Merge tag 'trace-v5.16-5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / include / linux / list.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4
5 #include <linux/container_of.h>
6 #include <linux/types.h>
7 #include <linux/stddef.h>
8 #include <linux/poison.h>
9 #include <linux/const.h>
10
11 #include <asm/barrier.h>
12
13 /*
14  * Circular doubly linked list implementation.
15  *
16  * Some of the internal functions ("__xxx") are useful when
17  * manipulating whole lists rather than single entries, as
18  * sometimes we already know the next/prev entries and we can
19  * generate better code by using them directly rather than
20  * using the generic single-entry routines.
21  */
22
23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
24
25 #define LIST_HEAD(name) \
26         struct list_head name = LIST_HEAD_INIT(name)
27
28 /**
29  * INIT_LIST_HEAD - Initialize a list_head structure
30  * @list: list_head structure to be initialized.
31  *
32  * Initializes the list_head to point to itself.  If it is a list header,
33  * the result is an empty list.
34  */
35 static inline void INIT_LIST_HEAD(struct list_head *list)
36 {
37         WRITE_ONCE(list->next, list);
38         list->prev = list;
39 }
40
41 #ifdef CONFIG_DEBUG_LIST
42 extern bool __list_add_valid(struct list_head *new,
43                               struct list_head *prev,
44                               struct list_head *next);
45 extern bool __list_del_entry_valid(struct list_head *entry);
46 #else
47 static inline bool __list_add_valid(struct list_head *new,
48                                 struct list_head *prev,
49                                 struct list_head *next)
50 {
51         return true;
52 }
53 static inline bool __list_del_entry_valid(struct list_head *entry)
54 {
55         return true;
56 }
57 #endif
58
59 /*
60  * Insert a new entry between two known consecutive entries.
61  *
62  * This is only for internal list manipulation where we know
63  * the prev/next entries already!
64  */
65 static inline void __list_add(struct list_head *new,
66                               struct list_head *prev,
67                               struct list_head *next)
68 {
69         if (!__list_add_valid(new, prev, next))
70                 return;
71
72         next->prev = new;
73         new->next = next;
74         new->prev = prev;
75         WRITE_ONCE(prev->next, new);
76 }
77
78 /**
79  * list_add - add a new entry
80  * @new: new entry to be added
81  * @head: list head to add it after
82  *
83  * Insert a new entry after the specified head.
84  * This is good for implementing stacks.
85  */
86 static inline void list_add(struct list_head *new, struct list_head *head)
87 {
88         __list_add(new, head, head->next);
89 }
90
91
92 /**
93  * list_add_tail - add a new entry
94  * @new: new entry to be added
95  * @head: list head to add it before
96  *
97  * Insert a new entry before the specified head.
98  * This is useful for implementing queues.
99  */
100 static inline void list_add_tail(struct list_head *new, struct list_head *head)
101 {
102         __list_add(new, head->prev, head);
103 }
104
105 /*
106  * Delete a list entry by making the prev/next entries
107  * point to each other.
108  *
109  * This is only for internal list manipulation where we know
110  * the prev/next entries already!
111  */
112 static inline void __list_del(struct list_head * prev, struct list_head * next)
113 {
114         next->prev = prev;
115         WRITE_ONCE(prev->next, next);
116 }
117
118 /*
119  * Delete a list entry and clear the 'prev' pointer.
120  *
121  * This is a special-purpose list clearing method used in the networking code
122  * for lists allocated as per-cpu, where we don't want to incur the extra
123  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
124  * needs to check the node 'prev' pointer instead of calling list_empty().
125  */
126 static inline void __list_del_clearprev(struct list_head *entry)
127 {
128         __list_del(entry->prev, entry->next);
129         entry->prev = NULL;
130 }
131
132 static inline void __list_del_entry(struct list_head *entry)
133 {
134         if (!__list_del_entry_valid(entry))
135                 return;
136
137         __list_del(entry->prev, entry->next);
138 }
139
140 /**
141  * list_del - deletes entry from list.
142  * @entry: the element to delete from the list.
143  * Note: list_empty() on entry does not return true after this, the entry is
144  * in an undefined state.
