Merge tag 'configfs-6.2-2022-12-13' of git://git.infradead.org/users/hch/configfs
[linux-2.6-microblaze.git] / include / linux / overflow.h
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 #ifndef __LINUX_OVERFLOW_H
3 #define __LINUX_OVERFLOW_H
4
5 #include <linux/compiler.h>
6 #include <linux/limits.h>
7 #include <linux/const.h>
8
9 /*
10  * We need to compute the minimum and maximum values representable in a given
11  * type. These macros may also be useful elsewhere. It would seem more obvious
12  * to do something like:
13  *
14  * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0)
15  * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0)
16  *
17  * Unfortunately, the middle expressions, strictly speaking, have
18  * undefined behaviour, and at least some versions of gcc warn about
19  * the type_max expression (but not if -fsanitize=undefined is in
20  * effect; in that case, the warning is deferred to runtime...).
21  *
22  * The slightly excessive casting in type_min is to make sure the
23  * macros also produce sensible values for the exotic type _Bool. [The
24  * overflow checkers only almost work for _Bool, but that's
25  * a-feature-not-a-bug, since people shouldn't be doing arithmetic on
26  * _Bools. Besides, the gcc builtins don't allow _Bool* as third
27  * argument.]
28  *
29  * Idea stolen from
30  * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html -
31  * credit to Christian Biere.
32  */
33 #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type)))
34 #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T)))
35 #define type_min(T) ((T)((T)-type_max(T)-(T)1))
36
37 /*
38  * Avoids triggering -Wtype-limits compilation warning,
39  * while using unsigned data types to check a < 0.
40  */
41 #define is_non_negative(a) ((a) > 0 || (a) == 0)
42 #define is_negative(a) (!(is_non_negative(a)))
43
44 /*
45  * Allows for effectively applying __must_check to a macro so we can have
46  * both the type-agnostic benefits of the macros while also being able to
47  * enforce that the return value is, in fact, checked.
48  */
49 static inline bool __must_check __must_check_overflow(bool overflow)
50 {
51         return unlikely(overflow);
52 }
53
54 /**
55  * check_add_overflow() - Calculate addition with overflow checking
56  * @a: first addend
57  * @b: second addend
58  * @d: pointer to store sum
59  *
60  * Returns 0 on success.
61  *
62  * *@d holds the results of the attempted addition, but is not considered
63  * "safe for use" on a non-zero return value, which indicates that the
64  * sum has overflowed or been truncated.
65  */
66 #define check_add_overflow(a, b, d)     \
67         __must_check_overflow(__builtin_add_overflow(a, b, d))
68
69 /**
70  * check_sub_overflow() - Calculate subtraction with overflow checking
71  * @a: minuend; value to subtract from
72  * @b: subtrahend; value to subtract from @a
73  * @d: pointer to store difference
74  *
75  * Returns 0 on success.
76  *
77  * *@d holds the results of the attempted subtraction, but is not considered
78  * "safe for use" on a non-zero return value, which indicates that the
79  * difference has underflowed or been truncated.
80  */
81 #define check_sub_overflow(a, b, d)     \
82         __must_check_overflow(__builtin_sub_overflow(a, b, d))
83
84 /**
85  * check_mul_overflow() - Calculate multiplication with overflow checking
86  * @a: first factor
87  * @b: second factor
88  * @d: pointer to store product
89  *
90  * Returns 0 on success.
91  *
92  * *@d holds the results of the attempted multiplication, but is not
93  * considered "safe for use" on a non-zero return value, which indicates
94  * that the product has overflowed or been truncated.
95  */
96 #define check_mul_overflow(a, b, d)     \
97         __must_check_overflow(__builtin_mul_overflow(a, b, d))
98
99 /**
100  * check_shl_overflow() - Calculate a left-shifted value and check overflow
101  * @a: Value to be shifted
102  * @s: How many bits left to shift
103  * @d: Pointer to where to store the result
104  *
105  * Computes *@d = (@a << @s)
106  *
107  * Returns true if '*@d' cannot hold the result or when '@a << @s' doesn't
108  * make sense. Example conditions:
109  *
110  * - '@a << @s' causes bits to be lost when stored in *@d.
111  * - '@s' is garbage (e.g. negative) or so large that the result of
112  *   '@a << @s' is guaranteed to be 0.
113  * - '@a' is negative.
114  * - '@a << @s' sets the sign bit, if any, in '*@d'.
115  *
116  * '*@d' will hold the results of the attempted shift, but is not
117  * considered "safe for use" if true is returned.
