
818  * lock_page_or_retry - Lock the page, unless this would block and the
819  * caller indicated that it can handle a retry.
820  *
821  * Return value and mmap_lock implications depend on flags; see
822  * __folio_lock_or_retry().
823  */
824 static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm,
825                                      unsigned int flags)
826 {
827         struct folio *folio;
828         might_sleep();
829
830         folio = page_folio(page);
831         return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
832 }
833
834 /*
835  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
836  * and should not be used directly.
837  */
838 void folio_wait_bit(struct folio *folio, int bit_nr);
839 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
840
841 /* 
842  * Wait for a folio to be unlocked.
843  *
844  * This must be called with the caller "holding" the folio,
845  * ie with increased "page->count" so that the folio won't
846  * go away during the wait..
847  */
848 static inline void folio_wait_locked(struct folio *folio)
849 {
850         if (folio_test_locked(folio))
851                 folio_wait_bit(folio, PG_locked);
852 }
853
854 static inline int folio_wait_locked_killable(struct folio *folio)
855 {
856         if (!folio_test_locked(folio))
857                 return 0;
858         return folio_wait_bit_killable(folio, PG_locked);
859 }
860
861 static inline void wait_on_page_locked(struct page *page)
862 {
863         folio_wait_locked(page_folio(page));
864 }
865
866 static inline int wait_on_page_locked_killable(struct page *page)
867 {
868         return folio_wait_locked_killable(page_folio(page));
869 }
870
871 int put_and_wait_on_page_locked(struct page *page, int state);
872 void wait_on_page_writeback(struct page *page);
873 void folio_wait_writeback(struct folio *folio);
874 int folio_wait_writeback_killable(struct folio *folio);
875 void end_page_writeback(struct page *page);
876 void folio_end_writeback(struct folio *folio);
877 void wait_for_stable_page(struct page *page);
878 void folio_wait_stable(struct folio *folio);
879 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
880 static inline void __set_page_dirty(struct page *page,
881                 struct address_space *mapping, int warn)
882 {
883         __folio_mark_dirty(page_folio(page), mapping, warn);
884 }
885 void folio_account_cleaned(struct folio *folio, struct address_space *mapping,
886                           struct bdi_writeback *wb);
887 static inline void account_page_cleaned(struct page *page,
888                 struct address_space *mapping, struct bdi_writeback *wb)
889 {
890         return folio_account_cleaned(page_folio(page), mapping, wb);
891 }
892 void __folio_cancel_dirty(struct folio *folio);
893 static inline void folio_cancel_dirty(struct folio *folio)
894 {
895         /* Avoid atomic ops, locking, etc. when not actually needed. */
896         if (folio_test_dirty(folio))
897                 __folio_cancel_dirty(folio);
898 }
899 static inline void cancel_dirty_page(struct page *page)
900 {
901         folio_cancel_dirty(page_folio(page));
902 }
903 bool folio_clear_dirty_for_io(struct folio *folio);
904 bool clear_page_dirty_for_io(struct page *page);
905 int __must_check folio_write_one(struct folio *folio);
906 static inline int __must_check write_one_page(struct page *page)
907 {
908         return folio_write_one(page_folio(page));
909 }
910
911 int __set_page_dirty_nobuffers(struct page *page);
912 int __set_page_dirty_no_writeback(struct page *page);
913
914 void page_endio(struct page *page, bool is_write, int err);
915
916 void folio_end_private_2(struct folio *folio);
917 void folio_wait_private_2(struct folio *folio);
918 int folio_wait_private_2_killable(struct folio *folio);
919
920 /*
921  * Add an arbitrary waiter to a page's wait queue
922  */
923 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
924
925 /*
926  * Fault in userspace address range.