145  */
146 static inline void list_del(struct list_head *entry)
147 {
148         __list_del_entry(entry);
149         entry->next = LIST_POISON1;
150         entry->prev = LIST_POISON2;
151 }
152
153 /**
154  * list_replace - replace old entry by new one
155  * @old : the element to be replaced
156  * @new : the new element to insert
157  *
158  * If @old was empty, it will be overwritten.
159  */
160 static inline void list_replace(struct list_head *old,
161                                 struct list_head *new)
162 {
163         new->next = old->next;
164         new->next->prev = new;
165         new->prev = old->prev;
166         new->prev->next = new;
167 }
168
169 /**
170  * list_replace_init - replace old entry by new one and initialize the old one
171  * @old : the element to be replaced
172  * @new : the new element to insert
173  *
174  * If @old was empty, it will be overwritten.
175  */
176 static inline void list_replace_init(struct list_head *old,
177                                      struct list_head *new)
178 {
179         list_replace(old, new);
180         INIT_LIST_HEAD(old);
181 }
182
183 /**
184  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
185  * @entry1: the location to place entry2
186  * @entry2: the location to place entry1
187  */
188 static inline void list_swap(struct list_head *entry1,
189                              struct list_head *entry2)
190 {
191         struct list_head *pos = entry2->prev;
192
193         list_del(entry2);
194         list_replace(entry1, entry2);
195         if (pos == entry1)
196                 pos = entry2;
197         list_add(entry1, pos);
198 }
199
200 /**
201  * list_del_init - deletes entry from list and reinitialize it.
202  * @entry: the element to delete from the list.
203  */
204 static inline void list_del_init(struct list_head *entry)
205 {
206         __list_del_entry(entry);
207         INIT_LIST_HEAD(entry);
208 }
209
210 /**
211  * list_move - delete from one list and add as another's head
212  * @list: the entry to move
213  * @head: the head that will precede our entry
214  */
215 static inline void list_move(struct list_head *list, struct list_head *head)
216 {
217         __list_del_entry(list);
218         list_add(list, head);
219 }
220
221 /**
222  * list_move_tail - delete from one list and add as another's tail
223  * @list: the entry to move
224  * @head: the head that will follow our entry
225  */
226 static inline void list_move_tail(struct list_head *list,
227                                   struct list_head *head)
228 {
229         __list_del_entry(list);
230         list_add_tail(list, head);
231 }
232
233 /**
234  * list_bulk_move_tail - move a subsection of a list to its tail
235  * @head: the head that will follow our entry
236  * @first: first entry to move
237  * @last: last entry to move, can be the same as first
238  *
239  * Move all entries between @first and including @last before @head.
240  * All three entries must belong to the same linked list.
241  */
242 static inline void list_bulk_move_tail(struct list_head *head,
243                                        struct list_head *first,
244                                        struct list_head *last)
245 {
246         first->prev->next = last->next;
247         last->next->prev = first->prev;
248
249         head->prev->next = first;
250         first->prev = head->prev;
251
252         last->next = head;
253         head->prev = last;
254 }
255
256 /**
257  * list_is_first -- tests whether @list is the first entry in list @head
258  * @list: the entry to test
259  * @head: the head of the list
260  */
261 static inline int list_is_first(const struct list_head *list,
262                                         const struct list_head *head)
263 {
264         return list->prev == head;
265 }
266
267 /**
268  * list_is_last - tests whether @list is the last entry in list @head
269  * @list: the entry to test
270  * @head: the head of the list
271  */
272 static inline int list_is_last(const struct list_head *list,
273                                 const struct list_head *head)
274 {
275         return list->next == head;
276 }
277
278 /**
279  * list_empty - tests whether a list is empty
280  * @head: the list to test.
281  */
282 static inline int list_empty(const struct list_head *head)
283 {
284         return READ_ONCE(head->next) == head;
285 }
286
287 /**
288  * list_del_init_careful - deletes entry from list and reinitialize it.
289  * @entry: the element to delete from the list.
290  *
291  * This is the same as list_del_init(), except designed to be used
292  * together with list_empty_careful() in a way to guarantee ordering
293  * of other memory operations.
