Merge tag 'drm-fixes-5.3-2019-07-24' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / include / linux / fscrypt.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19
20 #define FS_CRYPTO_BLOCK_SIZE            16
21
22 struct fscrypt_ctx;
23 struct fscrypt_info;
24
25 struct fscrypt_str {
26         unsigned char *name;
27         u32 len;
28 };
29
30 struct fscrypt_name {
31         const struct qstr *usr_fname;
32         struct fscrypt_str disk_name;
33         u32 hash;
34         u32 minor_hash;
35         struct fscrypt_str crypto_buf;
36         bool is_ciphertext_name;
37 };
38
39 #define FSTR_INIT(n, l)         { .name = n, .len = l }
40 #define FSTR_TO_QSTR(f)         QSTR_INIT((f)->name, (f)->len)
41 #define fname_name(p)           ((p)->disk_name.name)
42 #define fname_len(p)            ((p)->disk_name.len)
43
44 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
45 #define FSCRYPT_SET_CONTEXT_MAX_SIZE    28
46
47 #ifdef CONFIG_FS_ENCRYPTION
48 /*
49  * fscrypt superblock flags
50  */
51 #define FS_CFLG_OWN_PAGES (1U << 1)
52
53 /*
54  * crypto operations for filesystems
55  */
56 struct fscrypt_operations {
57         unsigned int flags;
58         const char *key_prefix;
59         int (*get_context)(struct inode *, void *, size_t);
60         int (*set_context)(struct inode *, const void *, size_t, void *);
61         bool (*dummy_context)(struct inode *);
62         bool (*empty_dir)(struct inode *);
63         unsigned int max_namelen;
64 };
65
66 /* Decryption work */
67 struct fscrypt_ctx {
68         union {
69                 struct {
70                         struct bio *bio;
71                         struct work_struct work;
72                 };
73                 struct list_head free_list;     /* Free list */
74         };
75         u8 flags;                               /* Flags */
76 };
77
78 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
79 {
80         /* pairs with cmpxchg_release() in fscrypt_get_encryption_info() */
81         return READ_ONCE(inode->i_crypt_info) != NULL;
82 }
83
84 static inline bool fscrypt_dummy_context_enabled(struct inode *inode)
85 {
86         return inode->i_sb->s_cop->dummy_context &&
87                 inode->i_sb->s_cop->dummy_context(inode);
88 }
89
90 /*
91  * When d_splice_alias() moves a directory's encrypted alias to its decrypted
92  * alias as a result of the encryption key being added, DCACHE_ENCRYPTED_NAME
93  * must be cleared.  Note that we don't have to support arbitrary moves of this
94  * flag because fscrypt doesn't allow encrypted aliases to be the source or
95  * target of a rename().
96  */
97 static inline void fscrypt_handle_d_move(struct dentry *dentry)
98 {
99         dentry->d_flags &= ~DCACHE_ENCRYPTED_NAME;
100 }
101
102 /* crypto.c */
103 extern void fscrypt_enqueue_decrypt_work(struct work_struct *);
104 extern struct fscrypt_ctx *fscrypt_get_ctx(gfp_t);
105 extern void fscrypt_release_ctx(struct fscrypt_ctx *);
106
107 extern struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
108                                                      unsigned int len,
109                                                      unsigned int offs,
110                                                      gfp_t gfp_flags);
111 extern int fscrypt_encrypt_block_inplace(const struct inode *inode,
112                                          struct page *page, unsigned int len,
113                                          unsigned int offs, u64 lblk_num,
114                                          gfp_t gfp_flags);
115
116 extern int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
117                                             unsigned int offs);
118 extern int fscrypt_decrypt_block_inplace(const struct inode *inode,
119                                          struct page *page, unsigned int len,
120                                          unsigned int offs, u64 lblk_num);
121
122 static inline bool fscrypt_is_bounce_page(struct page *page)
123 {
124         return page->mapping == NULL;
125 }
126
127 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
128 {
129         return (struct page *)page_private(bounce_page);
130 }
131
