sr: use bdev_check_media_change
[linux-2.6-microblaze.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct file_ra_state;
39 struct user_struct;
40 struct writeback_control;
41 struct bdi_writeback;
42 struct pt_regs;
43
44 void init_mm_internals(void);
45
46 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48
49 static inline void set_max_mapnr(unsigned long limit)
50 {
51         max_mapnr = limit;
52 }
53 #else
54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56
57 extern atomic_long_t _totalram_pages;
58 static inline unsigned long totalram_pages(void)
59 {
60         return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62
63 static inline void totalram_pages_inc(void)
64 {
65         atomic_long_inc(&_totalram_pages);
66 }
67
68 static inline void totalram_pages_dec(void)
69 {
70         atomic_long_dec(&_totalram_pages);
71 }
72
73 static inline void totalram_pages_add(long count)
74 {
75         atomic_long_add(count, &_totalram_pages);
76 }
77
78 extern void * high_memory;
79 extern int page_cluster;
80
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97
98 #include <asm/page.h>
99 #include <asm/processor.h>
100
101 /*
102  * Architectures that support memory tagging (assigning tags to memory regions,
103  * embedding these tags into addresses that point to these memory regions, and
104  * checking that the memory and the pointer tags match on memory accesses)
105  * redefine this macro to strip tags from pointers.
106  * It's defined as noop for arcitectures that don't support memory tagging.
107  */
108 #ifndef untagged_addr
109 #define untagged_addr(addr) (addr)
110 #endif
111
112 #ifndef __pa_symbol
113 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115
116 #ifndef page_to_virt
117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119
120 #ifndef lm_alias
121 #define lm_alias(x)     __va(__pa_symbol(x))
122 #endif
123
124 /*
125  * To prevent common memory management code establishing
126  * a zero page mapping on a read fault.
127  * This macro should be defined within <asm/pgtable.h>.
128  * s390 does this to prevent multiplexing of hardware bits
129  * related to the physical page in case of virtualization.
130  */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X)  (0)
133 #endif
134
135 /*
136  * On some architectures it is expensive to call memset() for small sizes.
137  * If an architecture decides to implement their own version of
138  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139  * define their own version of this macro in <asm/pgtable.h>
140  */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 80
143  * or reduces below 56. The idea that compiler optimizes out switch()
144  * statement, and only leaves move/store instructions. Also the compiler can
145  * combine write statments if they are both assignments and can be reordered,
146  * this can result in several of the writes here being dropped.
147  */
148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151         unsigned long *_pp = (void *)page;
152
153          /* Check that struct page is either 56, 64, 72, or 80 bytes */
154         BUILD_BUG_ON(sizeof(struct page) & 7);
155         BUILD_BUG_ON(sizeof(struct page) < 56);
156         BUILD_BUG_ON(sizeof(struct page) > 80);
157
158         switch (sizeof(struct page)) {
159         case 80:
160                 _pp[9] = 0;
161                 fallthrough;
162         case 72:
163                 _pp[8] = 0;
164                 fallthrough;
165         case 64:
166                 _pp[7] = 0;
167                 fallthrough;
168         case 56:
169                 _pp[6] = 0;
170                 _pp[5] = 0;
171                 _pp[4] = 0;
172                 _pp[3] = 0;
173                 _pp[2] = 0;
174                 _pp[1] = 0;
175                 _pp[0] = 0;
176         }
177 }
178 #else
179 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
180 #endif
181
182 /*
183  * Default maximum number of active map areas, this limits the number of vmas
184  * per mm struct. Users can overwrite this number by sysctl but there is a
185  * problem.
186  *
187  * When a program's coredump is generated as ELF format, a section is created
188  * per a vma. In ELF, the number of sections is represented in unsigned short.
189  * This means the number of sections should be smaller than 65535 at coredump.
190  * Because the kernel adds some informative sections to a image of program at
191  * generating coredump, we need some margin. The number of extra sections is
192  * 1-3 now and depends on arch. We use "5" as safe margin, here.
193  *
194  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195  * not a hard limit any more. Although some userspace tools can be surprised by
196  * that.
197  */
198 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
199 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
200
201 extern int sysctl_max_map_count;
202
203 extern unsigned long sysctl_user_reserve_kbytes;
204 extern unsigned long sysctl_admin_reserve_kbytes;
205
206 extern int sysctl_overcommit_memory;
207 extern int sysctl_overcommit_ratio;
208 extern unsigned long sysctl_overcommit_kbytes;
209
210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
211                 loff_t *);
212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
213                 loff_t *);
214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
215                 loff_t *);
216
217 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
218
219 /* to align the pointer to the (next) page boundary */
220 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
221
222 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
223 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
224
225 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
226
227 /*
228  * Linux kernel virtual memory manager primitives.
229  * The idea being to have a "virtual" mm in the same way
230  * we have a virtual fs - giving a cleaner interface to the
231  * mm details, and allowing different kinds of memory mappings
232  * (from shared memory to executable loading to arbitrary
233  * mmap() functions).
234  */
235
236 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
237 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
238 void vm_area_free(struct vm_area_struct *);
239
240 #ifndef CONFIG_MMU
241 extern struct rb_root nommu_region_tree;
242 extern struct rw_semaphore nommu_region_sem;
243
244 extern unsigned int kobjsize(const void *objp);
245 #endif
246
247 /*
248  * vm_flags in vm_area_struct, see mm_types.h.
249  * When changing, update also include/trace/events/mmflags.h
250  */
251 #define VM_NONE         0x00000000
252
253 #define VM_READ         0x00000001      /* currently active flags */
254 #define VM_WRITE        0x00000002
255 #define VM_EXEC         0x00000004
256 #define VM_SHARED       0x00000008
257
258 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
259 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
260 #define VM_MAYWRITE     0x00000020
261 #define VM_MAYEXEC      0x00000040
262 #define VM_MAYSHARE     0x00000080
263
264 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
265 #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
266 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
267 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
268 #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
269
270 #define VM_LOCKED       0x00002000
271 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
272
273                                         /* Used by sys_madvise() */
274 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
275 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
276
277 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
278 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
279 #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
280 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
281 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
282 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
283 #define VM_SYNC         0x00800000      /* Synchronous page faults */
284 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
285 #define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
286 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
287
288 #ifdef CONFIG_MEM_SOFT_DIRTY
289 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
290 #else
291 # define VM_SOFTDIRTY   0
292 #endif
293
294 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
295 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
296 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
297 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
298
299 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
300 #define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
302 #define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
306 #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
307 #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
308 #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
309 #define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
310 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
311
312 #ifdef CONFIG_ARCH_HAS_PKEYS
313 # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
314 # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
315 # define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
316 # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
317 # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
318 #ifdef CONFIG_PPC
319 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
320 #else
321 # define VM_PKEY_BIT4  0
322 #endif
323 #endif /* CONFIG_ARCH_HAS_PKEYS */
324
325 #if defined(CONFIG_X86)
326 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
327 #elif defined(CONFIG_PPC)
328 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
329 #elif defined(CONFIG_PARISC)
330 # define VM_GROWSUP     VM_ARCH_1
331 #elif defined(CONFIG_IA64)
332 # define VM_GROWSUP     VM_ARCH_1
333 #elif defined(CONFIG_SPARC64)
334 # define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
335 # define VM_ARCH_CLEAR  VM_SPARC_ADI
336 #elif defined(CONFIG_ARM64)
337 # define VM_ARM64_BTI   VM_ARCH_1       /* BTI guarded page, a.k.a. GP bit */
338 # define VM_ARCH_CLEAR  VM_ARM64_BTI
339 #elif !defined(CONFIG_MMU)
340 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
341 #endif
342
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP     VM_NONE
345 #endif
346
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
349
350 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
351
352 /* Common data flag combinations */
353 #define VM_DATA_FLAGS_TSK_EXEC  (VM_READ | VM_WRITE | TASK_EXEC | \
354                                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
355 #define VM_DATA_FLAGS_NON_EXEC  (VM_READ | VM_WRITE | VM_MAYREAD | \
356                                  VM_MAYWRITE | VM_MAYEXEC)
357 #define VM_DATA_FLAGS_EXEC      (VM_READ | VM_WRITE | VM_EXEC | \
358                                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
359
360 #ifndef VM_DATA_DEFAULT_FLAGS           /* arch can override this */
361 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
362 #endif
363
364 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
365 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
366 #endif
367
368 #ifdef CONFIG_STACK_GROWSUP
369 #define VM_STACK        VM_GROWSUP
370 #else
371 #define VM_STACK        VM_GROWSDOWN
372 #endif
373
374 #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
375
376 /* VMA basic access permission flags */
377 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
378
379
380 /*
381  * Special vmas that are non-mergable, non-mlock()able.
382  */
383 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
384
385 /* This mask prevents VMA from being scanned with khugepaged */
386 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
387
388 /* This mask defines which mm->def_flags a process can inherit its parent */
389 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
390
391 /* This mask is used to clear all the VMA flags used by mlock */
392 #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
393
394 /* Arch-specific flags to clear when updating VM flags on protection change */
395 #ifndef VM_ARCH_CLEAR
396 # define VM_ARCH_CLEAR  VM_NONE
397 #endif
398 #define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
399
400 /*
401  * mapping from the currently active vm_flags protection bits (the
402  * low four bits) to a page protection mask..
403  */
404 extern pgprot_t protection_map[16];
405
406 /**
407  * Fault flag definitions.
408  *
409  * @FAULT_FLAG_WRITE: Fault was a write fault.
410  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
411  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
412  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
413  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
414  * @FAULT_FLAG_TRIED: The fault has been tried once.
415  * @FAULT_FLAG_USER: The fault originated in userspace.
416  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
417  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
418  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
419  *
420  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
421  * whether we would allow page faults to retry by specifying these two
422  * fault flags correctly.  Currently there can be three legal combinations:
423  *
424  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
425  *                              this is the first try
426  *
427  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
428  *                              we've already tried at least once
429  *
430  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
431  *
432  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
433  * be used.  Note that page faults can be allowed to retry for multiple times,
434  * in which case we'll have an initial fault with flags (a) then later on
435  * continuous faults with flags (b).  We should always try to detect pending
436  * signals before a retry to make sure the continuous page faults can still be
437  * interrupted if necessary.
438  */
439 #define FAULT_FLAG_WRITE                        0x01
440 #define FAULT_FLAG_MKWRITE                      0x02
441 #define FAULT_FLAG_ALLOW_RETRY                  0x04
442 #define FAULT_FLAG_RETRY_NOWAIT                 0x08
443 #define FAULT_FLAG_KILLABLE                     0x10
444 #define FAULT_FLAG_TRIED                        0x20
445 #define FAULT_FLAG_USER                         0x40
446 #define FAULT_FLAG_REMOTE                       0x80
447 #define FAULT_FLAG_INSTRUCTION                  0x100
448 #define FAULT_FLAG_INTERRUPTIBLE                0x200
449
450 /*
451  * The default fault flags that should be used by most of the
452  * arch-specific page fault handlers.
453  */
454 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
455                              FAULT_FLAG_KILLABLE | \
456                              FAULT_FLAG_INTERRUPTIBLE)
457
458 /**
459  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
460  *
461  * This is mostly used for places where we want to try to avoid taking
462  * the mmap_lock for too long a time when waiting for another condition
463  * to change, in which case we can try to be polite to release the
464  * mmap_lock in the first round to avoid potential starvation of other
465  * processes that would also want the mmap_lock.
