Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / include / linux / list.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4
5 #include <linux/container_of.h>
6 #include <linux/types.h>
7 #include <linux/stddef.h>
8 #include <linux/poison.h>
9 #include <linux/const.h>
10
11 #include <asm/barrier.h>
12
13 /*
14  * Circular doubly linked list implementation.
15  *
16  * Some of the internal functions ("__xxx") are useful when
17  * manipulating whole lists rather than single entries, as
18  * sometimes we already know the next/prev entries and we can
19  * generate better code by using them directly rather than
20  * using the generic single-entry routines.
21  */
22
23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
24
25 #define LIST_HEAD(name) \
26         struct list_head name = LIST_HEAD_INIT(name)
27
28 /**
29  * INIT_LIST_HEAD - Initialize a list_head structure
30  * @list: list_head structure to be initialized.
31  *
32  * Initializes the list_head to point to itself.  If it is a list header,
33  * the result is an empty list.
34  */
35 static inline void INIT_LIST_HEAD(struct list_head *list)
36 {
37         WRITE_ONCE(list->next, list);
38         list->prev = list;
39 }
40
41 #ifdef CONFIG_DEBUG_LIST
42 extern bool __list_add_valid(struct list_head *new,
43                               struct list_head *prev,
44                               struct list_head *next);
45 extern bool __list_del_entry_valid(struct list_head *entry);
46 #else
47 static inline bool __list_add_valid(struct list_head *new,
48                                 struct list_head *prev,
49                                 struct list_head *next)
50 {
51         return true;
52 }
53 static inline bool __list_del_entry_valid(struct list_head *entry)
54 {
55         return true;
56 }
57 #endif
58
59 /*
60  * Insert a new entry between two known consecutive entries.
61  *
62  * This is only for internal list manipulation where we know
63  * the prev/next entries already!
64  */
65 static inline void __list_add(struct list_head *new,
66                               struct list_head *prev,
67                               struct list_head *next)
68 {
69         if (!__list_add_valid(new, prev, next))
70                 return;
71
72         next->prev = new;
73         new->next = next;
74         new->prev = prev;
75         WRITE_ONCE(prev->next, new);
76 }
77
78 /**
79  * list_add - add a new entry
80  * @new: new entry to be added
81  * @head: list head to add it after
82  *
83  * Insert a new entry after the specified head.
84  * This is good for implementing stacks.
85  */
86 static inline void list_add(struct list_head *new, struct list_head *head)
87 {
88         __list_add(new, head, head->next);
89 }
90
91
92 /**
93  * list_add_tail - add a new entry
94  * @new: new entry to be added
95  * @head: list head to add it before
96  *
97  * Insert a new entry before the specified head.
98  * This is useful for implementing queues.
99  */
100 static inline void list_add_tail(struct list_head *new, struct list_head *head)
101 {
102         __list_add(new, head->prev, head);
103 }
104
105 /*
106  * Delete a list entry by making the prev/next entries
107  * point to each other.
108  *
109  * This is only for internal list manipulation where we know
110  * the prev/next entries already!
111  */
112 static inline void __list_del(struct list_head * prev, struct list_head * next)
113 {
114         next->prev = prev;
115         WRITE_ONCE(prev->next, next);
116 }
117
118 /*
119  * Delete a list entry and clear the 'prev' pointer.
120  *
121  * This is a special-purpose list clearing method used in the networking code
122  * for lists allocated as per-cpu, where we don't want to incur the extra
123  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
124  * needs to check the node 'prev' pointer instead of calling list_empty().
125  */
126 static inline void __list_del_clearprev(struct list_head *entry)
127 {
128         __list_del(entry->prev, entry->next);
129         entry->prev = NULL;
130 }
131
132 static inline void __list_del_entry(struct list_head *entry)
133 {
134         if (!__list_del_entry_valid(entry))
135                 return;
136
137         __list_del(entry->prev, entry->next);
138 }
139
140 /**
141  * list_del - deletes entry from list.
142  * @entry: the element to delete from the list.
143  * Note: list_empty() on entry does not return true after this, the entry is
144  * in an undefined state.
