Merge tag 'pull-18-rc1-work.fd' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/local_lock.h>
24 #include <asm/page.h>
25
26 /* Free memory management - zoned buddy allocator.  */
27 #ifndef CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33
34 /*
35  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36  * costly to service.  That is between allocation orders which should
37  * coalesce naturally under reasonable reclaim pressure and those which
38  * will not.
39  */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41
42 enum migratetype {
43         MIGRATE_UNMOVABLE,
44         MIGRATE_MOVABLE,
45         MIGRATE_RECLAIMABLE,
46         MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
47         MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
48 #ifdef CONFIG_CMA
49         /*
50          * MIGRATE_CMA migration type is designed to mimic the way
51          * ZONE_MOVABLE works.  Only movable pages can be allocated
52          * from MIGRATE_CMA pageblocks and page allocator never
53          * implicitly change migration type of MIGRATE_CMA pageblock.
54          *
55          * The way to use it is to change migratetype of a range of
56          * pageblocks to MIGRATE_CMA which can be done by
57          * __free_pageblock_cma() function.
58          */
59         MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62         MIGRATE_ISOLATE,        /* can't allocate from here */
63 #endif
64         MIGRATE_TYPES
65 };
66
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern const char * const migratetype_names[MIGRATE_TYPES];
69
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77
78 static inline bool is_migrate_movable(int mt)
79 {
80         return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82
83 /*
84  * Check whether a migratetype can be merged with another migratetype.
85  *
86  * It is only mergeable when it can fall back to other migratetypes for
87  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
88  */
89 static inline bool migratetype_is_mergeable(int mt)
90 {
91         return mt < MIGRATE_PCPTYPES;
92 }
93
94 #define for_each_migratetype_order(order, type) \
95         for (order = 0; order < MAX_ORDER; order++) \
96                 for (type = 0; type < MIGRATE_TYPES; type++)
97
98 extern int page_group_by_mobility_disabled;
99
100 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
101
102 #define get_pageblock_migratetype(page)                                 \
103         get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
104
105 struct free_area {
106         struct list_head        free_list[MIGRATE_TYPES];
107         unsigned long           nr_free;
108 };
109
110 static inline struct page *get_page_from_free_area(struct free_area *area,
111                                             int migratetype)
112 {
113         return list_first_entry_or_null(&area->free_list[migratetype],
114                                         struct page, lru);
115 }
116
117 static inline bool free_area_empty(struct free_area *area, int migratetype)
118 {
119         return list_empty(&area->free_list[migratetype]);
120 }
121
122 struct pglist_data;
123
124 /*
125  * Add a wild amount of padding here to ensure data fall into separate
126  * cachelines.  There are very few zone structures in the machine, so space
127  * consumption is not a concern here.
128  */
129 #if defined(CONFIG_SMP)
130 struct zone_padding {
131         char x[0];
132 } ____cacheline_internodealigned_in_smp;
133 #define ZONE_PADDING(name)      struct zone_padding name;
134 #else
135 #define ZONE_PADDING(name)
136 #endif
137
138 #ifdef CONFIG_NUMA
139 enum numa_stat_item {
140         NUMA_HIT,               /* allocated in intended node */
141         NUMA_MISS,              /* allocated in non intended node */
142         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
143         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
144         NUMA_LOCAL,             /* allocation from local node */
145         NUMA_OTHER,             /* allocation from other node */
146         NR_VM_NUMA_EVENT_ITEMS
147 };
148 #else
149 #define NR_VM_NUMA_EVENT_ITEMS 0
150 #endif
151
152 enum zone_stat_item {
153         /* First 128 byte cacheline (assuming 64 bit words) */
154         NR_FREE_PAGES,
155         NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
156         NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
157         NR_ZONE_ACTIVE_ANON,
158         NR_ZONE_INACTIVE_FILE,
159         NR_ZONE_ACTIVE_FILE,
160         NR_ZONE_UNEVICTABLE,
161         NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
162         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
163         /* Second 128 byte cacheline */
164         NR_BOUNCE,
165 #if IS_ENABLED(CONFIG_ZSMALLOC)
166         NR_ZSPAGES,             /* allocated in zsmalloc */
167 #endif
168         NR_FREE_CMA_PAGES,
169         NR_VM_ZONE_STAT_ITEMS };
170
171 enum node_stat_item {
172         NR_LRU_BASE,
173         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
174         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
175         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
176         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
177         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
178         NR_SLAB_RECLAIMABLE_B,
179         NR_SLAB_UNRECLAIMABLE_B,
180         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
181         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
182         WORKINGSET_NODES,
183         WORKINGSET_REFAULT_BASE,
184         WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
185         WORKINGSET_REFAULT_FILE,
186         WORKINGSET_ACTIVATE_BASE,
187         WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
188         WORKINGSET_ACTIVATE_FILE,
189         WORKINGSET_RESTORE_BASE,
190         WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
191         WORKINGSET_RESTORE_FILE,
192         WORKINGSET_NODERECLAIM,
193         NR_ANON_MAPPED, /* Mapped anonymous pages */
194         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
195                            only modified from process context */
196         NR_FILE_PAGES,
197         NR_FILE_DIRTY,
198         NR_WRITEBACK,
199         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
200         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
201         NR_SHMEM_THPS,
202         NR_SHMEM_PMDMAPPED,
203         NR_FILE_THPS,
204         NR_FILE_PMDMAPPED,
205         NR_ANON_THPS,
206         NR_VMSCAN_WRITE,
207         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
208         NR_DIRTIED,             /* page dirtyings since bootup */
209         NR_WRITTEN,             /* page writings since bootup */
210         NR_THROTTLED_WRITTEN,   /* NR_WRITTEN while reclaim throttled */
211         NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
212         NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
213         NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
214         NR_KERNEL_STACK_KB,     /* measured in KiB */
215 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
216         NR_KERNEL_SCS_KB,       /* measured in KiB */
217 #endif
218         NR_PAGETABLE,           /* used for pagetables */
219 #ifdef CONFIG_SWAP
220         NR_SWAPCACHE,
221 #endif
222 #ifdef CONFIG_NUMA_BALANCING
223         PGPROMOTE_SUCCESS,      /* promote successfully */
224 #endif
225         NR_VM_NODE_STAT_ITEMS
226 };
227
228 /*
229  * Returns true if the item should be printed in THPs (/proc/vmstat
230  * currently prints number of anon, file and shmem THPs. But the item
231  * is charged in pages).