466  *
467  * Return: true if the page fault allows retry and this is the first
468  * attempt of the fault handling; false otherwise.
469  */
470 static inline bool fault_flag_allow_retry_first(unsigned int flags)
471 {
472         return (flags & FAULT_FLAG_ALLOW_RETRY) &&
473             (!(flags & FAULT_FLAG_TRIED));
474 }
475
476 #define FAULT_FLAG_TRACE \
477         { FAULT_FLAG_WRITE,             "WRITE" }, \
478         { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
479         { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
480         { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
481         { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
482         { FAULT_FLAG_TRIED,             "TRIED" }, \
483         { FAULT_FLAG_USER,              "USER" }, \
484         { FAULT_FLAG_REMOTE,            "REMOTE" }, \
485         { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }, \
486         { FAULT_FLAG_INTERRUPTIBLE,     "INTERRUPTIBLE" }
487
488 /*
489  * vm_fault is filled by the pagefault handler and passed to the vma's
490  * ->fault function. The vma's ->fault is responsible for returning a bitmask
491  * of VM_FAULT_xxx flags that give details about how the fault was handled.
492  *
493  * MM layer fills up gfp_mask for page allocations but fault handler might
494  * alter it if its implementation requires a different allocation context.
495  *
496  * pgoff should be used in favour of virtual_address, if possible.
497  */
498 struct vm_fault {
499         struct vm_area_struct *vma;     /* Target VMA */
500         unsigned int flags;             /* FAULT_FLAG_xxx flags */
501         gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
502         pgoff_t pgoff;                  /* Logical page offset based on vma */
503         unsigned long address;          /* Faulting virtual address */
504         pmd_t *pmd;                     /* Pointer to pmd entry matching
505                                          * the 'address' */
506         pud_t *pud;                     /* Pointer to pud entry matching
507                                          * the 'address'
508                                          */
509         pte_t orig_pte;                 /* Value of PTE at the time of fault */
510
511         struct page *cow_page;          /* Page handler may use for COW fault */
512         struct page *page;              /* ->fault handlers should return a
513                                          * page here, unless VM_FAULT_NOPAGE
514                                          * is set (which is also implied by
515                                          * VM_FAULT_ERROR).
516                                          */
517         /* These three entries are valid only while holding ptl lock */
518         pte_t *pte;                     /* Pointer to pte entry matching
519                                          * the 'address'. NULL if the page
520                                          * table hasn't been allocated.
521                                          */
522         spinlock_t *ptl;                /* Page table lock.
523                                          * Protects pte page table if 'pte'
524                                          * is not NULL, otherwise pmd.
525                                          */
526         pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
527                                          * vm_ops->map_pages() calls
528                                          * alloc_set_pte() from atomic context.
529                                          * do_fault_around() pre-allocates
530                                          * page table to avoid allocation from
531                                          * atomic context.
532                                          */
533 };
534
535 /* page entry size for vm->huge_fault() */
536 enum page_entry_size {
537         PE_SIZE_PTE = 0,
538         PE_SIZE_PMD,
539         PE_SIZE_PUD,
540 };
541
542 /*
543  * These are the virtual MM functions - opening of an area, closing and
544  * unmapping it (needed to keep files on disk up-to-date etc), pointer
545  * to the functions called when a no-page or a wp-page exception occurs.
546  */
547 struct vm_operations_struct {
548         void (*open)(struct vm_area_struct * area);
549         void (*close)(struct vm_area_struct * area);
550         int (*split)(struct vm_area_struct * area, unsigned long addr);
551         int (*mremap)(struct vm_area_struct * area);
552         vm_fault_t (*fault)(struct vm_fault *vmf);
553         vm_fault_t (*huge_fault)(struct vm_fault *vmf,
554                         enum page_entry_size pe_size);
555         void (*map_pages)(struct vm_fault *vmf,
556                         pgoff_t start_pgoff, pgoff_t end_pgoff);
557         unsigned long (*pagesize)(struct vm_area_struct * area);
558
559         /* notification that a previously read-only page is about to become
560          * writable, if an error is returned it will cause a SIGBUS */
561         vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
562
563         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
564         vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
565
566         /* called by access_process_vm when get_user_pages() fails, typically
567          * for use by special VMAs that can switch between memory and hardware
568          */
569         int (*access)(struct vm_area_struct *vma, unsigned long addr,
570                       void *buf, int len, int write);
571
572         /* Called by the /proc/PID/maps code to ask the vma whether it
573          * has a special name.  Returning non-NULL will also cause this
574          * vma to be dumped unconditionally. */
575         const char *(*name)(struct vm_area_struct *vma);
576
577 #ifdef CONFIG_NUMA
578         /*
579          * set_policy() op must add a reference to any non-NULL @new mempolicy
580          * to hold the policy upon return.  Caller should pass NULL @new to
581          * remove a policy and fall back to surrounding context--i.e. do not
582          * install a MPOL_DEFAULT policy, nor the task or system default
583          * mempolicy.
584          */
585         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
586
587         /*
588          * get_policy() op must add reference [mpol_get()] to any policy at
589          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
590          * in mm/mempolicy.c will do this automatically.
591          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
592          * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
593          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
594          * must return NULL--i.e., do not "fallback" to task or system default
595          * policy.
596          */
597         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
598                                         unsigned long addr);
599 #endif
600         /*
601          * Called by vm_normal_page() for special PTEs to find the
602          * page for @addr.  This is useful if the default behavior
603          * (using pte_page()) would not find the correct page.
604          */
605         struct page *(*find_special_page)(struct vm_area_struct *vma,
606                                           unsigned long addr);
607 };
608
609 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
610 {
611         static const struct vm_operations_struct dummy_vm_ops = {};
612
613         memset(vma, 0, sizeof(*vma));
614         vma->vm_mm = mm;
615         vma->vm_ops = &dummy_vm_ops;
616         INIT_LIST_HEAD(&vma->anon_vma_chain);
617 }
618
619 static inline void vma_set_anonymous(struct vm_area_struct *vma)
620 {
621         vma->vm_ops = NULL;
622 }
623
624 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
625 {
626         return !vma->vm_ops;
627 }
628
629 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
630 {
631         int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
632
633         if (!maybe_stack)
634                 return false;
635
636         if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
637                                                 VM_STACK_INCOMPLETE_SETUP)
638                 return true;
639
640         return false;
641 }
642
643 static inline bool vma_is_foreign(struct vm_area_struct *vma)
644 {
645         if (!current->mm)
646                 return true;
647
648         if (current->mm != vma->vm_mm)
649                 return true;
650
651         return false;
652 }
653
654 static inline bool vma_is_accessible(struct vm_area_struct *vma)
655 {
656         return vma->vm_flags & VM_ACCESS_FLAGS;
657 }
658
659 #ifdef CONFIG_SHMEM
660 /*
661  * The vma_is_shmem is not inline because it is used only by slow
662  * paths in userfault.
663  */
664 bool vma_is_shmem(struct vm_area_struct *vma);
665 #else
666 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
667 #endif
668
669 int vma_is_stack_for_current(struct vm_area_struct *vma);
670
671 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
672 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
673
674 struct mmu_gather;
675 struct inode;
676
677 #include <linux/huge_mm.h>
678
679 /*
680  * Methods to modify the page usage count.
681  *
682  * What counts for a page usage:
683  * - cache mapping   (page->mapping)
684  * - private data    (page->private)
685  * - page mapped in a task's page tables, each mapping
686  *   is counted separately
687  *
688  * Also, many kernel routines increase the page count before a critical
689  * routine so they can be sure the page doesn't go away from under them.
690  */
691
692 /*
693  * Drop a ref, return true if the refcount fell to zero (the page has no users)
694  */
695 static inline int put_page_testzero(struct page *page)
696 {
697         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
698         return page_ref_dec_and_test(page);
699 }
700
701 /*
702  * Try to grab a ref unless the page has a refcount of zero, return false if
703  * that is the case.
704  * This can be called when MMU is off so it must not access
705  * any of the virtual mappings.
706  */
707 static inline int get_page_unless_zero(struct page *page)
708 {
709         return page_ref_add_unless(page, 1, 0);
710 }
711
712 extern int page_is_ram(unsigned long pfn);
713
714 enum {
715         REGION_INTERSECTS,
716         REGION_DISJOINT,
717         REGION_MIXED,
718 };
719
720 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
721                       unsigned long desc);
722
723 /* Support for virtually mapped pages */
724 struct page *vmalloc_to_page(const void *addr);
725 unsigned long vmalloc_to_pfn(const void *addr);
726
727 /*
728  * Determine if an address is within the vmalloc range
729  *
730  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
731  * is no special casing required.
732  */
733
734 #ifndef is_ioremap_addr
735 #define is_ioremap_addr(x) is_vmalloc_addr(x)
736 #endif
737
738 #ifdef CONFIG_MMU
739 extern bool is_vmalloc_addr(const void *x);
740 extern int is_vmalloc_or_module_addr(const void *x);
741 #else
742 static inline bool is_vmalloc_addr(const void *x)
743 {
744         return false;
745 }
746 static inline int is_vmalloc_or_module_addr(const void *x)
747 {
748         return 0;
749 }
750 #endif
751
752 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
753 static inline void *kvmalloc(size_t size, gfp_t flags)
754 {
755         return kvmalloc_node(size, flags, NUMA_NO_NODE);
756 }
757 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
758 {
759         return kvmalloc_node(size, flags | __GFP_ZERO, node);
760 }
761 static inline void *kvzalloc(size_t size, gfp_t flags)
762 {
763         return kvmalloc(size, flags | __GFP_ZERO);
764 }
765
766 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
767 {
768         size_t bytes;
769
770         if (unlikely(check_mul_overflow(n, size, &bytes)))
771                 return NULL;
772
773         return kvmalloc(bytes, flags);
774 }
775
776 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
777 {
778         return kvmalloc_array(n, size, flags | __GFP_ZERO);
779 }
780
781 extern void kvfree(const void *addr);
782 extern void kvfree_sensitive(const void *addr, size_t len);
783
784 static inline int head_mapcount(struct page *head)
785 {
786         return atomic_read(compound_mapcount_ptr(head)) + 1;
787 }
788
789 /*
790  * Mapcount of compound page as a whole, does not include mapped sub-pages.
791  *
792  * Must be called only for compound pages or any their tail sub-pages.
793  */
794 static inline int compound_mapcount(struct page *page)
795 {
796         VM_BUG_ON_PAGE(!PageCompound(page), page);
797         page = compound_head(page);
798         return head_mapcount(page);
799 }
800
801 /*
802  * The atomic page->_mapcount, starts from -1: so that transitions
803  * both from it and to it can be tracked, using atomic_inc_and_test
804  * and atomic_add_negative(-1).
805  */
806 static inline void page_mapcount_reset(struct page *page)
807 {
808         atomic_set(&(page)->_mapcount, -1);
809 }
810
811 int __page_mapcount(struct page *page);
812
813 /*
814  * Mapcount of 0-order page; when compound sub-page, includes
815  * compound_mapcount().
816  *
817  * Result is undefined for pages which cannot be mapped into userspace.
818  * For example SLAB or special types of pages. See function page_has_type().
819  * They use this place in struct page differently.
