mtd: nand: ecc-hamming: Rename the exported functions
[linux-2.6-microblaze.git] / include / linux / mtd / rawnand.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4  *                        Steven J. Hill <sjhill@realitydiluted.com>
5  *                        Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Info:
8  *      Contains standard defines and IDs for NAND flash devices
9  *
10  * Changelog:
11  *      See git changelog.
12  */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/flashchip.h>
19 #include <linux/mtd/bbm.h>
20 #include <linux/mtd/jedec.h>
21 #include <linux/mtd/nand.h>
22 #include <linux/mtd/onfi.h>
23 #include <linux/mutex.h>
24 #include <linux/of.h>
25 #include <linux/types.h>
26
27 struct nand_chip;
28
29 /* The maximum number of NAND chips in an array */
30 #define NAND_MAX_CHIPS          8
31
32 /*
33  * Constants for hardware specific CLE/ALE/NCE function
34  *
35  * These are bits which can be or'ed to set/clear multiple
36  * bits in one go.
37  */
38 /* Select the chip by setting nCE to low */
39 #define NAND_NCE                0x01
40 /* Select the command latch by setting CLE to high */
41 #define NAND_CLE                0x02
42 /* Select the address latch by setting ALE to high */
43 #define NAND_ALE                0x04
44
45 #define NAND_CTRL_CLE           (NAND_NCE | NAND_CLE)
46 #define NAND_CTRL_ALE           (NAND_NCE | NAND_ALE)
47 #define NAND_CTRL_CHANGE        0x80
48
49 /*
50  * Standard NAND flash commands
51  */
52 #define NAND_CMD_READ0          0
53 #define NAND_CMD_READ1          1
54 #define NAND_CMD_RNDOUT         5
55 #define NAND_CMD_PAGEPROG       0x10
56 #define NAND_CMD_READOOB        0x50
57 #define NAND_CMD_ERASE1         0x60
58 #define NAND_CMD_STATUS         0x70
59 #define NAND_CMD_SEQIN          0x80
60 #define NAND_CMD_RNDIN          0x85
61 #define NAND_CMD_READID         0x90
62 #define NAND_CMD_ERASE2         0xd0
63 #define NAND_CMD_PARAM          0xec
64 #define NAND_CMD_GET_FEATURES   0xee
65 #define NAND_CMD_SET_FEATURES   0xef
66 #define NAND_CMD_RESET          0xff
67
68 /* Extended commands for large page devices */
69 #define NAND_CMD_READSTART      0x30
70 #define NAND_CMD_RNDOUTSTART    0xE0
71 #define NAND_CMD_CACHEDPROG     0x15
72
73 #define NAND_CMD_NONE           -1
74
75 /* Status bits */
76 #define NAND_STATUS_FAIL        0x01
77 #define NAND_STATUS_FAIL_N1     0x02
78 #define NAND_STATUS_TRUE_READY  0x20
79 #define NAND_STATUS_READY       0x40
80 #define NAND_STATUS_WP          0x80
81
82 #define NAND_DATA_IFACE_CHECK_ONLY      -1
83
84 /*
85  * Constants for Hardware ECC
86  */
87 /* Reset Hardware ECC for read */
88 #define NAND_ECC_READ           0
89 /* Reset Hardware ECC for write */
90 #define NAND_ECC_WRITE          1
91 /* Enable Hardware ECC before syndrome is read back from flash */
92 #define NAND_ECC_READSYN        2
93
94 /*
95  * Enable generic NAND 'page erased' check. This check is only done when
96  * ecc.correct() returns -EBADMSG.
97  * Set this flag if your implementation does not fix bitflips in erased
98  * pages and you want to rely on the default implementation.
99  */
100 #define NAND_ECC_GENERIC_ERASED_CHECK   BIT(0)
101
102 /*
103  * Option constants for bizarre disfunctionality and real
104  * features.
105  */
106
107 /* Buswidth is 16 bit */
108 #define NAND_BUSWIDTH_16        BIT(1)
109
110 /*
111  * When using software implementation of Hamming, we can specify which byte
112  * ordering should be used.
113  */
114 #define NAND_ECC_SOFT_HAMMING_SM_ORDER  BIT(2)
115
116 /* Chip has cache program function */
117 #define NAND_CACHEPRG           BIT(3)
118 /* Options valid for Samsung large page devices */
119 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
120
121 /*
122  * Chip requires ready check on read (for auto-incremented sequential read).
123  * True only for small page devices; large page devices do not support
124  * autoincrement.
125  */
126 #define NAND_NEED_READRDY       BIT(8)
127
128 /* Chip does not allow subpage writes */
129 #define NAND_NO_SUBPAGE_WRITE   BIT(9)
130
131 /* Device is one of 'new' xD cards that expose fake nand command set */
132 #define NAND_BROKEN_XD          BIT(10)
133
134 /* Device behaves just like nand, but is readonly */
135 #define NAND_ROM                BIT(11)
136
137 /* Device supports subpage reads */
138 #define NAND_SUBPAGE_READ       BIT(12)
139 /* Macros to identify the above */
140 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
141
142 /*
143  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
144  * patterns.
145  */
146 #define NAND_NEED_SCRAMBLING    BIT(13)
147
148 /* Device needs 3rd row address cycle */
149 #define NAND_ROW_ADDR_3         BIT(14)
150
151 /* Non chip related options */
152 /* This option skips the bbt scan during initialization. */
153 #define NAND_SKIP_BBTSCAN       BIT(16)
154 /* Chip may not exist, so silence any errors in scan */
155 #define NAND_SCAN_SILENT_NODEV  BIT(18)
156
157 /*
158  * Autodetect nand buswidth with readid/onfi.
159  * This suppose the driver will configure the hardware in 8 bits mode
160  * when calling nand_scan_ident, and update its configuration
161  * before calling nand_scan_tail.
162  */
163 #define NAND_BUSWIDTH_AUTO      BIT(19)
164
165 /*
166  * This option could be defined by controller drivers to protect against
167  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
168  */
169 #define NAND_USES_DMA           BIT(20)
170
171 /*
172  * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
173  * on the default ->cmdfunc() implementation, you may want to let the core
174  * handle the tCCS delay which is required when a column change (RNDIN or
175  * RNDOUT) is requested.
176  * If your controller already takes care of this delay, you don't need to set
177  * this flag.