232  */
233 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
234 {
235         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
236                 return false;
237
238         return item == NR_ANON_THPS ||
239                item == NR_FILE_THPS ||
240                item == NR_SHMEM_THPS ||
241                item == NR_SHMEM_PMDMAPPED ||
242                item == NR_FILE_PMDMAPPED;
243 }
244
245 /*
246  * Returns true if the value is measured in bytes (most vmstat values are
247  * measured in pages). This defines the API part, the internal representation
248  * might be different.
249  */
250 static __always_inline bool vmstat_item_in_bytes(int idx)
251 {
252         /*
253          * Global and per-node slab counters track slab pages.
254          * It's expected that changes are multiples of PAGE_SIZE.
255          * Internally values are stored in pages.
256          *
257          * Per-memcg and per-lruvec counters track memory, consumed
258          * by individual slab objects. These counters are actually
259          * byte-precise.
260          */
261         return (idx == NR_SLAB_RECLAIMABLE_B ||
262                 idx == NR_SLAB_UNRECLAIMABLE_B);
263 }
264
265 /*
266  * We do arithmetic on the LRU lists in various places in the code,
267  * so it is important to keep the active lists LRU_ACTIVE higher in
268  * the array than the corresponding inactive lists, and to keep
269  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
270  *
271  * This has to be kept in sync with the statistics in zone_stat_item
272  * above and the descriptions in vmstat_text in mm/vmstat.c
273  */
274 #define LRU_BASE 0
275 #define LRU_ACTIVE 1
276 #define LRU_FILE 2
277
278 enum lru_list {
279         LRU_INACTIVE_ANON = LRU_BASE,
280         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
281         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
282         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
283         LRU_UNEVICTABLE,
284         NR_LRU_LISTS
285 };
286
287 enum vmscan_throttle_state {
288         VMSCAN_THROTTLE_WRITEBACK,
289         VMSCAN_THROTTLE_ISOLATED,
290         VMSCAN_THROTTLE_NOPROGRESS,
291         VMSCAN_THROTTLE_CONGESTED,
292         NR_VMSCAN_THROTTLE,
293 };
294
295 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
296
297 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
298
299 static inline bool is_file_lru(enum lru_list lru)
300 {
301         return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
302 }
303
304 static inline bool is_active_lru(enum lru_list lru)
305 {
306         return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
307 }
308
309 #define ANON_AND_FILE 2
310
311 enum lruvec_flags {
312         LRUVEC_CONGESTED,               /* lruvec has many dirty pages
313                                          * backed by a congested BDI
314                                          */
315 };
316
317 struct lruvec {
318         struct list_head                lists[NR_LRU_LISTS];
319         /* per lruvec lru_lock for memcg */
320         spinlock_t                      lru_lock;
321         /*
322          * These track the cost of reclaiming one LRU - file or anon -
323          * over the other. As the observed cost of reclaiming one LRU
324          * increases, the reclaim scan balance tips toward the other.
325          */
326         unsigned long                   anon_cost;
327         unsigned long                   file_cost;
328         /* Non-resident age, driven by LRU movement */
329         atomic_long_t                   nonresident_age;
330         /* Refaults at the time of last reclaim cycle */
331         unsigned long                   refaults[ANON_AND_FILE];
332         /* Various lruvec state flags (enum lruvec_flags) */
333         unsigned long                   flags;
334 #ifdef CONFIG_MEMCG
335         struct pglist_data *pgdat;
336 #endif
337 };
338
339 /* Isolate unmapped pages */
340 #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
341 /* Isolate for asynchronous migration */
342 #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
343 /* Isolate unevictable pages */
344 #define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
345
346 /* LRU Isolation modes. */
347 typedef unsigned __bitwise isolate_mode_t;
348
349 enum zone_watermarks {
350         WMARK_MIN,
351         WMARK_LOW,
352         WMARK_HIGH,
353         WMARK_PROMO,
354         NR_WMARK
355 };
356
357 /*
358  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
359  * for pageblock size for THP if configured.
360  */
361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
362 #define NR_PCP_THP 1
363 #else
364 #define NR_PCP_THP 0
365 #endif
366 #define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
367
368 /*
369  * Shift to encode migratetype and order in the same integer, with order
370  * in the least significant bits.
371  */
372 #define NR_PCP_ORDER_WIDTH 8
373 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
374
375 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
376 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
377 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
378 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
379
380 /* Fields and list protected by pagesets local_lock in page_alloc.c */
381 struct per_cpu_pages {
382         int count;              /* number of pages in the list */
383         int high;               /* high watermark, emptying needed */
384         int batch;              /* chunk size for buddy add/remove */
385         short free_factor;      /* batch scaling factor during free */
386 #ifdef CONFIG_NUMA
387         short expire;           /* When 0, remote pagesets are drained */
388 #endif
389
390         /* Lists of pages, one per migrate type stored on the pcp-lists */
391         struct list_head lists[NR_PCP_LISTS];
392 };
393
394 struct per_cpu_zonestat {
395 #ifdef CONFIG_SMP
396         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
397         s8 stat_threshold;
398 #endif
399 #ifdef CONFIG_NUMA
400         /*
401          * Low priority inaccurate counters that are only folded
402          * on demand. Use a large type to avoid the overhead of
403          * folding during refresh_cpu_vm_stats.
404          */
405         unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
406 #endif
407 };
408
409 struct per_cpu_nodestat {
410         s8 stat_threshold;
411         s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
412 };
413
414 #endif /* !__GENERATING_BOUNDS.H */
415
416 enum zone_type {
417         /*
418          * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
419          * to DMA to all of the addressable memory (ZONE_NORMAL).
420          * On architectures where this area covers the whole 32 bit address
421          * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
422          * DMA addressing constraints. This distinction is important as a 32bit
423          * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
424          * platforms may need both zones as they support peripherals with
425          * different DMA addressing limitations.