927  */
928 size_t fault_in_writeable(char __user *uaddr, size_t size);
929 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
930 size_t fault_in_readable(const char __user *uaddr, size_t size);
931
932 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
933                 pgoff_t index, gfp_t gfp);
934 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
935                 pgoff_t index, gfp_t gfp);
936 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
937                 pgoff_t index, gfp_t gfp);
938 extern void delete_from_page_cache(struct page *page);
939 extern void __delete_from_page_cache(struct page *page, void *shadow);
940 void replace_page_cache_page(struct page *old, struct page *new);
941 void delete_from_page_cache_batch(struct address_space *mapping,
942                                   struct pagevec *pvec);
943 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
944                 int whence);
945
946 /*
947  * Like add_to_page_cache_locked, but used to add newly allocated pages:
948  * the page is new, so we can just run __SetPageLocked() against it.
949  */
950 static inline int add_to_page_cache(struct page *page,
951                 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
952 {
953         int error;
954
955         __SetPageLocked(page);
956         error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
957         if (unlikely(error))
958                 __ClearPageLocked(page);
959         return error;
960 }
961
962 /* Must be non-static for BPF error injection */
963 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
964                 pgoff_t index, gfp_t gfp, void **shadowp);
965
966 /**
967  * struct readahead_control - Describes a readahead request.
968  *
969  * A readahead request is for consecutive pages.  Filesystems which
970  * implement the ->readahead method should call readahead_page() or
971  * readahead_page_batch() in a loop and attempt to start I/O against
972  * each page in the request.
973  *
974  * Most of the fields in this struct are private and should be accessed
975  * by the functions below.
976  *
977  * @file: The file, used primarily by network filesystems for authentication.
978  *        May be NULL if invoked internally by the filesystem.
979  * @mapping: Readahead this filesystem object.
980  * @ra: File readahead state.  May be NULL.
981  */
982 struct readahead_control {
983         struct file *file;
984         struct address_space *mapping;
985         struct file_ra_state *ra;
986 /* private: use the readahead_* accessors instead */
987         pgoff_t _index;
988         unsigned int _nr_pages;
989         unsigned int _batch_count;
990 };
991
992 #define DEFINE_READAHEAD(ractl, f, r, m, i)                             \
993         struct readahead_control ractl = {                              \
994                 .file = f,                                              \
995                 .mapping = m,                                           \
996                 .ra = r,                                                \
997                 ._index = i,                                            \
998         }
999
1000 #define VM_READAHEAD_PAGES      (SZ_128K / PAGE_SIZE)
1001
1002 void page_cache_ra_unbounded(struct readahead_control *,
1003                 unsigned long nr_to_read, unsigned long lookahead_count);
1004 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1005 void page_cache_async_ra(struct readahead_control *, struct page *,
1006                 unsigned long req_count);
1007 void readahead_expand(struct readahead_control *ractl,
1008                       loff_t new_start, size_t new_len);
1009
1010 /**
1011  * page_cache_sync_readahead - generic file readahead
1012  * @mapping: address_space which holds the pagecache and I/O vectors
1013  * @ra: file_ra_state which holds the readahead state
1014  * @file: Used by the filesystem for authentication.
1015  * @index: Index of first page to be read.
1016  * @req_count: Total number of pages being read by the caller.
1017  *
1018  * page_cache_sync_readahead() should be called when a cache miss happened:
1019  * it will submit the read.  The readahead logic may decide to piggyback more
1020  * pages onto the read request if access patterns suggest it will improve
1021  * performance.
1022  */
1023 static inline
1024 void page_cache_sync_readahead(struct address_space *mapping,
1025                 struct file_ra_state *ra, struct file *file, pgoff_t index,
1026                 unsigned long req_count)
1027 {
1028         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1029         page_cache_sync_ra(&ractl, req_count);
1030 }
1031
1032 /**
1033  * page_cache_async_readahead - file readahead for marked pages
1034  * @mapping: address_space which holds the pagecache and I/O vectors
1035  * @ra: file_ra_state which holds the readahead state
1036  * @file: Used by the filesystem for authentication.
1037  * @page: The page at @index which triggered the readahead call.
1038  * @index: Index of first page to be read.
1039  * @req_count: Total number of pages being read by the caller.
1040  *
1041  * page_cache_async_readahead() should be called when a page is used which
1042  * is marked as PageReadahead; this is a marker to suggest that the application
1043  * has used up enough of the readahead window that we should start pulling in
1044  * more pages.