178  */
179 #define NAND_WAIT_TCCS          BIT(21)
180
181 /*
182  * Whether the NAND chip is a boot medium. Drivers might use this information
183  * to select ECC algorithms supported by the boot ROM or similar restrictions.
184  */
185 #define NAND_IS_BOOT_MEDIUM     BIT(22)
186
187 /*
188  * Do not try to tweak the timings at runtime. This is needed when the
189  * controller initializes the timings on itself or when it relies on
190  * configuration done by the bootloader.
191  */
192 #define NAND_KEEP_TIMINGS       BIT(23)
193
194 /*
195  * There are different places where the manufacturer stores the factory bad
196  * block markers.
197  *
198  * Position within the block: Each of these pages needs to be checked for a
199  * bad block marking pattern.
200  */
201 #define NAND_BBM_FIRSTPAGE      BIT(24)
202 #define NAND_BBM_SECONDPAGE     BIT(25)
203 #define NAND_BBM_LASTPAGE       BIT(26)
204
205 /*
206  * Some controllers with pipelined ECC engines override the BBM marker with
207  * data or ECC bytes, thus making bad block detection through bad block marker
208  * impossible. Let's flag those chips so the core knows it shouldn't check the
209  * BBM and consider all blocks good.
210  */
211 #define NAND_NO_BBM_QUIRK       BIT(27)
212
213 /* Cell info constants */
214 #define NAND_CI_CHIPNR_MSK      0x03
215 #define NAND_CI_CELLTYPE_MSK    0x0C
216 #define NAND_CI_CELLTYPE_SHIFT  2
217
218 /* Position within the OOB data of the page */
219 #define NAND_BBM_POS_SMALL              5
220 #define NAND_BBM_POS_LARGE              0
221
222 /**
223  * struct nand_parameters - NAND generic parameters from the parameter page
224  * @model: Model name
225  * @supports_set_get_features: The NAND chip supports setting/getting features
226  * @set_feature_list: Bitmap of features that can be set
227  * @get_feature_list: Bitmap of features that can be get
228  * @onfi: ONFI specific parameters
229  */
230 struct nand_parameters {
231         /* Generic parameters */
232         const char *model;
233         bool supports_set_get_features;
234         DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
235         DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
236
237         /* ONFI parameters */
238         struct onfi_params *onfi;
239 };
240
241 /* The maximum expected count of bytes in the NAND ID sequence */
242 #define NAND_MAX_ID_LEN 8
243
244 /**
245  * struct nand_id - NAND id structure
246  * @data: buffer containing the id bytes.
247  * @len: ID length.
248  */
249 struct nand_id {
250         u8 data[NAND_MAX_ID_LEN];
251         int len;
252 };
253
254 /**
255  * struct nand_ecc_step_info - ECC step information of ECC engine
256  * @stepsize: data bytes per ECC step
257  * @strengths: array of supported strengths
258  * @nstrengths: number of supported strengths
259  */
260 struct nand_ecc_step_info {
261         int stepsize;
262         const int *strengths;
263         int nstrengths;
264 };
265
266 /**
267  * struct nand_ecc_caps - capability of ECC engine
268  * @stepinfos: array of ECC step information
269  * @nstepinfos: number of ECC step information
270  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
271  */
272 struct nand_ecc_caps {
273         const struct nand_ecc_step_info *stepinfos;
274         int nstepinfos;
275         int (*calc_ecc_bytes)(int step_size, int strength);
276 };
277
278 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
279 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)       \
280 static const int __name##_strengths[] = { __VA_ARGS__ };        \
281 static const struct nand_ecc_step_info __name##_stepinfo = {    \
282         .stepsize = __step,                                     \
283         .strengths = __name##_strengths,                        \
284         .nstrengths = ARRAY_SIZE(__name##_strengths),           \
285 };                                                              \
286 static const struct nand_ecc_caps __name = {                    \
287         .stepinfos = &__name##_stepinfo,                        \
288         .nstepinfos = 1,                                        \
289         .calc_ecc_bytes = __calc,                               \
290 }
291
292 /**
293  * struct nand_ecc_ctrl - Control structure for ECC
294  * @engine_type: ECC engine type
295  * @placement:  OOB bytes placement
296  * @algo:       ECC algorithm
297  * @steps:      number of ECC steps per page
298  * @size:       data bytes per ECC step
299  * @bytes:      ECC bytes per step
300  * @strength:   max number of correctible bits per ECC step
301  * @total:      total number of ECC bytes per page
302  * @prepad:     padding information for syndrome based ECC generators
303  * @postpad:    padding information for syndrome based ECC generators
304  * @options:    ECC specific options (see NAND_ECC_XXX flags defined above)
305  * @calc_buf:   buffer for calculated ECC, size is oobsize.
306  * @code_buf:   buffer for ECC read from flash, size is oobsize.
307  * @hwctl:      function to control hardware ECC generator. Must only
308  *              be provided if an hardware ECC is available
309  * @calculate:  function for ECC calculation or readback from ECC hardware
310  * @correct:    function for ECC correction, matching to ECC generator (sw/hw).
311  *              Should return a positive number representing the number of
312  *              corrected bitflips, -EBADMSG if the number of bitflips exceed
313  *              ECC strength, or any other error code if the error is not
314  *              directly related to correction.
315  *              If -EBADMSG is returned the input buffers should be left
316  *              untouched.
317  * @read_page_raw:      function to read a raw page without ECC. This function
318  *                      should hide the specific layout used by the ECC
319  *                      controller and always return contiguous in-band and
320  *                      out-of-band data even if they're not stored
321  *                      contiguously on the NAND chip (e.g.
322  *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
323  *                      out-of-band data).
324  * @write_page_raw:     function to write a raw page without ECC. This function
325  *                      should hide the specific layout used by the ECC
326  *                      controller and consider the passed data as contiguous
327  *                      in-band and out-of-band data. ECC controller is
328  *                      responsible for doing the appropriate transformations
329  *                      to adapt to its specific layout (e.g.
330  *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
331  *                      out-of-band data).
332  * @read_page:  function to read a page according to the ECC generator
333  *              requirements; returns maximum number of bitflips corrected in
334  *              any single ECC step, -EIO hw error
335  * @read_subpage:       function to read parts of the page covered by ECC;
336  *                      returns same as read_page()
337  * @write_subpage:      function to write parts of the page covered by ECC.
338  * @write_page: function to write a page according to the ECC generator
339  *              requirements.