145  */
146 static inline void list_del(struct list_head *entry)
147 {
148         __list_del_entry(entry);
149         entry->next = LIST_POISON1;
150         entry->prev = LIST_POISON2;
151 }
152
153 /**
154  * list_replace - replace old entry by new one
155  * @old : the element to be replaced
156  * @new : the new element to insert
157  *
158  * If @old was empty, it will be overwritten.
159  */
160 static inline void list_replace(struct list_head *old,
161                                 struct list_head *new)
162 {
163         new->next = old->next;
164         new->next->prev = new;
165         new->prev = old->prev;
166         new->prev->next = new;
167 }
168
169 /**
170  * list_replace_init - replace old entry by new one and initialize the old one
171  * @old : the element to be replaced
172  * @new : the new element to insert
173  *
174  * If @old was empty, it will be overwritten.
175  */
176 static inline void list_replace_init(struct list_head *old,
177                                      struct list_head *new)
178 {
179         list_replace(old, new);
180         INIT_LIST_HEAD(old);
181 }
182
183 /**
184  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
185  * @entry1: the location to place entry2
186  * @entry2: the location to place entry1
187  */
188 static inline void list_swap(struct list_head *entry1,
189                              struct list_head *entry2)
190 {
191         struct list_head *pos = entry2->prev;
192
193         list_del(entry2);
194         list_replace(entry1, entry2);
195         if (pos == entry1)
196                 pos = entry2;
197         list_add(entry1, pos);
198 }
199
200 /**
201  * list_del_init - deletes entry from list and reinitialize it.
202  * @entry: the element to delete from the list.
203  */
204 static inline void list_del_init(struct list_head *entry)
205 {
206         __list_del_entry(entry);
207         INIT_LIST_HEAD(entry);
208 }
209
210 /**
211  * list_move - delete from one list and add as another's head
212  * @list: the entry to move
213  * @head: the head that will precede our entry
214  */
215 static inline void list_move(struct list_head *list, struct list_head *head)
216 {
217         __list_del_entry(list);
218         list_add(list, head);
219 }
220
221 /**
222  * list_move_tail - delete from one list and add as another's tail
223  * @list: the entry to move
224  * @head: the head that will follow our entry
225  */
226 static inline void list_move_tail(struct list_head *list,
227                                   struct list_head *head)
228 {
229         __list_del_entry(list);
230         list_add_tail(list, head);
231 }
232
233 /**
234  * list_bulk_move_tail - move a subsection of a list to its tail
235  * @head: the head that will follow our entry
236  * @first: first entry to move
237  * @last: last entry to move, can be the same as first
238  *
239  * Move all entries between @first and including @last before @head.
240  * All three entries must belong to the same linked list.
241  */
242 static inline void list_bulk_move_tail(struct list_head *head,
243                                        struct list_head *first,
244                                        struct list_head *last)
245 {
246         first->prev->next = last->next;
247         last->next->prev = first->prev;
248
249         head->prev->next = first;
250         first->prev = head->prev;
251
252         last->next = head;
253         head->prev = last;
254 }
255
256 /**
257  * list_is_first -- tests whether @list is the first entry in list @head
258  * @list: the entry to test
259  * @head: the head of the list
260  */
261 static inline int list_is_first(const struct list_head *list, const struct list_head *head)
262 {
263         return list->prev == head;
264 }
265
266 /**
267  * list_is_last - tests whether @list is the last entry in list @head
268  * @list: the entry to test
269  * @head: the head of the list
270  */
271 static inline int list_is_last(const struct list_head *list, const struct list_head *head)
272 {
273         return list->next == head;
274 }
275
276 /**
277  * list_is_head - tests whether @list is the list @head
278  * @list: the entry to test
279  * @head: the head of the list
280  */
281 static inline int list_is_head(const struct list_head *list, const struct list_head *head)
282 {
283         return list == head;
284 }
285
286 /**
287  * list_empty - tests whether a list is empty
288  * @head: the list to test.
289  */
290 static inline int list_empty(const struct list_head *head)
291 {
292         return READ_ONCE(head->next) == head;
293 }
294
295 /**
296  * list_del_init_careful - deletes entry from list and reinitialize it.