132 extern void fscrypt_free_bounce_page(struct page *bounce_page);
133
134 /* policy.c */
135 extern int fscrypt_ioctl_set_policy(struct file *, const void __user *);
136 extern int fscrypt_ioctl_get_policy(struct file *, void __user *);
137 extern int fscrypt_has_permitted_context(struct inode *, struct inode *);
138 extern int fscrypt_inherit_context(struct inode *, struct inode *,
139                                         void *, bool);
140 /* keyinfo.c */
141 extern int fscrypt_get_encryption_info(struct inode *);
142 extern void fscrypt_put_encryption_info(struct inode *);
143 extern void fscrypt_free_inode(struct inode *);
144
145 /* fname.c */
146 extern int fscrypt_setup_filename(struct inode *, const struct qstr *,
147                                 int lookup, struct fscrypt_name *);
148
149 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
150 {
151         kfree(fname->crypto_buf.name);
152 }
153
154 extern int fscrypt_fname_alloc_buffer(const struct inode *, u32,
155                                 struct fscrypt_str *);
156 extern void fscrypt_fname_free_buffer(struct fscrypt_str *);
157 extern int fscrypt_fname_disk_to_usr(struct inode *, u32, u32,
158                         const struct fscrypt_str *, struct fscrypt_str *);
159
160 #define FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE       32
161
162 /* Extracts the second-to-last ciphertext block; see explanation below */
163 #define FSCRYPT_FNAME_DIGEST(name, len) \
164         ((name) + round_down((len) - FS_CRYPTO_BLOCK_SIZE - 1, \
165                              FS_CRYPTO_BLOCK_SIZE))
166
167 #define FSCRYPT_FNAME_DIGEST_SIZE       FS_CRYPTO_BLOCK_SIZE
168
169 /**
170  * fscrypt_digested_name - alternate identifier for an on-disk filename
171  *
172  * When userspace lists an encrypted directory without access to the key,
173  * filenames whose ciphertext is longer than FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE
174  * bytes are shown in this abbreviated form (base64-encoded) rather than as the
175  * full ciphertext (base64-encoded).  This is necessary to allow supporting
176  * filenames up to NAME_MAX bytes, since base64 encoding expands the length.
177  *
178  * To make it possible for filesystems to still find the correct directory entry
179  * despite not knowing the full on-disk name, we encode any filesystem-specific
180  * 'hash' and/or 'minor_hash' which the filesystem may need for its lookups,
181  * followed by the second-to-last ciphertext block of the filename.  Due to the
182  * use of the CBC-CTS encryption mode, the second-to-last ciphertext block
183  * depends on the full plaintext.  (Note that ciphertext stealing causes the
184  * last two blocks to appear "flipped".)  This makes accidental collisions very
185  * unlikely: just a 1 in 2^128 chance for two filenames to collide even if they
186  * share the same filesystem-specific hashes.
187  *
188  * However, this scheme isn't immune to intentional collisions, which can be
189  * created by anyone able to create arbitrary plaintext filenames and view them
190  * without the key.  Making the "digest" be a real cryptographic hash like
191  * SHA-256 over the full ciphertext would prevent this, although it would be
192  * less efficient and harder to implement, especially since the filesystem would
193  * need to calculate it for each directory entry examined during a search.
194  */
195 struct fscrypt_digested_name {
196         u32 hash;
197         u32 minor_hash;
198         u8 digest[FSCRYPT_FNAME_DIGEST_SIZE];
199 };
200
201 /**
202  * fscrypt_match_name() - test whether the given name matches a directory entry
203  * @fname: the name being searched for
204  * @de_name: the name from the directory entry
205  * @de_name_len: the length of @de_name in bytes
206  *
207  * Normally @fname->disk_name will be set, and in that case we simply compare
208  * that to the name stored in the directory entry.  The only exception is that
209  * if we don't have the key for an encrypted directory and a filename in it is
210  * very long, then we won't have the full disk_name and we'll instead need to
211  * match against the fscrypt_digested_name.
212  *
213  * Return: %true if the name matches, otherwise %false.
