Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[linux-2.6-microblaze.git] / include / linux / mmu_notifier.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/srcu.h>
9
10 struct mmu_notifier;
11 struct mmu_notifier_ops;
12
13 #ifdef CONFIG_MMU_NOTIFIER
14
15 /*
16  * The mmu notifier_mm structure is allocated and installed in
17  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
18  * critical section and it's released only when mm_count reaches zero
19  * in mmdrop().
20  */
21 struct mmu_notifier_mm {
22         /* all mmu notifiers registerd in this mm are queued in this list */
23         struct hlist_head list;
24         /* to serialize the list modifications and hlist_unhashed */
25         spinlock_t lock;
26 };
27
28 struct mmu_notifier_ops {
29         /*
30          * Called either by mmu_notifier_unregister or when the mm is
31          * being destroyed by exit_mmap, always before all pages are
32          * freed. This can run concurrently with other mmu notifier
33          * methods (the ones invoked outside the mm context) and it
34          * should tear down all secondary mmu mappings and freeze the
35          * secondary mmu. If this method isn't implemented you've to
36          * be sure that nothing could possibly write to the pages
37          * through the secondary mmu by the time the last thread with
38          * tsk->mm == mm exits.
39          *
40          * As side note: the pages freed after ->release returns could
41          * be immediately reallocated by the gart at an alias physical
42          * address with a different cache model, so if ->release isn't
43          * implemented because all _software_ driven memory accesses
44          * through the secondary mmu are terminated by the time the
45          * last thread of this mm quits, you've also to be sure that
46          * speculative _hardware_ operations can't allocate dirty
47          * cachelines in the cpu that could not be snooped and made
48          * coherent with the other read and write operations happening
49          * through the gart alias address, so leading to memory
50          * corruption.
51          */
52         void (*release)(struct mmu_notifier *mn,
53                         struct mm_struct *mm);
54
55         /*
56          * clear_flush_young is called after the VM is
57          * test-and-clearing the young/accessed bitflag in the
58          * pte. This way the VM will provide proper aging to the
59          * accesses to the page through the secondary MMUs and not
60          * only to the ones through the Linux pte.
61          * Start-end is necessary in case the secondary MMU is mapping the page
62          * at a smaller granularity than the primary MMU.
63          */
64         int (*clear_flush_young)(struct mmu_notifier *mn,
65                                  struct mm_struct *mm,
66                                  unsigned long start,
67                                  unsigned long end);
68
69         /*
70          * clear_young is a lightweight version of clear_flush_young. Like the
71          * latter, it is supposed to test-and-clear the young/accessed bitflag
72          * in the secondary pte, but it may omit flushing the secondary tlb.
73          */
74         int (*clear_young)(struct mmu_notifier *mn,
75                            struct mm_struct *mm,
76                            unsigned long start,
77                            unsigned long end);
78
79         /*
80          * test_young is called to check the young/accessed bitflag in
81          * the secondary pte. This is used to know if the page is
82          * frequently used without actually clearing the flag or tearing
83          * down the secondary mapping on the page.
84          */
85         int (*test_young)(struct mmu_notifier *mn,
86                           struct mm_struct *mm,
87                           unsigned long address);
88
89         /*
90          * change_pte is called in cases that pte mapping to page is changed:
91          * for example, when ksm remaps pte to point to a new shared page.
92          */
93         void (*change_pte)(struct mmu_notifier *mn,
94                            struct mm_struct *mm,
95                            unsigned long address,
96                            pte_t pte);
97
98         /*
99          * invalidate_range_start() and invalidate_range_end() must be
100          * paired and are called only when the mmap_sem and/or the
101          * locks protecting the reverse maps are held. If the subsystem
102          * can't guarantee that no additional references are taken to
103          * the pages in the range, it has to implement the
104          * invalidate_range() notifier to remove any references taken
105          * after invalidate_range_start().
106          *
107          * Invalidation of multiple concurrent ranges may be
108          * optionally permitted by the driver. Either way the
109          * establishment of sptes is forbidden in the range passed to
110          * invalidate_range_begin/end for the whole duration of the
111          * invalidate_range_begin/end critical section.
112          *
113          * invalidate_range_start() is called when all pages in the
114          * range are still mapped and have at least a refcount of one.