426          */
427 #ifdef CONFIG_ZONE_DMA
428         ZONE_DMA,
429 #endif
430 #ifdef CONFIG_ZONE_DMA32
431         ZONE_DMA32,
432 #endif
433         /*
434          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
435          * performed on pages in ZONE_NORMAL if the DMA devices support
436          * transfers to all addressable memory.
437          */
438         ZONE_NORMAL,
439 #ifdef CONFIG_HIGHMEM
440         /*
441          * A memory area that is only addressable by the kernel through
442          * mapping portions into its own address space. This is for example
443          * used by i386 to allow the kernel to address the memory beyond
444          * 900MB. The kernel will set up special mappings (page
445          * table entries on i386) for each page that the kernel needs to
446          * access.
447          */
448         ZONE_HIGHMEM,
449 #endif
450         /*
451          * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
452          * movable pages with few exceptional cases described below. Main use
453          * cases for ZONE_MOVABLE are to make memory offlining/unplug more
454          * likely to succeed, and to locally limit unmovable allocations - e.g.,
455          * to increase the number of THP/huge pages. Notable special cases are:
456          *
457          * 1. Pinned pages: (long-term) pinning of movable pages might
458          *    essentially turn such pages unmovable. Therefore, we do not allow
459          *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
460          *    faulted, they come from the right zone right away. However, it is
461          *    still possible that address space already has pages in
462          *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
463          *    touches that memory before pinning). In such case we migrate them
464          *    to a different zone. When migration fails - pinning fails.
465          * 2. memblock allocations: kernelcore/movablecore setups might create
466          *    situations where ZONE_MOVABLE contains unmovable allocations
467          *    after boot. Memory offlining and allocations fail early.
468          * 3. Memory holes: kernelcore/movablecore setups might create very rare
469          *    situations where ZONE_MOVABLE contains memory holes after boot,
470          *    for example, if we have sections that are only partially
471          *    populated. Memory offlining and allocations fail early.
472          * 4. PG_hwpoison pages: while poisoned pages can be skipped during
473          *    memory offlining, such pages cannot be allocated.
474          * 5. Unmovable PG_offline pages: in paravirtualized environments,
475          *    hotplugged memory blocks might only partially be managed by the
476          *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
477          *    parts not manged by the buddy are unmovable PG_offline pages. In
478          *    some cases (virtio-mem), such pages can be skipped during
479          *    memory offlining, however, cannot be moved/allocated. These
480          *    techniques might use alloc_contig_range() to hide previously
481          *    exposed pages from the buddy again (e.g., to implement some sort
482          *    of memory unplug in virtio-mem).
483          * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
484          *    situations where ZERO_PAGE(0) which is allocated differently
485          *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
486          *    cannot be migrated.
487          * 7. Memory-hotplug: when using memmap_on_memory and onlining the
488          *    memory to the MOVABLE zone, the vmemmap pages are also placed in
489          *    such zone. Such pages cannot be really moved around as they are
490          *    self-stored in the range, but they are treated as movable when
491          *    the range they describe is about to be offlined.
492          *
493          * In general, no unmovable allocations that degrade memory offlining
494          * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
495          * have to expect that migrating pages in ZONE_MOVABLE can fail (even
496          * if has_unmovable_pages() states that there are no unmovable pages,
497          * there can be false negatives).
498          */
499         ZONE_MOVABLE,
500 #ifdef CONFIG_ZONE_DEVICE
501         ZONE_DEVICE,
502 #endif
503         __MAX_NR_ZONES
504
505 };
506
507 #ifndef __GENERATING_BOUNDS_H
508
509 #define ASYNC_AND_SYNC 2
510
511 struct zone {
512         /* Read-mostly fields */
513
514         /* zone watermarks, access with *_wmark_pages(zone) macros */
515         unsigned long _watermark[NR_WMARK];
516         unsigned long watermark_boost;
517
518         unsigned long nr_reserved_highatomic;
519
520         /*
521          * We don't know if the memory that we're going to allocate will be
522          * freeable or/and it will be released eventually, so to avoid totally
523          * wasting several GB of ram we must reserve some of the lower zone
524          * memory (otherwise we risk to run OOM on the lower zones despite
525          * there being tons of freeable ram on the higher zones).  This array is
526          * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
527          * changes.
528          */
529         long lowmem_reserve[MAX_NR_ZONES];
530
531 #ifdef CONFIG_NUMA
532         int node;
533 #endif
534         struct pglist_data      *zone_pgdat;
535         struct per_cpu_pages    __percpu *per_cpu_pageset;
536         struct per_cpu_zonestat __percpu *per_cpu_zonestats;
537         /*
538          * the high and batch values are copied to individual pagesets for
539          * faster access
540          */
541         int pageset_high;
542         int pageset_batch;
543
544 #ifndef CONFIG_SPARSEMEM
545         /*
546          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
547          * In SPARSEMEM, this map is stored in struct mem_section
548          */
549         unsigned long           *pageblock_flags;
550 #endif /* CONFIG_SPARSEMEM */
551
552         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
553         unsigned long           zone_start_pfn;
554
555         /*
556          * spanned_pages is the total pages spanned by the zone, including
557          * holes, which is calculated as:
558          *      spanned_pages = zone_end_pfn - zone_start_pfn;
559          *
560          * present_pages is physical pages existing within the zone, which
561          * is calculated as:
562          *      present_pages = spanned_pages - absent_pages(pages in holes);
563          *
564          * present_early_pages is present pages existing within the zone
565          * located on memory available since early boot, excluding hotplugged
566          * memory.
567          *
568          * managed_pages is present pages managed by the buddy system, which
569          * is calculated as (reserved_pages includes pages allocated by the
570          * bootmem allocator):
571          *      managed_pages = present_pages - reserved_pages;
572          *
573          * cma pages is present pages that are assigned for CMA use
574          * (MIGRATE_CMA).