214  */
215 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
216                                       const u8 *de_name, u32 de_name_len)
217 {
218         if (unlikely(!fname->disk_name.name)) {
219                 const struct fscrypt_digested_name *n =
220                         (const void *)fname->crypto_buf.name;
221                 if (WARN_ON_ONCE(fname->usr_fname->name[0] != '_'))
222                         return false;
223                 if (de_name_len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE)
224                         return false;
225                 return !memcmp(FSCRYPT_FNAME_DIGEST(de_name, de_name_len),
226                                n->digest, FSCRYPT_FNAME_DIGEST_SIZE);
227         }
228
229         if (de_name_len != fname->disk_name.len)
230                 return false;
231         return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
232 }
233
234 /* bio.c */
235 extern void fscrypt_decrypt_bio(struct bio *);
236 extern void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx,
237                                         struct bio *bio);
238 extern int fscrypt_zeroout_range(const struct inode *, pgoff_t, sector_t,
239                                  unsigned int);
240
241 /* hooks.c */
242 extern int fscrypt_file_open(struct inode *inode, struct file *filp);
243 extern int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
244                                   struct dentry *dentry);
245 extern int __fscrypt_prepare_rename(struct inode *old_dir,
246                                     struct dentry *old_dentry,
247                                     struct inode *new_dir,
248                                     struct dentry *new_dentry,
249                                     unsigned int flags);
250 extern int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
251                                     struct fscrypt_name *fname);
252 extern int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
253                                      unsigned int max_len,
254                                      struct fscrypt_str *disk_link);
255 extern int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
256                                      unsigned int len,
257                                      struct fscrypt_str *disk_link);
258 extern const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
259                                        unsigned int max_size,
260                                        struct delayed_call *done);
261 static inline void fscrypt_set_ops(struct super_block *sb,
262                                    const struct fscrypt_operations *s_cop)
263 {
264         sb->s_cop = s_cop;
265 }
266 #else  /* !CONFIG_FS_ENCRYPTION */
267
268 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
269 {
270         return false;
271 }
272
273 static inline bool fscrypt_dummy_context_enabled(struct inode *inode)
274 {
275         return false;
276 }
277
278 static inline void fscrypt_handle_d_move(struct dentry *dentry)
279 {
280 }
281
282 /* crypto.c */
283 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
284 {
285 }
286
287 static inline struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
288 {
289         return ERR_PTR(-EOPNOTSUPP);
290 }
291
292 static inline void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
293 {
294         return;
295 }
296
297 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
298                                                             unsigned int len,
299                                                             unsigned int offs,
300                                                             gfp_t gfp_flags)
301 {
302         return ERR_PTR(-EOPNOTSUPP);
303 }
304
305 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
306                                                 struct page *page,
307                                                 unsigned int len,
308                                                 unsigned int offs, u64 lblk_num,
309                                                 gfp_t gfp_flags)
310 {
311         return -EOPNOTSUPP;
312 }
313
314 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
315                                                    unsigned int len,
316                                                    unsigned int offs)
317 {
318         return -EOPNOTSUPP;
319 }
320
321 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
322                                                 struct page *page,
323                                                 unsigned int len,
324                                                 unsigned int offs, u64 lblk_num)
325 {
326         return -EOPNOTSUPP;
327 }
328
329 static inline bool fscrypt_is_bounce_page(struct page *page)
330 {
331         return false;
332 }
333
334 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
335 {
336         WARN_ON_ONCE(1);
337         return ERR_PTR(-EINVAL);
338 }
339
340 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
341 {
342 }
343
344 /* policy.c */
345 static inline int fscrypt_ioctl_set_policy(struct file *filp,
346                                            const void __user *arg)
347 {
348         return -EOPNOTSUPP;
349 }
350
351 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
352 {
353         return -EOPNOTSUPP;
354 }