115          *
116          * invalidate_range_end() is called when all pages in the
117          * range have been unmapped and the pages have been freed by
118          * the VM.
119          *
120          * The VM will remove the page table entries and potentially
121          * the page between invalidate_range_start() and
122          * invalidate_range_end(). If the page must not be freed
123          * because of pending I/O or other circumstances then the
124          * invalidate_range_start() callback (or the initial mapping
125          * by the driver) must make sure that the refcount is kept
126          * elevated.
127          *
128          * If the driver increases the refcount when the pages are
129          * initially mapped into an address space then either
130          * invalidate_range_start() or invalidate_range_end() may
131          * decrease the refcount. If the refcount is decreased on
132          * invalidate_range_start() then the VM can free pages as page
133          * table entries are removed.  If the refcount is only
134          * droppped on invalidate_range_end() then the driver itself
135          * will drop the last refcount but it must take care to flush
136          * any secondary tlb before doing the final free on the
137          * page. Pages will no longer be referenced by the linux
138          * address space but may still be referenced by sptes until
139          * the last refcount is dropped.
140          *
141          * If blockable argument is set to false then the callback cannot
142          * sleep and has to return with -EAGAIN. 0 should be returned
143          * otherwise. Please note that if invalidate_range_start approves
144          * a non-blocking behavior then the same applies to
145          * invalidate_range_end.
146          *
147          */
148         int (*invalidate_range_start)(struct mmu_notifier *mn,
149                                        struct mm_struct *mm,
150                                        unsigned long start, unsigned long end,
151                                        bool blockable);
152         void (*invalidate_range_end)(struct mmu_notifier *mn,
153                                      struct mm_struct *mm,
154                                      unsigned long start, unsigned long end);
155
156         /*
157          * invalidate_range() is either called between
158          * invalidate_range_start() and invalidate_range_end() when the
159          * VM has to free pages that where unmapped, but before the
160          * pages are actually freed, or outside of _start()/_end() when
161          * a (remote) TLB is necessary.
162          *
163          * If invalidate_range() is used to manage a non-CPU TLB with
164          * shared page-tables, it not necessary to implement the
165          * invalidate_range_start()/end() notifiers, as
166          * invalidate_range() alread catches the points in time when an
167          * external TLB range needs to be flushed. For more in depth
168          * discussion on this see Documentation/vm/mmu_notifier.rst
169          *
170          * Note that this function might be called with just a sub-range
171          * of what was passed to invalidate_range_start()/end(), if
172          * called between those functions.
173          */
174         void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
175                                  unsigned long start, unsigned long end);
176 };
177
178 /*
179  * The notifier chains are protected by mmap_sem and/or the reverse map
180  * semaphores. Notifier chains are only changed when all reverse maps and
181  * the mmap_sem locks are taken.
182  *
183  * Therefore notifier chains can only be traversed when either
184  *
185  * 1. mmap_sem is held.
186  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
187  * 3. No other concurrent thread can access the list (release)
188  */
189 struct mmu_notifier {
190         struct hlist_node hlist;
191         const struct mmu_notifier_ops *ops;
192 };
193
194 static inline int mm_has_notifiers(struct mm_struct *mm)
195 {
196         return unlikely(mm->mmu_notifier_mm);
197 }
198
199 extern int mmu_notifier_register(struct mmu_notifier *mn,
200                                  struct mm_struct *mm);
201 extern int __mmu_notifier_register(struct mmu_notifier *mn,
202                                    struct mm_struct *mm);
203 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
204                                     struct mm_struct *mm);
205 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
206                                                struct mm_struct *mm);
207 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
208 extern void __mmu_notifier_release(struct mm_struct *mm);
209 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
210                                           unsigned long start,
211                                           unsigned long end);
212 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
213                                       unsigned long start,
214                                       unsigned long end);
215 extern int __mmu_notifier_test_young(struct mm_struct *mm,
216                                      unsigned long address);
217 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
218                                       unsigned long address, pte_t pte);
219 extern int __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
220                                   unsigned long start, unsigned long end,
221                                   bool blockable);
222 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
223                                   unsigned long start, unsigned long end,
224                                   bool only_end);
225 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
226                                   unsigned long start, unsigned long end);
227
228 static inline void mmu_notifier_release(struct mm_struct *mm)
229 {
230         if (mm_has_notifiers(mm))
231                 __mmu_notifier_release(mm);
232 }
233