340  * @write_oob_raw:      function to write chip OOB data without ECC
341  * @read_oob_raw:       function to read chip OOB data without ECC
342  * @read_oob:   function to read chip OOB data
343  * @write_oob:  function to write chip OOB data
344  */
345 struct nand_ecc_ctrl {
346         enum nand_ecc_engine_type engine_type;
347         enum nand_ecc_placement placement;
348         enum nand_ecc_algo algo;
349         int steps;
350         int size;
351         int bytes;
352         int total;
353         int strength;
354         int prepad;
355         int postpad;
356         unsigned int options;
357         u8 *calc_buf;
358         u8 *code_buf;
359         void (*hwctl)(struct nand_chip *chip, int mode);
360         int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
361                          uint8_t *ecc_code);
362         int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
363                        uint8_t *calc_ecc);
364         int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
365                              int oob_required, int page);
366         int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
367                               int oob_required, int page);
368         int (*read_page)(struct nand_chip *chip, uint8_t *buf,
369                          int oob_required, int page);
370         int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
371                             uint32_t len, uint8_t *buf, int page);
372         int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
373                              uint32_t data_len, const uint8_t *data_buf,
374                              int oob_required, int page);
375         int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
376                           int oob_required, int page);
377         int (*write_oob_raw)(struct nand_chip *chip, int page);
378         int (*read_oob_raw)(struct nand_chip *chip, int page);
379         int (*read_oob)(struct nand_chip *chip, int page);
380         int (*write_oob)(struct nand_chip *chip, int page);
381 };
382
383 /**
384  * struct nand_sdr_timings - SDR NAND chip timings
385  *
386  * This struct defines the timing requirements of a SDR NAND chip.
387  * These information can be found in every NAND datasheets and the timings
388  * meaning are described in the ONFI specifications:
389  * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
390  * Parameters)
391  *
392  * All these timings are expressed in picoseconds.
393  *
394  * @tBERS_max: Block erase time
395  * @tCCS_min: Change column setup time
396  * @tPROG_max: Page program time
397  * @tR_max: Page read time
398  * @tALH_min: ALE hold time
399  * @tADL_min: ALE to data loading time
400  * @tALS_min: ALE setup time
401  * @tAR_min: ALE to RE# delay
402  * @tCEA_max: CE# access time
403  * @tCEH_min: CE# high hold time
404  * @tCH_min:  CE# hold time
405  * @tCHZ_max: CE# high to output hi-Z
406  * @tCLH_min: CLE hold time
407  * @tCLR_min: CLE to RE# delay
408  * @tCLS_min: CLE setup time
409  * @tCOH_min: CE# high to output hold
410  * @tCS_min: CE# setup time
411  * @tDH_min: Data hold time
412  * @tDS_min: Data setup time
413  * @tFEAT_max: Busy time for Set Features and Get Features
414  * @tIR_min: Output hi-Z to RE# low
415  * @tITC_max: Interface and Timing Mode Change time
416  * @tRC_min: RE# cycle time
417  * @tREA_max: RE# access time
418  * @tREH_min: RE# high hold time
419  * @tRHOH_min: RE# high to output hold
420  * @tRHW_min: RE# high to WE# low
421  * @tRHZ_max: RE# high to output hi-Z
422  * @tRLOH_min: RE# low to output hold
423  * @tRP_min: RE# pulse width
424  * @tRR_min: Ready to RE# low (data only)
425  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
426  *            rising edge of R/B#.
427  * @tWB_max: WE# high to SR[6] low
428  * @tWC_min: WE# cycle time
429  * @tWH_min: WE# high hold time
430  * @tWHR_min: WE# high to RE# low
431  * @tWP_min: WE# pulse width
432  * @tWW_min: WP# transition to WE# low
433  */
434 struct nand_sdr_timings {
435         u64 tBERS_max;
436         u32 tCCS_min;
437         u64 tPROG_max;
438         u64 tR_max;
439         u32 tALH_min;
440         u32 tADL_min;
441         u32 tALS_min;
442         u32 tAR_min;
443         u32 tCEA_max;
444         u32 tCEH_min;
445         u32 tCH_min;
446         u32 tCHZ_max;
447         u32 tCLH_min;
448         u32 tCLR_min;
449         u32 tCLS_min;
450         u32 tCOH_min;
451         u32 tCS_min;
452         u32 tDH_min;
453         u32 tDS_min;
454         u32 tFEAT_max;
455         u32 tIR_min;
456         u32 tITC_max;
457         u32 tRC_min;
458         u32 tREA_max;
459         u32 tREH_min;
460         u32 tRHOH_min;
461         u32 tRHW_min;
462         u32 tRHZ_max;
463         u32 tRLOH_min;
464         u32 tRP_min;
465         u32 tRR_min;
466         u64 tRST_max;
467         u32 tWB_max;
468         u32 tWC_min;
469         u32 tWH_min;
470         u32 tWHR_min;
471         u32 tWP_min;
472         u32 tWW_min;
473 };
474
475 /**
476  * enum nand_interface_type - NAND interface type
477  * @NAND_SDR_IFACE:     Single Data Rate interface
478  */
479 enum nand_interface_type {
480         NAND_SDR_IFACE,
481 };
482
483 /**
484  * struct nand_interface_config - NAND interface timing
485  * @type:        type of the timing
486  * @timings:     The timing information
487  * @timings.mode: Timing mode as defined in the specification
488  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
489  */
490 struct nand_interface_config {
491         enum nand_interface_type type;
492         struct nand_timings {
493                 unsigned int mode;
494                 union {
495                         struct nand_sdr_timings sdr;
496                 };
497         } timings;
498 };
499
500 /**
501  * nand_get_sdr_timings - get SDR timing from data interface
502  * @conf:       The data interface
503  */
504 static inline const struct nand_sdr_timings *
505 nand_get_sdr_timings(const struct nand_interface_config *conf)
506 {
507         if (conf->type != NAND_SDR_IFACE)
508                 return ERR_PTR(-EINVAL);
509
510         return &conf->timings.sdr;
511 }
512
513 /**
514  * struct nand_op_cmd_instr - Definition of a command instruction
515  * @opcode: the command to issue in one cycle
516  */
517 struct nand_op_cmd_instr {
518         u8 opcode;
519 };
520
521 /**
522  * struct nand_op_addr_instr - Definition of an address instruction
523  * @naddrs: length of the @addrs array
524  * @addrs: array containing the address cycles to issue
525  */
526 struct nand_op_addr_instr {
527         unsigned int naddrs;
528         const u8 *addrs;
529 };
530
531 /**
532  * struct nand_op_data_instr - Definition of a data instruction
533  * @len: number of data bytes to move
534  * @buf: buffer to fill
535  * @buf.in: buffer to fill when reading from the NAND chip
536  * @buf.out: buffer to read from when writing to the NAND chip
537  * @force_8bit: force 8-bit access
538  *
539  * Please note that "in" and "out" are inverted from the ONFI specification
540  * and are from the controller perspective, so a "in" is a read from the NAND
541  * chip while a "out" is a write to the NAND chip.