294  *
295  * Any memory operations done before a list_del_init_careful() are
296  * guaranteed to be visible after a list_empty_careful() test.
297  */
298 static inline void list_del_init_careful(struct list_head *entry)
299 {
300         __list_del_entry(entry);
301         entry->prev = entry;
302         smp_store_release(&entry->next, entry);
303 }
304
305 /**
306  * list_empty_careful - tests whether a list is empty and not being modified
307  * @head: the list to test
308  *
309  * Description:
310  * tests whether a list is empty _and_ checks that no other CPU might be
311  * in the process of modifying either member (next or prev)
312  *
313  * NOTE: using list_empty_careful() without synchronization
314  * can only be safe if the only activity that can happen
315  * to the list entry is list_del_init(). Eg. it cannot be used
316  * if another CPU could re-list_add() it.
317  */
318 static inline int list_empty_careful(const struct list_head *head)
319 {
320         struct list_head *next = smp_load_acquire(&head->next);
321         return (next == head) && (next == head->prev);
322 }
323
324 /**
325  * list_rotate_left - rotate the list to the left
326  * @head: the head of the list
327  */
328 static inline void list_rotate_left(struct list_head *head)
329 {
330         struct list_head *first;
331
332         if (!list_empty(head)) {
333                 first = head->next;
334                 list_move_tail(first, head);
335         }
336 }
337
338 /**
339  * list_rotate_to_front() - Rotate list to specific item.
340  * @list: The desired new front of the list.
341  * @head: The head of the list.
342  *
343  * Rotates list so that @list becomes the new front of the list.
344  */
345 static inline void list_rotate_to_front(struct list_head *list,
346                                         struct list_head *head)
347 {
348         /*
349          * Deletes the list head from the list denoted by @head and
350          * places it as the tail of @list, this effectively rotates the
351          * list so that @list is at the front.
352          */
353         list_move_tail(head, list);
354 }
355
356 /**
357  * list_is_singular - tests whether a list has just one entry.
358  * @head: the list to test.
359  */
360 static inline int list_is_singular(const struct list_head *head)
361 {
362         return !list_empty(head) && (head->next == head->prev);
363 }
364
365 static inline void __list_cut_position(struct list_head *list,
366                 struct list_head *head, struct list_head *entry)
367 {
368         struct list_head *new_first = entry->next;
369         list->next = head->next;
370         list->next->prev = list;
371         list->prev = entry;
372         entry->next = list;
373         head->next = new_first;
374         new_first->prev = head;
375 }
376
377 /**
378  * list_cut_position - cut a list into two
379  * @list: a new list to add all removed entries
380  * @head: a list with entries
381  * @entry: an entry within head, could be the head itself
382  *      and if so we won't cut the list
383  *
384  * This helper moves the initial part of @head, up to and
385  * including @entry, from @head to @list. You should
386  * pass on @entry an element you know is on @head. @list
387  * should be an empty list or a list you do not care about
388  * losing its data.
389  *
390  */
391 static inline void list_cut_position(struct list_head *list,
392                 struct list_head *head, struct list_head *entry)
393 {
394         if (list_empty(head))
395                 return;
396         if (list_is_singular(head) &&
397                 (head->next != entry && head != entry))
398                 return;
399         if (entry == head)
400                 INIT_LIST_HEAD(list);
401         else
402                 __list_cut_position(list, head, entry);
403 }
404
405 /**
406  * list_cut_before - cut a list into two, before given entry
407  * @list: a new list to add all removed entries
408  * @head: a list with entries
409  * @entry: an entry within head, could be the head itself
410  *
411  * This helper moves the initial part of @head, up to but
412  * excluding @entry, from @head to @list.  You should pass
413  * in @entry an element you know is on @head.  @list should
414  * be an empty list or a list you do not care about losing
415  * its data.
416  * If @entry == @head, all entries on @head are moved to
417  * @list.