575          *
576          * So present_pages may be used by memory hotplug or memory power
577          * management logic to figure out unmanaged pages by checking
578          * (present_pages - managed_pages). And managed_pages should be used
579          * by page allocator and vm scanner to calculate all kinds of watermarks
580          * and thresholds.
581          *
582          * Locking rules:
583          *
584          * zone_start_pfn and spanned_pages are protected by span_seqlock.
585          * It is a seqlock because it has to be read outside of zone->lock,
586          * and it is done in the main allocator path.  But, it is written
587          * quite infrequently.
588          *
589          * The span_seq lock is declared along with zone->lock because it is
590          * frequently read in proximity to zone->lock.  It's good to
591          * give them a chance of being in the same cacheline.
592          *
593          * Write access to present_pages at runtime should be protected by
594          * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
595          * present_pages should get_online_mems() to get a stable value.
596          */
597         atomic_long_t           managed_pages;
598         unsigned long           spanned_pages;
599         unsigned long           present_pages;
600 #if defined(CONFIG_MEMORY_HOTPLUG)
601         unsigned long           present_early_pages;
602 #endif
603 #ifdef CONFIG_CMA
604         unsigned long           cma_pages;
605 #endif
606
607         const char              *name;
608
609 #ifdef CONFIG_MEMORY_ISOLATION
610         /*
611          * Number of isolated pageblock. It is used to solve incorrect
612          * freepage counting problem due to racy retrieving migratetype
613          * of pageblock. Protected by zone->lock.
614          */
615         unsigned long           nr_isolate_pageblock;
616 #endif
617
618 #ifdef CONFIG_MEMORY_HOTPLUG
619         /* see spanned/present_pages for more description */
620         seqlock_t               span_seqlock;
621 #endif
622
623         int initialized;
624
625         /* Write-intensive fields used from the page allocator */
626         ZONE_PADDING(_pad1_)
627
628         /* free areas of different sizes */
629         struct free_area        free_area[MAX_ORDER];
630
631         /* zone flags, see below */
632         unsigned long           flags;
633
634         /* Primarily protects free_area */
635         spinlock_t              lock;
636
637         /* Write-intensive fields used by compaction and vmstats. */
638         ZONE_PADDING(_pad2_)
639
640         /*
641          * When free pages are below this point, additional steps are taken
642          * when reading the number of free pages to avoid per-cpu counter
643          * drift allowing watermarks to be breached
644          */
645         unsigned long percpu_drift_mark;
646
647 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
648         /* pfn where compaction free scanner should start */
649         unsigned long           compact_cached_free_pfn;
650         /* pfn where compaction migration scanner should start */
651         unsigned long           compact_cached_migrate_pfn[ASYNC_AND_SYNC];
652         unsigned long           compact_init_migrate_pfn;
653         unsigned long           compact_init_free_pfn;
654 #endif
655
656 #ifdef CONFIG_COMPACTION
657         /*
658          * On compaction failure, 1<<compact_defer_shift compactions
659          * are skipped before trying again. The number attempted since
660          * last failure is tracked with compact_considered.
661          * compact_order_failed is the minimum compaction failed order.
662          */
663         unsigned int            compact_considered;
664         unsigned int            compact_defer_shift;
665         int                     compact_order_failed;
666 #endif
667
668 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
669         /* Set to true when the PG_migrate_skip bits should be cleared */
670         bool                    compact_blockskip_flush;
671 #endif
672
673         bool                    contiguous;
674
675         ZONE_PADDING(_pad3_)
676         /* Zone statistics */
677         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
678         atomic_long_t           vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
679 } ____cacheline_internodealigned_in_smp;
680
681 enum pgdat_flags {
682         PGDAT_DIRTY,                    /* reclaim scanning has recently found
683                                          * many dirty file pages at the tail
684                                          * of the LRU.
685                                          */
686         PGDAT_WRITEBACK,                /* reclaim scanning has recently found
687                                          * many pages under writeback
688                                          */
689         PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
690 };
691
692 enum zone_flags {
693         ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
694                                          * Cleared when kswapd is woken.
695                                          */
696         ZONE_RECLAIM_ACTIVE,            /* kswapd may be scanning the zone. */
697 };
698
699 static inline unsigned long zone_managed_pages(struct zone *zone)
700 {
701         return (unsigned long)atomic_long_read(&zone->managed_pages);
702 }
703
704 static inline unsigned long zone_cma_pages(struct zone *zone)
705 {
706 #ifdef CONFIG_CMA
707         return zone->cma_pages;
708 #else
709         return 0;
710 #endif
711 }
712
713 static inline unsigned long zone_end_pfn(const struct zone *zone)
714 {
715         return zone->zone_start_pfn + zone->spanned_pages;
716 }
717
718 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
719 {
720         return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
721 }
722
723 static inline bool zone_is_initialized(struct zone *zone)
724 {
725         return zone->initialized;
726 }
727
728 static inline bool zone_is_empty(struct zone *zone)
729 {
730         return zone->spanned_pages == 0;
731 }
732
733 /*
734  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
735  * intersection with the given zone
736  */
737 static inline bool zone_intersects(struct zone *zone,
738                 unsigned long start_pfn, unsigned long nr_pages)
739 {
740         if (zone_is_empty(zone))
741                 return false;
742         if (start_pfn >= zone_end_pfn(zone) ||
743             start_pfn + nr_pages <= zone->zone_start_pfn)
744                 return false;
745
746         return true;
747 }
748
749 /*
750  * The "priority" of VM scanning is how much of the queues we will scan in one
751  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
752  * queues ("queue_length >> 12") during an aging round.
753  */
754 #define DEF_PRIORITY 12
755
756 /* Maximum number of zones on a zonelist */
757 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
758
759 enum {
760         ZONELIST_FALLBACK,      /* zonelist with fallback */
761 #ifdef CONFIG_NUMA
762         /*
763          * The NUMA zonelists are doubled because we need zonelists that
764          * restrict the allocations to a single node for __GFP_THISNODE.