820  */
821 static inline int page_mapcount(struct page *page)
822 {
823         if (unlikely(PageCompound(page)))
824                 return __page_mapcount(page);
825         return atomic_read(&page->_mapcount) + 1;
826 }
827
828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
829 int total_mapcount(struct page *page);
830 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
831 #else
832 static inline int total_mapcount(struct page *page)
833 {
834         return page_mapcount(page);
835 }
836 static inline int page_trans_huge_mapcount(struct page *page,
837                                            int *total_mapcount)
838 {
839         int mapcount = page_mapcount(page);
840         if (total_mapcount)
841                 *total_mapcount = mapcount;
842         return mapcount;
843 }
844 #endif
845
846 static inline struct page *virt_to_head_page(const void *x)
847 {
848         struct page *page = virt_to_page(x);
849
850         return compound_head(page);
851 }
852
853 void __put_page(struct page *page);
854
855 void put_pages_list(struct list_head *pages);
856
857 void split_page(struct page *page, unsigned int order);
858
859 /*
860  * Compound pages have a destructor function.  Provide a
861  * prototype for that function and accessor functions.
862  * These are _only_ valid on the head of a compound page.
863  */
864 typedef void compound_page_dtor(struct page *);
865
866 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
867 enum compound_dtor_id {
868         NULL_COMPOUND_DTOR,
869         COMPOUND_PAGE_DTOR,
870 #ifdef CONFIG_HUGETLB_PAGE
871         HUGETLB_PAGE_DTOR,
872 #endif
873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
874         TRANSHUGE_PAGE_DTOR,
875 #endif
876         NR_COMPOUND_DTORS,
877 };
878 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
879
880 static inline void set_compound_page_dtor(struct page *page,
881                 enum compound_dtor_id compound_dtor)
882 {
883         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
884         page[1].compound_dtor = compound_dtor;
885 }
886
887 static inline void destroy_compound_page(struct page *page)
888 {
889         VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
890         compound_page_dtors[page[1].compound_dtor](page);
891 }
892
893 static inline unsigned int compound_order(struct page *page)
894 {
895         if (!PageHead(page))
896                 return 0;
897         return page[1].compound_order;
898 }
899
900 static inline bool hpage_pincount_available(struct page *page)
901 {
902         /*
903          * Can the page->hpage_pinned_refcount field be used? That field is in
904          * the 3rd page of the compound page, so the smallest (2-page) compound
905          * pages cannot support it.
906          */
907         page = compound_head(page);
908         return PageCompound(page) && compound_order(page) > 1;
909 }
910
911 static inline int head_pincount(struct page *head)
912 {
913         return atomic_read(compound_pincount_ptr(head));
914 }
915
916 static inline int compound_pincount(struct page *page)
917 {
918         VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
919         page = compound_head(page);
920         return head_pincount(page);
921 }
922
923 static inline void set_compound_order(struct page *page, unsigned int order)
924 {
925         page[1].compound_order = order;
926         page[1].compound_nr = 1U << order;
927 }
928
929 /* Returns the number of pages in this potentially compound page. */
930 static inline unsigned long compound_nr(struct page *page)
931 {
932         if (!PageHead(page))
933                 return 1;
934         return page[1].compound_nr;
935 }
936
937 /* Returns the number of bytes in this potentially compound page. */
938 static inline unsigned long page_size(struct page *page)
939 {
940         return PAGE_SIZE << compound_order(page);
941 }
942
943 /* Returns the number of bits needed for the number of bytes in a page */
944 static inline unsigned int page_shift(struct page *page)
945 {
946         return PAGE_SHIFT + compound_order(page);
947 }
948
949 void free_compound_page(struct page *page);
950
951 #ifdef CONFIG_MMU
952 /*
953  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
954  * servicing faults for write access.  In the normal case, do always want
955  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
956  * that do not have writing enabled, when used by access_process_vm.
957  */
958 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
959 {
960         if (likely(vma->vm_flags & VM_WRITE))
961                 pte = pte_mkwrite(pte);
962         return pte;
963 }
964
965 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
966 vm_fault_t finish_fault(struct vm_fault *vmf);
967 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
968 #endif
969
970 /*
971  * Multiple processes may "see" the same page. E.g. for untouched
972  * mappings of /dev/null, all processes see the same page full of
973  * zeroes, and text pages of executables and shared libraries have
974  * only one copy in memory, at most, normally.
975  *
976  * For the non-reserved pages, page_count(page) denotes a reference count.
977  *   page_count() == 0 means the page is free. page->lru is then used for
978  *   freelist management in the buddy allocator.
979  *   page_count() > 0  means the page has been allocated.
980  *
981  * Pages are allocated by the slab allocator in order to provide memory
982  * to kmalloc and kmem_cache_alloc. In this case, the management of the
983  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
984  * unless a particular usage is carefully commented. (the responsibility of
985  * freeing the kmalloc memory is the caller's, of course).
986  *
987  * A page may be used by anyone else who does a __get_free_page().
988  * In this case, page_count still tracks the references, and should only
989  * be used through the normal accessor functions. The top bits of page->flags
990  * and page->virtual store page management information, but all other fields
991  * are unused and could be used privately, carefully. The management of this
992  * page is the responsibility of the one who allocated it, and those who have
993  * subsequently been given references to it.
994  *
995  * The other pages (we may call them "pagecache pages") are completely
996  * managed by the Linux memory manager: I/O, buffers, swapping etc.
997  * The following discussion applies only to them.
998  *
999  * A pagecache page contains an opaque `private' member, which belongs to the
1000  * page's address_space. Usually, this is the address of a circular list of
1001  * the page's disk buffers. PG_private must be set to tell the VM to call
1002  * into the filesystem to release these pages.
1003  *
1004  * A page may belong to an inode's memory mapping. In this case, page->mapping
1005  * is the pointer to the inode, and page->index is the file offset of the page,
1006  * in units of PAGE_SIZE.
1007  *
1008  * If pagecache pages are not associated with an inode, they are said to be
1009  * anonymous pages. These may become associated with the swapcache, and in that
1010  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1011  *
1012  * In either case (swapcache or inode backed), the pagecache itself holds one
1013  * reference to the page. Setting PG_private should also increment the
1014  * refcount. The each user mapping also has a reference to the page.
1015  *
1016  * The pagecache pages are stored in a per-mapping radix tree, which is
1017  * rooted at mapping->i_pages, and indexed by offset.
1018  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1019  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1020  *
1021  * All pagecache pages may be subject to I/O:
1022  * - inode pages may need to be read from disk,
1023  * - inode pages which have been modified and are MAP_SHARED may need
1024  *   to be written back to the inode on disk,
1025  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1026  *   modified may need to be swapped out to swap space and (later) to be read
1027  *   back into memory.
1028  */
1029
1030 /*
1031  * The zone field is never updated after free_area_init_core()
1032  * sets it, so none of the operations on it need to be atomic.
1033  */
1034
1035 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1036 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1037 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
1038 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
1039 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1040 #define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1041
1042 /*
1043  * Define the bit shifts to access each section.  For non-existent
1044  * sections we define the shift as 0; that plus a 0 mask ensures
1045  * the compiler will optimise away reference to them.
1046  */
1047 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1048 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
1049 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
1050 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1051 #define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1052
1053 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1054 #ifdef NODE_NOT_IN_PAGE_FLAGS
1055 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
1056 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1057                                                 SECTIONS_PGOFF : ZONES_PGOFF)
1058 #else
1059 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
1060 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
1061                                                 NODES_PGOFF : ZONES_PGOFF)
1062 #endif
1063
1064 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1065
1066 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
1067 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
1068 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
1069 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
1070 #define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
1071 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
1072
1073 static inline enum zone_type page_zonenum(const struct page *page)
1074 {
1075         ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1076         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1077 }
1078
1079 #ifdef CONFIG_ZONE_DEVICE
1080 static inline bool is_zone_device_page(const struct page *page)
1081 {
1082         return page_zonenum(page) == ZONE_DEVICE;
1083 }
1084 extern void memmap_init_zone_device(struct zone *, unsigned long,
1085                                     unsigned long, struct dev_pagemap *);
1086 #else
1087 static inline bool is_zone_device_page(const struct page *page)
1088 {
1089         return false;
1090 }
1091 #endif
1092
1093 #ifdef CONFIG_DEV_PAGEMAP_OPS
1094 void free_devmap_managed_page(struct page *page);
1095 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1096
1097 static inline bool page_is_devmap_managed(struct page *page)
1098 {
1099         if (!static_branch_unlikely(&devmap_managed_key))
1100                 return false;
1101         if (!is_zone_device_page(page))
1102                 return false;
1103         switch (page->pgmap->type) {
1104         case MEMORY_DEVICE_PRIVATE:
1105         case MEMORY_DEVICE_FS_DAX:
1106                 return true;
1107         default:
1108                 break;
1109         }
1110         return false;
1111 }
1112
1113 void put_devmap_managed_page(struct page *page);
1114
1115 #else /* CONFIG_DEV_PAGEMAP_OPS */
1116 static inline bool page_is_devmap_managed(struct page *page)
1117 {
1118         return false;
1119 }
1120
1121 static inline void put_devmap_managed_page(struct page *page)
1122 {
1123 }
1124 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1125
1126 static inline bool is_device_private_page(const struct page *page)
1127 {
1128         return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1129                 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1130                 is_zone_device_page(page) &&
1131                 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1132 }
1133
1134 static inline bool is_pci_p2pdma_page(const struct page *page)
1135 {
1136         return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1137                 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1138                 is_zone_device_page(page) &&
1139                 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1140 }
1141
1142 /* 127: arbitrary random number, small enough to assemble well */
1143 #define page_ref_zero_or_close_to_overflow(page) \
1144         ((unsigned int) page_ref_count(page) + 127u <= 127u)
1145
1146 static inline void get_page(struct page *page)
1147 {
1148         page = compound_head(page);
1149         /*
1150          * Getting a normal page or the head of a compound page
1151          * requires to already have an elevated page->_refcount.
1152          */
1153         VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1154         page_ref_inc(page);
1155 }
1156
1157 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1158
1159 static inline __must_check bool try_get_page(struct page *page)
1160 {
1161         page = compound_head(page);
1162         if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1163                 return false;
1164         page_ref_inc(page);
1165         return true;
1166 }
1167
1168 static inline void put_page(struct page *page)
1169 {
1170         page = compound_head(page);
1171
1172         /*
1173          * For devmap managed pages we need to catch refcount transition from
1174          * 2 to 1, when refcount reach one it means the page is free and we
1175          * need to inform the device driver through callback. See
1176          * include/linux/memremap.h and HMM for details.
1177          */
1178         if (page_is_devmap_managed(page)) {
1179                 put_devmap_managed_page(page);
1180                 return;
1181         }
1182
1183         if (put_page_testzero(page))
1184                 __put_page(page);
1185 }
1186
1187 /*
1188  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1189  * the page's refcount so that two separate items are tracked: the original page
1190  * reference count, and also a new count of how many pin_user_pages() calls were
1191  * made against the page. ("gup-pinned" is another term for the latter).
1192  *
1193  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1194  * distinct from normal pages. As such, the unpin_user_page() call (and its
1195  * variants) must be used in order to release gup-pinned pages.
1196  *
1197  * Choice of value:
1198  *
1199  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1200  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1201  * simpler, due to the fact that adding an even power of two to the page
1202  * refcount has the effect of using only the upper N bits, for the code that
1203  * counts up using the bias value. This means that the lower bits are left for
1204  * the exclusive use of the original code that increments and decrements by one
1205  * (or at least, by much smaller values than the bias value).
1206  *
1207  * Of course, once the lower bits overflow into the upper bits (and this is
1208  * OK, because subtraction recovers the original values), then visual inspection
1209  * no longer suffices to directly view the separate counts. However, for normal
1210  * applications that don't have huge page reference counts, this won't be an
1211  * issue.
