Merge branch 'for-next/bti-user' into for-next/bti
[linux-2.6-microblaze.git] / include / linux / mtd / spinand.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2016-2017 Micron Technology, Inc.
4  *
5  *  Authors:
6  *      Peter Pan <peterpandong@micron.com>
7  */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10
11 #include <linux/mutex.h>
12 #include <linux/bitops.h>
13 #include <linux/device.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19 /**
20  * Standard SPI NAND flash operations
21  */
22
23 #define SPINAND_RESET_OP                                                \
24         SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),                             \
25                    SPI_MEM_OP_NO_ADDR,                                  \
26                    SPI_MEM_OP_NO_DUMMY,                                 \
27                    SPI_MEM_OP_NO_DATA)
28
29 #define SPINAND_WR_EN_DIS_OP(enable)                                    \
30         SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),           \
31                    SPI_MEM_OP_NO_ADDR,                                  \
32                    SPI_MEM_OP_NO_DUMMY,                                 \
33                    SPI_MEM_OP_NO_DATA)
34
35 #define SPINAND_READID_OP(naddr, ndummy, buf, len)                      \
36         SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),                             \
37                    SPI_MEM_OP_ADDR(naddr, 0, 1),                        \
38                    SPI_MEM_OP_DUMMY(ndummy, 1),                         \
39                    SPI_MEM_OP_DATA_IN(len, buf, 1))
40
41 #define SPINAND_SET_FEATURE_OP(reg, valptr)                             \
42         SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),                             \
43                    SPI_MEM_OP_ADDR(1, reg, 1),                          \
44                    SPI_MEM_OP_NO_DUMMY,                                 \
45                    SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46
47 #define SPINAND_GET_FEATURE_OP(reg, valptr)                             \
48         SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),                             \
49                    SPI_MEM_OP_ADDR(1, reg, 1),                          \
50                    SPI_MEM_OP_NO_DUMMY,                                 \
51                    SPI_MEM_OP_DATA_IN(1, valptr, 1))
52
53 #define SPINAND_BLK_ERASE_OP(addr)                                      \
54         SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),                             \
55                    SPI_MEM_OP_ADDR(3, addr, 1),                         \
56                    SPI_MEM_OP_NO_DUMMY,                                 \
57                    SPI_MEM_OP_NO_DATA)
58
59 #define SPINAND_PAGE_READ_OP(addr)                                      \
60         SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),                             \
61                    SPI_MEM_OP_ADDR(3, addr, 1),                         \
62                    SPI_MEM_OP_NO_DUMMY,                                 \
63                    SPI_MEM_OP_NO_DATA)
64
65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len)   \
66         SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),               \
67                    SPI_MEM_OP_ADDR(2, addr, 1),                         \
68                    SPI_MEM_OP_DUMMY(ndummy, 1),                         \
69                    SPI_MEM_OP_DATA_IN(len, buf, 1))
70
71 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
72         SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),               \
73                    SPI_MEM_OP_ADDR(3, addr, 1),                         \
74                    SPI_MEM_OP_DUMMY(ndummy, 1),                         \
75                    SPI_MEM_OP_DATA_IN(len, buf, 1))
76
77 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)      \
78         SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),                             \
79                    SPI_MEM_OP_ADDR(2, addr, 1),                         \
80                    SPI_MEM_OP_DUMMY(ndummy, 1),                         \
81                    SPI_MEM_OP_DATA_IN(len, buf, 2))
82
83 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len)   \
84         SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),                             \
85                    SPI_MEM_OP_ADDR(3, addr, 1),                         \
86                    SPI_MEM_OP_DUMMY(ndummy, 1),                         \
87                    SPI_MEM_OP_DATA_IN(len, buf, 2))
88
89 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)      \
90         SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),                             \
91                    SPI_MEM_OP_ADDR(2, addr, 1),                         \
92                    SPI_MEM_OP_DUMMY(ndummy, 1),                         \
93                    SPI_MEM_OP_DATA_IN(len, buf, 4))
94
95 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len)   \
96         SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),                             \
97                    SPI_MEM_OP_ADDR(3, addr, 1),                         \