118  */
119 #define check_shl_overflow(a, s, d) __must_check_overflow(({            \
120         typeof(a) _a = a;                                               \
121         typeof(s) _s = s;                                               \
122         typeof(d) _d = d;                                               \
123         u64 _a_full = _a;                                               \
124         unsigned int _to_shift =                                        \
125                 is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0;    \
126         *_d = (_a_full << _to_shift);                                   \
127         (_to_shift != _s || is_negative(*_d) || is_negative(_a) ||      \
128         (*_d >> _to_shift) != _a);                                      \
129 }))
130
131 /**
132  * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX
133  * @factor1: first factor
134  * @factor2: second factor
135  *
136  * Returns: calculate @factor1 * @factor2, both promoted to size_t,
137  * with any overflow causing the return value to be SIZE_MAX. The
138  * lvalue must be size_t to avoid implicit type conversion.
139  */
140 static inline size_t __must_check size_mul(size_t factor1, size_t factor2)
141 {
142         size_t bytes;
143
144         if (check_mul_overflow(factor1, factor2, &bytes))
145                 return SIZE_MAX;
146
147         return bytes;
148 }
149
150 /**
151  * size_add() - Calculate size_t addition with saturation at SIZE_MAX
152  * @addend1: first addend
153  * @addend2: second addend
154  *
155  * Returns: calculate @addend1 + @addend2, both promoted to size_t,
156  * with any overflow causing the return value to be SIZE_MAX. The
157  * lvalue must be size_t to avoid implicit type conversion.
158  */
159 static inline size_t __must_check size_add(size_t addend1, size_t addend2)
160 {
161         size_t bytes;
162
163         if (check_add_overflow(addend1, addend2, &bytes))
164                 return SIZE_MAX;
165
166         return bytes;
167 }
168
169 /**
170  * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX
171  * @minuend: value to subtract from
172  * @subtrahend: value to subtract from @minuend
173  *
174  * Returns: calculate @minuend - @subtrahend, both promoted to size_t,
175  * with any overflow causing the return value to be SIZE_MAX. For
176  * composition with the size_add() and size_mul() helpers, neither
177  * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX).
178  * The lvalue must be size_t to avoid implicit type conversion.
179  */
180 static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend)
181 {
182         size_t bytes;
183
184         if (minuend == SIZE_MAX || subtrahend == SIZE_MAX ||
185             check_sub_overflow(minuend, subtrahend, &bytes))
186                 return SIZE_MAX;
187
188         return bytes;
189 }
190
191 /**
192  * array_size() - Calculate size of 2-dimensional array.
193  * @a: dimension one
194  * @b: dimension two
195  *
196  * Calculates size of 2-dimensional array: @a * @b.
197  *
198  * Returns: number of bytes needed to represent the array or SIZE_MAX on
199  * overflow.
200  */
201 #define array_size(a, b)        size_mul(a, b)
202
203 /**
204  * array3_size() - Calculate size of 3-dimensional array.
205  * @a: dimension one
206  * @b: dimension two
207  * @c: dimension three
208  *
209  * Calculates size of 3-dimensional array: @a * @b * @c.
210  *
211  * Returns: number of bytes needed to represent the array or SIZE_MAX on
212  * overflow.
213  */
214 #define array3_size(a, b, c)    size_mul(size_mul(a, b), c)
215
216 /**
217  * flex_array_size() - Calculate size of a flexible array member
218  *                     within an enclosing structure.
219  * @p: Pointer to the structure.
220  * @member: Name of the flexible array member.
221  * @count: Number of elements in the array.
222  *
223  * Calculates size of a flexible array of @count number of @member
224  * elements, at the end of structure @p.
225  *
226  * Return: number of bytes needed or SIZE_MAX on overflow.
227  */
228 #define flex_array_size(p, member, count)                               \
229         __builtin_choose_expr(__is_constexpr(count),                    \
230                 (count) * sizeof(*(p)->member) + __must_be_array((p)->member),  \
231                 size_mul(count, sizeof(*(p)->member) + __must_be_array((p)->member)))
232
233 /**
234  * struct_size() - Calculate size of structure with trailing flexible array.
235  * @p: Pointer to the structure.
236  * @member: Name of the array member.
237  * @count: Number of elements in the array.
238  *
239  * Calculates size of memory needed for structure @p followed by an
240  * array of @count number of @member elements.
241  *
242  * Return: number of bytes needed or SIZE_MAX on overflow.
243  */
244 #define struct_size(p, member, count)                                   \
245         __builtin_choose_expr(__is_constexpr(count),                    \
246                 sizeof(*(p)) + flex_array_size(p, member, count),       \
247                 size_add(sizeof(*(p)), flex_array_size(p, member, count)))
248
249 #endif /* __LINUX_OVERFLOW_H */