297  * @entry: the element to delete from the list.
298  *
299  * This is the same as list_del_init(), except designed to be used
300  * together with list_empty_careful() in a way to guarantee ordering
301  * of other memory operations.
302  *
303  * Any memory operations done before a list_del_init_careful() are
304  * guaranteed to be visible after a list_empty_careful() test.
305  */
306 static inline void list_del_init_careful(struct list_head *entry)
307 {
308         __list_del_entry(entry);
309         entry->prev = entry;
310         smp_store_release(&entry->next, entry);
311 }
312
313 /**
314  * list_empty_careful - tests whether a list is empty and not being modified
315  * @head: the list to test
316  *
317  * Description:
318  * tests whether a list is empty _and_ checks that no other CPU might be
319  * in the process of modifying either member (next or prev)
320  *
321  * NOTE: using list_empty_careful() without synchronization
322  * can only be safe if the only activity that can happen
323  * to the list entry is list_del_init(). Eg. it cannot be used
324  * if another CPU could re-list_add() it.
325  */
326 static inline int list_empty_careful(const struct list_head *head)
327 {
328         struct list_head *next = smp_load_acquire(&head->next);
329         return list_is_head(next, head) && (next == head->prev);
330 }
331
332 /**
333  * list_rotate_left - rotate the list to the left
334  * @head: the head of the list
335  */
336 static inline void list_rotate_left(struct list_head *head)
337 {
338         struct list_head *first;
339
340         if (!list_empty(head)) {
341                 first = head->next;
342                 list_move_tail(first, head);
343         }
344 }
345
346 /**
347  * list_rotate_to_front() - Rotate list to specific item.
348  * @list: The desired new front of the list.
349  * @head: The head of the list.
350  *
351  * Rotates list so that @list becomes the new front of the list.
352  */
353 static inline void list_rotate_to_front(struct list_head *list,
354                                         struct list_head *head)
355 {
356         /*
357          * Deletes the list head from the list denoted by @head and
358          * places it as the tail of @list, this effectively rotates the
359          * list so that @list is at the front.
360          */
361         list_move_tail(head, list);
362 }
363
364 /**
365  * list_is_singular - tests whether a list has just one entry.
366  * @head: the list to test.
367  */
368 static inline int list_is_singular(const struct list_head *head)
369 {
370         return !list_empty(head) && (head->next == head->prev);
371 }
372
373 static inline void __list_cut_position(struct list_head *list,
374                 struct list_head *head, struct list_head *entry)
375 {
376         struct list_head *new_first = entry->next;
377         list->next = head->next;
378         list->next->prev = list;
379         list->prev = entry;
380         entry->next = list;
381         head->next = new_first;
382         new_first->prev = head;
383 }
384
385 /**
386  * list_cut_position - cut a list into two
387  * @list: a new list to add all removed entries
388  * @head: a list with entries
389  * @entry: an entry within head, could be the head itself
390  *      and if so we won't cut the list
391  *
392  * This helper moves the initial part of @head, up to and
393  * including @entry, from @head to @list. You should
394  * pass on @entry an element you know is on @head. @list
395  * should be an empty list or a list you do not care about
396  * losing its data.
397  *
398  */
399 static inline void list_cut_position(struct list_head *list,
400                 struct list_head *head, struct list_head *entry)
401 {
402         if (list_empty(head))
403                 return;
404         if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
405                 return;
406         if (list_is_head(entry, head))
407                 INIT_LIST_HEAD(list);
408         else
409                 __list_cut_position(list, head, entry);
410 }
411
412 /**
413  * list_cut_before - cut a list into two, before given entry
414  * @list: a new list to add all removed entries
415  * @head: a list with entries
416  * @entry: an entry within head, could be the head itself
417  *
418  * This helper moves the initial part of @head, up to but
419  * excluding @entry, from @head to @list.  You should pass
420  * in @entry an element you know is on @head.  @list should
421  * be an empty list or a list you do not care about losing
422  * its data.
423  * If @entry == @head, all entries on @head are moved to
424  * @list.