234 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
235                                           unsigned long start,
236                                           unsigned long end)
237 {
238         if (mm_has_notifiers(mm))
239                 return __mmu_notifier_clear_flush_young(mm, start, end);
240         return 0;
241 }
242
243 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
244                                            unsigned long start,
245                                            unsigned long end)
246 {
247         if (mm_has_notifiers(mm))
248                 return __mmu_notifier_clear_young(mm, start, end);
249         return 0;
250 }
251
252 static inline int mmu_notifier_test_young(struct mm_struct *mm,
253                                           unsigned long address)
254 {
255         if (mm_has_notifiers(mm))
256                 return __mmu_notifier_test_young(mm, address);
257         return 0;
258 }
259
260 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
261                                            unsigned long address, pte_t pte)
262 {
263         if (mm_has_notifiers(mm))
264                 __mmu_notifier_change_pte(mm, address, pte);
265 }
266
267 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
268                                   unsigned long start, unsigned long end)
269 {
270         if (mm_has_notifiers(mm))
271                 __mmu_notifier_invalidate_range_start(mm, start, end, true);
272 }
273
274 static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm,
275                                   unsigned long start, unsigned long end)
276 {
277         if (mm_has_notifiers(mm))
278                 return __mmu_notifier_invalidate_range_start(mm, start, end, false);
279         return 0;
280 }
281
282 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
283                                   unsigned long start, unsigned long end)
284 {
285         if (mm_has_notifiers(mm))
286                 __mmu_notifier_invalidate_range_end(mm, start, end, false);
287 }
288
289 static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm,
290                                   unsigned long start, unsigned long end)
291 {
292         if (mm_has_notifiers(mm))
293                 __mmu_notifier_invalidate_range_end(mm, start, end, true);
294 }
295
296 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
297                                   unsigned long start, unsigned long end)
298 {
299         if (mm_has_notifiers(mm))
300                 __mmu_notifier_invalidate_range(mm, start, end);
301 }
302
303 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
304 {
305         mm->mmu_notifier_mm = NULL;
306 }
307
308 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
309 {
310         if (mm_has_notifiers(mm))
311                 __mmu_notifier_mm_destroy(mm);
312 }
313
314 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)         \
315 ({                                                                      \
316         int __young;                                                    \
317         struct vm_area_struct *___vma = __vma;                          \
318         unsigned long ___address = __address;                           \
319         __young = ptep_clear_flush_young(___vma, ___address, __ptep);   \
320         __young |= mmu_notifier_clear_flush_young(___vma->vm_mm,        \
321                                                   ___address,           \
322                                                   ___address +          \
323                                                         PAGE_SIZE);     \
324         __young;                                                        \
325 })
326
327 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)         \
328 ({                                                                      \
329         int __young;                                                    \
330         struct vm_area_struct *___vma = __vma;                          \
331         unsigned long ___address = __address;                           \
332         __young = pmdp_clear_flush_young(___vma, ___address, __pmdp);   \
333         __young |= mmu_notifier_clear_flush_young(___vma->vm_mm,        \
334                                                   ___address,           \
335                                                   ___address +          \
336                                                         PMD_SIZE);      \
337         __young;                                                        \
338 })
339
340 #define ptep_clear_young_notify(__vma, __address, __ptep)               \
341 ({                                                                      \
342         int __young;                                                    \
343         struct vm_area_struct *___vma = __vma;                          \
344         unsigned long ___address = __address;                           \
345         __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
346         __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,  \
347                                             ___address + PAGE_SIZE);    \
348         __young;                                                        \
349 })
350
351 #define pmdp_clear_young_notify(__vma, __address, __pmdp)               \
352 ({                                                                      \
353         int __young;                                                    \
354         struct vm_area_struct *___vma = __vma;                          \
355         unsigned long ___address = __address;                           \
356         __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
357         __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,  \
358                                             ___address + PMD_SIZE);     \
359         __young;                                                        \
360 })
361
362 #define ptep_clear_flush_notify(__vma, __address, __ptep)               \
363 ({                                                                      \