765          */
766         ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
767 #endif
768         MAX_ZONELISTS
769 };
770
771 /*
772  * This struct contains information about a zone in a zonelist. It is stored
773  * here to avoid dereferences into large structures and lookups of tables
774  */
775 struct zoneref {
776         struct zone *zone;      /* Pointer to actual zone */
777         int zone_idx;           /* zone_idx(zoneref->zone) */
778 };
779
780 /*
781  * One allocation request operates on a zonelist. A zonelist
782  * is a list of zones, the first one is the 'goal' of the
783  * allocation, the other zones are fallback zones, in decreasing
784  * priority.
785  *
786  * To speed the reading of the zonelist, the zonerefs contain the zone index
787  * of the entry being read. Helper functions to access information given
788  * a struct zoneref are
789  *
790  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
791  * zonelist_zone_idx()  - Return the index of the zone for an entry
792  * zonelist_node_idx()  - Return the index of the node for an entry
793  */
794 struct zonelist {
795         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
796 };
797
798 /*
799  * The array of struct pages for flatmem.
800  * It must be declared for SPARSEMEM as well because there are configurations
801  * that rely on that.
802  */
803 extern struct page *mem_map;
804
805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
806 struct deferred_split {
807         spinlock_t split_queue_lock;
808         struct list_head split_queue;
809         unsigned long split_queue_len;
810 };
811 #endif
812
813 /*
814  * On NUMA machines, each NUMA node would have a pg_data_t to describe
815  * it's memory layout. On UMA machines there is a single pglist_data which
816  * describes the whole memory.
817  *
818  * Memory statistics and page replacement data structures are maintained on a
819  * per-zone basis.
820  */
821 typedef struct pglist_data {
822         /*
823          * node_zones contains just the zones for THIS node. Not all of the
824          * zones may be populated, but it is the full list. It is referenced by
825          * this node's node_zonelists as well as other node's node_zonelists.
826          */
827         struct zone node_zones[MAX_NR_ZONES];
828
829         /*
830          * node_zonelists contains references to all zones in all nodes.
831          * Generally the first zones will be references to this node's
832          * node_zones.
833          */
834         struct zonelist node_zonelists[MAX_ZONELISTS];
835
836         int nr_zones; /* number of populated zones in this node */
837 #ifdef CONFIG_FLATMEM   /* means !SPARSEMEM */
838         struct page *node_mem_map;
839 #ifdef CONFIG_PAGE_EXTENSION
840         struct page_ext *node_page_ext;
841 #endif
842 #endif
843 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
844         /*
845          * Must be held any time you expect node_start_pfn,
846          * node_present_pages, node_spanned_pages or nr_zones to stay constant.
847          * Also synchronizes pgdat->first_deferred_pfn during deferred page
848          * init.
849          *
850          * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
851          * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
852          * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
853          *
854          * Nests above zone->lock and zone->span_seqlock
855          */
856         spinlock_t node_size_lock;
857 #endif
858         unsigned long node_start_pfn;
859         unsigned long node_present_pages; /* total number of physical pages */
860         unsigned long node_spanned_pages; /* total size of physical page
861                                              range, including holes */
862         int node_id;
863         wait_queue_head_t kswapd_wait;
864         wait_queue_head_t pfmemalloc_wait;
865
866         /* workqueues for throttling reclaim for different reasons. */
867         wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
868
869         atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
870         unsigned long nr_reclaim_start; /* nr pages written while throttled
871                                          * when throttling started. */
872         struct task_struct *kswapd;     /* Protected by
873                                            mem_hotplug_begin/end() */
874         int kswapd_order;
875         enum zone_type kswapd_highest_zoneidx;
876
877         int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
878
879 #ifdef CONFIG_COMPACTION
880         int kcompactd_max_order;
881         enum zone_type kcompactd_highest_zoneidx;
882         wait_queue_head_t kcompactd_wait;
883         struct task_struct *kcompactd;
884         bool proactive_compact_trigger;
885 #endif
886         /*
887          * This is a per-node reserve of pages that are not available
888          * to userspace allocations.
889          */
890         unsigned long           totalreserve_pages;
891
892 #ifdef CONFIG_NUMA
893         /*
894          * node reclaim becomes active if more unmapped pages exist.
895          */
896         unsigned long           min_unmapped_pages;
897         unsigned long           min_slab_pages;
898 #endif /* CONFIG_NUMA */
899
900         /* Write-intensive fields used by page reclaim */
901         ZONE_PADDING(_pad1_)
902
903 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
904         /*
905          * If memory initialisation on large machines is deferred then this
906          * is the first PFN that needs to be initialised.
907          */
908         unsigned long first_deferred_pfn;
909 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
910
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
912         struct deferred_split deferred_split_queue;
913 #endif
914
915         /* Fields commonly accessed by the page reclaim scanner */
916
917         /*
918          * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
919          *
920          * Use mem_cgroup_lruvec() to look up lruvecs.
921          */
922         struct lruvec           __lruvec;
923
924         unsigned long           flags;
925
926         ZONE_PADDING(_pad2_)
927
928         /* Per-node vmstats */
929         struct per_cpu_nodestat __percpu *per_cpu_nodestats;
930         atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
931 } pg_data_t;
932
933 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
934 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
935
936 #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
937 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
938
939 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
940 {
941         return pgdat->node_start_pfn + pgdat->node_spanned_pages;
942 }
943
944 static inline bool pgdat_is_empty(pg_data_t *pgdat)
945 {
946         return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
947 }
948
949 #include <linux/memory_hotplug.h>
950
951 void build_all_zonelists(pg_data_t *pgdat);
952 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
953                    enum zone_type highest_zoneidx);
954 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
955                          int highest_zoneidx, unsigned int alloc_flags,
956                          long free_pages);
957 bool zone_watermark_ok(struct zone *z, unsigned int order,
958                 unsigned long mark, int highest_zoneidx,
959                 unsigned int alloc_flags);
960 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
961                 unsigned long mark, int highest_zoneidx);
962 /*
963  * Memory initialization context, use to differentiate memory added by
964  * the platform statically or via memory hotplug interface.