98                    SPI_MEM_OP_DUMMY(ndummy, 1),                         \
99                    SPI_MEM_OP_DATA_IN(len, buf, 4))
100
101 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)  \
102         SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),                             \
103                    SPI_MEM_OP_ADDR(2, addr, 2),                         \
104                    SPI_MEM_OP_DUMMY(ndummy, 2),                         \
105                    SPI_MEM_OP_DATA_IN(len, buf, 2))
106
107 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
108         SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),                             \
109                    SPI_MEM_OP_ADDR(3, addr, 2),                         \
110                    SPI_MEM_OP_DUMMY(ndummy, 2),                         \
111                    SPI_MEM_OP_DATA_IN(len, buf, 2))
112
113 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)  \
114         SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),                             \
115                    SPI_MEM_OP_ADDR(2, addr, 4),                         \
116                    SPI_MEM_OP_DUMMY(ndummy, 4),                         \
117                    SPI_MEM_OP_DATA_IN(len, buf, 4))
118
119 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
120         SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),                             \
121                    SPI_MEM_OP_ADDR(3, addr, 4),                         \
122                    SPI_MEM_OP_DUMMY(ndummy, 4),                         \
123                    SPI_MEM_OP_DATA_IN(len, buf, 4))
124
125 #define SPINAND_PROG_EXEC_OP(addr)                                      \
126         SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),                             \
127                    SPI_MEM_OP_ADDR(3, addr, 1),                         \
128                    SPI_MEM_OP_NO_DUMMY,                                 \
129                    SPI_MEM_OP_NO_DATA)
130
131 #define SPINAND_PROG_LOAD(reset, addr, buf, len)                        \
132         SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),              \
133                    SPI_MEM_OP_ADDR(2, addr, 1),                         \
134                    SPI_MEM_OP_NO_DUMMY,                                 \
135                    SPI_MEM_OP_DATA_OUT(len, buf, 1))
136
137 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)                     \
138         SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),              \
139                    SPI_MEM_OP_ADDR(2, addr, 1),                         \
140                    SPI_MEM_OP_NO_DUMMY,                                 \
141                    SPI_MEM_OP_DATA_OUT(len, buf, 4))
142
143 /**
144  * Standard SPI NAND flash commands
145  */
146 #define SPINAND_CMD_PROG_LOAD_X4                0x32
147 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4       0x34
148
149 /* feature register */
150 #define REG_BLOCK_LOCK          0xa0
151 #define BL_ALL_UNLOCKED         0x00
152
153 /* configuration register */
154 #define REG_CFG                 0xb0
155 #define CFG_OTP_ENABLE          BIT(6)
156 #define CFG_ECC_ENABLE          BIT(4)
157 #define CFG_QUAD_ENABLE         BIT(0)
158
159 /* status register */
160 #define REG_STATUS              0xc0
161 #define STATUS_BUSY             BIT(0)
162 #define STATUS_ERASE_FAILED     BIT(2)
163 #define STATUS_PROG_FAILED      BIT(3)
164 #define STATUS_ECC_MASK         GENMASK(5, 4)
165 #define STATUS_ECC_NO_BITFLIPS  (0 << 4)
166 #define STATUS_ECC_HAS_BITFLIPS (1 << 4)
167 #define STATUS_ECC_UNCOR_ERROR  (2 << 4)
168
169 struct spinand_op;
170 struct spinand_device;
171
172 #define SPINAND_MAX_ID_LEN      4
173
174 /**
175  * struct spinand_id - SPI NAND id structure
176  * @data: buffer containing the id bytes. Currently 4 bytes large, but can
177  *        be extended if required
178  * @len: ID length
179  */
180 struct spinand_id {
181         u8 data[SPINAND_MAX_ID_LEN];
182         int len;
183 };
184
185 enum spinand_readid_method {
186         SPINAND_READID_METHOD_OPCODE,
187         SPINAND_READID_METHOD_OPCODE_ADDR,
188         SPINAND_READID_METHOD_OPCODE_DUMMY,
189 };
190
191 /**
192  * struct spinand_devid - SPI NAND device id structure
193  * @id: device id of current chip
194  * @len: number of bytes in device id
195  * @method: method to read chip id
196  *          There are 3 possible variants:
197  *          SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
198  *          after read_id opcode.
199  *          SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
200  *          read_id opcode + 1-byte address.
201  *          SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
202  *          read_id opcode + 1 dummy byte.
203  */
204 struct spinand_devid {
205         const u8 *id;
206         const u8 len;
207         const enum spinand_readid_method method;
208 };
209
210 /**
211  * struct manufacurer_ops - SPI NAND manufacturer specific operations
212  * @init: initialize a SPI NAND device
213  * @cleanup: cleanup a SPI NAND device
214  *
215  * Each SPI NAND manufacturer driver should implement this interface so that
216  * NAND chips coming from this vendor can be initialized properly.