1045  */
1046 static inline
1047 void page_cache_async_readahead(struct address_space *mapping,
1048                 struct file_ra_state *ra, struct file *file,
1049                 struct page *page, pgoff_t index, unsigned long req_count)
1050 {
1051         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1052         page_cache_async_ra(&ractl, page, req_count);
1053 }
1054
1055 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1056 {
1057         struct folio *folio;
1058
1059         BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1060         ractl->_nr_pages -= ractl->_batch_count;
1061         ractl->_index += ractl->_batch_count;
1062
1063         if (!ractl->_nr_pages) {
1064                 ractl->_batch_count = 0;
1065                 return NULL;
1066         }
1067
1068         folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1069         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1070         ractl->_batch_count = folio_nr_pages(folio);
1071
1072         return folio;
1073 }
1074
1075 /**
1076  * readahead_page - Get the next page to read.
1077  * @ractl: The current readahead request.
1078  *
1079  * Context: The page is locked and has an elevated refcount.  The caller
1080  * should decreases the refcount once the page has been submitted for I/O
1081  * and unlock the page once all I/O to that page has completed.
1082  * Return: A pointer to the next page, or %NULL if we are done.
1083  */
1084 static inline struct page *readahead_page(struct readahead_control *ractl)
1085 {
1086         struct folio *folio = __readahead_folio(ractl);
1087
1088         return &folio->page;
1089 }
1090
1091 /**
1092  * readahead_folio - Get the next folio to read.
1093  * @ractl: The current readahead request.
1094  *
1095  * Context: The folio is locked.  The caller should unlock the folio once
1096  * all I/O to that folio has completed.
1097  * Return: A pointer to the next folio, or %NULL if we are done.
1098  */
1099 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1100 {
1101         struct folio *folio = __readahead_folio(ractl);
1102
1103         if (folio)
1104                 folio_put(folio);
1105         return folio;
1106 }
1107
1108 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1109                 struct page **array, unsigned int array_sz)
1110 {
1111         unsigned int i = 0;
1112         XA_STATE(xas, &rac->mapping->i_pages, 0);
1113         struct page *page;
1114
1115         BUG_ON(rac->_batch_count > rac->_nr_pages);
1116         rac->_nr_pages -= rac->_batch_count;
1117         rac->_index += rac->_batch_count;
1118         rac->_batch_count = 0;
1119
1120         xas_set(&xas, rac->_index);
1121         rcu_read_lock();
1122         xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1123                 if (xas_retry(&xas, page))
1124                         continue;
1125                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1126                 VM_BUG_ON_PAGE(PageTail(page), page);
1127                 array[i++] = page;
1128                 rac->_batch_count += thp_nr_pages(page);
1129
1130                 /*
1131                  * The page cache isn't using multi-index entries yet,
1132                  * so the xas cursor needs to be manually moved to the
1133                  * next index.  This can be removed once the page cache
1134                  * is converted.
1135                  */
1136                 if (PageHead(page))
1137                         xas_set(&xas, rac->_index + rac->_batch_count);
1138
1139                 if (i == array_sz)
1140                         break;
1141         }
1142         rcu_read_unlock();
1143
1144         return i;
1145 }
1146
1147 /**
1148  * readahead_page_batch - Get a batch of pages to read.
1149  * @rac: The current readahead request.
1150  * @array: An array of pointers to struct page.
1151  *
1152  * Context: The pages are locked and have an elevated refcount.  The caller
1153  * should decreases the refcount once the page has been submitted for I/O
1154  * and unlock the page once all I/O to that page has completed.
1155  * Return: The number of pages placed in the array.  0 indicates the request
1156  * is complete.
1157  */
1158 #define readahead_page_batch(rac, array)                                \
1159         __readahead_batch(rac, array, ARRAY_SIZE(array))
1160
1161 /**
1162  * readahead_pos - The byte offset into the file of this readahead request.
1163  * @rac: The readahead request.
