Merge tag 'microblaze-v5.20' of git://git.monstr.eu/linux-2.6-microblaze
[linux-2.6-microblaze.git] / include / linux / highmem.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/mm.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12
13 #include "highmem-internal.h"
14
15 /**
16  * kmap - Map a page for long term usage
17  * @page:       Pointer to the page to be mapped
18  *
19  * Returns: The virtual address of the mapping
20  *
21  * Can only be invoked from preemptible task context because on 32bit
22  * systems with CONFIG_HIGHMEM enabled this function might sleep.
23  *
24  * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
25  * this returns the virtual address of the direct kernel mapping.
26  *
27  * The returned virtual address is globally visible and valid up to the
28  * point where it is unmapped via kunmap(). The pointer can be handed to
29  * other contexts.
30  *
31  * For highmem pages on 32bit systems this can be slow as the mapping space
32  * is limited and protected by a global lock. In case that there is no
33  * mapping slot available the function blocks until a slot is released via
34  * kunmap().
35  */
36 static inline void *kmap(struct page *page);
37
38 /**
39  * kunmap - Unmap the virtual address mapped by kmap()
40  * @page:       Pointer to the page which was mapped by kmap()
41  *
42  * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
43  * pages in the low memory area.
44  */
45 static inline void kunmap(struct page *page);
46
47 /**
48  * kmap_to_page - Get the page for a kmap'ed address
49  * @addr:       The address to look up
50  *
51  * Returns: The page which is mapped to @addr.
52  */
53 static inline struct page *kmap_to_page(void *addr);
54
55 /**
56  * kmap_flush_unused - Flush all unused kmap mappings in order to
57  *                     remove stray mappings
58  */
59 static inline void kmap_flush_unused(void);
60
61 /**
62  * kmap_local_page - Map a page for temporary usage
63  * @page:       Pointer to the page to be mapped
64  *
65  * Returns: The virtual address of the mapping
66  *
67  * Can be invoked from any context.
68  *
69  * Requires careful handling when nesting multiple mappings because the map
70  * management is stack based. The unmap has to be in the reverse order of
71  * the map operation:
72  *
73  * addr1 = kmap_local_page(page1);
74  * addr2 = kmap_local_page(page2);
75  * ...
76  * kunmap_local(addr2);
77  * kunmap_local(addr1);
78  *
79  * Unmapping addr1 before addr2 is invalid and causes malfunction.
80  *
81  * Contrary to kmap() mappings the mapping is only valid in the context of
82  * the caller and cannot be handed to other contexts.
83  *
84  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
85  * virtual address of the direct mapping. Only real highmem pages are
86  * temporarily mapped.
87  *
88  * While it is significantly faster than kmap() for the higmem case it
89  * comes with restrictions about the pointer validity. Only use when really
90  * necessary.
91  *
92  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93  * disabling migration in order to keep the virtual address stable across
94  * preemption. No caller of kmap_local_page() can rely on this side effect.
95  */
96 static inline void *kmap_local_page(struct page *page);
97
98 /**
99  * kmap_local_folio - Map a page in this folio for temporary usage
100  * @folio: The folio containing the page.
101  * @offset: The byte offset within the folio which identifies the page.
102  *
103  * Requires careful handling when nesting multiple mappings because the map
104  * management is stack based. The unmap has to be in the reverse order of
105  * the map operation::
106  *
107  *   addr1 = kmap_local_folio(folio1, offset1);
108  *   addr2 = kmap_local_folio(folio2, offset2);
109  *   ...
110  *   kunmap_local(addr2);
111  *   kunmap_local(addr1);
112  *
113  * Unmapping addr1 before addr2 is invalid and causes malfunction.
114  *
115  * Contrary to kmap() mappings the mapping is only valid in the context of
116  * the caller and cannot be handed to other contexts.
117  *
118  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119  * virtual address of the direct mapping. Only real highmem pages are
120  * temporarily mapped.
121  *
122  * While it is significantly faster than kmap() for the higmem case it
123  * comes with restrictions about the pointer validity. Only use when really
124  * necessary.
125  *
126  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
127  * disabling migration in order to keep the virtual address stable across
128  * preemption. No caller of kmap_local_folio() can rely on this side effect.
129  *
130  * Context: Can be invoked from any context.
131  * Return: The virtual address of @offset.