418  */
419 static inline void list_cut_before(struct list_head *list,
420                                    struct list_head *head,
421                                    struct list_head *entry)
422 {
423         if (head->next == entry) {
424                 INIT_LIST_HEAD(list);
425                 return;
426         }
427         list->next = head->next;
428         list->next->prev = list;
429         list->prev = entry->prev;
430         list->prev->next = list;
431         head->next = entry;
432         entry->prev = head;
433 }
434
435 static inline void __list_splice(const struct list_head *list,
436                                  struct list_head *prev,
437                                  struct list_head *next)
438 {
439         struct list_head *first = list->next;
440         struct list_head *last = list->prev;
441
442         first->prev = prev;
443         prev->next = first;
444
445         last->next = next;
446         next->prev = last;
447 }
448
449 /**
450  * list_splice - join two lists, this is designed for stacks
451  * @list: the new list to add.
452  * @head: the place to add it in the first list.
453  */
454 static inline void list_splice(const struct list_head *list,
455                                 struct list_head *head)
456 {
457         if (!list_empty(list))
458                 __list_splice(list, head, head->next);
459 }
460
461 /**
462  * list_splice_tail - join two lists, each list being a queue
463  * @list: the new list to add.
464  * @head: the place to add it in the first list.
465  */
466 static inline void list_splice_tail(struct list_head *list,
467                                 struct list_head *head)
468 {
469         if (!list_empty(list))
470                 __list_splice(list, head->prev, head);
471 }
472
473 /**
474  * list_splice_init - join two lists and reinitialise the emptied list.
475  * @list: the new list to add.
476  * @head: the place to add it in the first list.
477  *
478  * The list at @list is reinitialised
479  */
480 static inline void list_splice_init(struct list_head *list,
481                                     struct list_head *head)
482 {
483         if (!list_empty(list)) {
484                 __list_splice(list, head, head->next);
485                 INIT_LIST_HEAD(list);
486         }
487 }
488
489 /**
490  * list_splice_tail_init - join two lists and reinitialise the emptied list
491  * @list: the new list to add.
492  * @head: the place to add it in the first list.
493  *
494  * Each of the lists is a queue.
495  * The list at @list is reinitialised
496  */
497 static inline void list_splice_tail_init(struct list_head *list,
498                                          struct list_head *head)
499 {
500         if (!list_empty(list)) {
501                 __list_splice(list, head->prev, head);
502                 INIT_LIST_HEAD(list);
503         }
504 }
505
506 /**
507  * list_entry - get the struct for this entry
508  * @ptr:        the &struct list_head pointer.
509  * @type:       the type of the struct this is embedded in.
510  * @member:     the name of the list_head within the struct.
511  */
512 #define list_entry(ptr, type, member) \
513         container_of(ptr, type, member)
514
515 /**
516  * list_first_entry - get the first element from a list
517  * @ptr:        the list head to take the element from.
518  * @type:       the type of the struct this is embedded in.
519  * @member:     the name of the list_head within the struct.
520  *
521  * Note, that list is expected to be not empty.
522  */
523 #define list_first_entry(ptr, type, member) \
524         list_entry((ptr)->next, type, member)
525
526 /**
527  * list_last_entry - get the last element from a list
528  * @ptr:        the list head to take the element from.
529  * @type:       the type of the struct this is embedded in.
530  * @member:     the name of the list_head within the struct.
531  *
532  * Note, that list is expected to be not empty.
533  */
534 #define list_last_entry(ptr, type, member) \
535         list_entry((ptr)->prev, type, member)
536
537 /**
538  * list_first_entry_or_null - get the first element from a list
539  * @ptr:        the list head to take the element from.
540  * @type:       the type of the struct this is embedded in.
541  * @member:     the name of the list_head within the struct.
542  *
543  * Note that if the list is empty, it returns NULL.
544  */
545 #define list_first_entry_or_null(ptr, type, member) ({ \
546         struct list_head *head__ = (ptr); \
547         struct list_head *pos__ = READ_ONCE(head__->next); \
548         pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
549 })
550
551 /**
552  * list_next_entry - get the next element in list
553  * @pos:        the type * to cursor
554  * @member:     the name of the list_head within the struct.
555  */
556 #define list_next_entry(pos, member) \
557         list_entry((pos)->member.next, typeof(*(pos)), member)
558
559 /**
560  * list_prev_entry - get the prev element in list
561  * @pos:        the type * to cursor
562  * @member:     the name of the list_head within the struct.