1212  *
1213  * Locking: the lockless algorithm described in page_cache_get_speculative()
1214  * and page_cache_gup_pin_speculative() provides safe operation for
1215  * get_user_pages and page_mkclean and other calls that race to set up page
1216  * table entries.
1217  */
1218 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1219
1220 void unpin_user_page(struct page *page);
1221 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1222                                  bool make_dirty);
1223 void unpin_user_pages(struct page **pages, unsigned long npages);
1224
1225 /**
1226  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1227  *
1228  * This function checks if a page has been pinned via a call to
1229  * pin_user_pages*().
1230  *
1231  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1232  * because it means "definitely not pinned for DMA", but true means "probably
1233  * pinned for DMA, but possibly a false positive due to having at least
1234  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1235  *
1236  * False positives are OK, because: a) it's unlikely for a page to get that many
1237  * refcounts, and b) all the callers of this routine are expected to be able to
1238  * deal gracefully with a false positive.
1239  *
1240  * For huge pages, the result will be exactly correct. That's because we have
1241  * more tracking data available: the 3rd struct page in the compound page is
1242  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1243  * scheme).
1244  *
1245  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1246  *
1247  * @page:       pointer to page to be queried.
1248  * @Return:     True, if it is likely that the page has been "dma-pinned".
1249  *              False, if the page is definitely not dma-pinned.
1250  */
1251 static inline bool page_maybe_dma_pinned(struct page *page)
1252 {
1253         if (hpage_pincount_available(page))
1254                 return compound_pincount(page) > 0;
1255
1256         /*
1257          * page_ref_count() is signed. If that refcount overflows, then
1258          * page_ref_count() returns a negative value, and callers will avoid
1259          * further incrementing the refcount.
1260          *
1261          * Here, for that overflow case, use the signed bit to count a little
1262          * bit higher via unsigned math, and thus still get an accurate result.
1263          */
1264         return ((unsigned int)page_ref_count(compound_head(page))) >=
1265                 GUP_PIN_COUNTING_BIAS;
1266 }
1267
1268 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1269 #define SECTION_IN_PAGE_FLAGS
1270 #endif
1271
1272 /*
1273  * The identification function is mainly used by the buddy allocator for
1274  * determining if two pages could be buddies. We are not really identifying
1275  * the zone since we could be using the section number id if we do not have
1276  * node id available in page flags.
1277  * We only guarantee that it will return the same value for two combinable
1278  * pages in a zone.
1279  */
1280 static inline int page_zone_id(struct page *page)
1281 {
1282         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1283 }
1284
1285 #ifdef NODE_NOT_IN_PAGE_FLAGS
1286 extern int page_to_nid(const struct page *page);
1287 #else
1288 static inline int page_to_nid(const struct page *page)
1289 {
1290         struct page *p = (struct page *)page;
1291
1292         return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1293 }
1294 #endif
1295
1296 #ifdef CONFIG_NUMA_BALANCING
1297 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1298 {
1299         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1300 }
1301
1302 static inline int cpupid_to_pid(int cpupid)
1303 {
1304         return cpupid & LAST__PID_MASK;
1305 }
1306
1307 static inline int cpupid_to_cpu(int cpupid)
1308 {
1309         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1310 }
1311
1312 static inline int cpupid_to_nid(int cpupid)
1313 {
1314         return cpu_to_node(cpupid_to_cpu(cpupid));
1315 }
1316
1317 static inline bool cpupid_pid_unset(int cpupid)
1318 {
1319         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1320 }
1321
1322 static inline bool cpupid_cpu_unset(int cpupid)
1323 {
1324         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1325 }
1326
1327 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1328 {
1329         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1330 }
1331
1332 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1333 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1334 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1335 {
1336         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1337 }
1338
1339 static inline int page_cpupid_last(struct page *page)
1340 {
1341         return page->_last_cpupid;
1342 }
1343 static inline void page_cpupid_reset_last(struct page *page)
1344 {
1345         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1346 }
1347 #else
1348 static inline int page_cpupid_last(struct page *page)
1349 {
1350         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1351 }
1352
1353 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1354
1355 static inline void page_cpupid_reset_last(struct page *page)
1356 {
1357         page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1358 }
1359 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1360 #else /* !CONFIG_NUMA_BALANCING */
1361 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1362 {
1363         return page_to_nid(page); /* XXX */
1364 }
1365
1366 static inline int page_cpupid_last(struct page *page)
1367 {
1368         return page_to_nid(page); /* XXX */
1369 }
1370
1371 static inline int cpupid_to_nid(int cpupid)
1372 {
1373         return -1;
1374 }
1375
1376 static inline int cpupid_to_pid(int cpupid)
1377 {
1378         return -1;
1379 }
1380
1381 static inline int cpupid_to_cpu(int cpupid)
1382 {
1383         return -1;
1384 }
1385
1386 static inline int cpu_pid_to_cpupid(int nid, int pid)
1387 {
1388         return -1;
1389 }
1390
1391 static inline bool cpupid_pid_unset(int cpupid)
1392 {
1393         return true;
1394 }
1395
1396 static inline void page_cpupid_reset_last(struct page *page)
1397 {
1398 }
1399
1400 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1401 {
1402         return false;
1403 }
1404 #endif /* CONFIG_NUMA_BALANCING */
1405
1406 #ifdef CONFIG_KASAN_SW_TAGS
1407 static inline u8 page_kasan_tag(const struct page *page)
1408 {
1409         return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1410 }
1411
1412 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1413 {
1414         page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1415         page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1416 }
1417
1418 static inline void page_kasan_tag_reset(struct page *page)
1419 {
1420         page_kasan_tag_set(page, 0xff);
1421 }
1422 #else
1423 static inline u8 page_kasan_tag(const struct page *page)
1424 {
1425         return 0xff;
1426 }
1427
1428 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1429 static inline void page_kasan_tag_reset(struct page *page) { }
1430 #endif
1431
1432 static inline struct zone *page_zone(const struct page *page)
1433 {
1434         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1435 }
1436
1437 static inline pg_data_t *page_pgdat(const struct page *page)
1438 {
1439         return NODE_DATA(page_to_nid(page));
1440 }
1441
1442 #ifdef SECTION_IN_PAGE_FLAGS
1443 static inline void set_page_section(struct page *page, unsigned long section)
1444 {
1445         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1446         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1447 }
1448
1449 static inline unsigned long page_to_section(const struct page *page)
1450 {
1451         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1452 }
1453 #endif
1454
1455 static inline void set_page_zone(struct page *page, enum zone_type zone)
1456 {
1457         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1458         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1459 }
1460
1461 static inline void set_page_node(struct page *page, unsigned long node)
1462 {
1463         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1464         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1465 }
1466
1467 static inline void set_page_links(struct page *page, enum zone_type zone,
1468         unsigned long node, unsigned long pfn)
1469 {
1470         set_page_zone(page, zone);
1471         set_page_node(page, node);
1472 #ifdef SECTION_IN_PAGE_FLAGS
1473         set_page_section(page, pfn_to_section_nr(pfn));
1474 #endif
1475 }
1476
1477 #ifdef CONFIG_MEMCG
1478 static inline struct mem_cgroup *page_memcg(struct page *page)
1479 {
1480         return page->mem_cgroup;
1481 }
1482 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1483 {
1484         WARN_ON_ONCE(!rcu_read_lock_held());
1485         return READ_ONCE(page->mem_cgroup);
1486 }
1487 #else
1488 static inline struct mem_cgroup *page_memcg(struct page *page)
1489 {
1490         return NULL;
1491 }
1492 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1493 {
1494         WARN_ON_ONCE(!rcu_read_lock_held());
1495         return NULL;
1496 }
1497 #endif
1498
1499 /*
1500  * Some inline functions in vmstat.h depend on page_zone()
1501  */
1502 #include <linux/vmstat.h>
1503
1504 static __always_inline void *lowmem_page_address(const struct page *page)
1505 {
1506         return page_to_virt(page);
1507 }
1508
1509 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1510 #define HASHED_PAGE_VIRTUAL
1511 #endif
1512
1513 #if defined(WANT_PAGE_VIRTUAL)
1514 static inline void *page_address(const struct page *page)
1515 {
1516         return page->virtual;
1517 }
1518 static inline void set_page_address(struct page *page, void *address)
1519 {
1520         page->virtual = address;
1521 }
1522 #define page_address_init()  do { } while(0)
1523 #endif
1524
1525 #if defined(HASHED_PAGE_VIRTUAL)
1526 void *page_address(const struct page *page);
1527 void set_page_address(struct page *page, void *virtual);
1528 void page_address_init(void);
1529 #endif
1530
1531 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1532 #define page_address(page) lowmem_page_address(page)
1533 #define set_page_address(page, address)  do { } while(0)
1534 #define page_address_init()  do { } while(0)
1535 #endif
1536
1537 extern void *page_rmapping(struct page *page);
1538 extern struct anon_vma *page_anon_vma(struct page *page);
1539 extern struct address_space *page_mapping(struct page *page);
1540
1541 extern struct address_space *__page_file_mapping(struct page *);
1542
1543 static inline
1544 struct address_space *page_file_mapping(struct page *page)
1545 {
1546         if (unlikely(PageSwapCache(page)))
1547                 return __page_file_mapping(page);
1548
1549         return page->mapping;
1550 }
1551
1552 extern pgoff_t __page_file_index(struct page *page);
1553
1554 /*
1555  * Return the pagecache index of the passed page.  Regular pagecache pages
1556  * use ->index whereas swapcache pages use swp_offset(->private)
1557  */
1558 static inline pgoff_t page_index(struct page *page)
1559 {
1560         if (unlikely(PageSwapCache(page)))
1561                 return __page_file_index(page);
1562         return page->index;
1563 }
1564
1565 bool page_mapped(struct page *page);
1566 struct address_space *page_mapping(struct page *page);
1567 struct address_space *page_mapping_file(struct page *page);
1568
1569 /*
1570  * Return true only if the page has been allocated with
1571  * ALLOC_NO_WATERMARKS and the low watermark was not
1572  * met implying that the system is under some pressure.
1573  */
1574 static inline bool page_is_pfmemalloc(struct page *page)
1575 {
1576         /*
1577          * Page index cannot be this large so this must be
1578          * a pfmemalloc page.
1579          */
1580         return page->index == -1UL;
1581 }
1582
1583 /*
1584  * Only to be called by the page allocator on a freshly allocated
1585  * page.
1586  */
1587 static inline void set_page_pfmemalloc(struct page *page)
1588 {
1589         page->index = -1UL;
1590 }
1591
1592 static inline void clear_page_pfmemalloc(struct page *page)
1593 {
1594         page->index = 0;
1595 }
1596
1597 /*
1598  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1599  */
1600 extern void pagefault_out_of_memory(void);
1601
1602 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1603 #define offset_in_thp(page, p)  ((unsigned long)(p) & (thp_size(page) - 1))
1604
1605 /*
1606  * Flags passed to show_mem() and show_free_areas() to suppress output in
1607  * various contexts.
1608  */
1609 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1610
1611 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1612
1613 #ifdef CONFIG_MMU
1614 extern bool can_do_mlock(void);
1615 #else
1616 static inline bool can_do_mlock(void) { return false; }
1617 #endif
1618 extern int user_shm_lock(size_t, struct user_struct *);
1619 extern void user_shm_unlock(size_t, struct user_struct *);
1620
1621 /*
1622  * Parameter block passed down to zap_pte_range in exceptional cases.