965  */
966 enum meminit_context {
967         MEMINIT_EARLY,
968         MEMINIT_HOTPLUG,
969 };
970
971 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
972                                      unsigned long size);
973
974 extern void lruvec_init(struct lruvec *lruvec);
975
976 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
977 {
978 #ifdef CONFIG_MEMCG
979         return lruvec->pgdat;
980 #else
981         return container_of(lruvec, struct pglist_data, __lruvec);
982 #endif
983 }
984
985 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
986 int local_memory_node(int node_id);
987 #else
988 static inline int local_memory_node(int node_id) { return node_id; };
989 #endif
990
991 /*
992  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
993  */
994 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
995
996 #ifdef CONFIG_ZONE_DEVICE
997 static inline bool zone_is_zone_device(struct zone *zone)
998 {
999         return zone_idx(zone) == ZONE_DEVICE;
1000 }
1001 #else
1002 static inline bool zone_is_zone_device(struct zone *zone)
1003 {
1004         return false;
1005 }
1006 #endif
1007
1008 /*
1009  * Returns true if a zone has pages managed by the buddy allocator.
1010  * All the reclaim decisions have to use this function rather than
1011  * populated_zone(). If the whole zone is reserved then we can easily
1012  * end up with populated_zone() && !managed_zone().
1013  */
1014 static inline bool managed_zone(struct zone *zone)
1015 {
1016         return zone_managed_pages(zone);
1017 }
1018
1019 /* Returns true if a zone has memory */
1020 static inline bool populated_zone(struct zone *zone)
1021 {
1022         return zone->present_pages;
1023 }
1024
1025 #ifdef CONFIG_NUMA
1026 static inline int zone_to_nid(struct zone *zone)
1027 {
1028         return zone->node;
1029 }
1030
1031 static inline void zone_set_nid(struct zone *zone, int nid)
1032 {
1033         zone->node = nid;
1034 }
1035 #else
1036 static inline int zone_to_nid(struct zone *zone)
1037 {
1038         return 0;
1039 }
1040
1041 static inline void zone_set_nid(struct zone *zone, int nid) {}
1042 #endif
1043
1044 extern int movable_zone;
1045
1046 static inline int is_highmem_idx(enum zone_type idx)
1047 {
1048 #ifdef CONFIG_HIGHMEM
1049         return (idx == ZONE_HIGHMEM ||
1050                 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1051 #else
1052         return 0;
1053 #endif
1054 }
1055
1056 #ifdef CONFIG_ZONE_DMA
1057 bool has_managed_dma(void);
1058 #else
1059 static inline bool has_managed_dma(void)
1060 {
1061         return false;
1062 }
1063 #endif
1064
1065 /**
1066  * is_highmem - helper function to quickly check if a struct zone is a
1067  *              highmem zone or not.  This is an attempt to keep references
1068  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1069  * @zone: pointer to struct zone variable
1070  * Return: 1 for a highmem zone, 0 otherwise
1071  */
1072 static inline int is_highmem(struct zone *zone)
1073 {
1074 #ifdef CONFIG_HIGHMEM
1075         return is_highmem_idx(zone_idx(zone));
1076 #else
1077         return 0;
1078 #endif
1079 }
1080
1081 /* These two functions are used to setup the per zone pages min values */
1082 struct ctl_table;
1083
1084 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1085                 loff_t *);
1086 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1087                 size_t *, loff_t *);
1088 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1089 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1090                 size_t *, loff_t *);
1091 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1092                 void *, size_t *, loff_t *);
1093 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1094                 void *, size_t *, loff_t *);
1095 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1096                 void *, size_t *, loff_t *);
1097 int numa_zonelist_order_handler(struct ctl_table *, int,
1098                 void *, size_t *, loff_t *);
1099 extern int percpu_pagelist_high_fraction;
1100 extern char numa_zonelist_order[];
1101 #define NUMA_ZONELIST_ORDER_LEN 16
1102
1103 #ifndef CONFIG_NUMA
1104
1105 extern struct pglist_data contig_page_data;
1106 static inline struct pglist_data *NODE_DATA(int nid)
1107 {
1108         return &contig_page_data;
1109 }
1110
1111 #else /* CONFIG_NUMA */
1112
1113 #include <asm/mmzone.h>
1114
1115 #endif /* !CONFIG_NUMA */
1116
1117 extern struct pglist_data *first_online_pgdat(void);
1118 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1119 extern struct zone *next_zone(struct zone *zone);
1120
1121 /**
1122  * for_each_online_pgdat - helper macro to iterate over all online nodes
1123  * @pgdat: pointer to a pg_data_t variable
1124  */
1125 #define for_each_online_pgdat(pgdat)                    \
1126         for (pgdat = first_online_pgdat();              \
1127              pgdat;                                     \
1128              pgdat = next_online_pgdat(pgdat))
1129 /**
1130  * for_each_zone - helper macro to iterate over all memory zones
1131  * @zone: pointer to struct zone variable
1132  *
1133  * The user only needs to declare the zone variable, for_each_zone
1134  * fills it in.
1135  */
1136 #define for_each_zone(zone)                             \
1137         for (zone = (first_online_pgdat())->node_zones; \
1138              zone;                                      \
1139              zone = next_zone(zone))
1140
1141 #define for_each_populated_zone(zone)                   \
1142         for (zone = (first_online_pgdat())->node_zones; \
1143              zone;                                      \
1144              zone = next_zone(zone))                    \
1145                 if (!populated_zone(zone))              \
1146                         ; /* do nothing */              \
1147                 else
1148
1149 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1150 {
1151         return zoneref->zone;
1152 }
1153
1154 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1155 {
1156         return zoneref->zone_idx;
1157 }
1158
1159 static inline int zonelist_node_idx(struct zoneref *zoneref)
1160 {
1161         return zone_to_nid(zoneref->zone);
1162 }
1163
1164 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1165                                         enum zone_type highest_zoneidx,
1166                                         nodemask_t *nodes);
1167
1168 /**
1169  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1170  * @z: The cursor used as a starting point for the search
1171  * @highest_zoneidx: The zone index of the highest zone to return
1172  * @nodes: An optional nodemask to filter the zonelist with
1173  *
1174  * This function returns the next zone at or below a given zone index that is
1175  * within the allowed nodemask using a cursor as the starting point for the
1176  * search. The zoneref returned is a cursor that represents the current zone
1177  * being examined. It should be advanced by one before calling
1178  * next_zones_zonelist again.