132  */
133 static inline void *kmap_local_folio(struct folio *folio, size_t offset);
134
135 /**
136  * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
137  * @page:       Pointer to the page to be mapped
138  *
139  * Returns: The virtual address of the mapping
140  *
141  * In fact a wrapper around kmap_local_page() which also disables pagefaults
142  * and, depending on PREEMPT_RT configuration, also CPU migration and
143  * preemption. Therefore users should not count on the latter two side effects.
144  *
145  * Mappings should always be released by kunmap_atomic().
146  *
147  * Do not use in new code. Use kmap_local_page() instead.
148  *
149  * It is used in atomic context when code wants to access the contents of a
150  * page that might be allocated from high memory (see __GFP_HIGHMEM), for
151  * example a page in the pagecache.  The API has two functions, and they
152  * can be used in a manner similar to the following::
153  *
154  *   // Find the page of interest.
155  *   struct page *page = find_get_page(mapping, offset);
156  *
157  *   // Gain access to the contents of that page.
158  *   void *vaddr = kmap_atomic(page);
159  *
160  *   // Do something to the contents of that page.
161  *   memset(vaddr, 0, PAGE_SIZE);
162  *
163  *   // Unmap that page.
164  *   kunmap_atomic(vaddr);
165  *
166  * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
167  * call, not the argument.
168  *
169  * If you need to map two pages because you want to copy from one page to
170  * another you need to keep the kmap_atomic calls strictly nested, like:
171  *
172  * vaddr1 = kmap_atomic(page1);
173  * vaddr2 = kmap_atomic(page2);
174  *
175  * memcpy(vaddr1, vaddr2, PAGE_SIZE);
176  *
177  * kunmap_atomic(vaddr2);
178  * kunmap_atomic(vaddr1);
179  */
180 static inline void *kmap_atomic(struct page *page);
181
182 /* Highmem related interfaces for management code */
183 static inline unsigned int nr_free_highpages(void);
184 static inline unsigned long totalhigh_pages(void);
185
186 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
187 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
188 {
189 }
190 #endif
191
192 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
193 static inline void flush_kernel_vmap_range(void *vaddr, int size)
194 {
195 }
196 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
197 {
198 }
199 #endif
200
201 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
202 #ifndef clear_user_highpage
203 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
204 {
205         void *addr = kmap_local_page(page);
206         clear_user_page(addr, vaddr, page);
207         kunmap_local(addr);
208 }
209 #endif
210
211 #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
212 /**
213  * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
214  * @vma: The VMA the page is to be allocated for
215  * @vaddr: The virtual address the page will be inserted into
216  *
217  * Returns: The allocated and zeroed HIGHMEM page
218  *
219  * This function will allocate a page for a VMA that the caller knows will
220  * be able to migrate in the future using move_pages() or reclaimed
221  *
222  * An architecture may override this function by defining
223  * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
224  * implementation.
225  */
226 static inline struct page *
227 alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
228                                    unsigned long vaddr)
229 {
230         struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
231
232         if (page)
233                 clear_user_highpage(page, vaddr);
234
235         return page;
236 }
237 #endif
238
239 static inline void clear_highpage(struct page *page)
240 {
241         void *kaddr = kmap_local_page(page);
242         clear_page(kaddr);
243         kunmap_local(kaddr);
244 }
245
246 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
247
248 static inline void tag_clear_highpage(struct page *page)
249 {
250 }
251
252 #endif
253
254 /*
255  * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
256  * If we pass in a head page, we can zero up to the size of the compound page.