1623  */
1624 struct zap_details {
1625         struct address_space *check_mapping;    /* Check page->mapping if set */
1626         pgoff_t first_index;                    /* Lowest page->index to unmap */
1627         pgoff_t last_index;                     /* Highest page->index to unmap */
1628 };
1629
1630 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1631                              pte_t pte);
1632 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1633                                 pmd_t pmd);
1634
1635 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1636                   unsigned long size);
1637 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1638                     unsigned long size);
1639 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1640                 unsigned long start, unsigned long end);
1641
1642 struct mmu_notifier_range;
1643
1644 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1645                 unsigned long end, unsigned long floor, unsigned long ceiling);
1646 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1647                         struct vm_area_struct *vma);
1648 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1649                    struct mmu_notifier_range *range,
1650                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1651 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1652         unsigned long *pfn);
1653 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1654                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1655 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1656                         void *buf, int len, int write);
1657
1658 extern void truncate_pagecache(struct inode *inode, loff_t new);
1659 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1660 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1661 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1662 int truncate_inode_page(struct address_space *mapping, struct page *page);
1663 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1664 int invalidate_inode_page(struct page *page);
1665
1666 #ifdef CONFIG_MMU
1667 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1668                                   unsigned long address, unsigned int flags,
1669                                   struct pt_regs *regs);
1670 extern int fixup_user_fault(struct mm_struct *mm,
1671                             unsigned long address, unsigned int fault_flags,
1672                             bool *unlocked);
1673 void unmap_mapping_pages(struct address_space *mapping,
1674                 pgoff_t start, pgoff_t nr, bool even_cows);
1675 void unmap_mapping_range(struct address_space *mapping,
1676                 loff_t const holebegin, loff_t const holelen, int even_cows);
1677 #else
1678 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1679                                          unsigned long address, unsigned int flags,
1680                                          struct pt_regs *regs)
1681 {
1682         /* should never happen if there's no MMU */
1683         BUG();
1684         return VM_FAULT_SIGBUS;
1685 }
1686 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1687                 unsigned int fault_flags, bool *unlocked)
1688 {
1689         /* should never happen if there's no MMU */
1690         BUG();
1691         return -EFAULT;
1692 }
1693 static inline void unmap_mapping_pages(struct address_space *mapping,
1694                 pgoff_t start, pgoff_t nr, bool even_cows) { }
1695 static inline void unmap_mapping_range(struct address_space *mapping,
1696                 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1697 #endif
1698
1699 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1700                 loff_t const holebegin, loff_t const holelen)
1701 {
1702         unmap_mapping_range(mapping, holebegin, holelen, 0);
1703 }
1704
1705 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1706                 void *buf, int len, unsigned int gup_flags);
1707 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1708                 void *buf, int len, unsigned int gup_flags);
1709 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1710                 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1711
1712 long get_user_pages_remote(struct mm_struct *mm,
1713                             unsigned long start, unsigned long nr_pages,
1714                             unsigned int gup_flags, struct page **pages,
1715                             struct vm_area_struct **vmas, int *locked);
1716 long pin_user_pages_remote(struct mm_struct *mm,
1717                            unsigned long start, unsigned long nr_pages,
1718                            unsigned int gup_flags, struct page **pages,
1719                            struct vm_area_struct **vmas, int *locked);
1720 long get_user_pages(unsigned long start, unsigned long nr_pages,
1721                             unsigned int gup_flags, struct page **pages,
1722                             struct vm_area_struct **vmas);
1723 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1724                     unsigned int gup_flags, struct page **pages,
1725                     struct vm_area_struct **vmas);
1726 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1727                     unsigned int gup_flags, struct page **pages, int *locked);
1728 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1729                     unsigned int gup_flags, struct page **pages, int *locked);
1730 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1731                     struct page **pages, unsigned int gup_flags);
1732 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1733                     struct page **pages, unsigned int gup_flags);
1734
1735 int get_user_pages_fast(unsigned long start, int nr_pages,
1736                         unsigned int gup_flags, struct page **pages);
1737 int pin_user_pages_fast(unsigned long start, int nr_pages,
1738                         unsigned int gup_flags, struct page **pages);
1739
1740 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1741 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1742                         struct task_struct *task, bool bypass_rlim);
1743
1744 /* Container for pinned pfns / pages */
1745 struct frame_vector {
1746         unsigned int nr_allocated;      /* Number of frames we have space for */
1747         unsigned int nr_frames; /* Number of frames stored in ptrs array */
1748         bool got_ref;           /* Did we pin pages by getting page ref? */
1749         bool is_pfns;           /* Does array contain pages or pfns? */
1750         void *ptrs[];           /* Array of pinned pfns / pages. Use
1751                                  * pfns_vector_pages() or pfns_vector_pfns()
1752                                  * for access */
1753 };
1754
1755 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1756 void frame_vector_destroy(struct frame_vector *vec);
1757 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1758                      unsigned int gup_flags, struct frame_vector *vec);
1759 void put_vaddr_frames(struct frame_vector *vec);
1760 int frame_vector_to_pages(struct frame_vector *vec);
1761 void frame_vector_to_pfns(struct frame_vector *vec);
1762
1763 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1764 {
1765         return vec->nr_frames;
1766 }
1767
1768 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1769 {
1770         if (vec->is_pfns) {
1771                 int err = frame_vector_to_pages(vec);
1772
1773                 if (err)
1774                         return ERR_PTR(err);
1775         }
1776         return (struct page **)(vec->ptrs);
1777 }
1778
1779 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1780 {
1781         if (!vec->is_pfns)
1782                 frame_vector_to_pfns(vec);
1783         return (unsigned long *)(vec->ptrs);
1784 }
1785
1786 struct kvec;
1787 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1788                         struct page **pages);
1789 int get_kernel_page(unsigned long start, int write, struct page **pages);
1790 struct page *get_dump_page(unsigned long addr);
1791
1792 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1793 extern void do_invalidatepage(struct page *page, unsigned int offset,
1794                               unsigned int length);
1795
1796 void __set_page_dirty(struct page *, struct address_space *, int warn);
1797 int __set_page_dirty_nobuffers(struct page *page);
1798 int __set_page_dirty_no_writeback(struct page *page);
1799 int redirty_page_for_writepage(struct writeback_control *wbc,
1800                                 struct page *page);
1801 void account_page_dirtied(struct page *page, struct address_space *mapping);
1802 void account_page_cleaned(struct page *page, struct address_space *mapping,
1803                           struct bdi_writeback *wb);
1804 int set_page_dirty(struct page *page);
1805 int set_page_dirty_lock(struct page *page);
1806 void __cancel_dirty_page(struct page *page);
1807 static inline void cancel_dirty_page(struct page *page)
1808 {
1809         /* Avoid atomic ops, locking, etc. when not actually needed. */
1810         if (PageDirty(page))
1811                 __cancel_dirty_page(page);
1812 }
1813 int clear_page_dirty_for_io(struct page *page);
1814
1815 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1816
1817 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1818                 unsigned long old_addr, struct vm_area_struct *new_vma,
1819                 unsigned long new_addr, unsigned long len,
1820                 bool need_rmap_locks);
1821
1822 /*
1823  * Flags used by change_protection().  For now we make it a bitmap so
1824  * that we can pass in multiple flags just like parameters.  However
1825  * for now all the callers are only use one of the flags at the same
1826  * time.
1827  */
1828 /* Whether we should allow dirty bit accounting */
1829 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1830 /* Whether this protection change is for NUMA hints */
1831 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1832 /* Whether this change is for write protecting */
1833 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1834 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1835 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1836                                             MM_CP_UFFD_WP_RESOLVE)
1837
1838 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1839                               unsigned long end, pgprot_t newprot,
1840                               unsigned long cp_flags);
1841 extern int mprotect_fixup(struct vm_area_struct *vma,
1842                           struct vm_area_struct **pprev, unsigned long start,
1843                           unsigned long end, unsigned long newflags);
1844
1845 /*
1846  * doesn't attempt to fault and will return short.
1847  */
1848 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1849                              unsigned int gup_flags, struct page **pages);
1850 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1851                              unsigned int gup_flags, struct page **pages);
1852
1853 static inline bool get_user_page_fast_only(unsigned long addr,
1854                         unsigned int gup_flags, struct page **pagep)
1855 {
1856         return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1857 }
1858 /*
1859  * per-process(per-mm_struct) statistics.
1860  */
1861 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1862 {
1863         long val = atomic_long_read(&mm->rss_stat.count[member]);
1864
1865 #ifdef SPLIT_RSS_COUNTING
1866         /*
1867          * counter is updated in asynchronous manner and may go to minus.
1868          * But it's never be expected number for users.