355
356 static inline int fscrypt_has_permitted_context(struct inode *parent,
357                                                 struct inode *child)
358 {
359         return 0;
360 }
361
362 static inline int fscrypt_inherit_context(struct inode *parent,
363                                           struct inode *child,
364                                           void *fs_data, bool preload)
365 {
366         return -EOPNOTSUPP;
367 }
368
369 /* keyinfo.c */
370 static inline int fscrypt_get_encryption_info(struct inode *inode)
371 {
372         return -EOPNOTSUPP;
373 }
374
375 static inline void fscrypt_put_encryption_info(struct inode *inode)
376 {
377         return;
378 }
379
380 static inline void fscrypt_free_inode(struct inode *inode)
381 {
382 }
383
384  /* fname.c */
385 static inline int fscrypt_setup_filename(struct inode *dir,
386                                          const struct qstr *iname,
387                                          int lookup, struct fscrypt_name *fname)
388 {
389         if (IS_ENCRYPTED(dir))
390                 return -EOPNOTSUPP;
391
392         memset(fname, 0, sizeof(*fname));
393         fname->usr_fname = iname;
394         fname->disk_name.name = (unsigned char *)iname->name;
395         fname->disk_name.len = iname->len;
396         return 0;
397 }
398
399 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
400 {
401         return;
402 }
403
404 static inline int fscrypt_fname_alloc_buffer(const struct inode *inode,
405                                              u32 max_encrypted_len,
406                                              struct fscrypt_str *crypto_str)
407 {
408         return -EOPNOTSUPP;
409 }
410
411 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
412 {
413         return;
414 }
415
416 static inline int fscrypt_fname_disk_to_usr(struct inode *inode,
417                                             u32 hash, u32 minor_hash,
418                                             const struct fscrypt_str *iname,
419                                             struct fscrypt_str *oname)
420 {
421         return -EOPNOTSUPP;
422 }
423
424 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
425                                       const u8 *de_name, u32 de_name_len)
426 {
427         /* Encryption support disabled; use standard comparison */
428         if (de_name_len != fname->disk_name.len)
429                 return false;
430         return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
431 }
432
433 /* bio.c */
434 static inline void fscrypt_decrypt_bio(struct bio *bio)
435 {
436 }
437
438 static inline void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx,
439                                                struct bio *bio)
440 {
441 }
442
443 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
444                                         sector_t pblk, unsigned int len)
445 {
446         return -EOPNOTSUPP;
447 }
448
449 /* hooks.c */
450
451 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
452 {
453         if (IS_ENCRYPTED(inode))
454                 return -EOPNOTSUPP;
455         return 0;
456 }
457
458 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
459                                          struct dentry *dentry)
460 {
461         return -EOPNOTSUPP;
462 }
463
464 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
465                                            struct dentry *old_dentry,
466                                            struct inode *new_dir,
467                                            struct dentry *new_dentry,
468                                            unsigned int flags)
469 {
470         return -EOPNOTSUPP;
471 }
472
473 static inline int __fscrypt_prepare_lookup(struct inode *dir,
474                                            struct dentry *dentry,
475                                            struct fscrypt_name *fname)
476 {
477         return -EOPNOTSUPP;
478 }
479
480 static inline int __fscrypt_prepare_symlink(struct inode *dir,
481                                             unsigned int len,
482                                             unsigned int max_len,
483                                             struct fscrypt_str *disk_link)
484 {
485         return -EOPNOTSUPP;
486 }
487
488
489 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
490                                             const char *target,
491                                             unsigned int len,
492                                             struct fscrypt_str *disk_link)
493 {
494         return -EOPNOTSUPP;
495 }
496
497 static inline const char *fscrypt_get_symlink(struct inode *inode,
498                                               const void *caddr,
499                                               unsigned int max_size,
500                                               struct delayed_call *done)
501 {
502         return ERR_PTR(-EOPNOTSUPP);
503 }
504
505 static inline void fscrypt_set_ops(struct super_block *sb,
506                                    const struct fscrypt_operations *s_cop)
507 {
508 }
509
510 #endif  /* !CONFIG_FS_ENCRYPTION */
511
512 /**
513  * fscrypt_require_key - require an inode's encryption key
514  * @inode: the inode we need the key for
515  *
516  * If the inode is encrypted, set up its encryption key if not already done.