217  */
218 struct spinand_manufacturer_ops {
219         int (*init)(struct spinand_device *spinand);
220         void (*cleanup)(struct spinand_device *spinand);
221 };
222
223 /**
224  * struct spinand_manufacturer - SPI NAND manufacturer instance
225  * @id: manufacturer ID
226  * @name: manufacturer name
227  * @devid_len: number of bytes in device ID
228  * @chips: supported SPI NANDs under current manufacturer
229  * @nchips: number of SPI NANDs available in chips array
230  * @ops: manufacturer operations
231  */
232 struct spinand_manufacturer {
233         u8 id;
234         char *name;
235         const struct spinand_info *chips;
236         const size_t nchips;
237         const struct spinand_manufacturer_ops *ops;
238 };
239
240 /* SPI NAND manufacturers */
241 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
242 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
243 extern const struct spinand_manufacturer micron_spinand_manufacturer;
244 extern const struct spinand_manufacturer paragon_spinand_manufacturer;
245 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
246 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
247
248 /**
249  * struct spinand_op_variants - SPI NAND operation variants
250  * @ops: the list of variants for a given operation
251  * @nops: the number of variants
252  *
253  * Some operations like read-from-cache/write-to-cache have several variants
254  * depending on the number of IO lines you use to transfer data or address
255  * cycles. This structure is a way to describe the different variants supported
256  * by a chip and let the core pick the best one based on the SPI mem controller
257  * capabilities.
258  */
259 struct spinand_op_variants {
260         const struct spi_mem_op *ops;
261         unsigned int nops;
262 };
263
264 #define SPINAND_OP_VARIANTS(name, ...)                                  \
265         const struct spinand_op_variants name = {                       \
266                 .ops = (struct spi_mem_op[]) { __VA_ARGS__ },           \
267                 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /  \
268                         sizeof(struct spi_mem_op),                      \
269         }
270
271 /**
272  * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
273  *                    chip
274  * @get_status: get the ECC status. Should return a positive number encoding
275  *              the number of corrected bitflips if correction was possible or
276  *              -EBADMSG if there are uncorrectable errors. I can also return
277  *              other negative error codes if the error is not caused by
278  *              uncorrectable bitflips
279  * @ooblayout: the OOB layout used by the on-die ECC implementation
280  */
281 struct spinand_ecc_info {
282         int (*get_status)(struct spinand_device *spinand, u8 status);
283         const struct mtd_ooblayout_ops *ooblayout;
284 };
285
286 #define SPINAND_HAS_QE_BIT              BIT(0)
287 #define SPINAND_HAS_CR_FEAT_BIT         BIT(1)
288
289 /**
290  * struct spinand_info - Structure used to describe SPI NAND chips
291  * @model: model name
292  * @devid: device ID
293  * @flags: OR-ing of the SPINAND_XXX flags
294  * @memorg: memory organization
295  * @eccreq: ECC requirements
296  * @eccinfo: on-die ECC info
297  * @op_variants: operations variants
298  * @op_variants.read_cache: variants of the read-cache operation
299  * @op_variants.write_cache: variants of the write-cache operation
300  * @op_variants.update_cache: variants of the update-cache operation
301  * @select_target: function used to select a target/die. Required only for
302  *                 multi-die chips
303  *
304  * Each SPI NAND manufacturer driver should have a spinand_info table
305  * describing all the chips supported by the driver.