1179  *
1180  * Return: the next zone at or below highest_zoneidx within the allowed
1181  * nodemask using a cursor within a zonelist as a starting point
1182  */
1183 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1184                                         enum zone_type highest_zoneidx,
1185                                         nodemask_t *nodes)
1186 {
1187         if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1188                 return z;
1189         return __next_zones_zonelist(z, highest_zoneidx, nodes);
1190 }
1191
1192 /**
1193  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1194  * @zonelist: The zonelist to search for a suitable zone
1195  * @highest_zoneidx: The zone index of the highest zone to return
1196  * @nodes: An optional nodemask to filter the zonelist with
1197  *
1198  * This function returns the first zone at or below a given zone index that is
1199  * within the allowed nodemask. The zoneref returned is a cursor that can be
1200  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1201  * one before calling.
1202  *
1203  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1204  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1205  * update due to cpuset modification.
1206  *
1207  * Return: Zoneref pointer for the first suitable zone found
1208  */
1209 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1210                                         enum zone_type highest_zoneidx,
1211                                         nodemask_t *nodes)
1212 {
1213         return next_zones_zonelist(zonelist->_zonerefs,
1214                                                         highest_zoneidx, nodes);
1215 }
1216
1217 /**
1218  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1219  * @zone: The current zone in the iterator
1220  * @z: The current pointer within zonelist->_zonerefs being iterated
1221  * @zlist: The zonelist being iterated
1222  * @highidx: The zone index of the highest zone to return
1223  * @nodemask: Nodemask allowed by the allocator
1224  *
1225  * This iterator iterates though all zones at or below a given zone index and
1226  * within a given nodemask
1227  */
1228 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1229         for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1230                 zone;                                                   \
1231                 z = next_zones_zonelist(++z, highidx, nodemask),        \
1232                         zone = zonelist_zone(z))
1233
1234 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1235         for (zone = z->zone;    \
1236                 zone;                                                   \
1237                 z = next_zones_zonelist(++z, highidx, nodemask),        \
1238                         zone = zonelist_zone(z))
1239
1240
1241 /**
1242  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1243  * @zone: The current zone in the iterator
1244  * @z: The current pointer within zonelist->zones being iterated
1245  * @zlist: The zonelist being iterated
1246  * @highidx: The zone index of the highest zone to return
1247  *
1248  * This iterator iterates though all zones at or below a given zone index.
1249  */
1250 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1251         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1252
1253 /* Whether the 'nodes' are all movable nodes */
1254 static inline bool movable_only_nodes(nodemask_t *nodes)
1255 {
1256         struct zonelist *zonelist;
1257         struct zoneref *z;
1258         int nid;
1259
1260         if (nodes_empty(*nodes))
1261                 return false;
1262
1263         /*
1264          * We can chose arbitrary node from the nodemask to get a
1265          * zonelist as they are interlinked. We just need to find
1266          * at least one zone that can satisfy kernel allocations.
1267          */
1268         nid = first_node(*nodes);
1269         zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1270         z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1271         return (!z->zone) ? true : false;
1272 }
1273
1274
1275 #ifdef CONFIG_SPARSEMEM
1276 #include <asm/sparsemem.h>
1277 #endif
1278
1279 #ifdef CONFIG_FLATMEM
1280 #define pfn_to_nid(pfn)         (0)
1281 #endif
1282
1283 #ifdef CONFIG_SPARSEMEM
1284
1285 /*
1286  * PA_SECTION_SHIFT             physical address to/from section number
1287  * PFN_SECTION_SHIFT            pfn to/from section number
1288  */
1289 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1290 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1291
1292 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1293
1294 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1295 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1296
1297 #define SECTION_BLOCKFLAGS_BITS \
1298         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1299
1300 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1301 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1302 #endif
1303
1304 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1305 {
1306         return pfn >> PFN_SECTION_SHIFT;
1307 }
1308 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1309 {
1310         return sec << PFN_SECTION_SHIFT;
1311 }
1312
1313 #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1314 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1315
1316 #define SUBSECTION_SHIFT 21
1317 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1318
1319 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1320 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1321 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1322
1323 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1324 #error Subsection size exceeds section size
1325 #else
1326 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1327 #endif
1328
1329 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1330 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1331
1332 struct mem_section_usage {
1333 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1334         DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1335 #endif
1336         /* See declaration of similar field in struct zone */
1337         unsigned long pageblock_flags[0];
1338 };
1339
1340 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1341
1342 struct page;
1343 struct page_ext;
1344 struct mem_section {
1345         /*
1346          * This is, logically, a pointer to an array of struct
1347          * pages.  However, it is stored with some other magic.
1348          * (see sparse.c::sparse_init_one_section())
1349          *
1350          * Additionally during early boot we encode node id of
1351          * the location of the section here to guide allocation.
1352          * (see sparse.c::memory_present())
1353          *
1354          * Making it a UL at least makes someone do a cast
1355          * before using it wrong.
1356          */
1357         unsigned long section_mem_map;
1358
1359         struct mem_section_usage *usage;
1360 #ifdef CONFIG_PAGE_EXTENSION
1361         /*
1362          * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1363          * section. (see page_ext.h about this.)
1364          */
1365         struct page_ext *page_ext;
1366         unsigned long pad;
1367 #endif
1368         /*
1369          * WARNING: mem_section must be a power-of-2 in size for the
1370          * calculation and use of SECTION_ROOT_MASK to make sense.