425  */
426 static inline void list_cut_before(struct list_head *list,
427                                    struct list_head *head,
428                                    struct list_head *entry)
429 {
430         if (head->next == entry) {
431                 INIT_LIST_HEAD(list);
432                 return;
433         }
434         list->next = head->next;
435         list->next->prev = list;
436         list->prev = entry->prev;
437         list->prev->next = list;
438         head->next = entry;
439         entry->prev = head;
440 }
441
442 static inline void __list_splice(const struct list_head *list,
443                                  struct list_head *prev,
444                                  struct list_head *next)
445 {
446         struct list_head *first = list->next;
447         struct list_head *last = list->prev;
448
449         first->prev = prev;
450         prev->next = first;
451
452         last->next = next;
453         next->prev = last;
454 }
455
456 /**
457  * list_splice - join two lists, this is designed for stacks
458  * @list: the new list to add.
459  * @head: the place to add it in the first list.
460  */
461 static inline void list_splice(const struct list_head *list,
462                                 struct list_head *head)
463 {
464         if (!list_empty(list))
465                 __list_splice(list, head, head->next);
466 }
467
468 /**
469  * list_splice_tail - join two lists, each list being a queue
470  * @list: the new list to add.
471  * @head: the place to add it in the first list.
472  */
473 static inline void list_splice_tail(struct list_head *list,
474                                 struct list_head *head)
475 {
476         if (!list_empty(list))
477                 __list_splice(list, head->prev, head);
478 }
479
480 /**
481  * list_splice_init - join two lists and reinitialise the emptied list.
482  * @list: the new list to add.
483  * @head: the place to add it in the first list.
484  *
485  * The list at @list is reinitialised
486  */
487 static inline void list_splice_init(struct list_head *list,
488                                     struct list_head *head)
489 {
490         if (!list_empty(list)) {
491                 __list_splice(list, head, head->next);
492                 INIT_LIST_HEAD(list);
493         }
494 }
495
496 /**
497  * list_splice_tail_init - join two lists and reinitialise the emptied list
498  * @list: the new list to add.
499  * @head: the place to add it in the first list.
500  *
501  * Each of the lists is a queue.
502  * The list at @list is reinitialised
503  */
504 static inline void list_splice_tail_init(struct list_head *list,
505                                          struct list_head *head)
506 {
507         if (!list_empty(list)) {
508                 __list_splice(list, head->prev, head);
509                 INIT_LIST_HEAD(list);
510         }
511 }
512
513 /**
514  * list_entry - get the struct for this entry
515  * @ptr:        the &struct list_head pointer.
516  * @type:       the type of the struct this is embedded in.
517  * @member:     the name of the list_head within the struct.
518  */
519 #define list_entry(ptr, type, member) \
520         container_of(ptr, type, member)
521
522 /**
523  * list_first_entry - get the first element from a list
524  * @ptr:        the list head to take the element from.
525  * @type:       the type of the struct this is embedded in.
526  * @member:     the name of the list_head within the struct.
527  *
528  * Note, that list is expected to be not empty.
529  */
530 #define list_first_entry(ptr, type, member) \
531         list_entry((ptr)->next, type, member)
532
533 /**
534  * list_last_entry - get the last element from a list
535  * @ptr:        the list head to take the element from.
536  * @type:       the type of the struct this is embedded in.
537  * @member:     the name of the list_head within the struct.
538  *
539  * Note, that list is expected to be not empty.
540  */
541 #define list_last_entry(ptr, type, member) \
542         list_entry((ptr)->prev, type, member)
543
544 /**
545  * list_first_entry_or_null - get the first element from a list
546  * @ptr:        the list head to take the element from.
547  * @type:       the type of the struct this is embedded in.
548  * @member:     the name of the list_head within the struct.
549  *
550  * Note that if the list is empty, it returns NULL.
551  */
552 #define list_first_entry_or_null(ptr, type, member) ({ \
553         struct list_head *head__ = (ptr); \
554         struct list_head *pos__ = READ_ONCE(head__->next); \
555         pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
556 })
557
558 /**
559  * list_next_entry - get the next element in list
560  * @pos:        the type * to cursor
561  * @member:     the name of the list_head within the struct.