517  * Then require that the key be present and return -ENOKEY otherwise.
518  *
519  * No locks are needed, and the key will live as long as the struct inode --- so
520  * it won't go away from under you.
521  *
522  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
523  * if a problem occurred while setting up the encryption key.
524  */
525 static inline int fscrypt_require_key(struct inode *inode)
526 {
527         if (IS_ENCRYPTED(inode)) {
528                 int err = fscrypt_get_encryption_info(inode);
529
530                 if (err)
531                         return err;
532                 if (!fscrypt_has_encryption_key(inode))
533                         return -ENOKEY;
534         }
535         return 0;
536 }
537
538 /**
539  * fscrypt_prepare_link - prepare to link an inode into a possibly-encrypted directory
540  * @old_dentry: an existing dentry for the inode being linked
541  * @dir: the target directory
542  * @dentry: negative dentry for the target filename
543  *
544  * A new link can only be added to an encrypted directory if the directory's
545  * encryption key is available --- since otherwise we'd have no way to encrypt
546  * the filename.  Therefore, we first set up the directory's encryption key (if
547  * not already done) and return an error if it's unavailable.
548  *
549  * We also verify that the link will not violate the constraint that all files
550  * in an encrypted directory tree use the same encryption policy.
551  *
552  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
553  * -EXDEV if the link would result in an inconsistent encryption policy, or
554  * another -errno code.
555  */
556 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
557                                        struct inode *dir,
558                                        struct dentry *dentry)
559 {
560         if (IS_ENCRYPTED(dir))
561                 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
562         return 0;
563 }
564
565 /**
566  * fscrypt_prepare_rename - prepare for a rename between possibly-encrypted directories
567  * @old_dir: source directory
568  * @old_dentry: dentry for source file
569  * @new_dir: target directory
570  * @new_dentry: dentry for target location (may be negative unless exchanging)
571  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
572  *
573  * Prepare for ->rename() where the source and/or target directories may be
574  * encrypted.  A new link can only be added to an encrypted directory if the
575  * directory's encryption key is available --- since otherwise we'd have no way
576  * to encrypt the filename.  A rename to an existing name, on the other hand,
577  * *is* cryptographically possible without the key.  However, we take the more
578  * conservative approach and just forbid all no-key renames.
579  *
580  * We also verify that the rename will not violate the constraint that all files
581  * in an encrypted directory tree use the same encryption policy.
582  *
583  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
584  * rename would cause inconsistent encryption policies, or another -errno code.
585  */
586 static inline int fscrypt_prepare_rename(struct inode *old_dir,
587                                          struct dentry *old_dentry,
588                                          struct inode *new_dir,
589                                          struct dentry *new_dentry,
590                                          unsigned int flags)
591 {
592         if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
593                 return __fscrypt_prepare_rename(old_dir, old_dentry,
594                                                 new_dir, new_dentry, flags);
595         return 0;
596 }
597
598 /**
599  * fscrypt_prepare_lookup - prepare to lookup a name in a possibly-encrypted directory
600  * @dir: directory being searched
601  * @dentry: filename being looked up
602  * @fname: (output) the name to use to search the on-disk directory
603  *
604  * Prepare for ->lookup() in a directory which may be encrypted by determining
605  * the name that will actually be used to search the directory on-disk.  Lookups
606  * can be done with or without the directory's encryption key; without the key,
607  * filenames are presented in encrypted form.  Therefore, we'll try to set up
608  * the directory's encryption key, but even without it the lookup can continue.
609  *
610  * This also installs a custom ->d_revalidate() method which will invalidate the
611  * dentry if it was created without the key and the key is later added.
612  *
613  * Return: 0 on success; -ENOENT if key is unavailable but the filename isn't a
614  * correctly formed encoded ciphertext name, so a negative dentry should be
615  * created; or another -errno code.