542  */
543 struct nand_op_data_instr {
544         unsigned int len;
545         union {
546                 void *in;
547                 const void *out;
548         } buf;
549         bool force_8bit;
550 };
551
552 /**
553  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
554  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
555  */
556 struct nand_op_waitrdy_instr {
557         unsigned int timeout_ms;
558 };
559
560 /**
561  * enum nand_op_instr_type - Definition of all instruction types
562  * @NAND_OP_CMD_INSTR: command instruction
563  * @NAND_OP_ADDR_INSTR: address instruction
564  * @NAND_OP_DATA_IN_INSTR: data in instruction
565  * @NAND_OP_DATA_OUT_INSTR: data out instruction
566  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
567  */
568 enum nand_op_instr_type {
569         NAND_OP_CMD_INSTR,
570         NAND_OP_ADDR_INSTR,
571         NAND_OP_DATA_IN_INSTR,
572         NAND_OP_DATA_OUT_INSTR,
573         NAND_OP_WAITRDY_INSTR,
574 };
575
576 /**
577  * struct nand_op_instr - Instruction object
578  * @type: the instruction type
579  * @ctx:  extra data associated to the instruction. You'll have to use the
580  *        appropriate element depending on @type
581  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
582  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
583  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
584  *            or %NAND_OP_DATA_OUT_INSTR
585  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
586  * @delay_ns: delay the controller should apply after the instruction has been
587  *            issued on the bus. Most modern controllers have internal timings
588  *            control logic, and in this case, the controller driver can ignore
589  *            this field.
590  */
591 struct nand_op_instr {
592         enum nand_op_instr_type type;
593         union {
594                 struct nand_op_cmd_instr cmd;
595                 struct nand_op_addr_instr addr;
596                 struct nand_op_data_instr data;
597                 struct nand_op_waitrdy_instr waitrdy;
598         } ctx;
599         unsigned int delay_ns;
600 };
601
602 /*
603  * Special handling must be done for the WAITRDY timeout parameter as it usually
604  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
605  * tBERS (during an erase) which all of them are u64 values that cannot be
606  * divided by usual kernel macros and must be handled with the special
607  * DIV_ROUND_UP_ULL() macro.
608  *
609  * Cast to type of dividend is needed here to guarantee that the result won't
610  * be an unsigned long long when the dividend is an unsigned long (or smaller),
611  * which is what the compiler does when it sees ternary operator with 2
612  * different return types (picks the largest type to make sure there's no
613  * loss).
614  */
615 #define __DIVIDE(dividend, divisor) ({                                          \
616         (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?      \
617                                DIV_ROUND_UP(dividend, divisor) :                \
618                                DIV_ROUND_UP_ULL(dividend, divisor));            \
619         })
620 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
621 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
622
623 #define NAND_OP_CMD(id, ns)                                             \
624         {                                                               \
625                 .type = NAND_OP_CMD_INSTR,                              \
626                 .ctx.cmd.opcode = id,                                   \
627                 .delay_ns = ns,                                         \
628         }
629
630 #define NAND_OP_ADDR(ncycles, cycles, ns)                               \
631         {                                                               \
632                 .type = NAND_OP_ADDR_INSTR,                             \
633                 .ctx.addr = {                                           \
634                         .naddrs = ncycles,                              \
635                         .addrs = cycles,                                \
636                 },                                                      \
637                 .delay_ns = ns,                                         \
638         }
639
640 #define NAND_OP_DATA_IN(l, b, ns)                                       \
641         {                                                               \
642                 .type = NAND_OP_DATA_IN_INSTR,                          \
643                 .ctx.data = {                                           \
644                         .len = l,                                       \
645                         .buf.in = b,                                    \
646                         .force_8bit = false,                            \
647                 },                                                      \
648                 .delay_ns = ns,                                         \
649         }
650
651 #define NAND_OP_DATA_OUT(l, b, ns)                                      \
652         {                                                               \
653                 .type = NAND_OP_DATA_OUT_INSTR,                         \
654                 .ctx.data = {                                           \
655                         .len = l,                                       \
656                         .buf.out = b,                                   \
657                         .force_8bit = false,                            \
658                 },                                                      \
659                 .delay_ns = ns,                                         \
660         }
661
662 #define NAND_OP_8BIT_DATA_IN(l, b, ns)                                  \
663         {                                                               \
664                 .type = NAND_OP_DATA_IN_INSTR,                          \
665                 .ctx.data = {                                           \
666                         .len = l,                                       \
667                         .buf.in = b,                                    \
668                         .force_8bit = true,                             \
669                 },                                                      \
670                 .delay_ns = ns,                                         \
671         }
672
673 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)                                 \
674         {                                                               \
675                 .type = NAND_OP_DATA_OUT_INSTR,                         \
676                 .ctx.data = {                                           \
677                         .len = l,                                       \
678                         .buf.out = b,                                   \
679                         .force_8bit = true,                             \
680                 },                                                      \
681                 .delay_ns = ns,                                         \
682         }
683
684 #define NAND_OP_WAIT_RDY(tout_ms, ns)                                   \
685         {                                                               \
686                 .type = NAND_OP_WAITRDY_INSTR,                          \
687                 .ctx.waitrdy.timeout_ms = tout_ms,                      \
688                 .delay_ns = ns,                                         \
689         }
690
691 /**
692  * struct nand_subop - a sub operation
693  * @cs: the CS line to select for this NAND sub-operation
694  * @instrs: array of instructions
695  * @ninstrs: length of the @instrs array
696  * @first_instr_start_off: offset to start from for the first instruction
697  *                         of the sub-operation
698  * @last_instr_end_off: offset to end at (excluded) for the last instruction
699  *                      of the sub-operation
700  *
701  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
702  * address instructions.