562  */
563 #define list_next_entry(pos, member) \
564         list_entry((pos)->member.next, typeof(*(pos)), member)
565
566 /**
567  * list_prev_entry - get the prev element in list
568  * @pos:        the type * to cursor
569  * @member:     the name of the list_head within the struct.
570  */
571 #define list_prev_entry(pos, member) \
572         list_entry((pos)->member.prev, typeof(*(pos)), member)
573
574 /**
575  * list_for_each        -       iterate over a list
576  * @pos:        the &struct list_head to use as a loop cursor.
577  * @head:       the head for your list.
578  */
579 #define list_for_each(pos, head) \
580         for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
581
582 /**
583  * list_for_each_continue - continue iteration over a list
584  * @pos:        the &struct list_head to use as a loop cursor.
585  * @head:       the head for your list.
586  *
587  * Continue to iterate over a list, continuing after the current position.
588  */
589 #define list_for_each_continue(pos, head) \
590         for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
591
592 /**
593  * list_for_each_prev   -       iterate over a list backwards
594  * @pos:        the &struct list_head to use as a loop cursor.
595  * @head:       the head for your list.
596  */
597 #define list_for_each_prev(pos, head) \
598         for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
599
600 /**
601  * list_for_each_safe - iterate over a list safe against removal of list entry
602  * @pos:        the &struct list_head to use as a loop cursor.
603  * @n:          another &struct list_head to use as temporary storage
604  * @head:       the head for your list.
605  */
606 #define list_for_each_safe(pos, n, head) \
607         for (pos = (head)->next, n = pos->next; \
608              !list_is_head(pos, (head)); \
609              pos = n, n = pos->next)
610
611 /**
612  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
613  * @pos:        the &struct list_head to use as a loop cursor.
614  * @n:          another &struct list_head to use as temporary storage
615  * @head:       the head for your list.
616  */
617 #define list_for_each_prev_safe(pos, n, head) \
618         for (pos = (head)->prev, n = pos->prev; \
619              !list_is_head(pos, (head)); \
620              pos = n, n = pos->prev)
621
622 /**
623  * list_entry_is_head - test if the entry points to the head of the list
624  * @pos:        the type * to cursor
625  * @head:       the head for your list.
626  * @member:     the name of the list_head within the struct.
627  */
628 #define list_entry_is_head(pos, head, member)                           \
629         (&pos->member == (head))
630
631 /**
632  * list_for_each_entry  -       iterate over list of given type
633  * @pos:        the type * to use as a loop cursor.
634  * @head:       the head for your list.
635  * @member:     the name of the list_head within the struct.
636  */
637 #define list_for_each_entry(pos, head, member)                          \
638         for (pos = list_first_entry(head, typeof(*pos), member);        \
639              !list_entry_is_head(pos, head, member);                    \
640              pos = list_next_entry(pos, member))
641
642 /**
643  * list_for_each_entry_reverse - iterate backwards over list of given type.
644  * @pos:        the type * to use as a loop cursor.
645  * @head:       the head for your list.
646  * @member:     the name of the list_head within the struct.
647  */
648 #define list_for_each_entry_reverse(pos, head, member)                  \
649         for (pos = list_last_entry(head, typeof(*pos), member);         \
650              !list_entry_is_head(pos, head, member);                    \
651              pos = list_prev_entry(pos, member))
652
653 /**
654  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
655  * @pos:        the type * to use as a start point
656  * @head:       the head of the list
657  * @member:     the name of the list_head within the struct.
658  *
659  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
660  */
661 #define list_prepare_entry(pos, head, member) \
662         ((pos) ? : list_entry(head, typeof(*pos), member))
663
664 /**
665  * list_for_each_entry_continue - continue iteration over list of given type
666  * @pos:        the type * to use as a loop cursor.
667  * @head:       the head for your list.
668  * @member:     the name of the list_head within the struct.
669  *
670  * Continue to iterate over list of given type, continuing after
671  * the current position.
672  */
673 #define list_for_each_entry_continue(pos, head, member)                 \
674         for (pos = list_next_entry(pos, member);                        \
675              !list_entry_is_head(pos, head, member);                    \
676              pos = list_next_entry(pos, member))
677
678 /**
679  * list_for_each_entry_continue_reverse - iterate backwards from the given point
680  * @pos:        the type * to use as a loop cursor.