563  */
564 #define list_prev_entry(pos, member) \
565         list_entry((pos)->member.prev, typeof(*(pos)), member)
566
567 /**
568  * list_for_each        -       iterate over a list
569  * @pos:        the &struct list_head to use as a loop cursor.
570  * @head:       the head for your list.
571  */
572 #define list_for_each(pos, head) \
573         for (pos = (head)->next; pos != (head); pos = pos->next)
574
575 /**
576  * list_for_each_continue - continue iteration over a list
577  * @pos:        the &struct list_head to use as a loop cursor.
578  * @head:       the head for your list.
579  *
580  * Continue to iterate over a list, continuing after the current position.
581  */
582 #define list_for_each_continue(pos, head) \
583         for (pos = pos->next; pos != (head); pos = pos->next)
584
585 /**
586  * list_for_each_prev   -       iterate over a list backwards
587  * @pos:        the &struct list_head to use as a loop cursor.
588  * @head:       the head for your list.
589  */
590 #define list_for_each_prev(pos, head) \
591         for (pos = (head)->prev; pos != (head); pos = pos->prev)
592
593 /**
594  * list_for_each_safe - iterate over a list safe against removal of list entry
595  * @pos:        the &struct list_head to use as a loop cursor.
596  * @n:          another &struct list_head to use as temporary storage
597  * @head:       the head for your list.
598  */
599 #define list_for_each_safe(pos, n, head) \
600         for (pos = (head)->next, n = pos->next; pos != (head); \
601                 pos = n, n = pos->next)
602
603 /**
604  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
605  * @pos:        the &struct list_head to use as a loop cursor.
606  * @n:          another &struct list_head to use as temporary storage
607  * @head:       the head for your list.
608  */
609 #define list_for_each_prev_safe(pos, n, head) \
610         for (pos = (head)->prev, n = pos->prev; \
611              pos != (head); \
612              pos = n, n = pos->prev)
613
614 /**
615  * list_entry_is_head - test if the entry points to the head of the list
616  * @pos:        the type * to cursor
617  * @head:       the head for your list.
618  * @member:     the name of the list_head within the struct.
619  */
620 #define list_entry_is_head(pos, head, member)                           \
621         (&pos->member == (head))
622
623 /**
624  * list_for_each_entry  -       iterate over list of given type
625  * @pos:        the type * to use as a loop cursor.
626  * @head:       the head for your list.
627  * @member:     the name of the list_head within the struct.
628  */
629 #define list_for_each_entry(pos, head, member)                          \
630         for (pos = list_first_entry(head, typeof(*pos), member);        \
631              !list_entry_is_head(pos, head, member);                    \
632              pos = list_next_entry(pos, member))
633
634 /**
635  * list_for_each_entry_reverse - iterate backwards over list of given type.
636  * @pos:        the type * to use as a loop cursor.
637  * @head:       the head for your list.
638  * @member:     the name of the list_head within the struct.
639  */
640 #define list_for_each_entry_reverse(pos, head, member)                  \
641         for (pos = list_last_entry(head, typeof(*pos), member);         \
642              !list_entry_is_head(pos, head, member);                    \
643              pos = list_prev_entry(pos, member))
644
645 /**
646  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
647  * @pos:        the type * to use as a start point
648  * @head:       the head of the list
649  * @member:     the name of the list_head within the struct.
650  *
651  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
652  */
653 #define list_prepare_entry(pos, head, member) \
654         ((pos) ? : list_entry(head, typeof(*pos), member))
655
656 /**
657  * list_for_each_entry_continue - continue iteration over list of given type
658  * @pos:        the type * to use as a loop cursor.
659  * @head:       the head for your list.
660  * @member:     the name of the list_head within the struct.
661  *
662  * Continue to iterate over list of given type, continuing after
663  * the current position.
664  */
665 #define list_for_each_entry_continue(pos, head, member)                 \
666         for (pos = list_next_entry(pos, member);                        \
667              !list_entry_is_head(pos, head, member);                    \
668              pos = list_next_entry(pos, member))
669
670 /**
671  * list_for_each_entry_continue_reverse - iterate backwards from the given point
672  * @pos:        the type * to use as a loop cursor.