703  *
704  * When an operation cannot be handled as is by the NAND controller, it will
705  * be split by the parser into sub-operations which will be passed to the
706  * controller driver.
707  */
708 struct nand_subop {
709         unsigned int cs;
710         const struct nand_op_instr *instrs;
711         unsigned int ninstrs;
712         unsigned int first_instr_start_off;
713         unsigned int last_instr_end_off;
714 };
715
716 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
717                                            unsigned int op_id);
718 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
719                                          unsigned int op_id);
720 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
721                                            unsigned int op_id);
722 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
723                                      unsigned int op_id);
724
725 /**
726  * struct nand_op_parser_addr_constraints - Constraints for address instructions
727  * @maxcycles: maximum number of address cycles the controller can issue in a
728  *             single step
729  */
730 struct nand_op_parser_addr_constraints {
731         unsigned int maxcycles;
732 };
733
734 /**
735  * struct nand_op_parser_data_constraints - Constraints for data instructions
736  * @maxlen: maximum data length that the controller can handle in a single step
737  */
738 struct nand_op_parser_data_constraints {
739         unsigned int maxlen;
740 };
741
742 /**
743  * struct nand_op_parser_pattern_elem - One element of a pattern
744  * @type: the instructuction type
745  * @optional: whether this element of the pattern is optional or mandatory
746  * @ctx: address or data constraint
747  * @ctx.addr: address constraint (number of cycles)
748  * @ctx.data: data constraint (data length)
749  */
750 struct nand_op_parser_pattern_elem {
751         enum nand_op_instr_type type;
752         bool optional;
753         union {
754                 struct nand_op_parser_addr_constraints addr;
755                 struct nand_op_parser_data_constraints data;
756         } ctx;
757 };
758
759 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)                       \
760         {                                                       \
761                 .type = NAND_OP_CMD_INSTR,                      \
762                 .optional = _opt,                               \
763         }
764
765 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)          \
766         {                                                       \
767                 .type = NAND_OP_ADDR_INSTR,                     \
768                 .optional = _opt,                               \
769                 .ctx.addr.maxcycles = _maxcycles,               \
770         }
771
772 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)          \
773         {                                                       \
774                 .type = NAND_OP_DATA_IN_INSTR,                  \
775                 .optional = _opt,                               \
776                 .ctx.data.maxlen = _maxlen,                     \
777         }
778
779 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)         \
780         {                                                       \
781                 .type = NAND_OP_DATA_OUT_INSTR,                 \
782                 .optional = _opt,                               \
783                 .ctx.data.maxlen = _maxlen,                     \
784         }
785
786 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)                   \
787         {                                                       \
788                 .type = NAND_OP_WAITRDY_INSTR,                  \
789                 .optional = _opt,                               \
790         }
791
792 /**
793  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
794  * @elems: array of pattern elements
795  * @nelems: number of pattern elements in @elems array
796  * @exec: the function that will issue a sub-operation
797  *
798  * A pattern is a list of elements, each element reprensenting one instruction
799  * with its constraints. The pattern itself is used by the core to match NAND
800  * chip operation with NAND controller operations.
801  * Once a match between a NAND controller operation pattern and a NAND chip
802  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
803  * hook is called so that the controller driver can issue the operation on the
804  * bus.
805  *
806  * Controller drivers should declare as many patterns as they support and pass
807  * this list of patterns (created with the help of the following macro) to
808  * the nand_op_parser_exec_op() helper.
809  */
810 struct nand_op_parser_pattern {
811         const struct nand_op_parser_pattern_elem *elems;
812         unsigned int nelems;
813         int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
814 };
815
816 #define NAND_OP_PARSER_PATTERN(_exec, ...)                                                      \
817         {                                                                                       \
818                 .exec = _exec,                                                                  \
819                 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },          \
820                 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /      \
821                           sizeof(struct nand_op_parser_pattern_elem),                           \
822         }
823
824 /**
825  * struct nand_op_parser - NAND controller operation parser descriptor
826  * @patterns: array of supported patterns
827  * @npatterns: length of the @patterns array
828  *
829  * The parser descriptor is just an array of supported patterns which will be
830  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
831  * NAND operation (or tries to determine if a specific operation is supported).
832  *
833  * It is worth mentioning that patterns will be tested in their declaration
834  * order, and the first match will be taken, so it's important to order patterns
835  * appropriately so that simple/inefficient patterns are placed at the end of
836  * the list. Usually, this is where you put single instruction patterns.
837  */
838 struct nand_op_parser {
839         const struct nand_op_parser_pattern *patterns;
840         unsigned int npatterns;
841 };
842
843 #define NAND_OP_PARSER(...)                                                                     \
844         {                                                                                       \
845                 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },            \
846                 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /        \
847                              sizeof(struct nand_op_parser_pattern),                             \
848         }
849
850 /**
851  * struct nand_operation - NAND operation descriptor
852  * @cs: the CS line to select for this NAND operation
853  * @instrs: array of instructions to execute
854  * @ninstrs: length of the @instrs array
855  *
856  * The actual operation structure that will be passed to chip->exec_op().
857  */
858 struct nand_operation {
859         unsigned int cs;
860         const struct nand_op_instr *instrs;
861         unsigned int ninstrs;
862 };
863
864 #define NAND_OPERATION(_cs, _instrs)                            \
865         {                                                       \
866                 .cs = _cs,                                      \
867                 .instrs = _instrs,                              \
868                 .ninstrs = ARRAY_SIZE(_instrs),                 \
869         }
870
871 int nand_op_parser_exec_op(struct nand_chip *chip,
872                            const struct nand_op_parser *parser,
873                            const struct nand_operation *op, bool check_only);
874
875 static inline void nand_op_trace(const char *prefix,
876                                  const struct nand_op_instr *instr)
877 {
878 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
879         switch (instr->type) {
880         case NAND_OP_CMD_INSTR:
881                 pr_debug("%sCMD      [0x%02x]\n", prefix,
882                          instr->ctx.cmd.opcode);
883                 break;
884         case NAND_OP_ADDR_INSTR:
885                 pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
886                          instr->ctx.addr.naddrs,
887                          instr->ctx.addr.naddrs < 64 ?
888                          instr->ctx.addr.naddrs : 64,
889                          instr->ctx.addr.addrs);
890                 break;
891         case NAND_OP_DATA_IN_INSTR:
892                 pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
893                          instr->ctx.data.len,
894                          instr->ctx.data.force_8bit ?