1869          */
1870         if (val < 0)
1871                 val = 0;
1872 #endif
1873         return (unsigned long)val;
1874 }
1875
1876 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1877
1878 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1879 {
1880         long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1881
1882         mm_trace_rss_stat(mm, member, count);
1883 }
1884
1885 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1886 {
1887         long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1888
1889         mm_trace_rss_stat(mm, member, count);
1890 }
1891
1892 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1893 {
1894         long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1895
1896         mm_trace_rss_stat(mm, member, count);
1897 }
1898
1899 /* Optimized variant when page is already known not to be PageAnon */
1900 static inline int mm_counter_file(struct page *page)
1901 {
1902         if (PageSwapBacked(page))
1903                 return MM_SHMEMPAGES;
1904         return MM_FILEPAGES;
1905 }
1906
1907 static inline int mm_counter(struct page *page)
1908 {
1909         if (PageAnon(page))
1910                 return MM_ANONPAGES;
1911         return mm_counter_file(page);
1912 }
1913
1914 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1915 {
1916         return get_mm_counter(mm, MM_FILEPAGES) +
1917                 get_mm_counter(mm, MM_ANONPAGES) +
1918                 get_mm_counter(mm, MM_SHMEMPAGES);
1919 }
1920
1921 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1922 {
1923         return max(mm->hiwater_rss, get_mm_rss(mm));
1924 }
1925
1926 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1927 {
1928         return max(mm->hiwater_vm, mm->total_vm);
1929 }
1930
1931 static inline void update_hiwater_rss(struct mm_struct *mm)
1932 {
1933         unsigned long _rss = get_mm_rss(mm);
1934
1935         if ((mm)->hiwater_rss < _rss)
1936                 (mm)->hiwater_rss = _rss;
1937 }
1938
1939 static inline void update_hiwater_vm(struct mm_struct *mm)
1940 {
1941         if (mm->hiwater_vm < mm->total_vm)
1942                 mm->hiwater_vm = mm->total_vm;
1943 }
1944
1945 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1946 {
1947         mm->hiwater_rss = get_mm_rss(mm);
1948 }
1949
1950 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1951                                          struct mm_struct *mm)
1952 {
1953         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1954
1955         if (*maxrss < hiwater_rss)
1956                 *maxrss = hiwater_rss;
1957 }
1958
1959 #if defined(SPLIT_RSS_COUNTING)
1960 void sync_mm_rss(struct mm_struct *mm);
1961 #else
1962 static inline void sync_mm_rss(struct mm_struct *mm)
1963 {
1964 }
1965 #endif
1966
1967 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1968 static inline int pte_special(pte_t pte)
1969 {
1970         return 0;
1971 }
1972
1973 static inline pte_t pte_mkspecial(pte_t pte)
1974 {
1975         return pte;
1976 }
1977 #endif
1978
1979 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1980 static inline int pte_devmap(pte_t pte)
1981 {
1982         return 0;
1983 }
1984 #endif
1985
1986 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1987
1988 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1989                                spinlock_t **ptl);
1990 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1991                                     spinlock_t **ptl)
1992 {
1993         pte_t *ptep;
1994         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1995         return ptep;
1996 }
1997
1998 #ifdef __PAGETABLE_P4D_FOLDED
1999 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2000                                                 unsigned long address)
2001 {
2002         return 0;
2003 }
2004 #else
2005 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2006 #endif
2007
2008 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2009 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2010                                                 unsigned long address)
2011 {
2012         return 0;
2013 }
2014 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2015 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2016
2017 #else
2018 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2019
2020 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2021 {
2022         if (mm_pud_folded(mm))
2023                 return;
2024         atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2025 }
2026
2027 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2028 {
2029         if (mm_pud_folded(mm))
2030                 return;
2031         atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2032 }
2033 #endif
2034
2035 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2036 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2037                                                 unsigned long address)
2038 {
2039         return 0;
2040 }
2041
2042 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2043 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2044
2045 #else
2046 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2047
2048 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2049 {
2050         if (mm_pmd_folded(mm))
2051                 return;
2052         atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2053 }
2054
2055 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2056 {
2057         if (mm_pmd_folded(mm))
2058                 return;
2059         atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2060 }
2061 #endif
2062
2063 #ifdef CONFIG_MMU
2064 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2065 {
2066         atomic_long_set(&mm->pgtables_bytes, 0);
2067 }
2068
2069 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2070 {
2071         return atomic_long_read(&mm->pgtables_bytes);
2072 }
2073
2074 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2075 {
2076         atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2077 }
2078
2079 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2080 {
2081         atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2082 }
2083 #else
2084
2085 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2086 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2087 {
2088         return 0;
2089 }
2090
2091 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2092 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2093 #endif
2094
2095 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2096 int __pte_alloc_kernel(pmd_t *pmd);
2097
2098 #if defined(CONFIG_MMU)
2099
2100 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2101                 unsigned long address)
2102 {
2103         return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2104                 NULL : p4d_offset(pgd, address);
2105 }
2106
2107 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2108                 unsigned long address)
2109 {
2110         return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2111                 NULL : pud_offset(p4d, address);
2112 }
2113
2114 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2115 {
2116         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2117                 NULL: pmd_offset(pud, address);
2118 }
2119 #endif /* CONFIG_MMU */
2120
2121 #if USE_SPLIT_PTE_PTLOCKS
2122 #if ALLOC_SPLIT_PTLOCKS
2123 void __init ptlock_cache_init(void);
2124 extern bool ptlock_alloc(struct page *page);
2125 extern void ptlock_free(struct page *page);
2126
2127 static inline spinlock_t *ptlock_ptr(struct page *page)
2128 {
2129         return page->ptl;
2130 }
2131 #else /* ALLOC_SPLIT_PTLOCKS */
2132 static inline void ptlock_cache_init(void)
2133 {
2134 }
2135
2136 static inline bool ptlock_alloc(struct page *page)
2137 {
2138         return true;
2139 }
2140
2141 static inline void ptlock_free(struct page *page)
2142 {
2143 }
2144
2145 static inline spinlock_t *ptlock_ptr(struct page *page)
2146 {
2147         return &page->ptl;
2148 }
2149 #endif /* ALLOC_SPLIT_PTLOCKS */
2150
2151 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2152 {
2153         return ptlock_ptr(pmd_page(*pmd));
2154 }
2155
2156 static inline bool ptlock_init(struct page *page)
2157 {
2158         /*
2159          * prep_new_page() initialize page->private (and therefore page->ptl)
2160          * with 0. Make sure nobody took it in use in between.
2161          *
2162          * It can happen if arch try to use slab for page table allocation:
2163          * slab code uses page->slab_cache, which share storage with page->ptl.
2164          */
2165         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2166         if (!ptlock_alloc(page))
2167                 return false;
2168         spin_lock_init(ptlock_ptr(page));
2169         return true;
2170 }
2171
2172 #else   /* !USE_SPLIT_PTE_PTLOCKS */
2173 /*
2174  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2175  */
2176 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2177 {
2178         return &mm->page_table_lock;
2179 }
2180 static inline void ptlock_cache_init(void) {}
2181 static inline bool ptlock_init(struct page *page) { return true; }
2182 static inline void ptlock_free(struct page *page) {}
2183 #endif /* USE_SPLIT_PTE_PTLOCKS */
2184
2185 static inline void pgtable_init(void)
2186 {
2187         ptlock_cache_init();
2188         pgtable_cache_init();
2189 }
2190
2191 static inline bool pgtable_pte_page_ctor(struct page *page)
2192 {
2193         if (!ptlock_init(page))
2194                 return false;
2195         __SetPageTable(page);
2196         inc_zone_page_state(page, NR_PAGETABLE);
2197         return true;
2198 }
2199
2200 static inline void pgtable_pte_page_dtor(struct page *page)
2201 {
2202         ptlock_free(page);
2203         __ClearPageTable(page);
2204         dec_zone_page_state(page, NR_PAGETABLE);
2205 }
2206
2207 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
2208 ({                                                      \
2209         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
2210         pte_t *__pte = pte_offset_map(pmd, address);    \
2211         *(ptlp) = __ptl;                                \
2212         spin_lock(__ptl);                               \
2213         __pte;                                          \
2214 })
2215
2216 #define pte_unmap_unlock(pte, ptl)      do {            \
2217         spin_unlock(ptl);                               \
2218         pte_unmap(pte);                                 \
2219 } while (0)
2220
2221 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2222
2223 #define pte_alloc_map(mm, pmd, address)                 \
2224         (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2225
2226 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
2227         (pte_alloc(mm, pmd) ?                   \
2228                  NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2229
2230 #define pte_alloc_kernel(pmd, address)                  \
2231         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2232                 NULL: pte_offset_kernel(pmd, address))
2233
2234 #if USE_SPLIT_PMD_PTLOCKS
2235
2236 static struct page *pmd_to_page(pmd_t *pmd)
2237 {
2238         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2239         return virt_to_page((void *)((unsigned long) pmd & mask));
2240 }
2241
2242 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2243 {
2244         return ptlock_ptr(pmd_to_page(pmd));
2245 }
2246
2247 static inline bool pgtable_pmd_page_ctor(struct page *page)
2248 {
2249 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2250         page->pmd_huge_pte = NULL;
2251 #endif
2252         return ptlock_init(page);
2253 }
2254
2255 static inline void pgtable_pmd_page_dtor(struct page *page)
2256 {
2257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2258         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2259 #endif
2260         ptlock_free(page);
2261 }
2262
2263 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2264
2265 #else
2266
2267 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2268 {
2269         return &mm->page_table_lock;
2270 }
2271
2272 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2273 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2274
2275 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2276
2277 #endif
2278
2279 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2280 {
2281         spinlock_t *ptl = pmd_lockptr(mm, pmd);
2282         spin_lock(ptl);
2283         return ptl;
2284 }
2285
2286 /*
2287  * No scalability reason to split PUD locks yet, but follow the same pattern
2288  * as the PMD locks to make it easier if we decide to.  The VM should not be
2289  * considered ready to switch to split PUD locks yet; there may be places
2290  * which need to be converted from page_table_lock.
2291  */
2292 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2293 {
2294         return &mm->page_table_lock;
2295 }
2296
2297 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2298 {
2299         spinlock_t *ptl = pud_lockptr(mm, pud);
2300
2301         spin_lock(ptl);
2302         return ptl;
2303 }
2304
2305 extern void __init pagecache_init(void);
2306 extern void __init free_area_init_memoryless_node(int nid);
2307 extern void free_initmem(void);
2308
2309 /*
2310  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2311  * into the buddy system. The freed pages will be poisoned with pattern
2312  * "poison" if it's within range [0, UCHAR_MAX].
2313  * Return pages freed into the buddy system.
2314  */
2315 extern unsigned long free_reserved_area(void *start, void *end,
2316                                         int poison, const char *s);
2317
2318 #ifdef  CONFIG_HIGHMEM
2319 /*
2320  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2321  * and totalram_pages.
2322  */
2323 extern void free_highmem_page(struct page *page);
2324 #endif
2325
2326 extern void adjust_managed_page_count(struct page *page, long count);
2327 extern void mem_init_print_info(const char *str);
2328
2329 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2330
2331 /* Free the reserved page into the buddy system, so it gets managed. */
2332 static inline void __free_reserved_page(struct page *page)
2333 {
2334         ClearPageReserved(page);
2335         init_page_count(page);
2336         __free_page(page);
2337 }
2338
2339 static inline void free_reserved_page(struct page *page)
2340 {
2341         __free_reserved_page(page);
2342         adjust_managed_page_count(page, 1);
2343 }
2344
2345 static inline void mark_page_reserved(struct page *page)
2346 {
2347         SetPageReserved(page);
2348         adjust_managed_page_count(page, -1);
2349 }
2350
2351 /*
2352  * Default method to free all the __init memory into the buddy system.
2353  * The freed pages will be poisoned with pattern "poison" if it's within
2354  * range [0, UCHAR_MAX].
2355  * Return pages freed into the buddy system.
2356  */
2357 static inline unsigned long free_initmem_default(int poison)
2358 {
2359         extern char __init_begin[], __init_end[];
2360
2361         return free_reserved_area(&__init_begin, &__init_end,
2362                                   poison, "unused kernel");
2363 }
2364
2365 static inline unsigned long get_num_physpages(void)
2366 {
2367         int nid;
2368         unsigned long phys_pages = 0;
2369
2370         for_each_online_node(nid)
2371                 phys_pages += node_present_pages(nid);
2372
2373         return phys_pages;
2374 }
2375
2376 /*
2377  * Using memblock node mappings, an architecture may initialise its
2378  * zones, allocate the backing mem_map and account for memory holes in an
2379  * architecture independent manner.