673  * @head:       the head for your list.
674  * @member:     the name of the list_head within the struct.
675  *
676  * Start to iterate over list of given type backwards, continuing after
677  * the current position.
678  */
679 #define list_for_each_entry_continue_reverse(pos, head, member)         \
680         for (pos = list_prev_entry(pos, member);                        \
681              !list_entry_is_head(pos, head, member);                    \
682              pos = list_prev_entry(pos, member))
683
684 /**
685  * list_for_each_entry_from - iterate over list of given type from the current point
686  * @pos:        the type * to use as a loop cursor.
687  * @head:       the head for your list.
688  * @member:     the name of the list_head within the struct.
689  *
690  * Iterate over list of given type, continuing from current position.
691  */
692 #define list_for_each_entry_from(pos, head, member)                     \
693         for (; !list_entry_is_head(pos, head, member);                  \
694              pos = list_next_entry(pos, member))
695
696 /**
697  * list_for_each_entry_from_reverse - iterate backwards over list of given type
698  *                                    from the current point
699  * @pos:        the type * to use as a loop cursor.
700  * @head:       the head for your list.
701  * @member:     the name of the list_head within the struct.
702  *
703  * Iterate backwards over list of given type, continuing from current position.
704  */
705 #define list_for_each_entry_from_reverse(pos, head, member)             \
706         for (; !list_entry_is_head(pos, head, member);                  \
707              pos = list_prev_entry(pos, member))
708
709 /**
710  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
711  * @pos:        the type * to use as a loop cursor.
712  * @n:          another type * to use as temporary storage
713  * @head:       the head for your list.
714  * @member:     the name of the list_head within the struct.
715  */
716 #define list_for_each_entry_safe(pos, n, head, member)                  \
717         for (pos = list_first_entry(head, typeof(*pos), member),        \
718                 n = list_next_entry(pos, member);                       \
719              !list_entry_is_head(pos, head, member);                    \
720              pos = n, n = list_next_entry(n, member))
721
722 /**
723  * list_for_each_entry_safe_continue - continue list iteration safe against removal
724  * @pos:        the type * to use as a loop cursor.
725  * @n:          another type * to use as temporary storage
726  * @head:       the head for your list.
727  * @member:     the name of the list_head within the struct.
728  *
729  * Iterate over list of given type, continuing after current point,
730  * safe against removal of list entry.
731  */
732 #define list_for_each_entry_safe_continue(pos, n, head, member)                 \
733         for (pos = list_next_entry(pos, member),                                \
734                 n = list_next_entry(pos, member);                               \
735              !list_entry_is_head(pos, head, member);                            \
736              pos = n, n = list_next_entry(n, member))
737
738 /**
739  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
740  * @pos:        the type * to use as a loop cursor.
741  * @n:          another type * to use as temporary storage
742  * @head:       the head for your list.
743  * @member:     the name of the list_head within the struct.
744  *
745  * Iterate over list of given type from current point, safe against
746  * removal of list entry.
747  */
748 #define list_for_each_entry_safe_from(pos, n, head, member)                     \
749         for (n = list_next_entry(pos, member);                                  \
750              !list_entry_is_head(pos, head, member);                            \
751              pos = n, n = list_next_entry(n, member))
752
753 /**
754  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
755  * @pos:        the type * to use as a loop cursor.
756  * @n:          another type * to use as temporary storage
757  * @head:       the head for your list.
758  * @member:     the name of the list_head within the struct.
759  *
760  * Iterate backwards over list of given type, safe against removal
761  * of list entry.
762  */
763 #define list_for_each_entry_safe_reverse(pos, n, head, member)          \
764         for (pos = list_last_entry(head, typeof(*pos), member),         \
765                 n = list_prev_entry(pos, member);                       \
766              !list_entry_is_head(pos, head, member);                    \
767              pos = n, n = list_prev_entry(n, member))
768
769 /**
770  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
771  * @pos:        the loop cursor used in the list_for_each_entry_safe loop
772  * @n:          temporary storage used in list_for_each_entry_safe
773  * @member:     the name of the list_head within the struct.