306  */
307 struct spinand_info {
308         const char *model;
309         struct spinand_devid devid;
310         u32 flags;
311         struct nand_memory_organization memorg;
312         struct nand_ecc_req eccreq;
313         struct spinand_ecc_info eccinfo;
314         struct {
315                 const struct spinand_op_variants *read_cache;
316                 const struct spinand_op_variants *write_cache;
317                 const struct spinand_op_variants *update_cache;
318         } op_variants;
319         int (*select_target)(struct spinand_device *spinand,
320                              unsigned int target);
321 };
322
323 #define SPINAND_ID(__method, ...)                                       \
324         {                                                               \
325                 .id = (const u8[]){ __VA_ARGS__ },                      \
326                 .len = sizeof((u8[]){ __VA_ARGS__ }),                   \
327                 .method = __method,                                     \
328         }
329
330 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)             \
331         {                                                               \
332                 .read_cache = __read,                                   \
333                 .write_cache = __write,                                 \
334                 .update_cache = __update,                               \
335         }
336
337 #define SPINAND_ECCINFO(__ooblayout, __get_status)                      \
338         .eccinfo = {                                                    \
339                 .ooblayout = __ooblayout,                               \
340                 .get_status = __get_status,                             \
341         }
342
343 #define SPINAND_SELECT_TARGET(__func)                                   \
344         .select_target = __func,
345
346 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,  \
347                      __flags, ...)                                      \
348         {                                                               \
349                 .model = __model,                                       \
350                 .devid = __id,                                          \
351                 .memorg = __memorg,                                     \
352                 .eccreq = __eccreq,                                     \
353                 .op_variants = __op_variants,                           \
354                 .flags = __flags,                                       \
355                 __VA_ARGS__                                             \
356         }
357
358 struct spinand_dirmap {
359         struct spi_mem_dirmap_desc *wdesc;
360         struct spi_mem_dirmap_desc *rdesc;
361 };
362
363 /**
364  * struct spinand_device - SPI NAND device instance
365  * @base: NAND device instance
366  * @spimem: pointer to the SPI mem object
367  * @lock: lock used to serialize accesses to the NAND
368  * @id: NAND ID as returned by READ_ID
369  * @flags: NAND flags
370  * @op_templates: various SPI mem op templates
371  * @op_templates.read_cache: read cache op template
372  * @op_templates.write_cache: write cache op template
373  * @op_templates.update_cache: update cache op template
374  * @select_target: select a specific target/die. Usually called before sending
375  *                 a command addressing a page or an eraseblock embedded in
376  *                 this die. Only required if your chip exposes several dies
377  * @cur_target: currently selected target/die
378  * @eccinfo: on-die ECC information
379  * @cfg_cache: config register cache. One entry per die
380  * @databuf: bounce buffer for data
381  * @oobbuf: bounce buffer for OOB data
382  * @scratchbuf: buffer used for everything but page accesses. This is needed
383  *              because the spi-mem interface explicitly requests that buffers
384  *              passed in spi_mem_op be DMA-able, so we can't based the bufs on
385  *              the stack
386  * @manufacturer: SPI NAND manufacturer information
387  * @priv: manufacturer private data
388  */
389 struct spinand_device {
390         struct nand_device base;
391         struct spi_mem *spimem;
392         struct mutex lock;
393         struct spinand_id id;
394         u32 flags;
395
396         struct {
397                 const struct spi_mem_op *read_cache;
398                 const struct spi_mem_op *write_cache;
399                 const struct spi_mem_op *update_cache;
400         } op_templates;
401
402         struct spinand_dirmap *dirmaps;
403
404         int (*select_target)(struct spinand_device *spinand,
405                              unsigned int target);
406         unsigned int cur_target;
407
408         struct spinand_ecc_info eccinfo;
409
410         u8 *cfg_cache;
411         u8 *databuf;
412         u8 *oobbuf;
413         u8 *scratchbuf;
414         const struct spinand_manufacturer *manufacturer;
415         void *priv;
416 };
417
418 /**
419  * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
420  * @mtd: MTD instance
421  *
422  * Return: the SPI NAND device attached to @mtd.
423  */
424 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
425 {
426         return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
427 }
428
429 /**
430  * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
431  * @spinand: SPI NAND device
432  *
433  * Return: the MTD device embedded in @spinand.
434  */
435 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
436 {
437         return nanddev_to_mtd(&spinand->base);
438 }
439
440 /**
441  * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
442  * @nand: NAND object
443  *
444  * Return: the SPI NAND device embedding @nand.
445  */
446 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
447 {
448         return container_of(nand, struct spinand_device, base);
449 }
450
451 /**
452  * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
453  * @spinand: SPI NAND device
454  *
455  * Return: the NAND device embedded in @spinand.
456  */
457 static inline struct nand_device *
458 spinand_to_nand(struct spinand_device *spinand)
459 {
460         return &spinand->base;
461 }
462
463 /**
464  * spinand_set_of_node - Attach a DT node to a SPI NAND device
465  * @spinand: SPI NAND device
466  * @np: DT node
467  *
468  * Attach a DT node to a SPI NAND device.
469  */
470 static inline void spinand_set_of_node(struct spinand_device *spinand,
471                                        struct device_node *np)
472 {
473         nanddev_set_of_node(&spinand->base, np);
474 }
475
476 int spinand_match_and_init(struct spinand_device *spinand,
477                            const struct spinand_info *table,
478                            unsigned int table_size,
479                            enum spinand_readid_method rdid_method);
480
481 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
482 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
483
484 #endif /* __LINUX_MTD_SPINAND_H */