681  * @head:       the head for your list.
682  * @member:     the name of the list_head within the struct.
683  *
684  * Start to iterate over list of given type backwards, continuing after
685  * the current position.
686  */
687 #define list_for_each_entry_continue_reverse(pos, head, member)         \
688         for (pos = list_prev_entry(pos, member);                        \
689              !list_entry_is_head(pos, head, member);                    \
690              pos = list_prev_entry(pos, member))
691
692 /**
693  * list_for_each_entry_from - iterate over list of given type from the current point
694  * @pos:        the type * to use as a loop cursor.
695  * @head:       the head for your list.
696  * @member:     the name of the list_head within the struct.
697  *
698  * Iterate over list of given type, continuing from current position.
699  */
700 #define list_for_each_entry_from(pos, head, member)                     \
701         for (; !list_entry_is_head(pos, head, member);                  \
702              pos = list_next_entry(pos, member))
703
704 /**
705  * list_for_each_entry_from_reverse - iterate backwards over list of given type
706  *                                    from the current point
707  * @pos:        the type * to use as a loop cursor.
708  * @head:       the head for your list.
709  * @member:     the name of the list_head within the struct.
710  *
711  * Iterate backwards over list of given type, continuing from current position.
712  */
713 #define list_for_each_entry_from_reverse(pos, head, member)             \
714         for (; !list_entry_is_head(pos, head, member);                  \
715              pos = list_prev_entry(pos, member))
716
717 /**
718  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
719  * @pos:        the type * to use as a loop cursor.
720  * @n:          another type * to use as temporary storage
721  * @head:       the head for your list.
722  * @member:     the name of the list_head within the struct.
723  */
724 #define list_for_each_entry_safe(pos, n, head, member)                  \
725         for (pos = list_first_entry(head, typeof(*pos), member),        \
726                 n = list_next_entry(pos, member);                       \
727              !list_entry_is_head(pos, head, member);                    \
728              pos = n, n = list_next_entry(n, member))
729
730 /**
731  * list_for_each_entry_safe_continue - continue list iteration safe against removal
732  * @pos:        the type * to use as a loop cursor.
733  * @n:          another type * to use as temporary storage
734  * @head:       the head for your list.
735  * @member:     the name of the list_head within the struct.
736  *
737  * Iterate over list of given type, continuing after current point,
738  * safe against removal of list entry.
739  */
740 #define list_for_each_entry_safe_continue(pos, n, head, member)                 \
741         for (pos = list_next_entry(pos, member),                                \
742                 n = list_next_entry(pos, member);                               \
743              !list_entry_is_head(pos, head, member);                            \
744              pos = n, n = list_next_entry(n, member))
745
746 /**
747  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
748  * @pos:        the type * to use as a loop cursor.
749  * @n:          another type * to use as temporary storage
750  * @head:       the head for your list.
751  * @member:     the name of the list_head within the struct.
752  *
753  * Iterate over list of given type from current point, safe against
754  * removal of list entry.
755  */
756 #define list_for_each_entry_safe_from(pos, n, head, member)                     \
757         for (n = list_next_entry(pos, member);                                  \
758              !list_entry_is_head(pos, head, member);                            \
759              pos = n, n = list_next_entry(n, member))
760
761 /**
762  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
763  * @pos:        the type * to use as a loop cursor.
764  * @n:          another type * to use as temporary storage
765  * @head:       the head for your list.
766  * @member:     the name of the list_head within the struct.
767  *
768  * Iterate backwards over list of given type, safe against removal
769  * of list entry.
770  */
771 #define list_for_each_entry_safe_reverse(pos, n, head, member)          \
772         for (pos = list_last_entry(head, typeof(*pos), member),         \
773                 n = list_prev_entry(pos, member);                       \
774              !list_entry_is_head(pos, head, member);                    \
775              pos = n, n = list_prev_entry(n, member))
776
777 /**
778  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
779  * @pos:        the loop cursor used in the list_for_each_entry_safe loop
780  * @n:          temporary storage used in list_for_each_entry_safe
781  * @member:     the name of the list_head within the struct.