2380  *
2381  * An architecture is expected to register range of page frames backed by
2382  * physical memory with memblock_add[_node]() before calling
2383  * free_area_init() passing in the PFN each zone ends at. At a basic
2384  * usage, an architecture is expected to do something like
2385  *
2386  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2387  *                                                       max_highmem_pfn};
2388  * for_each_valid_physical_page_range()
2389  *      memblock_add_node(base, size, nid)
2390  * free_area_init(max_zone_pfns);
2391  */
2392 void free_area_init(unsigned long *max_zone_pfn);
2393 unsigned long node_map_pfn_alignment(void);
2394 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2395                                                 unsigned long end_pfn);
2396 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2397                                                 unsigned long end_pfn);
2398 extern void get_pfn_range_for_nid(unsigned int nid,
2399                         unsigned long *start_pfn, unsigned long *end_pfn);
2400 extern unsigned long find_min_pfn_with_active_regions(void);
2401
2402 #ifndef CONFIG_NEED_MULTIPLE_NODES
2403 static inline int early_pfn_to_nid(unsigned long pfn)
2404 {
2405         return 0;
2406 }
2407 #else
2408 /* please see mm/page_alloc.c */
2409 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2410 /* there is a per-arch backend function. */
2411 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2412                                         struct mminit_pfnnid_cache *state);
2413 #endif
2414
2415 extern void set_dma_reserve(unsigned long new_dma_reserve);
2416 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2417                 enum memmap_context, struct vmem_altmap *);
2418 extern void setup_per_zone_wmarks(void);
2419 extern int __meminit init_per_zone_wmark_min(void);
2420 extern void mem_init(void);
2421 extern void __init mmap_init(void);
2422 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2423 extern long si_mem_available(void);
2424 extern void si_meminfo(struct sysinfo * val);
2425 extern void si_meminfo_node(struct sysinfo *val, int nid);
2426 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2427 extern unsigned long arch_reserved_kernel_pages(void);
2428 #endif
2429
2430 extern __printf(3, 4)
2431 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2432
2433 extern void setup_per_cpu_pageset(void);
2434
2435 /* page_alloc.c */
2436 extern int min_free_kbytes;
2437 extern int watermark_boost_factor;
2438 extern int watermark_scale_factor;
2439 extern bool arch_has_descending_max_zone_pfns(void);
2440
2441 /* nommu.c */
2442 extern atomic_long_t mmap_pages_allocated;
2443 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2444
2445 /* interval_tree.c */
2446 void vma_interval_tree_insert(struct vm_area_struct *node,
2447                               struct rb_root_cached *root);
2448 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2449                                     struct vm_area_struct *prev,
2450                                     struct rb_root_cached *root);
2451 void vma_interval_tree_remove(struct vm_area_struct *node,
2452                               struct rb_root_cached *root);
2453 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2454                                 unsigned long start, unsigned long last);
2455 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2456                                 unsigned long start, unsigned long last);
2457
2458 #define vma_interval_tree_foreach(vma, root, start, last)               \
2459         for (vma = vma_interval_tree_iter_first(root, start, last);     \
2460              vma; vma = vma_interval_tree_iter_next(vma, start, last))
2461
2462 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2463                                    struct rb_root_cached *root);
2464 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2465                                    struct rb_root_cached *root);
2466 struct anon_vma_chain *
2467 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2468                                   unsigned long start, unsigned long last);
2469 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2470         struct anon_vma_chain *node, unsigned long start, unsigned long last);
2471 #ifdef CONFIG_DEBUG_VM_RB
2472 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2473 #endif
2474
2475 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2476         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2477              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2478
2479 /* mmap.c */
2480 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2481 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2482         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2483         struct vm_area_struct *expand);
2484 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2485         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2486 {
2487         return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2488 }
2489 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2490         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2491         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2492         struct mempolicy *, struct vm_userfaultfd_ctx);
2493 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2494 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2495         unsigned long addr, int new_below);
2496 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2497         unsigned long addr, int new_below);
2498 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2499 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2500         struct rb_node **, struct rb_node *);
2501 extern void unlink_file_vma(struct vm_area_struct *);
2502 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2503         unsigned long addr, unsigned long len, pgoff_t pgoff,
2504         bool *need_rmap_locks);
2505 extern void exit_mmap(struct mm_struct *);
2506
2507 static inline int check_data_rlimit(unsigned long rlim,
2508                                     unsigned long new,
2509                                     unsigned long start,
2510                                     unsigned long end_data,
2511                                     unsigned long start_data)
2512 {
2513         if (rlim < RLIM_INFINITY) {
2514                 if (((new - start) + (end_data - start_data)) > rlim)
2515                         return -ENOSPC;
2516         }
2517
2518         return 0;
2519 }
2520
2521 extern int mm_take_all_locks(struct mm_struct *mm);
2522 extern void mm_drop_all_locks(struct mm_struct *mm);
2523
2524 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2525 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2526 extern struct file *get_task_exe_file(struct task_struct *task);
2527
2528 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2529 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2530
2531 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2532                                    const struct vm_special_mapping *sm);
2533 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2534                                    unsigned long addr, unsigned long len,
2535                                    unsigned long flags,
2536                                    const struct vm_special_mapping *spec);
2537 /* This is an obsolete alternative to _install_special_mapping. */
2538 extern int install_special_mapping(struct mm_struct *mm,
2539                                    unsigned long addr, unsigned long len,
2540                                    unsigned long flags, struct page **pages);
2541
2542 unsigned long randomize_stack_top(unsigned long stack_top);
2543
2544 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2545
2546 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2547         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2548         struct list_head *uf);
2549 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2550         unsigned long len, unsigned long prot, unsigned long flags,
2551         unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2552 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2553                        struct list_head *uf, bool downgrade);
2554 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2555                      struct list_head *uf);
2556 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2557
2558 #ifdef CONFIG_MMU
2559 extern int __mm_populate(unsigned long addr, unsigned long len,
2560                          int ignore_errors);
2561 static inline void mm_populate(unsigned long addr, unsigned long len)
2562 {
2563         /* Ignore errors */
2564         (void) __mm_populate(addr, len, 1);
2565 }
2566 #else
2567 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2568 #endif
2569
2570 /* These take the mm semaphore themselves */
2571 extern int __must_check vm_brk(unsigned long, unsigned long);
2572 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2573 extern int vm_munmap(unsigned long, size_t);
2574 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2575         unsigned long, unsigned long,
2576         unsigned long, unsigned long);
2577
2578 struct vm_unmapped_area_info {
2579 #define VM_UNMAPPED_AREA_TOPDOWN 1
2580         unsigned long flags;
2581         unsigned long length;
2582         unsigned long low_limit;
2583         unsigned long high_limit;
2584         unsigned long align_mask;
2585         unsigned long align_offset;
2586 };
2587
2588 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2589
2590 /* truncate.c */
2591 extern void truncate_inode_pages(struct address_space *, loff_t);
2592 extern void truncate_inode_pages_range(struct address_space *,
2593                                        loff_t lstart, loff_t lend);
2594 extern void truncate_inode_pages_final(struct address_space *);
2595
2596 /* generic vm_area_ops exported for stackable file systems */
2597 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2598 extern void filemap_map_pages(struct vm_fault *vmf,
2599                 pgoff_t start_pgoff, pgoff_t end_pgoff);
2600 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2601
2602 /* mm/page-writeback.c */
2603 int __must_check write_one_page(struct page *page);
2604 void task_dirty_inc(struct task_struct *tsk);
2605
2606 extern unsigned long stack_guard_gap;
2607 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2608 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2609
2610 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2611 extern int expand_downwards(struct vm_area_struct *vma,
2612                 unsigned long address);
2613 #if VM_GROWSUP
2614 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2615 #else
2616   #define expand_upwards(vma, address) (0)
2617 #endif
2618
2619 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2620 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2621 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2622                                              struct vm_area_struct **pprev);
2623
2624 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2625    NULL if none.  Assume start_addr < end_addr. */
2626 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2627 {
2628         struct vm_area_struct * vma = find_vma(mm,start_addr);
2629
2630         if (vma && end_addr <= vma->vm_start)
2631                 vma = NULL;
2632         return vma;
2633 }
2634
2635 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2636 {
2637         unsigned long vm_start = vma->vm_start;
2638
2639         if (vma->vm_flags & VM_GROWSDOWN) {
2640                 vm_start -= stack_guard_gap;
2641                 if (vm_start > vma->vm_start)
2642                         vm_start = 0;
2643         }
2644         return vm_start;
2645 }
2646
2647 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2648 {
2649         unsigned long vm_end = vma->vm_end;
2650
2651         if (vma->vm_flags & VM_GROWSUP) {
2652                 vm_end += stack_guard_gap;
2653                 if (vm_end < vma->vm_end)
2654                         vm_end = -PAGE_SIZE;
2655         }
2656         return vm_end;
2657 }
2658
2659 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2660 {
2661         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2662 }
2663
2664 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2665 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2666                                 unsigned long vm_start, unsigned long vm_end)
2667 {
2668         struct vm_area_struct *vma = find_vma(mm, vm_start);
2669
2670         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2671                 vma = NULL;
2672
2673         return vma;
2674 }
2675
2676 static inline bool range_in_vma(struct vm_area_struct *vma,
2677                                 unsigned long start, unsigned long end)
2678 {
2679         return (vma && vma->vm_start <= start && end <= vma->vm_end);
2680 }
2681
2682 #ifdef CONFIG_MMU
2683 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2684 void vma_set_page_prot(struct vm_area_struct *vma);
2685 #else
2686 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2687 {
2688         return __pgprot(0);
2689 }
2690 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2691 {
2692         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2693 }
2694 #endif
2695
2696 #ifdef CONFIG_NUMA_BALANCING
2697 unsigned long change_prot_numa(struct vm_area_struct *vma,
2698                         unsigned long start, unsigned long end);
2699 #endif
2700
2701 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2702 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2703                         unsigned long pfn, unsigned long size, pgprot_t);
2704 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2705 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2706                         struct page **pages, unsigned long *num);
2707 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2708                                 unsigned long num);
2709 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2710                                 unsigned long num);
2711 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2712                         unsigned long pfn);
2713 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2714                         unsigned long pfn, pgprot_t pgprot);
2715 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2716                         pfn_t pfn);
2717 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2718                         pfn_t pfn, pgprot_t pgprot);
2719 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2720                 unsigned long addr, pfn_t pfn);
2721 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2722
2723 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2724                                 unsigned long addr, struct page *page)
2725 {
2726         int err = vm_insert_page(vma, addr, page);
2727
2728         if (err == -ENOMEM)
2729                 return VM_FAULT_OOM;
2730         if (err < 0 && err != -EBUSY)
2731                 return VM_FAULT_SIGBUS;
2732
2733         return VM_FAULT_NOPAGE;
2734 }
2735
2736 static inline vm_fault_t vmf_error(int err)
2737 {
2738         if (err == -ENOMEM)
2739                 return VM_FAULT_OOM;
2740         return VM_FAULT_SIGBUS;
2741 }
2742
2743 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2744                          unsigned int foll_flags);
2745
2746 #define FOLL_WRITE      0x01    /* check pte is writable */
2747 #define FOLL_TOUCH      0x02    /* mark page accessed */
2748 #define FOLL_GET        0x04    /* do get_page on page */
2749 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2750 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2751 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2752                                  * and return without waiting upon it */
2753 #define FOLL_POPULATE   0x40    /* fault in page */
2754 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2755 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2756 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2757 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2758 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2759 #define FOLL_MLOCK      0x1000  /* lock present pages */
2760 #define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2761 #define FOLL_COW        0x4000  /* internal GUP flag */
2762 #define FOLL_ANON       0x8000  /* don't do file mappings */
2763 #define FOLL_LONGTERM   0x10000 /* mapping lifetime is indefinite: see below */
2764 #define FOLL_SPLIT_PMD  0x20000 /* split huge pmd before returning */
2765 #define FOLL_PIN        0x40000 /* pages must be released via unpin_user_page */
2766 #define FOLL_FAST_ONLY  0x80000 /* gup_fast: prevent fall-back to slow gup */
2767
2768 /*
2769  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2770  * other. Here is what they mean, and how to use them:
2771  *
2772  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2773  * period _often_ under userspace control.  This is in contrast to
2774  * iov_iter_get_pages(), whose usages are transient.
2775  *
2776  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2777  * lifetime enforced by the filesystem and we need guarantees that longterm
2778  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2779  * the filesystem.  Ideas for this coordination include revoking the longterm
2780  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2781  * added after the problem with filesystems was found FS DAX VMAs are
2782  * specifically failed.  Filesystem pages are still subject to bugs and use of
2783  * FOLL_LONGTERM should be avoided on those pages.
2784  *
2785  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2786  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2787  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2788  * is due to an incompatibility with the FS DAX check and
2789  * FAULT_FLAG_ALLOW_RETRY.