257  */
258 #ifdef CONFIG_HIGHMEM
259 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
260                 unsigned start2, unsigned end2);
261 #else
262 static inline void zero_user_segments(struct page *page,
263                 unsigned start1, unsigned end1,
264                 unsigned start2, unsigned end2)
265 {
266         void *kaddr = kmap_local_page(page);
267         unsigned int i;
268
269         BUG_ON(end1 > page_size(page) || end2 > page_size(page));
270
271         if (end1 > start1)
272                 memset(kaddr + start1, 0, end1 - start1);
273
274         if (end2 > start2)
275                 memset(kaddr + start2, 0, end2 - start2);
276
277         kunmap_local(kaddr);
278         for (i = 0; i < compound_nr(page); i++)
279                 flush_dcache_page(page + i);
280 }
281 #endif
282
283 static inline void zero_user_segment(struct page *page,
284         unsigned start, unsigned end)
285 {
286         zero_user_segments(page, start, end, 0, 0);
287 }
288
289 static inline void zero_user(struct page *page,
290         unsigned start, unsigned size)
291 {
292         zero_user_segments(page, start, start + size, 0, 0);
293 }
294
295 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
296
297 static inline void copy_user_highpage(struct page *to, struct page *from,
298         unsigned long vaddr, struct vm_area_struct *vma)
299 {
300         char *vfrom, *vto;
301
302         vfrom = kmap_local_page(from);
303         vto = kmap_local_page(to);
304         copy_user_page(vto, vfrom, vaddr, to);
305         kunmap_local(vto);
306         kunmap_local(vfrom);
307 }
308
309 #endif
310
311 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
312
313 static inline void copy_highpage(struct page *to, struct page *from)
314 {
315         char *vfrom, *vto;
316
317         vfrom = kmap_local_page(from);
318         vto = kmap_local_page(to);
319         copy_page(vto, vfrom);
320         kunmap_local(vto);
321         kunmap_local(vfrom);
322 }
323
324 #endif
325
326 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
327                                struct page *src_page, size_t src_off,
328                                size_t len)
329 {
330         char *dst = kmap_local_page(dst_page);
331         char *src = kmap_local_page(src_page);
332
333         VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
334         memcpy(dst + dst_off, src + src_off, len);
335         kunmap_local(src);
336         kunmap_local(dst);
337 }
338
339 static inline void memmove_page(struct page *dst_page, size_t dst_off,
340                                struct page *src_page, size_t src_off,
341                                size_t len)
342 {
343         char *dst = kmap_local_page(dst_page);
344         char *src = kmap_local_page(src_page);
345
346         VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
347         memmove(dst + dst_off, src + src_off, len);
348         kunmap_local(src);
349         kunmap_local(dst);
350 }
351
352 static inline void memset_page(struct page *page, size_t offset, int val,
353                                size_t len)
354 {
355         char *addr = kmap_local_page(page);
356
357         VM_BUG_ON(offset + len > PAGE_SIZE);
358         memset(addr + offset, val, len);
359         kunmap_local(addr);
360 }
361
362 static inline void memcpy_from_page(char *to, struct page *page,
363                                     size_t offset, size_t len)
364 {
365         char *from = kmap_local_page(page);
366
367         VM_BUG_ON(offset + len > PAGE_SIZE);
368         memcpy(to, from + offset, len);
369         kunmap_local(from);
370 }
371
372 static inline void memcpy_to_page(struct page *page, size_t offset,
373                                   const char *from, size_t len)
374 {
375         char *to = kmap_local_page(page);
376
377         VM_BUG_ON(offset + len > PAGE_SIZE);
378         memcpy(to + offset, from, len);
379         flush_dcache_page(page);
380         kunmap_local(to);
381 }
382
383 static inline void memzero_page(struct page *page, size_t offset, size_t len)
384 {
385         char *addr = kmap_local_page(page);
386
387         VM_BUG_ON(offset + len > PAGE_SIZE);
388         memset(addr + offset, 0, len);
389         flush_dcache_page(page);
390         kunmap_local(addr);
391 }
392
393 /**
394  * folio_zero_segments() - Zero two byte ranges in a folio.
395  * @folio: The folio to write to.
396  * @start1: The first byte to zero.
397  * @xend1: One more than the last byte in the first range.
398  * @start2: The first byte to zero in the second range.
399  * @xend2: One more than the last byte in the second range.
400  */
401 static inline void folio_zero_segments(struct folio *folio,
402                 size_t start1, size_t xend1, size_t start2, size_t xend2)
403 {
404         zero_user_segments(&folio->page, start1, xend1, start2, xend2);
405 }
406
407 /**
408  * folio_zero_segment() - Zero a byte range in a folio.
409  * @folio: The folio to write to.
410  * @start: The first byte to zero.
411  * @xend: One more than the last byte to zero.
412  */
413 static inline void folio_zero_segment(struct folio *folio,
414                 size_t start, size_t xend)
415 {
416         zero_user_segments(&folio->page, start, xend, 0, 0);
417 }
418
419 /**
420  * folio_zero_range() - Zero a byte range in a folio.
421  * @folio: The folio to write to.
422  * @start: The first byte to zero.
423  * @length: The number of bytes to zero.
424  */
425 static inline void folio_zero_range(struct folio *folio,
426                 size_t start, size_t length)
427 {
428         zero_user_segments(&folio->page, start, start + length, 0, 0);
429 }
430
431 #endif /* _LINUX_HIGHMEM_H */