774  *
775  * list_safe_reset_next is not safe to use in general if the list may be
776  * modified concurrently (eg. the lock is dropped in the loop body). An
777  * exception to this is if the cursor element (pos) is pinned in the list,
778  * and list_safe_reset_next is called after re-taking the lock and before
779  * completing the current iteration of the loop body.
780  */
781 #define list_safe_reset_next(pos, n, member)                            \
782         n = list_next_entry(pos, member)
783
784 /*
785  * Double linked lists with a single pointer list head.
786  * Mostly useful for hash tables where the two pointer list head is
787  * too wasteful.
788  * You lose the ability to access the tail in O(1).
789  */
790
791 #define HLIST_HEAD_INIT { .first = NULL }
792 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
793 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
794 static inline void INIT_HLIST_NODE(struct hlist_node *h)
795 {
796         h->next = NULL;
797         h->pprev = NULL;
798 }
799
800 /**
801  * hlist_unhashed - Has node been removed from list and reinitialized?
802  * @h: Node to be checked
803  *
804  * Not that not all removal functions will leave a node in unhashed
805  * state.  For example, hlist_nulls_del_init_rcu() does leave the
806  * node in unhashed state, but hlist_nulls_del() does not.
807  */
808 static inline int hlist_unhashed(const struct hlist_node *h)
809 {
810         return !h->pprev;
811 }
812
813 /**
814  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
815  * @h: Node to be checked
816  *
817  * This variant of hlist_unhashed() must be used in lockless contexts
818  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
819  * various WRITE_ONCE() in hlist helpers that are defined below.
820  */
821 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
822 {
823         return !READ_ONCE(h->pprev);
824 }
825
826 /**
827  * hlist_empty - Is the specified hlist_head structure an empty hlist?
828  * @h: Structure to check.
829  */
830 static inline int hlist_empty(const struct hlist_head *h)
831 {
832         return !READ_ONCE(h->first);
833 }
834
835 static inline void __hlist_del(struct hlist_node *n)
836 {
837         struct hlist_node *next = n->next;
838         struct hlist_node **pprev = n->pprev;
839
840         WRITE_ONCE(*pprev, next);
841         if (next)
842                 WRITE_ONCE(next->pprev, pprev);
843 }
844
845 /**
846  * hlist_del - Delete the specified hlist_node from its list
847  * @n: Node to delete.
848  *
849  * Note that this function leaves the node in hashed state.  Use
850  * hlist_del_init() or similar instead to unhash @n.
851  */
852 static inline void hlist_del(struct hlist_node *n)
853 {
854         __hlist_del(n);
855         n->next = LIST_POISON1;
856         n->pprev = LIST_POISON2;
857 }
858
859 /**
860  * hlist_del_init - Delete the specified hlist_node from its list and initialize
861  * @n: Node to delete.
862  *
863  * Note that this function leaves the node in unhashed state.
864  */
865 static inline void hlist_del_init(struct hlist_node *n)
866 {
867         if (!hlist_unhashed(n)) {
868                 __hlist_del(n);
869                 INIT_HLIST_NODE(n);
870         }
871 }
872
873 /**
874  * hlist_add_head - add a new entry at the beginning of the hlist
875  * @n: new entry to be added
876  * @h: hlist head to add it after
877  *
878  * Insert a new entry after the specified head.
879  * This is good for implementing stacks.