1371          */
1372 };
1373
1374 #ifdef CONFIG_SPARSEMEM_EXTREME
1375 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1376 #else
1377 #define SECTIONS_PER_ROOT       1
1378 #endif
1379
1380 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1381 #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1382 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1383
1384 #ifdef CONFIG_SPARSEMEM_EXTREME
1385 extern struct mem_section **mem_section;
1386 #else
1387 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1388 #endif
1389
1390 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1391 {
1392         return ms->usage->pageblock_flags;
1393 }
1394
1395 static inline struct mem_section *__nr_to_section(unsigned long nr)
1396 {
1397         unsigned long root = SECTION_NR_TO_ROOT(nr);
1398
1399         if (unlikely(root >= NR_SECTION_ROOTS))
1400                 return NULL;
1401
1402 #ifdef CONFIG_SPARSEMEM_EXTREME
1403         if (!mem_section || !mem_section[root])
1404                 return NULL;
1405 #endif
1406         return &mem_section[root][nr & SECTION_ROOT_MASK];
1407 }
1408 extern size_t mem_section_usage_size(void);
1409
1410 /*
1411  * We use the lower bits of the mem_map pointer to store
1412  * a little bit of information.  The pointer is calculated
1413  * as mem_map - section_nr_to_pfn(pnum).  The result is
1414  * aligned to the minimum alignment of the two values:
1415  *   1. All mem_map arrays are page-aligned.
1416  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1417  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1418  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1419  *      worst combination is powerpc with 256k pages,
1420  *      which results in PFN_SECTION_SHIFT equal 6.
1421  * To sum it up, at least 6 bits are available.
1422  */
1423 #define SECTION_MARKED_PRESENT          (1UL<<0)
1424 #define SECTION_HAS_MEM_MAP             (1UL<<1)
1425 #define SECTION_IS_ONLINE               (1UL<<2)
1426 #define SECTION_IS_EARLY                (1UL<<3)
1427 #define SECTION_TAINT_ZONE_DEVICE       (1UL<<4)
1428 #define SECTION_MAP_LAST_BIT            (1UL<<5)
1429 #define SECTION_MAP_MASK                (~(SECTION_MAP_LAST_BIT-1))
1430 #define SECTION_NID_SHIFT               6
1431
1432 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1433 {
1434         unsigned long map = section->section_mem_map;
1435         map &= SECTION_MAP_MASK;
1436         return (struct page *)map;
1437 }
1438
1439 static inline int present_section(struct mem_section *section)
1440 {
1441         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1442 }
1443
1444 static inline int present_section_nr(unsigned long nr)
1445 {
1446         return present_section(__nr_to_section(nr));
1447 }
1448
1449 static inline int valid_section(struct mem_section *section)
1450 {
1451         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1452 }
1453
1454 static inline int early_section(struct mem_section *section)
1455 {
1456         return (section && (section->section_mem_map & SECTION_IS_EARLY));
1457 }
1458
1459 static inline int valid_section_nr(unsigned long nr)
1460 {
1461         return valid_section(__nr_to_section(nr));
1462 }
1463
1464 static inline int online_section(struct mem_section *section)
1465 {
1466         return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1467 }
1468
1469 static inline int online_device_section(struct mem_section *section)
1470 {
1471         unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1472
1473         return section && ((section->section_mem_map & flags) == flags);
1474 }
1475
1476 static inline int online_section_nr(unsigned long nr)
1477 {
1478         return online_section(__nr_to_section(nr));
1479 }
1480
1481 #ifdef CONFIG_MEMORY_HOTPLUG
1482 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1483 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1484 #endif
1485
1486 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1487 {
1488         return __nr_to_section(pfn_to_section_nr(pfn));
1489 }
1490
1491 extern unsigned long __highest_present_section_nr;
1492
1493 static inline int subsection_map_index(unsigned long pfn)
1494 {
1495         return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1496 }
1497
1498 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1499 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1500 {
1501         int idx = subsection_map_index(pfn);
1502
1503         return test_bit(idx, ms->usage->subsection_map);
1504 }
1505 #else
1506 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1507 {
1508         return 1;
1509 }
1510 #endif
1511
1512 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1513 /**
1514  * pfn_valid - check if there is a valid memory map entry for a PFN
1515  * @pfn: the page frame number to check
1516  *
1517  * Check if there is a valid memory map entry aka struct page for the @pfn.
1518  * Note, that availability of the memory map entry does not imply that
1519  * there is actual usable memory at that @pfn. The struct page may
1520  * represent a hole or an unusable page frame.
1521  *
1522  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1523  */
1524 static inline int pfn_valid(unsigned long pfn)
1525 {
1526         struct mem_section *ms;
1527
1528         /*
1529          * Ensure the upper PAGE_SHIFT bits are clear in the
1530          * pfn. Else it might lead to false positives when
1531          * some of the upper bits are set, but the lower bits
1532          * match a valid pfn.
1533          */
1534         if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1535                 return 0;
1536
1537         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1538                 return 0;
1539         ms = __pfn_to_section(pfn);
1540         if (!valid_section(ms))
1541                 return 0;
1542         /*
1543          * Traditionally early sections always returned pfn_valid() for
1544          * the entire section-sized span.
1545          */
1546         return early_section(ms) || pfn_section_valid(ms, pfn);
1547 }
1548 #endif
1549
1550 static inline int pfn_in_present_section(unsigned long pfn)
1551 {
1552         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1553                 return 0;
1554         return present_section(__pfn_to_section(pfn));
1555 }
1556
1557 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1558 {
1559         while (++section_nr <= __highest_present_section_nr) {
1560                 if (present_section_nr(section_nr))
1561                         return section_nr;
1562         }
1563
1564         return -1;
1565 }
1566
1567 /*
1568  * These are _only_ used during initialisation, therefore they
1569  * can use __initdata ...  They could have names to indicate
1570  * this restriction.
1571  */
1572 #ifdef CONFIG_NUMA
1573 #define pfn_to_nid(pfn)                                                 \
1574 ({                                                                      \
1575         unsigned long __pfn_to_nid_pfn = (pfn);                         \
1576         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1577 })
1578 #else
1579 #define pfn_to_nid(pfn)         (0)
1580 #endif
1581
1582 void sparse_init(void);
1583 #else
1584 #define sparse_init()   do {} while (0)
1585 #define sparse_index_init(_sec, _nid)  do {} while (0)
1586 #define pfn_in_present_section pfn_valid
1587 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1588 #endif /* CONFIG_SPARSEMEM */
1589
1590 #endif /* !__GENERATING_BOUNDS.H */
1591 #endif /* !__ASSEMBLY__ */
1592 #endif /* _LINUX_MMZONE_H */