895                          ", force 8-bit" : "");
896                 break;
897         case NAND_OP_DATA_OUT_INSTR:
898                 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
899                          instr->ctx.data.len,
900                          instr->ctx.data.force_8bit ?
901                          ", force 8-bit" : "");
902                 break;
903         case NAND_OP_WAITRDY_INSTR:
904                 pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
905                          instr->ctx.waitrdy.timeout_ms);
906                 break;
907         }
908 #endif
909 }
910
911 /**
912  * struct nand_controller_ops - Controller operations
913  *
914  * @attach_chip: this method is called after the NAND detection phase after
915  *               flash ID and MTD fields such as erase size, page size and OOB
916  *               size have been set up. ECC requirements are available if
917  *               provided by the NAND chip or device tree. Typically used to
918  *               choose the appropriate ECC configuration and allocate
919  *               associated resources.
920  *               This hook is optional.
921  * @detach_chip: free all resources allocated/claimed in
922  *               nand_controller_ops->attach_chip().
923  *               This hook is optional.
924  * @exec_op:     controller specific method to execute NAND operations.
925  *               This method replaces chip->legacy.cmdfunc(),
926  *               chip->legacy.{read,write}_{buf,byte,word}(),
927  *               chip->legacy.dev_ready() and chip->legacy.waifunc().
928  * @setup_interface: setup the data interface and timing. If chipnr is set to
929  *                   %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
930  *                   should not be applied but only checked.
931  *                   This hook is optional.
932  */
933 struct nand_controller_ops {
934         int (*attach_chip)(struct nand_chip *chip);
935         void (*detach_chip)(struct nand_chip *chip);
936         int (*exec_op)(struct nand_chip *chip,
937                        const struct nand_operation *op,
938                        bool check_only);
939         int (*setup_interface)(struct nand_chip *chip, int chipnr,
940                                const struct nand_interface_config *conf);
941 };
942
943 /**
944  * struct nand_controller - Structure used to describe a NAND controller
945  *
946  * @lock:               lock used to serialize accesses to the NAND controller
947  * @ops:                NAND controller operations.
948  */
949 struct nand_controller {
950         struct mutex lock;
951         const struct nand_controller_ops *ops;
952 };
953
954 static inline void nand_controller_init(struct nand_controller *nfc)
955 {
956         mutex_init(&nfc->lock);
957 }
958
959 /**
960  * struct nand_legacy - NAND chip legacy fields/hooks
961  * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
962  * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
963  * @select_chip: select/deselect a specific target/die
964  * @read_byte: read one byte from the chip
965  * @write_byte: write a single byte to the chip on the low 8 I/O lines
966  * @write_buf: write data from the buffer to the chip
967  * @read_buf: read data from the chip into the buffer
968  * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
969  *            to write command and address
970  * @cmdfunc: hardware specific function for writing commands to the chip.
971  * @dev_ready: hardware specific function for accessing device ready/busy line.
972  *             If set to NULL no access to ready/busy is available and the
973  *             ready/busy information is read from the chip status register.
974  * @waitfunc: hardware specific function for wait on ready.
975  * @block_bad: check if a block is bad, using OOB markers
976  * @block_markbad: mark a block bad
977  * @set_features: set the NAND chip features
978  * @get_features: get the NAND chip features
979  * @chip_delay: chip dependent delay for transferring data from array to read
980  *              regs (tR).
981  * @dummy_controller: dummy controller implementation for drivers that can
982  *                    only control a single chip
983  *
984  * If you look at this structure you're already wrong. These fields/hooks are
985  * all deprecated.
986  */
987 struct nand_legacy {
988         void __iomem *IO_ADDR_R;
989         void __iomem *IO_ADDR_W;
990         void (*select_chip)(struct nand_chip *chip, int cs);
991         u8 (*read_byte)(struct nand_chip *chip);
992         void (*write_byte)(struct nand_chip *chip, u8 byte);
993         void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
994         void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
995         void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
996         void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
997                         int page_addr);
998         int (*dev_ready)(struct nand_chip *chip);
999         int (*waitfunc)(struct nand_chip *chip);
1000         int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1001         int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1002         int (*set_features)(struct nand_chip *chip, int feature_addr,
1003                             u8 *subfeature_para);
1004         int (*get_features)(struct nand_chip *chip, int feature_addr,
1005                             u8 *subfeature_para);
1006         int chip_delay;
1007         struct nand_controller dummy_controller;
1008 };
1009
1010 /**
1011  * struct nand_chip_ops - NAND chip operations
1012  * @suspend: Suspend operation
1013  * @resume: Resume operation
1014  * @lock_area: Lock operation
1015  * @unlock_area: Unlock operation
1016  * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1017  * @choose_interface_config: Choose the best interface configuration
1018  */
1019 struct nand_chip_ops {
1020         int (*suspend)(struct nand_chip *chip);
1021         void (*resume)(struct nand_chip *chip);
1022         int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1023         int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1024         int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1025         int (*choose_interface_config)(struct nand_chip *chip,
1026                                        struct nand_interface_config *iface);
1027 };
1028
1029 /**
1030  * struct nand_manufacturer - NAND manufacturer structure
1031  * @desc: The manufacturer description
1032  * @priv: Private information for the manufacturer driver
1033  */
1034 struct nand_manufacturer {
1035         const struct nand_manufacturer_desc *desc;
1036         void *priv;
1037 };
1038
1039 /**
1040  * struct nand_chip - NAND Private Flash Chip Data
1041  * @base: Inherit from the generic NAND device
1042  * @id: Holds NAND ID
1043  * @parameters: Holds generic parameters under an easily readable form
1044  * @manufacturer: Manufacturer information
1045  * @ops: NAND chip operations
1046  * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1047  *          to use any of these fields/hooks, and if you're modifying an
1048  *          existing driver that is using those fields/hooks, you should
1049  *          consider reworking the driver and avoid using them.
1050  * @options: Various chip options. They can partly be set to inform nand_scan
1051  *           about special functionality. See the defines for further
1052  *           explanation.
1053  * @current_interface_config: The currently used NAND interface configuration
1054  * @best_interface_config: The best NAND interface configuration which fits both
1055  *                         the NAND chip and NAND controller constraints. If
1056  *                         unset, the default reset interface configuration must
1057  *                         be used.
1058  * @bbt_erase_shift: Number of address bits in a bbt entry
1059  * @bbt_options: Bad block table specific options. All options used here must
1060  *               come from bbm.h. By default, these options will be copied to
1061  *               the appropriate nand_bbt_descr's.