782  *
783  * list_safe_reset_next is not safe to use in general if the list may be
784  * modified concurrently (eg. the lock is dropped in the loop body). An
785  * exception to this is if the cursor element (pos) is pinned in the list,
786  * and list_safe_reset_next is called after re-taking the lock and before
787  * completing the current iteration of the loop body.
788  */
789 #define list_safe_reset_next(pos, n, member)                            \
790         n = list_next_entry(pos, member)
791
792 /*
793  * Double linked lists with a single pointer list head.
794  * Mostly useful for hash tables where the two pointer list head is
795  * too wasteful.
796  * You lose the ability to access the tail in O(1).
797  */
798
799 #define HLIST_HEAD_INIT { .first = NULL }
800 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
801 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
802 static inline void INIT_HLIST_NODE(struct hlist_node *h)
803 {
804         h->next = NULL;
805         h->pprev = NULL;
806 }
807
808 /**
809  * hlist_unhashed - Has node been removed from list and reinitialized?
810  * @h: Node to be checked
811  *
812  * Not that not all removal functions will leave a node in unhashed
813  * state.  For example, hlist_nulls_del_init_rcu() does leave the
814  * node in unhashed state, but hlist_nulls_del() does not.
815  */
816 static inline int hlist_unhashed(const struct hlist_node *h)
817 {
818         return !h->pprev;
819 }
820
821 /**
822  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
823  * @h: Node to be checked
824  *
825  * This variant of hlist_unhashed() must be used in lockless contexts
826  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
827  * various WRITE_ONCE() in hlist helpers that are defined below.
828  */
829 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
830 {
831         return !READ_ONCE(h->pprev);
832 }
833
834 /**
835  * hlist_empty - Is the specified hlist_head structure an empty hlist?
836  * @h: Structure to check.
837  */
838 static inline int hlist_empty(const struct hlist_head *h)
839 {
840         return !READ_ONCE(h->first);
841 }
842
843 static inline void __hlist_del(struct hlist_node *n)
844 {
845         struct hlist_node *next = n->next;
846         struct hlist_node **pprev = n->pprev;
847
848         WRITE_ONCE(*pprev, next);
849         if (next)
850                 WRITE_ONCE(next->pprev, pprev);
851 }
852
853 /**
854  * hlist_del - Delete the specified hlist_node from its list
855  * @n: Node to delete.
856  *
857  * Note that this function leaves the node in hashed state.  Use
858  * hlist_del_init() or similar instead to unhash @n.
859  */
860 static inline void hlist_del(struct hlist_node *n)
861 {
862         __hlist_del(n);
863         n->next = LIST_POISON1;
864         n->pprev = LIST_POISON2;
865 }
866
867 /**
868  * hlist_del_init - Delete the specified hlist_node from its list and initialize
869  * @n: Node to delete.
870  *
871  * Note that this function leaves the node in unhashed state.
872  */
873 static inline void hlist_del_init(struct hlist_node *n)
874 {
875         if (!hlist_unhashed(n)) {
876                 __hlist_del(n);
877                 INIT_HLIST_NODE(n);
878         }
879 }
880
881 /**
882  * hlist_add_head - add a new entry at the beginning of the hlist
883  * @n: new entry to be added
884  * @h: hlist head to add it after
885  *
886  * Insert a new entry after the specified head.
887  * This is good for implementing stacks.