616  */
617 static inline int fscrypt_prepare_lookup(struct inode *dir,
618                                          struct dentry *dentry,
619                                          struct fscrypt_name *fname)
620 {
621         if (IS_ENCRYPTED(dir))
622                 return __fscrypt_prepare_lookup(dir, dentry, fname);
623
624         memset(fname, 0, sizeof(*fname));
625         fname->usr_fname = &dentry->d_name;
626         fname->disk_name.name = (unsigned char *)dentry->d_name.name;
627         fname->disk_name.len = dentry->d_name.len;
628         return 0;
629 }
630
631 /**
632  * fscrypt_prepare_setattr - prepare to change a possibly-encrypted inode's attributes
633  * @dentry: dentry through which the inode is being changed
634  * @attr: attributes to change
635  *
636  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
637  * most attribute changes are allowed even without the encryption key.  However,
638  * without the encryption key we do have to forbid truncates.  This is needed
639  * because the size being truncated to may not be a multiple of the filesystem
640  * block size, and in that case we'd have to decrypt the final block, zero the
641  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
642  * filesystem block boundary, but it's simpler to just forbid all truncates ---
643  * and we already forbid all other contents modifications without the key.)
644  *
645  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
646  * if a problem occurred while setting up the encryption key.
647  */
648 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
649                                           struct iattr *attr)
650 {
651         if (attr->ia_valid & ATTR_SIZE)
652                 return fscrypt_require_key(d_inode(dentry));
653         return 0;
654 }
655
656 /**
657  * fscrypt_prepare_symlink - prepare to create a possibly-encrypted symlink
658  * @dir: directory in which the symlink is being created
659  * @target: plaintext symlink target
660  * @len: length of @target excluding null terminator
661  * @max_len: space the filesystem has available to store the symlink target
662  * @disk_link: (out) the on-disk symlink target being prepared
663  *
664  * This function computes the size the symlink target will require on-disk,
665  * stores it in @disk_link->len, and validates it against @max_len.  An
666  * encrypted symlink may be longer than the original.
667  *
668  * Additionally, @disk_link->name is set to @target if the symlink will be
669  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
670  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
671  * on-disk target later.  (The reason for the two-step process is that some
672  * filesystems need to know the size of the symlink target before creating the
673  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
674  *
675  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
676  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
677  * occurred while setting up the encryption key.
678  */
679 static inline int fscrypt_prepare_symlink(struct inode *dir,
680                                           const char *target,
681                                           unsigned int len,
682                                           unsigned int max_len,
683                                           struct fscrypt_str *disk_link)
684 {
685         if (IS_ENCRYPTED(dir) || fscrypt_dummy_context_enabled(dir))
686                 return __fscrypt_prepare_symlink(dir, len, max_len, disk_link);
687
688         disk_link->name = (unsigned char *)target;
689         disk_link->len = len + 1;
690         if (disk_link->len > max_len)
691                 return -ENAMETOOLONG;
692         return 0;
693 }
694
695 /**
696  * fscrypt_encrypt_symlink - encrypt the symlink target if needed
697  * @inode: symlink inode
698  * @target: plaintext symlink target
699  * @len: length of @target excluding null terminator
700  * @disk_link: (in/out) the on-disk symlink target being prepared
701  *
702  * If the symlink target needs to be encrypted, then this function encrypts it
703  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
704  * previously to compute @disk_link->len.  If the filesystem did not allocate a
705  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
706  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
707  *
708  * Return: 0 on success, -errno on failure
709  */
710 static inline int fscrypt_encrypt_symlink(struct inode *inode,
711                                           const char *target,
712                                           unsigned int len,
713                                           struct fscrypt_str *disk_link)
714 {
715         if (IS_ENCRYPTED(inode))
716                 return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
717         return 0;
718 }
719
720 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
721 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
722 {
723         struct page *page = *pagep;
724
725         if (fscrypt_is_bounce_page(page)) {
726                 *pagep = fscrypt_pagecache_page(page);
727                 fscrypt_free_bounce_page(page);
728         }
729 }
730
731 #endif  /* _LINUX_FSCRYPT_H */