364         unsigned long ___addr = __address & PAGE_MASK;                  \
365         struct mm_struct *___mm = (__vma)->vm_mm;                       \
366         pte_t ___pte;                                                   \
367                                                                         \
368         ___pte = ptep_clear_flush(__vma, __address, __ptep);            \
369         mmu_notifier_invalidate_range(___mm, ___addr,                   \
370                                         ___addr + PAGE_SIZE);           \
371                                                                         \
372         ___pte;                                                         \
373 })
374
375 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)             \
376 ({                                                                      \
377         unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;              \
378         struct mm_struct *___mm = (__vma)->vm_mm;                       \
379         pmd_t ___pmd;                                                   \
380                                                                         \
381         ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);          \
382         mmu_notifier_invalidate_range(___mm, ___haddr,                  \
383                                       ___haddr + HPAGE_PMD_SIZE);       \
384                                                                         \
385         ___pmd;                                                         \
386 })
387
388 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud)             \
389 ({                                                                      \
390         unsigned long ___haddr = __haddr & HPAGE_PUD_MASK;              \
391         struct mm_struct *___mm = (__vma)->vm_mm;                       \
392         pud_t ___pud;                                                   \
393                                                                         \
394         ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud);          \
395         mmu_notifier_invalidate_range(___mm, ___haddr,                  \
396                                       ___haddr + HPAGE_PUD_SIZE);       \
397                                                                         \
398         ___pud;                                                         \
399 })
400
401 /*
402  * set_pte_at_notify() sets the pte _after_ running the notifier.
403  * This is safe to start by updating the secondary MMUs, because the primary MMU
404  * pte invalidate must have already happened with a ptep_clear_flush() before
405  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
406  * required when we change both the protection of the mapping from read-only to
407  * read-write and the pfn (like during copy on write page faults). Otherwise the
408  * old page would remain mapped readonly in the secondary MMUs after the new
409  * page is already writable by some CPU through the primary MMU.
410  */
411 #define set_pte_at_notify(__mm, __address, __ptep, __pte)               \
412 ({                                                                      \
413         struct mm_struct *___mm = __mm;                                 \
414         unsigned long ___address = __address;                           \
415         pte_t ___pte = __pte;                                           \
416                                                                         \
417         mmu_notifier_change_pte(___mm, ___address, ___pte);             \
418         set_pte_at(___mm, ___address, __ptep, ___pte);                  \
419 })
420
421 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
422                                    void (*func)(struct rcu_head *rcu));
423 extern void mmu_notifier_synchronize(void);
424
425 #else /* CONFIG_MMU_NOTIFIER */
426
427 static inline int mm_has_notifiers(struct mm_struct *mm)
428 {
429         return 0;
430 }
431
432 static inline void mmu_notifier_release(struct mm_struct *mm)
433 {
434 }
435
436 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
437                                           unsigned long start,
438                                           unsigned long end)
439 {
440         return 0;
441 }
442
443 static inline int mmu_notifier_test_young(struct mm_struct *mm,
444                                           unsigned long address)
445 {
446         return 0;
447 }
448
449 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
450                                            unsigned long address, pte_t pte)
451 {
452 }
453
454 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
455                                   unsigned long start, unsigned long end)
456 {
457 }
458
459 static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm,
460                                   unsigned long start, unsigned long end)
461 {
462         return 0;
463 }
464
465 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
466                                   unsigned long start, unsigned long end)
467 {
468 }
469
470 static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm,
471                                   unsigned long start, unsigned long end)
472 {
473 }
474
475 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
476                                   unsigned long start, unsigned long end)
477 {
478 }
479
480 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
481 {
482 }
483
484 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
485 {
486 }
487
488 #define ptep_clear_flush_young_notify ptep_clear_flush_young
489 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
490 #define ptep_clear_young_notify ptep_test_and_clear_young
491 #define pmdp_clear_young_notify pmdp_test_and_clear_young
492 #define ptep_clear_flush_notify ptep_clear_flush
493 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
494 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
495 #define set_pte_at_notify set_pte_at
496
497 #endif /* CONFIG_MMU_NOTIFIER */
498
499 #endif /* _LINUX_MMU_NOTIFIER_H */