2790  *
2791  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2792  * that region.  And so, CMA attempts to migrate the page before pinning, when
2793  * FOLL_LONGTERM is specified.
2794  *
2795  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2796  * but an additional pin counting system) will be invoked. This is intended for
2797  * anything that gets a page reference and then touches page data (for example,
2798  * Direct IO). This lets the filesystem know that some non-file-system entity is
2799  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2800  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2801  * a call to unpin_user_page().
2802  *
2803  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2804  * and separate refcounting mechanisms, however, and that means that each has
2805  * its own acquire and release mechanisms:
2806  *
2807  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2808  *
2809  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2810  *
2811  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2812  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2813  * calls applied to them, and that's perfectly OK. This is a constraint on the
2814  * callers, not on the pages.)
2815  *
2816  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2817  * directly by the caller. That's in order to help avoid mismatches when
2818  * releasing pages: get_user_pages*() pages must be released via put_page(),
2819  * while pin_user_pages*() pages must be released via unpin_user_page().
2820  *
2821  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2822  */
2823
2824 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2825 {
2826         if (vm_fault & VM_FAULT_OOM)
2827                 return -ENOMEM;
2828         if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2829                 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2830         if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2831                 return -EFAULT;
2832         return 0;
2833 }
2834
2835 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2836 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2837                                unsigned long size, pte_fn_t fn, void *data);
2838 extern int apply_to_existing_page_range(struct mm_struct *mm,
2839                                    unsigned long address, unsigned long size,
2840                                    pte_fn_t fn, void *data);
2841
2842 #ifdef CONFIG_PAGE_POISONING
2843 extern bool page_poisoning_enabled(void);
2844 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2845 #else
2846 static inline bool page_poisoning_enabled(void) { return false; }
2847 static inline void kernel_poison_pages(struct page *page, int numpages,
2848                                         int enable) { }
2849 #endif
2850
2851 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2852 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2853 #else
2854 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2855 #endif
2856 static inline bool want_init_on_alloc(gfp_t flags)
2857 {
2858         if (static_branch_unlikely(&init_on_alloc) &&
2859             !page_poisoning_enabled())
2860                 return true;
2861         return flags & __GFP_ZERO;
2862 }
2863
2864 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2865 DECLARE_STATIC_KEY_TRUE(init_on_free);
2866 #else
2867 DECLARE_STATIC_KEY_FALSE(init_on_free);
2868 #endif
2869 static inline bool want_init_on_free(void)
2870 {
2871         return static_branch_unlikely(&init_on_free) &&
2872                !page_poisoning_enabled();
2873 }
2874
2875 #ifdef CONFIG_DEBUG_PAGEALLOC
2876 extern void init_debug_pagealloc(void);
2877 #else
2878 static inline void init_debug_pagealloc(void) {}
2879 #endif
2880 extern bool _debug_pagealloc_enabled_early;
2881 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2882
2883 static inline bool debug_pagealloc_enabled(void)
2884 {
2885         return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2886                 _debug_pagealloc_enabled_early;
2887 }
2888
2889 /*
2890  * For use in fast paths after init_debug_pagealloc() has run, or when a
2891  * false negative result is not harmful when called too early.
2892  */
2893 static inline bool debug_pagealloc_enabled_static(void)
2894 {
2895         if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2896                 return false;
2897
2898         return static_branch_unlikely(&_debug_pagealloc_enabled);
2899 }
2900
2901 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2902 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2903
2904 /*
2905  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2906  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2907  */
2908 static inline void
2909 kernel_map_pages(struct page *page, int numpages, int enable)
2910 {
2911         __kernel_map_pages(page, numpages, enable);
2912 }
2913 #ifdef CONFIG_HIBERNATION
2914 extern bool kernel_page_present(struct page *page);
2915 #endif  /* CONFIG_HIBERNATION */
2916 #else   /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2917 static inline void
2918 kernel_map_pages(struct page *page, int numpages, int enable) {}
2919 #ifdef CONFIG_HIBERNATION
2920 static inline bool kernel_page_present(struct page *page) { return true; }
2921 #endif  /* CONFIG_HIBERNATION */
2922 #endif  /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2923
2924 #ifdef __HAVE_ARCH_GATE_AREA
2925 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2926 extern int in_gate_area_no_mm(unsigned long addr);
2927 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2928 #else
2929 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2930 {
2931         return NULL;
2932 }
2933 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2934 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2935 {
2936         return 0;
2937 }
2938 #endif  /* __HAVE_ARCH_GATE_AREA */
2939
2940 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2941
2942 #ifdef CONFIG_SYSCTL
2943 extern int sysctl_drop_caches;
2944 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2945                 loff_t *);
2946 #endif
2947
2948 void drop_slab(void);
2949 void drop_slab_node(int nid);
2950
2951 #ifndef CONFIG_MMU
2952 #define randomize_va_space 0
2953 #else
2954 extern int randomize_va_space;
2955 #endif
2956
2957 const char * arch_vma_name(struct vm_area_struct *vma);
2958 #ifdef CONFIG_MMU
2959 void print_vma_addr(char *prefix, unsigned long rip);
2960 #else
2961 static inline void print_vma_addr(char *prefix, unsigned long rip)
2962 {
2963 }
2964 #endif
2965
2966 void *sparse_buffer_alloc(unsigned long size);
2967 struct page * __populate_section_memmap(unsigned long pfn,
2968                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2969 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2970 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2971 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2972 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2973 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2974                             struct vmem_altmap *altmap);
2975 void *vmemmap_alloc_block(unsigned long size, int node);
2976 struct vmem_altmap;
2977 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2978                               struct vmem_altmap *altmap);
2979 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2980 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2981                                int node, struct vmem_altmap *altmap);
2982 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2983                 struct vmem_altmap *altmap);
2984 void vmemmap_populate_print_last(void);
2985 #ifdef CONFIG_MEMORY_HOTPLUG
2986 void vmemmap_free(unsigned long start, unsigned long end,
2987                 struct vmem_altmap *altmap);
2988 #endif
2989 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2990                                   unsigned long nr_pages);
2991
2992 enum mf_flags {
2993         MF_COUNT_INCREASED = 1 << 0,
2994         MF_ACTION_REQUIRED = 1 << 1,
2995         MF_MUST_KILL = 1 << 2,
2996         MF_SOFT_OFFLINE = 1 << 3,
2997 };
2998 extern int memory_failure(unsigned long pfn, int flags);
2999 extern void memory_failure_queue(unsigned long pfn, int flags);
3000 extern void memory_failure_queue_kick(int cpu);
3001 extern int unpoison_memory(unsigned long pfn);
3002 extern int get_hwpoison_page(struct page *page);
3003 #define put_hwpoison_page(page) put_page(page)
3004 extern int sysctl_memory_failure_early_kill;
3005 extern int sysctl_memory_failure_recovery;
3006 extern void shake_page(struct page *p, int access);
3007 extern atomic_long_t num_poisoned_pages __read_mostly;
3008 extern int soft_offline_page(unsigned long pfn, int flags);
3009
3010
3011 /*
3012  * Error handlers for various types of pages.
3013  */
3014 enum mf_result {
3015         MF_IGNORED,     /* Error: cannot be handled */
3016         MF_FAILED,      /* Error: handling failed */
3017         MF_DELAYED,     /* Will be handled later */
3018         MF_RECOVERED,   /* Successfully recovered */
3019 };
3020
3021 enum mf_action_page_type {
3022         MF_MSG_KERNEL,
3023         MF_MSG_KERNEL_HIGH_ORDER,
3024         MF_MSG_SLAB,
3025         MF_MSG_DIFFERENT_COMPOUND,
3026         MF_MSG_POISONED_HUGE,
3027         MF_MSG_HUGE,
3028         MF_MSG_FREE_HUGE,
3029         MF_MSG_NON_PMD_HUGE,
3030         MF_MSG_UNMAP_FAILED,
3031         MF_MSG_DIRTY_SWAPCACHE,
3032         MF_MSG_CLEAN_SWAPCACHE,
3033         MF_MSG_DIRTY_MLOCKED_LRU,
3034         MF_MSG_CLEAN_MLOCKED_LRU,
3035         MF_MSG_DIRTY_UNEVICTABLE_LRU,
3036         MF_MSG_CLEAN_UNEVICTABLE_LRU,
3037         MF_MSG_DIRTY_LRU,
3038         MF_MSG_CLEAN_LRU,
3039         MF_MSG_TRUNCATED_LRU,
3040         MF_MSG_BUDDY,
3041         MF_MSG_BUDDY_2ND,
3042         MF_MSG_DAX,
3043         MF_MSG_UNKNOWN,
3044 };
3045
3046 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3047 extern void clear_huge_page(struct page *page,
3048                             unsigned long addr_hint,
3049                             unsigned int pages_per_huge_page);
3050 extern void copy_user_huge_page(struct page *dst, struct page *src,
3051                                 unsigned long addr_hint,
3052                                 struct vm_area_struct *vma,
3053                                 unsigned int pages_per_huge_page);
3054 extern long copy_huge_page_from_user(struct page *dst_page,
3055                                 const void __user *usr_src,
3056                                 unsigned int pages_per_huge_page,
3057                                 bool allow_pagefault);
3058
3059 /**
3060  * vma_is_special_huge - Are transhuge page-table entries considered special?
3061  * @vma: Pointer to the struct vm_area_struct to consider
3062  *
3063  * Whether transhuge page-table entries are considered "special" following
3064  * the definition in vm_normal_page().
3065  *
3066  * Return: true if transhuge page-table entries should be considered special,
3067  * false otherwise.
3068  */
3069 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3070 {
3071         return vma_is_dax(vma) || (vma->vm_file &&
3072                                    (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3073 }
3074
3075 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3076
3077 #ifdef CONFIG_DEBUG_PAGEALLOC
3078 extern unsigned int _debug_guardpage_minorder;
3079 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3080
3081 static inline unsigned int debug_guardpage_minorder(void)
3082 {
3083         return _debug_guardpage_minorder;
3084 }
3085
3086 static inline bool debug_guardpage_enabled(void)
3087 {
3088         return static_branch_unlikely(&_debug_guardpage_enabled);
3089 }
3090
3091 static inline bool page_is_guard(struct page *page)
3092 {
3093         if (!debug_guardpage_enabled())
3094                 return false;
3095
3096         return PageGuard(page);
3097 }
3098 #else
3099 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3100 static inline bool debug_guardpage_enabled(void) { return false; }
3101 static inline bool page_is_guard(struct page *page) { return false; }
3102 #endif /* CONFIG_DEBUG_PAGEALLOC */
3103
3104 #if MAX_NUMNODES > 1
3105 void __init setup_nr_node_ids(void);
3106 #else
3107 static inline void setup_nr_node_ids(void) {}
3108 #endif
3109
3110 extern int memcmp_pages(struct page *page1, struct page *page2);
3111
3112 static inline int pages_identical(struct page *page1, struct page *page2)
3113 {
3114         return !memcmp_pages(page1, page2);
3115 }
3116
3117 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3118 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3119                                                 pgoff_t first_index, pgoff_t nr,
3120                                                 pgoff_t bitmap_pgoff,
3121                                                 unsigned long *bitmap,
3122                                                 pgoff_t *start,
3123                                                 pgoff_t *end);
3124
3125 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3126                                       pgoff_t first_index, pgoff_t nr);
3127 #endif
3128
3129 extern int sysctl_nr_trim_pages;
3130
3131 #endif /* __KERNEL__ */
3132 #endif /* _LINUX_MM_H */