888  */
889 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
890 {
891         struct hlist_node *first = h->first;
892         WRITE_ONCE(n->next, first);
893         if (first)
894                 WRITE_ONCE(first->pprev, &n->next);
895         WRITE_ONCE(h->first, n);
896         WRITE_ONCE(n->pprev, &h->first);
897 }
898
899 /**
900  * hlist_add_before - add a new entry before the one specified
901  * @n: new entry to be added
902  * @next: hlist node to add it before, which must be non-NULL
903  */
904 static inline void hlist_add_before(struct hlist_node *n,
905                                     struct hlist_node *next)
906 {
907         WRITE_ONCE(n->pprev, next->pprev);
908         WRITE_ONCE(n->next, next);
909         WRITE_ONCE(next->pprev, &n->next);
910         WRITE_ONCE(*(n->pprev), n);
911 }
912
913 /**
914  * hlist_add_behind - add a new entry after the one specified
915  * @n: new entry to be added
916  * @prev: hlist node to add it after, which must be non-NULL
917  */
918 static inline void hlist_add_behind(struct hlist_node *n,
919                                     struct hlist_node *prev)
920 {
921         WRITE_ONCE(n->next, prev->next);
922         WRITE_ONCE(prev->next, n);
923         WRITE_ONCE(n->pprev, &prev->next);
924
925         if (n->next)
926                 WRITE_ONCE(n->next->pprev, &n->next);
927 }
928
929 /**
930  * hlist_add_fake - create a fake hlist consisting of a single headless node
931  * @n: Node to make a fake list out of
932  *
933  * This makes @n appear to be its own predecessor on a headless hlist.
934  * The point of this is to allow things like hlist_del() to work correctly
935  * in cases where there is no list.
936  */
937 static inline void hlist_add_fake(struct hlist_node *n)
938 {
939         n->pprev = &n->next;
940 }
941
942 /**
943  * hlist_fake: Is this node a fake hlist?
944  * @h: Node to check for being a self-referential fake hlist.
945  */
946 static inline bool hlist_fake(struct hlist_node *h)
947 {
948         return h->pprev == &h->next;
949 }
950
951 /**
952  * hlist_is_singular_node - is node the only element of the specified hlist?
953  * @n: Node to check for singularity.
954  * @h: Header for potentially singular list.
955  *
956  * Check whether the node is the only node of the head without
957  * accessing head, thus avoiding unnecessary cache misses.
958  */
959 static inline bool
960 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
961 {
962         return !n->next && n->pprev == &h->first;
963 }
964
965 /**
966  * hlist_move_list - Move an hlist
967  * @old: hlist_head for old list.
968  * @new: hlist_head for new list.
969  *
970  * Move a list from one list head to another. Fixup the pprev
971  * reference of the first entry if it exists.
972  */
973 static inline void hlist_move_list(struct hlist_head *old,
974                                    struct hlist_head *new)
975 {
976         new->first = old->first;
977         if (new->first)
978                 new->first->pprev = &new->first;
979         old->first = NULL;
980 }
981
982 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
983
984 #define hlist_for_each(pos, head) \
985         for (pos = (head)->first; pos ; pos = pos->next)
986
987 #define hlist_for_each_safe(pos, n, head) \
988         for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
989              pos = n)
990
991 #define hlist_entry_safe(ptr, type, member) \
992         ({ typeof(ptr) ____ptr = (ptr); \
993            ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
994         })
995
996 /**
997  * hlist_for_each_entry - iterate over list of given type
998  * @pos:        the type * to use as a loop cursor.
999  * @head:       the head for your list.
1000  * @member:     the name of the hlist_node within the struct.
1001  */
1002 #define hlist_for_each_entry(pos, head, member)                         \
1003         for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1004              pos;                                                       \
1005              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1006
1007 /**
1008  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1009  * @pos:        the type * to use as a loop cursor.
1010  * @member:     the name of the hlist_node within the struct.
1011  */
1012 #define hlist_for_each_entry_continue(pos, member)                      \
1013         for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1014              pos;                                                       \
1015              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1016
1017 /**
1018  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1019  * @pos:        the type * to use as a loop cursor.
1020  * @member:     the name of the hlist_node within the struct.
1021  */
1022 #define hlist_for_each_entry_from(pos, member)                          \
1023         for (; pos;                                                     \
1024              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1025
1026 /**
1027  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1028  * @pos:        the type * to use as a loop cursor.
1029  * @n:          a &struct hlist_node to use as temporary storage
1030  * @head:       the head for your list.
1031  * @member:     the name of the hlist_node within the struct.
1032  */
1033 #define hlist_for_each_entry_safe(pos, n, head, member)                 \
1034         for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1035              pos && ({ n = pos->member.next; 1; });                     \
1036              pos = hlist_entry_safe(n, typeof(*pos), member))
1037
1038 #endif