880  */
881 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
882 {
883         struct hlist_node *first = h->first;
884         WRITE_ONCE(n->next, first);
885         if (first)
886                 WRITE_ONCE(first->pprev, &n->next);
887         WRITE_ONCE(h->first, n);
888         WRITE_ONCE(n->pprev, &h->first);
889 }
890
891 /**
892  * hlist_add_before - add a new entry before the one specified
893  * @n: new entry to be added
894  * @next: hlist node to add it before, which must be non-NULL
895  */
896 static inline void hlist_add_before(struct hlist_node *n,
897                                     struct hlist_node *next)
898 {
899         WRITE_ONCE(n->pprev, next->pprev);
900         WRITE_ONCE(n->next, next);
901         WRITE_ONCE(next->pprev, &n->next);
902         WRITE_ONCE(*(n->pprev), n);
903 }
904
905 /**
906  * hlist_add_behind - add a new entry after the one specified
907  * @n: new entry to be added
908  * @prev: hlist node to add it after, which must be non-NULL
909  */
910 static inline void hlist_add_behind(struct hlist_node *n,
911                                     struct hlist_node *prev)
912 {
913         WRITE_ONCE(n->next, prev->next);
914         WRITE_ONCE(prev->next, n);
915         WRITE_ONCE(n->pprev, &prev->next);
916
917         if (n->next)
918                 WRITE_ONCE(n->next->pprev, &n->next);
919 }
920
921 /**
922  * hlist_add_fake - create a fake hlist consisting of a single headless node
923  * @n: Node to make a fake list out of
924  *
925  * This makes @n appear to be its own predecessor on a headless hlist.
926  * The point of this is to allow things like hlist_del() to work correctly
927  * in cases where there is no list.
928  */
929 static inline void hlist_add_fake(struct hlist_node *n)
930 {
931         n->pprev = &n->next;
932 }
933
934 /**
935  * hlist_fake: Is this node a fake hlist?
936  * @h: Node to check for being a self-referential fake hlist.
937  */
938 static inline bool hlist_fake(struct hlist_node *h)
939 {
940         return h->pprev == &h->next;
941 }
942
943 /**
944  * hlist_is_singular_node - is node the only element of the specified hlist?
945  * @n: Node to check for singularity.
946  * @h: Header for potentially singular list.
947  *
948  * Check whether the node is the only node of the head without
949  * accessing head, thus avoiding unnecessary cache misses.
950  */
951 static inline bool
952 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
953 {
954         return !n->next && n->pprev == &h->first;
955 }
956
957 /**
958  * hlist_move_list - Move an hlist
959  * @old: hlist_head for old list.
960  * @new: hlist_head for new list.
961  *
962  * Move a list from one list head to another. Fixup the pprev
963  * reference of the first entry if it exists.
964  */
965 static inline void hlist_move_list(struct hlist_head *old,
966                                    struct hlist_head *new)
967 {
968         new->first = old->first;
969         if (new->first)
970                 new->first->pprev = &new->first;
971         old->first = NULL;
972 }
973
974 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
975
976 #define hlist_for_each(pos, head) \
977         for (pos = (head)->first; pos ; pos = pos->next)
978
979 #define hlist_for_each_safe(pos, n, head) \
980         for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
981              pos = n)
982
983 #define hlist_entry_safe(ptr, type, member) \
984         ({ typeof(ptr) ____ptr = (ptr); \
985            ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
986         })
987
988 /**
989  * hlist_for_each_entry - iterate over list of given type
990  * @pos:        the type * to use as a loop cursor.
991  * @head:       the head for your list.
992  * @member:     the name of the hlist_node within the struct.
993  */
994 #define hlist_for_each_entry(pos, head, member)                         \
995         for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
996              pos;                                                       \
997              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
998
999 /**
1000  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1001  * @pos:        the type * to use as a loop cursor.
1002  * @member:     the name of the hlist_node within the struct.
1003  */
1004 #define hlist_for_each_entry_continue(pos, member)                      \
1005         for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1006              pos;                                                       \
1007              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1008
1009 /**
1010  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1011  * @pos:        the type * to use as a loop cursor.
1012  * @member:     the name of the hlist_node within the struct.
1013  */
1014 #define hlist_for_each_entry_from(pos, member)                          \
1015         for (; pos;                                                     \
1016              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1017
1018 /**
1019  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1020  * @pos:        the type * to use as a loop cursor.
1021  * @n:          a &struct hlist_node to use as temporary storage
1022  * @head:       the head for your list.
1023  * @member:     the name of the hlist_node within the struct.
1024  */
1025 #define hlist_for_each_entry_safe(pos, n, head, member)                 \
1026         for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1027              pos && ({ n = pos->member.next; 1; });                     \
1028              pos = hlist_entry_safe(n, typeof(*pos), member))
1029
1030 #endif