1164  */
1165 static inline loff_t readahead_pos(struct readahead_control *rac)
1166 {
1167         return (loff_t)rac->_index * PAGE_SIZE;
1168 }
1169
1170 /**
1171  * readahead_length - The number of bytes in this readahead request.
1172  * @rac: The readahead request.
1173  */
1174 static inline size_t readahead_length(struct readahead_control *rac)
1175 {
1176         return rac->_nr_pages * PAGE_SIZE;
1177 }
1178
1179 /**
1180  * readahead_index - The index of the first page in this readahead request.
1181  * @rac: The readahead request.
1182  */
1183 static inline pgoff_t readahead_index(struct readahead_control *rac)
1184 {
1185         return rac->_index;
1186 }
1187
1188 /**
1189  * readahead_count - The number of pages in this readahead request.
1190  * @rac: The readahead request.
1191  */
1192 static inline unsigned int readahead_count(struct readahead_control *rac)
1193 {
1194         return rac->_nr_pages;
1195 }
1196
1197 /**
1198  * readahead_batch_length - The number of bytes in the current batch.
1199  * @rac: The readahead request.
1200  */
1201 static inline size_t readahead_batch_length(struct readahead_control *rac)
1202 {
1203         return rac->_batch_count * PAGE_SIZE;
1204 }
1205
1206 static inline unsigned long dir_pages(struct inode *inode)
1207 {
1208         return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1209                                PAGE_SHIFT;
1210 }
1211
1212 /**
1213  * folio_mkwrite_check_truncate - check if folio was truncated
1214  * @folio: the folio to check
1215  * @inode: the inode to check the folio against
1216  *
1217  * Return: the number of bytes in the folio up to EOF,
1218  * or -EFAULT if the folio was truncated.
1219  */
1220 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1221                                               struct inode *inode)
1222 {
1223         loff_t size = i_size_read(inode);
1224         pgoff_t index = size >> PAGE_SHIFT;
1225         size_t offset = offset_in_folio(folio, size);
1226
1227         if (!folio->mapping)
1228                 return -EFAULT;
1229
1230         /* folio is wholly inside EOF */
1231         if (folio_next_index(folio) - 1 < index)
1232                 return folio_size(folio);
1233         /* folio is wholly past EOF */
1234         if (folio->index > index || !offset)
1235                 return -EFAULT;
1236         /* folio is partially inside EOF */
1237         return offset;
1238 }
1239
1240 /**
1241  * page_mkwrite_check_truncate - check if page was truncated
1242  * @page: the page to check
1243  * @inode: the inode to check the page against
1244  *
1245  * Returns the number of bytes in the page up to EOF,
1246  * or -EFAULT if the page was truncated.
1247  */
1248 static inline int page_mkwrite_check_truncate(struct page *page,
1249                                               struct inode *inode)
1250 {
1251         loff_t size = i_size_read(inode);
1252         pgoff_t index = size >> PAGE_SHIFT;
1253         int offset = offset_in_page(size);
1254
1255         if (page->mapping != inode->i_mapping)
1256                 return -EFAULT;
1257
1258         /* page is wholly inside EOF */
1259         if (page->index < index)
1260                 return PAGE_SIZE;
1261         /* page is wholly past EOF */
1262         if (page->index > index || !offset)
1263                 return -EFAULT;
1264         /* page is partially inside EOF */
1265         return offset;
1266 }
1267
1268 /**
1269  * i_blocks_per_folio - How many blocks fit in this folio.
1270  * @inode: The inode which contains the blocks.
1271  * @folio: The folio.
1272  *
1273  * If the block size is larger than the size of this folio, return zero.
1274  *
1275  * Context: The caller should hold a refcount on the folio to prevent it
1276  * from being split.
1277  * Return: The number of filesystem blocks covered by this folio.
1278  */
1279 static inline
1280 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1281 {
1282         return folio_size(folio) >> inode->i_blkbits;
1283 }
1284
1285 static inline
1286 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1287 {
1288         return i_blocks_per_folio(inode, page_folio(page));
1289 }
1290 #endif /* _LINUX_PAGEMAP_H */