1062  * @badblockpos: Bad block marker position in the oob area
1063  * @badblockbits: Minimum number of set bits in a good block's bad block marker
1064  *                position; i.e., BBM = 11110111b is good when badblockbits = 7
1065  * @bbt_td: Bad block table descriptor for flash lookup
1066  * @bbt_md: Bad block table mirror descriptor
1067  * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1068  * @bbt: Bad block table pointer
1069  * @page_shift: Number of address bits in a page (column address bits)
1070  * @phys_erase_shift: Number of address bits in a physical eraseblock
1071  * @chip_shift: Number of address bits in one chip
1072  * @pagemask: Page number mask = number of (pages / chip) - 1
1073  * @subpagesize: Holds the subpagesize
1074  * @data_buf: Buffer for data, size is (page size + oobsize)
1075  * @oob_poi: pointer on the OOB area covered by data_buf
1076  * @pagecache: Structure containing page cache related fields
1077  * @pagecache.bitflips: Number of bitflips of the cached page
1078  * @pagecache.page: Page number currently in the cache. -1 means no page is
1079  *                  currently cached
1080  * @buf_align: Minimum buffer alignment required by a platform
1081  * @lock: Lock protecting the suspended field. Also used to serialize accesses
1082  *        to the NAND device
1083  * @suspended: Set to 1 when the device is suspended, 0 when it's not
1084  * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1085  *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1086  *          NAND Controller drivers should not modify this value, but they're
1087  *          allowed to read it.
1088  * @read_retries: The number of read retry modes supported
1089  * @controller: The hardware controller structure which is shared among multiple
1090  *              independent devices
1091  * @ecc: The ECC controller structure
1092  * @priv: Chip private data
1093  */
1094 struct nand_chip {
1095         struct nand_device base;
1096         struct nand_id id;
1097         struct nand_parameters parameters;
1098         struct nand_manufacturer manufacturer;
1099         struct nand_chip_ops ops;
1100         struct nand_legacy legacy;
1101         unsigned int options;
1102
1103         /* Data interface */
1104         const struct nand_interface_config *current_interface_config;
1105         struct nand_interface_config *best_interface_config;
1106
1107         /* Bad block information */
1108         unsigned int bbt_erase_shift;
1109         unsigned int bbt_options;
1110         unsigned int badblockpos;
1111         unsigned int badblockbits;
1112         struct nand_bbt_descr *bbt_td;
1113         struct nand_bbt_descr *bbt_md;
1114         struct nand_bbt_descr *badblock_pattern;
1115         u8 *bbt;
1116
1117         /* Device internal layout */
1118         unsigned int page_shift;
1119         unsigned int phys_erase_shift;
1120         unsigned int chip_shift;
1121         unsigned int pagemask;
1122         unsigned int subpagesize;
1123
1124         /* Buffers */
1125         u8 *data_buf;
1126         u8 *oob_poi;
1127         struct {
1128                 unsigned int bitflips;
1129                 int page;
1130         } pagecache;
1131         unsigned long buf_align;
1132
1133         /* Internals */
1134         struct mutex lock;
1135         unsigned int suspended : 1;
1136         int cur_cs;
1137         int read_retries;
1138
1139         /* Externals */
1140         struct nand_controller *controller;
1141         struct nand_ecc_ctrl ecc;
1142         void *priv;
1143 };
1144
1145 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1146 {
1147         return container_of(mtd, struct nand_chip, base.mtd);
1148 }
1149
1150 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1151 {
1152         return &chip->base.mtd;
1153 }
1154
1155 static inline void *nand_get_controller_data(struct nand_chip *chip)
1156 {
1157         return chip->priv;
1158 }
1159
1160 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1161 {
1162         chip->priv = priv;
1163 }
1164
1165 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1166                                               void *priv)
1167 {
1168         chip->manufacturer.priv = priv;
1169 }
1170
1171 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1172 {
1173         return chip->manufacturer.priv;
1174 }
1175
1176 static inline void nand_set_flash_node(struct nand_chip *chip,
1177                                        struct device_node *np)
1178 {
1179         mtd_set_of_node(nand_to_mtd(chip), np);
1180 }
1181
1182 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1183 {
1184         return mtd_get_of_node(nand_to_mtd(chip));
1185 }
1186
1187 /**
1188  * nand_get_interface_config - Retrieve the current interface configuration
1189  *                             of a NAND chip
1190  * @chip: The NAND chip
1191  */
1192 static inline const struct nand_interface_config *
1193 nand_get_interface_config(struct nand_chip *chip)
1194 {
1195         return chip->current_interface_config;
1196 }
1197
1198 /*
1199  * A helper for defining older NAND chips where the second ID byte fully
1200  * defined the chip, including the geometry (chip size, eraseblock size, page
1201  * size). All these chips have 512 bytes NAND page size.
1202  */
1203 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1204         { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1205           .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1206
1207 /*
1208  * A helper for defining newer chips which report their page size and
1209  * eraseblock size via the extended ID bytes.
1210  *
1211  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1212  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1213  * device ID now only represented a particular total chip size (and voltage,
1214  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1215  * using the same device ID.
1216  */
1217 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1218         { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1219           .options = (opts) }
1220
1221 #define NAND_ECC_INFO(_strength, _step) \
1222                         { .strength_ds = (_strength), .step_ds = (_step) }
1223 #define NAND_ECC_STRENGTH(type)         ((type)->ecc.strength_ds)
1224 #define NAND_ECC_STEP(type)             ((type)->ecc.step_ds)
1225
1226 /**
1227  * struct nand_flash_dev - NAND Flash Device ID Structure
1228  * @name: a human-readable name of the NAND chip
1229  * @dev_id: the device ID (the second byte of the full chip ID array)
1230  * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1231  *          memory address as ``id[0]``)
1232  * @dev_id: device ID part of the full chip ID array (refers the same memory
1233  *          address as ``id[1]``)
1234  * @id: full device ID array
1235  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1236  *            well as the eraseblock size) is determined from the extended NAND
1237  *            chip ID array)
1238  * @chipsize: total chip size in MiB
1239  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1240  * @options: stores various chip bit options
1241  * @id_len: The valid length of the @id.
1242  * @oobsize: OOB size
1243  * @ecc: ECC correctability and step information from the datasheet.
1244  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1245  *                   @ecc_strength_ds in nand_chip{}.
1246  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1247  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1248  *               For example, the "4bit ECC for each 512Byte" can be set with
1249  *               NAND_ECC_INFO(4, 512).
1250  */
1251 struct nand_flash_dev {
1252         char *name;
1253         union {
1254                 struct {
1255                         uint8_t mfr_id;
1256                         uint8_t dev_id;
1257                 };
1258                 uint8_t id[NAND_MAX_ID_LEN];
1259         };
1260         unsigned int pagesize;
1261         unsigned int chipsize;
1262         unsigned int erasesize;
1263         unsigned int options;
1264         uint16_t id_len;
1265         uint16_t oobsize;
1266         struct {
1267                 uint16_t strength_ds;
1268                 uint16_t step_ds;
1269         } ecc;
1270 };
1271
1272 int nand_create_bbt(struct nand_chip *chip);
1273
1274 /*
1275  * Check if it is a SLC nand.
1276  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1277  * We do not distinguish the MLC and TLC now.
1278  */
1279 static inline bool nand_is_slc(struct nand_chip *chip)
1280 {
1281         WARN(nanddev_bits_per_cell(&chip->base) == 0,
1282              "chip->bits_per_cell is used uninitialized\n");
1283         return nanddev_bits_per_cell(&chip->base) == 1;
1284 }
1285
1286 /**
1287  * Check if the opcode's address should be sent only on the lower 8 bits
1288  * @command: opcode to check
1289  */
1290 static inline int nand_opcode_8bits(unsigned int command)
1291 {
1292         switch (command) {
1293         case NAND_CMD_READID:
1294         case NAND_CMD_PARAM:
1295         case NAND_CMD_GET_FEATURES:
1296         case NAND_CMD_SET_FEATURES:
1297                 return 1;
1298         default:
1299                 break;
1300         }
1301         return 0;
1302 }
1303
1304 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
1305                                  const unsigned char *buf,
1306                                  unsigned char *code);
1307 int rawnand_sw_hamming_correct(struct nand_chip *chip,
1308                                unsigned char *buf,
1309                                unsigned char *read_ecc,
1310                                unsigned char *calc_ecc);
1311 int rawnand_sw_bch_init(struct nand_chip *chip);
1312 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
1313                            unsigned char *read_ecc, unsigned char *calc_ecc);
1314 void rawnand_sw_bch_cleanup(struct nand_chip *chip);
1315
1316 int nand_check_erased_ecc_chunk(void *data, int datalen,
1317                                 void *ecc, int ecclen,
1318                                 void *extraoob, int extraooblen,
1319                                 int threshold);
1320
1321 int nand_ecc_choose_conf(struct nand_chip *chip,
1322                          const struct nand_ecc_caps *caps, int oobavail);
1323
1324 /* Default write_oob implementation */
1325 int nand_write_oob_std(struct nand_chip *chip, int page);
1326
1327 /* Default read_oob implementation */
1328 int nand_read_oob_std(struct nand_chip *chip, int page);
1329
1330 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1331 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1332                                   u8 *subfeature_param);
1333
1334 /* read_page_raw implementations */
1335 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1336                        int page);
1337 int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1338                                   int oob_required, int page);
1339
1340 /* write_page_raw implementations */
1341 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1342                         int oob_required, int page);
1343 int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1344                                    int oob_required, int page);
1345
1346 /* Reset and initialize a NAND device */
1347 int nand_reset(struct nand_chip *chip, int chipnr);
1348
1349 /* NAND operation helpers */
1350 int nand_reset_op(struct nand_chip *chip);
1351 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1352                    unsigned int len);
1353 int nand_status_op(struct nand_chip *chip, u8 *status);
1354 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1355 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1356                       unsigned int offset_in_page, void *buf, unsigned int len);
1357 int nand_change_read_column_op(struct nand_chip *chip,
1358                                unsigned int offset_in_page, void *buf,
1359                                unsigned int len, bool force_8bit);
1360 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1361                      unsigned int offset_in_page, void *buf, unsigned int len);
1362 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1363                             unsigned int offset_in_page, const void *buf,
1364                             unsigned int len);
1365 int nand_prog_page_end_op(struct nand_chip *chip);
1366 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1367                       unsigned int offset_in_page, const void *buf,
1368                       unsigned int len);
1369 int nand_change_write_column_op(struct nand_chip *chip,
1370                                 unsigned int offset_in_page, const void *buf,
1371                                 unsigned int len, bool force_8bit);
1372 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1373                       bool force_8bit, bool check_only);
1374 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1375                        unsigned int len, bool force_8bit);
1376
1377 /* Scan and identify a NAND device */
1378 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1379                        struct nand_flash_dev *ids);
1380
1381 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1382 {
1383         return nand_scan_with_ids(chip, max_chips, NULL);
1384 }
1385
1386 /* Internal helper for board drivers which need to override command function */
1387 void nand_wait_ready(struct nand_chip *chip);
1388
1389 /*
1390  * Free resources held by the NAND device, must be called on error after a
1391  * sucessful nand_scan().
1392  */
1393 void nand_cleanup(struct nand_chip *chip);
1394
1395 /*
1396  * External helper for controller drivers that have to implement the WAITRDY
1397  * instruction and have no physical pin to check it.
1398  */
1399 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1400 struct gpio_desc;
1401 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1402                       unsigned long timeout_ms);
1403
1404 /* Select/deselect a NAND target. */
1405 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1406 void nand_deselect_target(struct nand_chip *chip);
1407
1408 /* Bitops */
1409 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1410                        unsigned int src_off, unsigned int nbits);
1411
1412 /**
1413  * nand_get_data_buf() - Get the internal page buffer
1414  * @chip: NAND chip object
1415  *
1416  * Returns the pre-allocated page buffer after invalidating the cache. This
1417  * function should be used by drivers that do not want to allocate their own
1418  * bounce buffer and still need such a buffer for specific operations (most
1419  * commonly when reading OOB data only).
1420  *
1421  * Be careful to never call this function in the write/write_oob path, because
1422  * the core may have placed the data to be written out in this buffer.
1423  *
1424  * Return: pointer to the page cache buffer
1425  */
1426 static inline void *nand_get_data_buf(struct nand_chip *chip)
1427 {
1428         chip->pagecache.page = -1;
1429
1430         return chip->data_buf;
1431 }
1432
1433 #endif /* __LINUX_MTD_RAWNAND_H */